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Obesity is a complex condition with world-wide exponentially rising prevalence rates,
linked with severe diseases like Type 2 Diabetes. Economic and welfare consequences
have led to a raised interest in a better understanding of the biological and genetic
background. To date, whole genome investigations focusing on single genetic variants
have achieved limited success, and the importance of including genetic interactions is
becoming evident. Here, the aim was to perform an integrative genomic analysis in an F2
pig resource population that was constructed with an aim to maximize genetic variation
of obesity-related phenotypes and genotyped using the 60K SNP chip. Firstly, Genome
Wide Association (GWA) analysis was performed on the Obesity Index to locate candidate
genomic regions that were further validated using combined Linkage Disequilibrium
Linkage Analysis and investigated by evaluation of haplotype blocks. We built Weighted
Interaction SNP Hub (WISH) and differentially wired (DW) networks using genotypic
correlations amongst obesity-associated SNPs resulting from GWA analysis. GWA results
and SNP modules detected by WISH and DW analyses were further investigated by
functional enrichment analyses. The functional annotation of SNPs revealed several
genes associated with obesity, e.g., NPC2 and OR4D10. Moreover, gene enrichment
analyses identified several significantly associated pathways, over and above the GWA
study results, that may influence obesity and obesity related diseases, e.g., metabolic
processes. WISH networks based on genotypic correlations allowed further identification
of various gene ontology terms and pathways related to obesity and related traits, which
were not identified by the GWA study. In conclusion, this is the first study to develop
a (genetic) obesity index and employ systems genetics in a porcine model to provide
important insights into the complex genetic architecture associated with obesity and many
biological pathways that underlie it.

Keywords: obesity index, animal model, high-throughput genotype data, systems genetics, WISH network

INTRODUCTION
Obesity, a complex condition characterized by excessive accu-
mulation of body fat, is an exponentially growing public health
problem associated with several severe diseases like Type 2
Diabetes, cardiovascular diseases, and various types of cancers
(Bener et al., 2005). Obesity in humans is influenced by environ-
mental, epigenetic, and genetic factors. Animal (model) studies
show that weight gain and adiposity are related to genetic dif-
ferences in eating behavioral patterns (Do et al., 2013), and it
has also been shown that epigenetics play a critical role (e.g.,
nutritional status during pregnancy/fetal programming events)
in determining effective partitioning of nutrients to maintain-
ing essential physiological functions (Hou et al., 2013; Do et al.,
2014). However, these environmental and epigenetic factors are
difficult to manage, and therefore there is substantial interest in
gaining more knowledge about the genetic background of obe-
sity. Results from GWA studies performed on obesity-related

traits, e.g., body mass index (BMI) and waist-hip ratio (WHR),
are to date unsatisfactory in unraveling the genetic background
for obesity. While phenotypes like BMI are known to be highly
heritable (40–70%), the largest GWA study on BMI has only
been able to identify 32 candidate loci that together explain
only 1.45% of the inter-individual variation (Speliotes et al.,
2010). Similarly in the case of WHR, only 14 candidate loci
were identified that together explain only 1.03% of the vari-
ance in WHR compared to an estimated heritability between 22
and 61% (Heid et al., 2010). Beside gene-environment interac-
tions (Qi and Cho, 2008), it is becoming increasingly evident
that genome-wide genetic interactions, which are not taken into
account by GWA studies, could play a key role to these discrepan-
cies (Cordell, 2009). For example, the well-known obesity-related
FTO gene interacts with APOE which in turn, is associated
with Alzheimer’s disease (Keller et al., 2011) and with MC4R,
resulting in a higher chance of breast cancer (Cunha et al.,
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2013). These studies demonstrate both the presence of genetic
interactions, and how these interactions could potentially influ-
ence the biological relationship between obesity and several
other severe diseases. Therefore, the application of network-
based genetics or systems genetics approaches directed toward
investigating these genome-wide interactions and their functional
relevance has the potential to provide novel biological and genetic
insights into complex traits and diseases (Kadarmideen et al.,
2006; Joshi et al., 2009; Civelek and Lusis, 2014; Kadarmideen,
in press).

Various systems genetics approaches have been developed to
unravel the genetic background of complex diseases by distin-
guishing networks, functional pathways, and underlying causal
genes (Brazhnik et al., 2002; Segal et al., 2003; Diez et al., 2010;
Horvath, 2011; Kadarmideen et al., 2011; Yang et al., 2011;
Kadarmideen, in press). Recently, we published the Weighted
Interaction SNP Hub (WISH) network method, which identi-
fies clusters of highly interconnected SNPs (modules) using high
throughput genotype data (Kogelman and Kadarmideen, 2014).
Functional annotation and pathway analysis of detected modules
may lead to the identification of biologically relevant pathways.
Moreover, the differential connectivity or differential wiring of
SNPs between two subgroups of extreme phenotypes, may reveal
biologically interesting candidates as they might point to differ-
ences in underlying genetic regulation for manifestation of the
trait of interest.

In the present study, we applied WISH network and gene
enrichment analyses in addition to GWA analysis (validated using
LDLA and haploblock methods), in order to identify individ-
ual variants and pathways that may be causal for obesity using
a porcine model established for obesity studies (Kogelman et al.,
2013). Animal models are helpful to study complex diseases due
to reduced costs, more controlled environment, and the possibil-
ity of more controlled and extensive phenotyping in comparison
with human studies. Pigs are a valuable model for human obesity
and obesity-related diseases primarily because of comparable fea-
tures that include a similar cardiovascular system, proportionally
similar organ sizes, and comparable protein and lipid metabolism
(Spurlock and Gabler, 2008). Pigs are also genetically close to
humans and therefore acknowledged as an important biomedical
model to study obesity (Groenen et al., 2012). The F2 pig resource
population used in this study was constructed by intercrossing
Göttingen Minipigs that are prone to obesity, and production pigs
that are selected for leanness over many generations. This popula-
tion has a high degree of genetic variation among several obesity-
and obesity related traits (Kogelman et al., 2013) and is therefore
a promising resource for further analyses directed toward iden-
tifying novel genetic determinants of obesity and obesity related
diseases.

The main goal of this study was to investigate the genetic deter-
mination of obesity by applying integrated systems approaches
including GWA, LDLA, WISH network analyses of whole
genomic data and functional gene enrichment analyses, in a
pig model. Here we report SNPs, and associated genes, bio-
logical pathways and functional ontologies identified via the
application of these approaches to a combination of obesity
phenotypes.

RESULTS
OBESITY INDEX
The Obesity Index (OI) was constructed according to the selec-
tion index theory (Cameron, 1997), whereby nine obesity and
obesity-related (OOR) phenotypes are combined into a single
value representative of the genetic predisposition to obesity. As
expected based on the experimental design, the OI followed
a normal distribution within the F2 pig resource population
(Figure 1), with a mean of −0.06 and a standard deviation of
1.15. Accordingly, the OI can be used to select animals that are
genetically predisposed to being either extremely obese or lean.

GENOME-WIDE ASSOCIATION STUDY (GWAS)
A GWAS on the OI was performed on the entire F2 pig resource
population. After quality control of the high-throughput geno-
type data, 40,910 markers and 538 animals were used for analysis.
In total, 404 SNPs passed the Bonferroni corrected significance
threshold of P = 2.44E−8, of which 366 were assigned to the
porcine assembly, all located on autosomes. The Manhattan plot
representing genome-wide p-values is shown in Figure 2.

In total, 289 genes were detected within 20 kb of the 366 SNPs
that passed the genome-wide significance threshold. As most of
the significantly associated SNPs were mapped to Ensemble gene
identifiers (in total 100 unique genes), we only focused on those
genes, and not on all the genes within a flanking distance of
20 Kb. Several of those genes could be associated with obesity or
obesity-related diseases. Here we focus only on arbitrarily chosen
seven genes corresponding to the highest genome-wide signif-
icant SNPs, detected after control of multiple testing and false
discovery rate. Table 1 shows these SNP names, their genome-
wide corrected p-values, their effects on total obesity score along
with associated gene names.

The most significant SNP (P-value = 9.09E−17) detected by
the GWA study is located within the NPC2 gene (Nieman–
Pick disease, type 2C). This gene encodes a protein that plays

FIGURE 1 | Distribution of the Obesity Index (OI), an aggregate

genotype representing the degree of obesity of all F2 animals in the F2

pig resource population.
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FIGURE 2 | A Manhattan plot of GWA Study single-locus P-values. The blue dash line indicates a suggestive significance threshold with adjusted
Bonferroni correction at Padj = 1.33E−6 and the red line indicates a highly significant threshold with adjusted Bonferroni correction at Padj = 2.67E−8.

Table 1 | Description of a selection of highly significant SNPs

associated with the Obesity Index.

SNP Chr Position Nearest gene Effect P-value

rs81396056 7 103574383 NPC2 0.63 9.09E−17

rs81238148 2 11449934 OR4D10 −0.60 1.13E−15

rs81416774 9 135204695 CACNA1E −0.76 2.56E−13

rs80910848 1 228929456 SH3GL2 −0.49 1.31E−12

rs81306707 1 177369143 CDH20 0.50 1.79E−12

rs80998394 14 29824188 AACS 0.75 1.49E−10

rs80826774 7 65275011 ADPGK 0.76 4.20E−10

a role in the regulation of cholesterol transport through the
late endosomal/lysosomal system, affecting cholesterol homeosta-
sis (Storch and Xu, 2009). The second highest significant SNP
(P-value = 1.13E−15) is located approximately 3 Kb downstream
from the OR4D10 gene, which is an olfactory receptor gene.
Olfactory receptors are responsible for the perception of smell,
through neuronal responses, and thereby affecting the perception
of food flavor. Furthermore, additional highly significant SNPs
mapped within the vicinity of other potentially obesity related
genes: e.g., CACNA1E, SH3GL2, CDH20, AACS, and ADPGK. The
CACNA1E gene encodes a protein in a voltage dependent cal-
cium channel. Variants in this gene have been associated with
type 2 diabetes, insulin resistance, and impaired insulin secretion
in non-diabetic subjects (Trombetta et al., 2012). The SH3GL2
gene encodes Endophilin-A1, which plays a role in synaptic vesi-
cle endocytosis and is associated with lipid binding (Huttner
and Schmidt, 2000). The CDH20 gene encodes a type 2 classical
cadherin, which is a calcium dependent cell-cell adhesion gly-
coprotein and a prime candidate for tumor suppression (Kools
et al., 2000). A study on childhood obesity in Hispanic children
found this gene to have a suggestive association with energy bal-
ance (P-value = 5.60E−6) (Comuzzie et al., 2012). The AACS
gene (acetoacetyl-CoA synthetase-like gene) mediates activation
of ketone bodies for synthesis of fatty acid and cholesterol. AACS
is potentially being regulated by the leptin signaling pathway
via the brain and consequently a cause of metabolic disorders

(Narishima et al., 2009). The ADPGK gene (ADP-dependent
glucokinase-like gene) regulates T-cell activation, affecting the
glycolytic metabolism (glucose uptake) (Kamiński et al., 2012).
All genome-wide significant GWA study results are presented in
Additional file 1.

VALIDATION OF GWAS RESULTS BY LDLA AND HAPLOTYPE BLOCK
ANALYSES
The GWA study revealed several highly associated SNPs, in
which, among others, seven genes were chosen after their co-
location with the highest genome-wide significant SNPs (based
on p-values; Table 1). The genomic regions around those seven
genes were further validated using the combined LDLA. We then
interrogated the LDLA validated regions using haplotype block
analyses for genetic variants and genes that are in close vicin-
ity and in high linkage disequilibrium. The LDLA approach
modeled QTLs in the middle of successive marker pairs located
within the above mentioned genetic regions, and results indi-
cated that QTLs modeled in all possible positions within these
seven detected genes passed the suggestive significance thresh-
old (P-value = 1.6E−6) and, except for NPC2, passed the highly
significant threshold (P-value = 3.2E−8). Regional plots of these
seven indicated genes are presented in Figure 3.

After LDLA confirmation of the seven genomic regions
detected by GWA analysis, we further examined the validated
regions by investigating possible haplotype block structures. The
NPC2, OR4D10, and CACNA1E genes were located in small hap-
lotype blocks. The NPC2 gene is located on chromosome 7. In the
evaluated region (103.566–103.584 Mb) there are five small hap-
lotypes, wherein the NPC2 gene is located on a small haplotype
block of 4 Kb containing eight SNPs (Figure 4A). This haploblock
does not contain any other genes. The OR4D10 gene is located on
chromosome 2, and in the evaluated region (11441–11458 Mb)
there are three small haplotype blocks, and the OR4D10 gene
is located in a haplotype block of 10 Kb containing nine SNPs
(Figure 4B). There are no other genes present in this haplo-
type block. The CACNA1E gene is located on chromosome 9,
and in the evaluated region (13596–135224 Mb) there are four
small haplotype blocks, where CACNA1E is located in a haplotype
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FIGURE 3 | LDLA regional plots for regions around seven selected

genes. The concerning gene is vertically marked with a gray bar. The
blue dash line indicates a suggestive significance threshold with

adjusted Bonferroni correction at P = 1.58E−6 and the red line
indicates a highly significant threshold with adjusted Bonferroni
correction at P = 3.17E−8.

FIGURE 4 | Haploview representation of regional haplotype block

estimates of seven selected regions, detected by GWA analysis. On the
vertical line the SNPs present in the selected region, and the triangles (black
lines) represent the haplotype blocks. (A) NPC2 gene is located in a 8-SNP
haplotype block of 4 Kb size on Chromosome 7; (B) OR4D10 gene is located
in a 9-SNP haploype block of 10 Kb size on Chromosome 2; (C) CACNA1E

gene is located in a 7-SNP haplotype block of 8 Kb size on Chromosome 9;
(D) SH3GL2 gene is located in a 129-SNP haplotype block of 67 Kb size on
Chromosome 1; (E) CDH20 gene is located in a 16-SNP haplotype block of
46 Kb size on Chromosome 1; (F) AACS gene is located in a 9-SNP haplotype
block of 26 Kb size on Chromosome 14; (G) ADPGK gene is located in a
204-SNP haplotype block of 500 Kb size on Chromosome 7.

block of 8 Kb containing seven SNPs (Figure 4C). This haplo-
type block contains no other genes. The SH3GL2, CDH20, and
AACS genes were located in moderately sized haplotype blocks.
The SH3GL2 gene is located on chromosome 1, and in the evalu-
ated region (228866–228993 Mb) there are eight small haplotype

blocks. SH3GL2 is located in the largest haplotype block (67 Kb)
containing 129 SNPs (Figure 4D), containing one more gene:
CNTLN (centlein, centrosomal protein). The CDH20 gene is also
located on chromosome 1, and in the evaluated region (177320–
177418 Mb) there are three small haplotype blocks. The CDH20
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gene is located on a haplotype block of 46 Kb containing 16 SNPs
(Figure 4E), but does not contain any other genes. The AACS gene
is located on chromosome 14, and we detected four blocks in the
evaluated region (29775–29874 Mb), where the AACS gene was
located on the haplotype block of 26 Kb containing nine SNPs
(Figure 4F), but no other genes were present in this haplotype
block. The ADPGK gene was located on chromosome 7 in a large
haplotype block of 500 Kb containing 204 SNPs (Figure 4G). In
this haplotype block (65060–65560 Mb) there are several other
genes located: BBS4 and ARIH1 are downstream of ADPGK,
TMEM202, HEXA, PARP6, PKM, and two uncharacterized pro-
teins are upstream of ADPGK. According to the haplotype block
analysis we can conclude that we can be reasonably confident
about the genes we pinpoint, however, with the ADPGK gene we
may have a noise because of the many other genes in the same
haplotype block. Previous research has shown an average haplo-
type block size of 400 Kb, of which most between 100 and 400 Kb,
for several production pig lines (Veroneze et al., 2013). Since this
is an F2 population, we expected even larger haplotype block sizes
then detected here.

PATHWAY DETECTION
Pathway analysis was performed using genes located within a
flanking distance of 20 Kb of the genome-wide significant SNPs
(P-value = 2.44E−8) identified via GWA analysis. Initially, anal-
ysis using the NCBI2R R-package only identified metabolic path-
ways (P-value = 0.08) that was not significant after Bonferroni
correction was applied to account for multiple comparisons.
Subsequently, GeneNetwork (http://www.genenetwork.nl) was
used to detect overrepresented pathways; and phenotypes and tis-
sues associated with these based on publicly available expression
data. GeneNetwork analyses identified various cellular, trans-
port related processes, as e.g., the GO biological processes cell
chemotaxis (P-value = 6E−6), and the KEGG pathway endo-
cytosis (P-value = 1E−6). The associated phenotypes [using
data from the Mouse Genome Informatics (MGI) database]
included inflammatory related phenotypes, e.g., decreased inflam-
matory response (P-value = 3E−5), demyelination (P-value =
3E−5), decreased macrophage cell number (P-value = 4E−5),
and decreased tumor necrosis factor secretion (P-value = 8E−5).
Furthermore, the tissue expression database shows a strong role
for the nervous system, as the spinal nerve roots are the most
significant associated tissue (P-value = 9E−7). Finally, we used
GOEAST to investigate gene ontology (GO) terms, in which
the genome-wide significant genes were overrepresented. Results
from these analyses indicate significant enrichment for GO terms
associated with the glucose/insulin metabolism in the Biological
Processes category, e.g., negative regulation of insulin secretion (P-
value = 2.39E−7, log odds = 4.46) and cellular response to glucose
stimulus (P-value = 2.94E-11, log odds = 4.50). Other over-
represented GO terms in the Biological Processes category were
glycolysis (P-value = 6.01E−7, log odds = 3.33), and skeletal mus-
cle fiber development (P-value = 1.91E−5, log odds = 3.65). In the
Cellular Component category, we did not find highly significant
GO terms. In the Molecular Function category the calcium-
dependent protein serine/threonine phosphatase activity (P-value
= 2.42E−12, log odds = 6.44), pyruvate kinase activity (P-value

= 1.62E−13, log odds = 6.32), and ferric iron binding (P-value =
5.89E−8, log odds = 4.69) were most significant.

NETWORK ANALYSIS USING THE WISH NETWORK METHOD
GWA studies have several limitations, as discussed above: many
SNPs are eliminated as they do not reach the strict genome-wide
significance thresholds and they do not take genetic networks
based on gene–gene interactions into account. We therefore
used the WISH network method to identify clusters of highly
interconnected SNPs (modules), using the Duroc ∗ Göttingen
Minipig (DM) intercross population. Detected modules were fur-
ther investigated using various pathway detection approaches, to
indicate their biological relevance.

Network construction
Data reduction was based on the genome-wide significance
(P-value < 0.05) and the connectivity of the SNPs, resulting
in a selection of 2500 SNPs for network construction. Using
the WISH network method based on genotype correlations, we
detected 17 modules of at least 50 SNPs per module. The module
eigenSNP was calculated based on the first principal component,
which explained 48–78% of the variation in the modules. We then
selected biologically interesting modules based on the Module-
Trait Relationship (MTR), which was calculated as the correlation
between the module eigenSNP and the traits of interest: the OI
and 16 other obesity-related traits. Six modules were selected
for downstream analysis based on the Genome-wide Module
Association Matrix (GMAT), as they had a significant correla-
tion with the OI, and a correlation of >0.4 with at least one
other obesity-related trait (Figure 5). Selected modules and their
MTR with OI were: Tan module (MTROI = 0.51), Lightgreen
module (MTROI = 0.42), Lightyellow module (MTROI = 0.35),
Purple module (MTROI = −0.33), the Royalblue module
(MTROI = 0.21), and the Red module (MTROI = 0.19).

Downstream analysis of detected modules
Genes located within 20 kb of SNP present in selected modules
were detected using the R-package NCBI2R. We performed path-
way analysis using NCBI2R, GOEAST and GeneNetwork for all
six selected modules resulting from WISH network construction.

The Tan module included 84 SNPs, corresponding to 64 genes.
GOEAST analyses resulted in the identification of several signifi-
cant GO terms in the actin filament pathway (e.g., actin crosslink
formation, P-value = 2.59E−8) which is not directly associated
with obesity. GeneNetwork analyses identified some overrepre-
sented phenotypes related to diabetes (i.e., increased susceptibility
to autoimmune diabetes, P-value = 4.13E−4; and abnormal pan-
creatic beta cell morphology, P-value = 6.58E−4), which may be
resulting from the overrepresented Biological Process GO term
branched chain family amino acid metabolic process (P-value =
6.98E−5), as those amino acids are associated with the metabolic
homeostasis (Wang and Guo, 2013).

The Lightgreen module consists of 77 SNPs representing
47 genes. The Molecular Function category in GOEAST shows
one highly overrepresented GO term: purinergic receptor activity
(P-value = 7.21E−25). Purinergic receptors have been implicated
in several different functions as, e.g., learning and memory, loco-
motor and feeding behavior, and sleep. Two genes present in
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FIGURE 5 | Genome-wide Association Matrix (GMAT) of modules

detected using the WISH network method. On the y-axis the detected
modules are visualized, and on the x-axis the different phenotypes (OI and
breeding values of 16 obesity-related phenotypes) are presented. In the

matrix the Module-Trait Relations (MTRs) are presented with the subsequent
p-values. MTRs are colored red in case of a strong positive correlation
between the Module and the Trait, and colored blue in case of a strong
negative correlation between the Module and the Trait.

this pathway are P2RX7 and ADORA2A. P2RX7 is encoding the
protein P2X purinoreceptor 7, which have been implicated in,
e.g., neuronal cell death and inflammation (Skaper et al., 2010).
Moreover, the P2X7 gene has been associated with diabetes, e.g.,
by its influence on the regulation of beta cells (Glas et al., 2009).
The ADORA2A (adenosine A2A receptor) gene is coding a pro-
tein which is a receptor subtype for adenosine. It regulates blood
flow to the myocardium by vasodilation of the coronary arter-
ies, potentially leading to hypotension. Besides, it has a neuronal
effect through its expression in the brain, associated with, e.g.,
anxiety and depression (Ledent et al., 1997). A direct link with
obesity or type 2 diabetes has not been shown, to our knowl-
edge. Furthermore, the Biological Process category in GOEAST
also shows the overrepresented GO term fructose 2,6-bisphosphate
metabolic process (P-value = 3.95E−20), possibly because of the
presence of the PFKFB4 gene. PFKFB4 regulates the concen-
tration of fructose 2,6-bisphosphate, which plays a key role in
glycolysis (Uyeda et al., 1982).

The Lightyellow module consists of 72 SNPs representing 45
genes. The GOEAST analysis only reveals some slightly signifi-
cant overrepresented GO-terms, as, for example, the Molecular
Function alpha-glucosidase activity (P-value = 2.91E−7). The
GANC gene is present in this module and GO-term, encoding the
neutral alpha-glucosidase C enzyme. This enzyme plays a major
role in the glycogen metabolism and because of its effect on the

absorption of sugars from the gut, alpha-glucosidase inhibitors
are used in the treatment of type 2 diabetes (van de Laar, 2008).

The Purple module is the largest module, consisting of
104 SNPs and representing 84 genes. The NCBI2R pathway
analysis detected one, more general, pathway: metabolic path-
ways (P-value = 0.06, not significant after multiple-testing
correction). Using the GOEAST analysis, several GO-terms
were detected as overrepresented, e.g., microtubule anchoring
(P-value = 4.61E−31) and gamma-tubulin binding (P-value =
1.81E−26).

The Royalblue module is the smallest module, consisting of
57 SNPs representing 49 genes. The NCBI2R pathway analysis
came up with many significant overrepresented pathways, which
were also significant after multiple-testing correction. Most sig-
nificant were immune-related pathways, e.g., antigen processing
and presentation (P-value = 7.6E−6) and herpes simplex infection
(P-value = 1.85E−5), while others were more directly related to
the OOR diseases, e.g., type I diabetes mellitus (P-value = 5.8E−4).
Using GOEAST several GO terms in the Biological Processes cat-
egory were detected as overrepresented, e.g., collagen-activated
signaling pathway (P-value = 2.03E−72) and smooth muscle
migration (P-value = 4.06E−66).

Lastly, the Red module is consisting of 82 SNPs represent-
ing 54 genes. GOEAST detected some overrepresented GO-
terms associated with the monosialoganglioside sialytransferase
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activity (P-value = 5.22E−12). The ST3GAL4 gene, present in
this module, has been associated with this GO-term. This gene
has been associated to glycoprotein biosynthesis and cell surface
glycobiology, which may be associated to the concentration of
liver enzymes which is often disturbed by diseases like obesity and
give an increased risk for, e.g., type 2 diabetes (Chambers et al.,
2011).

Differentially wired (DW) networks of SNPs
Differentially wired (DW) or connected genes are genes which
are highly interconnected with other genes in one extreme sub-
group (hub genes), while lowly interconnected with other genes
in the other extreme subgroup. Here, we examined the differen-
tial connectivity (k_diff) of SNPs between the lean subgroup and
the obese subgroup. These DW genes in one group vs. the other
would be biologically interesting candidates as they might point
to differences in underlying genetic regulation for manifestation
of the obesity or leanness. In total, 55 SNPs showed an absolute
differential connectivity above 0.6, which resulted in the detec-
tion of 36 genes (including 10 uncharacterized proteins) within
a flanking distance of 20 Kb. We here present the genes strongly
associated with obesity or obesity-related diseases before, all DW
SNPs and corresponding genes are presented in Additional File 2.

Several DW genes were hub genes in the lean sub network,
but had a low interconnectivity in the obese sub network, e.g.,
UBR1, PNPLA8, and CTNAP2. The UBR1 gene (k_diff = 0.62)
encodes a member of the E3 ubiquitin ligase family, which func-
tions in the N-end rule pathway. This pathway has been associated
with various functions, e.g., the control of apoptosis (Ditzel et al.,
2003). Moreover, Ubr1 knockout mice also demonstrate sub-
tle effects in muscle protein degradation and fat metabolism
(Kwon et al., 2001). The PNPLA8 gene (k_diff = 0.62) encodes
a member of the patatin-like phospholipase domain containing
proteins. These phospholipases catalyze the cleavage of fatty acids
from membrane phospholipids. The CNTNAP2 gene (k_diff =
0.62) encodes contactin-associated protein-like 2, a protein which
functions in the nervous system as cell adhesion molecules and
receptor. A neuronal impact on obesity is suggested by this gene,
by the influence on the potassium channel at the nodes of Ranvier,
resulting in the regulation of diet-induced obesity (Buchner et al.,
2012).

On the other hand, DW genes that were detected with a
low interconnectivity in the lean sub network were in fact hub
genes in the obese sub network. Two of these DW genes have
previously been reported to be associated with obesity and dia-
betes, respectively: the NUCB2 gene and the BCL11A gene. The
nucleobindin-2 (NUCB2) gene (k_diff = −0.80) is a precursor of
nestafin-1, a hypothalamic anorectic neuropeptide. It has recently
been discovered that this neuropeptide is expressed in, e.g., pan-
creatic islet cells and the central nervous system. It seems to
play an important role in hypothalamic pathways regulating food
intake and energy homeostasis, and it has been shown to play an
important role in regulation of food intake in obese individuals
(Abaci et al., 2013). Moreover, it has been shown that nesfatin-1
is expressed in the same human gastric X/A-like cells as ghre-
lin, a hunger-stimulating hormone. The expression of nestafin-1
and ghrelin is differentially regulated under obese conditions:

nestafin-1 increases and ghrelin decreases with an increasing BMI,
toward a further adaptive change that may counteract further
body weight increase (Stengel et al., 2013). The BCL11A gene
(k_diff = −1.00) encodes the B-cell lymphoma/leukemia 11A
protein. The corresponding mouse gene has been associated with
leukemia, through its interaction with BCL6. However, this gene
has also been detected in GWA studies to be associated with type 2
diabetes and pancreatic β-cell function (Simonis-Bik et al., 2010;
Langberg et al., 2012).

DISCUSSION
In this systems genetics analysis using an F2 porcine model
of OOR diseases, we used several methods to identify under-
lying genetic variants, modular networks, biologically relevant
pathways, and hub genes. All these analyses were based on the
OI, an aggregate genetic value constructed by combining the
estimated breeding values of nine different obesity-related pheno-
types, thought to be highly relevant in defining both overall and
visceral obesity. We used the principles of genetic selection index
method often used in animal breeding to construct an aggregate
genetic index for obesity in porcine model. To our knowledge,
this is the first study to develop such an aggregate (genetic) OI for
systems- and network genetics investigations. The porcine model
was subject to extensive phenotyping, which is either not possi-
ble or expensive in human populations. Previous investigations
have shown that a large proportion of variation in these pheno-
types is genetically determined (Kogelman et al., 2013), thereby
offering an opportunity to exploit this resource to provide novel
insights into the genetic complexity of the disease. By combining
a key number of the obesity phenotypes into one, we were able
to investigate this complex disease with one simplified aggregate
phenotype. Moreover, the OI allows selection of extremely obese
and extremely lean animals, resulting in a greater power to detect
genes influencing obesity.

GWA STUDY AND VALIDATION OF IDENTIFIED REGIONS
A single SNP association approach was implemented via GWA
analysis on the OI, and subsequently seven selected GWAS regions
were validated using combined LDLA, and further investigated
by analyzing haplotype blocks in these regions using Haploview.
A large number of SNPs (representing 289 genes) were found
to be significantly associated with OI via GWA. The high num-
ber of genome-wide significant SNPs is likely due to the use of
the OI that combines nine different phenotypes. Consequently,
we do expect to find a greater number of SNPs for this aggre-
gate phenotype than for a situation where only one phenotype
is analyzed. Moreover, since OI represents only the polygenetic
(or estimated breeding) value for each phenotype used in its con-
struction, it is likely that re-regressing on a regressed “phenotype”
will yield inflated estimates of the regression coefficient. This
explains the high number of significant SNPs in the GWA study,
but also the very small p-values obtained via the LDLA approach.
However, since regression was used only to rank SNPs for data
reduction, and regression coefficients were not used for network
construction, this did not influence the network analysis.

The resource population was constructed by crossing genet-
ically divergent breeds differing with respect to obesity related
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phenotypes, followed by sibling mating. The resultant F2 porcine
intercross population allows Linkage Disequilibrium (LD) to
exploit family information to validate GWA findings. Traditional
GWA studies rely solely on across population LD that only
extends to short genetic intervals. Consequently, causal variants
are hard to identify if they are not located in the immediate vicin-
ity of the markers assayed in a study. Since within family LD
extends to larger genetic intervals, analytical approaches that use
this information along with across family LD (e.g., combined
linkage disequilibrium linkage analyses; LDLA) provides greater
power and finer resolution of the candidate loci particularly in
genomic regions with low population wide LD (Meuwissen et al.,
2002). LDLA is a fine mapping approach that combines both
within-family linkage and population-wide LD in one analysis.
Since single marker GWA analysis is based on population wide
LD and linkage information was available given the 3-generation
F2 intercross pedigree, it was a reasonable further step to capi-
talize on this F2 pedigree structure to validate findings of highly
significant regions in the GWA analysis.

Obesity is a very complex trait, with many different involved
biological pathways, and consequently a huge number of genes
will be related. Many SNPs showed a significant association with
OI, and using a flanking distance of 20 Kb, we consequently found
many genes located in or nearby those SNPs. As discussed, we
would expect that SNPs over a rather long distance will be in
LD, as a consequence of using parental lines genetically diver-
gent for two different characteristics (leanness vs. obese) each line
having larger LD blocks passed onto F2 pigs. This would mean
using a larger flanking distance, consequently detecting even more
genes in the regions of associated SNPs. However, we have seen in
this study that there are rather small haplotype block sizes, and
because of the high number of SNPs detected, we limited gene
detection to a flanking distance of 20 Kb.

As expected, several of our GWA study finding could be
directly or indirectly linked to obesity. The number of associated
genes is also in agreement with other studies: GWA studies alone
have indicated at least 37 genes related with BMI, 14 genes with
WHR adjusted for BMI, 3 genes with fat percentage, etc. (Fall and
Ingelsson, 2014). Only one of our GWA study findings overlap
with previous findings, published in Fall and Ingelsson (2014), as
for example the MAP2K5 gene (P-value = 2.32E−9) on chromo-
some 1 of the pig genome. This gene has previously been detected
by GWA studies on BMI by Speliotes (Speliotes et al., 2010) and
Wen (Wen et al., 2012). However, many loci previously reported
to be associated with obesity were not detected in our study, e.g.,
FTO and MC4R gene. SNPs located in or near both these genes
did not survive data quality control. Moreover, many SNPs could
not be annotated, mainly due to the limited annotation of the pig
genome, which is also a main limitation in the pathway detec-
tion among SNPs detected using the GWA study. Pathway analysis
did show some biologically relevant pathways, e.g., negative regu-
lation of insulin secretion, but unfortunately, the findings of the
different pathway methods did not overlap completely. The inad-
equate knowledge about the annotation of the pig genome also
results in limited knowledge about biological pathways present
on the pig genome. We therefore chose to identify the genes in
close proximity of SNPs, and use those genes in a human pathway

setting, by using the human reference genome and annotation
information. Furthermore, the variation in results between the
different pathway methods is also due to the different reference
datasets, as for example GOEAST works with GO terms only, and
the NCBI2R method was based on KEGG pathways.

NETWORK APPROACH
We used the WISH network method to cluster SNPs based on the
correlation patterns of genotypes. This systems genetics approach
gave us the opportunity to analyze the interactions between
thousands of SNPs, and thereby overcome major limitations
of GWA studies. GWA studies use a very stringent genome-
wide significance threshold, excluding potentially biologically
relevant associated SNPs with very small effect sizes. Here, we
selected SNPs based on a less stringent nominal P-value threshold
(0.05), increasing the probability of including SNPs with smaller
effect sizes that are biologically relevant for the trait of interest.
Moreover, we are not only interested in the detection of single
genetic variants associated with obesity, but also in the detection
of molecular pathways through which the genetic variants exerts
their effects. Because of the exclusion of SNPs with interaction
effects on phenotypes in GWA study, the elucidation of important
pathways is limited. By using a WISH network method, we are
able to include and analyze genome-wide interactions between
SNPs and relate them to molecular and cellular functions.

WISH network construction was based on genotypic correla-
tion and since genotypic correlations largely represent LD, part
of the SNPs in the network modules were found to be in close
physical proximity. However, many SNPs in the modules were not
physically co-located. For example, the Tan module has the high-
est correlation with OI and consists of 84 SNPs. Of these, 9 SNPs
could not be mapped to the porcine genome and the remain-
ing 75 SNPs were distributed over all porcine chromosomes,
except chromosome 15. As shown in Table 2, there is a fairly
equal distribution of SNPs included in this module over differ-
ent porcine chromosomes. Moreover, in cases where many SNPs
are co-located on one chromosome, they cover a large area of the
chromosome. This indicates that the WISH network construction
based on genotypic correlations does not only capture SNPs phys-
ically co-located. However, previous studies have also shown that
very distant loci located on different chromosomes can be in LD
with each other (Flint-Garcia et al., 2003). Studies have advocated
investigating LD between loci, as a SNP highly associated with
the disease could be in LD with a causal SNP (Weiss and Clark,
2002). By detecting clusters of SNPs that are in LD with each
other, and determining their functional annotation, we attempt
to investigate the biological relevance of SNPs in genome-wide
LD. The WISH network method may also be applied using an
epistatic interaction model, using the regression coefficients of the
SNPi

∗SNPj interaction term. However, as discussed previously,
regression models using a regressed phenotype like OI will likely
yield inflated coefficients. Therefore, we did not apply the WISH
network method based on epistatic interactions in this study.

In total six WISH network modules were further examined
using different pathway analysis methods. Those methods show
different results which could be directly or indirectly related to
obesity and obesity related diseases. As expected, many pathways
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Table 2 | Distribution of SNPs over the chromosomes in the Tan

Module using the WISH network method based on genotypic

correlations.

Chromosome # SNPs Location

Minimum Maximum

1 17 87.621.858 291.903.522

2 11 2.338.853 145.102.337

3 3 74.111.456 141.121.427

4 7 21.818.546 142.317.862

5 3 4.874.980 10.686.539

6 4 43.090.860 126.991.726

7 4 87.893.776 97.500.922

8 2 20.144.538 109.213.653

9 4 48.813.606 132.656.946

10 1 58.238.109 58.238.109

11 4 37.160.369 82.659.616

12 2 52.678.657 54.767.975

13 5 31.119.717 172.601.927

14 2 62.514.781 63.414.448

16 3 8.438.953 68.583.123

17 1 9.342.342 9.342.342

X 1 6.909.025 6.909.025

were related to metabolic processes (e.g., fructose 2,6-bisphosphate
metabolic process and branched chain family amino acid metabolic
process). The variety of results show the complexity of the disease
under study, as many different metabolic associated pathways and
GO terms show up in the different modules. To further investigate
the relation with the insulin pathway, and shown the additional
value of systems genetics approaches, we looked further into the
connectivity’s of the SNPs present in the Lightgreen Module, as
this one showed associations with, e.g., the glycolysis pathway.
Three out of the seven highest connected SNPs were located in
the FRMD4B, ADAMTS9, and XCR1 genes. Those genes were all
previously related to the insulin pathway or diabetes, where XCR1
(encoding a chemokine receptor) even linked obesity to insulin
resistance before (Ota, 2013). The FRMD4B gene is part of the
GRP1 signaling complex, thereby recruited in response to insulin
receptor signaling, but genetic variants have also been associ-
ated with heart failure (Matkovich et al., 2010). The ADAMTS9
gene has been associated to Type 2 Diabetes in a meta-analysis of
genome-wide association data (Zeggini et al., 2008). Those genes
show in the network construction a perfect correlation (of 1) with
each other, and as they lie on the porcine genome in a region of
approximately 18 Mb of each other, it is likely that they are within
the same haplotype block. However, the integrative systems genet-
ics approaches also shows the potential of further investigating
those genes, and gaining knowledge about the genetic architecture
of complex traits. We examined the differential wiring of SNPs
between two subgroups that are genetically lean and obese. These
DW genes in one group vs. the other would be biologically inter-
esting candidates as they might point to differences in underlying
genetic regulation for manifestation of the obesity or leanness.
We detected 55 DW SNPs and 36 co-located genes within 20 kb

(e.g., UBR1, PNPLA8, and CTNAP2), which have significant
implications for development of obesity and or obesity-related
diseases, as shown in additional file 2. The WISH network was
able to identify GO terms and pathways which were not identi-
fied by pathway analysis of the GWA study results, and moreover,
none of the DW genes were identified using the GWA study.

In general, the study describes several obesity related genes
and pathways that accord with the complexity of the disease. As
this F2 pig resource population is extensively phenotyped, fur-
ther studies could yield novel biological insights underlying the
association between phenotypes used in this study and the identi-
fied genes. The results of this study overlap with previous human
findings, while also identifying novel genes not previously known
to be associated with human obesity. However, further valida-
tion of those loci will be needed to confirm the association with
obesity, and their exact function in biological pathways. Once val-
idated, these findings could potentially be extended to humans in
order to improve the treatment of obesity and eventually reduce
complementary problems resulting from obesity.

CONCLUSION
This is the first study to develop an aggregate (genetic) OI based
on the principles of quantitative genetics and animal breeding,
to study genetic of obesity. We demonstrated the potential of
network-based systems genetics approaches to reveal biological
and genetic background of complex phenotypes that is other-
wise not identified via traditional genetics/genomic analyses. Here
we performed GWA analysis, validated these results via LDLA
and evaluation of the haplotype block sizes, and subsequently
performed enrichment analysis to identify biological pathways
associated with obesity and obesity related traits. Subsequently,
scale-free WISH networks were constructed and different clus-
ters of highly interconnected SNPs that were putatively related
to obesity and related diseases were identified, demonstrating the
importance of genetic interactions in obesity. We have also exam-
ined the differential connectivity or wiring of SNPs between two
subgroups that are genetically obese and lean and detected 36
co-located genes, which have significant implications for develop-
ment of obesity and or obesity-related diseases. Many genes with
diverse functions and consequently many different pathways were
identified by WISH and differential wiring approaches that were
not detected by traditional GWA analyses, thereby demonstrating
that integrative systems approaches could potentially yield novel
insights into the genetic determination of obesity and its relation
to other diseases. This study, to the best of our knowledge, is the
first network-based systems genetics analyses on an experimental
pig population in which a wide range of obesity traits have been
investigated, and reaffirms the complexity associated with obesity
as a disease.

MATERIALS AND METHODS
The complete workflow, from materials to results, is presented
in Figure 6. The core materials for this study are the purpose-
built F2 pig model for obesity, high-throughput genotypic data,
and nine selected obesity phenotypes. Using these materials, we
developed first an aggregate (genetic) OI and applied GWAS
to the OI. The outputs of GWAS were then used in WISH
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FIGURE 6 | Workflow visualizing the different methods to detect obesity-related genes and pathways.

network construction. The LDLA methods were used validate
top genomic regions before conducting pathway, network and
functional annotation analyses. These approaches then resulted
in identification of novel obesity-related genes and pathways
which provide deeper understanding of genetic control of obesity
development.

THE F2 PIG RESOURCE POPULATION: PHENOTYPE AND GENOTYPING
An F2 pig resource population, genetically divergent for OOR
traits, was established as described previously (Kogelman et al.,
2013). Briefly, the F2 pig resource population was created using
Danish production pig breeds, i.e., purebred Yorkshire (YY) and
Duroc (DD) sows from a DanBred breeding herd and Göttingen
Minipig (MM) boars from Ellegaard A/S in the parental gen-
eration. The production pigs have been selected for leanness
and growth among other traits during the last 60 years, whereas
Göttingen Minipigs are bred principally for their small size and
ease of handling and are prone to obesity. They are also known to
share the metabolic impairments seen in obese humans (Wang
and Guo, 2013). The F2 pig resource population consists of
24 parental animals, 78 F1- and 454 F2-animals. The resulting
population of 556 animals can be divided into Duroc∗Göttingen

Minipig (DM, 279 pigs) and Yorkshire∗Göttingen Minipig (YM,
277 pigs) subpopulations. Animal care and maintenance was
conducted according to the Danish “Animal Maintenance Act”
(Act 432 dated 09/06/2004). This F2 pig resource was exten-
sively phenotyped for several OOR traits that included weight,
conformation, dual energy x-ray absorptiometry (DXA) scan-
ning and slaughter measurements. Genetic parameters estimated
via this F2 pig resource population revealed normally distributed
genetic values within those OOR traits, and the potential for fur-
ther genomic and system genetic investigations (Kogelman et al.,
2013). Descriptive statistics and heritabilities of the main traits of
interest in this study are presented in Table 3.

Blood was collected from all pigs in the F2 pig resource
population from the jugular vein. Genomic DNA was extracted
from EDTA stabilized blood using a simple salting out procedure
(Miller et al., 1988). Genotyping was performed by GenoSkan
A/S, Tjele, Denmark using the Illumina 60K porcine SNP-chip.
Quality control (QC) was performed in the R-package GenABEL
(Aulchenko et al., 2007), resulting in the exclusion of seven ani-
mals due to low call rate (≤0.05), and seven animals due to too
high identical by state (IBS ≥ 0.95). Furthermore, 3240 markers
were excluded because of a low call rate (≥0.05), 7615 markers
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Table 3 | Descriptive statistics and heritabilities of main

fatness-related traits in the pig resource population, as published in

Kogelman et al. (2013).

Trait Unit Abbreviation N Mean SD h2

WEIGHT

2 months Kg WT2m 439 12.45 4.52 0.78

7 months Kg WT7m 405 94.45 17.51 0.39

Average daily gain Kg/day ADG 403 0.44 0.08 0.54

Abdominal

circumference

Cm ABD7m 404 122.7 10.56 0.28

BMIa Kg/cm2 BMI7m 403 132.86 20.71 0.23

DXA

Fat Kg DXAfat 438 22.92 8.53 0.43

Lean Kg DXAlean 438 100.42 37.33 0.71

Mass Kg DXAtotal 438 123.34 44.93 0.67

% fat % DXA%fat 438 18.64 2.87 0.57

Fasting glucose Mmol/L FGL 146 4.50 2.28 0.49

SLAUGHTER

Carcass weight Kg SLcw 358 56.33 11.77 0.54

Meat percentage % SL%meat 330 43.39 6.65 0.18

Weight leaf fat Kg SLfat 396 2.59 1.10 0.23

Backfat 1b Mm SLbf1 330 31.90 8.54 0.22

Backfat 2c Mm SLbf2 330 35.44 9.12 0.23

Omental fat Kg SLfat_om 257 352.72 145.28 0.52

Intestinal fat Kg SLfat_int 219 19.88 8.32 0.08

aBMI, body mass index, calculated as [weight/(length)2].
bBackfat measured between third and fourth lumbar vertebra, 8 cm off midline.
cBackfat measured between third and fourth last rib, 8 cm off midline.

were excluded because of their low minor allele frequency (MAF
≤ 0.05), and 4723 markers were excluded as they were not in
Hardy–Weinberg equilibrium (P-value < 1E−5). This resulted in
the analysis of 40,910 markers and 538 animals.

OBESITY INDEX BASED ON BREEDING VALUES
To maximize genetic progress, selection indices are extensively
used in animal breeding (Cameron, 1997) to select animals with
desirable genotypes for a particular phenotype of interest. The
selection index theory was used to create one genetic value repre-
senting the degree of obesity for all animals, resulting in one more
distinct phenotype for obesity. Using the estimated variance com-
ponents, combining several OOR traits into one aggregate genetic
value for all animals in the F2 pig resource population, we cre-
ated the OI. Traits used for construction of the OI were: weight
at slaughter age (WT7m), abdominal circumference at slaugh-
ter age (ABD7m), average daily gain (ADG), estimated fat mass
at DXA (DXAfat), estimated percentage of fat at DXA scanning
(DXA%fat), backfat thickness at position 1 (SLbf1) and position 2
(SLbf2), weight of leaf fat at slaughtering (SLfat), and omental fat
at slaughtering (SLfat_om). These phenotypes were selected to col-
lectively represent and be associated with “obesity” as an excessive
amount of adipose tissue.

By combining the estimated breeding or genetic values (EBVs)
for several traits per animal, and weighting individual genetic
values of each traits by their relative biological weight (v), one

aggregate genetic value per animal is calculated representing all
phenotypes as:

I = b1x1 + b2x2 + · · · + bjxj = b′x

Where I is the selection index, bj is the selection index coeffi-
cient (weight) for the jth observation, and xj is the jth phenotypic
observation. The selection index coefficient b is calculated based
on the phenotypic and genetic (co-)variance components, multi-
plied by a biological assigned weight for the particular traits:

b = P−1Gv

Where P−1 is the inverse matrix of the phenotypic (co-)variances,
G is the matrix of the genotypic (co-)variances and v is a vector
with the biological assigned weights. The P and G matrices are
constructed as follows:

P =

⎡
⎢⎢⎣

σ 2
P1 σP1,2 . . . σP1,9

σP2,1 σ 2
P2 . . . σP2,9

. . . . . . . . . . . .

σP9,1 σP9,2 . . . σ 2
P9

⎤
⎥⎥⎦ , G =

⎡
⎢⎢⎣

σ 2
G1 σG1,2 . . . σG1,9

σG2,1 σ 2
G2 . . . σG2,9

. . . . . . . . . . . .

σG9,1 σG9,2 . . . σ 2
G9

⎤
⎥⎥⎦

where σ 2
Pi is the phenotypic variance of the ith trait, σPi,j is

the phenotypic covariance between the ith and jth trait, σ 2
Gi is

the genotypic variance of the ith trait, and σGi,j is the geno-
typic covariance between the ith and jth trait. The phenotypic
and genetic (co-)variance components were estimated using a
series of bivariate animal models for all combinations between
selected traits for the OI, as presented in our previous study
(Kogelman et al., 2013); all models were implemented using
ASReml (Gilmour et al., 2009).

As described earlier, each trait was assigned a biological weight
(v) based on biological assumptions that was used to calculate the
selection coefficient: weight at 7 months of age (v = 0.1), abdom-
inal circumference at 7 months of age (v = 0.1), average daily gain
(v = 0.1), body fat estimated by DXA scanning (v = 0.5), per-
centage of body fat estimated by DXA scanning (v = 0.5), weight
of leaf fat at slaughter (v = 0.8), back fat thickness at position 1
(v = 1), back fat thickness at position 2 (v = 1), and weight of
omental fat at slaughter (v = 0.8).

Accordingly, OI is defined as:

OI = bWT7m ∗ XWT7m + bABD7m ∗ XABD7m + bADG ∗ XADG

+ bDXAfat ∗ XDXAfat + bDXA%fat ∗ XDXA%fat + bBF1 ∗ XBF1

+ bBF2 ∗ XBF2 + bSLfat ∗ XSLfat + bSLfat_om ∗ XSLfat_om

where OI is the Obesity Index, b is the selection index coefficient
calculated using the (co-)variance components and biological
weight (v), and X is the estimated breeding value of the selected
traits. The estimated breeding values, representing the animals
deviation from the mean of the population, were estimated
using the variance component estimation models presented in
Kogelman et al. (2013) using ASReml (Gilmour et al., 2009).
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GENOME-WIDE ASSOCIATION ANALYSIS
The R package GenABEL (Aulchenko et al., 2007) was used to
test the association between individual SNPs distributed through-
out the porcine genome, and the OI using the complete F2
pig resource population. Since the OI is derived from estimated
genetic (breeding) values calculated after correcting for popula-
tion structure and all other environmental and fixed effects (see
Kogelman et al., 2013) a simple regression of the OI on SNP
genotypes was used to perform GWA analysis to avoid double-
or over-correction. The basic linear model was:

y = μ + g + e

where y = OI, μ = the phenotypic mean, g = the SNP genotypes
(coded as 1 and 2, 0 for missing), and e = the model errors.
We calculated the Bonferroni corrected p-values by dividing the
resulting p-value by the total number of SNPs passing QC thresh-
olds (as described above), resulting in a suggestive association at
Padj = 1.22E−6 (0.05/number of SNPs) and a highly significant
p-value at Padj = 2.44E−8 (0.001/number of SNPs).

VALIDATION OF GWA STUDY FINDINGS BY LDLA AND HAPLOTYPE
BLOCK ANALYSES
The genomic regions with most highly genome-wide significance
identified by GWA study (Padj = 2.44E−8) were further vali-
dated using the combined LDLA approach (Meuwissen et al.,
2002). Regions were selected when they were in the top 10 GWA
results (most highly significant) and the associated gene had a
biological role (in-) directly associated to obesity. Length of the
regions was arbitrary taken, in such a way that several SNPs
up- and downstream were investigated. Statistical significance
using the LDLA approach was calculated via a likelihood ratio
test of the full model (OI regressed over the phenotypic mean
and Identity by Descent probabilities of chromosomal segments
flanked by successive marker pairs) vs. the null model (containing
only the phenotypic mean). The Identity by descent probabilities
were estimated using a linkage disequilibrium multilocus iter-
ative peeling (LDMIP) algorithm described in Meuwissen and
Goddard (2010). Furthermore, we identified haplotype blocks in
the genomic regions that were detected as being highly significant
by both GWA and LDLA analyses, as they are likely to be the most
promising genomic regions harboring genetic variants affecting
OI. The structure of haplotype blocks in this F2 pig resource pop-
ulation was determined and plotted using Haploview software
(v4.2) (Barrett et al., 2005). Pairs were defined as being in “strong
LD” using an upper confidence bound on D′ > 0.98 and a lower
confidence bound on D′ < 0.7.

WISH NETWORK CONSTRUCTION AND ANALYSIS
We previously published the WISH network method based using
whole genome genotype data, giving the opportunity to iden-
tify clusters of highly interconnected SNPs (modules) and relate
them to phenotypes (Kogelman and Kadarmideen, 2014). We
applied these methods to construct WISH networks based on
genotypic correlations, using the pipeline as presented previously,
in order to identify biologically relevant pathways underlying
obesity and obesity related traits in a subpopulation of the pig

resource population. The QC of the high-throughput genotype
data was performed with the same parameters as for GWA study,
resulting in 40,194 SNPs and 266 pigs from the Duroc∗Göttingen
Minipig intercross.

For network construction all SNPs with a genome-wide sig-
nificance below 0.05 were selected for network construction,
resulting in the selection of 9485 SNPs. Animals were selected
based on their OI: 75 animals were selected based on an extreme
OI (25 low OI, 25 intermediate OI, and 25 high OI). These selec-
tions resulted in a 75 ∗ 9485 matrix of the genotypes coded as
1,2,3 for each animal. Because of computational limitations, the
size of the data set was further reduced by selecting SNPs based on
their connectivity, which is the sum of the connection strengths
of a particular SNP with all other SNPs. Genes with a high con-
nectivity, also called hubgenes, are thought to be biologically
important and therefore, only the top 2500 SNPs were selected
(normalized connectivity > 0.12). To pursue scale-free topology,
a power γ was chosen in such a way that the R2 (the scale-free
topology index) approaches one. A power γ of 5 resulted in an
R2 of 0.88, which was used to create an adjacency matrix by cal-
culating the Pearson’s correlations among SNPs and raising this
to the power γ of 5. The network was constructed based on
the topological overlap measure (TOM) between SNPs, where a
high TOM represents a high share of neighbors between a pair
of SNPs, and consequently, a low TOM represents a low share of
neighbors between a pair of SNPs. Based on the TOM, clusters of
highly interconnected SNPs were detected, called modules, using
the Dynamic Tree Cutting algorithm (Langfelder et al., 2008).
Modules were selected for downstream analysis based on their
Module-Trait Relation (MTR), which is calculated by correlating
the module eigenSNP (the first principal component, explain-
ing most of the variance in the module) with the OI and other
OOR traits. P-values were represented by the Student asymptotic
p-value for the given correlations. Other OOR traits were rep-
resented by the estimated breeding values, previously calculated
(Kogelman et al., 2013). Modules with a significant correlation
(P-value < 0.001) with the OI and an MTR > 0.4 with at one
other OOR trait were selected for pathway analysis.

Differential wiring of SNPs in obesity (DW networks)
It is expected that biologically important pathways related to
the trait under investigation, will show a different activity pat-
tern between the two extreme groups. In other words, a path-
way could be induced in the case-group, while repressed in the
control-group. Highly interconnected SNPs, and consequently
their mapped genes, are called hub genes, which are poten-
tially biologically relevant genes. Therefore, we investigated which
SNPs were DW (connected) between the lean and obese animals.
The interconnectivity is represented by the sum of correlations of
a particular SNP with all other SNPs within a (obese or lean) sub-
network. First, the 50 most extreme lean animals and the 50 most
extreme obese animals were selected based on the OI. Based on
the same selected SNPs (n = 40, 194) as in the normal network
construction the connectivity of all SNPs in the lean (k_lean) and
obese (k_obese) subnetwork was calculated. Then, the differen-
tial wiring or connectivity (k_diff) was calculated by subtracting
k_obese from k_lean. This resulted in a positive k_diff for SNPs
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that had high interconnectivity in the lean subnetwork, but low
interconnectivity in the obese subnetwork. Subsequently, negative
values for k_diff were found for SNPs that had high interconnec-
tivity in the obese subnetwork, but low interconnectivity in the
lean subnetwork. SNPs with an absolute k_diff above 0.6 were
selected for further investigation.

PATHWAY ANALYSIS
SNP selection and gene detection
SNPs that were cross-validated as being highly significant by
both GWA and LDLA study and those SNPs that were present
in the modules as being highly associated with the OI from
WISH network construction were all selected for further path-
way profiling analyses. Genes mapping to the detected SNPs were
obtained using Biomart (Ensembl v73) (Haider et al., 2009).
All identified genes were used for pathway analysis. Secondly, to
cover the promoter region of genes, which lay outside positions
covered by Biomart, we used the NCBI2R R-package (Melville
and Melville, 2012) (available at http://cran.r-project.org/web/
packages/NCBI2R/index.html) which uses a list of SNPs as an
input and gives (if present) the genes and their annotation in
the indicated region. We used a flanking distance of 20 kB, as the
average gene size is 30 kB and we used an extra 5 kB to cover the
promoter region.

Pathway detection
Genes located within 20 kb of SNPs identified via GWA and
WISH network analyses (modules) were used for gene enrich-
ment analysis of biological pathways in order to identify the
potential biological relevance of detected SNPs. Since path-
way analysis is very dependent on the databases used for
biological annotation, we used different tools that leverage infor-
mation available in different publically available tools to comple-
ment each other: NCBI2R (available at http://cran.r-project.org/
web/packages/NCBI2R/index.html), Gene Ontology Enrichment
Software Toolkit (GOEAST) (Zheng and Wang, 2008) and
GeneNetwork (http://www.genenetwork.nl).

Using the R-package NCBI2R, pathways in the identified genes
were detected using the GetPathways() function. The same func-
tion was used on all genes present in and around (flanking
distance = 20 Kb) the SNPs which passed QC, as a reference path-
way set. The significance level of present pathways was calculated
using the Fisher’s exact test and multiple-testing correction was
applied using the Bonferroni-correction. Secondly, GOEAST was
used to identify overrepresented GO terms among the identified
genes. The Gene Batch tool in GOEAST was used to import the
gene symbols and to identify significantly overrepresented GO
terms and corresponding pathways were visualized (Zheng and
Wang, 2008). Thirdly, GeneNetwork (http://www.genenetwork.

nl) was used to identify overrepresented GO terms, KEGG path-
ways, phenotypes, and tissues. GeneNetwork is constructed using
human, mouse, and rat expression data, to predict gene func-
tions against known pathways and gene sets in various biological
databases. Overrepresentation of GO-terms and pathways was
tested within the GeneNetwork tool, using the Mann–Whitney U
test, and P-values were afterwards corrected for multiple testing
using the Bonferroni correction.

AUTHOR CONTRIBUTIONS
Haja N. Kadarmideen was the project leader and contributed to
designing quantitative- and systems genetics analyses including
single SNP association methods, obesity index, network construc-
tion and pathway profiling approaches, and supervised Lisette J.
A. Kogelman in these analyses. Merete Fredholm contributed to
designing the F2 resource population and supervised collection
of biological material and phenotypic measurements on all pigs.
Lisette J. A. Kogelman analyzed all the data. The LDLA analysis
was performed by Sameer D. Pant. Lisette J. A. Kogelman wrote
the first draft of the manuscript. All authors wrote, read, and
approved the final version of the manuscript.

ACKNOWLEDGMENTS
The project is supported by a grant from the Ministry of
Science and Technology to the “UNIK Project for Food Fitness
and Pharma for Health,” funding from the Danish Council for
Strategic Research to BioChild Project (www.biochild.ku.dk),
and from a Ph.D. stipend awarded to Lisette J. A. Kogelman
from University of Copenhagen. Authors thank EU-FP7 Marie
Curie Actions—Career Integration Grant (CIG-293511) granted
to Haja N. Kadarmideen for funding this study. Authors thank
Theo Meuwissen for providing LDLA software for our analyses.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found
online at: http://www.frontiersin.org/journal/10.3389/fgene.
2014.00214/abstract

REFERENCES
Abaci, A., Catli, G., Anik, A., Kume, T., and Bober, E. (2013). The relation of serum

nesfatin-1 level with metabolic and clinical parameters in obese and healthy
children. Pediatr. Diabetes 14, 189–195. doi: 10.1111/pedi.12009

Aulchenko, Y. S., Ripke, S., Isaacs, A., and Van Duijn, C. M. (2007). GenABEL: an
R library for genome-wide association analysis. Bioinformatics 23, 1294–1296.
doi: 10.1093/bioinformatics/btm108

Barrett, J. C., Fry, B., Maller, J., and Daly, M. J. (2005). Haploview: analysis
and visualization of LD and haplotype maps. Bioinformatics 21, 263–265. doi:
10.1093/bioinformatics/bth457

Bener, A., Zirie, M., and Al-Rikabi, A. (2005). Genetics, obesity, and environmental
risk factors associated with type 2 diabetes. Croat. Med. J. 46, 302–307.

Brazhnik, P., De La Fuente, A., and Mendes, P. (2002). Gene networks: how to put
the function in genomics. Trends Biotechnol. 20, 467–472. doi: 10.1016/S0167-
7799(02)02053-X

Buchner, D., Geisinger, J., Glazebrook, P., Morgan, M., Spiezio, S., Kaiyala, K.,
et al. (2012). The juxtaparanodal proteins CNTNAP2 and TAG1 regulate
diet-induced obesity. Mamm. Genome 23, 431–442. doi: 10.1007/s00335-012-
9400-8

Cameron, N. D. (1997). Selection Indices and Prediction of Genetic Merit in Animal
Breeding. Edinburgh: Cabi.

Chambers, J. C., Zhang, W., Sehmi, J., Li, X., Wass, M. N., Van Der Harst,
P., et al. (2011). Genome-wide association study identifies loci influencing
concentrations of liver enzymes in plasma. Nat. Genet. 43, 1131–1138. doi:
10.1038/ng.970

Civelek, M., and Lusis, A. J. (2014). Systems genetics approaches to understand
complex traits. Nat. Rev. Genet. 15, 34–48. doi: 10.1038/nrg3575

Comuzzie, A. G., Cole, S. A., Laston, S. L., Voruganti, V. S., Haack, K., Gibbs,
R. A., et al. (2012). Novel genetic loci identified for the pathophysiology
of childhood obesity in the hispanic population. PLoS ONE 7:e51954. doi:
10.1371/journal.pone.0051954

Cordell, H. J. (2009). Detecting gene-gene interactions that underlie human dis-
eases. Nat. Rev. Genet. 10, 392–404. doi: 10.1038/nrg2579

www.frontiersin.org July 2014 | Volume 5 | Article 214 | 13

http://cran.r-project.org/web/packages/NCBI2R/index.html
http://cran.r-project.org/web/packages/NCBI2R/index.html
http://cran.r-project.org/web/packages/NCBI2R/index.html
http://cran.r-project.org/web/packages/NCBI2R/index.html
http://www.genenetwork.nl
http://www.genenetwork.nl
http://www.genenetwork.nl
www.biochild.ku.dk
http://www.frontiersin.org/journal/10.3389/fgene.2014.00214/abstract
http://www.frontiersin.org/journal/10.3389/fgene.2014.00214/abstract
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Biology/archive


Kogelman et al. Systems genetics of obesity in pig model

Cunha, P., Back, L., Sereia, A., Kubelka, C., Ribeiro, M., Fernandes, B., et al.
(2013). Interaction between obesity-related genes, FTO and MC4R, associ-
ated to an increase of breast cancer risk. Mol. Biol. Rep. 40, 6657–6664. doi:
10.1007/s11033-013-2780-3

Diez, D., Wheelock, A. M., Goto, S., Haeggstrom, J. Z., Paulsson-Berne, G.,
Hansson, G. K., et al. (2010). The use of network analyses for elucidating
mechanisms in cardiovascular disease. Mol. Biosyst. 6, 289–304. doi: 10.1039/
b912078e

Ditzel, M., Wilson, R., Tenev, T., Zachariou, A., Paul, A., Deas, E., et al. (2003).
Degradation of DIAP1 by the N-end rule pathway is essential for regulating
apoptosis. Nat. Cell Biol. 5, 467–473. doi: 10.1038/ncb984

Do, D., Ostersen, T., Strathe, A., Mark, T., Jensen, J., and Kadarmideen, H. (2014).
Genome-wide association and systems genetic analyses of residual feed intake,
daily feed consumption, backfat and weight gain in pigs. BMC Genet. 15:27. doi:
10.1186/1471-2156-15-27

Do, D. N., Strathe, A. B., Ostersen, T., Jensen, J., Mark, T., and Kadarmideen, H.
N. (2013). Genome-wide association study reveals genetic architecture of eat-
ing behavior in pigs and its implications for humans obesity by comparative
mapping. PLoS ONE 8:e71509. doi: 10.1371/journal.pone.0071509

Fall, T., and Ingelsson, E. (2014). Genome-wide association studies of obe-
sity and metabolic syndrome. Mol. Cell. Endocrinol. 382, 740–757. doi:
10.1016/j.mce.2012.08.018

Flint-Garcia, S. A., Thornsberry, J. M., and Buckler, E. S. 4th. (2003). Structure
of linkage disequilibrium in plants. Annu. Rev. Plant Biol. 54, 357–374. doi:
10.1146/annurev.arplant.54.031902.134907

Gilmour, A. R., Gogel, B. J., Cullis, B. R., and Thompson, R. (2009). ASReml User
Guide Release 3.0. Hemel Hempstead: VSN International.

Glas, R., Sauter, N. S., Schulthess, F. T., Shu, L., Oberholzer, J., and Maedler, K.
(2009). Purinergic P2X7 receptors regulate secretion of interleukin-1 receptor
antagonist and beta cell function and survival. Diabetologia 52, 1579–1588. doi:
10.1007/s00125-009-1349-0

Groenen, M. A., Archibald, A. L., Uenishi, H., Tuggle, C. K., Takeuchi,
Y., Rothschild, M. F., et al. (2012). Analyses of pig genomes provide
insight into porcine demography and evolution. Nature 491, 393–398. doi:
10.1038/nature11622

Haider, S., Ballester, B., Smedley, D., Zhang, J., Rice, P., and Kasprzyk, A. (2009).
BioMart Central Portal—unified access to biological data. Nucleic Acids Res. 37,
W23–W27. doi: 10.1093/nar/gkp265

Heid, I. M., Jackson, A. U., Randall, J. C., Winkler, T. W., Qi, L., Steinthorsdottir,
V., et al. (2010). Meta-analysis identifies 13 new loci associated with waist-hip
ratio and reveals sexual dimorphism in the genetic basis of fat distribution. Nat.
Genet. 42, 949–960. doi: 10.1038/ng.685

Horvath, S. (2011). Weighted Network Analysis - Applications in Genomics and
Systems Biology. Los Angeles, CA: Springer. doi: 10.1007/978-1-4419-8819-5

Hou, L., Kongsted, A. H., Ghoreishi, S. M., Takhtsabzy, T. K., Friedrichsen, M.,
Hellgren, L. I., et al. (2013). Pre- and early-postnatal nutrition modify gene
and protein expressions of muscle energy metabolism markers and phospho-
lipid fatty acid composition in a muscle type specific manner in sheep. PLoS
ONE 8:e65452. doi: 10.1371/journal.pone.0065452

Huttner, W. B., and Schmidt, A. (2000). Lipids, lipid modification and lipid–
protein interaction in membrane budding and fission—insights from the roles
of endophilin A1 and synaptophysin in synaptic vesicle endocytosis. Curr. Opin.
Neurobiol. 10, 543–551. doi: 10.1016/S0959-4388(00)00126-4

Joshi, A., De Smet, R., Marchal, K., Van De Peer, Y., and Michoel, T. (2009). Module
networks revisited: computational assessment and prioritization of model pre-
dictions. Bioinformatics 25, 490–496. doi: 10.1093/bioinformatics/btn658

Kadarmideen, H., Von Rohr, P., and Janss, L. (2006). From genetical genomics to
systems genetics: potential applications in quantitative genomics and animal
breeding. Mamm. Genome 17, 548–564. doi: 10.1007/s00335-005-0169-x

Kadarmideen, H. N. (in press). Genomics to systems biology in animal and
veterinary sciences: progress, lessons and opportunities. Livest. Sci. doi:
10.1016/j.livsci.2014.04.028

Kadarmideen, H. N., Watson-Haigh, N. S., and Andronicos, N. M. (2011).
Systems biology of ovine intestinal parasite resistance: disease gene modules and
biomarkers. Mol. Biosyst. 7, 235–246. doi: 10.1039/c0mb00190b
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