Validation of Piroxicam-Accelerated Colitis in the Interleukin-10 Knock out Mouse - a Preclinical Model Mimicking Human Inflammatory Bowel Disease

Holgersen, Kristine; Kvist, Peter Helding; Hansen, Axel Jacob Kornerup; Holm, Thomas Lindebo

Publication date: 2014

Document version Early version, also known as pre-print

Citation for published version (APA): Holgersen, K., Kvist, P. H., Hansen, A. J. K., & Holm, T. L. (2014). Validation of Piroxicam-Accelerated Colitis in the Interleukin-10 Knock out Mouse - a Preclinical Model Mimicking Human Inflammatory Bowel Disease. Poster session presented at Digestive Disease Week 2014, Chicago, United States.

Predictive validity and immune cell involvement in the pathogenesis of piroxicam-accelerated colitis in interleukin-10 knock out mice.

Introduction

- Piroxicam-accelerated colitis (PAC) in interleukin-10 knock out (IL-10 k.o.) mice combines a dysregulated immune response against the gut microbiota with a decreased mucosal integrity (Berg et al. Gastroent, 2002; Holgersen et al. JCC, 2013)
- The PAC IL-10 k.o. mouse is an useful in vivo model of inflammatory bowel disease (IBD). However, the predictive validity and pathogenic mechanisms of the model have not been thoroughly investigated.

The aim of this study was:

- 1. To gualify the PAC IL-10 k.o. model by examining the efficacy of IBD reference drugs on colonic inflammation.
- 2. To elucidate the pathophysiologic role of IBD-relevant immune cells in the PAC IL-10 k.o. model by depletion of specific immune cell subsets.

Methods

- C57BL/6 IL-10 k.o. mice received piroxicam in the chow, throughout the study.
- Mice were treated prophylactically with anti-IL-12/23p40 monoclonal antibodies (mAb), anti-TNFa mAb, cyclosporine A (CsA) or oral prednisolone. n = 8-12 mice per group.
- CD4⁺ cells, CD8⁺ cells and macrophages were depleted prophylactically by treatment with anti-CD4 mAb. anti-CD8 mAb and clodronateencapsulted liposomes, respectively, T cell receptor co-stimulation was blocked by CTLA4-Ig (Orencia). n = 10-14 mice per group.
- Histological analysis, cytokine profiling ELISAs and calprotectin immunohistochemistry were performed on colon tissue from studies showing treatment effect in the PAC IL-10 k.o. model.

Figure 1. Anti-IL-12/23p40 mAb, anti-TNFa mAb and cyclosporine A (CsA) treatment prevented weight loss and attenuated colonic pathology of PAC IL-10 k.o. mice. W: L = weight: length. *p<0.05.**p<0.01.***p<0.001.

Figure 3. Colon cytokine profile of PAC IL-10 k.o. mice treated with the specified drugs. *p<0.05.**p<0.01.***p<0.001.

Figure 4. The colonic calprotectin density was correlated with disease activity of PAC IL-10 k.o. mice. Anti-IL-12/23p40 mAb and CsA treatment significantly decreased the level of calorotectin in the colon.

1. K Holgersen

Centre, Frederiksberg, Denmark

2. P H Kvist

Department of Histology, Novo Nordisk A/S, Maaloev, Denmark

3. A K Hansen

Novo Nordisk-LIFE In Vivo Pharmacology

Department of Veterinary Disease Biology. University of Copenhagen, Denmark

4. T L Holm

Department of Immunopharmacology, Novo Nordisk A/S. Maaloev. Denmark

Figure 2. Depletion of CD8⁺ cells tended to increase mortality, whereas depletion of CD4⁺ cells or treatment with CTLA4-Ig (10 mg/kg) had no effect on disease progression. Depletion of macrophages induced body weight loss; nevertheless it was associated with significantly reduced colonic

Conclusions

- Reference drugs with known efficacy in severe IBD were efficacious in the PAC IL-10 k.o. model.
- The ameliorative drugs reduced the colonic levels of IFNv. IL-17A. MPO and calprotectin. which indicates that these cytokines, and/or the cells that secrete them, play an important role in disease development.
- CD8⁺ cells seem to protect against disease in the PAC IL-10 k.o. model. In contrast, our data indicate that macrophages are a main driver of the colitis, whereas CD4⁺ cells are not.

LIFEPHARM

