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Abstract

Computed Tomography (CT) allows un-occluded three-dimensional
views of the interior of scanned objects. In medical applications this of-
fers the opportunity to diagnose or study diseases, such as Chronic Ob-
structive Pulmonary Disease (COPD) with limited consequence to the
patients. COPD is major cause of death and disability world-wide. It
affects how lungs function through two competing mechanisms: destruc-
tion of lung tissue known as emphysema and inflammation of airways,
leading to thickened airway walls and narrowed airway lumen. Diag-
nosis of COPD is based on airflow limitation as determined with lung
function tests, but CT adds to our understanding of disease mechanisms
by for instance enabling lung density measurements, which gives insight
into emphysema distribution within the lungs. The airways with their
tree-like structure have so far been more challenging to analyse. Au-
tomated methods are indispensable as the visible airway tree in a CT
scan can include several hundreds of individual branches. Automation
of measurements is difficult, however, due to the airway’s complicated
structure, which varies in size and shape; biologically between subjects
and dynamically during breathing.

This thesis presents several methods for solving problems related to
analysing airways and results of using these methods to study COPD
via data from the Danish Lung Cancer Screening Trial. A first step in
analysing structures from images, is segmentation. A graph based ap-
proach for this is presented, which is able to simultaneously find the
inner and outer airway wall surfaces in three dimensions. Measurements
of airway wall surfaces depend on the branch they are made in. A
method is presented that is able to match branches in multiple scans
of the same subject using image registration, allowing measurements to
be followed within single branches over time. Between subjects, mea-
surements can be compared if they are done in the same anatomical
subset of branches. A supervised algorithm for anatomical labelling of
branches based on geodesic distances is presented, allowing such com-
parisons. Branch matching only allow changes from scan to scan to be
measured if the branches are successfully segmented in each scan. To im-
prove on this, the segmentation approach is extended to allow multiple
scans to be segmented simultaneously by combining information from
all images. The resulting surfaces correspond, meaning changes can be
measured locally without the need for a separate branch matching step.

The developed fully automatic framework is applied to study effect
of differences in inspiration level at the time of scan on airway dimen-
sions in subjects with and without COPD. Results show measured air-
way dimensions, in scans close to maximum inspiration, to be affected by
un-intended differences in the level of inspiration and this dependency
is again influenced by COPD. Inspiration level should therefore be ac-
counted for when measuring airways, and airway abnormalities typically
associated with airflow limitation, such as airway wall thickening and
lumen narrowing, should at least partly be understood as being due to
differences in how airways are influenced by the inspiration level in sub-
jects with and without COPD.
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Resumé

Computertomografi (CT) tillader uobstruerede tredimensionelle bil-
leder af det indre af skannede objekter. Dette kan bruges i medicinske
anvendelser til for eksempel at diagnosticere eller studere sygdomme som
Kronisk Obstruktiv Lungesygdom (KOL) med begrænsede omkostninger
for patienterne. KOL er en betydelig årsag til død og invaliditet i hele
verden. Den har indflydelse p̊a, hvordan lungerne fungerer igennem
to konkurrerende mekanismer: Ødelæggelse af lungevæv, kaldet emfy-
sem; og betændelse i luftvejene, der fører til fortykkede luftvejsvægge
og forsnævring af luftvejslumen. Diagnosen af KOL er baseret p̊a be-
grænset lungefunktion, men CT øger forst̊aelsen af sygdomsmekanis-
merne ved for eksempel at muliggøre m̊alinger af lungetæthed, der giver
indsigt i fordelingen af emfysem i lungerne. Luftvejene med deres trælig-
nende struktur har indtil videre været svære at analysere. Automatiske
m̊alinger er uundværlige, da det synlige luftvejstræ kan indeholde flere
hundrede individuelle grene. Automatisering af m̊alingerne er dog svært
p̊agrund af luftvejenes komplicerede struktur, der varierer b̊ade i størrelse
og form; biologisk mellem personer og dynamisk under vejrtrækningen.

Denne afhandling præsenterer flere metoder til at løse problemer re-
lateret til analyse af luftveje, samt resultater af at bruge disse metoder
til at studere KOL via data fra det danske lungescreeningsprojekt. Et
første skridt i analyse af stukturer i billeder, er segmentering. Til seg-
mentering præsenteres en grafbaseret metode, der er i stand til samtidigt
at finde den indre og ydre overflade af luftvejsvæggen i tre dimensioner.
Efterfølgende m̊alinger af luftvejsoverfladerne afhænger af, hvilken luft-
vejsgren de er lavet i. I den forbindelse præsenteres en metode, som
er i stand til at matche grene i flere skanninger af den samme person
ved brug af billedregistrering. Metoden gør det muligt at følge m̊alinger
i enkelte grene over tid. Målinger kan sammenlignes mellem personer,
hvis de laves i en anatomisk ens delmængde af grenene. En algoritme
fremlægges til anatomisk mærkning af grene, der gør s̊adanne sammen-
ligninger mulige. Matchning af grene tillader kun ændringer fra skanning
til skanning at blive m̊alt, hvis de samme grene findes i hver skanning. For
at forbedre dette udvides segmenteringsmetoden, s̊a den kan segmentere
flere skanninger samtidigt, ved at kombinere information fra alle billeder.
De fundne overflader stemmer overens, s̊aledes at ændringer kan m̊ales
lokalt uden behov for efterfølgende matchning af grene.

De udviklede automatiske værktøjer udnyttes til at studere effekten
af ændringer i vejrtrækningsdybden ved skanning p̊a de m̊alte luftvejsdi-
mensioner i personer med og uden KOL. Resultaterne viser at luftvejs-
dimensionerne, tæt ved maksimal inspiration, er p̊avirkede af utilsigtede
forskelle i vejrtrækningsdybden og størrelsen af denne p̊avirkning æn-
dres med KOL. Der skal derfor tages højde for vejrtrækningsdybden, n̊ar
luftvejene m̊ales og luftvejsabnormiteter, som normalt associeres med
KOL, s̊asom fortykkelse af luftvejsvæggen og forsnævring af luftvejslu-
men, skyldes tildels forskelle i hvordan luftvejene p̊avirkes af vejrtræk-
ningsdybden i personer med og uden KOL.
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Chapter 1

Introduction

Advances in medical imaging have allowed detailed three-dimensional views
of what is inside organs and bodyparts. The massive amount of data available
from such sources means that in many cases automated analysis is needed
to help clinicians diagnose and study diseases. This thesis focuses on a small
subset of such methods, which are relevant in the study of a part of the human
respiratory system, the airways. New image analysis methods are described,
evaluated, and used to gain new insights into what effect Chronic Obstructive
Pulmonary Disease (COPD) has on airways.

1.1 Anatomy of lungs and airways

The term airways is commonly used to describe the passage that air flows
through, from nose or mouth and into the lungs during inspiration. The
passage begins at the nasal and oral cavities and ends in the pulmonary alveoli,
where gas exchange with blood occurs (Figure 1.1). In this thesis we will use
the term airways to refer to the lower part of this passage, that is, the tree-
like structure beginning at the trachea. The trachea bifurcates into the left
and right main bronchi, which supply air to the left and right lungs. Here
they bifurcate further, decreasing in size as they do so. The first generations
of large airways are lined with cartilage and are called bronchi, these begin
to be replaced by cartilage free small airways, called bronchioles, when the
diameter is approximately 1 mm or less. After the 14th bifurcation on average
the airways become increasingly lined with alveoli and at generation 23 on
average they terminate in alveolar sacs (Weibel 2009).

The left and right lungs are separate structures located on opposite sides
of the heart. Each lung is divided by fissures into lobes. There are three lobes
in the right lung; the upper, middle and lower lobes and two lobes in the left
lung; the upper and lower lobes. There is no middle lobe in the left lung,
however the corresponding region is called the lingula. Each lobe is further
divided into segments, up to 10 in each lung. Each segment is supplied with

1
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Figure 1.1: A schematic drawing of the human respiratory system with the
tree-like structure of the airways: trachea, bronchi, bronchioles and alve-
oli (Image modified from Wikimedia Commons http://commons.wikimedia.
org/wiki/File:Blausen_0770_RespiratorySystem_02.png)

air from one specific bronchus, known as a segmental bronchus (Chmura et al.
2008).

Airways are affected by diseases such as asthma (Lederlin et al. 2012),
cystic fibrosis (Wielputz et al. 2013), and COPD (Hackx et al. 2012). In this
thesis we will focus on abnormalities associated with COPD, however, the
presented methods and some of the insights gained could be relevant in the
study of other respiratory diseases as well.

1.2 Chronic obstructive pulmonary disease

COPD was estimated to have killed 3 mio. people in 2011, making it the
fourth leading cause of death in that year according to the World Health Or-
ganization. The cause is most often smoking, but there are other contributing
factors such as air pollution and genetics (GOLD 2013). COPD is an ob-
structive lung disease, which affects flow of air to and from the lungs by two
competing factors; emphysema and small airway disease.

Emphysema is destruction and disappearance of lung tissue (parenchyma)
due to inflammatory processes, which leaves the lungs filled with holes. These
holes capture air that would otherwise be exhaled during expiration and that
compress nearby normally functioning tissue. The changes decrease the elas-

http://commons.wikimedia.org/wiki/File:Blausen_0770_RespiratorySystem_02.png
http://commons.wikimedia.org/wiki/File:Blausen_0770_RespiratorySystem_02.png
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Figure 1.2: Right and left lungs with airways exposed. Lobes illustra-
tively pulled apart. (Image from Wikimedia Commons http://commons.

wikimedia.org/wiki/File:Gray962.png)

tic property, the so called elastic recoil, of the lungs making breathing more
difficult (Hogg et al. 1969). Emphysema is also thought to affect lung func-
tion by destroying the airway’s alveolar attachments. These attachments help
keep the airways open during expiration when the pressure within the lung
parenchyma is greater than inside the airways. Removal of the airway’s alve-
olar attachments can thus lead to dynamic collapse of airways, which makes
it difficult for subjects to expire (GOLD 2013).

Small airway disease is caused by inflammation within the airways, which
causes structural changes such as airway wall thickening and airway narrow-
ing. Increased mucus production may also cause airway plugging or increased
airflow resistance (Hogg et al. 2004). It is called small airway disease because
measurements have shown that airflow resistance is especially increased in pe-
ripheral and smaller airways compared to the central or larger airways (Hogg
et al. 1968).

Diagnosis of COPD is based on lung function tests, also called spirometry.
Two measures are critical; Forced Expiratory Volume in one second (FEV1)
and Forced Vital Capacity (FVC), which is the amount of air the subject
can forcibly blow out after full inspiration in the first second and in total,
respectively. Diagnosis of COPD is made if the ratio of FEV1 to FVC is below
0.70. A predicted value of what FEV1 should be if the subject had normal

http://commons.wikimedia.org/wiki/File:Gray962.png
http://commons.wikimedia.org/wiki/File:Gray962.png
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GOLD group Severity Lung function

GOLD 1 Mild FEV1 % predicted ≥ 80 %
GOLD 2 Moderate 50% ≤ FEV1 % predicted < 80%
GOLD 3 Severe 30% ≤ FEV1 % predicted < 50%
GOLD 4 Very severe FEV1 % predicted < 30%

Table 1.1: GOLD categories of airflow limitation according to GOLD 2013

lung function can be made based on gender, age and height (Pellegrino et al.
2005). Severity of airflow limitation in COPD subjects is then estimated based
on FEV1 as a percentage of its predicted value (FEV1 % predicted) as shown
in Table 1.1. The Global Initiative for Chronic Obstructive Lung Disease
recently suggested to extend the classification of disease severity by combining
assessments of airflow limitation with other symptoms (GOLD 2013). This new
classification will not be used in this thesis.

Although diagnosis is based on lung function test, such tests provide little
information on the underlying causes of airflow limitation. Computed Tomog-
raphy (CT) images can be used to provide additional information, for instance
to assess the roles of the two components of COPD: emphysema and small
airway disease. This may be relevant in patient care or in studies to provide
further insight into the disease (Hackx et al. 2012).

1.3 Quantitative analysis using computed
tomography

Computed Tomography (CT) is used to construct virtual two-dimensional
slices of three-dimensional objects, which allows un-occluded views of what is
inside. Because of the huge advantage this has been to medical imaging, CT
has now become almost synonymous with medical X-ray CT scans, which use
X-rays as a source to create images. Modern so called multi-slice CT scanners,
allow many slices to be collected at the same time and so can be used to create
three-dimensional images of the body in a short amount of time (Figure 1.3).

Image intensity in CT is a quantitative measure of radiodensity expressed
on the Hounsfield Unit (HU) scale. On this scale -1000 HU corresponds to the
radiodensity of air, whereas 0 HU corresponds to the radiodensity of water.
The voxel values of the air-filled lung parenchyma will depend on the inspi-
ration level, but typically the values range from -1000 HU to -700 HU, and
the lungs therefore have a high contrast with the lung border, which has a
density ranging from that of water (0 HU) to that of bone (typically around
400 HU to 1000 HU). Other structures within the lungs such as blood vessels
and airway walls are closer to water in density and thus have values of around
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Figure 1.3: Three-dimensional CT image of the chest region created by stack-
ing individual CT slices.

0 HU. The high contrast between lung parenchyma and surroundings makes
it relatively easy to extract the lungs using automatic methods.

The process of partitioning images into sub-structures or segments is called
image segmentation. Automatic segmentation of lungs from CT images can
be done using region growing methods (Lo 2010). Such methods work by
iteratively extending the segmented region from an initial seed point by con-
tinuously adding nearby regions with density values of lung parenchyma (an
upper threshold of -400 HU was used in (Lo 2010)) until the lungs are com-
pletely filled. Emphysema can be seen as darker regions within the lung,
that is, regions with intensity closer to that of air than those of normal lung
parenchyma. The standard way to quantify emphysema is using density mea-
sures, such as the percentage of the segmented lungs with intensity below -950
HU (Müller et al. 1988) or the 15th percentile density (Gould et al. 1988). Fig-
ure 1.4 shows an example of a CT lung slice with normal and emphysematous
lung parenchyma.

Airway abnormalities are much harder to quantify from CT images. Vi-
sually, signs of airway wall thickening and lumen narrowing are often too
subtle to differentiate from normal variation in COPD cases (Figure 1.5).
Quantification of airway abnormalities therefore needs accurate and precise
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(a) Normal (b) Emphysema

Figure 1.4: An example of a CT lung slice with normal and emphysematous
lung parenchyma. Arrows point to examples of large regions with emphyse-
matous tissue, so-called bullae.

measurements, something which is simply too time consuming to manually do
in all but a very limited number of locations in each scan. The visible airway
tree in a CT scan may include several hundreds of individual branches, and
automated methods thus allow a far greater amount of the available infor-
mation to be exploited. The largest bronchioles are right at the resolution
limit imposed by current clinical or low-dose CT images. This means that
quantitative measurements cannot be consistently done with these images at
the site in the airways where airflow resistance is most increased in COPD.
However, it is thought that the same pathophysiological processes that lead
to increased airflow resistance in small airways could be responsible for simi-
lar changes in large airways. Airway abnormalities in large airways, although
perhaps having little influence on lung function, could thus still be used as
indicators for small airway disease (Nakano et al. 2005).

In order to identify signs of COPD such as airway wall thickening, methods
that can find the position of both the inner and outer airway wall surface are
needed. This is typically realised as a two-step approach, first extraction of
the airway tree (the inner or lumen surface) and second a step which uses
the position of the airway tree to identify the position of the outer airway
wall surface (Estépar et al. 2006; Weinheimer et al. 2008; Petersen et al. 2010;
Saragaglia et al. 2006; Liu et al. 2012; Ortner et al. 2010).

Airway lumen in CT images appear as a connected and branching dark
tubular structure bounded by airway wall, which appears as a lighter shell.
Automatic extraction of this structure is a difficult task and an active area of
research (Lo et al. 2012). Methods usually exploit the connected and bounded
properties to iteratively grow the lumen from a seed point similar to how lung
segmentation methods often work. Connectivity is, however, not necessar-
ily given in case of pathologic airways, which may be collapsed, narrowed,
or plugged with mucus, making such methods sensitive to disease severity.
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(a) Normal (b) Small airway disease

Figure 1.5: CT lung slice showing example of normal and thickened airway
walls. Arrows point to examples of visible airways.

Because airways become progressively smaller as they bifurcate, they also
become progressively harder to see and the chance that airways are missed
thus increases with each bifurcation. False positives in the form of spurious
branches or leaks, in some cases including large parts of the parenchyma, may
also be included in the extracted airway tree. This primarily happens when
thickness of the airway wall approaches the image resolution, lung parenchyma
may then locally appear, due to noise and partial volume effects, as if it is
connected to the airway lumen, which causes the growing process to continue
out of the airways.

The airway wall often abuts other nearby structures with similar radioden-
sity such as blood vessels and contrast between wall and lung parenchyma is
also smaller than between wall and lumen. The outer wall surface is therefore
more difficult to find than the inner lumen surface. A useful strategy is to
exploit knowledge of the shape and position of the inner surface to help find
the outer surface. This knowledge along with assumptions of tubularity of
each airway branch have previously been used to search for the wall surfaces
(Petersen et al. 2010; Weinheimer et al. 2008; Li et al. 2006). Such methods
are, however, unable to segment the bifurcation regions where assumptions of
tubularity break down. It is possible that newer methods, which allow these
regions to be segmented (Ortner et al. 2010; Liu et al. 2012; Saragaglia et al.
2006 and Chapter 2), could provide independent information relevant in the
study of diseases.
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Additional challenges in measurements of airway dimensions are due to
the airway tree’s complicated structure, which varies biologically in topology,
size and shape between subjects and dynamically in size and shape during
breathing. It is therefore not straight-forward to conduct reproducible and
comparable measurements of airway properties even given perfectly extracted
airway trees. The dynamic variation of airways or the degree to which they
expand and contract with the lungs during inspiration is called airway disten-
sibility (Diaz et al. 2012; Brown et al. 2001). Airways are typically extracted
from breathhold scans. It is, however, not easy for subjects to inspire to the
same level in each scan. Distensible airways and un-intended variations in
inspiration level may thus interact to create similar un-intended variations in
airway measurements. The size of these effects is currently largely unknown.

1.4 Outline of thesis

This thesis consists of a series of chapters, which are either descriptions of
methods solving parts of the problem of how to analyse airways from CT
images or results of applying these methods to study the properties of airways.
Each chapter is readable separately and is published or in preparation for being
published. In addition, contributions to a number of other works were made
during the period of this PhD. A full list of the resulting publications can
found at the end of this thesis.

A first step in analysis of structures from images is segmentation. Chap-
ter 2 presents an airway wall segmentation method, which is able to simul-
taneously find the inner and outer airway wall surfaces from CT images in
three-dimensions across bifurcations. Chapter 3 presents a branch matching
approach, which is able to match the segmented branches in multiple images
of the same subject. It allows measurements of the same branches in different
scans of the same subject to be compared, which removes some of the vari-
ability in measurements that occurs due to missing and spurious branches.
Chapter 4 presents a branch labelling approach, which is able to identify the
anatomical names of the airway branches down to and including the segmen-
tal level. It allows measurements of the same anatomical branches in different
subjects to be compared, which removes some of the variability that occurs due
to not measuring the same location within the airway trees. Chapter 5 and 6
apply the methods of Chapter 2, 3, and 4 to study the effect of differences in
the level of inspiration at time of scan on measured airway dimensions in sub-
jects with and without COPD from the Danish Lung Cancer Screening Trial
(DLCST). The results show that differences in measured airway dimensions
from multiple images of the same subject can be used to gain new insights
on both longitudinal and dynamic changes related to COPD. This inspired
the development of a joint approach to segmentation of airway wall surfaces
in multiple images of the same subject, which is presented in Chapter 7. It
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allows information from all images to be combined, which improves segmen-
tation results. The method outputs corresponding surfaces, which make it
possible to track differences from scan to scan locally in any point on the
surfaces without the need for a separate branch matching step.

1.5 Main contributions

The main contributions of this thesis are:

• A new three-dimensional segmentation method, which can segment both
airway wall surfaces simultaneously including bifurcations regions. It
can use the position of one surface to help position the other and it is
designed to handle high curvature regions, such as the bifurcation areas
of the airway tree better than similar methods from the literature. The
method is validated using manual annotations, a phantom scan, and
expert visual inspection. Airway abnormality measurements obtained
using the approach are reproducible and correlate significantly with lung
function (Chapter 2).

• Branch matching allows measurements of airway dimensions in individ-
ual branches to be compared in multiple scans of the same person. An
approach which uses deformable image registration to match branches is
presented. Results show increased reproducibility if measurements are
limited to repeatedly found branches, indicating the method could be
useful to study changes over time or due to differences in inspiration
level (Chapter 3).

• A new supervised algorithm for anatomical labelling of airway branches
based on tree-space geodesics, which performs similar to medical experts
in terms of accuracy, better in terms of reproducibility, and robustly
with respect to COPD. The detailed evaluation provides insights into
not only performance of the algorithm but also that of medical experts
(Chapter 4).

• A study on the effects of inspiration level differences in maximum inspi-
ration scans on measurements of airways in subjects with and without
COPD. A model of the effects is provided and a way to adjust measure-
ments for them is suggested. Results show how airway dimensions and
distensibility vary with airway position and COPD severity (Chapter 5
and 6).

• An extension of the airway wall segmentation method of Chapter 2 to
handle multiple images jointly using groupwise image registration. The
approach enables information from all the images to be combined to
improve segmentation results and it outputs corresponding inner and
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outer airway wall surfaces for all images, allowing differences to measured
locally at any point on them without the need for a separate branch
matching step. The method has the potential to improve detection of
longitudinal and dynamic changes using images of different time-points
and inspiration-levels (Chapter 7).



Chapter 2

Optimal surface segmentation
using flow lines

The work presented in this chapter is based on J. Petersen, M. Nielsen, P.
Lo, L. H. Nordenmark, J. H. Pedersen, M. M. W. Wille, A. Dirksen, and M.
de Bruijne (2014). “Optimal surface segmentation using flow lines to quantify
airway abnormalties in chronic obstructive pulmonary disease”. In: Med Image
Anal (In Press). url: http://dx.doi.org/10.1016/j.media.2014.02.004.
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Abstract

This chapter introduces a graph construction method for multi-di-
mensional and multi-surface segmentation problems. Such problems can
be solved by searching for the optimal separating surfaces given the
space of graph columns defined by an initial coarse surface. Conven-
tional straight graph columns are not well suited for surfaces with high
curvature, we therefore propose to derive columns from properly gener-
ated, non-intersecting flow lines. This guarantees solutions that do not
self-intersect.

The method is applied to segment human airway walls in computed
tomography images in three-dimensions. Phantom measurements show
that the inner and outer radii are estimated with sub-voxel accuracy.
Two-dimensional manually annotated cross-sectional images were used to
compare the results with those of another recently published graph based
method. The proposed approach had an average overlap of 89.3± 5.8 %,
and was on average within 0.096± 0.097 mm of the manually annotated
surfaces, which is significantly better than what the previously published
approach achieved. A medical expert visually evaluated 499 randomly
extracted cross-sectional images from 499 scans and preferred the pro-
posed approach in 68.5 %, the alternative approach in 11.2 %, and in
20.3 % no method was favored. Airway abnormality measurements ob-
tained with the method on 490 scan pairs from a lung cancer screening
trial correlate significantly with lung function and are reproducible; re-
peat scan R2 of measures of the airway lumen diameter and wall area
percentage in the airways from generation 0 (trachea) to 5 range from
0.96 to 0.73.
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2.1 Introduction

Optimal net surface methods (Wu and Chen 2002) have seen a growing use
within medical image segmentation in the last couple of years, likely due
to their ability to find the globally optimal solution of multiple interacting
surfaces in multiple dimensions given surface cost functions and a useful range
of geometric constraints and penalties in polynomial time using minimum cut
algorithms (Li et al. 2006; Liu et al. 2012; Petersen et al. 2010; Yin et al. 2009;
Abràmoff et al. 2008; Petersen et al. 2011b; Arias et al. 2012; Kainmueller et
al. 2013). In order to use these methods, the segmentation problem needs to
be transformed from the space defined by the image voxel grid to some graph
representation defined by a set of columns. Each column is associated with
a point on the sought surface and represents the set of possible solutions, or
positions, the surface can take. A suitable graph should be able to represent all
plausible solutions in the image space. For instance, if a graph column does not
cross the sought surface or if it crosses it multiple times, then this surface can
not be represented by the graph. Similarly, admissible solutions in the space
defined by the graph representation should represent valid surfaces in image
space, that is, the graph space should for instance not allow self-intersecting
surfaces. It is also important that the graph structure allows for a meaningful
representation of the surface cost functions and geometric constraints and
penalties. Surface non-smoothness can, for instance be reduced, by increasing
the cost of solutions in proportion to how much they vary in neighbouring
columns. However this is only meaningful if the relative variation within the
columns is somehow related to the associated relative variation within image
space.

In some cases the sought surfaces are expected to be oriented along an
image axis and the voxel columns of the image itself may be used. This has
for instance been used in the case of the intraretinal layers in macular opti-
cal coherence tomography images (Abràmoff et al. 2008). Other approaches
have used simple mathematical transformations, such as those of Li et al.
2006 and Petersen et al. 2010, in which images of tubular airway segments
were unfolded using polar transforms in two or three-dimensions. The graph
columns were oriented perpendicular to the resulting contours or terrain like
surfaces allowing for an easy representation of surface smoothness constraints
and penalties. In many cases, however, the surfaces are much too complicated
for such an approach and/or the prior knowledge of the surfaces’ shape and
position required is not available. In these cases such prior knowledge may be
gained by employing an initial method to roughly estimate the position of the
surfaces and then use an optimal surface graph to refine this estimate. This
was done in Liu et al. 2012 by placing columns at points of the initial surface
and oriented along the surface normals inward and outward. Problems with
intersecting columns and thus self-intersecting surfaces were avoided, by lim-
iting the length of each column to the minimum distance to the initial surface
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(a) Medial Axes (b) Flow Lines

Figure 2.1: Figure 2.1a illustrates the fish-bone like structure of surface normal
direction columns (green) based on the distance to the medial axis (red) in
areas where the initial segmentation (black) has high curvature. Notice that
the four inner-most columns do not cross the sought surface border (blue),
which means that the desired solution can not be represented by the graph
and the segmented surface will be wrong in these positions. Figure 2.1b shows
the advantage of columns based on flow lines (green), notice that all columns
cross the sought surface.

inner and outer medial axes. This approach can result in columns that are
too short to reach the desired solution, as shown in Figure 2.1a. Yin et al.
2009 suggested columns inspired by the non-intersecting property of electric
lines of force. The columns were constructed by simulating electrical charges
at surface points of the initial segmentation and tracing the electric lines of
force within the field inward and outward. This method is computationally
infeasible for large scale problems, as every surface point charge influences
the computation of every electric line of force. Furthermore the electric lines
of force can behave erratically if the initial segmentation contains small scale
errors or noise. Recently Kainmueller et al. 2013 proposed to use omnidirec-
tional displacements, which allow each initial surface mesh vertex to move to
uniformly distributed positions within a ball shaped region around it. Self-
intersections are minimized by using regularisation and the solution is found
using Markov Random Field energy minimization. The approach is too com-
putationally expensive for larger problems and so Kainmueller et al. 2013 also
shows how it can be combined with an optimal surface - unidirectional column
type approach. This makes the method practical for larger problems by us-
ing omnidirectional displacements in high curvature regions and unidirectional



Chapter 2. Optimal surface segmentation using flow lines 15

columns in low curvature regions. The two problems are solved sequentially
and so the method does not guarantee global optimality.

In Petersen et al. 2011b we proposed to use graph columns defined from
flow lines within a regularized version of the initial segmentation. Flow lines
are non-intersecting and are uniquely defined if the regularisation is smooth,
and noise and small errors in the segmentation are naturally dealt with by
the same regularisation. Moreover, fast approximations can be computed
using image convolution. Figure 2.1b illustrates the concept. The method
was originally applied to the problem of segmenting human airway walls in
CT images and has since then been used for segmenting the carotid artery
bifurcation in magnetic resonance imaging (Arias et al. 2012).

Assessing the dimensions of the airway walls is important in the study
of airway remodelling diseases such as Chronic Obstructive Pulmonary Dis-
ease (COPD) (Hackx et al. 2012). It is a dual surface problem, consisting of
an inner and an outer wall surface, where bifurcations form regions of high
curvature that would cause problems for conventional graph construction ap-
proaches. The vast majority of previous airway wall segmentation methods
have been one- or two-dimensional in nature. The one-dimensional techniques
work by casting rays from the centre of the airways outwards looking for the
wall surfaces using the full width at half maximum edge detection principle
(Nakano et al. 2000), by phase congruency (Estépar et al. 2006), or more com-
plex models of the scanning point spread function (Weinheimer et al. 2008).
The airway wall surfaces resemble concentric circles when seen in a cross-
sectional view centred on and perpendicular to the airway centreline. This
is what two-dimensional methods typically exploit to impose some degree of
regularity on the solution (Petersen et al. 2010; Saragaglia et al. 2006). Three-
dimensional methods, however, may use more of the information present in
the image, allowing surfaces to be found more accurately when they are close
to other structures such as blood vessels. Moreover, bifurcation and carina
regions, which typically cannot be segmented with previous two-dimensional
approaches, can be analysed (Liu et al. 2012). Besides the already mentioned
methods of Liu et al. 2012; Petersen et al. 2011b, a three-dimensional method
is also described in Saragaglia et al. 2006, which evolves a deformable mesh,
constructed from an initial segmentation of the lumen. The evolution is done
with force constraints computed from intensity and gradient magnitude val-
ues; elastic forces penalizing local wall thickness variations; and regularisation
forces, locally smoothing the result. The method does not guarantee a global
optimal solution and unlike the approaches of Liu et al. 2012; Petersen et al.
2011b the two surfaces are not estimated simultaneously, and thus the added
knowledge of the position of the exterior surface is not used to improve the in-
ner surface. Ortner et al. 2010 also proposed to use a deformable mesh. Their
mesh is built from an initial segmentation of the lumen and its evolution is
governed by gradient vector flow and simplified Lagrangian dynamics and so
avoids self-intersections. The approach was evaluated on simulated CT data
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and 15 clinical cases of mild and severe asthmatics, showing good agreement
with segmentation result and clinical expertise.

This chapter is an extension of the work presented in Petersen et al. 2011b.
The main differences are the addition of a constraint, that forces the outer
surface to be outside the inner; improvements in the parameter tuning, such
that all involved parameters are automatically estimated using a manually
annotated training set; adjustment of parameters and evaluation of results
according to the COPDGene phantom (Sieren et al. 2012) to account for
a possible bias present in the manual annotations; and finally the addition
of an extensive medical expert visual evaluation comparing the result of the
proposed approach with that of Liu et al. 2012. We show that the method can
be used to measure airway abnormalities associated with COPD reproducibly.

2.2 Methods

2.2.1 Initial Segmentation

We will assume the existence of a coarse initial segmentation, a single object
given by the voxels in the set S, whose surface should be roughly similar
to the surfaces we are looking for. For our application we used an airway
tree extraction algorithm based on Lo et al. 2009, which returns a three-
dimensional binary segmentation of the airway lumen.

The initial segmentation needs to be converted to a mesh. To this end, we
used vertices at the centre of each surface voxel face and the neighbourhood
given by the face edge neighbours, such that each vertex has 4 neighbours. We
will denote the vertices in this mesh with V, and represent the neighbourhood
with an edge set E , where (i, j) ∈ E denotes that the vertices i, j ∈ V are
neighbours.

2.2.2 Flow lines

The graph will be defined from flow lines at each of the mesh vertices. A flow
line in a vector field is tangent to the field at each point, and if the field is
defined as the gradient field of a scalar potential φ, it will follow the direction
with the greatest rate of change of this potential. Electric lines of force are
examples of flow lines in an electric field and interestingly the magnitude of
the electric field can be formulated as a convolution operation. The approach
of Yin et al. 2009 can thus be efficiently approximated using fast convolution
algorithms. Rather than being limited to electric fields, we propose, however,
to use the more general case of flow lines based on scalar potentials defined
by the convolution:

φ(x) =

∫
1S(x̂)R(x̂− x)dx̂ , (2.1)
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here x is the position to be evaluated and 1S is the indicator function for the
initial segmentation S.

In this work we experimented with generating the potentials from two
different types of filters. The first can be considered a regularised electric line
of force approach:

R(x) =
1

α+ |x|2
, (2.2)

where α > 0 is the regularisation constant, which makes R well defined for
all x. This regularisation has the added effect of smoothing the result, which
is useful if the initial segmentation contains noise. When α → 0, φ becomes
proportional to the magnitude of the electric field at x arising from a con-
tinuous ’charge density’ given by 1S . This option is therefore similar to the
method introduced in Yin et al. 2009. However, rather than using a discrete
set of surface point ’charges’, which introduce local singularities, φ is defined
everywhere and thus allow us to trace the flow lines consistently through the
initial surface. The second filter is given by the Gaussian kernel, which offers
more regularisation and more locality because of its faster decaying tails:

R(x) = ce−|x|
2/(2σ2). (2.3)

The flow lines ϕi : R→ Rn, i ∈ V are found as the solution to the following
ordinary differential equation:

∂ϕi
∂t

(t) = ∇φ(ϕi(t)) (2.4)

with initial value ϕi(0) = i. An implementation (GNU Scientific Library
Reference Manual (3rd Ed.)) of the Runge-Kutta-Fehlberg method (Fehlberg
1970) was used to approximate the solutions. At some point the gradient
flattens such that the flow line can no longer be traced due to numerical issues
or the limited support of the employed discrete convolution kernel, resulting
in a column with a finite number of inner and outer column points relative to
i.

With no approximations the running time of computing electric lines of
force as suggested in Yin et al. 2009 is given by O(η × |V |2), where η is the
number of times the gradient needs to be computed to trace each electric line
of force. This is because the charge at each of the mesh vertices influences the
computation of the gradient needed to compute the electric line of force at
each of the other mesh vertices. However using discrete convolution, an ap-
proximated gradient can be computed efficiently and represented as an image.
Computing the gradient in an arbitrary position is then a matter of simple
interpolation, and the running time of computing flow lines as suggested in
this work is thus O(η × |V |).
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2.2.3 Graph construction

This section describes how an optimal surface graph G = (V,E) with vertices
V and edges E can be constructed, such that the minimum cut of G defines
the sought surfaces.

We will use the term penalty to describe what could be called a soft con-
straint, that is, something that has the effect of increasing the cost and de-
creasing the likelihood of a given solution. A constraint on the other hand
refers to a condition the solution is required to satisfy.

The vertices V of the graph G are arranged in columns V m
i = {imk | k ∈

Ki}, one for each vertex i ∈ V of the initial surface mesh and for each sought
surface m ∈M , plus source s and sink t vertices. Ki = {−Ii, 1−Ii, ..., 0, ..., Oi}
denote the indices associated with the sampled flow line with Ii and Oi inner
and outer column points relative to i. In this way, the columns associated
with each sought surface are corresponding, that is, they represent the same
set of possible positions, given by the sampled flow lines. We therefore have:

V =
⋃

i∈V,m∈M
V m
i ∪ {s, t} . (2.5)

In the case of airway wall segmentation, M = {0, 1} would denote the fact
that there is an inner and outer surface sub-graph.

Let wmi (k) ≥ 0 denote the surface cost function or the data term of the
optimization problem, which maps a vertex with index k ∈ Ki in a column V m

i

to the cost of making this vertex part of the surface m, see Section 2.2.4. Also
let fim,jn(|k− l|) be a convex non-decreasing function describing the pairwise
cost (or penalty) of vertices imk ∈ V m

i and jnl ∈ V n
j being part of the solution

of the surfaces m,n ∈ M respectively. These pairwise penalties are used to
implement surface smoothness and separation penalties, see Equation (2.8).
The vertices defining the sought surfaces N ⊆ V , are then a solution to the
following minimization problem:

N = arg min
N̂⊆V

∑
imk ∈N̂

wmi (k) +
∑

imk ,i
n
l ∈N̂

fim,jn(|k − l|)

s.t. ∃!k(imk ∈ N̂ )

imk , j
n
l ∈ N̂ ⇒ l ∈ Ω(imk , j

n),

(2.6)

The first of the constraints (∃!k(imk ∈ N̂ )) ensures that one and only one
vertex in each column is part of the solution. This is a needed requirement for
the method to work, and it also has the effect that the topology of the initial
segmentation is preserved in the solution surfaces. The second constraint
(imk , j

n
l ∈ N̂ ⇒ l ∈ Ω(imk , j

n)) enforces pairwise limits on which vertices can be
included, by using the set Ω(imk , j

n) = {l′, l′+1, ..., l′+δ} ⊆ {−Ij , 1−Ij , ...Oj}.
That is, if some vertex imk is part of the solution N , then the solution must
include one of the vertices in jnl′ , j

n
l′+1, ..., j

n
l′+δ as well.
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In our experiments we define the data term based on image derivatives, as
explained in detail in Section 2.2.4. We used the following edge constraints to
force the outer surface to be outside the inner:

Ω(imk , j
n) =

{
{k, k + 1, ..., Oj} if m = 0 and n = 1
Kj otherwise.

(2.7)

The following pairwise penalty functions were implemented:

fim,jn(x) =


pmx if m = n and (i, j) ∈ E
qx if m 6= n and i = j
0 otherwise,

(2.8)

where E is the neighbourhood defined in Section 2.2.1, pm is the smoothness
penalty, defining the cost of each index the solution varies between neighbour-
ing columns in the same surface m, and q is the separation penalty, defining
the cost for each index the surfaces are separated in each column.

Next we will describe how to construct the edge set E, such that the
solution given by a minimum s-t cut in G satisfies Equation 2.6. It should be
noted that our construction differs from previous methods (Ishikawa 2003; Wu
and Chen 2002), in its ability to deal with columns of varying inner and outer
length. First we will note that the edges of E are directed and are associated
with a capacity and we will use the following notation (v

c→ u), to indicate
an edge from vertex v to vertex u with capacity c. We will also remind the
reader that an s-t cut in a graph is a partition of the vertices of the graph into
two disjoint subsets such that s and t belong to different subsets. The cost of
the s-t cut, is the sum of the capacities of the edges going from the source-set
(the specific subset s belongs to) to the sink set (the specific subset t belongs
to). The vertices in the sought surfaces N will be given by the vertex imk ∈ V
in each column, which has the highest index k and is part of the source-set.

The data term can be implemented with the following edges:

Ed =
{

(imk
wm

i (k)
→ imk+1) | imk , imk+1 ∈ V

}
∪{

(imOi

wm
i (Oi)→ t), (s

∞→ imIi ) | i
m
Oi
, imIi ∈ V

}
.

(2.9)

Since each column is a direct line of flow from the source to the sink, it will
always be cut at least once. However in some degenerate cases, multiple cuts
might exist in each column violating the first constraint of Equation 2.6. To
prevent this, infinite cost edges directed opposite to the data term edges are
added:

E∞ =
{

(imk
∞→ imk−1) | imk−1, imk ∈ V

}
. (2.10)

An example of these edges is given in Figure 2.2a.
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Figure 2.2: Two neighbouring columns Vi and Vj showing the graph construc-
tion as implemented in this chapter. These columns have Ii = 2 and Ij = 4
inner column vertices and Oi = 5 and Oj = 3 outer column points (note m
subscript left out for clarity in 2.2a and 2.2b). The dotted edges have infi-
nite capacity and implement the topology (2.2a) and separation constraints
(2.2c). The solid edges have capacities as determined by the data term (2.2a),
smoothness (2.2b) and separation penalty (2.2c). Here L(j, i) = {−4,−3},
U(i, j) = {4, 5}, and L(i, j) = U(j, i) = {}.

The edge penalties and constraints can be implemented by the following
edges:

Ei =
{{

(imk
4(imk ,j

n
l )→ jnl ) | k ∈ Ki, l ∈ Kj

}
∪{

(s
4(imk ,j

n
l )→ jnl ) | l ∈ Kj , k ∈ L(j, i)

}
∪{

(imk
4(imk ,j

n
l )→ t) | k ∈ Ki, l ∈ U(i, j)

}
| i, j ∈ V,m, n ∈M

}
,

(2.11)

where L and U are the needed lower and upper edge endpoints, which are
missing due to differences in column inner and outer lengths, see Figure 2.2
for an example:

L(i, j) = {k | k ∈ Ki, k < −Ij}
U(i, j) = {k | k ∈ Ki, k > Oj},

(2.12)

and 4 is the capacity of the edges calculated from the pairwise penalty func-
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tion:

4(imk , j
n
l ) =


∞ if l = min Ω(imk , j

n)
0 if l /∈ Ω(imk , j

n)

4̂im,jn(k − l) otherwise

(2.13)

where

4̂im,jn(x) =


0 if x < 0
fim,jn(1)− fim,jn(0) if x = 0
fim,jn(x+ 1)− 2fim,jn(x)+
fim,jn(x− 1)

if x > 0,
(2.14)

ensures that any solution will include the cost of the pairwise penalties. For a
proof of why this is so refer to Wu and Chen 2002. Notice that 4(imk , j

n
l ) ≥ 0

for all imk , j
n
l ∈ V , so the edge capacities are all positive.

Note there is a computational advantage of using the linear pairwise pe-
nalty functions of Equation 2.8 compared to non-linear pairwise penalty func-
tions, as far fewer edges are needed to implement them because 4̂im,jn(x) = 0
for all x 6= 0. An illustration of these edges is given in Figure 2.2b and 2.2c.

The total edge set E in the maximum flow graph is given by:

E = Ed ∪ E∞ ∪ Ei . (2.15)

We used the algorithm described in Boykov and Kolmogorov 2004 to find
the minimum cut.

2.2.4 Data term

In this section we describe how the data term part of Equation 2.9 was im-
plemented for the airway wall segmentation problem. The columns, in this
case, will usually start inside the air-filled lumen area, which has low density,
move through the airway wall where the density rises, and finally end up in
the lung parenchyma where the density falls again. The CT intensity directly
reflects this density change. A common way to find such boundaries is to use
weightings of the first and second order derivatives of the intensity along the
columns (Li et al. 2006; Liu et al. 2012; Petersen et al. 2010). Because the ex-
trema of the second order derivative are slightly shifted and on opposite sides
of the first order derivative weighting the derivatives allows one to adjust the
position of the found surface according to some known groundtruth. In this
way one can adjust for bias introduced by partial volume effects:

ŵ0
i (t) =

{
(1− |γ0|)di(t) + γ0

∂di(t)
∂t (t) if di(t) > 0

0 otherwise
, (2.16)

ŵ1
i (t) =

{
(|γ1| − 1)di(t) + γ1

∂di(t)
∂t (t) if di(t) < 0

0 otherwise
, (2.17)
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where γ0, γ1 ∈ [−1, 1] are the weights, di(t) = ∂I◦ϕi

∂t (t), is the first order
derivative of the image intensity I along the flow line ϕi. To get the actual
cost functions, the functions are inverted:

wmi (k) = max
j∈V,l∈Kj

ŵmj (jml )− ŵmi (imk ). (2.18)

Numerically we approximate the derivatives using central differences from
cubically interpolated values.

2.3 Experiments

Experiments were conducted with three methods based on different ways of
constructing the columns. One was a method using straight columns Sk,τ ,
as described in Liu et al. 2012, where the medial axes and normals were de-
termined using the method of Dey and Sun 2006 using k neighbours and an
error tolerance of τ respectively. We refer to the original article for a defini-
tion of these parameters. The other two methods used the proposed flow line
columns calculated using convolution kernels based on Equation 2.2 and using
a Gaussian of scale σ, denoted Fα and Fσ respectively. The resolution of the
initial mesh used in the experiments was 0.5 mm × 0.5 mm × 0.5 mm and
the flow lines were sampled at 0.5 mm arc length intervals.

2.3.1 Data

The data comes from the Danish Lung Cancer Screening Trial (DLCST) (Ped-
ersen et al. 2009). The images were obtained using a Multi Detector CT scan-
ner (16 rows Philips Mx 8000) with a low dose (120 kV and 40 mAs), and
reconstructed using a hard kernel (D) with a resolution of approximately 0.78
mm × 0.78 mm × 1 mm.

Lung function measurements were performed according to recommenda-
tions by the European Respiratory Society (Miller et al. 2005) using a comput-
erized system (Spirotrac IV; Vitalograph, Buckingham, UK). No bronchodi-
lation was applied.

As in Petersen et al. 2011b we use a randomly selected training and test
set of 8 and 7 images for parameter tuning and evaluation. From the test and
training data set we extracted 329 and 319 two-dimensional cross-sectional
sub-images with a resolution of 0.5 mm × 0.5 mm at random positions per-
pendicular to and centred on the airways. We then manually annotated
these images with lumen Ml and complete airway Ma area. Some of the
sub-images contain regions, which we will denote X, which belong to other
airway branches. As the orientation of these other branches is unknown an-
notation may be difficult, and they were therefore marked and excluded from
the analysis. The COPDGene phantom (Sieren et al. 2012) was scanned with
the DLCST protocol and the 6 airway-like tubes present in the phantom were
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used to further adjust method parameters and validate segmentation accuracy.
Additionally we randomly selected 499 subjects for the medical expert visual
comparison. 490 of these had repeated scans and spirometry within a two
year period and were further selected to evaluate reproducibility of measures
of airway morphology as well as their correlation with lung function. Of these,
266 are men and 270 were found to be asymptomatic at first scan time, 143,
71 and 6 had COPD stage 1, 2 and 3 respectively according to the criteria of
the global initiative for chronic obstructive lung disease (GOLD 2013). The
average scan interval was 432±32 days. The average absolute interval between
scan and lung function measurement was 12 days.

2.3.2 Parameter tuning

The methods have inner and outer smoothness penalties, inner and outer
cost function derivative weightings and separation penalties, denoted pm, γm
and q where m ∈ {0, 1} respectively, plus the method specific parameters,
that is k, τ (Section 2.3) and α and σ (Section 2.2.2). Optimal values of
all these parameters were obtained by searching the parameter space on the
training data set using an iterative algorithm. In each iteration, a parameter is
searched by probing upper and lower search interval limits. If no improvement
is detected in the average value of the error metric Φ, see Section 2.3.3, over all
subjects in the training set, the intervals are halved around the current best
guess and the process is repeated. This continues until a better guess is found
or the difference between the upper and lower search intervals becomes less
than a threshold. The search then proceeds with the next parameter in a loop
with reset upper and lower search interval limits until no more parameters get
updated. In order to avoid getting stuck in a local minimum, the algorithm was
repeated 10 times using random values as initial guesses for the parameters.

2.3.3 Comparison with manual annotations

We evaluate the correctness of a segmentation in the cross-sections using the
relative area of overlap outside the excluded area, Φ as follows:

Φ(Ml,Ma, Al, Aa, X) = |(Ml∩Al)\X|
|Ml\X|+|Al\X|+
|(Ma∩Aa)\X|
|Ma\X|+|Aa\X|

, (2.19)

where Al and Aa denote lumen and complete airway area as found by the
algorithms.

Define the contour C(A) of an area A as the set of pixel centres belonging
to A, where at least one of the pixels in the standard 4-neighbourhood is not
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part of A. The average contour distance was then defined by:

Ψ(Ml,Ma, Al, Aa, X) = mean
x∈C(Al\X)

d(C(Ml \X), x)/2+

mean
x∈C(Aa\X)

d(C(Ma \X), x)/2 ,
(2.20)

where d(A, x) defines the minimum euclidean distance between the point x
and the set A. Note, that this validation is performed in resampled images of
the resolution of the graph, which is higher than the original image resolution.

2.3.4 Phantom experiments

It has been established that humans tend to underestimate the lumen and
overestimate the wall area (King et al. 2000) and graph segmentations tuned
to manual segmentations are likely to be biased in the same manner. We
therefore conducted a second round of tuning of the data term parameters γ0
and γ1 of all the methods involving the COPDGene phantom as ground truth.
The airway-like tubes of the phantom were initially segmented using a region
growing approach with an upper threshold of -900 HU. The unsigned relative
deviation of the inner and outer radii on each tube was used as an error metric
both to tune the parameters and to evaluate segmentation performance.

2.3.5 Observer study

As a final comparison between Fσ and Sk,τ we let a medical expert (MMWW)
judge the quality of the segmentations using the phantom tuned parameters.
For each subject in the data set a single random position in the airway tree
was selected. In this position three cross-sectional images were extracted
perpendicular to the centreline. One image containing the original scan data
and the other two the original scan data overlaid with the segmentation results
of the two methods. We automatically removed all segmented components not
connected to the centre-most pixel, to restrict evaluation to the part of the
airway viewed perpendicularly. The medical expert was presented with these
three images in one view and was asked to decide among four options: 1)
result of method a is best, 2) result of method b is best, 3) both results are of
equal quality, or 4) not enough information is present to make the decision.
The expert could scroll through the scans of the data at will, but was blinded
to which method created them. When moving to the next scan, the position of
the segmented images in the view would switch randomly. Figure 2.5 column
1, 3 and 4 illustrate how these images look.

It should be noted that Fα was not included in this final comparison as we
thought it would complicate matters unnecessary to have the medical expert
choose between three methods of which two were our own. We therefore did
the comparison with the variation of our method which performed the best
on the manual annotations (Section 2.4.1).
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Method Sk,τ Fα Fσ
p0 125 30 48
p1 194 213 23
γ0 −0.36 −0.34 −0.41
γ1 −0.43 −0.31 −0.57
q 5.2 6.2 6.8

Table 2.1: Optimal parameters obtained using the training set and phantom.
In addition k, τ, α, and σ were estimated to be 103, 4.6, 0.03, and 0.50.

2.3.6 Reproducibility and correlation with lung function

Airway centrelines and branch generations were extracted from the airway
tree with a front propagation method, as described in Lo et al. 2012. Airway
morphology was quantified using Lumen Diameter (LD) and Wall Area per-
centage (WA%) computed from distances of the inner and outer surfaces to
the nearest point on the centreline. Measurements were averaged by branch
generations, with trachea assigned generation zero. We assume that changes
in the airways due to disease are relatively minor in the roughly one year pe-
riod between the repeated scans, and that changes in the measures are mostly
due to measurement variability. We quantify the reproducibility of the mea-
sures, with the coefficient of determination, calculated from Pearson product
moment correlation coefficients.

2.4 Results

Table 2.1 shows optimal parameters obtained using the training set and phan-
tom as described in Section 2.3.2 and 2.3.4.

Figure 2.3 illustrates the effect of the different column construction ap-
proaches on what constitutes ”smooth” solutions in terms of the implemented
penalties. It also illustrates the issues Sk,τ has with shorter columns in high
curvature areas.

Running the methods on an image from our data usually takes less than
5 minutes (On a 1.6 GHz laptop using no parallelisation) using up to 4 GB of
memory. Figure 2.4 shows a visualization of a three-dimensional segmenta-
tion result of Fσ and Figure 2.5 shows cross-sections illustrating results of the
investigated methods.

2.4.1 Comparison with manual annotations

Table 2.2 shows the results of the comparisons with the manual annotations
in the test data set, for each of the investigated methods using the optimal
parameters. All methods performed well; no method had an average relative
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(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j) (k)

(l) (m) (n) (o)

Figure 2.3: Identically coloured pixels illustrate solutions with zero smooth-
ness penalty at different column indices. The outer-most red surface is the
initial segmentation surface. The first column of images is the original scan,
the next are of the Sk,τ , Fα, and Fσ methods respectively. Sk,τ is most notably
different from the flow line approaches in the high curvature areas, where a
decreased smoothness can be observed, likely due to shorter columns. The
surfaces of Fσ are different from Fα due to an increased local regularisation
with limited long range effects, which is especially apparent in the bifurcation
regions, where the surfaces of the two branches join earlier.
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(a) Interior surface (b) Exterior surface

Figure 2.4: Three-dimensional visualizations of an inner and outer surface
extracted by Fσ.

Method Φ Ψ (mm)

Sk,τ 0.871± 0.075 0.135± 0.149
Fα 0.883± 0.066 0.110± 0.134
Fσ 0.893 ± 0.058 0.096 ± 0.097

Table 2.2: The results of different methods and kernels on the test data set
with 319 manually annotated slices. Mean ± standard deviation of (2.19) and
(2.20). The best result marked with a bold font.

area of overlap of less than 0.871 and a maximum average curve distance of
more than 0.135 mm. Fσ achieved the significantly best result (p < 0.05)
and the smallest variance in the quality of the results (p < 0.05) in terms
of both metrics, while results of Sk,τ were the worst (p < 0.001). Results
were compared using a Wilcoxon signed-rank test and a two-sample F -test
respectively. It should be noted that these tests assume the samples to be
independent, which can be questioned given that multiple cross-sectional slices
were selected from each of the scans. However the mean accuracy of Fσ was
better than Sk,τ in every single subject and using both metrics, as seen in
Figure 2.6, which is significant in itself (p < 0.05).

2.4.2 Comparison with phantom

Table 2.3 shows the results of the phantom segmentation. Interior and exterior
radii were estimated to within an average unsigned error of 6.6% (-15.4 % to
7.6 %) and 4.0 % (-8.0 % to 1.5 %) respectively. In absolute terms the radii
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure 2.5: Cross-sectional images extracted perpendicular to airway centre-
line. Left to right show original image and initial, Sk,τ and Fσ segmentations.
Only lumen (green) and wall (blue) segmentations connected to the centred
airway are shown. Fσ is seen to do better than Sk,τ in the high curvature
area between the bifurcating airway branches (first and second rows). The
less noisy and more smooth result of Fσ compared to Sk,τ (third row) shows
the flow line approach dealing better with the poor initial segmentation. The
second to last row illustrates how neither method is able to correct large inital
segmentation errors, such as the encircled over-segmented area. The last row
shows a result near the mediastinum, where the outer border has weak con-
trast. In such situations smoothness penalties help by integrating information
from nearby areas where contrast is stronger.
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Figure 2.6: Result on the manually annotated test data set by subject of Fσ
(red), Fα (green) and Sk,τ (blue). Bar shows median, box at lower and upper
quartiles, and whiskers at interquartile range.

Interior radius (mm) Exterior radius (mm)
Tube Measured Actual Measured Actual

0 3.23 3 4.14 4.5
1 3.00 3 3.80 3.9
2 1.27 1.5 2.13 2.1
3 1.33 1.5 2.11 2.1
4 3.10 3 3.98 4.2
5 3.07 3 3.94 4.2

Table 2.3: Measured and actual phantom radii in mm.

deviated an unsigned average of 0.13 mm (-0.23 mm to 0.23 mm) and 0.16 mm
(-0.36 mm to 0.16 mm) respectively, which is well below the graph resolution
used.

2.4.3 Medical expert observer comparison

Out of the 499 evaluated cases the medical expert judged the flow line ap-
proach to be best in 342 cases, which is significantly more than the 56 cases in
which the approach of Liu et al. 2012 was judged to be best, with p < 0.001
according to a proportion test. In 92 cases results were found to be of equal
quality and in 9 cases the expert ruled that not enough information was present
to judge.

The distribution of the proportion of cases where the flow line approach
was judged to be best with respect to relative position of the cross-section
within the branch was investigated to reveal whether the beginning, top 20%
of the centreline; ending, bottom 20%; and middle, the rest of the branch
was handled better than with the approach of Liu et al. 2012. The observer
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Figure 2.7: Figure 2.7a shows the reproducibility of the measures, LD (blue)
and WA% (green), in repeated scans quantified as R2 in branch generations 0
to 8. Figure 2.7b shows significant (p < 0.01) Spearman correlation coefficients
of the same measures with lung function.

preferred the proposed approach in significantly more cases in all parts of the
branch according to a proportion test (p < 0.001), specifically, 71 out of 107
cases (66%) in the beginning, 211 out of 301 cases in the middle (70%) and 60
cases out of 82 in the bottom (73%). The proportions were not significantly
related to branch position (p = 0.59).

2.4.4 Airway abnormality measurements

Figure 2.7a shows reproducibility of LD and WA% quantified as repeat scan
R2. In general both measures have good reproducibility down to generation 5
(R2 > 0.73) and the reproducibility is falling with increasing generation.

Figure 2.7b shows Spearman’s correlation coefficients ρ of the measures
and lung function measured by Forced Expiratory Volume in one second as
a percentage of the predicted value (FEV1 (% predicted)). LD is positively
correlated, indicating luminal narrowing with COPD, whereas WA% is neg-
atively correlated, indicating wall thickening. Correlation is seen to increase
with generation until generation 5.

2.5 Discussion

In this chapter we have shown how optimal net surface graphs based on
columns defined from properly generated flow lines can be used to accurately
find multiple interacting surfaces in multiple dimensions. Compared to previ-
ously used straight columns, the method should be better able to handle high
curvature regions and noisy initial segmentations. We have demonstrated how
the approach can be used to find the surfaces of the airway walls in CT images.



Chapter 2. Optimal surface segmentation using flow lines 31

The high reproducibility of the resulting airway abnormality measurements as
well as the fact that the measurements show significant correlation between
decreased lung function and luminal narrowing and wall thickening, in agree-
ment with the current knowledge of the disease process in COPD, indicate
the method can be used to measure abnormalities caused by COPD up to at
least generation 5.

We experimented with two different convolution kernels to obtain the flow
lines, both giving good results. For our specific application, the Gaussian ker-
nel Fσ performed better than Fα, which we think is mainly due to it tending
to zero much faster, limiting long range effects while providing strong regu-
larization near the potentially noisy initial surface. The most suitable kernel
and kernel parameters may vary per segmentation task. In cases where one
of the true surfaces can be far from the initial segmentation for instance, a
kernel with longer tails may be needed.

In this work, we performed an extensive parameter tuning for each of the
methods to allow for an as objective comparison as possible. However, it
is our experience that results are not very sensitive to the settings of these
parameters and suitable settings can already be obtained by a few trial and
error runs using visual inspection of the segmentation results.

The graph resolution was set relatively low (0.5 mm), compared to that of
Liu et al. 2012 (0.1 mm) to limit computation times and memory consumption.
This results in a slightly lower accuracy on phantom scans than what Liu et
al. 2012 report, however, there is no reason to doubt if the improvement in
accuracy on real data as seen with our approach will carry over to higher
graph resolutions as well.

The chosen mesh is not very smooth and so it could be questioned whether
the methods perform differently simply because of differences in their ability
to deal with this non-smoothness. To explore whether this was the case we
repeated the training (Section 2.3.2) with meshes based on the marching cubes
algorithm, as was used in Liu et al. 2012 and a smooth mesh based on Boisson-
nat and Oudot 2005 and evaluated their results on the test set (Section 2.3.3).
The mesh based on Boissonnat and Oudot 2005 overall performed similar to
our mesh, whereas marching cubes performed significantly worse with each of
the investigated methods. Moreover the ordering of the methods in terms of
results seemed to be preserved. This indicates that our mesh choice is not the
cause of the differences. An advantage of our mesh is that each vertex has a
constant number of adjacent vertices (four) and the distance to its neighbours
varies less than with the tested alternatives. This regularity helps make the
graph smoothness penalties work more evenly across the surface.

Estimating both airway wall surfaces simultaneously using the initial lu-
men surface as a prior, makes sense, as the lumen surface is easier to segment
than the outer wall surface. This is because the contrast between the outer
wall surface and abutting structures, such as vessels can be very low. In low
contrast areas results become more driven by smoothness penalties. If the
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initial segmentation is not unreasonable, good segmentations can be achieved
even in these regions as seen in Figure 2.5d, 2.5h and 2.5t, however in cases
where contrast is low and the initial segmentation is also poor, errors can
occur. Examples of this can be seen in Figure 2.5l, where the wall area in
the vascular contact region seems to be underestimated. Sensitivity to the
accuracy of the initial segmentation is however not unique to the proposed
approach, as all previously developed three-dimensional airway wall segmen-
tation approaches (Liu et al. 2012; Saragaglia et al. 2006) depend on an initial
segmentation and one and two-dimensional methods require an accurate esti-
mation of the centreline (Petersen et al. 2010; Weinheimer et al. 2008; Estépar
et al. 2006). The method we used to obtain the initial segmentation is state-
of-the-art and has been shown to have very few false positives (Lo et al. 2009).
Moreover as the lumen segmentation in general seem to be improved compared
to the initial segmentation, it is possible that further improvements could be
achieved by multiple iterations of the proposed approach.

Although manual annotations can be biased (King et al. 2000), comparison
with them is still a valid way to assess a method’s ability to find the airway
surfaces in a realistic setting. Manual tracings were used in a similar fashion
in Li et al. 2006 in 39 randomly selected slices outside the bifurcation areas.
The unsigned errors were reported to be 0.10±0.11 and 0.12±0.12 mm for the
inner and outer surfaces respectively, which is similar to what our approach
achieved.

An ability to pick up significant changes in airway dimensions related to
disease has, to our knowledge, not been demonstrated by previous fully auto-
matic three-dimensional airway wall segmentation approaches. However, other
one and two-dimensional approaches have, and significant correlation have for
instance been reported with lung function using the approach of Weinheimer
et al. 2008 in Achenbach et al. 2008, using the full width at half maximum
principle in Nakano et al. 2000 or with exercise capacity in COPD using the
approach of Estépar et al. 2006 in Diaz et al. 2010b. One should exercise care in
drawing conclusions from comparisons of these studies as there are important
differences in patient characteristics, and the number of healthy participants,
however, our results are within the range reported by them (WA% coefficients
of −0.338 (Nakano et al. 2000) to −0.560 (Achenbach et al. 2008)).

Scan-rescan repeatability of the measures was good, but did decrease from
generation 6 and onwards as can be seen in Figure 2.7a. A large part of this
decline can probably be explained by missing branches in the initial segmen-
tations, leading to different branches contributing to the airway measures per
generation at the different time points. Comparing the number of segmented
branches to the expected value, assuming a binary tree structure, revealed
that almost all the branches were segmented in generation 5 (97%), whereas
the number had dropped to about 62% in generation 6. Measurements con-
ducted in corresponding branches, as opposed to generations, might thus still
be reproducible after generation 5, as was also seen in Petersen et al. 2011a
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where image registration was used to do branch matching and limit measure-
ments to repeatedly found branches. The use of higher dosage and resolution
scans would probably also result in a higher number of detected branches and
higher accuracy in placing the airway wall borders, due to a better definition
of edges in especially the smaller airways. This should further improve re-
producibility and correlation with lung function especially beyond generation
5.

We expected to see a higher frequency of cases where the proposed method
was found superior in the high curvature areas near the bifurcations. The
medical expert visual inspection did show a slightly higher proportion in the
ending compared to the top and middle parts of the branches, but the dif-
ference was not significant. The results show the proposed method actually
improves many cases outside bifurcations as well. An example is given in Fig-
ure 2.5. This could be due to small errors in the initial segmentation, which
make it difficult to obtain good estimates of the normal directions. In such
cases increased regularisation may help the flow line approach and even if the
flow lines follow the same erroneous directions close to the initial segmenta-
tion, as they move away, the directions will be relatively more determined by
long range interactions, and thus the errors will be evened out.

2.6 Conclusions

To conclude, a new graph construction technique applicable to multi-dimen-
sional multi-surface segmentation problems was proposed. The method runs
in polynomial time and is able to penalize for non-smoothness and separation
of the found surfaces. The results are guaranteed to not self-intersect and are
robust in regions with large curvature.

We applied the method to the problem of segmenting human airway walls
in CT images based on an initial coarse airway lumen segmentation, and
results were shown to be significantly more accurate than those of another
recently published graph based method. Phantom dimensions were estimated
to sub-voxel resolution, and large scale evaluations on 980 images from a lung
cancer screening trial showed both good reproducibility of the obtained airway
abnormality measures and a significant correlation with lung function.
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Abstract

Longitudinal investigations of airway abnormalities associated with
Chronic Obstructive Pulmonary Disease (COPD) has been very limited
so far, partly due to the difficulties in obtaining reproducible measures.

We propose to improve on this by limiting measurements to corre-
sponding branches found using image registration.

The results obtained from scans of 237 subjects show increased intra-
subject correlation when measurements are conducted in branches found
in each scan compared to similar measurements not limited to corre-
sponding branches. This indicates the method could be useful for longi-
tudinal analysis.

Yearly changes in CT measures showed that airways increase in size
and decrease in density with time. Changes were in general not found
to be significantly correlated with changes in lung function and neither
were there any significant differences between COPD GOLD stages.
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3.1 Introduction

Chronic Obstructive Pulmonary Disease (COPD) is associated with loss of
lung tissue, known as emphysema and chronic bronchitis, which is normally
described as a narrowing of the air-filled lumen area of the airways and a
thickening of the airway walls (Hogg et al. 2004). The changes cause shortness
of breath leading to reduced quality of life, disability and eventually death.
Computed Tomography (CT) has become a popular imaging tool to quantify
COPD pathology and multiple cross-sectional studies have already shown that
CT based measures of both emphysema and airway abnormality are correlated
with measures of disease severity such as lung function (Berger et al. 2005;
Hasegawa et al. 2006; Nakano et al. 2000; Washko et al. 2009). As of yet only
very few longitudinal studies have attempted to investigate the change over
time in airway dimensions (Ohara et al. 2008). Some of the reasons for the
lack of longitudinal studies are likely that COPD is a very slow developing
disease, meaning subjects need to be followed for many years and the lack of
reliable automatic approaches for measuring airway dimensions.

Conducting reproducible measurements in the airways is difficult as such
measurements in general depend on the position in which they are performed
and finding the same position in the following images can be a hard task. For
instance in the longitudinal study described in (Ohara et al. 2008), such corre-
spondences were found manually by locating the anterior, lateral and posterior
basal segment bronchus in CT slices. In the end data on 45 out of the 83 sub-
jects participating had to be excluded as the same segment bronchus could
not be located in at least three of the yearly scans. The use of modern tools
such as three-dimensional segmentation algorithms, centreline extraction and
axial reconstruction enable analysis in much more of the airway tree, making
the problem of how to do comparable measurements even more complicated.

One way to avoid this problem is to use airway abnormality measures,
which are less affected by differences in sampling positions. For instance one
can use the assumption that the square root of the wall area and the lumen
perimeter are linearly related, when measured in perpendicular slices of the
airways, to construct a comparable measure of what the wall area would be
if measured where the lumen perimeter is 10 mm. This is the much used
Pi10 measure (Nakano et al. 2005). Such approaches probably increase re-
producibility, however measurements are likely still dependent on the specific
branches included in the analysis.

The airway branches have been given anatomical names down to the
sub-segmental level within the literature. If such a labelling could be ex-
tracted automatically it would enable measurements in correspondingly la-
belled branches, that would be comparable cross-sectionally as well as longi-
tudinally. Assigning these names is however very difficult in practice, due to
biological variation, inspiration effects, pathology, etcetera. So the automatic
processes that have been developed usually only proceed down to the 10 seg-
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mental bronchi on each side, resulting in 32 labelled branches (Ginneken et al.
2008b; Tschirren et al. 2005b).

Modern segmentation methods on data of reasonable image quality can go
significantly deeper than the segmental bronchi and it thus might be possible
to match more branches at an intra-subject level. This could be useful in
longitudinal studies where the inter-subject variation often is less relevant and
particularly important for COPD analysis as it is known to affect the airways
further down the tree more (Hasegawa et al. 2006). One way to achieve such a
matching would be to use image registration. Registration of lung CT images
has, for example, been used to track emphysema progression (Gorbunova et
al. 2008) and nodule growth (Zheng et al. 2007), however so far, to the best
of our knowledge, it has not been used to investigate airway changes.

The purpose of the work detailed in this chapter is thus to investigate
longitudinal measurements of airway abnormalities and whether limiting mea-
surements to branches only found in each intra-subject scan, matched with
the help of image registration, improves reproducibility.

3.2 Method

A fully automatic and novel framework for longitudinal analysis of changes
in airway wall dimensions and density was developed. It uses state-of-the-
art airway and airway wall segmentation and registration methods, described
shortly in the following sections. Briefly: the airway lumen was initially seg-
mented using the process described in Sec. 3.2.1, it was then used as input
to the airway wall segmentation method detailed in Sec. 3.2.2 in order to
find the precise shape and position of the airway wall surfaces. The lumen
surface returned from this was used to find the airway centrelines using the
process described in Sec. 3.2.3. The airway centrelines were deformed to the
centre-most image in time using the deformation fields returned by the image
registration process described in Sec. 3.2.4. This common space allowed the
centrelines to be matched based on distance and orientation using the method
detailed in Sec. 3.2.5.

3.2.1 Initial airway extraction

The airway segmentation method described in Lo et al. 2009 that iteratively
extends locally optimally paths to form an airway tree is used in this work. In
each iteration, locally optimal paths are defined as paths with minimal cost
from the seed-point to the surface of a sphere centred on it. The paths are
generated using Dijkstra’s algorithm, with a cost function that is based on a
kNN classifier trained to classify airway voxels combined with Hessian eige-
nanalysis to enhance cylindrical structures. A number of criteria taking into
account the local appearance of an airway voxel and geometry characteristics
are then used to select the most likely path. The paths are then converted into
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a full lumen segmentation by growing a cylinder around each selected path,
using the airway probabilities returned by the kNN classifier.

This airway segmentation method was chosen as it compared very favou-
rably with another region growing based approach (Lo et al. 2008), which again
performed well compared to the state of the art evaluated in the Exact’09
study (Lo et al. 2012). One of the advantages of the approach is that it can
overcome local occlusions, due to for instance plugging of the lumen due to
mucus or pathology.

3.2.2 Airway wall segmentation

The initial lumen segmentation is then used as input to the method described
in Chapter 2, which builds an optimal surface graph (Wu and Chen 2002)
around it with the purpose of both finding the outer airway wall surface and
refining the lumen surface returned by the first step. This process begins
by converting the initial lumen segmentation into a sub-graph, in which each
point on the initial lumen surface is associated with a column of nodes. A
column defines the set of allowed positions the point can take in the sought
surface. Optimal surface graphs are designed such that the search for the
optimal surface can be conducted using maximum-flow/minimum-cut algo-
rithms in polynomial time. The process can be thought of as a refinement
or a deformation in which the sub-graph defines the finite set of possible re-
fined solutions of the initial surface. Since we need to find both the inner and
outer airway wall surface the complete graph consists of two sub-graphs, one
designed to find the inner surface and one designed to find the outer. The
optimality of the solution is measured in terms of inner and outer surface cost
functions computed from derivatives of the image intensities as described in
Petersen et al. 2010 and smoothness and surface separation priors.

One of the novelties of the algorithm is the way the graph columns are
constructed from properly generated greatest ascent and descent flow lines.
These guarantee solutions that do not self-intersect and should be very suited
for regions with high curvature, such as those found in the branch bifurcation
areas.

3.2.3 Extraction of branch centrelines and generations

The airway centrelines, branches and generations were extracted from the
lumen surface generated in the airway wall segmentation process using the
front propagation method described in Lo et al. 2012. Starting in the trachea
and moving down the branches, the centroid of the front is stored at regular
intervals as branch centreline points. Bifurcations are detected and genera-
tion count increased as the wavefront becomes disconnected upon hitting the
branching points of the lumen segmentation. The method was also used in
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the Exact’09 study and had thus already been used on a varied data set and
on the results of different airway segmentation algorithms.

3.2.4 Registration

The extracted centrelines were matched within a common coordinate system
obtained using registration of the CT images.

Image registration is the process of finding a transformation which maps
one image into another. This is usually performed in a pairwise manner,
where one image is denoted the moving image and the other the fixed. The
transformation maps the coordinates of the fixed image into the moving.

The registration error is generally related to how dissimilar the images
are and since the data set consists of subjects scanned five times yearly, we
assumed the centre-most image in time to be least different from the others
and registered this image as the moving image with all the four others.

The images were registered using the mass preserving image registration
algorithm described in Gorbunova et al. 2008. Registration based directly on
image intensities, such as standard sum of squared differences, is problematic
for lung registration because the local image intensity, which in CT images
are directly related to the local density, changes with the inspiration cycle.
Instead the approach incorporates a tissue appearance model based on the
assumption of preservation of total lung mass into a standard deformable im-
age registration framework. This framework uses a composition of a global
affine and three free-form B-Spline transformations with increasing grid res-
olution. A version of sum of squared differences with the mass preservation
incorporated is used as a similarity function.

The method was originally evaluated using the average distance between
the registered lung vessel trees, and showed a significant improvement com-
pared to standard sum of squared distances, especially in the more difficult
cases with large differences in lung volume.

3.2.5 Matching airway branches

Each centreline point was matched to the nearest point on each of the other
centrelines of the same subject, measured within the common coordinate sys-
tem. Such a match was deemed acceptable if the distances to the common
centre for each of the centreline points was less than δ and the angle the di-
rection of the centrelines formed with the average direction of the centrelines,
was less than θ. The airways were then cropped at the position where the
deepest acceptable match was found.

Having accurately assigned generation numbers is important as COPD
mostly affects the smaller airways, and splitting measurements by generations
is a common pathology independent way to only measure relevant airway
branches. See for instance the results of the generation based analysis con-



Chapter 3. Branch matching for longitudinal studies 40

ducted in Hasegawa et al. 2006. Most erroneously assigned generations are
due to segmentation errors, where only one of the continuing branches at a
bifurcation is found. In these cases one longer branch may be found where it
should have bifurcated and split in two and the sub-tree will have its genera-
tion count off by one. The matched centrelines were used to correct some of
these cases. Beginning at the root of the tree and moving down the centreline
the current generation is determined by a majority vote. Missing or spurious
branches are detected whenever one of the centreline points have a different
generation number than the majority. It is corrected by adding the difference
to each of the centreline points in the sub-tree. The process allows a correct
identification of the generations, even in situations where errors occur in all
the trees from any string of branches from root to leaf, as long as each bifur-
cation is found in the majority of the cases. See Fig. 3.1c for a visualization
of the results of this.

3.3 Experiments and results

3.3.1 Data

The material used comes from the Danish lung cancer screening trial (Pedersen
et al. 2009). The images were obtained using a Multi Detector CT scanner (16
rows Philips Mx 8000) with a low dose (120 kV and 40 mAs), reconstructed
using a hard kernel (D) with a resolution of approximately 0.78mm×0.78mm×
1mm. 237 randomly selected subjects from the trial were included in the
analysis. Data from five yearly CT scans and lung function measurements
were available on each.

At baseline, the subjects included in the analysis had a mean value of
FEV1 (% predicted) of 96%(±17%) and FEV1/FVC of 0.71(±0.08), totalling
144 without COPD, 61 with mild COPD, 31 with moderate COPD and 1 with
severe COPD. 143 men and 94 women with an average age of 58(±5) years.

3.3.2 Centreline cropping

A value of 1.7mm for δ and 37 degrees for θ were estimated by visual inspection
on a small set of scans that are independent of the data used in the rest of
the analysis. Fig. 3.1 shows a typical result of running the branch cropping
method. Notice, in Fig. 3.1a how the five deformed centrelines are so close
that they more or less appear as one single airway centreline, indicating how
well the registration method works on this data. Fig. 3.1b and 3.1c shows
the results of the generation correction method. The improvement is most
clearly visible in the bottom of the tree, where the many missing branches
leads to wrongly detected generations, most often seen as the same branch
being coloured with multiple colours in Fig. 3.1b.
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(a) Five centrelines

(b) Individual Generations (c) Majority generations

Figure 3.1: Fig. 3.1a shows the centrelines deformed to a common space, each
tree has a unique colour, the cropped parts of the tree where at least one
scan is missing a branch are black. Fig. 3.1b shows the trees coloured by
the generations of the individual trees and Fig. 3.1c shows the corresponding
majority generations. The enlarged area within the circles shows branches
where generations are corrected. Note that in the last two figures each tree
has been slightly offset compared to the others, such that the generations of
each individual tree is more easily visible.
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Figure 3.2: The average amount of branches in each generation of the cropped
(blue) and non-cropped (red) airways.

Fig. 3.2 shows the amount of branches found in each generation of the air-
way tree in both the cropped and non-cropped case. The amount of branches
in the cropped airways are actually larger in generation 3-5 compared to the
non-cropped airways due to the generation correction process. Moreover the
number of branches in each generation are roughly doubled in both cases until
generation 6, consistent with a bifurcating branching tree. This suggests that
the airway trees are roughly complete until this point and that the cropped
branches mostly belong to the generations that are already incompletely found.
It is also interesting that even with as many as five time points the average
number of branches found in the cropped airways far exceeds the number of
named branches.

3.3.3 Measurements

Airway morphology was quantified with four different measures, the Interior
Volume (IV) (also called the lumen volume), the complete Airway Volume
(AV), that is the sum of the interior and wall volume, the wall volume per-
centage (WV% = 100 × (AV-IV)/AV) and the Mean Airway Density (MAD),
which is the average density in the complete airway volume. Density based
measures have received some attention in the last couple of years as they may
be more sensitive to a change in size of the smaller airways due to partial
volume effects (Petersen et al. 2010; Washko et al. 2009). IV, AV and WV%
on the other hand are three-dimensional extensions of commonly used airway
abnormality measures (Berger et al. 2005; Hasegawa et al. 2006; Nakano et al.
2000; Ohara et al. 2008; Petersen et al. 2010; Washko et al. 2009).

The measurements were conducted in the un-registered images, by classi-
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Figure 3.3: Lumen segmentation surface in five scans of one subject. Top
row shows all the branches, whereas the bottom row only show corresponding
branches.
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Figure 3.4: Reproducibility as the coefficient of determination calculated from
measurements at baseline and first year repeat scan. Red, green, dark and
light blue is WV%, AV, IV and MAD respectively. The dotted lines are
measurements based on the non-cropped airway trees.

fying the segmentation into branch generations with the use of the cropped
centrelines. This was done by assigning the generation of the nearest centreline
point to each segmented voxel as described in Chapter 2. Voxels whose nearest
centreline point was cropped, were simply not included in the measurements.
Fig. 3.3, shows an example of this.
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IV (mm3) AV (mm3) WV% (%) MAD (HU)

Mean (± std) 55 328 0.026 -2.9
(±547) (±1120)(***) (±0.51) (±7.4) (***)

FEV1 (%) -0.04 -0.08 -0.00 -0.12
COPD FEV1 (%) -0.01 -0.07 -0.03 -0.21(*)

Table 3.1: Change in measurements per year. Second and third row are
Pearson correlation coefficients. Third row are measurements conducted only
within subjects diagnosed with COPD at baseline. Note /year has been left
out from the units for readability. (*), (***) denote p values less than 0.05
and 0.001 respectively.

3.3.4 Reproducibility of measurements

COPD is a slow developing disease and so airway abnormality measurements
can be assumed to change little from one year to the next. The coefficient
of determination calculated from the Pearson correlation coefficient of the
measures at baseline with the following year can thus be used to estimate re-
producibility of the measures. Fig. 3.4 shows how this looks in each generation
for the measures extracted from the cropped and non-cropped airways.

It is clear that the cropping operation results in more reproducible mea-
sures, especially in the smaller branches, with the only exception being WV%
measured in generation 6. In general the reproducibility in the non-cropped
airways can be observed to fall with generations, the fact that this trend has
largely been removed after the cropping operation suggests that a large part
of this variability can be attributed to differences in the amount of segmented
airway branches.

3.3.5 Annual change in measures

The first row of Table 3.1 shows the annual change in the measures obtained
via the slope of the linear relationship between subject age at the time of the
scan and the measurements in the airway belonging to generation 3 and up.
IV and WV% showed no significant annual change, whereas AV was found
to increase and MAD to decrease, indicating that the airways increase in size
and become less dense.

The annual change of the measures was not found to be correlated with
the annual change of lung function. However when analysis was limited to
the subjects with COPD at baseline, a significant negative correlation could
be observed between the annual change in MAD and the annual change in
FEV1(% predicted). It should be mentioned though that the result is no
longer significant if the level is Bonferroni corrected. The result is however
consistent with cross-sectional studies, which found that poorer lung function
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in general was associated with a higher density (Petersen et al. 2010; Washko
et al. 2009).

We also tested whether there were any significant differences between the
different GOLD stages of COPD severity for any of the measures, but found
none.

3.4 Discussion

The implemented branch matching procedure is simple compared to anatom-
ical labelling approaches (Ginneken et al. 2008b; Tschirren et al. 2005b), but
visual inspections indicate that it works well, likely because the registrations
are good. That is, the distance between corresponding branches and their mu-
tual angles within the common coordinate system are generally smaller than
the distances and angles to non-corresponding branches.

Compared to recent cross-sectional studies (Berger et al. 2005; Hasegawa
et al. 2006; Nakano et al. 2000; Washko et al. 2009), where wall thickness
and lumen area or volume have been found to be correlated with poor lung
function, it is perhaps surprising that this relationship wasn’t reflected in our
longitudinal measurements. The lack of correlation can however be explained
by the fact that COPD develops slowly, and thus five years might simply be
too short to see any significant change in this data set. Moreover both lung
function and CT based measurements are still very noisy and the registration
based cropping operation described in this chapter, is only able to reduce the
intra subject variation introduced by differences in the amount of found airway
branches. Other variations, such as for instance those caused by changes in
inspiration level are still influencing the measurements. It should be mentioned
that in the results presented in Ohara et al. 2008, a significant correlation
was found between changes in airway measurements and lung function on a
smaller data set. However, that study included more severe COPD cases, with
a baseline mean value FEV1/FVC of 0.51 and FEV1(% predicted) of 50%.

An advantage of using image registration over for example branch labelling
methods, is that it allows for measuring changes of for instance wall thickness,
density, etcetera, local to specific points in the airways. Such changes could
be visualized to increase understanding of the disease or combined to form
new, possibly more sensitive global measures.

3.5 Conclusion

A fully automatic framework for longitudinal analysis of airways was pre-
sented, using state-of-the-art airway wall segmentation and image registration
methods.

The process of limiting measurements to airway branches found in each re-
peated scan was shown to increase reproducibility. This indicates that a large
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part of the intra-subject variation in the measurements can be attributed to
differences in the amount of segmented branches and thus that the framework
could be useful for longitudinal studies. The number of matched branches
exceeds the number of anatomically named branches.

A significant annual increase of AV and decrease of MAD was observed.
Annual changes in the CT measures was not observed to be correlated with
annual changes in FEV1(% predicted) in the complete data set, nor were
there any significant differences between the means of subjects in the different
COPD stages. However the change in MAD was seen to be negatively cor-
related with the change in FEV1(% predicted) when limited to the subjects
with COPD at baseline.

Acknowledgements

This work is partly funded by the Netherlands Organisation for Scientific
Research (NWO), and AstraZeneca, Sweden.



Chapter 4

Geodesic anatomical labelling

The work presented in this chapter is based on A. Feragen*, J. Petersen*, M.
Owen, P. Lo, L. H. Thomsen, M. M. W. Wille, A. Dirksen, and M. de Bruijne
(submitted). “Geodesic anatomical labeling of airway trees”. In: -.

47



Chapter 4. Geodesic anatomical labelling 48

Abstract

We present a fast and robust supervised algorithm for labelling air-
way trees, using geodesic distances in a geometric tree-space. Possible
branch label configurations for an unlabelled airway tree are evaluated
using distances to a training set of labelled airway trees. In tree-space,
airway tree topology and geometry change continuously, giving a natural
automatic handling of anatomical differences and noise. A hierarchical
approach makes the algorithm efficient, assigning labels from the tra-
chea and downwards. Only the airway centreline tree is used, which is
relatively unaffected by pathology. The algorithm is evaluated on 80
segmented airway trees from 40 subjects at two time points, labelled by
3 medical experts each, testing accuracy, reproducibility and robustness
in patients with Chronic Obstructive Pulmonary Disease (COPD). The
accuracy of the algorithm is statistically similar to that of the experts
and not significantly correlated with COPD severity. The reproducibility
of the algorithm is significantly better than that of the experts, and neg-
atively correlated with COPD severity. Evaluation of the algorithm on a
longitudinal set of 8724 trees from a lung cancer screening trial shows that
the algorithm can be used in large scale studies with high reproducibility,
and that the negative correlation of reproducibility with COPD severity
can be explained by missing branches, for instance due to segmentation
problems in COPD patients. We conclude that the algorithm is robust
to COPD severity given equally complete airway trees, and comparable
in performance to that of experts in pulmonary medicine, emphasizing
the suitability of the labelling algorithm for clinical use.

4.1 Introduction

Computed Tomography (CT) is an important tool in the analysis of dis-
eases affecting pulmonary airways. Using image segmentation methods, three-
dimensional models of the airway surfaces can be constructed, and their di-
mensions measured. Measurements such as lumen diameter, airway wall thick-
ness, and bifurcation angle are, however, dependent on the location in which
they are made; e.g., in Hasegawa et al. 2006 it is shown that the classification
boundary and accuracy of using airway wall thickness for COPD prediction
is different in different locations in the lung. As a consequence, it is crucial
to determine anatomically corresponding positions in different airway trees in
order to robustly compare measurements across patients. One way to solve
this problem is to identify the airway tree branches by their anatomical names,
and compare measurements in identically named airway branches (Hasegawa
et al. 2006; Lederlin et al. 2012; Diaz et al. 2010a). Identifying the anatomical
names is non-trivial, since the topology of the airway tree changes from person
to person, and the segmented trees have additional differences introduced by
noise, including missing and spurious branches.
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Figure 4.1: Airway trees are frequently topologically different, while geometric
differences are small.

Several airway branch labelling algorithms have appeared in the literature.
Gu et al. 2012 label the lobe branches by assuming a fixed tree topology and
assigning labels based on the (x, y, z) coordinates of bifurcations, a method
which is sensitive to topological differences and thus in particular does not
extend to segment labels. Ginneken et al. 2008a, Mori et al. 2009 and Lo
et al. 2011 assign branch labels using supervised learning on branch features,
in some cases (Ginneken et al. 2008a; Lo et al. 2011) constrained by assump-
tions on airway tree topology. Among the features used are branch length,
radius, orientation, cross-sectional shape and bifurcation angle. Branch radius
is sensitive to diseases like asthma, cystic fibrosis, tuberculosis and Chronic
Obstructive Pulmonary Disease (COPD) (Pu et al. 2012; Lederlin et al. 2012;
Wielputz et al. 2013; Moon et al. 1997). Moreover, airway branch length, shape
and bifurcation angle are sensitive to anatomical differences in topology and,
in particular, missing branches in the airway segmentation. For instance, if
only one branch in a bifurcation is detected, the result will be a longer branch
with different shape and different endpoint bifurcation angles. It is known
that fewer branches are typically detected in airway trees from subjects with
COPD (Diaz et al. 2010a; Pu et al. 2012), leading to topological irregular-
ities. These segmentation problems will affect any method which enforces
constraints on airway tree topology.

Anatomical tree labelling is closely related with anatomical tree matching,
or the problem of matching the branches or bifurcations of one tree to those
of another, in the sense that matching an unlabelled tree to a labelled one
will generate a label transfer to the unlabelled tree. Pisupati et al. 1996
use tree matching in airway trees of dogs. Graham and Higgins 2006 use a
dynamical programming approach to graph matching for matching pairs of
airway trees. Tschirren et al. 2005b and Kitaoka et al. 2002 label airway trees
using association graphs for pairs of trees, which incorporate information from
both trees, such that maximal cliques in the association graph induce branch
matchings between the original graphs. A similar approach is used by Metzen
et al. 2009 for matching both airway trees and vessel trees in the liver, as well
as by Bogunovic et al. 2013 for labelling the Circle of Willis. While branch
shape features go into the construction of the association graph, the possible
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branch matches are subject to strict constraints as the matching is equivalent
to identifying maximal isomorphic sub-trees. In particular, the association
graph model is not able to take into account the way that arbitrarily small
changes in geometric branch features (e.g. branch length) can lead to new
topologies, as in Figure 4.1.

Other, more geometric approaches, also appear: Smeets et al. 2010 match
branches from lung vessel trees using pairwise distances between bifurcations
both in 3D Euclidean space and along the tree to generate distance matrix ”fin-
gerprints”, which are matched. Bülow et al. 2006 match airway tree branches
without connectivity information, using only branch shape context. Kaftan
et al. 2006, match tree paths rather than branches, thus avoiding the diffi-
culty with different tree-topological structures, but also losing all information
stored in the topological structure. In particular, this model does not generate
branch labels, as the branch division is lost.

Feragen et al. 2011 label airways based on geodesics, or shortest paths,
in a space of trees. Their tree-space has no known efficient algorithm for
computation of geodesics, making their method too computationally expensive
to label the whole airway tree. In this work we use a more restrictive space
of leaf-labelled trees (Billera et al. 2001), where geodesics can be computed in
polynomial time (Owen and Provan 2011).

We present a novel supervised algorithm for automatic airway branch la-
belling, based on geodesic distances in a space of leaf-labelled trees. The
labelling algorithm works by suggesting a set of branch label configurations,
each forming a suggested labelled airway tree. These suggestions are com-
pared using geodesic distances from each suggested labelled tree to airway
trees within a training set labelled by clinical experts and the optimal sug-
gested labelling is returned. Labels are thus assigned automatically from the
trachea and downwards in a hierarchical fashion.

The tree-space framework is able to compute distances between trees with
different topologies, allowing for flexibility in tree topology. This is possi-
ble because in tree-space, tree topology and branch geometry are allowed to
change continuously. See Figure 4.2 for an illustration. From a practical point
of view, this allows us to take advantage of the whole training set without be-
ing restricted by topological airway tree differences.

The only feature used by the labelling algorithm is the airway centreline
tree, divided into branches. The algorithm does not depend directly on the
division of the segmented airway tree into branches, but rather on a sub-tree
spanned by the labelled branches, as explained in Section 4.2.4. This enables
the algorithm to tackle structural noise such as false or missing branches, as
opposed to methods that work only with the originally segmented branches.
The hierarchical implementation makes the algorithm sufficiently fast to be of
practical use.

A thorough evaluation of the labelling algorithm is made on a set of 80
segmented airway trees from 40 subjects scanned at two different time-points.
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Figure 4.2: Since tree-space is a path connected space, any two trees are joined
by a path in tree-space, corresponding to a tree deformation along which tree
topology and branch geometry changes. The geodesic distance between two
trees is the length of the shortest path connecting them.

Each airway tree was labelled by 3 clinical experts. There are subjects with-
out COPD and subjects with different stages of COPD, ranging from mild to
severe. The evaluation includes a comparison of accuracy and reproducibility
of the algorithm to that of the clinical experts, as well as robustness of ac-
curacy and reproducibility to disease severity. Moreover, reproducibility and
robustness of reproducibility to COPD severity is also tested on a large data
set from a longitudinal lung cancer screening trial using 8724 CT images from
1900 individuals.

A preliminary version of the work presented here appeared in Feragen et
al. 2012. In comparison with the earlier paper, changes have been made to
the algorithm, making the hierarchy less sensitive to missing RUL branches as
detailed in Section 4.2.5. The exposition has been extended to give a far more
comprehensive explanation of the tree-space methodology used. Finally, the
experimental validation has been significantly extended. First, our labelled
data set has been doubled in size and is now manually annotated by three
clinical experts. Second, an evaluation of reproducibility on a large longitu-
dinal study has been conducted, as well as a statistical analysis showing that
correlation between increased COPD severity and decreased labelling repro-
ducibility is due to segmentation problems in patients with COPD.

4.2 Methodology: Branch labelling

The airway branch labels illustrated in Figure 4.6 correspond to the division
of the lung into compartments: LMB and RMB lead to the left and right
lungs; LUL, RUL, L4+5, R4+5, LLB, and RLL lead to the different lobes;
and R1-R10, L1-L10 lead to the segments, with up to 10 segments in each
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lung. In addition, a number of intermediate branch names appear in the
literature, whose presence in a particular anatomical airway tree depends on
its topology. If the locations of all segment branch labels are known, along
with the airway tree structure, then it is straight-forward to reconstruct the
remaining branch labels. In this sense, a leaf-labelled airway tree, where the
leaf labels are segment labels, is equivalent to a labelled airway tree.

4.2.1 Input data

The input to the labelling algorithm is a connected centreline tree extracted
from an airway tree segmentation, divided into branches by bifurcation points.
The airway segmentation, centreline extraction and bifurcation detection al-
gorithms used in our experiments are detailed in Section 4.3.1.

Based on the extracted airway centrelines, each branch is represented by 6
landmark points sampled equidistantly along the centreline, translated so that
the first landmark point is placed at the origin. Thus, ignoring the first origin
landmark point, each branch e is represented by a vector xe ∈ (R3)5 = R15.
Each airway tree is normalized by the person’s height as an isotropic scaling
parameter. The person’s height was chosen over alternative normalization
parameters such as lung volume because height is unaffected by disease.

4.2.2 The labelling algorithm: An overview

The general goal of the labelling algorithm is, for an arbitrary unlabelled air-
way tree T , to optimally assign the set of segment labels {L1, ..., L10, R1, ...,
R10}, corresponding to the 20 segment bronchi, to branches in the centreline
tree. As outlined in Algorithm 1, the basic labelling algorithm contains a la-
belling suggestion step and a labelling evaluation step, after which an optimal
labelling is selected. In practice, for the sake of computational efficiency, this
algorithm is repeated in a hierarchical fashion, assigning labels from the top
and downwards. This is detailed in Sec. 4.2.5.

Algorithm 1 Overview of the basic labelling algorithm

1: Input: Unlabelled tree T
2: Input: Training set of labelled trees {Ti|i ∈ I}
3: Generate a set L of suggested labellings L ∈ L
4: for suggested labellings L ∈ L do
5: TL ← T with suggested labelling L
6: Compute distances {d(TL, Ti)|i ∈ I}
7: Compute fL =

∑
i∈I d(TL, Ti)

8: end for
9: Output: Labelled tree TL = argminL∈LfL
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Figure 4.3: The labelling algorithm contains two steps repeated in a hier-
archical fashion: Generation of suggested labellings (top) and evaluation of
suggested labellings based on tree-space distances to expert-labelled training
trees (bottom).

Algorithm 1 contains a label suggestion step (line 3) and a label selection
step (line 9) as illustrated in Figure 4.3. In the label suggestion step, a series
of potential label configurations are suggested. This is explained in detail in
Section 4.2.5. In the labelling step, the optimal branch label assignment is
selected as the configuration that minimizes the sum of distances to manually
labelled trees from a training set. The distance used is the geodesic distance
in the space of leaf-labelled trees, as detailed in Section 4.2.6 below.

4.2.3 Trees

By tree we mean a rooted tree, defined as a triple T = (V,E, r) where V is a
finite set of vertices, E ⊂ V × V is a set of edges so that there are no cycles
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Figure 4.4: From a configuration of leaf labels we extract the sub-tree spanned
by the labels and prune off the rest, obtaining the sub-tree spanned by the
labels, a leaf-labelled tree which can be compared to the training trees.

Figure 4.5: Each assigned label is backtraced to the branch closest to the root
that is not already part of the sub-tree spanned by the other labels.

in the corresponding graph, and r is a designated root vertex. Anatomical
or biological transportation systems often have a natural source node which
can be used as a root. For airway trees, the trachea provides a natural and
easy-to-identify root branch. Given any edge e ∈ E, any other edge ẽ ∈ E
which sits on the path through the tree from e to the root is said to be above
e. If ẽ is above e, then we say that e is below ẽ.

A labelling of T is a map L : X → E, which assigns unique labels from
a label set X to some but not necessarily all edges. In this paper, we are
particularly interested in leaf-labelled trees. A leaf in T is an edge which does
not have any other edges below it. A leaf-labelled tree on the leaf label set X
is a tree endowed with a bijective labelling L : X → El, where El ⊂ E are the
leaf edges in T . In particular, |X| must equal the number of leaves in T .

4.2.4 From labelled airway trees to leaf-labelled trees

Given segmented airway trees, we wish to extract leaf-labelled sub-trees in
such a way that particular sets of branches play the roles of leaves; for instance,
the fixed set of leaf labels {L1, ..., L10, R1, ..., R10}. However, segmented air-
way trees have variable size and usually, many branches are detected below
the segment level. In order to study airway trees using a framework for leaf-
labelled trees we define, given any labelling L : X → E, the sub-tree spanned
by the labels as the tree obtained by removing all edges in the tree which are
not found on the path from the root to an edge labelled by L, as in Figure 4.4.
Consecutive edges which are joined by a vertex of order 2 will be concatenated,
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as is the case with parent branch of R9 and R10 in Figure 4.4. When two
edges e1 and e2 are concatenated into an edge e, the shape vector xe will be
recomputed from the concatenation of the branch centrelines corresponding
to e1 and e2. After labelling, each label is backtraced through the path to
the root, as in Figure 4.5. We only consider admissible label configurations,
defined as labellings where the leaf labels will all be attached to leaves in
the sub-tree spanned by the labels. This is equivalent to excluding labellings
where two leaf labels are assigned to branches on the same path to the root.

For a tree T with a labelling L : X → E, we denote by TL the sub-tree
spanned by labels assigned by L.
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Figure 4.6: Hierarchical labelling: In each step, search through a sub-tree for
an optimal alignment of a subset of labels, obtaining a leaf-labelled sub-tree
of the segmented airway tree similar to the trees shown in black. The real tree
topology may differ; the figure only illustrates the stepwise hierarchy.

4.2.5 A hierarchical algorithm

Ideally, we would search through the whole airway tree T , test all admissi-
ble configurations TL of the 20 segment leaf labels and select the one that
optimizes line 9 in Algorithm 1. However, for an airway tree with as few
as 100 branches, the search space size is on the order of 10020, which is too
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Algorithm 2 For computational speed, the labelling is split into a set of
hierarchical sub-tree labelling steps.

1: Label the first branch in the airway tree as the trachea.
2: Search 3 generations below the trachea for the optimal configurations of

the label set X1 = {LMB, RMB}.
3: Search 2 generations below the RMB for the optimal configurations of the

label set X2 = {RUL, BronchInt }.
4: Search 2 generations below the LMB for the optimal configurations of the

label set X3 = {L6, LLB, LUL}.
5: Search 2 or 3 generations in ”anything but the BronchInt tree” for optimal

configurations of X4 = {R1, R2, R3}.
6: Search 2 generations below the BronchInt for optimal configurations of
X5 = {R4, R5, RLL, R6}.

7: Search 2 generations below the LLB for optimal configurations of X6 =
{L7, L8, L9, L10}.

8: Search 3 generations below the LUL for optimal configurations of X7 =
{L1, L2, L3, L4+5}.

9: Search 3 generations below the RLL for optimal configurations of X8 =
{R7, R8, R9, R10}.

10: Search 2 generations below the L4+5 for optimal configurations of X9 =
{L4, L5}.

large to handle. In order to ensure computational feasibility, we choose a hi-
erarchical sub-tree approach, where labels of different generations are added
subsequently, as explained in Figure 4.6 and Algorithm 2. Here, more shallow
branches are treated as leaves in the first steps of the algorithm, which works
its way down to the segments. In each step of the hierarchical label placement,
the optimal branches for the given set of labels is selected.

In each step of the hierarchical labelling, a specific set of descendants are
assigned to a specific already labelled branch. For instance, in line 4 of the
algorithm, the LMB branch has already been assigned, the sub-tree rooted
at LMB is extracted, and the algorithm attempts to assign leaf labels {L6,
LLB, LUL} in any possible configuration spanning two generations below the
LMB. The reason for searching 3 generations in some cases and 2 in others is
a trade-off between having enough space in the tree to assign all branches in
a given step, and having a small enough tree to limit the number of possible
configurations for the sake of computational speed. This trade-off depends
on the number of labels assigned in a step as well as the likelihood of having
higher order nodes in that particular sub-tree, as higher order nodes give more
branches per generation.

The step in line 5 is different from the others. Since the RUL branch is not
always present, it is problematic to root a hierarchy sub-tree at the RUL as
is done in Feragen et al. 2012. Thus, rather than searching the tree below the
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RUL branch, assigned in line 3, we search the tree obtained from the sub-tree
rooted at the parent of RUL by removing the sub-tree rooted at BronchInt.

The choice of ”leaves” used at the different steps in the hierarchy was made
in order to minimize the number of ”leaves” used while only using ”leaves”
that actually appear in as many people as possible. In a different application
we would recommend a similar strategy.

4.2.6 Tree-space and tree-space distances

The tree-to-tree distances used in this paper are measured in a tree-space.
This tree-space is a straight-forward generalization of the phylogenetic tree-
space from Billera et al. 2001, where single-dimensional shape vectors on the
branches have been generalized to multi-dimensional ones. Each point in
tree-space is a leaf-labelled tree, with leaves labelled by some fixed set X, for
instance X = {L1, ..., L10, R1, ..., R10}. Tree-space is a path connected space,
which means that any two trees can be joined by a path in tree-space. Moving
along such a path corresponds to deforming the trees, as in Figure 4.2. More-
over, in this tree-space there will always be a shortest path, called a geodesic,
joining any given two trees. The length of the geodesic defines a distance
between the two trees (Billera et al. 2001), called the geodesic distance. In
this way, we obtain a metric distance measure on tree-space.

(a) (b) (c)

Figure 4.7: Tree-space is a union of orthants, each corresponding to a specific
leaf-labelled tree topology. (a) Different points in the orthant are trees with
identical topology but different shapes. (b) Points at the boundary of an
orthant are points where one edge is described by a zero vector. Geometrically,
that edge has been contracted. (c) Orthants with different tree topologies meet
at the boundaries where the contracted edges give rise to new, identical tree
topologies.

Each set of trees having a given topology forms an orthant, as shown in
Figure 4.7 and 4.8, which is a lower-dimensional Euclidean space (or, in the
case where edges are described by edge length, a positive orthant of a Eu-
clidean space)1. The algorithm (Owen and Provan 2011) for computing the

1Formally, an orthant is the part of Euclidean space where all coordinates are non-
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Figure 4.8: (a) Tree-space is a proper subset of the Euclidean space (R15)S ,
and the distance between two trees T1 and T2 is the length (measured in the
Euclidean space) of the geodesic, or shortest path, in tree-space from T1 to
T2. Note that the geodesic from T ′1 to T ′2 is not a straight line, giving different
topological transitions throughout the two paths connecting T1 to T2, and
T ′1 to T ′2. This is illustrated in (b), where trees are sampled along the two
geodesic paths. We illustrate the tree-space using edge length for edges rather
than their 3D shape; this is done for illustrative purposes only. The same
behaviour carries over to edges with shape-vector attributes. Furthermore, the
5 axes depicted above each correspond to their own dimension, and have only
been embedded into R3 for illustrative purposes.

geodesic distance between two trees works by recursively determining the se-
quence of orthants containing the geodesic as follows. If the trees are in the
same orthant (i.e. if they have the same topology), the algorithm terminates
and returns the Euclidean distance between the two trees in the orthant. Oth-
erwise, if the trees are in different orthants, the algorithm starts by computing
an initial path connecting the two trees, which goes straight from the first tree,
to the origin, and back to the second tree. The algorithm checks if this is the
geodesic by looking for an orthant such that modifying the current path to go
through this orthant instead of the origin gives a shorter path, i.e., whether
this orthant provides a ”short-cut” which avoids the origin. If such an orthant
exists, we add it to our sequence and calculate the geodesic through the three
orthants. Again, we check if this is the overall geodesic by checking each point
where the path changes orthants for a new orthant to add into the orthant
sequence, such that going through this new orthant will give a shorter path.
The new geodesic through the expanded orthant sequence is computed, and
this process is repeated until no more orthants can be added. The length of
the geodesic through the resulting orthant sequence is the geodesic through

negative. When edges are described by their length, as with phylogenetic trees, tree-space
orthants are precisely such Euclidean orthants; we call them positive orthants. In our paper,
branches can have negative 3D coordinates, making tree-space orthants larger than Euclidean
orthants. To keep the terminology consistent with phylogenetic tree-space papers, we use
the word ”orthant” for these larger sub-spaces of tree-space.
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Figure 4.9: Tree edges are topologically identified with partitions of the leaf
label set X, and a tree topology is characterized uniquely by the partitions
that define its edges.

Figure 4.10: Certain pairs of label set partitions represent edges that cannot
exist in a tree simultaneously. An example for the leaf label set X = {R1, R2,
R3} is an edge that splits {R1, R2} off from the rest of the tree and an edge
that splits {R1, R3} off.

tree-space. See Owen and Provan 2011 for further details and code.2

Another way to understand the geodesic distance between trees comes
from the fact that tree-space is naturally embedded as a subset of a high-
dimensional Euclidean space, which can be seen as follows:

Each edge in the leaf-labelled tree can be identified topologically by a par-
tition of X into the leaves below the edge, and the remaining leaves (including
the root), as in Figure 4.9. Let S denote the set of all possible partitions of X.
Any leaf-labelled tree topology with leaf label set X corresponds to a binary
vector {0, 1}S , where each coordinate s ∈ S that is set to 1 indicates that
the particular label set bipartition s identifies an edge in the tree topology.
Adding shape to the picture, a tree will uniquely correspond to a vector in

2Code available from: http://vm1.cas.unc.edu/stat-or/webspace/miscellaneous/

provan/treespace/.

http://vm1.cas.unc.edu/stat-or/webspace/miscellaneous/provan/treespace/
http://vm1.cas.unc.edu/stat-or/webspace/miscellaneous/provan/treespace/
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(R15)S , where each consecutive set of 15 coordinates corresponds to a possible
partition s of X. If the edge associated with that partition appears in the tree,
then those 15 coordinates will be its branch vector, and otherwise they are all
0. Certain edges can never appear in a tree together. An example is shown in
Figure 4.10, where an edge that splits {R1, R2} off from the rest of the tree
and an edge that splits {R1, R3} off from the rest of the tree cannot possibly
appear in the same tree. This means that tree-space is not all of (R15)S , but
consists precisely of those vectors in (R15)S that correspond to trees, and tree-
space is a proper subset of Euclidean space. It can be shown that the geodesic
distance d(T, T ′) between two trees T and T ′ defined in Billera et al. 2001
coincides with the length of the shortest path between T and T ′ that remains
fully within this restricted subspace, length being measured in the ambient
Euclidean space using the Euclidean metric. An analytic formula for this
distance d does not exist, but it can be computed recursively in polynomial
time (Owen and Provan 2011).

Tree-space geodesics are further illustrated in Figure 4.8, where a concrete
example is given of two geodesics for which the endpoint trees (T1, T2) and
(T ′1, T

′
2) have identical topology, but the topological transitions taking place

throughout the geodesic from T1 to T2 are not the same as those taking place
in the geodesic from T ′1 to T ′2.

In terms of the ambient Euclidean space, the geodesic connecting T ′1 and T ′2
is not a straight line, because tree-space does not fill out the whole ambient
Euclidean space. A straight line path from T ′1 to T ′2 in (R15)S would have
to pass through the orthant formed from the partitions/axes AR|BCD and
ACD|BR, so some intermediate trees would have to simultaneously contain
i) an edge that splits the labels B,C and D off from A and the root, as well as
ii) an edge that splits the edges A,C and D off from B and the root. Clearly,
the partitions {A,R} and {B,R} cannot both happen in the same tree (they
are incompatible); hence that orthant does not exist in tree-space.

4.2.7 The detailed labelling algorithm

Based on the previous sections, we now give a more detailed version of the
labelling algorithm. For each step in the hierarchical labelling in Algorithm 2,
with a fixed leaf label set X, we apply Algorithm 3 as follows:

Given a set of expert-labelled training trees Ti, i ∈ I, replace each and
every one of them by the sub-tree spanned by the labels X. Similarly, given
an unlabelled airway tree T and a proposed leaf-labelling L of T with leaf-label
set X, first extract the sub-tree TL of T spanned by the labels.

For each leaf-labelled tree Ti in our training set and each TL, we compute
the geodesic distance d(Ti, TL) between the trees Ti and TL in the tree-space
defined in Section 4.2.6. We extract a labelling of T with label set X by
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choosing the labelled tree Tlabelled among the TL that satisfies:

Tlabelled = arg min
TL

∑
i∈I

d(Ti, TL). (4.1)

Algorithm 3 The detailed labelling algorithm

1: Input: Unlabelled tree T
2: Input: Training set of labelled trees {Ti|i ∈ I}
3: for i ∈ I do
4: Ti ← sub-tree of Ti spanned by the labels
5: end for
6: Generate a set L of suggested labellings of T , denoted L ∈ L.
7: for suggested labellings L ∈ L do
8: TL = sub-tree of T spanned by the labels assigned by L
9: Compute distances {d(TL, Ti)|i ∈ I}

10: Compute fL =
∑

i∈I d(TL, Ti)
11: end for
12: Output: Labelled tree TL = argminL∈LfL

4.3 Experimental results

We evaluate three different aspects of labelling performance. First, we eval-
uate labelling accuracy, defined as the ability to assign labels to the same
branches as clinical experts. Second, we evaluate labelling reproducibility,
defined as the ability to assign labels to the same branches in airway trees
extracted from repeated scans of the same subject. Third, we evaluate the de-
pendence of accuracy and reproducibility on COPD diagnosis and severity. In
all three aspects, the performance of the algorithm is compared to the average
performance of clinical experts.

4.3.1 Data

The data used in the experiments comes from the Danish Lung Cancer Screen-
ing Trial (Pedersen et al. 2009). It consists of low-dose (120 kV and 40 mAs)
pulmonary CT scans and lung function measurements. The scans were ob-
tained from a Multi Detector CT scanner (16 rows Philips Mx 8000), recon-
structed using a hard algorithm (kernel D) with a resolution of approximately
0.78mm × 0.78mm × 1mm. The lung function measurements, used to deter-
mine COPD severity, were performed using a computerized system (Spirotrac
IV, Vitalograph) according to recommendations by the European Respiratory
Society (Miller et al. 2005) without the use of bronchodilation.

The airway lumen surface was extracted from the images using the locally
optimal path approach of Lo et al. 2009 and then refined using the optimal
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surface approach of Chapter 2. Afterwards centrelines were computed by
front propagation within the refined lumen surface as described in Lo et al.
2012. The resulting centrelines were disconnected in bifurcations regions and
so Dijkstra’s algorithm was used to connect them along shortest paths within
an inverted distance transform of the refined lumen surface.

A data set of 80 airway tree centrelines from 40 subjects scanned at two
time-points with intervals of 5 years, were manually assigned segment labels
L1 - L10 and R1 - R10 by two experts in pulmonary medicine (LHT and AD)
and one in radiology (MMWW). The labels were assigned according to Net-
ter 1989 and Feneis 1995. The experts were allowed to assign the same label
to multiple branches in cases where they were unsure. The manual labelling
was done using in-house developed software, simultaneously showing the seg-
mented airway and centreline, which can be rotated, panned and zoomed, as
well as a CT cross-section perpendicular to and centred on any given point of
the airway. The remaining labels seen in Figure 4.6 were deduced from the
segment labels.

COPD severity was defined according to the GOLD 2013, from the aver-
aged lung function at both time-points. Out of the 40 subjects, there were 9
subjects with no airflow limitation, and 11 with mild, 11 with moderate, and
9 with severe COPD. We will denote the groups as GOLD 0, GOLD 1, GOLD
2, and GOLD 3, respectively.

The algorithm was further tested in a large longitudinal data set including
all the subjects from the Danish Lung Cancer Screening Trial (Pedersen et al.
2009) who had at least two usable scans. For this data set lung CT image
registration (Gorbunova et al. 2012) was used to automatically determine
reproducibility, as described in Section 4.3.5, and so it was important that
the images could be registered well. A scan was therefore deemed non-usable
if the lungs were not entirely contained within the image or if bowel air was
erroneously included within lung segmentations (lung segmentation method
and manual validation are described in Ashraf et al. 2011). This resulted
in the inclusion of 1900 subjects of which, based on average lung function
measurements over all time-points, 975 belonged to GOLD 0, 495 belonged
to GOLD 1, 391 belonged to GOLD 2, and 38 belonged to GOLD 3. There
was a single subject with very severe COPD (what would otherwise be GOLD
4), which was included in the GOLD 3 group. Each of these subjects had
an average of 4.6 ± 0.7 usable scans approximately evenly distributed over a
period of 5 years.

4.3.2 Implementation

The labelling algorithm was implemented in MATLAB, using tree distance
computations implemented in Java3. For the annotated dataset, the airway

3Code available from http://vm1.cas.unc.edu/stat-or/webspace/miscellaneous/

provan/treespace/.

http://vm1.cas.unc.edu/stat-or/webspace/miscellaneous/provan/treespace/
http://vm1.cas.unc.edu/stat-or/webspace/miscellaneous/provan/treespace/
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Accuracy Reproducibility Labelled airways
Label Automatic Expert Automatic Expert Automatic Expert

R1 89.2% 87.9% 95% 91.1% 80.0 80.0
R2 87.5% 84.2% 97.5% 90% 80.0 80.0
R3 87.6% 87.2% 97.5% 86.7% 80.0 80.0
R4 90.4% 88.7% 92.5% 86.4% 80.0 79.3
R5 86.9% 84.3% 90% 82.1% 80.0 79.0
R6 91.8% 93.3% 97.5% 91.5% 80.0 80.0
R7 77.7% 79.0% 84.6% 85.2% 76.0 79.7
R8 72.8% 75.8% 69.2% 79.2% 76.0 80.0
R9 63.2% 67.5% 53.8% 55.7% 76.0 80.0
R10 59.1% 64.3% 51.3% 55.8% 76.0 80.0
L1 64.0% 54.4% 75% 58.9% 79.9 79.7
L2 65.8% 60.1% 70% 62.2% 79.9 79.7
L3 66.0% 59.3% 75% 64.2% 79.9 80.0
L4 69.4% 78.3% 72.5% 80.7% 79.9 80.0
L5 73.2% 84.6% 70% 86.7% 79.9 80.0
L6 99.6% 99.2% 100% 99.2% 80.0 80.0
L7 62.8% 53.8% 82.5% 63.6% 80.0 77.3
L8 54.9% 48.6% 87.5% 57.1% 80.0 79.7
L9 53.4% 58.3% 72.5% 62.2% 80.0 80.0
L10 58.3% 57.1% 80% 62.5% 80.0 80.0

Trachea 100.0% 100.0% 100.0% 100.0% 80.0 80.0
LMB 100.0% 100% 100% 100% 80.0 80.0
LUL 100.0% 100% 97.5% 97.5% 80.0 80.0

LB1+2 62.9% 50% 70.6% 65.3% 61.8 57.0
LB4+5 92.3% 89.6% 95% 91.7% 79.9 78.7

LLB 99.2% 98.3% 100% 98.3% 80.0 79.3
RMB 100.0% 100% 100% 100% 80.0 80.0
RUL 97.4% 95% 100% 100% 78.0 76.0

BronchInt 99.9% 99.7% 100% 100% 80.0 80.0
RB4+5 95.8% 95.4% 95% 95% 80.0 78.0

RLL 93.3% 96.7% 95% 96.7% 80.0 79.7
LB1+2+3 92.0% 81.7% 94.6% 89.9% 74.9 69.0

Segmental 73.7 73.3 80.8 75.0
average ±4.8% ±9.7% ±16.3% ±10.2% 79.2 79.7

Total 81.5 80.4 86.4 82.4
average ±3.5% ±7.1% ±13.1% ±7.2% 78.7 78.5

Table 4.1: The mean accuracy of the algorithm was computed from 10 rep-
etitions of 10-fold cross validation, and the mean accuracy of an expert was
averaged over all three pairs of experts. The third and fourth columns contain
the mean reproducibility of the algorithm and an expert, respectively. The
mean number of airways in which a given label was assigned, was averaged
over 10 cross-validation runs or three experts, respectively.



Chapter 4. Geodesic anatomical labelling 64

trees had 181 branches on average, and the whole labelling took roughly 10
minutes per tree running on a laptop with a single 2.40 GHz processor using
no more than 3 GB RAM per labelling.

Labelling experiments on the annotated dataset were performed using 10-
fold cross validation, where both scans of any individual were always contained
in the same fold. Thus, for each test set fold of 8 airway trees from 4 patients,
the training set was made up of 72 airway trees from 36 patients. Each tree was
labelled separately by the three medical experts, but sometimes the medical
experts would, when in doubt, place the same label on two different branches.
In these cases two leaf-labelled training trees would be generated, one for each
option. In other cases, some labels were not assigned by the expert, in which
case the corresponding training sub-tree would not be generated. This resulted
in 231-280 training airway trees from the 80 scans, with different numbers at
different steps of the hierarchy.

4.3.3 Labelling results: Accuracy

The accuracy of the automatic labelling, defined as its ability to agree with
a clinical expert, was assessed using 10 labelling runs of 10-fold cross valida-
tion with randomized folds. For each airway, the average success rate was
computed out of the number of labels assigned by either algorithm or expert
(meaning that if neither the algorithm nor the expert assign a given label,
then this label does not contribute to the success rate of that airway tree at
all).

It is not obvious how labelling accuracy should be assessed. In some cases
where experts were not certain, or judged that an anatomical branch had been
split into two branches by the segmentation algorithm, they would assign the
same segment label to multiple branches (the three experts did this in 34,
12 and 5 of the 80 airway trees, respectively). In other cases branches were
missing, either anatomically or from the segmentation, so that some labels
were not assigned (the three experts did this in 10, 1 and 4 of the 80 airway
trees, respectively). Missing label assignments happened both in expert and
automatic labellings. Sometimes branches would be missing in the airway
tree, making label assignments impossible. Other times, the topology of the
airway made certain non-segment labels impossible. Thus, Table 4.1 contains
average counts for how many times labels were assigned by the algorithm and
the experts, respectively.

In order to fairly assess all cases, we gave, for the ith airway tree and
each label x ∈ X = {L1, ..., L10, R1, ..., R10}, the assignment by method
M1 a correctness percentage si(x,M1,M2) with respect to method M2. M1

could be either an expert or the automatic labelling, and M2 was always an
expert. The correctness percentage was defined as follows: In the ith tree
Ti, let M1(Ti, x) denote the set of branches assigned label x by method M1

and M2(Ti, x) the set of branches assigned label x by method M2. Define the
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correctness si(x,M1,M2) of label x using method M1 with respect to method
M2 in the ith airway tree as:

si(x,M1,M2) = 100 · 2 · |M1(Ti, x) ∩M2(Ti, x)|
|M1(Ti, x)|+ |M2(Ti, x)|

%,

We assume cases where the label was not assigned by either method, that is
|M1(Ti, x)| = |M2(Ti, x)| = 0, to be due to missing branches and thus leave
them out of the total summary shown in Table 4.1.

On average, the automatic labelling agreement with an expert was 73.7±
4.8% on the segment branches, and 81.5±3.5% overall. This is not significantly
different from the average expert agreement with an expert, which was 73.3±
9.7% on the segment labels, and 80.4 ± 7.1% overall (p = 0.94 and p = 0.77
in Mann-Whitney U-tests).

Figure 4.11 shows labelling accuracy stratified by COPD severity. Spear-
man’s correlation test shows no significant correlation between the average
agreement with an expert and the presence and severity of COPD (ρ = −0.18,
p = 0.11 on all labels, ρ = −0.20, p = 0.069 on segment labels). Similarly,
there is no correlation between the average agreement between experts, and
presence and severity of COPD (ρ = −0.12, p = 0.45 on all labels, ρ = −0.085,
p = 0.60 on segment labels).

4.3.4 Labelling results: Reproducibility of expert and
automatic labelling

In order to test reproducibility of the expert and automatically assigned labels,
the two CT scans of each subject were registered using deformable image regis-
tration as described in Gorbunova et al. 2012, and the labelled airway branches
were manually investigated for possible matches in the resulting common co-
ordinate system. Let T 1

i and T 2
i be two trees corresponding to the ith subject’s

airway at time-points 1 and 2, and let M(T 1
i , x) ⊆ E1

i and M(T 2
i , x) ⊆ E2

i be
sets of branches assigned label x by the method M in T 1

i and T 2
i , respectively.

Denote by R
(
M(T 1

i , x),M(T 2
i , x)

)
the matched subset of these branches.

We define the reproducibility of label x using the method M within the
trees T 1

i and T 2
i of subject i

ri(x,M, T 1
i , T

2
i ) = 100 ·

2 · |R
(
M(T 1

i , x),M(T 2
i , x)

)
|

|M(T 1
i , x)|+ |M(T 2

i , x)|
%.

To avoid evaluating effects of missing branches due to segmentation prob-
lems, cases where the label was not assigned in either time-point, that is
|M(T 1

i , x)| = |M(T 2
i , x)| = 0 are left out of the total summary. The same

holds for cases where only one time-point was labelled with x, which without
loss of generality can be assumed to be T 1

i , but only if matching branches
did not exist in the other time-point, that is R(M(T 1

i , x), T 2
i ) = ∅. Table 4.1

shows a summary of the results.
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Figure 4.11: Average labelling accuracy (left) and reproducibility (right) for
segment labels (light blue) and all labels (dark blue), stratified by COPD
severity for the algorithm (top) and experts (bottom). Each ∗ corresponds to
accuracy/reproducibility for one subject. The lines interpolate mean accura-
cies and reproducibilities for each GOLD group.

On average, the reproducibility of the automatic labelling was 80.8±16.3%
on the segment labels, and 86.4 ± 13.1% overall, which is significantly better
than the reproducibility of the experts, which was 75.1±14.8% on the segment
labels, and 82.4 ± 10.6% overall (p = 0.021 and p = 0.022 in Mann-Whitney
U-tests).

Figure 4.11 shows labelling reproducibility stratified by COPD severity.
Spearman’s correlation test shows significant correlation between reproducibil-
ity of the automatic approach and severity of COPD (ρ = −0.34, p = 0.031
on all labels; ρ = −0.36, p = 0.024 on segment labels). Spearman’s cor-
relation test shows, however, no significant correlation between the average
reproducibility of the expert labelling and the severity of COPD (ρ = −0.085,
p = 0.604 on all labels; ρ = −0.049, p = 0.764 on segment labels).

4.3.5 Labelling results: Reproducibility on large longitudinal
data set

Reproducibility of the automatic approach on the larger data set was tested
by labelling scans using the manually labelled airway trees as a training set.
All scans of each subject were registered (Gorbunova et al. 2012) and branches



Chapter 4. Geodesic anatomical labelling 67

appearing in multiple images were matched, in a similar fashion to what was
described in the previous section. However, rather than manually detecting
matched branches, which would be very time consuming for a data set of
this size (8724 trees), matching was done automatically. The details of this
automatic matching approach have previously been published in Petersen et
al. 2011a.

It is not obvious how labelling reproducibility should be defined in a sub-
ject with more than two time-points. As an example, consider a case where
three out of five time-points agree on one assignment of the label x, and the
remaining two time-points agree on another. Taking such cases into account,
we define reproducibility of assigning the label x in terms of percentage agree-
ment with the majority labelling (if two labellings are both majority, one of
them is just selected).

To define reproducibility analytically, let T 1
i , . . . , T

n
i denote the airway

trees of subject i at n different time-points, and let M(T 1
i , x), . . .M(Tni , x) be

the branches assigned label x by method M in each time-point. In addition
let the set of time-points where the assignment of the label x matches the
assignment in time-point j be:

Ni(M,x, j) ={
k ∈ {1, . . . , n} | R

(
M(T ji , x),M(T ki , x)

)
6= ∅
}
.

A time point where the majority labelling occurs is then given by:

jmax(x,M) = argmax
j∈{1,...,n}

|Ni(x, j,M)|.

To avoid evaluating effects of missing branches due to segmentation problems,
time-points k ∈ {1, . . . n} are left out if x has not been assigned, that is
M(T ki , x) = ∅, and none of the other branches match the branch labelled with

x in a majority labelled time-point, that is R
(
M(T

jmax(x,M)

i , x), T ki
)

= ∅. The
remaining time-points are denoted by Pi(x,M):

Pi(x,M) =
{
k ∈ {1, . . . , n} | R

(
M(T

jmax(x,M)

i , x), T ki
)
6= ∅

or M(T ki , x) 6= ∅
}
.

We then define reproducibility of a label x in subject i by method M as the
percentage of time-points agreeing with the majority labelling out of the total
amount of included time-points:

ri(x,M) = 100 ·
|Ni(x, jmax(x,M),M)|

|Pi(x,M)|
%,

where |Ni(M,x, jmax(x,M))| > 1, otherwise ri(x,M) = 0. Cases with less than
two included time-points, that is |Pi(x,M)| < 2, are left out. Note that in the
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Figure 4.12: Reproducibility of the automatically assigned individual labels in
the large longitudinal data set. Error bars indicate 95% confidence intervals.

case of two time-points, this definition of reproducibility is the same as the
one defined in Section 4.3.4. Figure 4.12 shows a summary of the results.

On average, the reproducibility of the automatic labelling on the large
longitudinal data set was 82.5±12.0% on the segment labels, and 86.9±9.8%
overall.

There was a significant correlation between the reproducibility and sever-
ity of COPD (ρ = −0.158, p < 0.001 on all labels; ρ = −0.163, p < 0.001 on
segment labels). Airway segmentations can be less complete in more diseased
subjects (Pu et al. 2012; Diaz et al. 2010a), and we also observed a signifi-
cant correlation between number of extracted branches and severity of COPD
(ρ = −0.444, p < 0.001) and between number of extracted branches and re-
producibility (ρ = 0.287, p < 0.001 on all labels; ρ = 0.308, p < 0.001 on seg-
ment labels). Figure 4.13 shows reproducibility plotted against number of seg-
mented branches. To investigate whether the algorithm was truly sensitive to
disease and not just missing branches, we generated a normalized reproducibil-
ity by subtracting the mean predicted reproducibility, predicted from the num-
ber of segmented branches using a locally weighted mean (Loess Curve) also
shown in Figure 4.13, from the actual reproducibility. This normalized repro-
ducibility did not significantly correlate with disease (ρ = −0.043, p = 0.059
on all labels; ρ = −0.032, p = 0.166 on segment labels).
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Figure 4.13: Reproducibility of all labels left and segment labels right as a
function of the number of segmented branches. Colours indicate GOLD group,
with GOLD 0 in green, GOLD 1 in blue, GOLD 2 in yellow, and GOLD 3
in pink. The black line is a locally weighted mean (Loess Curve) with 95%
confidence intervals.

4.4 Discussion

We have presented a novel supervised algorithm for assigning anatomical
branch labels in airway trees extracted from CT. Through detailed experi-
mental validation we show that the performance of the algorithm is as good
as the performance of the clinical experts. In particular, the accuracy and re-
producibility of the algorithm is over 90% on the non-segment branches as well
as on the L6 and R6 branches, and for many of the branches even over 95%.
The labelling is fast and uses little memory, and easily runs on a standard
laptop.

The labelling algorithm only uses centreline shape as input, which in many
respects makes it robust to external factors such as disease. However, the
hierarchical scheme of Figure 4.6 does make the labelling algorithm sensitive
to missing branches and may cause difficulties with rare topologies. This could
be handled by a more refined hierarchical labelling scheme, particularly one
informed by an analysis of seen topologies, or of the airway sub-trees where
the experts performed better.

We have chosen to use the geodesic tree-space distance between pairs of
leaf-labelled trees. In principle, any other distance between leaf-labelled trees
could have been used in its place, e.g. the weighted Robinson-Foulds met-
ric (Robinson and Foulds 1979) which is a related distance measure in the
same tree-space. The geodesic distance is attractive because, in addition to
the fact that polynomial time algorithms are available, tree-space equipped
with the geodesic distance allows for statistical tree-shape analysis of the air-
way trees (Feragen et al. 2013c). The strong performance of the labelling thus
also works as a validation of the ability of the geodesic metric to represent
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tree-shape differences in a way which is suitable for analysis of airway trees.
The labelling selection step of the labelling algorithm as shown in line 12

of Algorithm 3 selects the labelling of a new tree which minimizes the sum
of distances to a training set of expert-labelled trees. This might introduce a
bias of the labelling towards a ”median tree”, which could be problematic if
labelled trees follow a multi-modal distribution within tree-space. Preliminary
experiments, using the sum of distances to k nearest expert-labelled trees, did
not result in significantly different results, which indicates this possible bias
is of little consequence.

4.4.1 Robustness and applicability

The labelling algorithm attains statistically similar accuracy and higher re-
producibility than the experts, and performs robustly in patients suffering
from COPD. These qualities make the algorithm useful for clinical applica-
tions. One such application is analysis of airway dimensions measured from
CT in studies of subjects with airway diseases such as COPD. One prob-
lem in performing such analysis is the variability introduced by including
branches from different locations of the airway tree. Comparison of identi-
cally labelled airways in different subjects (Lederlin et al. 2012; Diaz et al.
2010a; Hasegawa et al. 2006) should decrease variation caused by measure-
ment location and thus increase the ability of the measurement to capture
signs of abnormalities. The labelling algorithm could also be applied to study
the distribution of abnormalities within the lung in a group of patients, by
lobe or segment. Comparison of measurements does not have to be limited
to labelled branches, as branches in sub-trees of the labelled branches can
also be included, e.g. through comparison of average measurements in gener-
ations relative to each specific label (Diaz et al. 2010a; Hasegawa et al. 2006).
However, such an approach could be problematic if not all branches of each
generation are found (Wielputz et al. 2013).

Our evaluation gives detailed insight into the difficulties of the labelling
problem. It is noteworthy that the experts and the algorithm perform well
in different parts of the airway tree. In particular, the algorithm is far more
reproducible than the experts in the left upper and lower lobes (L1-L3 and
L7-L10) ([70%− 87.5%] versus [57.1%− 64.2%]). These branches are also the
hardest to label according to expert accuracy (< 60.1%). It is possible that
biological variation of shape and topology confuses the experts, making their
labels more random, which would lead to both low accuracy and reproducibil-
ity. The algorithm might either be more tolerant of biological variation or
more consistent in the types of errors made. On the other hand, the experts
perform better than the algorithm in the left middle and right lower lobes
(L4-L5 and R7-R10). These branches belong to the sub-trees of LB4+5 and
RLL, which are the least accurately found branches of the subset of branches
used as steps in the hierarchical approach. Some amount of error is therefore
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probably due to the hierarchical search strategy. It is possible that better
results could be obtained by a more refined approach, for instance by search-
ing for L4-L5 and R7-R10 label configurations within sub-trees depending on
more than one choice of the LB4+5 and RLL branches.

It is interesting to compare the estimated reproducibility in the small and
large data sets. In general the trends are largely the same. For instance in
both data sets R6 and L6 are among the most reproducibly assigned segment
labels and lower lobe segment labels are in general less reproducibly assigned
than upper and middle lobe segment labels. The mean reproducibilities of the
two data sets are also almost identical. It should be noted, however, that the
automatic matching method (Petersen et al. 2011a) requires an accurate reg-
istration and unlike with the manual matching the overall topology and shape
of the tree is not taken into account. Because of this the true reproducibility
is probably underestimated in the larger data set. However, the larger data
set also has relatively fewer severe COPD cases, which should mean the re-
producibility is higher because of more completely segmented airway trees.
Despite this, the similarity of the results indicate that the performance of the
algorithm generalizes to new (albeit similar) data.

4.4.2 Labelling performance and COPD stage

Our experiments on the annotated dataset show that labelling reproducibility
decreases significantly with increased COPD severity, while labelling accu-
racy does not. The difference in results may be caused by the mathematical
definition of accuracy and reproducibility.

Labelling accuracy measures the ability of a method to agree with a hu-
man observer on the same segmented airway tree. If the underlying labelling
”algorithm” used by the method and the human observer are identical, ac-
curacy will be perfect and there will be no dependence on COPD severity
even if both are physiologically incorrect. Reproducibility, on the other hand,
measures the ability of one method to identically label two different segmenta-
tions of the same airway tree. If one of the segmentations is missing branches
that are labelled by the other, then reproducibility cannot possibly be perfect.
Thus, since the number of segmented branches depends on COPD level, it is
expected that reproducibility depends on COPD level as well, while this is
not necessarily true for accuracy.

This is supported by our reproducibility experiments on the large longi-
tudinal data set. Here, reproducibility does again depend on COPD level.
However, there is also a very clear correlation between reproducibility and the
number of branches detected by the segmentation algorithm. When the effect
of branch number is taken into account by subtracting the expected repro-
ducibility based on number of branches, the correlation between reproducibil-
ity and COPD level disappears. We conclude that the correlation between
COPD level and reproducibility is not an artefact of the labelling algorithm
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directly, but a result of segmentation problems. This is very natural when
many branches close to the true named branches are missing, and it has sev-
eral consequences: if the named branch is missing, then any attempt to assign
the corresponding label will fail, and if one but not both children of a named
branch is missing, then the branch will appear longer in the segmentation than
it should, making it harder to assign labels based on branch features such as
shape.

Of course, one solution to the dependence on segmentation quality and,
indirectly, disease, is to develop better segmentation algorithms. A more
pragmatic approach, however, could be to introduce label probabilities based
on geodesic airway tree distances, giving an option of assigning fewer labels
when higher accuracy is needed, in a similar way as done in Lo et al. 2011.
This could also be used to decrease the false positive rate on difficult branches.

4.4.3 Relation to alternative methods

We note that higher labelling accuracy percentages than ours are reported
in the literature, 97.1%, 90%, 83% on all branch labels in Tschirren et al.
2005b, (high dose CT), Ginneken et al. 2008a, and Lo et al. 2011; and 77% on
segment labels in Lo et al. 2011. There are several reasons for this. First, as
noted above, we specifically aim to evaluate our performance on patients with
disease, and our dataset consists of 77.5% COPD patients, while experiments
found in the literature include much fewer, if any, subjects with an airway
disease. A lower performance on our dataset is thus expected, since our ex-
periments prove that labelling performance significantly depends on disease
when segmentation problems are not accounted for.

Second, we aim to evaluate our ability to assign 20 segment labels. In
comparison, both Lo et al. 2011 and Ginneken et al. 2008a use fewer than 20
segment labels (16 and 19, respectively) and more intermediate (easier) labels
(13 as opposed to our 12), which presumably gives higher overall performance
summaries. We note in particular that Lo et al. 2011 and Ginneken et al.
2008a leave out the segment label sets {L1-L2, L7-L8} and {L7}, respectively,
which are also found challenging in our experiments.

Third, we wanted our evaluation to realistically reflect how well we can
expect to perform on data which has never been labelled by an expert. To
achieve this, we did not reject any assigned labellings, as opposed to Tschirren
et al. 2005b and Lo et al. 2011, which aim to avoid performing uncertain
labellings. In particular, the 97.1% success rate (Tschirren et al. 2005b) is
among branches that have been labelled identically by three experts, which
means that difficult labelling problems are weeded out of the experiment. Such
an evaluation is only possible if the airway tree has already been labelled by
three experts, and similar accuracies can naturally not be expected on unseen
data, such as in clinical applications. In Lo et al. 2011, an estimate is made of
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the probability of the label assignment, and here, a threshold can be applied
to choose not to assign labels when certainty is low.

On average (including erroneous labellings), we assign 98.4% of 32 used
labels, whereas Tschirren et al. 2005b, Ginneken et al. 2008a and Lo et al. 2011
assign only 71%, 93%, and 83% of the 29, 32, and 32 used labels, respectively.
For segment labels specifically, we assign 94.9% of 20 used segment labels,
whereas Lo et al. 2011 assigns 77% of the 16 segment labels used (our numbers
are averaged over the 10 cross-validation runs). This variation in experimental
setup makes it impossible to compare performance in a fair manner, because
results on unassigned labels cannot be taken into account.

What we can conclude is that the proposed algorithm performs as well as
or better than medical experts in terms of labelling accuracy and reproducibil-
ity. This is the best result we could possibly have hoped for given that our
method is trained on labelling performed by medical experts. These conclu-
sions are confirmed by our large-scale evaluation of reproducibility. Moreover,
we quantify the dependence on performance on COPD level and show that
any negative correlation between labelling performance and disease can be ex-
plained by segmentation error. To the best of our knowledge, no previous work
has tested neither reproducibility nor dependence on disease, nor performed
large-scale evaluations.

4.5 Conclusion

We present a new supervised algorithm for anatomical branch labelling of
airway trees, based on geodesic tree-space distances between airway trees.
Using the distances, the algorithm evaluates how well a suggested branch
labelling fits with a training set of labelled airway trees, and chooses the
optimal labelling. The labelling performance is robust in patients with COPD,
and is comparable in performance to that of experts in pulmonary medicine
and radiology. As the algorithm only uses branch centrelines and tree topology,
we expect it to generalize to other data sets consisting of similarly complete
segmentations of human adults. Its reproducibility and robustness in patients
with COPD emphasizes its suitability for use in clinical studies of localized
CT-based airway measurements.
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Abstract

Objectives: Effect of inspiration on airway dimensions measured in
voluntary inspiration breathhold scans is studied.

Methods: 961 subjects with normal spirometry were selected from the
Danish Lung Cancer Screening Trial. Subjects were scanned annually for
5 years with low-dose CT. Automated software segmented lungs and air-
ways, identified segmental bronchi, and matched airway branches in all
scans of the same subject. Inspiration level was defined as segmented to-
tal lung volume (TLV) divided by predicted total lung capacity (pTLC).
Mixed-effects models were used to predict relative change in lumen di-
ameter (ALD) and wall thickness (AWT) in airways of generation 0 (tra-
chea) to 7 and segmental bronchi (R1-R10 and L1-L10) from relative
changes in inspiration level.

Results: Relative changes in ALD were related to relative changes in
TLV/pTLC and this distensibility increased with generation (p < 0.001).
Relative changes in AWT were inversely related to relative changes in
TLV/pTLC in generation 3-7 (p < 0.001). Segmental bronchi were
widely dispersed in terms of ALD (5.7 ± 0.7 mm), AWT (0.86 ± 0.07
mm), and distensibility (23.5± 7.7%).

Conclusions: Subjects who inspire deeper prior to scanning have larger
ALD and smaller AWT. This effect is more pronounced in higher gener-
ation airways. Thus, inspiration level adjustment is needed to accurately
assess airway dimensions.
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5.1 Introduction

Airway dimensions measured from CT images are increasingly used to inves-
tigate remodelling of the airways caused by obstructive lung diseases (Hackx
et al. 2012; Lederlin et al. 2012; Wielputz et al. 2013). Abnormalities, such
as lumen narrowing and wall thickening, have been quantified using various
measurements, examples include airway lumen diameter (ALD), airway wall
thickness (AWT), airway wall area, and percentage wall area (Jong et al. 2005).
Measures are different for different regions of the lungs and have therefore of-
ten been done in a few identified anatomical airway branches (Lederlin et al.
2012; Diaz et al. 2012; Hasegawa et al. 2006; Brown et al. 2001), for example
the apical bronchus of the right upper-lobe, and the resulting conclusions have
been extrapolated to hold for airways in general. However one particular seg-
mental bronchus may not be representative of all and the pathology may not
be homogeneously distributed throughout the airways (Hasegawa et al. 2006).
Alternative methods which consider larger parts of the airway tree have been
suggested. One such method is an indirect measurement of wall thickness at a
virtual interior perimeter of 10 mm (Pi10). It is derived by assuming a linear
relationship between the square root of airway wall area and interior perime-
ter (Nakano et al. 2000). Another such method is to average wall thickness
measurements over all detectable airways with a specific ALD (Dijkstra et al.
2013; Achenbach et al. 2008). Both these approaches are influenced by changes
in the wall and the lumen, making them difficult to interpret. An alternative
is to average over all detected airway branches in a specific airway generation
or airway generation range (Wielputz et al. 2013; Petersen et al. 2011b). Air-
way generations can be defined from the trachea by counting bifurcations in
the airway tree; the idea being that higher generation corresponds to more
peripheral and thus typically smaller airways.

In order to accurately assess airway dimensions, and use the results in a
clinical setting, it is necessary to know the influence of the inspiratory level
(Brown et al. 2001). It is known that airways are distensible (Diaz et al.
2012; Brown et al. 2001; Matsuoka et al. 2008; Brown et al. 1994; Scichilone
et al. 2000; Scichilone et al. 2001; Baldi et al. 2010), that is, they follow the
expansion and contraction of the lungs during the breathing cycle. It has not
been established yet, however, by how much the airways distend, whether this
distensibility depends on location in the lung, or what it means for variability
of measurements in breath-hold scans. This study evaluates the effect of
inspiration level differences by airway generation and anatomical segments
on a large data set including multiple longitudinal scans of subjects without
COPD.



Chapter 5. Effect of inspiration in asymptomatic subjects 77

5.2 Material and methods

5.2.1 Study population

The Danish Lung Cancer Screening Trial (DLCST) (Pedersen et al. 2009) is a
5-year study investigating the effect of CT screening on lung cancer mortality.
It consists of 4,104 participants, who were randomly selected for either CT
screening (n = 2, 052) or no screening. Participants had to be 50-70 years of
age, current or ex-smokers with a minimum of 20 pack-years. The DLCST was
approved by the Ethics Committee of Copenhagen County and fully funded by
the Danish Ministry of Interior and Health. Approval of data management in
the trial was obtained from the Danish Data Protection Agency. The trial is
registered in ClinicalTrials.gov’s Protocol Registration System (identification
no. NCT00496977). All participants provided written informed consent.

The present post hoc analysis included the subset of the 2,052 subjects in
the CT screening arm, with at least three analysable scans and without airflow
limitation, due to evidence of reduced airway distensibility in such populations
(Diaz et al. 2012).

5.2.2 Spirometry

Spirometry was performed annually during a period of 5 years, according to
recommendations by the European Respiratory Society (Miller et al. 2005)
using a computerized system (Spirotrac IV; Vitalograph); however, no bron-
chodilation was applied. Measurements of forced expired volume in 1st second
(FEV1) and forced vital capacity (FVC) were averaged over all annual time
points and used to define airflow limitation as having an FEV1 to FVC ratio
of less than 0.7. FEV1 as a percentage of the predicted normal value (FEV1
% predicted) was computed according to European reference equations (Pel-
legrino et al. 2005).

5.2.3 CT scans

The screening group was CT scanned annually during a period of 5 years,
using a multi-slice CT scanner (16 rows Philips Mx 8000, Philips Medical
Systems). Scans were performed in supine position after full inspiration with
caudo-cranial scan direction including the entire ribcage and upper abdomen
(field of view was 40 cm) with a low dose (120 kV and 40 mAs). Spiral data
acquisition with the following parameters was used: Section collimation 16 x
0.75 mm, pitch 1.5, rotation time 0.5 second. Participants were instructed
to first hyperventilate three times and hereafter inhale maximally and hold
their breath during scanning. Each image was reconstructed with two kernels:
thick (3 mm) and thin (1 mm) slice thickness using soft and hard algorithms
(kernel C and D), respectively. The experiments of this study used the thin
slice thickness unless otherwise is specified.



Chapter 5. Effect of inspiration in asymptomatic subjects 78

5.2.4 Lung extraction and measurements

The lungs were extracted from the images using a fully automatic region
growing approach, using an upper threshold of -400 Hounsfield units (Lo 2010).
The results have been validated by two medical experts (Ashraf et al. 2011)
and images were discarded as non-analysable in case the lungs were not fully
contained in the image or if bowels were included in the segmentation.

Percentage of low attenuation area less than -910 and -950 Hounsfield units
(%LAA-910 and %LAA-950), and the Total Lung Volume (TLV) were com-
puted from the segmented volumes. The low attenuation areas were computed
based on the images with thick slice thickness. Predicted normal Total Lung
Capacity (pTLC) was computed according to Quanjer et al. 1993. TLV and
pTLC have been used to quantify inspiration level as TLV/pTLC.

5.2.5 Airway extraction and measurements

The airway trees were initially extracted using a locally optimal path ap-
proach (Lo et al. 2009) and then input to a graph based method (Chapter 2),
which outputs triangulated meshes of the interior and exterior wall surfaces.
The approach has been validated on DLCST data showing relatively complete
airway trees with very few false positives (Lo et al. 2009) and sub-voxel ac-
curacy when compared to manual annotations and the COPD gene phantom
(Chapter 2).

The airway centreline tree was extracted from the interior wall surface
using the front propagation method described in Lo et al. 2012.

The anatomical names of the segmental bronchi were assigned based on
the geometric tree space approach of Chapter 4, which has been shown to
be statistically similar in accuracy and reproducibility to medical experts on
DLCST data.

Deformable image registration (Gorbunova et al. 2012) was used to match
individual airway branches in multiple images of the same subject. Only
branches matched at all time points were included. The details of the matching
approach are given in Chapter 3.

Lumen diameter and wall thickness were computed at each of the mesh
surface points, from the distance to the nearest point on the centreline. Fi-
nally, these measures of ALD and AWT were averaged in each branch.

5.2.6 Statistical methods

The influence of the explanatory variables TLV/pTLC, age, and branch posi-
tion on the outcome variables ALD and AWT were analysed in four multiple
regression models. Two models were used for each outcome, investigating po-
sition effects either in the form of generation (0 to 7) or segmental bronchus
label (R1-R10 or L1-L10). TLV/pTLC, ALD, and AWT were log transformed
to model relative relationships. Age groups, in the form of quartiles of the
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Characteristic Mean ± SD or No. (%)

Age, years 59.2± 4.6
Male gender 534 (55.6)
BMI, kg/m2 26.1± 3.9
Smoking history, pack-years 34.5± 12.2
Currently smoking 599 (62.3)
FEV1 % predicted 94.5± 12.6
FEV1/FVC ratio 0.75± 0.03
TLV/pTLC 0.91± 0.12
%LAA-910, % 12.4± 10.0
%LAA-950, % 0.74± 0.89

Table 5.1: Demographic, clinical and CT scan characteristics

mean age over visits, were included as categorical variables. We did not in-
clude subject sex and height as potential confounders, as the effects of these are
already removed from the lung volume through the normalization by pTLC.
Subject specific and (intra-subject) branch specific differences in airway di-
mensions were modelled as random effects (slope and intercept with respect to
log(TLV/pTLC)). All possible interactions of the explanatory variables were
tested. The Appendix contains a more detailed description of the statistical
analysis.

5.3 Results

Of the 2,052 subjects in the screening arm of the DLCST, 53 left prior to
the first lung function test, and 983 (49%) of the remaining subjects were
excluded due to airflow limitation. 55 subjects had less than three analysable
scans, giving a total of 63, 220, and 678 subjects with respectively 3, 4, and 5
annual scans. Table 5.1 contains demographic details of the study population.
204 out of the 4692 scans of subjects without airflow limitation were deemed
non-analysable due to technical difficulties, such as an incomplete scan of both
lungs and/or inclusion of bowel air into the lung segmentation.

The variation in inspiration level was considerable with a standard de-
viation of TLV/pTLC within each subject (mean ± standard deviation) of:
5.4±3.2%. The standard deviation of the subject specific means of TLV/pTLC
was 13.3%.

The analysis included a total of 106,162 airways, measured on average 4.6
times. Figure 5.1 shows the mean number of airways found and matched in
each subject by generation.
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Figure 5.1: Number of analysed airway branches by generation. Line at me-
dian, box at first and third quartile and whiskers at box plus 1.5 times the
interquartile range.

5.3.1 Statistical analysis

Interactions between age and log(TLV/pTLC) and between age and position
(generation or segmental bronchi) did not improve the predictions of either
log(ALD) or log(AWT) (p > 0.084) and were removed from the models. Po-
sition, log(TLV/pTLC) and the interaction of position and log(TLV/pTLC)
were all significant predictors of both log(ALD) and log(AWT) (p < 0.001).
Age was a significant predictor of log(ALD) (p < 0.001), but only borderline
significant for log(AWT) (p = 0.057).

ALD increased with age; ALD in airways of the same generation were 1.2%
(p < 0.05), 0.8% (p = 0.177), and 2.3% (p < 0.001) larger in the older quartiles
(55-59, 59-63, and 63-73 years respectively) compared to the youngest quartile
(51 to 55 years). The same trend, albeit smaller, was observed for AWT, with
corresponding percentages of 0.3% (p = 0.147), 0.4% (p = 0.105), and 0.4%
(p = 0.057).

Figure 5.2 shows ALD plotted against AWT in every examined posi-
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Figure 5.2: Lumen diameter plotted against wall thickness for the segmental
bronchi (R1-R10, L1-L10) and generation 0 to 7 (G0-G7). The ellipses indicate
standard errors in both dimensions.

tion (generation 0-7, R1-R10, and L1-L10), as predicted by the models for
subjects of the youngest age quartile (51 to 55 years) and at ideal inspi-
ration (TLV=pTLC). AWT and ALD decreased with increasing generation
(p < 0.001). The segmental bronchi were widely dispersed in terms of gen-
eration number with mean ± standard deviation of 4.7 ± 1.0 ranging from
3.0 ± 0.1 for L6 to 7.0 ± 0.4 for R9, in terms of lumen diameter with mean
± standard deviation of 5.7 ± 0.7 mm ranging from 4.23 [4.20-4.27] mm for
L2 to 7.22 [7.16-7.28] mm for L6, and in terms of wall thickness with mean
± standard deviation of 0.86± 0.07 mm ranging from 0.79 [0.78-0.79] mm for
L8 to 1.00 [1.00-1.01] mm for L6.

ALD increased with inspiration level (p < 0.001) and increasingly so with
generation (p < 0.001). We define lumen distensibility as the degree to which
ALD increases with an increase in inspiration level. For instance a 100% vol-
ume increase in completely yielding airways should correspond to about 26%
distension in each direction, assuming equal distension in all directions, thus
leading to a 26% increase in ALD. As seen in Figure 5.3, this was observed
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Figure 5.3: Lumen distensibility at a 100 % increase in inspiration level by
generation (connected and filled circles) and segmental bronchi (R1-R10 and
L1-L10). The dotted line indicates a distensibility equal to lung parenchyma,
and error bars indicate standard errors.

in approximately the airways of generation 5 and beyond. The mean ± stan-
dard deviation of the distensibility of the segmental bronchi was 23.5± 7.7%.
The least distensible was R3 with a change of 12.8 [11.6-14.0] %, whereas R9
changed 35.7 [34.2-37.3] %. Larger size does not always indicate lower disten-
sibility, even though diameter decreases and distensibility increases with gen-
eration, as evidenced by L6 having the largest estimated diameter and thickest
walls, but also a relatively high distensibility. Distensibility was greater in the
segmental bronchi of the lower lobes (L6-L10 and R6-R10), where the mean
was 29.7% with estimates ranging from 19.2% to 35.7% as compared to the
segmental bronchi of the lingular, middle and upper lobes (L1-L5 and R1-R5),
where the mean was 17.3% with estimates ranging from 12.8% to 22.4%.

AWT, on the other hand, decreased with inspiration level (with the ex-
ception of AWT in the airways of generation 0-2) (p < 0.001). We define wall
thinning, similarly to distensibility but in the opposite direction, as the de-
gree to which AWT decreases with an increase in inspiration level. Figure 5.4
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Figure 5.4: Wall thinning at a 100 % increase in inspiration level by airway
generation (connected and filled circles) and segmental bronchi (L1 to L10
and R1 to R10). Error bars indicate standard errors.

shows that wall thinning increases with generation, but flattens out at around
5%, suggesting that a doubling of inspiration level will lead to a decrease in
AWT of 5% in the more peripheral airways. The mean ± standard deviation
wall thinning of the segmental bronchi was 6.1±3.6%. The least thinning was
R1 with a change of 2.1 [0.8-3.5] %, whereas L7 changed 13.8 [12.2-15.4] %.

The subject specific and intra-subject branch specific variation in ALD
and AWT as estimated by the random effects and the model residual standard
deviation are for completeness listed in the Appendix.

5.4 Discussion

The difference between typical abnormal and normal airway measurements
is small, and the groups are largely overlapping (Lederlin et al. 2012; Diaz
et al. 2012; Achenbach et al. 2008). Our results show that variation in level of
inspiration, it being either inter- or intra-individual, may alter the diagnosis
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from healthy to sick or vice versa. For instance in COPD larger values of
percentage wall area and Pi10 are usually associated with a higher degree of
airflow limitation. However, similar measures may be found in a subject who
inspired less during scanning; a decrease in inspiration level results in a smaller
lumen and thicker wall, which also translates into a higher percentage of wall
area. Although the situation is slightly more intricate for Pi10, a reduction
in inspiration level will also make the Pi10 measurement larger. Moreover,
as distensibility changes with airway generation and anatomical segment, the
change in Pi10 will depend on which airway branches are included in the re-
gression. A similar conclusion can be drawn regarding the effect of inspiration
level differences on the results of approaches that average measurements over
all detected airways with a certain interior diameter (Dijkstra et al. 2013;
Achenbach et al. 2008).

Our results indicate that the effect of changes in inspiration level on mea-
sured airway properties is highly dependent on the position of the branch in
the airway tree. Conclusions based on measurements of a limited number of
branches (Lederlin et al. 2012; Diaz et al. 2012; Hasegawa et al. 2006; Brown
et al. 2001) may therefore not be representative of the airway as a whole.
More representative measurements may be achieved by combining complete
sections of the airway tree by generation and by standardizing for the level of
inspiration.

Adjustment for the effects of inspiration on airway dimensions can be done
using a model such as ours, if multiple scans are available on each subject.
It is, however, difficult to extract general guidelines on how to adjust if this
is not the case. An important finding in this respect is that the average
airway at generation 5 and beyond, or the average segmental bronchi, can be
assumed to be completely distensible. In other words these airways follow
the expansion and contraction of the lung, offering no more resistance than
the lung parenchyma. We therefore suggest that ALD measurements in these
airways are standardized by dividing by the cubic root of TLV/pTLC. AWT
in the same airways in our study only becomes about 5 % thinner at a 100 %
change in inspiration level, which is far less than what would be expected if the
wall volume was constant. This might be because the changes are below the
resolution of the system, or partial volume effects could cause the thinning
to appear less than it actually is. We thus refrain from recommending an
adjustment of AWT until future studies have established the exact nature of
this relationship.

The study includes a large, but selected population of current and former
heavy smokers in the age range from 50 to 70 years, with a smoking history of
at least 20 pack-years, and with normal lung function. Thus, the conclusions
cannot without reservations be expanded to include subjects that are younger,
never-smokers or suffering from lung disease.

A low-dose scanning protocol was used, which may have reduced measure-
ment accuracy (Hackx et al. 2012). Several studies have examined or performed
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airway analysis on low dose scans (Dijkstra et al. 2013; Tschirren et al. 2005a;
Lutey et al. 2013; Jong et al. 2006), and concluded that this has reasonable
accuracy. Measurement uncertainty, such as that caused by the use of low
dose scans, is included in our statistical models as the residual error terms
(Appendix). Moreover the methods used in our study have all been validated
with the DLCST data previously showing that a large part of the airway tree
can be automatically and repeatedly found and measured accurately and re-
producibly using low-dose techniques (Lo et al. 2009 and Chapter 2,3, and
4).

The number of found and matched airway branches roughly doubles with
generation, as expected, until generation 6. This suggests that at this point
the airways begin to fall below the resolution limit imposed by the system
and branches are missed. Thus, our sampling is likely biased towards slightly
larger airways and results may not accurately reflect the average properties of
generation 6 and beyond. The resulting bias in distensibility and wall thinning
is less clear, and the results of generation 6 and 7 should be interpreted with
care.

In conclusion, the results show that subjects who inspire deeper prior to
scanning tend to have larger lumen diameter and thinner walls and more pro-
nouncedly so in more peripheral airways. This effect makes it necessary to
adjust for inspiration level, to accurately assess airway dimensions as indica-
tors of obstructive lung diseases.
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Appendix

Statistical methods supplement

The statistical models take the form:

Yi,j,k =

p∑
g=1

(
β1,g ×Gg,i,j + β2,g ×Gg,i,j × log

(
TLVi,k

pTLCi

))
+

4∑
a=1

(β3,a ×Aa,i) + αi + αi,j + (γi + γi,j)× log

(
TLVi,k

pTLCi

)
+ εi,j,k,

where the index i refers to subject, j to the branch within the subject, k to
the visit number and g to the location of the branch. The outcome variable
Y is either log(ALD) or log(AWT). β1,g, β2,g and β3,a for g ∈ {1, 2, 3, 4} are
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the coefficients of interest, describing the outcome variable’s relationship with
location of the branch, interaction of location and inspiration level, and age
of the subject. The random intercepts αi and αi,j and slopes γi and γi,j are
assumed to be independent, normally distributed with zero mean across sub-
jects and within subjects respectively. The residuals εi,j,k follow independent
zero-mean normal distributions. The categorical variables Gg,i,j ∈ {0, 1} de-
scribe whether a branch is a segmental bronchus, that is R1-R10 or L1-L10
(P = 20) or whether it belongs to generation 0 to 7 (P = 8). Aa,i ∈ {0, 1}
Are the four categorical variables indicating age quartile of the subject. The
models are fitted using restricted maximum likelihood via the lme4 package
(Bates et al. 2012) for the R programming language (R Core Team 2012).

Statistical results supplement

The standard deviation of the mean ALD in a generation and ALD in a seg-
mental bronchus were 9.8% and 11.0% between subjects belonging to the same
age group and with the same inspiration level. For AWT the corresponding
numbers were 3.4% and 4.3%. The intra-subject standard deviation of ALD
at different time points, standardized for inspiration level, was 27.7% in a
given generation and 17.4% in a given segmental bronchus. For AWT the
corresponding numbers were 8.5% and 8.5%.

The standard deviation of the mean lumen distensibility of airways in the
same generation and for a given segmental bronchus was respectively 26.5%
and 17.4% between subjects of the same age group. In terms of wall thin-
ning the corresponding numbers were 6.7% and 5.1%. The intra-subject stan-
dard deviation of lumen distensibility in each generation and each segmental
bronchus were 10.5% and 6.7% respectively. For wall thinning the numbers
were 6.8% and 9.9%.

The standard deviations of the residuals were 6.6% and 4.8% in terms of
ALD with generation and segmental bronchus respectively describing position.
For AWT the numbers were 10.8% and 10.9%.
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Abstract

Background: The aim of this study was to investigate the influence of
chronic obstructive pulmonary disease (COPD) on the dynamic change
in airway calibre and the airway wall thickness, using consecutive inspi-
ratory CT scans from the Danish Lung Cancer Screening Trial (DLCST).

Materials and methods: From the screening arm of DLCST 1,869
participants with at least three of five planned annual CT scans were
included, all of whom underwent lung function testing annually. Based
on spirometry and according to the Global Initiative for COPD (GOLD),
participants were divided into groups 0-4 of increasing airflow limitation
(AFL) as an indicator of disease severity in COPD. Repeat scans were
registered, airways were segmented and labelled as generation 0-7, and
finally airway lumen diameter and wall thickness were measured. Air-
way distensibility was defined as the relative change in lumen diameter
divided by the relative change in total lung volume. Groups were com-
pared using two mixed-effects models with the following specifications:
Outcome = log(airway lumen diameter) or log(airway wall thickness)
and explanatory variables = airway generations 0-7, log(total lung vol-
ume (TLV)), participant age quartiles, and GOLD groups 0-4.

Results: Lumen diameter decreased with generation and disease sever-
ity (p < 0.001). Distensibility increased with generation and decreased
with disease severity (p < 0.001). Wall thickness decreased with genera-
tion and increased with disease severity (p < 0.001).

Conclusion: COPD is affecting large airway distensibility, lumen diam-
eter and wall thickness. Changes are more pronounced toward smaller
airways, which suggests comparable changes are present in small airways
with lumen diameters below 2 mm.
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6.1 Introduction

Chronic obstructive pulmonary disease (COPD) is one of the leading causes
of death and disability (Lopez et al. 2006), particularly among heavy smokers.
COPD consists of chronic bronchitis and emphysema, which may both lead
to airflow limitation.

The pathophysiologic background of COPD has traditionally been divided
into two distinct pathways: 1) emphysema, characterized by parenchymal
destruction causing loss of elastic recoil, and 2) chronic bronchitis, in which
inflammation and fibrosis of the bronchioles give rise to narrowing of the small
airways (Ciba 1959). The combined effect of these two distinct pathways is
the explanatory background for the clinical presentation of COPD; decreased
maximal expiratory airflow, hyperinflation and gas trapping due to increased
airway resistance and premature airway closure (Cosio et al. 1978; Cosio and
Guerassimov 1999; Hogg et al. 1968). It has been argued that the process that
causes airway limitation is inflammatory above all, causing thickening of all
layers of the bronchial wall and narrowing of the airway lumen (Hogg et al.
1968; Hogg et al. 1969) as well as accumulation of mucus (Hogg et al. 2004).

Emphysema is defined as an abnormal and permanent enlargement of the
air spaces distal to the terminal bronchioles and destruction of alveolar and
bronchial walls (Ciba 1959), and even though emphysema is a diagnosis based
upon pathology, it may be assessed by quantitative computed tomography
(CT) measuring density of the lung. This technique has been validated against
pathology (Gould et al. 1988) and has been used in clinical trials of new
treatments in alpha1-antitrypsin deficiency (Dirksen et al. 1999; Stolk et al.
2012)

Large airways are anatomically defined as airways containing cartilage
and glands in the wall and are located up to approximately 10th generation.
The airways located within generation 0-7 of the airway tree have an average
diameter of 2 mm or more (Weibel 2009). The spatial resolution of low-dose CT
sets a limit to airways eligible for analysis at approximately the 7th generation,
which therefore prevents this study from investigating small airways.

Emphysema leads to airflow limitation due to dynamic collapse of airways
during expiration caused by decreased lung recoil and loss of alveolar attach-
ments that keep airways open during expiration in the normal lung (Diaz et al.
2012; Mead et al. 1967).

Spirometry gives an indication of the effect of emphysema and chronic
bronchitis on lung function, but cannot distinguish between the two compo-
nents of COPD. Several studies have argued that the two pathophysiologic
pathways independently contribute to the clinical appearance (Grydeland et
al. 2010; Nakano et al. 2000) resulting in distinct phenotypes of COPD for-
merly referred to as blue bloaters (obstructive bronchiolitis predominance) and
pink puffers (emphysema predominance), respectively (Rutten et al. 2011).

Several factors influence CT airway measurements, and among the more
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important is level of inspiration (Jong et al. 2005). Even if instructions to
participants are standardized when CT scans are performed, the level of in-
spiration may vary considerably between scans (Gierada et al. 2001). In a
previous Chapter 5 we showed that airway lumen diameter (ALD) increases
and wall thickness (AWT) decreases with inspiration level and that this dis-
tensibility effect is more pronounced in higher generation airways.

The aim of this study was to investigate the combined influence of COPD
and inspiration level on dimensions (ALD and AWT) of airways in differ-
ent generations taking subject age into account. The inevitable variation in
inspiration level between repeat scans of the same subject will be used to es-
tablish the effect of COPD on dynamic changes of airways close to maximum
inspiration.

6.2 Material and methods

6.2.1 Study population

Participants who were randomized to annual low-dose CT in the Danish Lung
Cancer Screening Trial (DLCST) comprise the study population. DLCST is a
5-year trial investigating the effect of screening on lung cancer mortality (Ped-
ersen et al. 2009). Participants were recruited by newspaper advertisements.
A total of 4,104 participants were enrolled and randomised to either annual
screening with low-dose CT (n=2,052) or a control group (n=2,052), in which
no CT screening was offered. Participants were men and women, 50-70 years
of age, without lung cancer related symptoms, all current or ex-smokers who
had smoked at least 20 pack-years, with forced expiratory volume in one sec-
ond (FEV1) of at least 30 % of predicted normal at baseline. Ex-smokers had
to have quit after the age of 50 years and less than 10 years before inclusion.
The database included no information on use of bronchodilators and steroids.

At annual screening rounds, smoking habits were recorded, carbon monox-
ide level in exhaled breath was measured, and spirometry was performed. The
trial was performed in one institution: Gentofte Hospital in Copenhagen, Den-
mark.

The DLCST was approved by the Ethics Committee of Copenhagen Coun-
ty and funded in full by the Danish Ministry of Interior and Health. Approval
of data management in the trial was obtained from the Danish Data Protection
Agency. The trial is registered in Clinical Trials.gov Protocol Registration
System (identification no. NCT00496977). All participants provided written
informed consent.

6.2.2 Imaging

All CT scans were performed on the same multi-detector CT scanner with
16 detector rows (Philips Mx 8000, Philips Medical Systems, Eindhoven, The
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Netherlands). Scans were performed in supine position at full inspiration with
a caudo-cranial direction and included thorax and upper abdomen. Partici-
pants were instructed by voice recordings to first hyperventilate three times,
and then take a deep breath and hold it during scanning (10-12 sec.). A low-
dose technique was applied (120 kV and 40 mAs) with the following acquisition
parameters: field of view 40 cm; collimation 16 x 0.75 mm; rotation time 0.5
second; and pitch 1.5. Each image was reconstructed with both 3 and 1 mm
slice thickness using soft and hard reconstruction algorithms (kernel C and
D) respectively. The experiments used the 1 mm slice thickness images unless
otherwise specified. The scanner was calibrated daily for air and with regular
intervals for water according to the recommendations of the manufacturer.

6.2.3 Image analysis

All CT scans were analysed by the Image Group at the Department of Com-
puter Science, University of Copenhagen, using in-house developed software
designed to segment the lung and airways. The lung segmentation algorithm
(Lo 2010) starts by detecting the trachea in the top part of the image. A
special region growing algorithm segments the trachea and right and left main
bronchi, which are not included in the total lung volume. Subsequently, the
lungs are segmented starting from the end of the main bronchi using a com-
peting region growing algorithm and a threshold of -400 HU for the interface
between lung and extra-pulmonary tissue. The analysis is fully automated,
and afterwards segmentations were inspected visually, and scans were dis-
carded if the lungs were not fully included, or if bowel air was included in the
segmentation.

Lung density was characterized from the images with 3 mm slice thickness
by two low attenuation area (LAA) parameters: %LAA-910 was defined as
the percentage of lung pixels with density < -910 HU and %LAA-950 was
defined as the percentage of lung pixels with density < -950 HU.

Predicted normal Total Lung Capacity (pTLC) was computed according
to Quanjer et al. 1993. TLV and pTLC was used to quantify inspiration level
as TLV/pTLC (Dirksen 2008; Shaker et al. 2012).

The extraction of the airway wall surfaces was a two-step process. First,
the airway centreline was extracted from the automatically detected seed point
in the trachea by iteratively adding local optimal paths that most resemble
airway centreline based on a statistical model derived from a training set.
The process was described in Lo et al. 2009, and it was validated on a random
subset of 10 scans from DLCST by an experienced observer. Out of an average
tree of length 258 cm (excluding the trachea and two main bronchi), only 3.8%
of branches were judged to contain errors. Secondly, the centreline was used
as input in a graph based approach, which simultaneously detected both the
interior and the exterior wall surfaces using image gradients. The method
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was described and validated in Chapter 2, showing sub-voxel accuracy when
compared to manual annotations.

Deformable image registration was used to match each airway branch in
repeat scans of the same subject. We used a mass preserving lung registration
method (Gorbunova et al. 2012) to register all images of the same subject to
the one most central in time. Only branches that were found in all scans were
included. The details of the approach were given in Chapter 3.

6.2.4 Lung function testing

During the 5 years of the study spirometry was performed annually, according
to recommendations by the European Respiratory Society (Miller et al. 2005)
using a computerized system (Spirotrac IV; Vitalograph, Buckingham, UK).
No bronchodilation was applied. Measurements of Forced Expiratory Volume
in 1 second (FEV1) and forced vital capacity (FVC) were expressed in absolute
values and for FEV1 as percentage of predicted normal (pFEV1) according
to European reference equations (Pellegrino et al. 2005). These values were
then averaged over all visits, and airflow limitation (AFL) was defined as
FEV1/FVC < 0.7. According to the Global Initiative for Chronic Obstructive
Pulmonary Disease (GOLD) (GOLD 2013) each participant was classified in
five stages of increasing AFL: No AFL (FEV1/FVC < 0.7), GOLD 1 (pFEV1
> 80%), GOLD 2 (50% < pFEV1 <80%), GOLD 3 (30% < pFEV1 < 50%)
and GOLD 4 (pFEV1 < 30%). Due to small numbers we decided to combine
GOLD 3 and 4 in one GOLD 3+4.

6.2.5 Statistics

Influence of explanatory variables TLV/pTLC, disease severity (No AFL and
GOLD 1, 2, and 3+4), age and measurement position (generation 0 to 7)
on airway outcome variables ALD and AWT were analysed in two mixed ef-
fects regression models. TLV/pTLC, ALD, and AWT were log transformed
to model relative relationships. Age groups, in the form of quartiles of the
mean age of visits, were included as a categorical variable to investigate ageing
effects. Subject and (intra-subject) branch specific differences in airway di-
mensions were modelled as random effects (slope and intercept with respect to
log(TLV/pTLC)). All possible interactions of the explanatory variables were
tested. The appendix contains a more detailed description of the statistical
models.

Airway distensibility, defined as the percentage ALD increases relative to
a percentage increase in inspiration level, can be computed directly from the
estimated coefficients of log(TLV/pTLC).
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Allocated to no intervention:

Controls

(n=2,052)

Randomized

(n=4,104)

Allocated to intervention:

Annual CT scans

(n=2,052)

- Lost to follow-up due to emigration
(n=15)

- Left the study after randomization
(n=38)

Participants with two scans only or less
(n=130)

Analysed

(n=1869)

Excluded (n=1,757)

- Not meeting inclusion criteria
(n=1,418)

- Declined to participate

(n=339)

Assessed for eligibility

(n=5,861)

Figure 6.1: Flowchart of participating subjects. * = Subjects either left the
study prematurely or there were technical difficulties with the scans, such as an
incomplete scan of the lungs, or bowel-air being included in the segmentation.

6.3 Results

6.3.1 Description of the study population

CT scans from 1869 participants were included (Figure 6.1). Three, four, and
five scans were included from 119, 444, and 1306 subjects, respectively. Most
(52.2%) had no airflow limitation (No AFL), and only 2.1% had severe AFL
(GOLD 3+4). There were slightly fewer women than men.

Table 6.1 shows characteristics of the population as mean values across all
visits. Participants with AFL were older, had lower body mass index (BMI),
had smoked more, had larger lungs as measured by the TLV/pTLC ratio, and
had lower pFEV1 than subjects with no AFL.
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No AFL GOLD 1 GOLD 2 GOLD 3+4 p-value
Characteristics (n = 961) (n = 488) (n = 382) (n = 38)

Age, years 59.16± 4.58 60.39± 4.99 60.76± 4.60 63.24± 4.66 < .001
Male sex 534(55.6) 279(57.2) 217(56.8) 24(63.2) 0.776
BMI, kg/m2 26.07± 3.88 24.64± 3.39 25.08± 3.86 25.05± 4.88 < .001
Pack years 34.53± 12.19 36.63± 14.16 38.99± 13.69 48.71± 17.45 < .001
Currently smoking 599(62.3) 330(67.6) 267(69.9) 27(71.1) 0.006
FEV1 predicted, % 94.5± 12.6 92.0± 8.4 69.8± 7.2 43.5± 5.5 < .001
FEV1/FVC 0.75± 0.03 0.66± 0.03 0.61± 0.06 0.48± 0.08 < .001
TLV/pTLC 0.91± 0.12 1.01± 0.12 0.96± 0.12 0.99± 0.14 < .001
%LAA-910 12.42± 10.05 19.89± 12.07 18.99± 12.37 31.73± 12.75 < .001
%LAA-950 0.74± 0.89 1.66± 1.81 2.10± 2.95 6.69± 7.01 < .001

Table 6.1: Demographic, clinical and CT scan data by study group. Data
presented as mean ± standard deviation or percentage in parenthesis. The
p-values were estimed using χ2-tests.

Gene- Expected No AFL GOLD 1 GOLD 2 GOLD 3+4 p-value
ration airways (n = 961) (n = 488) (n = 382) (n = 38)

0 1 1.0 (1.0-1.0) 1.0 (1.0-1.0) 1.0 (1.0-1.0) 1.0 (1.0-1.0) 1
1 2 2.0 (2.0-2.0) 2.0 (2.0-2.0) 2.0 (2.0-2.0) 2.0 (2.0-2.0) 0.776
2 4 4.0 (4.0-4.0) 4.0 (4.0-4.0) 4.0 (4.0-4.0) 4.0 (4.0-4.0) 0.866
3 8 7.8 (7.0-8.0) 8.0 (7.0-8.0) 7.8 (7.0-8.0) 7.8 (7.0-8.0) 0.193
4 16 15.8 (15.0-16.0) 15.6 (14.8-16.0) 15.0 (14.0-16.0) 14.9 (13.2-15.8) < .001
5 32 27.0 (24.8-29.0) 26.0 (23.0-28.0) 23.0 (19.0-27.0) 19.0 (15.0-25.9) < .001
6 64 32.0 (24.4-37.8) 27.0 (20.0-34.0) 20.8 (13.0-27.0) 15.0 (7.2-19.0) < .001
7 128 22.0 (15.0-28.8) 16.0 (11.0-23.0) 11.0 (6.0-16.8) 8.4 (5.0-11.9) < .001

Table 6.2: Number of analysed airways by generation and study group. Data
presented as median and interquartile range in parenthesis. The p-values were
estimated using χ2-tests.

Table 6.2 shows the number of analysed airways by AFL group and gen-
eration as mean values across all visits. A total of 195,199 airway branches
were analysed, each measured at an average of 4.6 points in time. The num-
ber of airways that were detected in all time-points and could be analysed
increases with generation until generation 5-6, where it starts to decrease.
Fewer airways are found and analysed in participants with AFL as compared
to subjects with no AFL; this effect is only small in generation 4, and increases
from generation 5 and up.

The variation in inspiration level was considerable with a standard de-
viation of TLV/pTLC within each subject (mean ± standard deviation) of
4.8 ± 2.9%. This is, however, far less variation than between in- and expira-
tory scans.

6.3.2 Airway distensibility and lumen diameter

In the mixed effects regression model all interactions between AFL, generation,
and log(TLV/pTLC) were significant predictors of ALD (p < 0.001). There
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Figure 6.2: Lumen diameter (mm) in airway generations in No AFL and
GOLD groups 1, 2 and 3+4, respectively.

was a significant ageing effect (p < 0.001), however interactions between age
and the other explanatory variables were not found to improve predictions of
log(ALD) (p > 0.110) and were thus removed from the model.

ALD in airways of the same generation were 1.4% (p < 0.05), 2.0% (p <
0.01), and 3.3% (p < 0.001) larger in the older quartiles (56-60, 60-64, and
64-73 years respectively) compared to the youngest quartile (51-56 years).

Figure 6.2 shows ALD of different generations for participants in the
youngest age quartile at pTLC as predicted by the model. ALD decreased
with generation and disease severity (p < 0.001).

Distensibility of airways in different generations and from participants with
varying AFL is shown in Figure 6.3. Distensibility increased with airway gen-
eration and decreased with severity of AFL (p < 0.001). There was no measur-
able (i.e. statistically significant) distensibility of the airways in participants
with severe AFL (GOLD 3+4, p > 0.276).
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Figure 6.3: Lumen distensibility (%) in airway generations in the No AFL
and GOLD groups 1, 2 and 3+4, respectively. Parenchyma line shows what
distensibility has to be for airway volume to change relatively just as much as
lung volume (assuming equal distension in all directions)

6.3.3 Airway wall thickness

In the mixed effects regression model all interactions between AFL, generation,
and log(TLV/pTLC) were significant predictors of AWT (p < 0.001). Age and
interactions between age and the other explanatory variables were not found
to improve predictions of log(AWT) (p > 0.061) and were thus removed from
the model.

Figure 6.4 shows AWT of different generations at pTLC as predicted by the
model. AWT decreased with generation and increased with disease severity
(p < 0.001).

6.4 Discussion

We observed several effects on large airways increasing with severity of COPD:
A substantial reduction in the number of airways found and matched in all
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Figure 6.4: Wall thickness (mm) in airway generations in the No AFL and
GOLD groups 1, 2 and 3+4, respectively.

consecutive scans in generations 5-7, a decrease in airway diameter, an increase
in wall thickness, and a decrease in airway distensibility; in GOLD group 3+4
no distensibility was found at all.

6.4.1 Number of airways

Fewer airways are found in COPD, and this effect is increasing in higher gen-
erations and more severe disease. This was already observed more than 50
years ago in bronchographic studies (Hogg et al. 1968; Simon and Galbraith
1953; Freimanis and Molnar 1960). Possible explanations at that time were
mucus plugging and emphysematous destruction of bronchi, and these reasons
should also result in fewer detectable airways in CT images (Diaz et al. 2010a;
Pu et al. 2012). Segmentation algorithms have problems penetrating luminal
impactions and bridging emphysematous air spaces, however, airway narrow-
ing should also move some airways, that would otherwise be visible, beyond
the resolution of the CT images. These problems may impose a selection bias
on airways that are segmented in COPD as compared to airways in subjects
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with no AFL.

6.4.2 Airway lumen diameter (ALD), wall thickness (AWT),
and distensibility

We observed decreased ALD and increased AWT in COPD, and this effect
increased in higher generations and more severe disease. Interestingly, these
results are similar to findings in previous studies of small airways; thus, his-
tologic (Hogg et al. 1968; Hogg et al. 2004) and microCT (McDonough et al.
2011) studies have reported inflammatory changes in thickened airway walls
and narrowing and disappearance of small conducting airways. The CT tech-
nique of the present study limits the segmentation of airways to large airways,
i.e. bronchi lumen diameter is typically larger than 2 mm. Nevertheless, the
trend toward more pronounced changes in higher airway generations lend sup-
port to a hypothesis proposed by others (Nakano et al. 2005) that changes in
large airways may mirror changes in small airways.

We observed a markedly reduced distensibility of airways in patients with
severe COPD, which is well-known from physiology (O’Donnell et al. 1987;
Georgopoulos et al. 1993). Emphysema implies loss of airway attachments
with loss of elastic recoil resulting in dynamic collapse of airways during expi-
ration. Another important mechanism is airway inflammation, which through
increasing thickness and fibrosis of the walls causes airways to become rigid
and less distensible. This has been used to explain loss of distensibility when
measured from exp- and inspiration scan-pairs (Diaz et al. 2012; Matsuoka
et al. 2008). Our results show reduced distensibility even close to maximum
inspiration, which shows dynamics are affected by COPD over a large range
of inspiration levels. The clear separation of the COPD groups in terms of
distensibility, observed in Figure 6.3, suggests that this reduced airway dis-
tensibility could be used as an important additional indicator for COPD.

If increased wall thickness in COPD is due to inflammation, one would
expect that airway walls become thicker due to accumulation of inflammatory
cells and oedema formation as compared to airways in healthy smokers with
no AFL. But it is not possible to decide whether there is an inflammatory
thickening of large airways with resulting lumen narrowing in our participants
with severe AFL or if the observed thickening could simply be explained by
reduced stretching of the airways during inspiration due to emphysema or
increased airway rigidity.

In a previous study (Chapter 5) we observed that increasing age in healthy
smokers is accompanied by larger airways (increased ALD). In COPD, disten-
sibility is compromised, and increasing severity is accompanied by smaller
lumen diameter, despite increasing age.

In addition to GOLD groups we could have used CT defined emphysema
as a predictor in the regression models. But generally accepted categories of
emphysema severity based on CT lung density have not yet been established.
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The percentage of current smokers differs in the groups, but analysing
current smokers and ex-smokers separately did not change conclusions.

6.4.3 Limitations

Our study has several limitations. The number of individuals with severe
disease (GOLD group 3 and 4) in this study is quite limited. This is due to
the fact, that the study population was recruited for lung cancer screening
with an exclusion criterion, which ruled out those with low lung function,
because in case of a positive screen with subsequent diagnosis of lung cancer,
patients with low lung function (FEV1 < 30% predicted) could not be offered
surgery.

There is a risk of selection bias because it is likely that the segmentation
algorithm only finds the largest airways of generation 6 and 7, causing the
average ALD to increase here, as indicated by the flattening at this point in
the curve of Figure 6.2. Missing airway branches may, however, also have
the opposite effect because airways distal to missing side branches are falsely
classified as more proximal implying a reduced mean ALD. The overall effect
of these opposite biases for various degrees of AFL is unknown.

The inspiratory level (TLV/pTLC) was not independent of the degree of
AFL (table 1). The CT total lung volume (TLV) was smaller among partici-
pants without AFL as compared to GOLD group 1, which was probably due
to hyperinflation in the COPD groups. However, there was no clear trend
among the COPD groups, so these differences cannot explain the observed
results, which do show a clear trend.

6.5 Conclusion

In this chapter we have studied the influence of COPD on the dynamic changes
in the airways. We have adjusted for the confounding influence of the depth
of inspiration when measuring the airway lumen diameter and airway wall
thickness, and to our knowledge, this has not been done in previous studies.

In conclusion, airway distensibility decreases with the severity of COPD
as defined by GOLD groups. Airway wall thickness increases with severity of
COPD and airway lumen diminishes due to airway wall inflammation and/or
lack of elastic recoil in surrounding emphysematous lung. Future analysis of
emphysema, as detected by CT, and its effect on airway pathology may prove
helpful in the process of understanding the interacting mechanisms in COPD.
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Appendix

Statistical methods supplement

The statistical models take the form:

Ys,b,v =
∑

c∈{1,2,3,4}

∑
g∈{0,1,...,7}

(
β0,c,g × Cs ×Gs,b,g + β1,c,g × Cs ×Gs,b,g×

log

(
TLVs,v

pTLCs

))
+

∑
a∈{1,2,3,4}

(β2,a ×Aa,s) + αs + αs,b + (γs + γs,b)×

log

(
TLVs,v

pTLCs

)
+ εs,b,v,

where the index s refers to the subject, b to the branch within the subject, and
v to the visit. c ∈ {1, 2, 3, 4} refers to GOLD group, a ∈ {1, 2, 3, 4} to the age
group, g ∈ {0, 1, . . . , 7} to the generation. The outcome variable Y is either
log(ALD) or log(AWT). β0,c,g, β1,c,g, and β2,a are the coefficients of interests,
describing the outcome variable’s relationship with the interaction of GOLD
group and generation; interaction of GOLD group, generation and inspiration
level; and age of the subject. The random intercepts αs and αs,b are assumed
to be independent, normally distributed with zero mean across subjects and
within subjects, respectively. The residuals εs,b,v follow independent zero-
mean normal distributions. The categorical variables Gs,b,g, Cs ∈ {0, 1} and
Aa,s ∈ {0, 1} describe whether a branch in a subject belongs to a specific
generation, whether a given subject is in a given GOLD group, and whether
a given subject belongs to specific age group. The models are fitted using
restricted maximum likelihood via the lme4 package (Bates et al. 2012) for
the R programming language (R Core Team 2012).

Statistical results supplement

The standard deviation of the mean ALD in a generation was 14.3% between
subjects belonging to the same age and GOLD group and with the same inspi-
ration level. For AWT the corresponding number was 3.6%. The intra-subject
standard deviation of ALD, standardizedfor inspiration level, was 28.2% in a
given generation. For AWT the corresponding number was 8.4%.

The standard deviation of the mean lumen distensibility of airways in the
same generation was respectively 34.4% between subjects of the same age and
GOLD group. In terms of wall thinning the corresponding was 7.3%. The
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intra-subject standard deviation of lumen distensibility in each generation
was 9.7%. For wall thinning the number was 8.3%.

The standard deviation of the residuals was 6.6% for ALD. For AWT the
number was 10.4%.
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Longitudinal segmentation
using groupwise registration
and 4D optimal surfaces

The work presented in this chapter is based on J. Petersen, M. Modat, M. J.
Cardoso, A. Dirksen, S. Ourselin, and M. de Bruijne (2013c). “Quantitative
Airway Analysis in Longitudinal Studies using Groupwise Registration and
4D Optimal Surfaces”. In: Med Image Comput Assist Interv - MICCAI 2013.
Ed. by K. Mori, I. Sakuma, Y. Sato, C. Barillot, and N. Navab. Lecture Notes
in Computer Science. Springer, pp. 287–294.
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Abstract

Quantifying local changes to the airway wall surfaces from computed
tomography images is important in the study of diseases such as chronic
obstructive pulmonary disease. Current approaches segment the airways
in the individual time point images and subsequently aggregate per air-
way generation or perform branch matching to assess regional changes.
In contrast, we propose an integrated approach analysing the time points
simultaneously using a subject-specific groupwise space and 4D optimal
surface segmentation. The method combines information from all time
points and measurements are matched locally at any position on the
resulting surfaces.

Visual inspection of the scans of 10 subjects showed increased tree
length compared to the state of the art with little change in the amount
of false positives. A large scale analysis of the airways of 374 subjects
including a total of 1870 images showed significant correlation with lung
function and high reproducibility of the measurements.



Chapter 7. Longitudinal segmentation 104

7.1 Introduction

Assessing the dimensions and attenuation values of airway walls from Com-
puted Tomography (CT) images is important in the investigation of airway
remodelling diseases such as Chronic Obstructive Pulmonary Disease (COPD)
Hackx et al. 2012. Manual measurements are very time consuming and sub-
ject to intra- and inter-observer variability. Automatic methods are needed
to estimate the dimensions of large parts of the airway tree. Obtaining repro-
ducible measurements is difficult because of a strong dependence on position
in what is a complicated biologically and dynamically varied tree-like struc-
ture. Previous approaches have solved the problem in two steps: first a step,
to segment the airways and conduct the measurements, and second a step to
identify anatomical branches or match individual airway segments in multiple
scans of the same subject Tschirren et al. 2005b; Petersen et al. 2011a; Fer-
agen et al. 2012. The task of anatomically identifying airway branches poses
significant problems even to medical experts Feragen et al. 2012. Most auto-
matic methods therefore do not go beyond the segmental level, resulting in
32 labelled branches Feragen et al. 2012; Tschirren et al. 2005b. State of the
art segmentation methods can extract many more branches reliably Lo et al.
2012, and intra-subject branch matching can thus increase the information
available in longitudinal studies. It has been done using image registration
Petersen et al. 2011a, or association graphs Tschirren et al. 2005b.

A limitation of such two-step approaches is that longitudinal information
is not used to the fullest. For instance branches need to be segmented in
every scan in order to be matched even though a branch that is detected in
one scan is most likely present in all. The proposed method improves on
this by segmenting multiple scans of the same subject simultaneously. It is
thus able to combine information from all time points and enables matched
measurements, not just at the branch level, but locally at any point on the
resulting surfaces.

7.2 Methods

An initial airway lumen probability map (section 7.2.2) was constructed by
transferring initial segmentations of each time point to a per-subject common
space constructed through deformable image registration (section 7.2.1). A
four dimensional optimal surface graph was built from the initial probability
map and used to find the inner and outer airway wall surfaces as the global
optimum of a cost function combining image terms with surface smoothness,
surface separation, and longitudinal penalties and constraints (section 7.2.3).
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7.2.1 Groupwise registration of images

Prior to registration, intensity inhomogeneity due to for instance gravity gradi-
ents and ventilation differences was removed within the lungs using NiftySeg
(http://sourceforge.net/projects/niftyseg) Cardoso et al. 2011. The
approach is using a two-class expectation-maximization based probabilistic
framework, which incorporates both a Markov Random field spatial smooth-
ness term and an intra-class intensity inhomogeneity correction step.

All registrations have been performed with a stationary velocity field para-
metrisation and using normalised mutual information as a measure of similar-
ity with NiftyReg (http://sourceforge.net/projects/niftyreg) Modat et
al. 2010. For each subject, all time points were aligned to the Frechet mean
on the space of diffeomorphisms, thus providing a common space for analysis
and a one-to-one mapping between time points.

7.2.2 Initial segmentation

An initial airway lumen segmentation was obtained in each individual image
using the Locally Optimal Path (LOP) approach of Lo et al. 2009. Segmen-
tations from every scan of the same subject were then warped to the subject-
specific groupwise space and averaged, giving a lumen probability map. By
thresholding this using some value T , it is possible to move freely between the
intersection and union of the segmentations, weighting the amount of included
branches against the amount of false positives. Disconnected components were
connected along centrelines extracted from the union segmentation using the
method described in Lo et al. 2012. The voxel based initial segmentation was
then converted to triangle mesh with vertices V and edges E , using the march-
ing cubes algorithm.

7.2.3 Graph construction

This section describes how a graph G = (V,E) can be constructed, such
that the minimum cut of G defines the set of surfaces M = I ∪ O where
I = {I0, I1, . . . , IN} and O = {O0,O1, . . . ,ON} are the inner and outer
surfaces of the N scans of the subject. The graph is similar to that of Petersen
et al. 2011b, the differences being the addition of the longitudinal connections
and hard constraints.

The vertices of the graph are defined by a set of columns V m
i one for

each vertex i ∈ V of the initial mesh and sought surface m ∈ M , and a
source s and a sink vertex t. As in Petersen et al. 2011b we will let the
columns be defined from sampled flow lines traced inward and outward from
i ∈ V. Because they are non-intersecting, the found solutions are guaranteed
to not self-intersect. Tracing is done within a scalar field arising from the
convolution of the binarised initial segmentation with a Gaussian kernel of
scale σ. Sampling is done at regular arc length intervals relative to i until

http://sourceforge.net/projects/niftyseg
http://sourceforge.net/projects/niftyreg
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Figure 7.1: Example columns with Ii = 4, Ij = 2, Oi = 3 and Oj = 5 inner and
outer vertices illustrating the graph as implemented. The dotted edges have
infinite capacity and implement hard topology, smoothness and separation
constraints. The solid edge capacities are given by data term, smoothness,
separation and longitudinal penalties.

tracing is stopped due to flattening of the gradient, giving Ii and Oi inner
and outer column points. So, V m

i = {imk | k ∈ Ki}, where Ki = {−Ii, 1 −
Ii, . . . , 0, . . . , Oi} and V =

⋃
i∈V,m∈M V m

i ∪ {s, t}. In this way, the column
defines the set of all possible solutions for i in the surface m.

Let (v
c→ u) denote a directed edge from vertex v to vertex u with capacity

c and wmi (k) ≥ 0 be a cost function, giving the cost of vertex k in a column
V m
i being part of the surface m. This data term can be implemented by the

edges:

Ed =
{{

(imk
wm

i (k)
→ imk+1) | k, k + 1 ∈ Ki

}
∪{

(imOi

wm
i (Oi)→ t), (s

∞→ imIi )
}
| i ∈ V,m ∈M

}
.

(7.1)

To prevent degenerate cases where a column is cut multiple times and to
preserve topology, the following infinite cost edges are added:

E∞ =
{

(imk
∞→ imk−1) | i ∈ V,m ∈M,k − 1, k ∈ Ki

}
. (7.2)

An example of these edges is given in figure 7.1a.
Let fi,j,m,n(|k − l|) be a convex non-decreasing function giving the pair-

wise cost of both imk ∈ Vi and jnl ∈ Vj being part of the surfaces m,n ∈ M
respectively. This can be used to implement surface smoothness and longi-
tudinal penalties, see (equation 7.7). Additionally let the set I(imk , j, n) =
{ζ, ζ + 1, . . . , η} ⊆ {−Ij , 1 − Ij , . . . , Oj} put pairwise constraints on the so-
lution, such that if imk and jnl are both part of it, then l ∈ I(imk , j, n). Such
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penalties and constraints can be implemented by:

Ei =
{{

(imk
4(imk ,j

n
l )→ jnl ) | k ∈ Ki, l ∈ Kj

}
∪{

(s
4(imk ,j

n
l )→ jnl ) | l ∈ Kj , k ∈ Kj , k < −Ii

}
∪{

(imk
4(imk ,j

n
l )→ t) | k ∈ Ki, l ∈ Ki, l > Oj

}
| i, j ∈ V,m, n ∈M

}
,

(7.3)

and 4 gives the capacity of the edges as follows:

4(imk , j
n
l ) =


∞ if l = min I(imk , j, n)
0 if l /∈ I(imk , j, n)

4̂(k − l) otherwise

(7.4)

where

4̂(x) =


0 if x < 0
fi,j,m,n(1)− fi,j,m,n(0) if x = 0
fi,j,m,n(x+ 1)− 2fi,j,m,n(x) + fi,j,m,n(x− 1) if x > 0.

(7.5)

Similar to the approach of Liu et al. 2012, hard constraints was used to
force the outer surfaces to be outside their corresponding inner surfaces and
solutions to not vary more than γ and δ indices in neighbouring columns in
the inner and outer surfaces as follows:

I(ik,m, j, n) =


{k, k + 1, . . . , Oj} if m ∈ Is and n ∈ Os,

s ∈ {0, 1, . . . , N}
{k − γ, k − γ + 1, . . . , k + γ} if m = n, and n,m ∈ I
{k − δ, k − δ + 1, . . . , k + δ} if m = n, and n,m ∈ O
Kj otherwise.

(7.6)

The following pairwise cost were implemented:

fi,j,m,n(x) =


pmx if m = n and (i, j) ∈ E
qx if i = j and m ∈ Is, n ∈ Is+1 or m ∈ Os, n ∈ Os+1

0 otherwise.

(7.7)

pm is the smoothness penalty, defining the cost of each index the solution varies
between neighbouring columns in the same surface m. q is the longitudinal
penalty, defining the cost inherent in the solution for each index correspond-
ing surfaces are separated in each column within the groupwise space. An
illustration of these edges is given in figure 7.1b and 7.1c. The total edge set
E is given by: E = Ed ∪ E∞ ∪ Ei.
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The cost functions wmk (k) were set to the first order derivative of the image
intensity in the outward and inward direction of the flow line for the inner and
outer surfaces respectively.

We used the algorithm described in Boykov and Kolmogorov 2004 to find
the minimum cut.

7.3 Experiments and results

7.3.1 Data

CT images and lung function measurements from the Danish lung cancer
screening trial Pedersen et al. 2009 were used. Images were obtained using a
Multi Detector CT scanner (Philips Mx 8000) with a low dose (120 kV and
40 mAs), reconstructed using a hard kernel (D) with a resolution of approx-
imately 0.78 mm × 0.78 mm × 1 mm. The subjects (at inclusion) were men
and women, former and current smokers with at least 20 pack years smoked,
between 50 and 70 years of age and thus at high risk of having COPD.

We used images of 10 subjects for estimation of the parameters and eval-
uation of the process of merging the initial segmentations. An independent
set of 374 subjects was used to evaluate the ability of the method to detect
longitudinal changes in airway dimensions. From each subject 5 yearly scans
were included out of which 1739 had matching lung function measurements.

7.3.2 Parameters and merging of initial segmentations

The centrelines of the 10 subjects were moved from the groupwise space to
the space of the last time point scan, in which they were manually checked
using in-house developed software. The software allows movement along the
centrelines while displaying a cross-sectional view of the airway.

Figure 7.2a and 7.3a show results of varying T - significantly more branches
can be found by fusing information from multiple scans (p < 0.05 for T < 0.4),
while the percentage of false positives does not seem to increase much. We
chose a value of T > 0.2 corresponding to branches present in at least two
scans.

Parameters were estimated by aiming to penalize and constrain solutions
as little as possible while still preventing noisy segmentations and the inclusion
of abutting vessels. The mesh edges were roughly 0.4 mm apart and the flow
lines were sampled at 0.4 mm spacings. pm was set to 15 for all m ∈ M , γ
and, δ to 2 and σ to 0.7 based on visual inspection of results. Figure 7.3b
shows a segmentation result illustrated at two time points.
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Figure 7.2: Left: Average tree length for different values of the threshold T
(blue), average tree length of the LOP segmentation as a comparison (black
dashed), false positives (red) and true negatives (green) with respect to the
union of the segmented branches. Right: the R2 fit of the relative change in
lung volume predicted from relative change in lumen diameter in each subject
with increasing amount of longitudinal penalty.

7.3.3 Longitudinal segmentation

Experiments were conducted on the images of the 374 subjects with values
q ∈ {0, 20, 40} of the longitudinal penalty to assess its impact on the method’s
ability to detect changes in airway dimensions over time. Note that a value
of 0 is similar to performing multiple independent (3D) searches, but with
the added bonus that the solution meshes will have corresponding vertices.
Measures of Wall Area percentage (WA%) and Lumen Diameter (LD) were
computed from the average distance of the mesh vertices to the branch cen-
treline, which was extracted from the average segmentation in the groupwise
space and transformed to each individual time point. This enables accurate
assessment of subtle localized changes in airway morphology, but to evaluate
the performance of our segmentation to automatically derive known airway
imaging biomarkers, we averaged the measures extracted in the airways of
generation 3 to 6.

WA% was found to correlate significantly with lung function at each time
point (Average Spearman’s ρ: −0.29 ± 0.01, p < 0.0001). Different values
of q did not change the results significantly. Reproducibility, quantified by
correlating results at time point one with those of time point two with q = 0,
was high: (Spearman’s ρ: 0.95, 0.94, 0.89 and 0.85 in generation 3, 4, 5 and 6
respectively p < 0.0001). As expected, increasing q made the reproducibility
go towards 1.

Annual changes of WA% were found to be 0.31 ± 4.9 % significantly dif-
ferent from 0 (Mann-Whitney U test p < 0.001) with q = 0. Significance
disappeared with q ∈ {20, 40} perhaps evidence that these values are over-
penalizing the solutions. No correlation was found between annual changes in
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(a) (b)

Figure 7.3: Left: initial segmentation example, at T > 0 (blue), T > 1/5
(green), T > 2/5 (red), T > 3/5 (yellow), and T > 4/5 (white). Right: inner
followed by outer surface segmentations at two corresponding time points.
Colours show matching branches.

WA% and annual changes in lung function. This is not surprising giving the
relative slow developing nature of COPD and the known poor reproducibility
of lung function measurements. It is similar to what was previously reported
Petersen et al. 2011a.

LD is dependent on the inspiration level and investigating the method’s
ability to detect this dependency can therefore be used as a surrogate for a
much slower pathological change. The relative change in lung volume was
thus predicted from the relative change in LD in each subject. The R2 of
all the models showed significantly better fit when using higher values of q
(p < 0.0001 using Wilcoxon signed rank test), see figure 7.2b, indicating that
the chosen longitudinal penalties can improve the ability to detect changes in
the inner surface.

7.4 Discussion and conclusion

We have presented a method for the analysis of airways designed to fully
exploit longitudinal imaging data. The method, in contrast to state of the art,
can use information from all time points and because it outputs surface meshes
with one-to-one correspondences between vertices, enables measurements to
be compared locally without the need for a separate branch matching step.
A visual evaluation of the scans of 10 subjects showed the method found
significantly more complete airway trees with minimal changes to the false
positive percentage. Results on 1870 scans show significant correlation with
lung function and highly reproducible results. Future work will have to better
investigate choices for the longitudinal penalty. For instance it is possible, as
indicated by the experiments, that different values are needed for the inner
and outer surfaces, due to the different contrast values between lumen and
wall and between wall and lung parenchyma. It should also be noted that
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averaging measurements over large parts of the airway tree, as done in this
work, is ignoring information provided by the matched measurements, however
to limit the scope of the paper we left it to future work to develop statistical
models incorporating this information. Such models should, we expect, have
more power to detect changes.
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Chapter 8

Summary and general
discussion

8.1 Summary

Chapter 2 presented a new curvilinear column construction method for op-
timal surface methods (Wu and Chen 2002). The method enables solution
surfaces that are guaranteed to not self-intersect and is well suited for high-
curvature regions. The proposed method was applied to segment airway walls
from low-dose CT images, showing sub-voxel accuracy on phantom scans, and
significantly higher overlap with manual annotations and visually improved re-
sults compared to a similar approach using straight columns (Liu et al. 2012).
Airway abnormality measurements obtained with the method are reproducible
and correlate significantly with lung function.

Chapter 3 presented a method, which matches individual branches in mul-
tiple scans of the same subject. The method allows changes in dimensions
of individual airway branches to be tracked from scan to scan, which could
increase the statistical power of longitudinal studies. The presented results
show that variability of measurements due to missing and spurious branches
can be reduced, by limiting measurements to consistently found branches.
The results of later studies presented in Chapter 5 and 6 also show that the
method is useful to investigate airway dynamics.

Chapter 4 presented a supervised algorithm for labelling of airway trees,
which assigns anatomical labels of the airway branches down to the segmental
level using geodesic distances in a geometric tree-space. The algorithm allows
measurements in the same anatomical branches to be compared from subject
to subject, which removes some of the variability due to not measuring the
same position within the airway trees. The algorithm was evaluated on 80
segmented airway trees from 40 subjects at two time-points, each labelled by
three medical experts, showing the algorithm to be statistically similar to the
experts in accuracy and better in terms of reproducibility. The performance of

112
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the algorithm was determined, using a very large data set of more than 8000
segmented airway trees, to not depend on disease severity, assuming it is given
equally complete airway trees. Results of the thorough evaluation presented
provide insights into not only performance of the algorithm but also that of
medical experts (Petersen et al. 2013b).

The methods of Chapter 2, 3, and 4 have allowed us to analyse the unique
data set of the Danish Lung Cancer Screening Trial (DLCST) (Pedersen et al.
2009). Access to the data gave us a unique opportunity to study properties of
airways in a group of subjects where almost half were diagnosed with COPD.

Chapter 5 presented a study into the effect of inspiration level at time of
scan on measured airway dimensions in subjects with normal lung function.
Even when subjects are asked to inspire maximally variations in inspiration
level still exist (an intra-subject standard deviation of 5.4% was observed).
The distensibility of airways means that measured airway dimensions are af-
fected by these variations. The presented study shows, for the first time, the
size of this effect by generation and airway segment. It shows that subjects
who inspire deeper prior to scanning tend to have larger lumen diameter and
thinner walls, an effect which is more pronounced in more peripheral airways.
It also shows that airways in generation 5 and above, roughly corresponding
to the segmental level and beyond, are as distensible as the lung parenchyma.
This suggests that adjustment for variation due to differences in inspiration
level is needed and that adjustment may be relatively straight-forward in pe-
ripheral airways, as the volume of these airways change the same amount
relatively as the lungs. Adjustment of for instance the lumen diameter may
thus be done by dividing by the cubic root of the inspiration level, assum-
ing inspiration level is quantified as was done in Chapter 5 by the total lung
volume divided by the predicted total lung capacity.

Chapter 6 presented a study into airway dimensions and distensibility in
subjects with COPD. Statistical models were used to investigate the effects of
inspiration level, disease severity, age and measurement position on lumen di-
ameter and wall thickness. The results show that distensibility decreases, wall
thickness increases and airway lumen diminishes with severity of COPD and
these changes are more pronounced toward smaller airways. These changes
indicate that measured airway dimensions are both statically and dynamically
influenced by severity of COPD. This is possibly due to airway wall inflam-
mation and/or lack of elastic recoil in surrounding emphysematous lung.

Chapter 7 presented a method, which should be more suited to measure
differences in the airways from scan to scan, allowing effects of differences
in inspiration level and longitudinal change to be more precisely determined.
Rather than segmenting each time point individually and then matching the
branches to assess changes, the presented approach can segment all scans of
the same subject simultaneously. This allows the method to combine infor-
mation from multiple images, which results show can increase the length of
the segmented airway tree with little change in the amount of false positives.
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The method is well suited to measure longitudinal or dynamic change because
it outputs corresponding surface meshes, meaning change due to pathology
or differences in inspiration level can be measured locally in any point on the
surfaces, without the need for a separate branch matching step.

8.2 General discussion

Diagnosis of COPD is based on spirometry, however, spirometry may be in-
sensitive to early changes (Hackx et al. 2012), has only a weak correlation
with symptoms and health status (GOLD 2013; Jones 2009), and provides
little information on the underlying causes for limitation of airflow seen in
COPD. It is known that two factors play a role, emphysema and small airway
disease. The contributions of these factors is unclear and further research is
needed to establish whether they can be viewed as independent disease phe-
notypes (Decramer et al. 2012). CT and modern image analysis tools, such
as those presented in this thesis, play an important role in investigating pos-
sible phenotypes as they allow quantification of both emphysema and airway
abnormalities. Phenotypes could be important in predicting clinical charac-
teristics and responsiveness to treatment with bronchodilators and inhaled
corticosteroids (Kitaguchi et al. 2006; Fujimoto et al. 2006). There is also evi-
dence that the presence and distribution of emphysema (Martinez et al. 2006;
Johannessen et al. 2013) and the interaction of airway wall thickness and em-
physema (Johannessen et al. 2013) affects mortality. Airway analysis from
CT images could thus potentially be used in patient care, early clinical trials
to determine drug efficacy or input to prognostic models to predict patient
outcomes. Although many challenges remain to make most of this a reality,
the work presented in this thesis shows that fully automated airway analysis
of large data sets is possible and that it can be used to detect abnormalities
significantly even in mild COPD cases from low-dose images.

Chapter 2 presented a graph based method for airway wall segmentation
and Chapter 7 presented an extension of it to joint segmentation of multiple
images. An advantage of these methods is that they are able to extract all
surfaces simultaneously in an optimal fashion, which means that they can
use positions of each surface to help place all other. A disadvantage of these
methods is that they are discrete, which means that every possible position
the sought surfaces can take needs to be represented as a node in the graph.
The methods, therefore, require relatively large amounts of memory and a
compromise between memory usage and resolution often has to be made. We
chose to place the nodes of the graph at approximately 0.5 mm intervals, which
is not far from the average thickness of the airway walls (Figure 6.4) and so this
graph resolution may be too rough to detect some of the more subtle changes
to the wall caused by COPD and differences in inspiration level. This relative
low resolution graph was chosen in order to allow the extensive parameter
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tuning of Section 2.3.2 to be conducted in a reasonable time-frame. The
relative low resolution graph thus made it possible to compare methods based
on well fitted parameters, however, better segmentation results can probably
be obtained with a higher resolution graph with an acceptable increase in
memory usage.

The results presented in Chapter 5 on the relationship between wall thick-
ness and differences in inspiration level show the airway wall to be thinning
as it is stretched during inspiration. This is not an unexpected result, but
as far as we are aware it is the first time it has been measured. The results
also seem to indicate that wall volume is not constant but actually increasing
during inspiration. As we are not aware of any physiological process which
could increase the volume of the wall during inspiration, we chose to not rec-
ommend an adjustment for the effect. It is possible the low resolution of the
graph is to blame for this unexpected finding, as some of the changes to the
wall could be too small to be seen by the method. The low-dose CT images
and partial volume effects could, however, also play a role. It would be inter-
esting to repeat the experiments with a higher resolution graph and if possible
higher resolution images. Such new results would perhaps agree more with a
hypothesis of wall volume preservation under stretching and such experiments
could therefore allow us to derive a simple approach to adjust for inspiration
level differences.

Airway dimensions change with location and different strategies to obtain
comparable measurements have been explored in the literature. A common
strategy is to identify and measure the same anatomical bronchi in each scan
(Nakano et al. 2000; Lederlin et al. 2012; Diaz et al. 2012; Hasegawa et al.
2006; Brown et al. 2001). The process of labelling these branches from seg-
mented airway trees can now be automated (Ginneken et al. 2008b; Lo et al.
2011; Tschirren et al. 2005b). The labelling method presented in Chapter 4
is one such automated approach. Unfortunately, as revealed by the results of
that chapter, labelling is difficult, even for medical experts. For instance, R6
and L6 are the only segmental bronchi to be identified by the experts with
more than 90 % accuracy and 9 of the segmental bronchi are identified with
accuracies lower than 70%. Despite the fact that the presented algorithm is
as accurate as the medical experts, one should question when labelling is a
good strategy and where in the airway tree it can be used to reduce variability
of measurements. Figure 5.2 and 5.3 shows that there is a clear relationship
between properties such as lumen diameter, wall thickness, distensibility and
generation. Segmental bronchi, however, seem to be spread out over the range
of values represented by the airways at generation 3 to 7. This means that
the segmental level itself is not necessarily indicative of certain properties and
measurements conducted in different segmental bronchi should therefore not
be compared without reservations. Airways can be assumed to branch by
dichotomy and this means that in a normal airway tree, branches of each gen-
eration should be progressively and predictably smaller (Weibel 2009). Gen-
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erations are also much easier to detect than anatomical labels and all of the
branches of the segmented airway tree can be assigned a generation and con-
sequently analysed. Moreover, it is possible to estimate the completeness of
the segmented airway tree in each generation, because the number of branches
should double with each bifurcation (Figure 5.1). Grouping measurements by
generations as opposed to by anatomical label therefore seem to be a more
useful and easy to implement strategy. Because many branches contribute to
a measurement, some of the noise present in measuring each individual branch
may also be evened out, resulting in a better assessment of the average state of
the airways in each individual subject. The overall smaller standard errors of
the estimates of generation 1 to 7 compared to each segmental bronchus seen
in Figure 5.2, 5.3, and 5.4 is evidence to support this. Measurements should,
however, not be compared without reservations in generations that are not
nearly completely found, as the subset of airways found in such generations
are likely the most easily visible and therefore not representative. Although
anatomical labels may be less useful than generations for comparing measure-
ments between subjects, they can be used to provide additional information,
for instance by using a combination of generations and named bronchi to study
distribution of airway abnormalities by position within the lung. This could
be done by counting generations from each of the lobar or the subset of the
segmental bronchi that can be identified with greatest accuracy.

Chapter 5 and 6 show disease, distensibility and variations in inspiration
level affect measurements of airway dimensions in maximum inspiration scans.
Subjects who inspire more during scanning will appear to have thinner airway
walls and wider airway lumen, that is, they will appear to have less small
airway disease. The opposite is true for density measurements of emphysema,
where subjects who inspire more will appear to have less dense lungs and
therefore more emphysema. It is thus questionable whether it is possible, as
previous studies have attempted (Dijkstra et al. 2013; Nakano et al. 2000), to
evaluate the independent contribution of airway abnormalities and emphysema
to airflow limitation without considering the effects of variations in inspiration
level. The methods presented in this thesis could be used to conduct such an
investigation.

8.3 Future prospects

The airway wall segmentation method presented in Chapter 2 used a weight-
ing of the first and second order derivatives of the image intensity to find the
position of the airway wall surfaces. Simple intensity based surface terms like
this are common in airway wall segmentation (Li et al. 2006; Liu et al. 2012;
Petersen et al. 2010) but for airway extraction (and also other segmentation
tasks), inclusion of higher order texture information, for instance by using su-
pervised learning to build voxel appearance models, have resulted in improved
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results (Lo et al. 2010). Such models can be used to generate probabilities of
voxels being lumen, wall or background and these probabilities could then
be integrated into the segmentation method of Chapter 2 using the regional
terms of (Haeker et al. 2007). Regional terms, loosely said, not only consider
the position of the surface, but also what is inside them. One reason this
is an advantage is that outside structures, such as nearby vessels, are often
more clearly defined than the walls of especially smaller airways, meaning
that with the implemented surface terms they can be erroneously included.
Regional terms, however, consider the complete region between the surfaces
and these outside structures will thus only be included if all of the in-between
area looks like wall, which should be less likely. Tuning such a method with
phantoms could be more challenging, however, as it will be able to recognise
more subtle signs of the tissue it is trained to classify. Simple plastic tubes
without something resembling parenchyma and nearby vessels may thus not
be enough.

Experiments indicate that the presented wall segmentation method (Chap-
ter 2) may be able to grow complete airway trees if it is iterated multiple times,
for instance by starting from an initial spherical seed surface placed within
the trachea. The advantage of such an approach compared to region growing
is that it grows by looking for both the inner and outer airway wall surface
simultaneously and takes smoothness into account; continued growth is there-
fore not certain apon leakage into the parenchyma. Although no guarantees
are given on the amount of iterations it takes to complete, in practice it seems
to move towards the final solution in a steady fixed pace. This pace is gener-
ally lower with higher smoothness constraints/penalties and bounded above
by the length of the flow lines. This nice behaviour can be explained by the
fact that it only grows if the new solution is determined to be more optimal
(Equation 2.6) than the previous iteration. So it is not possible for the method
to return to a solution of a previous iteration and thereby iterate endlessly.
There are however problems, which remain to be solved. Re-meshing is needed
in regions that grow in order to keep the mesh vertices evenly distributed.
Re-meshing, however, changes the optimality of a given solution, meaning it
makes it possible for the method to jump back to an already visited solution.
Another problem occurs because smoothness is measured relative to the pre-
vious iteration, that is, the previous iteration is always considered perfectly
smooth. This makes the method biased towards not growing and probably
stops growth early in some cases. If these problems can be solved or the conse-
quences of them lessened, this new iterative method could remove the need for
an initial segmentation and allow airways to be more completely segmented
with less leakage.

The methods of Chapter 2 and 7 were developed to segment airway walls
from CT. Since then the method of Chapter 2 has also been applied to seg-
ment carotid artery walls from magnetic resonance (Arias et al. 2012) and
ultrasound (Arias et al. 2013) images. The advantages of the approaches,
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such as being able to find any number of surfaces in multiple scans simulta-
neously without self-intersections, while preserving the topology of the initial
surface and enabling point to point correspondences between vertices of the
initial mesh and each of the sought surfaces, means that they should be useful
for other segmentation tasks as well. Especially applications in which a coarse
estimate of the shape of the structure to segment can be found reliably, while
the exact boundaries are more difficult to discern. Segmentation of tubular
structures, such as blood vessels, from centrelines (Lesage et al. 2009) is one
such example. Another is refinement of an initial segmentation found by for
example statistical shape (Cootes et al. 1995) and appearance models (Cootes
et al. 2001) and atlas registration (Gee et al. 1993). Statistical shape or ap-
pearance models are widely used in medical image analysis, however, they
can only fit data represented by examples of a training set. The shape and
appearance of pathological cases can be very varied and it can be hard, if not
impossible, to get examples of all the kinds of pathology one can expect to
encounter. Refinement of the statistical model using an optimal surface ap-
proach can be used to allow some more flexibility (Sun et al. 2012). In this way
the statistical model output can be used as prior knowledge, for instance by
using smoothness penalties and constraints to make the final solution follow
the shape of the statistical model output to a lesser or greater degree. Point
correspondences enable measurements to be compared locally between differ-
ent surfaces in one image and between surfaces in different images, provided
these images can be registered accurately enough. In the case of lung CT im-
ages and airway segmentation such accurate registration is only possible with
images of the same subject due to the relative large biological differences in
lung structures. However, in the case of other modalities and organs, such as
for instance brain magnetic resonance images, inter-subject image registration
is often accurate enough. An initial segmentation may then be constructed
by template atlas registration (Lijn et al. 2012). The refinement of this ini-
tial segmentation using a variant of the method presented in Chapter 2 can
be used to allow greater flexibility, while still preserving correspondences be-
tween atlases registered to images of different subjects, allowing measurements
of segmented surfaces to be compared locally between them.

Decreased airway distensibility in COPD could be caused by decreased
lung recoil and loss of alveolar attachments due to emphysema (Diaz et al.
2012; Mead et al. 1967), or airway walls could be more rigid because of wall
thickening. The longitudinal segmentation method of Chapter 7 is well suited
to investigate these reasons. This is especially true if the method can be used
to segment ex- and inspiration scan-pairs. Such scan-pairs would allow dis-
tensibility to be much more accurately determined, because the scans are at
opposite ends of the range of breathing movement within each subject. Expira-
tion scans are, however, particularly difficult to segment, especially in patients
with airway disease, where airways can be severely narrowed or entirely col-
lapsed (Ginneken et al. 2008a; Lo et al. 2012). However, the method would
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allow these scans to be segmented by using information from the more easy
to segment inspiration scan, assuming that they can be registered accurately
enough. In general for the method to work, flow lines should start inside, end
outside, and only once intersect the airway wall. Flow lines roughly start from
the centre of the initial segmentation and so the registration method should
register the images accurately enough to put the initial segmentation airway
centre inside the actual airway. This puts an upper bound on the amount
of registration error the method can tolerate at roughly the lowest airway
radii one wishes to segment and analyse. Murphy et al. 2011 compared a
range of state-of-the-art registration methods for lung CT images on amongst
other things exp- and inspiration scan-pairs. The best performing methods
in general achieved landmark errors on these scans of about 1 mm, whereas
the average method was closer to 2.5 mm. The best performing methods thus
seems to be good enough to allow airways down to and including generation
5 to be analysed in exp- and inspiration images (in the data set of Chapter 6
lumen diameter was measured to be 4.4± 1.4 mm in airways of generation 5).
Correspondences between points in the segmented exp- and inspiration sur-
faces could be used to estimate distensibility locally. In this way the method
could be used to determine whether lack of distensibility is locally correlated
with thicker airway walls or the presence of emphysema, which would provide
further insights into the roles of emphysema and small airway disease in caus-
ing airflow limitation. Lack of distensibility could be a direct cause of airflow
limitation and so the ability to measure this accurately could also lead to new
airway signatures of COPD.
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Abràmoff, M. D., R. Kardon, S. R. Russel, X. Wu, and M. Sonka (2008).
“Intraretinal Layer Segmentation of Macular Optical Coherence Tomogra-
phy Images Using Optimal 3-D Graph Search”. In: IEEE Trans Med Imag
27.10, pp. 1495–1505.

Achenbach, T., O. Weinheimer, A. Biedermann, S. Schmitt, D. Freudenstein,
E. Goutham, R. P. Kunz, R. Buhl, C. Dueber, and C. P. Heussel (2008).
“MDCT assessment of airway wall thickness in COPD patients using a
new method: correlations with pulmonary function tests”. In: Eur Radiol
18, pp. 2731–2738.

Arias, A., J. Petersen, A. van Engelen, H. Tang, M. Selwaness, J. Witteman,
A. van der Lugt, W. Niessen, and M. de Bruijne (2012). “Carotid artery
wall segmentation by coupled surface graph cuts”. In: Medical Computer
Vision. Recognition Techniques and Applications in Medical Imaging. Ed.
by B. Menze, G. Langs, L. Lu, A. Montillo, Z. Tu, and A. Criminisi, pp. 38–
47.

Arias, A., D. Carvalho, J. Petersen, A. van Dijk, A. van der Lugt, W. Niessen,
S. Klein, and M. de Bruijne (2013). “Carotid artery lumen segmentation
on 3D free-hand ultrasound images using surface graph cuts”. In: Med
Image Comput Assist Interv - MICCAI 2013. Ed. by K. Mori, I. Sakuma,
Y. Sato, C. Barillot, and N. Navab. Lecture Notes in Computer Science.
Springer, pp. 542–549.

Ashraf, H., P. Lo, S. B. Shaker, M. de Bruijne, A. Dirksen, P. Tønnesen,
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Bülow, T., C. Lorenz, R. Wiemker, and J. Honko (2006). “Point based methods
for automatic bronchial tree matching and labeling”. In: SPIE Medical
Imaging. Vol. 6143, pp. 225–234.

Cardoso, M. J., M. J. Clarkson, G. R. Ridgway, M. Modat, N. C. Fox, and
S. Ourselin (2011). “LoAd: A Locally Adaptive Cortical Segmentation Al-
gorithm”. In: NeuroImage 56.3, pp. 1386–1397.

Chmura, K., S. Hines, and E. D. Chan (2008). CT of the Airways. Ed. by
P. Boiselle and D. Lynch. Contemporary medical imaging. Humana Press,
pp. 3–24. isbn: 9781597451390. url: http://books.google.dk/books?
id=QaoKfnl-qIcC.

Ciba 1959 (1959). “Ciba Guest Symposium Report: Definitions and Classifi-
cations of Chronic Obstructive Pulmonary Emphysema and Related Con-
ditions”. In: Thorax 14, pp. 286–299.

Cootes, T. F., C. J. Taylor, D. H. Cooper, and J. Graham (1995). “Active
shape models - their training and application”. In: Computer Vision and
Image Understanding 61.1, pp. 38–59.

Cootes, T. F., G. J. Edwards, and C. J. Taylor (2001). “Active Appearance
Models”. In: IEEE Trans Pattern Anal Machine Intell 23.6, pp. 681–685.

Cosio, M., H. Ghezzo, J. C. Hogg, R. Corbin, M. Loveland, J. Dosman, and
P. T. Macklem (1978). “The relations between structural changes in small
airways and pulmonary-function tests”. In: N Engl J Med 298.23, pp. 1277–
81.

http://books.google.dk/books?id=QaoKfnl-qIcC
http://books.google.dk/books?id=QaoKfnl-qIcC


Bibliography 125

Cosio, M. G. and A. Guerassimov (1999). “Chronic obstructive pulmonary
disease. Inflammation of small airways and lung parenchyma”. In: Am J
Respir Crit Care Med 160.5 Pt 2, S21–S25.

Decramer, M., W. Janssens, and M. Miravitlles (2012). “Chronic Obstructive
Pulmonary Disease”. In: Lancet 379, pp. 1341–51.

Dey, T. K. and J. Sun (2006). “Normal and Feature Estimation from Noisy
Point Clouds”. In: Proceedings of the 26th International Conference on
Foundations of Software Technology and Theoretical Computer Science,
pp. 21–32.

Diaz, A., C. Valim, T. Yamashiro, R. Estépar, J. Ross, S. Matsuoka, B.
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