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h i g h l i g h t s

• Infinite series describe the first passage times in the Wiener diffusion model.
• We provide efficient formulae for the density and distribution of first passages.
• An implementation in R statistical language is included in the online appendix.
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a b s t r a c t

TheWiener diffusion model with two absorbing barriers is often used to describe response times and er-
ror probabilities in two-choice decisions. Different representations exist for the density and cumulative
distribution of first-passage times, all including infinite series, but with different convergence for small
and large times. We present a method that controls the approximation error of the small-time represen-
tation that occurs due to finite truncation of these series. Our approach improves and simplifies related
work by Navarro and Fuss (2009) and Blurton et al. (2012, both in the Journal of Mathematical Psychology).

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In the presence of two mutually exclusive outcomes, event
times are often described by time-homogeneous Brownian mo-
tion drifting between two absorbing barriers (Wiener diffusion
model, e.g., Busemeyer & Townsend, 1993; Diederich, 1997; Rat-
cliff, 1978). For example, in two-choice decisions, a hidden under-
lying state is assumed to randomlymove between two alternatives
until one of two decision criteria is reached. For given parameters,
the model predicts the probabilities for the two choices as well as
the time it takes until the decision is made.

In a typical parametrization, a Wiener process X(t) starts at
X(0) = z and moves randomly with drift v and variance σ 2 = 1
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between two absorbing barriers at 0 and a, 0 < z < a. For con-

venience, define w = z/a so that 0 < w < 1. We consider the

density f 0 and distribution F 0 of first-passage times at the lower

barrier. The density of first passages at the upper barrier is given

by f a(t | v, a, w) = f 0(t | −v, a, 1 − w). For non-unit variance,

the density at the lower barrier is given by f 0(t | v/σ , a/σ , w).

The same relations hold for the distribution function.

2. Density and distribution of first-passage times

The density of first-passage times can be factorized and thus be
reduced to a standard form with one parameter (Navarro & Fuss,
2009, Eq. 2),

f 0(t | v, a, w) =
1

a2
exp

(

−vaw −
v2t

2

)

· f 0
(

t

a2

∣

∣

∣

∣

0, 1, w

)

(1)

with t > 0. Hereinafter, f (t) shall denote the one-parameter den-
sity. Two representations exist for f (t) that show different behav-
ior. The ‘‘large-time representation’’ fℓ shows good convergence for
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large t (e.g., Ratcliff, 1978),

fℓ(t) = π

∞
∑

k=1

k exp

(

−
k2π2t

2

)

sin(kπw),

whereas the ‘‘small-time representation’’ fs converges quickly for
small t (e.g., Van Zandt, Colonius, & Proctor, 2000),

fs(t) = t−3/2
∞

∑

k=−∞
(w + 2k) φ

(

w + 2k
√
t

)

with φ denoting the standard normal density.

The terms of both series vanish for large |k|. Navarro and Fuss
(2009) determined upper bounds for the approximation error that
results from finite truncation of the terms with |k| > K and pro-
vided expressions for theminimumnumber of terms Kℓ and Ks that
assure a predefined level of accuracy ε in the two representations.
By comparing Kℓ with Ks, and taking into account the calculations
involved in fℓ and fs, the representation with the least computa-
tional effort can be chosen.

Similar expressions exist for the cumulative distribution of
first-passage times which is often used in model fitting. For the
large-time representation Fℓ(t) see, for example, Eq. (A12) in Rat-
cliff (1978). Here we consider only the small-time representation
(e.g., Horrocks & Thompson, 2004; Van Zandt et al., 2000),

Fs(t) = P − sgn v

·
∞

∑

k=−∞

[

exp(−2vak − 2vaw) Φ

(

sgn v ·
2ak + aw − vt

√
t

)

− exp(2vak) Φ

(

sgn v ·
−2ak − aw − vt

√
t

)]

(2)

with P = exp(−2vaw)−exp(−2va)

1−exp(−2va)
denoting the total probability of ab-

sorption at the lower barrier and Φ the standard normal distribu-
tion. The above expressions for Fs(t) and P are undefined for zero
drift, for which simplified expressions can be found. Using a very
similar approach as Navarro and Fuss (2009), Blurton, Kesselmeier,
and Gondan (2012) proposed an efficient way for the approxima-
tion of Fs(t) and Fℓ(t) that assures a pre-specified precision ε.

Within this error bound, both approaches (Blurton et al., 2012;
Navarro & Fuss, 2009) yield a smooth surface for model fitting
(e.g., in likelihood maximization or in goodness-of-fit optimiza-
tion), at a computing speed equal to, and in many cases superior to
standard truncation methods. In both approaches, the total trun-
cation error is controlled by determining an upper bound for the
sum of the truncated terms with standard calculus tools.

3. Improved small-time representations

In both representations, controlling the approximation error
requires the determination of an upper bound for an infinite sum
of truncated terms which might be very conservative. In addition,
Expression (2) for Fs(t) requires an approximation of exp(y)Φ(−x)
at large x and y (Kiani, Panaretos, Psarakis, & Saleem, 2008), and
suffers from computational and numerical problems at drift rates
near zero.

It turns out that Fs can be restated using the reciprocal hazard

rate (‘‘Mill’s ratio’’) of the Normal distributionM(x) = 1−Φ(x)

φ(x)
(Hall,

1997, p. 347), resulting in

Fs(t) = exp

(

−vaw −
v2t

2

) ∞
∑

j=0

(−1)jφ

(

rj√
t

)

×
[

M

(

rj − vt
√
t

)

+ M

(

rj + vt
√
t

)]

(3)

with rj = ja + aw for even j, and rj = ja + a(1 − w) for odd j, so
that rj < rj′ for j < j′. The equivalence of the two representations
is shown in the online supplementary material (see Appendix A).

Because of (−1)j, and for positive arguments of φ and M
(see below), Expression (3) is an absolutely decreasing alternating
series. The absolute truncation error is then always smaller than
the first truncated term. In otherwords, evaluation of the series can
be stopped as soon as the absolute value of the jth term is below ε.

Because the even and the odd terms are slightly differently de-
fined, and to further reduce the truncation error, the practical im-
plementation of (3) will add up K pairwise differences of even and
odd terms from j = 0 to 2K − 1. Denote the first truncated (even)
term in (3) by

s2K = exp

(

−vaw −
v2t

2

)

φ

(

r2K√
t

)

×
[

M

(

r2K − vt
√
t

)

+ M

(

r2K + vt
√
t

)]

.

Then, consider s′2K ≥ s2K inwhich thenumerators of the arguments
of φ andM are replaced by r2K − |v|t . Simplifications lead to

s′2K = 2 exp

(

−vaw −
v2t

2

) [

1 − Φ

(

r2K − |v|t
√
t

)]

.

This upper bound s′2K is below ε if

K ≥
√
t

2a
· Φ−1

[

1 −
1

2
exp

(

vaw +
v2t

2
+ log ε

)]

+
|v| t − aw

2a
(4)

which also keeps the total truncation error below ε. Positivity of

the arguments of φ andM is given for K ≥ |v|t−aw

2a
.

We now consider the first-passage density in its simplified one-
parameter form with zero drift (1).

fs(t | 0, 1, w) =
1

√
2π t3

∞
∑

j=−∞
(w + 2j) exp

[

−
(w + 2j)2

2t

]

. (5)

For j ≥ J with |w + 2J| ≥
√
2t , the decrease of the exponential

dominates the increase of the factor, so that fs is again recognized as
an absolutely decreasing alternating series. Let sj denote individual
terms of (5). Then, |s−J | > |sJ | > |s−(J+1)| > |sJ+1|, and so on, with
an alternating sign. Reordered this way, evaluation of (5) can stop
if j ≥ J and the absolute value of the next term is below ε.

For the practical implementation it seems again reasonable to
accumulate K pairs (s0 > 0, s−1 < 0), then (s1, s−2), and so on,
until (sK−1, s−K ). The minimum number of pairs K is then given by
K ≥ J and

K ≥
1

2
·
√

−t

(

uε −
√

−2uε − 2
)

− w/2 (6)

with uε = log(2π t2ε2) (for a stepwise derivation, see the online
supplemental material, Appendix A). The criterion is obtained by
taking the square on both sides of sK ≤ ε and applying Lambert’s
W function to the result that has the form x exp(x) ≥ y. A conser-
vative bound for the lower branch ofW is given by Chatzigeorgiou
(2013, Theorem 1).

The above derivation holds for drift v = 0 and barrier separa-
tion a = 1. For the general case (1), K has to be determined using

a modified convergence criterion ε′ = ε · a2 exp
(

vaw + v2t
2

)

.

4. Discussion

The present note provides improved finite approximations of
the small-time representations of the density and distribution of
first-passages in the two-barrier diffusionmodel. By comparing the
required number of iterations in the small-time representations
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Fig. 1. Improved criteria for the small-time representations in the Wiener diffusion model. The figures show the number of terms that are required to reach a precision

of ε = 0.001 in the series for the density and distribution as a function of t at which f and F are evaluated. These numbers are driven by the index of the term at which

the series starts to decrease, and by the index of the first term that is below ε. In the density function, the first criterion (K ≥ J) dominates the second criterion for small t

(6), causing a non-monotone relation between t and 2K . Compared to the previous approaches, the required number of terms is slightly reduced for the first-passage time

density (left, f with w = 0.5) and considerably reduced for the distribution (right, F with v = 0.01, a = 20, w = 0.5).

with their large-time counterparts (Blurton et al., 2012; Navarro
& Fuss, 2009), and adjusting for the time necessary to evaluate a
single term of the series, the representation which requires least
computational effort can be chosen.

Compared to previous approaches, the improvement is four-
fold: Restating the expressions for the density and distribution
as absolutely decreasing alternating series, the derivation of the
truncation error for (3) and (5) is considerably simplified, because
only a single term needs to be controlled instead of an infinite
sum. As a consequence, the estimate for the actual approximation
error is improved, and fewer terms are needed to obtain a pre-
specified precision (Fig. 1). Because efficient implementations ex-
ist for Mill’s ratio (erfcx in Matlab, zeta in R-package sn, Azzalini,
2014), and M(x) behaves well for large x, the distribution func-
tion (3) is numerically less problematic than the standard form
with exp(y)Φ(−x) that needs an approximation for large x and y

(see Blurton et al., 2012, supplemental material). Finally, the ex-
pressions for the distribution function are well-defined for all drift
rates including v = 0 and rates close to zero.

Because of standard convergence properties of decreasing alter-
nating series, standard ad hoc approaches are actually justified that
stop evaluation as soon as a single term is below the tolerance—this
holds at least for the small-time representations (we did not find
a respective solution for the large-time representation). Because
two alternative representations exist for both the density and the
distribution, and because it is numerically more precise to accu-
mulate sums from small to large terms, it is still advantageous to
determine, in advance, the required number of terms, and we pro-
vide improved estimates for this number to attain a pre-specified
tolerance (Ineqs. (4) and (6)). For the large-time counterparts, we
refer to the solutions already offered by Navarro and Fuss (2009)
and Blurton et al. (2012). Then, one can decide in advance which
representation to choose for optimal numerical properties and
minimal computational costs.

Appendix A. Supplementary material

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.jmp.2014.05.002. The supple-
mentarymaterial includesmore detailed derivations and an imple-
mentation in R (R Core Team, 2014).
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Online Supplement

This is the online supplemental material for “Even faster and even more

accurate first-passage time densities and distributions for the Wiener diffu-

sion model” by Gondan, Blurton, and Kesselmeier. The online supplement

provides details on the derived criterion for convergence as well as some ex-

ample code in the R statistical language (R Core Team, 2014) as a separate

file. In addition, we show the equivalence of the expressions for the small-time

distribution in Hall (1997) and Blurton, Kesselmeier and Gondan (2012).

Equivalence of the two small-time distributions

Expression (3) yields the small-time representation of the distribution of

first-passage times (Hall, 1997). In order to demonstrate its equivalence with

the standard form (used, e.g., in Blurton et al., 2012), we treat the positive

and negative terms separately:

Fs(t) = exp

(

−vaw − v2t

2

) ∞
∑

k=0

{

φ

(

r2k√
t

)[

M

(

r2k − vt√
t

)

+M

(

r2k + vt√
t

)]

− φ

(

r′2k+1√
t

)[

M

(

r′2k+1 − vt√
t

)

+M

(

r′2k+1 + vt√
t

)]}

with r2k = 2ak + aw for the positive terms (even j in Expr. 3), and r′2k+1 =

2ak + 2a− aw for the negative terms (odd j).

For the Normal distribution, φ(x) = 1√
2π

exp(−x2

2
), and “Mill’s ratio” is

M(x) =
√

π

2
exp

(

x2

2

)

erfc
(

x√
2

)

, with erfc
(

x√
2

)

= 2 [1− Φ(x)] = 2Φ(−x)
denoting the “complementary error function”.

1



For positive drift, simplifications lead to

Fs(t | v > 0) = exp (−vaw)×
∞
∑

k=0

{

exp(−r2kv)
[

1− Φ

(

r2k − vt√
t

)]

+ exp(r2kv) Φ

(

−r2k + vt√
t

)

− exp(−r′2k+1v)

[

1− Φ

(

r′2k+1 − vt√
t

)]

− exp(r′2k+1v) Φ

(

−r′2k+1 + vt√
t

)}

The difference of the two geometric series exp (−vaw)
∑∞

k=0 exp(−r2kv)
and exp (−vaw)∑∞

k=0 exp(−r′2k+1v) corresponds to the total probability of

absorption at the lower barrier, P = exp(−2vaw)−exp(−2va)
1−exp(−2va) . After replacing

r2k = 2ak+aw and r′2k+1 = 2a(k+1)−aw, the terms with r and r′ complement

to two infinite series from −∞ to ∞:

Fs(t | v > 0) = P −
∞
∑

k=−∞

[

exp(−2vak − 2vaw) Φ

(

2ak + aw − vt√
t

)

− exp(2vak) Φ

(−2ak − aw − vt√
t

)]

A similar argument can be made for v < 0. The sgn-functions (e.g., in

Blurton et al., 2012) summarize both positive and negative drift in a compact

form.

Criteria for the small-time density

The series in (5) yields the small-time representation of the first-passage

time density. Again, as argued in the text, for K ≥
√
2t−w
2

it is a decreas-

ing alternating series so that the truncation error is controlled if the first

(positive) truncated term sK is below ε, i. e.

w + 2K√
2πt3

exp

[

−(w + 2K)2

2t

]

≤ ε

2



Taking the square on both sides (both sides are positive) and rearranging

yields

−(w + 2K)2

t
exp

[

−(w + 2K)2

t

]

≥ −2πt2ε2

which has the form x exp(x) ≥ y. The solution is obtained by applying

Lambert’s W function to both sides (here the lower branch of Lambert’s W

is needed),

−(w + 2K)2

t
≤ W (−2πt2ε2)

Lambert’s W can either be determined numerically, which is compu-

tationally expensive. Alternatively, a lower bound is given by Chatzige-

orgiou (2013, Theorem 1), W [− exp(u)] > u −
√
−2u− 2. Setting uε =

log(2πt2ε2), the above condition holds if

−(w + 2K)2

t
≤ uε −

√
−2uε − 2

which is then easily solved for K and leads to

K ≥ 1

2
·
√

−t
(

uε −
√
−2uε − 2

)

− w/2

3



evenfaster-r1.r
# 
# Online supplemental material for ``Even faster and more accurate 
# first-passage time densities and distributions for the Wiener diffusion 
# model'' by Gondan, Blurton, and Kesselmeier. 
#
#
# log of Mill's ratio for the normal distribution
#
logMill = function(x) # log of Mill’s ratio
{
    m = numeric(length(x))
    m[x >= 10000] = -log(x[x >= 10000]) # limiting case for x -> Inf
    m[x < 10000]  = pnorm(x[x < 10000], lower=FALSE, log=TRUE) - 
        dnorm(x[x < 10000], log=TRUE)
    return(m)
}

#
# Number of terms required for the distribution
#
Ks = function(t, v, a, w, eps)
{
    K1  = (abs(v)*t - a*w)/2/a
    arg = pmax(0, pmin(1, exp(v*a*w + v*v*t/2 + log(eps))/2))
    K2  = -sqrt(t)/2/a * qnorm(arg)
    return(ceiling(max(K1, K1 + K2)))
}

#
# Distribution at lower barrier - small time representation
#
# t: time (vector)
# v: drift
# a: upper barrier
# w: relative position of X(0) = z, w = z/a
# eps: required precision
#
Fs = function(t, v, a, w, eps=sqrt(.Machine$double.eps))
{
 K = Ks(t, v, a, w, eps)
 F = numeric(length(t))
 sqt = sqrt(t)
 for(k in K:0)
 {
  rj = 2*k*a + a*w
  dj = -v*a*w - v*v*t/2 + dnorm(rj/sqt, log=TRUE)
  pos1 = dj + logMill((rj-v*t)/sqt)
  pos2 = dj + logMill((rj+v*t)/sqt)
  rj = (2*k+1)*a + a*(1-w)
  dj = -v*a*w - v*v*t/2 + dnorm(rj/sqt, log=TRUE)
  neg1 = dj + logMill((rj-v*t)/sqt) 
  neg2 = dj + logMill((rj+v*t)/sqt)
  F = exp(pos1) + exp(pos2) - exp(neg1) - exp(neg2) + F
 }
 return(F)
}

#
# Number of terms for the density
#
ks = function(t, w, eps)
{
 K1 = K2 = (sqrt(2*t) - w)/2
 u_eps = pmin(-1, log(2*pi*t*t*eps*eps)) # Safe bound so that
 arg = -t * (u_eps - sqrt(-2*u_eps - 2)) # sqrt(x) with x > 0
 K2[arg > 0] = 1/2 * sqrt(arg) - w/2
 return(ceiling(max(K1, K2)))
}

Seite 1
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#
# Density at the lower barrier - one-parameter form
#
fsw = function(t, w, eps)
{
    K = ks(t, w, eps)
    f = numeric(length(t))
    if(K > 0) for(k in K:1)
        f = (w+2*k) * exp(-(w+2*k) * (w+2*k)/2/t) +
            (w-2*k) * exp(-(w-2*k) * (w-2*k)/2/t) + f
    return(1/sqrt(2*pi*t*t*t) * (f + w * exp(-w*w/2/t)))
}

#
# Density at lower barrier
#
# t: time (vector)
# v: drift
# a: upper barrier
# w: relative position of X(0) = z, w = z/a
# eps: required precision
#
fs = function(t, v, a, w, eps=sqrt(.Machine$double.eps))
{
    g = 1/a/a * exp(-v*a*w - v*v*t/2)
    return(g * fsw(t/a/a, w, eps/g))
}

#
# Examples
#
# Fs(t=1:1000, v=-0.1, a=100, w=0.4) for the distribution within 1-1000 ms
# fs(t=1:1000, v=-0.1, a=100, w=0.4) for the density
# Fs(t=1:1000, v=-(-0.1), a=100, w=1-0.4) for the upper barrier
# sigma = 0.1
# Fs(t=1:1000, v=-0.1/sigma, a=100/sigma, w=0.6) same for non-unit SD
#
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