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Abstract

Traditional mutation assessment methods generally focus on predicting disruptive changes in protein-coding regions rather
than non-coding regulatory regions like untranslated regions (UTRs) of mRNAs. The UTRs, however, are known to have
many sequence and structural motifs that can regulate translational and transcriptional efficiency and stability of mRNAs
through interaction with RNA-binding proteins and other non-coding RNAs like microRNAs (miRNAs). In a recent study,
transcriptomes of tumor cells harboring mutant and wild-type KRAS (V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog)
genes in patients with non-small cell lung cancer (NSCLC) have been sequenced to identify single nucleotide variations
(SNVs). About 40% of the total SNVs (73,717) identified were mapped to UTRs, but omitted in the previous analysis. To meet
this obvious demand for analysis of the UTRs, we designed a comprehensive pipeline to predict the effect of SNVs on two
major regulatory elements, secondary structure and miRNA target sites. Out of 29,290 SNVs in 6462 genes, we predict 472
SNVs (in 408 genes) affecting local RNA secondary structure, 490 SNVs (in 447 genes) affecting miRNA target sites and 48
that do both. Together these disruptive SNVs were present in 803 different genes, out of which 188 (23.4%) were previously
known to be cancer-associated. Notably, this ratio is significantly higher (one-sided Fisher’s exact test p-value = 0.032) than
the ratio (20.8%) of known cancer-associated genes (n = 1347) in our initial data set (n = 6462). Network analysis shows that
the genes harboring disruptive SNVs were involved in molecular mechanisms of cancer, and the signaling pathways of LPS-
stimulated MAPK, IL-6, iNOS, EIF2 and mTOR. In conclusion, we have found hundreds of SNVs which are highly disruptive
with respect to changes in the secondary structure and miRNA target sites within UTRs. These changes hold the potential to
alter the expression of known cancer genes or genes linked to cancer-associated pathways.
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Introduction

Next-generation genome sequencing is now widely used for the

identification of genetic variations in cancer genomes [1,2]. Non-

small cell lung cancer (NSCLC) is the most common form of lung

cancer and it is often found with activating mutations in the KRAS

oncogene which causes the tumor cells to be aggressive and

resistant to chemotherapy [3–5]. In a recent study, Kalari et al. [6]

performed transcriptome-wide sequencing of NSCLC and iden-

tified differentially expressed genes, alternate splicing isoforms and

single nucleotide variants (SNV) for tumors with and without

KRAS mutations. A network analysis was performed with the genes

showing differential expression (374 genes), alternate splicing (259

genes) and SNV-related changes (65 genes) that are differentially

present in lung tumor groups with and without KRAS mutations.

Integrated pathway analysis identified NFkB, ERK1/2 and AKT

pathways as the most significant pathways differentially deregu-

lated in KRAS wild-type as compared with KRAS mutated samples.

A single nucleotide variant (SNV) is a nucleotide change at a

single base position that occurs at a low frequency (also referred as

a rare variant). SNVs observed in tumor cells are mostly somatic

variants and very few are germ-line variants. Genome-wide

association studies (GWAS) report that SNVs mostly occur in

non-coding regions compared to coding (exonic) regions of RNAs

[7]. In the past, however, most studies have been focused on the

effect of SNVs in coding regions (known as cSNVs or nsSNVs) [8]

rather than the effect of SNVs in the regulatory non-coding DNA
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or non-coding RNA (rSNV). In the case of NSCLC, Kalari et al.

[6] identified a total of 73,717 unique SNVs present in and around

(+/25 kb) RefSeq genes. Of these, 23,987 were cSNVs and their

effects on coding regions have previously been predicted (see [6]

for more details). The effects of rSNVs that are located in

untranslated regions (UTRs) of protein-coding genes, however,

need to be analyzed.

It is well known that UTRs play crucial roles in post-

transcriptional regulation including mRNA stability [9], transport

[10], localization [11,12], translational activation [13] and

repression [14,15]. These functional regulations are carried out

by cis-regulatory elements present in 59 and 39 UTRs. Notably,

some of the cis-regulatory elements are structured, e.g., iron-

responsive element (IRE), internal ribosome entry site (IRES) and

selenocysteine insertion sequence (SECIS). The primary structure

of cis-regulatory elements is also important for the binding of trans-

acting RNA-binding proteins or other non-coding RNAs. For

example, microRNAs (miRNAs) are small non-coding RNAs

(about 22 nt) that bind to target sites mostly present in 39 UTRs.

This interaction results in either the cleavage of target mRNAs or

repression of their translation. Several studies have reported that

miRNA-mediated gene regulation plays a major role in cancer

cells and such regulation has been considered as a potential drug

target (see review [16]). All this evidence supports both sequence

and structural motifs of UTRs being important for the control of

gene expression.

The occurrence of genetic variation(s) in UTRs could poten-

tially affect their sequence and/or structural motifs and thus lead

to changes in post-transcriptional regulation [17–20]. For exam-

ple, a SNP in a let-7 miRNA target site (miRTS) in the 39 UTR of

KRAS has been identified to affect the binding of let-7 miRNAs.

This results in the overexpression of KRAS, leading to the increased

risk of NSCLC [21]. In addition, recent studies report that genetic

variation can potentially create, change or destroy miRNA targets

sites, which results in dysregulation of the target mRNA [22,23].

Notably this has been identified in tumor cells as well [24].

Furthermore, a cancer-driven mutation present in an IRES in

human p53 mRNA alters the structure of the IRES element, which

inhibits binding of a trans-acting factor essential for translation

[25]. The recent number of web servers and data bases developed

to deal with variants affecting miRTSs also demonstrates the

growing importance of target site variants [22,26–28].

In this study, we predict the possible effects of 29,290 SNVs

associated with NSCLC that are located in the UTR regions of

mRNAs. The local effect of SNVs on the secondary structure of

UTRs is predicted using RNAsnp [29] and the effect of SNVs on

miRTSs in the UTR is predicted using TargetScan [30] and

miRanda [31], which were shown to be among the more reliable

miRNA target prediction methods [32]. The experimentally

identified miRNA-mRNA maps, using Argonaute (Ago) cross-

linking immunoprecipitation coupled with high-throughput se-

quencing (CLIP-Seq), are further used to reduce the false positive

predictions of miRTSs [33].

Materials and Methods

Data sources
The SNVs identified through RNA-sequencing of 15 primary

lung adenocarcinoma tumors (8 with KRAS mutation and 7

without KRAS mutation) were extracted from Kalari et al. [6]. It

should be noted that the previous study [6] had no RNA-

sequencing data on normal cells so it was not possible to separate

SNVs derived from the germ-line or somatic mutation. Thus, the

data set obtained, 29,290 UTR SNVs in 6462 coding genes,

derived from both germ-line and somatic variants that were

expressed in lung adenocarcinoma tumors. Based on the overlap

of these SNVs with the dbSNP (135 build), we could estimate that

40% of the 29,290 SNVs are germ-line variants. For those SNVs

that overlap with dbSNP entries, we also extracted the SNPs in

linkage dis-equilibrium using the SNAP server [34] (version 2.2;

with the default parameters: r2$0.8, distance limit 500 kb, SNP

data set 1000 Genomes pilot 1, and population panel CEU).

RefSeq mRNA sequences corresponding to the 6462 genes

(hg19 Build) were downloaded from the UCSC genome browser

(http://genome.ucsc.edu) [35]. For genes with multiple tran-

scripts, all isoforms were considered. By mapping of 29,290 SNVs

to these RefSeq mRNA sequences, we obtained 3646 in 59 UTRs,

25,627 in 39 UTRs and 17 in both 59 and 39 UTR of overlapping

transcripts. These SNVs were further subjected to our compre-

hensive pipeline (Figure 1) to predict their effect on RNA

secondary structure and miRNA target sites, which is described

in the following sections.

A list of cancer-associated genes was obtained from COSMIC

[36] and Qiagen/SABioSciences [37]. This list includes 1347 of

the 6462 genes considered in this analysis. In order to find the

enrichment of genes carrying disruptive SNVs, which have effect

on secondary structure and/or miRTSs, in cancer, we performed

a one-sided Fisher’s exact test. This was computed from a 262

contingency table (n = 6462) with the number of genes carrying/

not carrying disruptive SNVs on the one side and the number of

cancer-associated/other genes on the other side. Similarly, the

enrichment for disruptive SNVs in cancer-associated genes was

computed by classifying the total number of SNVs (n = 29,290)

into disruptive/non-disruptive SNVs on the one hand, and those

being and not being present in cancer-associated genes on the

other.

A set of experimentally verified examples of SNPs with effects

on miRNA target sites has been extracted from the literature (see

Table S1). These 19 SNPs (affecting 25 miRNA-mRNA interac-

tions) have been used to test the filtration criteria used in the

miRNA part of our pipeline.

Prediction of SNVs’ effect on RNA secondary structure
The effect of SNVs on RNA secondary structure was predicted

using RNAsnp (version 1.1) [29]. The wild-type mRNA sequences

and the SNVs were given as input along with default parameters of

RNAsnp. For each SNV, RNAsnp considered a window of +/

2200 nts around the SNV position to generate the wild-type (WT)

and mutant (MT) subsequences and computed their respective

base pair probability matrices P~(Pij) and P�~(P�ij). Then, the

difference between the base pair probability of wild-type and

mutant structure was measured using Euclidean distance (d) and

Pearson correlation coefficient (r) for all local regions ½u,v� within

the subsequence. For completeness, we briefly summarize these

two measures as follows. The first one computes the difference

between two matrices directly by

d2
½u,v�(P,P�)~

Xv

i~u

Xv

j~i

(Pij{Pij
�)2, ð1Þ

where Pij is the probability of bases i and j being paired. The

second measure uses the position-wise pair probabilities p. For a

local region ½u,v�, the vector p contains the elements

pi½u,v�~
Pv
j~u

Pij . Then the difference between two vectors p and

p� is measured by

Predicting Functional Impact of UTR SNVs
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r½u,v�(p,p�)~cov(p½u,v�,p
�
½u,v�)=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var(p½u,v�)var(p�½u,v�)

q
: ð2Þ

Finally, a local region predicted with maximum Euclidean

distance (dmax) or minimum Pearson correlation coefficient (rmin)

and the corresponding p-value is then reported. We employ both

measures independently as both measures hold their respective

strengths and weaknesses (see [29] for details). We generated two

lists (each with p,0.1) of candidates, dmax and rmin, and each of

them is subjected to a multiple-testing correction using the

Benjamini-Hochberg procedure [38], which limits the false

discovery rate to be no more than a chosen threshold (typically

10%).

To analyze whether the RNAsnp predicted local region is

structurally conserved, we used the annotations of conserved RNA

secondary structure predictions from our in-house pipeline [39],

which makes use of a range of tools including CMfinder [40] and

RNAz [41] programs.

Predicting of SNVs’ effect on microRNA target sites
For each SNV in the data set, a subsequence of 30 nts on either

side of the SNV position was retrieved. Further, all 2042 human

mature miRNA sequences from miRBase (v19) [42] were used to

scan for possible target sites in wild-type and mutant (with SNV)

subsequences. As a first step, TargetScan (version 6.0) [30] was

used to identify pairs of SNVs and miRNAs for which the type of

seed match differs between wild-type and mutant or is only present

in either of them. The different seed types used by TargetScan are

7mer-1a, 7mer-m8, and 8mer-1a (in increasing strength), where

‘1a’ refers to an adenosine in the miRTS 39 to the seed match (i.e.,

opposite the first nucleotide of the miRNA) and ‘-m8’ refers to a

Watson-Crick-matched nucleotide in position 8. Subsequently, the

interaction energy of these pairs was computed using miRanda

(version 3.3a) [31]. As a seed match change is already required by

the TargetScan filtration, the parameters for miRanda were set to

not weigh the seed region too high (‘-scale 2’ instead of default 4)

and with relaxed cutoffs (score 45, energy 25 kcal/mol), in order

to capture cases where a poor seed match can be compensated. To

classify an interaction as working we later apply a more

Figure 1. Pipeline for the analysis of effect of SNVs on UTRs of mRNA.
doi:10.1371/journal.pone.0082699.g001
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conservative energy threshold of 211 kcal/mol based on our

previous study [43]. For each pair of miRNA and 61mer, only the

strongest binding site (lowest DG) that differs between WT and

SNV sequence is retained. Putative interactions are classified as

created, destroyed or altered upon mutation based on miRanda

predictions. The create set contains target sites that are induced by

the SNV, i.e., have an interaction energy of 211 kcal/mol or

lower in the SNV variant, while no interaction is predicted in the

wild-type (either due to score or energy threshold). Similarly, a loss

of target site would be recorded in the destroy set, if the interaction

is predicted for the wild-type but not with the SNV. Finally, the

alter set contains putative interactions that are predicted with a

binding energy of at most 211 kcal/mol for at least one variant.

For these, the energy difference observed for the binding of

miRNA before and after SNV introduction was measured as their

log-ratio lr = ld (DGSNV /DGWT ), for DGWT ,0. The lr is 0 if there

is no change in energy; negative if the wild type has the stronger

interaction (lower energy), positive otherwise. Given the size of the

data set, we focus on the (top) candidates whose absolute lr value is

above the mean (m) of absolute lr values from all pairs classified as

alter. The efficiency of this threshold clearly varies with the data,

but it will always retain the top candidates with highest relative

energy difference. Even though it should not be seen as a fixed cut-

off, we applied it to our set of known examples, where 14 out of 23

interactions exceed the value we applied here (see Table S1).

Threshold values based on the distribution of MFE changes have

been used in a similar way before [24].

In order to reduce false positive predictions, the miRNA target

sites predicted for the wild-type (destroy or alter) were cross-checked

with experimentally identified microRNA-target interaction maps.

Those data, derived through Ago CLIP-Seq, was downloaded

from starBase [44]. Only SNVs that are located inside stringent

Ago CLIP-Seq peak clusters with a biological complexity (BC) of

at least two were retained. This filter cannot be used for the

interactions from the create set, as CLIP-Seq data is available for

the wild-type only.

Finally, the set of miRNAs was filtered for those expressed in the

respiratory system (lung and trachea) according to the miRNA

body map [45]. The overview of the miRNA analysis is described

in Figure 2.

From the PhenomiR [46] database, we retrieved information

about miRNAs that have been found to be up- or down regulated

in lung cancer. This set comprises 264 individual miRNA stem-

loop accessions, 3 of which are ‘dead entries’. The remaining 261

stem-loops give rise to 430 mature miRNA products, which we

refer to as lung cancer-associated miRNAs. In this data set, 27 miRNAs

are specific to NSCLC [47] type according to miRNA body map

[45]. The later data set is referred as NSCLC-associated miRNAs.

Figure 2. Pipeline for the analysis of SNVs’ effect on miRNA target sites in more detail (dashed box from Figure 1). The flow chart
shows the different steps of prediction and filtration with the number of individual SNVs, miRNAs, and pairs of these at each stage.
doi:10.1371/journal.pone.0082699.g002
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Ingenuity Pathways Analysis
Interactome networks of candidate genes were constructed

using Ingenuity Pathway Analysis (IPA) software (IngenuityH
Systems, www.ingenuity.com; build version: 220217; content

version: 16542223). Network generation is based on the ‘Global

Molecular Network’ in IPA, which comprises an extensive,

manually curated set of gene-gene relationships based on findings

from the scientific literature. The genes of interest (candidates put

out by our pipeline and used as input for IPA) that are also present

in this global network are the so-called focus genes. Highly-

interconnected focus genes are the starting points in network

generation. Additional non-focus genes from the Global Molecular

Network might be used as linker genes between small networks.

Networks are extended until an approximate size of 35 genes,

which is considered optimal for visualization and interpretation

(for details see [48]). The p-value computed for each network

represents the probability to find the same (or higher) number of

focus genes in a randomly selected set of genes from the global

network. It is computed by a right-tailed Fisher Exact Test with

(non-)focus molecules on the one side and molecules (not) in the

network on the other side of a 262 contingency table. This is

transformed into a score which is the negative log of the p-value.

Furthermore, IPA was used to identify the top diseases and

disorders, molecular and cellular functions, and canonical

pathways associated with the genes in our candidate sets (so

called ‘focus genes’). The p-value for a given (disease, function or

pathway) annotation describes the likelihood that the association

between the input gene set and the annotation is due to random

chance. This is also based on a right-tailed Fisher’s exact test as

specified above.

Results

Effect of SNVs on RNA secondary structure
The structural effects of 29,290 UTR SNVs were predicted

using RNAsnp (v1.1). Both the Euclidean distance (dmax) and

Pearson Correlation Coefficient (rmin) measures of RNAsnp (mode

1) were independently employed to predict the effect of SNVs on

Table 1. List of 28 high-confidence SNVs with p-value,0.05 predicted by both dmax and rmin measures of RNAsnp.

Gene mRNA UTR SNV
RNAsnp
dmax (p-value)

% overlap with
conserved secondary
structurea

RNAsnp
rmin (p-value)

% overlap with
conserved secondary
structure dbSNP 135

GSR NM_001195102 3 A2638G 0.0030 89
$ 0.0213 100

$ rs1138092

MEF2A NM_005587 3 A2046U 0.0032 100
$ 0.0238 100

$

PPM1A NM_177952 3 G2231A 0.0059 100# 0.0118 100#

MAPK14 NM_139012 3 A2304C 0.0076 100#;96
$ 0.0224 91#;91

$

PHC2 NM_198040 3 A3730C 0.0105 - 0.0137 75#

BECN1 NM_003766 3 U1970C 0.0120 100# 0.0487 100#

NFKBIE NM_004556 3 G1659C 0.0144 84
$ 0.0473 100

$

MAPK1 NM_002745 3 U2360G 0.0148 100# 0.0262 100# rs13058

DHCR24 NM_014762 3 A4192C 0.0159 100# 0.0494 100#

ADAMTS1 NM_006988 3 U4320G 0.0166 94# 0.0215 83#

SRF NM_003131 3 C3504U 0.0173 100# 0.0074 100# rs3734681

CASP2 NM_032982 3 U2139C 0.0189 56# 0.0230 62#

LFNG NM_001040167 3 C1838G 0.0215 64# 0.0333 - rs4721752

SH3PXD2A NM_014631 3 C8560U 0.0223 100
$ 0.0073 -

KITLG NM_000899 3 U1057G 0.0226 50
$
;84# 0.0080 90#

PRKAB1 NM_006253 3 U1875C 0.0237 100
$ 0.0462 100

$

TFG NM_001195479 5 G309C 0.0256 - 0.0398 56#

FTH1 NM_002032 3 U819G 0.0262 93# 0.0259 100#

BCL2L2 NM_001199839 3 C2469A 0.0275 78# 0.0294 100# rs3210043

CDKN1C NM_000076 3 G1334C 0.0290 87# 0.0253 87#

TIA1 NM_022173 3 U4082A 0.0316 100# 0.0363 100#

NFKBIE NM_004556 3 U1644G 0.0333 98# 0.0347 100#

DAPK3 NM_001348 3 G1662U 0.0334 54# 0.0216 94# rs3745982

NCOA1 NM_003743 3 C4893G 0.0342 100# 0.0176 100# rs17737058

PCBP4 NM_001174100 3 C1790G 0.0413 59# 0.0187 -

SH3PXD2A NM_014631 3 U8562A 0.0451 100
$ 0.0096 100

$

ID2 NM_002166 5 C143G 0.0464 87# 0.0474 83#

GPX3 NM_002084 3 U1552G 0.0474 73# 0.0427 100#

aThe conserved RNA secondary structure predicted by CMfinder and RNAz programs (through our in-house pipeline [39]) are highlighted with the symbols # and
$
,

respectively.
doi:10.1371/journal.pone.0082699.t001
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local RNA secondary structure. The distribution of p-values

calculated for the 29,290 UTR SNVs is shown in Figure S1A. At a

significance level of 0.1 (chosen from our previous study [29]),

3237 and 3062 SNVs were predicted, respectively, by dmax and

rmin measures. Further, the adjustment for multiple comparisons

(using Benjamini–Hochberg procedure [38]) provided 3204 and

1813 SNVs respective to dmax and rmin measures. After fusing

these two lists, we got 3561 unique SNVs in 2411 genes.

Further, we calculated the distance between the location of

these 3561 SNVs and the predicted local region where the

maximum structural change was detected (Figure S1B). It shows

that the majority of the SNVs cause structural change in and

around the SNV position. In addition, the length distribution of

the predicted local region shows that the majority of SNVs have

effect on the local region of size 50 to 100 nts, however, certain

SNVs (n = 47) have effect on a global structure where the size of

predicted local region exceeds 300 nts (Figure S1C). Furthermore,

we checked whether these disruptive SNVs are enriched in GC or

AU rich regions, as sequences with such biased nucleotide content

have been shown more sensitive to structural changes caused by

mutations [49]. For each SNV we computed the GC content of its

flanking regions (as previously using 200 nts up- and down-

stream), see Materials and Methods. This showed that both the

data set SNVs and the disruptive SNVs are highly enriched in the

regions with GC content ranging from 40 to 60 percent (see Figure

S2), which should therefore make them less sensitive to variations.

In addition, we found that there were no significant differences

between GC content distributions of disruptive SNVs and the data

set SNVs (see Figure S2 with Kolmogorov-Smirnov).

It is known that the UTRs of mRNAs harbor evolutionarily

conserved regulatory elements ([50–52], see also reviews [53,54]).

Thus, we cross-checked for the overlap between the disrupted

local region predicted by RNAsnp and the conserved RNA

secondary structures predicted using our in-house pipeline [39]

(see Material and Methods sections for details). Interestingly, the

local region predicted for 472 SNVs (p-value,0.1) overlap with

the predicted conserved RNA secondary structures. These 472

SNVs correspond to 408 genes; out of which 111 SNVs

Figure 3. Results of SNV U1552G predicted to cause significant local secondary structure changes in 39 UTR of GPX3 mRNA. The dot
plot from RNAsnp web server [67] shows the base pair probabilities corresponds to the local region predicted with significant difference (dmax p-
value: 0.0474) between wild-type and mutant. The upper triangle represents the base pair probabilities for the wild-type (green) and the lower
triangle for the mutant (red). On the sides, the minimum free energy (MFE) structure of the wild-type and mutants are displayed in planar graphic
representation. The SECIS region is highlighted in blue circle and the SNV position is indicated with arrow mark.
doi:10.1371/journal.pone.0082699.g003
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correspond to 98 genes that are involved in cancer-associated

pathways (see File S1.xlsx).

Based on the p-value, the above 111 SNVs were further

classified into two groups: 28 as high-confidence for which both

dmax and rmin p-value,0.05 (Table 1), and the other 83 as

medium-confidence (either dmax or rmin p-value,0.1) (see File

S2.xlsx). We predict that the SNV-induced structural changes in

the UTR regions could potentially affect the stability of the mRNA

or disrupt the function of regulatory elements present in the

UTRs. For example, the SNV A2304C (Table 1) present in the 39

UTR of MAPK14 mRNA shows a significant structural change (p-

value: 0.0076) in the local RNA secondary structure which is

structurally conserved according to both CMfinder and RNAz

predictions from our in-house pipeline [39]. This structural

conservation shows that the region is under evolutionary pressure

to maintain the structure which is likely to have some functional

importance. The protein encoded by MAPK14 gene is a member

of the MAP kinase family, which is known to be involved in many

pathways related to cell division, maturation and differentiation

(reviewed in [55]). Also, it has been predicted to be one of the key

players in the lung cancer interactome [6]. Thus the alteration in

the gene expression of MAPK14 at a post-transcriptional level due

to the SNV-induced structural change could potentially affect the

MAKP14-related signaling pathways.

As another example, the gene GPX3 is responsible for the

coding of plasma glutathione peroxidase, an antioxidant enzyme

that contains selenocysteine in its active site and catalyzes the

reduction of hydrogen peroxide. The amino acid selenocysteine is

encoded by the UGA codon, which normally functions as a stop

codon. In the GPX3 mRNA, the alternate recognition of a UGA

Table 2. List of genes which have more than one disruptive SNV (combined high-confidence and medium-confidence candidates)
in the UTRs.

Gene mRNA UTR SNVa RNAsnp (p-value)b
% overlap of predicted local region with
conserved RNA secondary structurec dbSNP 135

SH3PXD2A NM_014631 3 C8560U 0.0223 100
$

SH3PXD2A NM_014631 3 U8562A{ 0.0451 100
$

MAPK1 NM_002745 3 G1633A 0.0815 100# rs41282607

MAPK1 NM_002745 3 U2360G{ 0.0148 100# rs13058

ACOX1 NM_004035 3 U4708G 0.0650 100#

ACOX1 NM_004035 3 A6386U 0.0750 59#

ADAMTS1 NM_006988 3 U4320G 0.0166 94#

ADAMTS1 NM_006988 3 U3449C 0.0626 86
$

CDC42 NM_001039802 5 C159A 0.0665 100
$

CDC42 NM_001039802 5 G152A 0.0901 100
$

ID2 NM_002166 5 C143G{ 0.0464 87#

ID2 NM_002166 5 C129G 0.069 87#

NFKBIE NM_004556 3 G1659C{ 0.0144 84#

NFKBIE NM_004556 3 U1644G{ 0.0333 98#

RASSF1 NM_170714 3 A1907U 0.0629 64#

RASSF1 NM_170714 3 G1904A 0.0659 64#

RXRB NM_021976 3 U2066G 0.0268 59# rs2744537

RXRB NM_021976 3 U2053A 0.0452 73# rs5030979

PCBP4 NM_001174100 3 U1862G 0.0401 93#

PCBP4 NM_001174100 3 C1790G 0.0413 59#

MTA2 NM_004739 5 A227G 0.0462 73#

BECN1 NM_003766 3 U1970C{ 0.012 100#

CTSB NM_147782 3 A2561G 0.0569 100
$

HTT NM_002111 3 C9948G{ 0.0987 100# rs362305

HTT NM_002111 3 U9947C 0.0225* 100#

BECN1 NM_003766 3 G2053A 0.0329* 98# rs11552193

LMNB2 NM_032737 3 A3713G 0.0554* 59#

LMNB2 NM_032737 3 U3662C 0.0638* 57#

CTSB NM_147782 3 A2581G 0.0925* 50
$

MTA2 NM_004739 5 C267G 0.1035* 53#

aSNVs that were predicted by both dmax and rmin measures are highlighted with {.
bThe p-value corresponding to the rmin measure is highlighted with *.
cThe conserved RNA secondary structure predicted by CMfinder and RNAz program (through our in-house pipeline [39]) are highlighted with the symbols # and

$
,

respectively.
doi:10.1371/journal.pone.0082699.t002
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Table 3. List of genes which have more than one miRNA target site change (create, alter, destroy) in their UTRs.

Gene mRNA UTR SNV dbSNP 135 miRNA(s)

ACTR3 NM_005721 3 G2078A rs6642 miR-662

ACTR3 NM_005721 5 U232G miR-18a-3p

AMD1 NM_001033059 5 A262G miR-1236-3p

AMD1 NM_001634 5 A263G miR-1236-3p

ARL5B NM_178815 3 A947U miR-409-3p

ARL5B NM_178815 3 G2609U rs12098599 miR-362-3p

ARL5B NM_178815 3 U946C miR-124-5p, miR-599

BCL2L13 NM_001270731 3 U1850G rs725768 miR-361-3p

BCL2L13 NM_001270731 3 U2269A rs74932682 miR-519b-3p

BCL7A NM_001024808 3 G1801C miR-650

BCL7A NM_001024808 3 U1804C miR-650

CALM1 NM_006888 3 A1872G rs63576962 miR-211-5p

CALM1 NM_006888 3 C2472G miR-29a-3p, miR-29b-3p, miR-29c-3p

CBX1 NM_001127228 3 A1839U rs6847 miR-548b-5p, miR-548c-5p, miR-548d-5p

CBX5 NM_012117 3 A2592G miR-887

CBX5 NM_012117 3 C11158U miR-654-5p

CCND2 NM_001759 3 C2086U miR-21-3p

CCND2 NM_001759 3 G5917U miR-139-5p

CKLF NM_016326 5 U72G miR-29a-3p, miR-29b-3p, miR-29c-3p

EIF4EBP2 NM_004096 3 C5092G miR-15b-5p, miR-16-5p, miR-195-5p, miR-424-5p, miR-503-5p, miR-646

IGFBP5 NM_000599 3 G2493C miR-675-5p

IGFBP5 NM_000599 3 G3898U rs13403592 miR-29a-3p, miR-29b-3p, miR-29c-3p

JAK1 NM_002227 3 U5007A miR-106a-5p, miR-106b-5p, miR-17-5p, miR-20a-5p, miR-20b-5p, miR-519a-
3p, miR-519b-3p, miR-519c-3p, miR-519d, miR-520g, miR-520h, miR-526b-3p,
miR-93-5p

KLF10 NM_005655 3 C2615A rs6935 miR-337-3p, miR-614

KRAS NM_033360 3 U1049G rs712 miR-151a-5p, miR-877-5p

KREMEN1 NM_001039570 3 A5345C miR-519a-3p, miR-520b, miR-520c-3p, miR-636

LMNB2 NM_032737 3 C2928G miR-423-5p

LMNB2 NM_032737 3 C2929A miR-423-5p

NCK2 NM_003581 3 G1974U miR-137, miR-488-3p

NDUFB7 NM_004146 5 G39C rs45628939 miR-192-5p, miR-215

NR1D2 NM_005126 3 A2782G miR-338-5p

NR1D2 NM_005126 3 U2791C miR-504

P4HA1 NM_001017962 5 C174G miR-412

P4HA1 NM_001142595 5 C174G miR-412

PANX1 NM_015368 3 G2082A rs1046805 miR-10a-5p, miR-10b-5p

PBX1 NM_001204961 3 A4035G miR-188-5p

PBX1 NM_001204961 3 G2877U miR-187-5p, miR-222-3p

PBX1 NM_001204963 3 A3249G rs12723035 miR-326, miR-330-5p

PDPK1 NM_002613 3 U2034G miR-504, miR-518a-3p, miR-518b, miR-518d-3p, miR-518f-3p

PRKAB2 NM_005399 3 U4199G miR-150-5p, miR-532-3p

PTPN1 NM_002827 3 G2125A rs118042879 miR-141-5p, miR-942

RAP1A NM_002884 3 C1100A rs6573 miR-135a-3p, miR-196a-5p, miR-196b-5p

SDC4 NM_002999 3 U1874G miR-361-3p

SDC4 NM_002999 3 U1878G miR-548d-3p

SESN2 NM_031459 3 A2864C rs10494394 miR-182-5p, miR-92a-1-5p, miR-96-5p

SLC39A6 NM_012319 3 C3543U miR-144-3p

SLC39A6 NM_012319 G3545U miR-101-3p, miR-139-5p, miR-144-3p

SMAD5 NM_005903 3 C2825A miR-124-3p, miR-500a-3p, miR-501-3p, miR-502-3p, miR-506-3p
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codon as a selenocysteine codon is mediated by the cis-acting

regulatory element, selenocysteine insertion sequence (SECIS),

present in the 39 UTR and other trans-acting co-factors [56]. The

SNV U1552G (Table 1) located in the 39 UTR of GPX3 mRNA

was predicted to cause significant structural effect (p-value: 0.0474)

in the local region which contains the SECIS regulatory element.

Figure 3 shows the base pair probabilities corresponding to the

local region (NM_002084:1544 to 1692) of wild-type and mutant

mRNA. It can be seen that the wild-type has higher base pair

probabilities to form the stable stem-loop structure of SECIS

(highlighted with a circle in Figure 3), whereas in the mutant form

it is disrupted due to the SNV, which is located outside the SECIS

region. Previous study has shown that the characteristic stem-loop

structure of SECIS is essential for the efficiency of UGA recoding

in vivo and in vitro [56]. Based on this, we speculate that the SNV

Table 4. List of miRNAs with more than two targets in the filtered data set.

Gene mRNA UTR SNV miRNA DGWT DGSNV dbSNP 135

CALM1 NM_006888 3 C2472G hsa-miR-29a-3p N/A 216.70

CKLF NM_016326 5 U72G hsa-miR-29a-3p N/A 220.70

IGFBP5 NM_000599 3 G3898U hsa-miR-29a-3p N/A 213.83 rs13403592

CALM1 NM_006888 3 C2472G hsa-miR-29b-3p N/A 218.12

CKLF NM_016326 5 U72G hsa-miR-29b-3p N/A 218.76

IGFBP5 NM_000599 3 G3898U hsa-miR-29b-3p N/A 211.93 rs13403592

CALM1 NM_006888 3 C2472G hsa-miR-29c-3p N/A 215.13

CKLF NM_016326 5 U72G hsa-miR-29c-3p N/A 218.83

IGFBP5 NM_000599 3 G3898U hsa-miR-29c-3p N/A 212.71 rs13403592

SUZ12 NM_015355 3 C2473G hsa-miR-30a-3p 212.66 28.97

SUZ12 NM_015355 3 G2475U hsa-miR-30a-3p 212.66 26.32

SUZ12 NM_015355 3 U2474A hsa-miR-30a-3p 212.66 26.86

SUZ12 NM_015355 3 C2473G hsa-miR-30e-3p 212.53 28.02

SUZ12 NM_015355 3 G2475U hsa-miR-30e-3p 212.53 26.19

SUZ12 NM_015355 3 U2474A hsa-miR-30e-3p 212.53 26.73

BCL2L13 NM_001270731 3 U1850G hsa-miR-361-3p N/A 217.85 rs725768

SDC4 NM_002999 3 U1874G hsa-miR-361-3p 215.88 220.18

SOX4 NM_003107 3 G4753A hsa-miR-361-3p 220.76 214.48 rs11556729

BCL2L13 NM_001270731 3 U2269A hsa-miR-519b-3p N/A 211.07 rs74932682

JAK1 NM_002227 3 U5007A hsa-miR-519b-3p 216.69 212.31

OSMR NM_003999 3 C4534U hsa-miR-519b-3p N/A 213.92

FAM46C NM_017709 3 A1459G hsa-miR-614 217.89 222.28 rs2066411

KLF10 NM_005655 3 C2615A hsa-miR-614 222.30 217.54 rs6935

RHEB NM_005614 3 A1229G hsa-miR-614 N/A 215.19

doi:10.1371/journal.pone.0082699.t004

Table 3. Cont.

Gene mRNA UTR SNV dbSNP 135 miRNA(s)

SMNDC1 NM_005871 3 G1228A rs1050755 miR-329, miR-362-3p

SUZ12 NM_015355 3 C2473G miR-30a-3p, miR-30d-3p, miR-30e-3p, miR-452-5p

SUZ12 NM_015355 3 G2475U miR-30a-3p, miR-30d-3p, miR-30e-3p, miR-595

SUZ12 NM_015355 3 U2474A miR-30a-3p, miR-30e-3p

TNFRSF19 NM_001204458 3 A2148U miR-766-3p

TNFRSF19 NM_001204458 3 A2452U rs79570196 miR-26a-5p

TOMM20 NM_014765 3 A3198C miR-149-3p

TOMM20 NM_014765 3 U3378G miR-129-1-3p, miR-129-2-3p

TOMM20 NM_014765 3 U3379G miR-150-5p, miR-532-3p

The miRNA IDs are boldface if the interaction is predominant in the wild-type (destroy or alter with lrv0:276) and italics if the interaction is specific to the mutant (create
or alter with lrw0:276); the hsa- prefix is omitted for brevity.
doi:10.1371/journal.pone.0082699.t003
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U1552G induced structural change in the SECIS element may

affect the efficiency of UGA recoding.

Further, considering both the set of high-confidence and

medium-confidence SNVs, we found that the genes (n = 15) listed

in Table 2 harbor more than one disruptive SNV in the predicted

conserved structural region of mRNA. For example, the gene ID2

encodes for DNA-binding protein inhibitor ID-2, which is a

critical factor for cell proliferation and differentiation in normal

vertebrate development. Overexpression of the ID-2 protein is

frequently observed in various human tumors, including NSCLC

[57]. In the mRNA sequence of ID2 gene, two SNVs located in the

59 UTR region were independently predicted to cause significant

local structural change in the conserved region. Previous studies

have shown that SNP or mutation induced structural changes in

the 59 UTRs can lead to uncontrolled translation or overexpres-

sion of the respective proteins [58,59]. We predict that the two

SNVs that cause significant change in the structurally conserved

region could affect the translation efficiency of ID2 mRNA.

Out of the 472 disruptive SNVs obtained from the secondary

structure analysis (before intersecting with the cancer-associated

genes), 199 overlap with SNPs from dbSNP (build 135). Of these

199 SNVs, 17 are in linkage dis-equilibrium (LD) with other SNPs

that are located proximal (+/2200 nts) to the SNV position.

These 17 pairs were tested with RNAsnp to check whether the

SNP in LD with (disruptive) SNV is a structure-stabilizing

haplotype [60]. Of these 17 pairs, five were predicted to cause

no significant structural changes, which could be possible

structure-stabilizing haplotypes; whereas the other 12 pairs have

shown significant structural changes (see File S3.xls).

Effect of SNVs on microRNA target sites
Screening all human mature miRNAs against all identified

SNVs with flanking sequence yields 2659,810,180 possible

combinations. The initial TargetScan step is a conservative filter

and reduces the set of SNV-miRNA pairs to 0.2% of this. We then

apply miRanda as a second target prediction method, followed by

a set of filters. The distribution of lr values in the alter set is shown

in Figure S3, only cases with relative changes larger than the

described cut off are considered (see Materials and Methods).

Figure 2 shows the different steps with individual counts of

putative interaction sites at each stage. This gives us 490 SNVs in

447 genes predicted to affect 707 interactions with 344 miRNAs

(see File S4.xlsx). After intersection with known cancer-associated

genes (final step in the pipeline, Figure 1), we find 124 SNVs and

148 miRNAs to be involved in 186 interactions that differ with the

mutation. These SNVs that induce putative miRTS changes can

be further classified into those enhancing interaction with the

mutant (80) or wild-type (52) variant.

Table 3 lists all genes that contain more than one miRTS

predicted to be changed between wild-type and SNV. This

includes examples where the same SNV changes the target site for

different mature miRNAs from the same family, but also examples

where different SNVs within the gene cause a gain or loss of a

miRTS. Similarly, all miRNAs with more than two changed target

sites are presented in Table 4. It lists members of the miR-29

family which have previously been reported to act as tumor

suppressors as well as oncogenes (see [61] for a review).

Of the 148 miRNAs (responsible for 186 putative interactions)

in our final candidate set, 89 are lung cancer-associated miRNAs (in

117 interactions) (indicated in File S4.xlsx). Table 5 lists all 14

putative target sites in our final candidate set that include NSCLC-

associated miRNAs. Notably, the list includes four miRNAs with

more than one predicted target changed. For miR-184 one target

site is created while another one is weakened upon introduction of

the mutation. Moreover, miR-30a, d, and e are predicted to target

the 39 UTR of SUZ12 gene. However, the predicted interactions

are likely to be functional in the wild-type and lost in the mutant

due to SNV-induced changes at the seed region. SUZ12 has

previously been shown to be directly targeted by miR-200b and

inhibition of this miRNA increases the formation of cancer stem

cells (CSCs) [62], which contribute to tumor aggressiveness. The

loss of miR-30 regulation by (one of) the three adjacent SNVs in

the seed of the target site could have a similar effect in NSCLC.

Furthermore, for 48 SNVs the predicted miRTSs were found to

be located inside the local region where a significant secondary

structural change was predicted by RNAsnp. Of these, 15 SNVs

were located in the cancer-associated genes (see Table 6). Based on

the previous studies [63,64], we speculate that the SNV-induced

miRTS change along with the secondary structural changes in and

Table 5. List of target predictions of NCSLC-associated miRNAs derived from the microRNA body map [45].

Gene mRNA UTR SNV miRNA DGWT DGSNV dbSNP 135

DHCR24 NM_014762 3 A4192C hsa-miR-7-5p N/A 211.85

EIF4EBP2 NM_004096 3 C5092G hsa-miR-15b-5p 216.10 210.65

EIF4EBP2 NM_004096 3 C5092G hsa-miR-16-5p 218.20 213.97

EIF4EBP2 NM_004096 3 C5092G hsa-miR-195-5p 217.63 212.23

KIF3B NM_004798 3 G5433A hsa-miR-184 221.40 214.40 rs41289846

MED16 NM_005481 5 A129U hsa-miR-184 N/A 220.65

SUZ12 NM_015355 3 C2473G hsa-miR-30a-3p 212.66 28.97

SUZ12 NM_015355 3 C2473G hsa-miR-30d-3p 211.68 28.65

SUZ12 NM_015355 3 C2473G hsa-miR-30e-3p 212.53 28.02

SUZ12 NM_015355 3 G2475U hsa-miR-30a-3p 212.66 26.32

SUZ12 NM_015355 3 G2475U hsa-miR-30d-3p 211.68 25.57

SUZ12 NM_015355 3 G2475U hsa-miR-30e-3p 212.53 26.19

SUZ12 NM_015355 3 U2474A hsa-miR-30a-3p 212.66 26.86

SUZ12 NM_015355 3 U2474A hsa-miR-30e-3p 212.53 26.73

doi:10.1371/journal.pone.0082699.t005
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around the miRTS can potentially affect the binding of predicted

miRNA.

Functional analysis of genes predicted with SNVs’ effect
on UTRs

To illustrate how the candidate SNVs obtained from our

pipeline can be further analyzed for potential functionality and

co-operability, we investigated the resulting sets from miRNA

and RNAsnp analyses individually as well as their combination,

each before and after intersection with cancer-related genes.

More precisely, the following six gene sets have been tested by

Ingenuity Pathways Analysis (see Table 7): 490 SNVs corre-

sponding to 447 genes from miRNA analysis (miRNA in all

genes), 124 SNVs corresponding to 104 genes that overlap with

our cancer gene set (miRNA in cancer-related genes), 472 SNVs

associated with 408 genes from RNAsnp analysis (RNAsnp in all

genes), 111 SNVs corresponding to 89 genes that intersect with

our cancer gene set (RNAsnp in cancer-related genes), a unique

gene list obtained after combination of 447 genes from miRNA

analysis and 408 genes from RNAsnp analysis (miRNA and

RNAsnp overlap in all genes), and a unique cancer gene list

obtained from 104 genes from miRNA and 89 genes form

RNAsnp analysis respectively (miRNA and RNAsnp overlap in

cancer-related genes).

Based on significant p-values obtained from each of our

analyses, we have listed the top 3 networks, diseases and disorders,

molecular and cellular functions, and canonical pathways in

Table 7. Our results indicate that the top networks identified from

our six gene set analyses are highly enriched with cell death and

survival as well as cellular growth and proliferation (see Table 7). Figure 4

shows the network of those two cases which were predicted using

the genes from the combination of miRNA and RNAsnp analyses,

whereas the networks from other gene sets are shown in Figure S4.

The networks shown in Figure 4 contain several genes from

Table 2 and 3 which were predicted to have more than one

disruptive SNV, and also genes from Table 6 for which predictions

from miRNA and RNAsnp analyses overlap. We predict that these

genes have a higher chance of being disrupted by the SNVs in

UTRs, which might cause a change in protein translation and

thereby disrupt the interaction of this protein with others.

The top diseases and disorders associated with the gene sets

predominantly include cancer. In addition, top three canonical

pathways related to the gene sets are molecular mechanisms of

cancer, LPS-stimulated MAPK signaling, IL-6 signaling, iNOS

signaling, EIF2 signaling and mTOR signaling.

It should be noted that the enrichment for cancer and related

molecular functions is found in our miRNA and RNAsnp gene sets

even before intersecting with the list of cancer-associated genes (see

Table 7).

Table 6. List of predicted miRNA target site changes that overlap with RNAsnp predictions.

Gene mRNA UTR SNV miRNA DGWT DGSNV RNAsnp (p-value)a

DHCR24 NM_014762 3 A4192C hsa-miR-7-5p N/A 211.85 0.0159

EIF4EBP2 NM_004096 3 C5092G hsa-miR-15b-5p 216.10 210.65 0.0341

EIF4EBP2 NM_004096 3 C5092G hsa-miR-16-5p 218.20 213.97 0.0341

EIF4EBP2 NM_004096 3 C5092G hsa-miR-195-5p 217.63 212.23 0.0341

EIF4EBP2 NM_004096 3 C5092G hsa-miR-424-5p 216.13 212.18 0.0341

EIF4EBP2 NM_004096 3 C5092G hsa-miR-503-5p 217.19 212.42 0.0341

EIF4EBP2 NM_004096 3 C5092G hsa-miR-646 213.75 29.56 0.0341

ATP6V1C2 NM_144583 3 G2321C hsa-miR-615-3p N/A 218.91 0.0483

NOP10 NM_018648 3 G432A hsa-miR-342-3p 222.81 218.51 0.0518

RAD21 NM_006265 3 G3118U hsa-miR-361-5p 211.01 N/A 0.0696

PANX1 NM_015368 3 G2082A hsa-miR-10a-5p 214.54 27.67 0.0704

PANX1 NM_015368 3 G2082A hsa-miR-10b-5p 213.85 N/A 0.0704

CCND2 NM_001759 3 G5917U hsa-miR-139-5p 213.21 27.52 0.0726

SESN2 NM_031459 3 A2864C hsa-miR-92a-1-5p 214.56 221.55 0.0818

SESN2 NM_031459 3 A2864C hsa-miR-96-5p 214.76 29.52 0.0818

SESN2 NM_031459 3 A2864C hsa-miR-182-5p 219.86 215.36 0.0818

PPA1 NM_021129 5 G92U hsa-miR-378a-5p 215.90 220.85 0.083

SLC39A6 NM_012319 3 G3545U hsa-miR-144-3p 211.40 28.09 0.0832

SLC39A6 NM_012319 3 G3545U hsa-miR-101-3p 220.37 214.03 0.0832

SLC39A6 NM_012319 3 G3545U hsa-miR-139-5p 220.37 214.03 0.0832

PPA2 NM_006903 3 A983U hsa-miR-139-3p N/A 218.24 0.0841

TNFRSF19 NM_001204458 3 A2148U hsa-miR-766-3p N/A 214.71 0.0874

SLC39A6 NM_012319 3 C3543U hsa-miR-144-3p 211.40 26.70 0.0924

CRYL1 NM_015974 3 U1350A hsa-miR-330-5p N/A 219.74 0.0487*

HIPK2 NM_001113239 3 U7743G hsa-miR-181a-2-3p N/A 214.08 0.0581*

aSNV predicted by rmin measure is highlighted with *.
doi:10.1371/journal.pone.0082699.t006
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Discussion

With the help of whole-genome sequencing technology, the

complete genome of a cancer cell can be sequenced effectively to

identify somatic single nucleotide variants (SNVs) [65]. To date,

more than 50 different cancer types and/or sub types have been

sequenced [2]. The lung cancer genome was first sequenced in

2010 [66], which reports that the somatic variants were present in

both coding and non-coding (UTR and other non-coding RNAs)

transcribed regions, which constitute 0.6% and 0.8% respectively

of the total somatic mutations identified (22,910). In a recent

study, transcriptome-wide sequencing of non-small cell lung

cancer (NSCLC) type with wild-type and mutant KRAS revealed

73,717 SNVs that consisted of both germ-line and somatic

variants. Of these SNVs, 29,290 were located in the UTRs of

mRNAs that correspond to 6462 genes.

We have developed a comprehensive computational pipeline to

predict the effects of SNVs located in the UTRs that can

potentially affect the post-transcriptional regulation, through

Table 7. Summary of pathway analysis results using Ingenuity pathway analysis software.

miRNA in all genes
miRNA in cancer
related genes

RNAsnp in all
genes

RNAsnp in cancer
related genes

miRNA and RNAsnp
overlap in all genes

miRNA and RNAsnp overlap
in cancer related genes

Top 3 networks

1. Cell Death and Survival,
Cardiovascular System
Development and
Function, Organismal
Development (44)

1. Cell Death and
Survival, Cellular
Growth and Proliferation,
DNA Replication,
Recombination,
and Repair (34)

1. Skeletal and
Muscular System
Development and
Function, Cell Death
and Survival,
Cardiovascular System
Development and
Function (40)

1. Cellular Growth
and Proliferation,
Cell Death and
Survival, Cellular
Development (42)

1. Cell Signaling, Nucleic
Acid Metabolism, Small
Molecule Biochemistry
(38)

1. Gene Expression, Cell Death
and Survival, Cancer (43)

2. Cell Death and Survival,
Cell-To-Cell Signaling and
Interaction, Nervous
System Development
and Function (29)

2. Cellular Growth and
Proliferation, Cell Death
and Survival,
Cardiovascular System
Development and
Function (16)

2. Cell Death and
Survival, Cellular
Function and
maintenance, Cell
Morphology (40)

2. Cell Death and
Survival, Cellular
Assembly and
Organization, Cell
Cycle (37)

2. Cellular Growth and
Proliferation, Cell
Morphology, Cellular
Assembly and
Organization (34)

2. Cellular Growth and
Proliferation, Cell Death and
Survival, Cellular Assembly and
Organization (41)

3. Hematological Disease,
Immunological Disease,
Cellular Development (27)

3. Cardiovascular Disease,
Gene Expression,
Organismal
Development (14)

3. Cellular Assembly
and Organization,
Post-Translational
Modification, Cellular
Movement (32)

3. Gene Expression,
Cellular Growth
and Proliferation,
Embryonic
Development (24)

3. Cellular Movement,
Cell Death and Survival,
Cardiovascular System
Development and
Function (34)

3. Cell Death and Survival,
Dermatological Diseases and
Conditions, Cellular
Development (34)

Top 3 diseases and disorders

1. Infectious Disease
(1.75E-4–4.85E-2)

1. Cancer
(4.36E-6–4.90E-2)

1. Cancer
(2.03E-4–4.41E-2)

1. Cancer
(9.42E-8–1.27E-2)

1. Infectious Disease
(1.04E-5–4.31E-2)

1. Cancer (8.23E-10–1.22E-2)

2. Cancer
(1.42E-3–4.71E-2)

2. Hematological
Disease (1.16E-4–4.05E-2)

2. Endocrine System
Disorders
(4.95E-4–2.38E-2)

2. Hematological
Disease
(1.46E-5–1.27E-2)

2. Cancer
(1.93E-4–4.31E-2)

2. Hematological Disease
(1.48E-8–1.22E-2)

3. Hepatic System Disease
(1.42E-3–2.38E-2)

3. Endocrine System
Disorders
(1.36E-4–3.34E-2)

3. Reproductive
System Disease
(4.95E-4–4.08E-2)

3. Gastrointestinal
Disease
(1.08E-4–1.27E-2)

3. Hepatic System
Disease
(3.37E-4–4.31E-2)

3. Infectious Disease
(4.22E-6–8.87E-3)

Top 3 molecular and cellular functions

1. Protein Synthesis
(4.99E-6–2.09E-3)

1. Cellular Growth
and Proliferation
(4.03E-9–4.65E-2)

1. Cellular Growth and
Proliferation
(6.76E-6–4.41E-2)

1. Cellular Growth
and Proliferation
(1.18E-17–1.27E-2)

1. Cellular Growth and
Proliferation
(3.14E-7–4.31E-2)

1. Cellular Growth and
Proliferation (5.68E-25–1.22E-2)

2. RNA Post-Transcriptional
Modification
(5.32E-4–2.38E-2)

2. Cell Death and
Survival (7.07E-8–4.68E-2)

2. Cell Death and
Survival
(7.24E-6–4.41E-2)

2. Cell Death and
Survival
(4.08E-17–1.27E-2)

2. Cell Death and
Survival (6.1E-7–4.31E-2)

2. Cell Death and Survival
(1.09E-19–1.22E-2)

3. RNA Damage and
Repair (5.67E-4–5.67E-4)

3. Cellular Development
(1.02E-6–4.00E-2)

3. Cellular Assembly
and Organization
(4.83E-5–4.41E-2)

3. Cellular
Development
(5.79E-14–1.27E-2)

3. Protein Synthesis
(2.39E-5–3.73E-2)

3. Cellular Development
(1.89E-18–1.22E-2)

Top 3 canonical pathways

1. EIF2 Signaling (1.61E-5) 1. Molecular Mechanisms
of Cancer (4.14E-7)

1. LPS-stimulated
MAPK Signaling
(3.37E-5)

1. LPS-stimulated
MAPK Signaling
(8.4E-10)

1. iNOS Signaling
(4.32E-4)

1. Molecular Mechanisms of
Cancer (3.11E-12)

2. mTOR Signaling
(4.31E-4)

2. Insulin Receptor
Signaling (2.47E-6)

2. iNOS Signaling
(3.56E-4)

2. Molecular
Mechanisms of
Cancer (2.65E-8)

2. EIF2 Signaling
(4.52E-4)

2. Glucocorticoid Receptor
Signaling (2.88E-9)

3. Insulin Receptor
Signaling (9.85E-4)

3. IGF-1 Signaling
(4.17E-6)

3. Germ Cell-Sertoli
Cell Junction
Signaling (6.75E-4)

3. IL-6 Signaling
(5.27E-8)

3. mTOR Signaling
(8.85E-4)

3. LPS-stimulated MAPK
Signaling (1.9E-8)

The numbers at the end of each cell represent the p-values, but for the top networks it is the p-score (2log10 p-value).
doi:10.1371/journal.pone.0082699.t007
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SNV-induced secondary structure changes in the UTRs or

changes in miRTSs within UTRs. Using this pipeline, we

predicted 472 out of 29,290 UTR SNVs to have significant effect

on the local RNA secondary structure of UTRs (corresponding to

408 genes). Additionally, 490 out of 29,290 UTR SNVs were

predicted to cause changes in a miRNA target site within the

UTRs of 447 genes. Of these 490 SNVs, 124 were present in 104

genes that were previous known to be cancer-associated. For these

104 genes, 148 miRNAs were predicted to bind either in the wild-

type or mutant. We found 89 out of these 148 miRNAs overlap

with lung cancer-associated miRNAs, while eight miRNAs are

associated specifically to NSCLC.

Taken together, all these disruptive SNVs, which were predicted

to affect secondary structure or miRNA target sites, were present

in 803 different genes; out of which 188 (23.4%) were previously

known to be cancer-associated. Notably, this ratio is significantly

higher (p-value 0.032, one-sided Fisher’s exact test) than the ratio

(20.8%) of known cancer-associated genes (n = 1347) in our initial

data set of 6462 genes. Similar enrichment (p-value 0.040, one-

sided Fisher’s exact test) was observed when comparing the ratio of

disruptive SNVs in cancer-associated genes compared to all other

genes versus the ratio of the data set SNVs in cancer-associated

genes compared to all other genes. However, while comparing the

ratios separately on the results obtained from RNA secondary

structure and miRTS analysis, we did not find any significant

difference (data not shown).

Further, the IPA networks analysis (that addresses the biological

relationships between genes/gene products) shows that the

physical interaction of genes predicted with SNV effect might be

involved in cell death and survival as well as cellular growth and

proliferation. However, further analysis of these networks with

respect to the topology (e.g., edge counts, neighborhood connec-

tivity, in and out degree) is required. The functional analysis using

IPA shows that the genes from our pipeline were involved in

canonical pathways such as molecular mechanisms of cancer, IL-6

signaling, LPS-stimulated MAPK signaling pathways, iNOS

Signaling, EIF2 signaling and mTOR signaling pathways.

Given the large data set of 29,290 SNVs and the generally high

false positive rate of established miRNA target prediction methods,

we chose stringent filters in the miRNA analysis. The requirement

of a TargetScan seed change, used to reduce the initial set of pairs,

is present in 60% of our benchmark data (Table S1). The

intersection of candidates in the alter and destroy sets with Ago

CLIP-Seq data is another conservative filter. Due to incomplete-

ness of the data, this filters out some true interactions (as can be

seen from Table S1), but gives higher confidence in the remaining

candidates (i.e., not all known miRNA interactions actually

overlap with the Ago CLIP-Seq peak clusters; but if there is a

cluster with BC$2 there likely is a real interaction). Interactions

from the create set are not issued to that filter, so the resulting

candidates might be biased towards that. Individual filters can be

left out or chosen to be more or less conservative depending on the

data set at hand. Also, it should be noted that this data set contains

both germ-line and somatic variants. In the previous study, no

normal cells were sequenced in parallel to the lung adenocarci-

nomas to remove germ-line variants. Based on the overlap of these

SNVs with the dbSNP (build 135) we could estimate that 40% of

the 29,290 SNVs are germ-line variants. However, we did not

remove those germ-line variants in this analysis because these

germ-line variants are also important and may have a role for

differences in cancer predisposition and drug response between

individuals.

In summary, we hypothesize that the SNVs predicted to cause

significant changes in the secondary structure of UTRs or miRNA

target sites within UTRs can have the potential to alter the

expression of genes linked to cancer-associated pathways, and

thereby contribute to the development of cancer. Although we do

not provide experimental validation to support these predictions,

we have highlighted the significant causative SNVs, which will be

helpful for further detailed investigation. As for example, the SNV

U1552G that affects the structure of the cis-acting regulatory

element, selenocysteine insertion sequence (SECIS) (Figure 4),

which is associated with the translational control of GPX3 mRNA.

The computational pipeline presented here can be adopted for

UTR SNV data from other cancer genome and transcriptome

studies.

It is worth considering that the SNVs outside the protein-coding

regions can have functional impacts causing altered expression of a

gene. This may help identification of new cancer driver mutations.

Future directions include protein binding site predictions on

both structured and unstructured parts of the UTRs. Merging with

the growing amount of experimental data concerning RNA

binding proteins, e.g., CLIP-seq, more general types of data than

those related to miRNA targets should provide complementary

information. For example, additional ranking of predicted binding

site structure disruption. Further, if such data is extracted from

disease tissue it should provide yet another complementary layer of

data pointing to specific candidates.

Supporting Information

Figure S1 Overview of RNAsnp predictions.

(PDF)

Figure S2 Distribution of GC-content in regions around
(disruptive) SNVs.

(PDF)

Figure S3 Histogram of lr values in miRNA analysis
alter set.

(PDF)

Figure S4 Top three IPA networks for the six different
gene sets as described in Table 7.

(PDF)

File S1 All candidates from RNAsnp analysis. Excel table

listing 472 SNVs in 408 genes.

(XLSX)

File S2 Medium-confidence candidates from RNAsnp
analysis. Subset of File S1, lists 83 SNVs in cancer-associated

genes with either dmax or rmin p-value,0.1 (but not both ,0.05).

(XLSX)

File S3 RNAsnp predicted effect of SNPs in LD with
disruptive SNVs.

(XLSX)

Figure 4. Network Analysis of genes predicted to have SNVs’ effect on UTRs. The networks represent the interaction between genes that
were predicted to have SNVs’ effect on UTRs from miRNA and RNAsnp analysis (see Table 7, column 5). The gene nodes were colored to differentiate
the known (orange) and unknown (green) cancer-associated genes, and the color outside the node indicates whether the gene comes from miRNA
(yellow) or RNAsnp (blue) or both.
doi:10.1371/journal.pone.0082699.g004
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File S4 Candidates from miRNA analysis. Excel table

listing 490 SNVs in 447 genes predicted to affect target sites of 344

miRNAs, with indication of cancer-association genes and lung

cancer-associated miRNAs.

(XLSX)

Table S1 Filtration steps in the miRNA pipeline tested
on known examples.

(PDF)
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