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Abstract

We present a new haplotype-based statistic (nSL) for detecting both soft and hard sweeps in population genomic data
from a single population. We compare our new method with classic single-population haplotype and site frequency
spectrum (SFS)-based methods and show that it is more robust, particularly to recombination rate variation. However, all
statistics show some sensitivity to the assumptions of the demographic model. Additionally, we show that nSL has at least
as much power as other methods under a number of different selection scenarios, most notably in the cases of sweeps
from standing variation and incomplete sweeps. This conclusion holds up under a variety of demographic models. In
many aspects, our new method is similar to the iHS statistic; however, it is generally more robust and does not require a
genetic map. To illustrate the utility of our new method, we apply it to HapMap3 data and show that in the Yoruban
population, there is strong evidence of selection on genes relating to lipid metabolism. This observation could be related
to the known differences in cholesterol levels, and lipid metabolism more generally, between African Americans and
other populations. We propose that the underlying causes for the selection on these genes are pleiotropic effects relating
to blood parasites rather than their role in lipid metabolism.

Key words: hard sweeps, soft sweeps, SFS-based methods, haplotype-based methods, recombination rate, demography,
cholesterol.

Introduction
Since the generation of the first genetic variation data more
than 40 years ago, much research has focused on methods for
detecting selection. In particular, after the emergence of
genome scale population level DNA genotyping and sequenc-
ing in humans, numerous studies have been published iden-
tifying genes in the human genome that have been targeted by
selection (Bustamante et al. 2005; Carlson et al. 2005; Kelley
et al. 2006; Voight et al. 2006; Wang et al. 2006; Kimura et al.
2007; Sabeti et al. 2007; Tang et al. 2007; Williamson et al. 2007).
Many of the studies focus on a model in which selected de
novo mutations are swept to fixation in the population
(Kimura et al. 2007; Sabeti et al. 2007). Such a model, known
as a hard sweep, classic selective sweep, or standard selective
sweep model, has been extensively explored (Kim and Stephan
2002; Przeworski 2002; Maynard-Smith and Haigh 2007). This
model can be contrasted with models in which selection acts
on previously neutral alleles already segregating in the popu-
lation, that is, selection on standing genetic variation, or with
models in which multiple independent mutations at a single
locus are all favored and increase in frequency simultaneously

until the sum of the frequencies is 1 (polygenic adaptation).
Both of these models are often referred to as “soft sweeps”
(Hermisson and Pennings 2005; Przeworski et al. 2005;
Pennings and Hermisson 2006b, 2006c; Pritchard and Rienzo
2010). Examples of soft sweeps have been documented in
several studies including studies on three-spined sticklebacks
(Feulner et al. 2013) and beach mice Peromyscus polionotus
(Domingues et al. 2012). In humans, most cases of selection
have been assumed to be hard sweeps, although several cases
of selection on standing variation have been reported (Bhatia
et al. 2011; Peter et al. 2012; Seixas et al. 2012), and results of
genome-wide association studies are increasingly being used
to infer selection that has been acting on polygenic traits
(Casto and Feldman 2011; Turchin et al. 2012).

Lewin and Foley (2004) argued that, given the currently
accepted assumptions regarding human demography (a small
effective population size and migration out of Africa 50–100
ka), there may have been little time for new beneficial
mutations to occur. Thus, the hard sweep model may not
be entirely appropriate for describing the process of
adaptation in recent human history (Pritchard et al. 2010).
Instead, adaptation to the local environments might more
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likely have proceeded from standing variation (Przeworski
et al. 2005).

Numerous empirical (Hamblin and Rienzo 2000; Tishkoff
et al. 2007; Scheinfeldt et al. 2009) and theoretical (Innan and
Kim 2004; Hermisson and Pennings 2005) studies suggest
selection on standing variation might be important in
recent human evolution. In particular, selection on standing
variation occurring on more than one loci (polygenic adap-
tation from standing variation) has been suggested to be an
important, if not the most important, mechanism of adapta-
tion in humans (Pritchard and Rienzo 2010).

Current methods for detecting recent adaptation use sum-
mary statistics based on the site frequency spectrum (SFS),
linkage disequilibrium (LD), length of high-frequency haplo-
types, proportions of common derived alleles, decreases in
local diversity, or changed allele frequencies between geo-
graphically separated populations. These methods are good
at detecting hard sweeps. Nonetheless, many of them are
expected to have low power to detect sweeps from standing
variation because of the weak effects soft sweeps have on
linked sites (Kim and Stephan 2002, 2003; Hermisson and
Pennings 2005; Pennings and Hermisson 2006b, 2006c). For
example, a sweep from standing variation may not have the
distribution of allele frequencies and resulting SFS as expected
under a hard sweep. However, haplotype patterns will clearly
change even when selection is acting on multiple haplotypes.
Haplotype-based statistics are, therefore, an obvious avenue
to pursue when designing methods for detecting sweeps from
standing variation.

There are numerous different statistics used to detect se-
lection based on haplotype homozygosity. The most com-
monly used statistic is iHS (Voight et al. 2006), which is based
on the decay of haplotype homozygosity as a function of
recombination distance. The distribution of most of the com-
monly used neutrality statistics depends to varying degree on
the recombination rate. Somewhat disturbingly, O’Reilly et al.
(2008) found that most scans for selection in the human
genome had a strong bias toward identifying regions of low
recombination. Perhaps, part of the effect is caused by an
increased power to detect selection in regions of low recom-
bination. However, the possibility that many results in fact are
false positives due to reduced recombination is worrying.

A dependence on recombination rates will in particular be
true for haplotype homozygosity as it is closely related to LD.
In part to address this problem, iHS is based on taking the
ratio of haplotype homozygosity for the haplotypes carrying
the derived iHHD and ancestral allele iHHA in a candidate site.
Using this ratio increases the robustness of the statistic to-
ward varying mutation rate and/or recombination rate, and
possibly to deviations from the assumed demographic model
as well. Nonetheless, as we shall show later in the article, the
distribution of the statistic still depends on the recombination
rate.

In this article, we describe a haplotype-based statistic akin
to iHS, which combines information on the distribution of
fragment lengths, defined by pairwise differences, with the
distribution of the number of segregating sites between all
pairs of chromosomes. We show that this method is able to

identify selective sweeps, both hard and soft. Using theoretical
and simulation results, we demonstrate the robustness of this
statistic to misspecification of the recombination rate and to
a variety of demographic factors, such as population subdivi-
sion, bottlenecks in population size, and population growth.
We compare the power of the new statistic with those of
other methods, under a variety of selective sweep models.
Additionally, using the HapMap3 data set from the
International HapMap Project (The International HapMap 3
Consortium 2010), we show that our method is less influ-
enced by the variation in recombination rate than other
similar methods. We also discuss our biological findings of
the HapMap3 data. In particular, we describe a very strong
signal for selection in West African populations in genes re-
lated to cholesterol transporters.

Definition of Statistics

Here, we present a single-population haplotype-based statis-
tic (nSL: number of segregating sites by length) designed to
detect the signature of positive selection acting to increase
haplotype homozygosity. This statistic combines information
on the distribution of fragment lengths between mutations
with the distribution of the number of segregating sites be-
tween all pairs of chromosomes, and is based on taking the
ratio of haplotype homozygosity for the derived and ancestral
alleles, an approach also taken by iHS. However, the crucial
difference between nSL and iHS is that nSL measures the
length of a segment of haplotype homozygosity between a
pair of haplotypes in terms of number of mutations in the
remaining haplotypes in the data set in the same region
(fig. 1). As a consequence, a genetic map is not required to
calculate the statistic, and robustness toward recombination
and/or mutation rate variation is increased.

The nSL statistic is defined as follows: We organize
phased data as an n� Sn matrix H with rows corresponding
to the n sampled haplotypes and columns corresponding
to the Sn segregating sites, with Hik = 1 if the ith haplo-
type carries the derived allele at the kth segregating site,
and 0 otherwise. For each segregating site, we define the fol-
lowing sets of haplotypes carrying the ancestral and derived
alleles:

AðkÞ ¼ fi : Hik ¼ 0g

DðkÞ ¼ fi : Hik ¼ 1g

and let nA(k) and nD(k) denote the sizes of these respective
sets.

We let pk be the position, in units of recombination dis-
tance, of the kth segregating site. It will be useful to refer to
single nucleotide polymorphisms (SNPs) by their recombina-
tion position, rather than ordinal position in H, so we let
Hi,r1:r2

denote the row vector corresponding to segregating
sites of the ith haplotype which lie in the open interval (r1, r2)

For haplotypes i and j, we define Lij to be as follows:

LijðxÞ ¼ maxfr � l : x 2 ðpl,prÞ,Hi,pl:pr
¼
ibs

Hj,pl:pr
g:
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This is the number of consecutive segregating sites, in the
interval containing x, over which haplotypes i and j are iden-
tical by state (IBS). At the kth segregating site, our statistic is
defined in terms of the mean value of Lij over pairs of
haplotypes which either both carry the ancestral or derived
allele:

SLAðkÞ ¼
2
P

i<j2AðkÞ LijðpkÞ

nAðkÞðnAðkÞ � 1Þ

SLDðkÞ ¼
2
P

i<j2DðkÞ LijðpkÞ

nDðkÞðnDðkÞ � 1Þ
:

Finally, nSL is defined in a manner analogous to iHS by taking
the log ratio of ancestral and derived statistics:

unstandardized nSLðkÞ ¼ ln
SLAðkÞ

SLDðkÞ

� �

nSLðkÞ ¼
ln SLAðkÞ

SLDðkÞ

� �
� EnDðkÞ ln SLAðkÞ

SLDðkÞ

� �h i

SDnDðkÞ ln SLAðkÞ
SLDðkÞ

� �h i :

Therefore, this new statistic is mathematically very similar
to iHS. The related statistic EHHw is defined to be the prob-
ability that a pair of randomly chosen haplotypes, both car-
rying the same allele, are IBS in a window of length w. Using
our notation, EHHw computed with respect to the derived
allele is given by:

EHHw
DðxÞ ¼

nDðxÞ

2

� ��1 X
i<j2DðxÞ

1fHi,x:x + w¼
ibs

Hj,x:x + wg,

If w is positive then the window is to the right of x, while if it
is negative, it is to the left. iHH is defined as the integral of
EHH with respect to w. Rearranging the integral gives the
following:

iHHDðkÞ ¼

Z 1
�1

EHHw
DðkÞdw

¼
2
P

i<j2DðxÞ

R1
�1

1fHi,x:x + w¼
ibs

Hj,x:x + wgdw

nDðxÞðnDðxÞ � 1Þ

¼
2
P

i<j2DðxÞmaxfw > 0 : Hi,x:x + w¼
ibs

Hj,x:x + wg

nDðxÞðnDðxÞ � 1Þ

�
2
P

i<j2DðxÞminfw < 0 : Hi,x:x + w¼
ibs

Hj,x:x + wg

nDðxÞðnDðxÞ � 1Þ
:

These extremal points must occur at a pairwise difference
between haplotypes i and j, so if we define

L�ij ðxÞ ¼ maxf j pr � pl j : x 2 ðpl,prÞ,Hi,l + 1:r¼
ibs

Hj,l + 1:rg,

we get that

iHHDðxÞ ¼
2
P

i<j2AðxÞ L
�
ij ðxÞ

nAðxÞðnAðxÞ � 1Þ

iHHAðxÞ ¼
2
P

i<j2DðxÞ L
�
ij ðxÞ

nDðxÞðnDðxÞ � 1Þ

Note that the expression in the sum is almost the same as the
expression for Lij, except for r – l has been replaced by pr – pl.

FIG. 1. Length of a segment of haplotype homozygosity. A sample of four chromosomes (black horizontal bars) carrying two copies of the derived allele
(light green circles) and two copies of the ancestral allele (dark green circles) at a segregating site. On the left side, the haplotype homozygosity for the
pair of chromosomes carrying the derived allele is shown. The haplotype is defined by the closest pairwise difference upstream and downstream of the
segregating site, indicated by vertical dashed red lines. The length of the haplotype is given in terms of the number of segregating sites contained within
the haplotype boundaries (vertical dashed red lines) using the entire sample. The number of polymorphic sites within the boundaries is given by the
numbers in red. On the right side, the haplotype homozygosity for the pair of chromosomes carrying the ancestral allele is shown. The haplotype
boundaries and haplotype length are set up as described for the derived allele.
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Finally,

iHSðkÞ ¼
ln iHHAðkÞ

iHHDðkÞ

� �
� EnDðkÞ

ln iHHAðkÞ
iHHDðkÞ

� �h i

SDnDðkÞ ln iHHAðkÞ
iHHDðkÞ

� �h i :

Both nSL and iHS are defined at every polymorphic site so
they give one value for each SNP. The same is true for ex-
tended haplotype homozygosity (EHH) since for the purposes
of this article the core haplotypes of interest are defined by
the presence or absence of a single SNP. The main difference
between the nSL and iHS statistics is in how they measure
distance. The nSL statistic uses segregating sites as a proxy for
distance, while the iHS statistic uses the recombination dis-
tance. Therefore, iHS can be viewed as nSL with some addi-
tional randomness due to the spacing between segregating
sites.

Moreover, because variance due to SNP spacing has a
strong dependence on the recombination rate, this also pre-
dicts that the distribution of iHS will be more sensitive to the
recombination rate. In particular, when the recombination
rate is low, and hence SNP spacing is less uniform, the ratio
of iHS variance to nSL variance will be higher. This result was
seen in simulations, as well as in HapMap3 data.

A program, and associated open source code for comput-
ing nSL is available at http://cteg.berkeley.edu/~nielsen/ (last
accessed March 3, 2014).

Results
Using simulations, we compared the performance of nSL to
four well-established statistics: Tajima’s D, Fay’s and Wu’s H,
EHH, and iHS (Tajima 1989; Fay and Wu 2000; Sabeti et al.
2002; Voight et al. 2006). We used the program ms (Hudson
2002) to generate the null distribution of each statistic under
different demographic models and recombination rates. We
then used the program mbs (Teshima and Innan 2009) to
evaluate the power of these same statistics under a range of
selection scenarios. Finally, we applied the nSL statistic to
HapMap3 data to illustrate the utility of the method.

Robustness to Demographic Assumptions

We explored the robustness of the five statistics under three
scenarios modeling possible deviations from the standard
neutral reference model of a single population of constant
size: exponential population growth, a population bottleneck,
and population structure. We quantified deviations from the
standard distribution using the total variation distance be-
tween the distribution of the test statistic under the standard
model and the corresponding distribution under the alterna-
tive demographic model. If the distribution of a statistic is
completely unchanged under one of these scenarios, then the
total variation distance will be 0, while if the resulting distri-
bution has no overlap with the reference distribution at all,
then the total variation distance will attain its maximum
possible value of 1. As the test statistics can be applied in
many ways, for example using different significance levels, the
total variation distance provides an attractive application-
agnostic heuristic for comparing the robustness of these

methods. However, we also examine false-positive rates at
specific significance levels.

For the neutral model, we used a population of constant
size with 4Ne� equal to 4Ne� ¼ 1,000 (see Materials and
Methods). Three different exponential growth rates were
used for the models of exponential growth (�= 10, 100,
and 1,000), where a is the coalescent-scaled growth rate.
For the population bottleneck model, we simulated three
models with bottlenecks of different severities (r = 0.25, 0.10,
and 0.05) occurring 1,200 generations ago and lasting 800
generations, where r is the ratio of population size during
the bottleneck relative to other time periods. For the model
with population structure with migration, we simulated an
island model with two islands and we varied the migration
rates between the two islands (M = 0.1, 1, and 10), where
M = 4Nm was the coalescent-scaled migration rate between
islands. This rate was assumed to be symmetric and constant
in time. We drew all the samples from one island. For each
variation of the standard neutral model, we generated 100
simulations with 20 chromosomes per simulation. Notice
that each of the test statistics can be calculated using different
choices of window sizes. For the SFS-based statistics, as well as
for nSL, the window sizes are the lengths in number of segre-
gating sites of the window in which the statistic is calculated.
For iHS, the window size is the haplotype homozygosity
threshold used to set the limits of integration. For EHH and
relative EHH (rEHH), the window size corresponds to the
genetic distance over which the IBS of the haplotypes is
determined.

Robustness to Assumptions Regarding Population
Growth, Bottlenecks, and Population Structure

The distributions of all statistics depend on the demographic
model assumptions (table 1). For example, for a growth rate
parameter of �= 1,000, the total variation distance between
the standard neutral reference distribution and the true dis-
tribution varies between 0.23 and 0.99 depending on the
choice of statistic. In models with exponential population
growth or a population bottleneck, the SFS-based statistics,
and Tajima’s D in particular, seem most affected. Perhaps a bit
surprisingly, the haplotype-based statistics are also strongly
affected by both population growth and bottlenecks. For ex-
ample, depending on window size, the total variation distance
varies between 0.34 and 0.87 for rEHH under strong exponen-
tial population growth (�= 1,000). Haplotype statistics seem
more robust to population growth and bottlenecks than the
SFS-based statistics, but cannot be claimed to be robust gen-
erally. For example, even at moderate growth rates (�= 10),
the total variation distance is 0.59 for rEHH when calculated
with a window size of � ¼ 20. In general, nSL is among the
most robust statistics to population growth. For moderate
growth rates, the total variation distance is never larger than
0.07 for nSL, whereas it is at least 0.13 for all other statistics
including iHS. The robustness of both EHH and rEHH depends
strongly on choice of window size, but with a sufficiently large
window size, EHH and rEHH can be as robust, or more robust
than nSL. The same does not hold true for weaker population
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growth. Table 1 highlights cases where other statistics are as
robust (underlined) or more robust (underlined and itali-
cized) than nSL.

In the bottleneck scenarios explored here, nSL generally
appears more robust than any of the other methods. The
only exceptions are Tajima’s D for the low bottleneck ratio
(r = 0.25), if calculated in a 41 SNPs window, and Fay’s and
Wu’s H, if calculated in a 41 SNPs window for the extreme
bottleneck ratio (r = 0.05). Perhaps a bit surprisingly, the es-
tablished haplotype-based statistics are often less robust to
the effect of bottlenecks than SFS-based methods. For exam-
ple, with a window size of 20 and a bottleneck ratio of r = 0.05
the total variance distance for rEHH is 0.68. Under the same
conditions, the total variation distance is between 0.12 and
0.19 for Fay’s and Wu’s H. The effect of population growth
and bottlenecks on the haplotype-based statistics can per-
haps be understood as an effect of growth and bottlenecks on
the variance in pairwise coalescence times, which will affect
the variance of haplotype homozygosity-based statistics (sup-
plementary fig. S1, Supplementary Material online). In the
simulations with population structure, the effect of migration
also depends on the statistics. For iHS and nSL, the total var-
iation distance decreases with M. For other statistics,

especially rEHH, the total variation distance increases with
M. Supplementary table S3, Supplementary Material online,
shows total variance distance results for a wider range of
demographic parameters. In all the scenarios, nSL is the
most robust method.

Although the total variance distance is an appropriate
summary statistic for illustrating differences between distri-
butions, differences in the tail of the distribution are particu-
larly important in the current context because only the tail of
the distribution matters in the hypothesis testing scenario.
We, therefore, also show the entire distribution for various
population growth rates and bottleneck models for iHS and
nSL in supplementary figure S1, Supplementary Material
online. Note that the behavior of the tails of the distributions
mimics that expected from the total variance distance, that is,
both iHS and nSL are somewhat sensitive to population
growth, and iHS a bit more so than nSL. In general, iHS and
nSL appear to be the most robust statistics with total variation
distance varying between 0.01 and 0.13 depending on migra-
tion rate and window size.

We also, in supplementary table S4A and B, Supplementary
Material online, provide a table of false-positive rates at the
5% and 1% significance level for the simulations discussed in

Table 1. Total Variation Distance between the Reference Distribution and the True Distribution under Different Models for Five Different
Statistics.

Population
Growth (a = 0)

Population
Bottleneck (r = 1)

Population
Subdivision (M = 0)

Recombination
Rate Variation’ (q = 2,000)

10 100 1000 0.25 0.10 0.05 0.1 1 10 0 400 4,000

nSL (200) 0.03 0.19 0.38 0.11 0.15 0.11 0.13 0.06 0.02 0.04 0.03 0.03

nSL (500) 0.04 0.21 0.40 0.09 0.13 0.11 0.10 0.04 0.04 0.04 0.03 0.04

nSL (1,500) 0.07 0.23 0.40 0.10 0.14 0.12 0.08 0.04 0.05 0.05 0.04 0.04

iHS (0.25) 0.20 0.41 0.53 0.20 0.28 0.29 0.11 0.05 0.03 0.11 0.09 0.08

iHS (0.10) 0.16 0.40 0.59 0.17 0.23 0.24 0.09 0.05 0.04 0.09 0.08 0.07

iHS (0.05) 0.13 0.35 0.53 0.14 0.18 0.19 0.08 0.05 0.05 0.08 0.06 0.05

EHH (2) 0.20 0.30 0.46 0.18 0.22 0.26 0.14 0.19 0.25 0.08 0.06 0.05

EHH (20) 0.41 0.61 0.83 0.35 0.40 0.46 0.23 0.25 0.31 0.21 0.16 0.12

EHH (200) 0.16 0.21 0.23 0.14 0.16 0.18 0.11 0.11 0.11 0.10 0.08 0.04

rEHH (2) 0.20 0.27 0.40 0.13 0.19 0.23 0.10 0.17 0.24 0.07 0.05 0.04

rEHH (20) 0.59 0.77 0.87 0.43 0.54 0.68 0.26 0.30 0.41 0.25 0.20 0.19

rEHH (200) 0.24 0.34 0.34 0.18 0.26 0.27 0.12 0.14 0.12 0.14 0.12 0.09

Tajima’s D (41) 0.64 0.89 0.96 0.09 0.21 0.47 0.25 0.13 0.10 0.14 0.10 0.06

Tajima’s D (101) 0.73 0.94 0.98 0.20 0.29 0.53 0.19 0.13 0.22 0.26 0.17 0.09

Tajima’s D (201) 0.79 0.95 0.99 0.30 0.37 0.59 0.14 0.18 0.33 0.37 0.22 0.10

Fay’s and Wu’s H
(41)

0.37 0.55 0.65 0.25 0.25 0.12 0.39 0.28 0.18 0.18 0.11 0.06

Fay’s and Wu’s H
(101)

0.46 0.63 0.72 0.36 0.34 0.13 0.46 0.39 0.31 0.32 0.18 0.08

Fay’s and Wu’s H
(201)

0.54 0.69 0.77 0.45 0.42 0.19 0.52 0.47 0.42 0.44 0.23 0.09

NOTE.—We computed each of the statistics with three window sizes (values within parenthesis following the name of each statistic). For nSL, Tajima’s D, and Fay’s and Wu’s H
the window size is defined as the number of segregating sites. For iHS, the window size value indicates the EHH threshold used to set the limits of integration. For EHH and rEHH
the window size corresponds to the recombination rate distance over which the IBS of the haplotypes is determined. Values in the table range from 0 to 1. They correspond to
the total variance distance between the standard neutral distribution computed with the parameter of reference (value within parenthesis following each parameter) and the true
distribution. Low values indicate high robustness because the lower the value, the smaller the difference between the neutral and the true distribution. Underlined values denote
the results that fall in the same range as the results obtained when testing nSL. Values that are better than those obtained with nSL are underlined and italicized. Note that, as
the population subdivision model assumes sampling from only one population receiving migrants from another population, the M = 0 scenario corresponds to no population
subdivision.
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table 1. In many cases, the variance of the test statistic is
smaller than under the standard neutral model, leading to a
conservative test when there, for example, is population
growth or the population has experienced a bottleneck in
the population size. Some notable exceptions include the
classical cases of Tajima’s D in the presence of bottlenecks
or population growth and Fay’s and Wu’s H in the presence of
population structure and migration. Among the haplotype-
based statistics, rEHH seems most often to tend to produce
an excess of false positives in the presence of nonstandard
demographics. Some of the other tests are in some cases
highly conservative. This is not a desirable property as it is
often associated with correspondingly low power.

Robustness to Assumptions Regarding Recombination
and Mutation Rates

To evaluate the effect of assumptions regarding recombina-
tion, we simulated data for regions with �= 2,000 and
� = 1,000, where � is the population-scaled recombination
rate under a standard neutral model and � is two times the
population-scaled mutation rate. We compared this distribu-
tion with that obtained under values of � equal to 0, 400, and
4,000 (table 1), corresponding to no recombination, a 5-fold
reduction in recombination rate and a 2-fold increase in re-
combination rate. As predicted from O’Reilly et al. (2008), all
the established statistics are somewhat sensitive to the as-
sumptions regarding recombination rates. For example, for a
5-fold decrease in recombination rate, the total variation dis-
tance varies between 0.05 and 0.20 for rEHH and between 0.10
and 0.22 for Tajima’s D. The most robust of the previous test
statistics is iHS, which for a 5-fold decrease in recombination
rate has total variation distance varying between 0.06 and
0.09. In all the scenarios, nSL is the most robust method,
except when the recombination rate is high (�= 4,000). In
that case, EHH and rEHH, when respectively calculated in
windows of �= 200 and �= 2, perform similarly to nSL. For
the other recombination rates, nSL has at least two times
smaller variation distance than the rest of methods.
Supplementary table S3, Supplementary Material online,
shows the robustness of these statistics for some additional
recombination rates. In all the scenarios, nSL is the most
robust method. Supplementary table S4A and B,
Supplementary Material online, provide false-positive rates
for fixed nominal significance levels.

Power

To quantify the power of the various test statistics for detect-
ing selective sweeps, we performed simulations using the pro-
gram mbs (Teshima and Innan 2009) with selection acting on
a de novo mutation (hard sweep) as well as on alleles with
initial frequencies of 0.001, 0.003, 0.01, 0.03, or 0.1 (soft
sweeps) (fig. 2A). For the simulations under selection, we
used � =�= 300. The simulated region was 0.3-cM long and
selection was set up to always occur at the center of the
region. For the selected allele, we generated 1,000 allele fre-
quency trajectories for each combination of initial and final

frequencies. For each trajectory, a sample of 100 chromo-
somes was produced.

Power is defined as the proportion of simulations that
reject the neutral null hypothesis at the 5% significance
level. As in the case of the previous simulations, we compared
nSL with Tajima’s D, Fay’s and Wu’s H, EHH, and iHS. Figure 2A
shows that when selection occurs on a preexisting allele all
the methods examined loose power as the initial frequency of
the selected allele increases. However, generally in this sce-
nario haplotype-based methods have more power than SFS-
based methods and, nSL has the highest power. Notice that
even for very low initial frequencies (0.1%), where LD-based
methods have full power, SFS-based methods have half the
power of LD-based methods. As the frequency of the selected
allele increases, iHS and nSL experience a relatively small re-
duction in power (~10–30% reduction for allele frequencies
>1%), whereas SFS-based methods under the same condi-
tions experience an almost complete reduction in power
(~70–80% reduction in power). The most dramatic loss of
power is observed for EHH. At low initial frequencies (0.1%),
this method has high power, but the power reduces to close
to zero when the initial frequency is high (10% allele fre-
quency). Figure 2A shows the power of the five methods
for different window sizes. Notice that the power of all the
haplotype-based methods, and EHH in particular is highly
dependent on the window size. In general, small window
sizes result in low power (supplementary fig. S2A and B,
Supplementary Material online).

We also examined the power of these methods using a
range of different selection coefficients and current allele
frequencies (fig. 2B). The current allele frequency is the
allele frequency at the time of sampling. We focused on
two scenarios: selection on a new allele (a hard sweep) and
selection on a preexisting allele at frequency 1% (a soft sweep).
For the hard sweep, haplotype-based methods have higher
power than SFS-based methods. However, the power of the
SFS-based methods increases as the current allele frequency
increases, and becomes comparable with those of haplotype-
based methods when the current allele frequency is high
(~90%). This is not surprising, as the haplotype-based meth-
ods are known to have most power when the allele frequency
is moderately high (65–85%) (Voight et al. 2006), whereas SFS-
based methods retain power, and often maximize power,
when the allele frequency is at, or near, 100%.

In the case of a soft sweep, we again observe that the
haplotype-based methods have more power than SFS-based
methods. In general, nSL performs better, having higher power
than the rest of methods, in particular for low allele frequen-
cies. For all the frequencies and selection coefficients we tried,
nSL has the most power except when it is calculated using a
large window (1,500 segregating sites), the ending allele fre-
quency is high (70%), and the selection coefficient is interme-
diate (4Ns = 1,000). With these parameters, the power of the
nSL statistic drops to 50%.

We examined the power of these statistics to detect selec-
tion in expanding populations by plotting receiver operating
characteristic (ROC) curves under a range of population
growth rates and selection coefficients. The areas under the

1280

Ferrer-Admetlla et al. . doi:10.1093/molbev/msu077 MBE
 at D

anm
arks N

aturO
G

 on July 8, 2016
http://m

be.oxfordjournals.org/
D

ow
nloaded from

 

haplotype 
-
population 
population 
to 
five
two
five
five
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu077/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu077/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu077/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu077/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu077/-/DC1
to 
(
)
-
-
while 
-
(
)
haplotype 
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu077/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu077/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu077/-/DC1
(
)
-
to 
haplotype 
&percnt;-
while 
http://mbe.oxfordjournals.org/


0.5 0.6 0.7 0.8 0.9

Hard Sweep

ending allele frequency

P
ow

er

0
20

40
60

80
10

0

0.5 0.6 0.7 0.8 0.9

Soft Sweep

ending allele frequency

P
ow

er

0
20

40
60

80
10

0

Hard Sweep

selection coefficient

P
ow

er

100 300 1000 3000 10000

0
20

40
60

80
10

0

Soft Sweep

selection coefficient

P
ow

er

100 300 1000 3000 10000

0
20

40
60

80
10

0

Starting Allele Frequency

starting allele frequency

P
ow

er

0.001 0.003 0.01 0.03 0.1

0
20

40
60

80
10

0

nSL(200)
nSL(500)
nSL(1500)

iHS (0.25)
iHS (0.10)
iHS (0.05)

EHH (2)
EHH (20)
EHH (200)

Tajima’s D (41)
Tajima’s D (101)
Tajima’s D (201)

Fay and Wu’s H (41)
Fay and Wu’s H (101)
Fay and Wu’s H (201)

A

B

FIG. 2. (A) The power of five methods (nSL, iHS, EHH, Tajima’s D, and Fay’s and Wu’s H) for a range of starting allele frequencies (0.001–0.1). Power is
defined as the proportion of simulations that reject the neutral null hypothesis at the 5% significance level. Each color corresponds to a method and
symbols correspond to the window sizes used to run the methods (the specific window sizes used for the analysis are given in parenthesis). (B) The
power of the five methods for a range of ending allele frequencies (0.5–0.9) (top two panels). The bottom two panels show the power of the methods
for a range of selection coefficients (4Ns = 100�10,000). The color scheme and symbols in these panels correspond to the legend embedded in (A).
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ROC curves are shown in supplementary table S5,
Supplementary Material online, and some representative
curves are shown in supplementary figure S2C–E,
Supplementary Material online. The iHS and nSL statistics
have the largest areas under the curves, with nSL having
slightly higher areas. As expected, for all statistics, the area
under the curve is maximized when selection is strong and
the growth rate is low.

Analysis of HAPMAP Data

We analyzed phased data for the autosomal polymorphic
positions in the 11 human populations from the
International HapMap 3 Project (International HapMap 3
Consortium 2010) (http://hapmap.ncbi.nlm.nih.gov/, last
accessed March 3, 2014). The analysis was restricted to the

subset of SNPs (12487425), for which we could assess the
ancestral allele state by comparing chimpanzee, macaque,
and human reference sequences.

Robustness in the Analysis of HapMap Data

We computed the previously discussed five statistics for the
HapMap3 CEU population to examine whether the biases
caused by recombination rate variation are also present in
real data. Figure 3 shows the distribution of iHS, nSL, Tajima’s
D, and Fay’s and Wu’s H for sites with low or high recombi-
nation rates. The distribution of nSL is similar for low and high
recombination rates, whereas the other statistics have higher
variance in regions of low recombination. This is consistent
with the expectation from the simulation. Examining the top
values of each statistic (< 1st and > 99th, respectively), we

FIG. 3. Robustness to recombination rate. Distribution of nSL, iHS, Tajima’s D, and Fay’s and Wu’s H for regions with high (black) and low (gray)
recombination rate. Plots are made with whole-genome genotype data for the HapMap3 CEU population (Utah residents with Northern and Western
European ancestry from the CEPH collection).
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find 8% of nSL values, 9% of iHS values, 7% of Tajima’s D
values, and 8% of Fay’s and Wu’s H values fall in regions of
low recombination rate ð<3� 10�3 cM=MbÞ, whereas 9%,
5%, 1%, and 1% of their values fall in regions of high recom-
bination rate (>4.28 cM/Mb). These results are concordant
with the conclusion from the simulation studies that nSL is
more robust toward variation in recombination rate than
other statistics, with iHS as a close second. In contrast,
Tajima’s D and Fay’s and Wu’s H are very sensitive to recom-
bination rate variation. These two methods are intended for
DNA sequencing data, and the use of ascertained SNP geno-
typing data may affect their distributions. However, as these
results mirror those found in simulations of full sequencing
data, they lend further support to the hypothesis that results
of genome scans based on these tests are highly sensitive to
recombination rate variation (O’Reilly et al. 2008). Similar
conclusions will likely be true for other statistics based on
the SFS that do not directly incorporate recombination rate
variation.

Overview of Selection Signatures in Africa

To date, most genome scans for positive selection have been
performed on the three populations originally included in the
HapMap project: Europeans (CEU), Asians (CHB and JPT),
and Africans (YRI). Signatures of selection within and be-
tween these populations have been described elsewhere
(Weir et al. 2005; Voight et al. 2006; Wang et al. 2006;
Kimura et al. 2007; Sabeti et al. 2007; Tang et al. 2007;
O’Reilly et al. 2008), but only a limited number of genome-
wide scans have been published on African populations
(Andersen et al. 2012; Jarvis et al. 2012). Because of the avail-
ability of several populations of African ancestry in the
HapMap3 (4 out of 11), we focused on reporting and discuss-
ing the results for these populations using nSL.

As in Voight et al. (2006), we primarily interpret our results
as an outlier approach, because it facilitates comparisons be-
tween results obtained using different methods (specifically,
between nSL and iHS). However, we also provide P values
estimated using simulations (see Materials and Methods).
We warn against a strong interpretation of these P values,
because as illustrated in the analysis of simulated data, the
distribution of any of the neutrality statistics depend on de-
mographic assumptions, although less so for nSL than for the
other statistics. Based on the outlier approach, we identify the
genes that have most likely been affected by selection (see
Materials and Methods).

Comparisons with iHS: Recombination Rate Variation

We examined the effect of recombination rate variation by
plotting the distribution of recombination rates among the
SNPs in the first percentile of the nSL and iHS distributions
and compared these distributions with the distribution of the
recombination rate from the entire genome using the
DeCode map (fig. 4). The recombination rate distribution
of nSL outliers is similar to the overall distribution of the
genome. In contrast, the distribution of the recombination
rate for the iHS outliers is shifted toward regions with low

recombination rates. This illustrates that iHS tends to detect
more outliers in regions of low recombination rates. This
phenomenon was observed in all four African populations
and it is in agreement with the results obtained using the
European population from HapMap 3 (fig. 3) as well as with
the simulation results (table 1).

Comparisons with iHS: Individual Missense
Mutations with Strong Signal

To further explore the difference between nSL and iHS, we
analyzed the results for the SNPs with the largest difference
between nSL and iHS scores: rs2267161 and rs10828663. Both
SNPs have extreme values of nSL (�2.92 and �3.00, respec-
tively) but moderate iHS values (�0.38 and �0.55, respec-
tively). To our knowledge, neither of the regions to which
these SNPs belong have previously reported as targets of pos-
itive selection. The haplotype structure of the haplotypes
tagged by the SNPs are in both cases roughly compatible
with what would be expected from a classic selective
sweep, that is, a single allelic class with reduced haplotype
homozygosity (fig. 5). However, the value of iHS does not
indicate the presence of selection at these sites, presumably
due to a high recombination rate in these regions (3.46 cM/
Mb and 2.84 cM/Mb, respectively). One of the SNPs
(rs2267161) is located at GAL3ST1; a gene involved in the
metabolism of a number of different compounds including
hormones and neurotransmitters. The rs2267161 variant itself
is associated with increased risk of type 2 diabetes. In the
homozygous state, the ancestral allele is associated with
lower insulin resistance in females (Roeske-Nielsen et al.
2009). The other SNP (rs10828663) is in a gene with little
functional annotation (KIAA1217).

Finally, we investigated outliers that did not fall in regions
of high recombination, but nonetheless showed a strong dif-
ference between nSL and iHS values. An extreme case is
rs3793771 with an nSL value of �2.75 but a value of �1.90
for iHS, although the recombination rate in the region is only
0.26 cM/Mb. As illustrated in figure 5, this SNP might repre-
sent a case of selection on standing variation. It falls in
WNT8B, a gene with expression restricted to the developing
brain (Lako et al. 1998).

Novel Selection Signatures in African

In the following section, we describe, by gene, the top signa-
ture(s) of positive selection in African populations using nSL.
We focus on a contrast between the Maasai and the Yoruban
populations, which have very distinct and extreme patterns,
as illustrated below. A list of the top 30 nSL outliers (<1st or
>99th percentile) for each HapMap3 population is included
in the supplementary table S6A–K, Supplementary Material
online.

Top Signatures of Selection in the Maasai
Population (MKK)

Among all 11 populations analysed in this study, the Maasai
population (MKK) includes the most extreme nSL value (6.63,
P value <10�5; rs16831455). This value, and other similarly
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high values are found in the region around the LCT gene, for
which regulatory variants have previously been shown to be
under selection in this population, relating to lactose persis-
tence (Tishkoff et al. 2007). The pattern in the HapMap3 data
is so extreme that all top 50 SNPs in the MKK population are
within a 3.4-MB region around LCT (supplementary fig. S3,
Supplementary Material online) and all have P values less
than 10�5. The highest value falls within the ZRANB3 gene
(table 2); a gene encoding a zinc finger protein. This variant is
intronic and has a positive nSL value, which might indicate
selection associated with the ancestral allele if selection was
acting directly on this SNP. However, the effect we observe is
likely due to LD with SNPs not included in the HapMap 3
data. Tishkoff et al. (2007) reported three variants conferring
lactose persistence in the Maasai population; these variants
are not present in HapMap3 data, but given the high LD
around LCT (supplementary fig. S4, Supplementary Material
online) the signature of selection found on rs16831455 might
be caused by selection acting on the previously identified
SNPs. The average recombination rate in this region is
1.56 cM/Mb, partly explaining why the signal of selection

spans such a large section. A gene ontology (GO) analysis
of the top 3% of genes showed enrichment for two GO com-
ponents: cell junction (corrected P value = 0.03) and synapse
part (corrected P value = 0.03), none of them containing LCT
or ZRANB3.

Top Signatures of Selection in the Yoruba
Population (YRI)

In the YRI population, the most extreme nSL value is in the
IL34 gene. This gene encodes a cytokine that promotes the
differentiation and viability of monocytes and macrophages
through the colony-stimulating factor-1 receptor (Wei et al.
2010). The SNP with the highest nSL value (4.94, P = 0.00005)
also has a high nSL in the MKK population (2.86, P < 10�5).
This gene itself has, to our knowledge, not previously been
reported as candidate for positive selection.

We performed a gene ontology analysis of the top 3% of
genes with extreme nSL scores to identify enriched GO terms.
We emphasize that such enrichment may not in itself dem-
onstrate validity of the results Pavlidis et al. (2012).

FIG. 4. Distribution of the recombination rate. Distribution of recombination rate for nSL and iHS outliers (less than the first percentile of the respective
empirical distributions). Recombination rate for nSL outliers is shown in green, whereas recombination rate for the iHS outliers is in red. The distribution
of the recombination rates for the entire genome is shown in black (data taken from the DeCode recombination map). Each panel in the figure
corresponds to one HapMap3 population of African ancestry (YRI, ASW, MKK, and LWK).
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This analysis revealed three enriched functional categories
in the YRI population: the lipid-binding category, the plasma
membrane and the intracellular ligand-gated ion channel ac-
tivity (corrected P values = 0.05, 0.04, and 0.04, respectively).
Interestingly, two out of the top six genes (APOL1 and CD36
are members of the lipid-binding category). They both have
important roles in the metabolism of cholesterol. APOL1 is
involved in the formation of most cholesteryl esters in plasma
and also promotes efflux of cholesterol from cells. Also, it may
play a role in lipid exchange and transport throughout the
body, as well as in reverse cholesterol transport from periph-
eral cells to the liver (Duchateau et al. 2000). CD36 is impli-
cated in the binding and internalization of oxidized low-
density lipoprotein (Ox-LDL) (Liu et al. 2010). It is involved
in cholesterol uptake in monocytes and macrophages (Anwar
et al. 2011) and contributes to cholesterol efflux in hepatic
cells (Truong et al. 2010). Its expression increases as a result of
raised Ox-LDL, as well as raised levels of glucose, insulin resis-
tance, low high-density lipoprotein (HDL) cholesterol and free
fatty acid (Gautam and Banerjee 2011). A part from APOL1
and CD36, our top list of candidates includes one more gene
related to cholesterol metabolism: ATF6. This gene encodes a
transcription factor that is activated during endoplasmic re-
ticulum stress and is processed in response to cholesterol
deprivation (Ye et al. 2000). Finally, the lipid-binding category
also includes one more high-scoring gene (ranked 22nd) in-
volved in cholesterol metabolism: OSBP2. This gene, also
named ORP4, interacts with intermediate filaments and

FIG. 5. Haplotype pattern for three SNPs in the YRI population.
The vertical dark line indicates the location of the SNP (SNPid is
shown). The average length of each haplotype is represented by a
horizontal line. The different haplotype backgrounds carrying the
derived allele are denoted by different tones of green. Each tone of
gray indicates a different haplotype background carrying the ancestral
allele. All haplotypes carrying the derived allele lie on the white back-
ground, whereas haplotypes carrying the ancestral allele lie on the green
background.

Table 2. The Top Ten Genes with the Most Extreme nSL Scores in the Masaai (MKK) and Yoruban (YRI) Populations.

Population SNPid Chr Position Derived Allele DAF nSL P Value Function Rec Rate Gene

MKK rs16831455 2 135690238 G 16 6.63 1e–5 Intron — ZRANB3

MKK rs309154 2 136443037 C 25 6.24 1e–5 Intron — DARS

MKK rs16838134 2 137595057 C 22 �6.12 1e–5 Intron 0.024 THSD7B

MKK rs13390171 2 135493974 A 25 5.97 1e–5 Intron — YSK4

MKK rs6430516 2 134935075 G 29 5.89 1e–5 Intron 1.449 TMEM163

MKK rs2289959 2 136140374 C 19 5.49 1e–5 Intron 0.004 R3 HDM1

MKK rs11887041 2 134773894 G 52 5.43 1e–5 Intron — MGAT5

MKK rs3769012 2 136272950 A 73 �5.31 1e–5 Intron 0.003 LCT

MKK rs4954221 2 135625932 G 70 �5.30 1e–5 Intron — RAB3 GAP1

MKK rs1050115 2 136228287 G 70 �5.25 1e–5 Coding-synon 0.003 UBXN4

YRI rs7193968 16 69230453 G 2 4.94 5e–5 Unknown — IL34*

YRI rs4312417 19 43489029 A 78 �4.85 1e–5 Intron 0.729 YIF1B*

YRI rs11880532 19 43550883 T 80 �4.83 1e–5 Intron — CATSPERG

YRI rs2866908 4 108124957 A 14 4.83 1e–5 Intron — DKK2*

YRI rs10231365 7 20398110 C 25 4.82 1e–5 Intron 1.526 ITGB8

YRI rs2413395 22 34984662 A 7 4.82 1e–5 Intron 2.325 APOL1 (lipid binding)

YRI rs8136512 22 32461239 C 28 �4.81 1e–5 Intron 1.071 LARGE*

YRI rs6687226 1 160158180 A 1 4.76 1e–5 Intron 0.057 ATF6*

YRI rs11292 10 102303597 G 20 4.73 1e–5 Untranslated-3 0.087 HIF1 AN

YRI rs10234980 7 79958990 T 25 �4.64 1e–5 Intron — CD36 (lipid binding)

NOTE.—The table shows the top ten j nSL j scores falling within genes in the MKK and YRI populations from HapMap3. The first column indicates the population, next columns
show the SNP identification number, the location (chromosome and position) of each SNP based on HG18, the derived allele and derived allele frequency (DAF), the nSL score
and P value (calculated under the demographic model for Yoruba proposed in Gutenkunst et al. [2009]; the function of the SNP, the recombination rate (Rec Rate) in cM/Mb at
the site (from the DeCode recombination rate map) and the gene the SNP is located in. In the YRI population, SNPs that are not among the strongest signatures of selection
according to Voight et al. (2006) are marked with an asterisk. Genes involved in lipid binding and in the metabolism of cholesterol are indicated in the table with the notation:
lipid binding.
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inhibits an intracellular cholesterol-transport pathway (Wang
et al. 2002).

It is worth noticing that APOL1 is also involved in parasite
killing. Specifically, it is responsible for trypanosome killing
through its anionic pore-forming capacity. It triggers uncon-
trolled osmotic swelling of the lysosome (Pays and
Vanhollebeke 2009). This is a type of human innate immunity
against trypanosomes, and possibly other parasites. Similarly,
CD36 harbors genetic variants associated with susceptibility
to malaria (Aitman et al. 2000).

Discussion
We present a haplotype homozygosity-based method (nSL)
for the detection of positive selection using haplotype homo-
zygosity. The method differs from previous methods primarily
in measuring genomic distances using counts of segregating
sites. Using simulations and real data, we compare this to
other methods including both methods based on information
regarding the SFS and methods based on haplotype structure.
We generally find that most methods are less robust than
perhaps previously assumed. In particular, none of the hap-
lotype-based methods are fully robust to demographic as-
sumptions. We also show, in accordance with the results of
O’Reilly et al. (2008), that all previous methods lack robust-
ness to assumptions regarding local recombination rate.
Among the previous methods, iHS is generally most robust,
especially in the presence of population structure. Much of
this robustness is achieved by the use of ratios of haplotype
homozygosity between derived and the ancestral alleles, in
the construction of the test statistic. The new method, nSL, is
more robust than other methods for most of the scenarios
investigated here, and in general has the same power or more
power than tests based on previously proposed statistics. nSL

is closely related to the iHS statistic, and has very similar
properties. However, nSL is more robust to variation in mu-
tation/recombination rates and is somewhat more robust to
assumptions regarding changes in population size. It primarily
achieves this robustness by measuring haplotype length in
terms of segregating sites rather than true genomic distance,
thereby incorporating more information about local total tree
length.

We notice that the increased robustness to recombination
rate variation is of particular importance in genomic scans,
using outlier methods, or more generally in studies focusing
on ranked lists of genes. As pointed out by O’Reilly et al.
(2008), such methods have a tendency to primarily identify
SNPs in regions of low recombination. One possible explana-
tion for this is that regions with low recombination rate are
more likely to be affected by genetic hitchhiking. However,
when using the nSL statistic, we do not find a large enrich-
ment in regions of low recombination. Given that nSL is more
robust to recombination rate variation and is at least as pow-
erful as other statistics, this suggests that the enrichment
found using other statistics may be due to an increased
false-positive rate.

Przeworski et al. (2005) argue that sweeps from standing
variation might be more important in recent human history

than classic selective sweeps. Many of the most common
methods for detecting selection have reasonable power to
detect classic sweeps, but less so to detect sweeps from stand-
ing variation (Kim and Stephan 2002). Using simulations, we
here evaluate the power of nSL and several previous statistics,
to detect sweeps from standing variation. Both nSL and iHS
have considerable power to detect selection on standing var-
iation, perhaps more so than previously appreciated, in par-
ticular, when the selection coefficient is high (S> 300) and
the initial allele frequency is less than 10%. The power of nSL is
again as high or higher than the power of iHS, but the power is
generally very similar between the two methods. In real data
analyses, the results differ between these two methods, as
illustrated by the result on rs3793771, a missense SNP in a
region not previously reported to be targeted by positive
selection. This site has two different long haplotypes associ-
ated with the derived (and presumably advantageous allele), a
possible consequence of a soft sweep (fig. 5). For this SNP, nSL

has an extreme value (< first quantile of nSL empirical distri-
bution) while the value of iHS is moderate (> second quan-
tile of iHS empirical distribution).

All of the methods discussed here rely on a predefined
window size, and this window size strongly influences
power. The reason for a specification of window size for
methods such as Tajima’s D is obvious. However, it is perhaps
less obvious for statistics such as EHH, iHS, and nSL. For these
three methods, the window size determines the maximum
allowed length of a haplotype. In EHH and iHS, the use of a
window size was originally introduced for purely computa-
tional reasons to reduce computational complexity. We
notice that even under a standard neutral model, the ex-
pected length of homozygosity segment is infinite. The ex-
pected time to the next mutation or recombination in a
fragment with initial coalescence time t between a pair of
sequences, is given by ½tð�+ 2�Þ��1 (see Definition of
Statistics for definitions). The integral of this expectation
over the distribution of t in the standard neutral model
does not converge. Although perhaps this observation may
initially be dismissed as a minor mathematical point, it helps
explain the strong effect of window size on the power of the
haplotype homozygosity-based statistics observed in our sim-
ulations (figs. 3 and 4). There is no simple cutoff for which the
haplotype-based statistics in average take on the same value
as if no cutoff had been used. For practical purposes, based on
our tests, we recommend using SNP density to determine the
cutoff. In our case, after testing nSL using a range of cutoffs on
genotyping (HapMap3) and simulated (ms) data, we decided
to use a window size of 1,500 SNPs for HapMap3 data and a
window of 200 SNPs for ms data.

As an example of the utility of the method, we analyze
genotype data from the 11 populations in the HapMap3
project. We report the top nSL scores in each population
and focus on the four populations of African ancestry. Our
most interesting finding is perhaps the results on the YRI
(Yoruban) population. This population shows an enrichment
of nSL scores in three GO categories: lipid binding, plasma
membrane, and intracellular ligand-gated ion channel activity.
The lipid-binding category contains genes directly related to
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cholesterol metabolism. Interestingly, the YRI population is
often argued to be the ancestral population of many African
Americans (Price et al. 2009), who generally have elevated
HDL cholesterol levels (47 mg/dl) and reduced triglyceride
levels (102 mg/dl) compared with Americans of Europeans
descent (HDL: 44 mg/dl and triglycerides: 134 mg/dl; both
with P value < 10�3) (Haffner et al. 1999).

Several studies have shown that this difference in the cho-
lesterol levels can not be explained exclusively by environ-
mental effects, but likely has a genetic basis (Berbée et al.
2005). In the YRI population, the cholesterol-related gene
presenting the most extreme nSL score is APOL1, a gene
encoding a component of HDL. Alleles in this gene are asso-
ciated with protection against Trypanosoma brucei rhode-
siense, but not against T. b. gambiense; both Trypanosoma
subspecies cause human sleeping sickness that results in
50,000 deaths per year. So far two variants of APOL1 have
been associated to the lysis of some T. b. rhodesiense clones
(Genovese et al. 2010), which previously have been argued to
have been subject to positive selection (Genovese et al. 2010).
Interestingly, the YRI population inhabits a region not influ-
enced by T. b. rhodesiense but by T. b. gambiense, for which
these two alleles have been shown not to confer protection
(Genovese et al. 2010). The APOL1 SNP with a high nSL value
identified in this study is not linked to the variants described
to confer resistance to T. b. rhodesiense and selection at this
site could possibly be the consequence of local adaptation to
T. b. gambiense, instead. The candidate allele is ancestral, sug-
gesting that selection may possibly affect another linked SNP.

The other major lipid-related protein with extreme nSL

values in the YRI population is CD36. Variants in this gene
have been shown to be associated with increased HDL cho-
lesterol levels (Liu et al. 2010). In addition, variants in the gene
are also associated with malaria resistance (Aitman et al. 2000;
Sirugo et al. 2008). For both CD36 and APOL1, the nSL values
are high in the YRI population but moderate in other African
populations. Similarly, only the YRI population shows a GO
enrichment of lipid metabolism genes with extreme nSL

values.
For both APOL1 and CD36, selection may likely not pri-

marily have targeted the effect of the genes in terms of lipid
transport and cholesterol, but rather the pleiotropic effects
on defense against pathogens. It is difficult to establish the
exact selective agent of past selection, but the strong direct
fitness consequences of T. brucei or malaria infection, here
suggest selection might primarily be acting in response to
these diseases. If so, the differences in lipid metabolism be-
tween certain African populations and other populations
might be a secondary effect of the selection relating to
blood parasites. With a few exceptions, such as lactose toler-
ance (Enattah et al. 2002) and altitude adaptation (Simonson
et al. 2010; Yi et al. 2010; Peng et al. 2011; Xu et al. 2011),
strong selection in humans, particularly local selection, seems
to be dominated by selection in response to pathogens
(Pennings and Hermisson 2006a; Cagliani et al. 2013). This
is perhaps not surprising given the strong effect on human
survivorship of many pathogens. The resulting pleiotropic
effects of the immune and defense-driven genetic changes

may explain differences between different groups of
humans in traits such as susceptibility to autoimmune dis-
eases (Fumagalli et al. 2011) and lipid metabolism.

Materials and Methods

The nSL Statistic

The nSL statistic is a haplotype-based statistic designed to
detect the signature of positive selection in single-population
genomic data. This method requires phased data and infor-
mation on the ancestral/derived status at each segregating
site. A formal description of the method is in the Definition of
Statistics section.

Dependency on Allele Frequency

As nSL highly depends on allele frequency (supplementary fig.
S5A, Supplementary Material online), we standardized results
as in Voight et al. (2006) by binning the SNPs by allele fre-
quency and subtracting the mean and dividing by the stan-
dard deviation of each bin. Frequency categories were defined
by 1% frequency increments (supplementary fig. S5B,
Supplementary Material online).

Simulations under Neutrality and Summary Statistics

We used two summaries of the SFS: Tajima’s D (Tajima 1989)
and Fay’s and Wu’s H (Fay and Wu 2000) and two haplotype-
based methods: EHH and iHS (Sabeti et al. 2002; Voight et al.
2006) for comparison with nSL. We applied these five meth-
ods on simulated full-sequencing data generated with ms
(Hudson 2002). We defined a baseline standard neutral de-
mographic model of one population of constant size with
� ¼ � ¼ 1000 (over the locus), where � and � had their
standard definitions of 4N� and 4N�. We used a sequence
length of 0.3 cM. We then varied this baseline neutral model
to produce simulations with 1) a population expansion for a
range of growth rates (a= 1, 10, 100, and 1,000); 2) a popu-
lation bottleneck for a range of bottleneck ratios that oc-
curred 1,200 generations ago and lasted 800 generations
(r = 0.5, 0.25, 0.1, and 0.05); a two island model with migration
assumed to be symmetric and constant in time. Under this
model, we varied the population-scaled migration rate be-
tween the two islands and sampled from one of them
(M = 0.001, 0.01, 0.1, 1, and 10). � is the growth rate. If t is
in coalescent units, then the effective population size as a
function of time is given by 2N0exp(-�* t), where 2N0 is the
effective population size at the present. The bottleneck ratio,
r, is 2N0/2N1, where 2N1 is the population size for the duration
of the bottleneck and N0 was assumed to be 104. The popu-
lation-scaled migration rate, M, is 4Nm, where m is the prob-
ability, per generation, that an individual switches
populations. Finally, we varied the recombination rate
(�= 0, 200, 400, 2,000, and 4,000) (supplementary table S3,
Supplementary Material online). Under each of these scenar-
ios, we ran 100 simulations with 20 chromosomes per simu-
lation. We also used neutral simulations to investigate the
power of nSL and the other four statistics to reject a neutral
hypothesis in favor of a recent selective sweep. For this
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purpose, we simulated data under a standard neutral model
of one population of constant size. Assuming � ¼ � ¼ 100
and a length of 0.3cM. Data corresponding to selective sweeps
were then simulated using the mbs program (Teshima and
Innan 2009), as described later. The statistical power of each
method was computed as the ratio of simulated data sets,
which were rejected to the total number of simulated data
sets. For a simulated sample of sequences, nSL, iHS, and EHH
were calculated at a single site in the center of sequence or at
the site under selection.

Simulations of Selection

We estimated the power of the new method to detect pos-
itive selection through simulations. As mentioned, we used
the program mbs (Teshima and Innan 2009) to generate 0.3-
cM long regions with a biallelic site under selection at the
center of the region. For each of the scenarios described later,
1,000 replicates were simulated with � = 4N�= 1,000 and 100
sampled chromosomes. We tested selection on a new allele
and selection on standing genetic variation. In the latter case,
we used a range of starting allele frequencies (0.1%, 0.3%, 1%,
3%, and 10%) (fig. 2A). For these simulations, we used a pop-
ulation-scaled selection coefficient of s = 1,000 and an ending
allele frequency of 80%. For a starting allele frequency of 0%
(selection on a new allele) as well as for a starting allele fre-
quency of 1% (selection on standing variation), we varied the
selection coefficient (S = 0.0012, 0.004, and 0.012) and the
final allele frequency (from 50% to 90%, in 10% increments)
(fig. 2B). We generated the trajectory files for the selected
alleles using two programs provided with mbs (forward-
traj.c and backwardtraj.c). Backward simulations
were used to create the trajectory of new alleles, whereas a
combination of both forward and backward simulations was
used to simulate the trajectory of alleles in the soft sweep
scenario. In the latter case, we used backward simulations for
the trajectory of a neutral allele before it reached 1% fre-
quency in the population (setting S = 0) and then used for-
ward simulations after that time until the allele reached the
ending frequency (the frequency at the time of sampling). We
used rejection sampling to condition on the ending frequency
of the alleles. The underlying demographic model for the
simulations under selection was the standard neutral model
described in the previous section.

Estimation of P Values

We computed an approximate P value by simulating the
distribution of nSL under an approximating neutral demo-
graphic model. This was done while binning SNPs based on
their derived allele frequency, to account for dependence in
the distribution on allele frequencies. The simulations were
carried out with the program ms (Hudson 2002) using the
demographic model of Gutenkunst et al. (2009), which
models the demographic history of four populations:
African, East Asian, European, and Mexican-American. We
analyzed data from 11 populations, eight of which can directly
be compared with the populations in Gutenkunst’s model:
three African (LWK, MKK, and YRI), two East Asian (JPT and

CHB), two European (CEU and TSI), and one Mexican-
European admixed population (MEX). Two populations are
admixed (ASW is African-European admixed and CHD is
Asian-European admixed) and GIH is an Indian population
for which there is no equivalent in the demographic model
we use. For this reason, we omitted GIH when we made
comparisons with the null model. Despite the inaccuracies
in the demographic model, we compared ASW with Africans
and CHD with Asians. As a consequence, every nSL score in
the study is accompanied by a P value, except in the GIH
population because the lack of demographic model.
Hypothesis testing throughout the article is one-tailed.

Correcting for SNP Ascertainment Bias

Because of SNP ascertainment the allele frequency spectrum
(SFS) of HapMap3 data does not agree with the SFS generated
by the Gutenkunst demography. We used rejection sampling,
as in Voight et al. (2006) to match the frequency spectrum of
the simulated data with the observed SFS in the real data.

HapMap Phase 3 Data

We used autosomal phased haplotype data from the 11 pop-
ulations included in the HapMap Phase3 release 2. These data
contain a total of 1,184 samples (supplementary table S1,
Supplementary Material online). We excluded closely related
individuals by estimating pairwise identity-by-descent (IBD)
with the PLINK tool set (Purcell et al. 2007) using the option—
genome (http://pngu.mgh.harvard.edu/purcell/plink/, last
accessed March 3, 2014). Sites with major allele frequency
or missing data rates of more than 5% were not included.
We excluded 339 individuals from the analysis because more
than 5% of their genomes were estimated to be IBD. A break-
down by population is given in supplementary table S1
(Supplementary Material online). The HapMap consortium
phased the data using family information to deterministically
resolve phase by transmission, when possible, and used
IMPUTE++ (Howie et al. 2009) otherwise. The consensus
set of SNPs after imputation contains 1385868 SNPs. The
number of SNPs in each chromosome is given in supplemen-
tary table S2 (Supplementary Material online).

SNP Position and Function

The position of the SNPs included in the project is based on
NCBI36/hg18. We used the UCSC genome browser (http://
genome.ucsc.edu/, last accessed March 3, 2014) to determine
the functional state of each SNP (nonsynonymous, synony-
mous, intronic, UTR, or intergenic). We were unable to at-
tribute function to 0.56% of the SNPs because either their
function was unknown (776,138 SNPs) or they were not pre-
sent in UCSC database (1,953 SNPs).

Ancestral State

We used the snp129OrthoPt2Pa2Rm2 table from the
UCSC Genome Table Browser to determine the ancestral
state of each SNP. This information was available for 99.1%
of the SNPs. The ancestral allele was assigned to the human
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allele that agreed with at least two nonhuman primate spe-
cies. We did not assign an ancestral state for 4% of the SNPs
because they showed discrepancies among the nonhuman
primate alleles. Supplementary table S2, Supplementary
Material online, also shows the number of SNPs for which
we did not assign the ancestral allele.

Identifying Signatures of Selection

To define candidate loci that may have been targeted by
selection, we first calculated nSL for all SNPs and then estab-
lished a cutoff based on the 1st and 99th percentile of the
empirical distributions for each population independently.
In addition, we assigned P values to each SNP using paramet-
ric simulations, as described in the section Estimation of P
values. Results are presented by ranking the absolute normal-
ized nSL scores in each population. For the nSL scores in
the 1st and 99th percentiles, we performed a hierarchical
cluster analysis of the fragment lengths between pairwise
differences. Based on this analysis, we determined the
number of different haplotypes backgrounds for each allele.
This information was used for plotting purposes (visualization
of the haplotypes carrying the derived and the ancestral
allele).

We used RefSeqGenes (http://www.ncbi.nlm.nih.gov/
refseq/rsg/, last accessed March 3, 2014) to assign SNPs to
genes, when applicable. For this purpose, we focused solely on
genes with transcript products, that is, with mature mRNA.
When more than one transcript was available we used the
longest transcript product. We then assigned SNPs into genes
according to the transcript coordinates. We kept the most
extreme j nSL j score per gene to rank all genes according to
this score and performed the Gene Ontology enrichment
analysis using the GOrilla tool Eden et al. (2009) with two
list of genes; the list of candidates (top 3% of genes) and the
list of all genes in the study (from 14,269 to 14,279 genes,
depending on the population). Any category belonging to GO
process, GO function and GO component was considered
significant if having a corrected P value� 0.05. The corrected
P value was computed as the P value provided by GOrilla
times the number of tested GO terms.

iHS was computed using the code released by Voight et al.
(2006). iHS scores were normalized similarly to nSL. The EHH
and rEHH were computed with our own code according
to the description given by Sabeti (2005), where the EHH
and rEHH of a particular core haplotype t are calculated as
follows:

EHHt ¼

PS
i¼1

eti

2

� �

ct

2

� � ,

where c is the number of samples of a particular core haplo-
type, e is the number of samples of a particular extended
haplotype, and S is the number of unique extended haplo-
types (Sabeti 2005).

The rEHH is EHHt=EHH. And, EHH is the decay of EHH on
all other core haplotypes combined:

EHH ¼

Pn
j¼1,j 6¼t

PS
i¼1

ei

2

� �� �

Pn
i¼1,i6¼t

ci

2

� � ,

where n is the number of different core haplotypes
(Sabeti 2005).

For the purpose of this article, the core haplotypes of
interest are defined by the presence or absence of a
single SNP.

Supplementary Material
Supplementary figures S1–S5 and tables S1–S6 are available at
Molecular Biology and Evolution online (http://www.mbe.
oxfordjournals.org/).
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