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TARGETING ESTIMATION OF CCC-GARCH MODELS WITH
INFINITE FOURTH MOMENTS

RASMUS SØNDERGAARD PEDERSEN
UNIVERSITY OF COPENHAGEN

Abstract. As an alternative to quasi-maximum likelihood, targeting estimation is a
much applied estimation method for univariate and multivariate GARCH models. In
terms of variance targeting estimation recent research has pointed out that at least
finite fourth-order moments of the data generating process is required if one wants to
perform inference in GARCH models relying on asymptotic normality of the estimator,
see Pedersen and Rahbek (2014) and Francq et al. (2011). Such moment conditions
may not be satisfied in practice for financial returns highlighting a large drawback of
variance targeting estimation. In this paper we consider the large-sample properties
of the variance targeting estimator for the multivariate extended constant conditional
correlation GARCH model when the distribution of the data generating process has
infinite fourth moments. Using non-standard limit theory we derive new results for
the estimator stating that its limiting distribution is multivariate stable. The rate of
consistency of the estimator is slower than

√
T (as obtained by the quasi-maximum

likelihood estimator) and depends on the tails of the data generating process.
Keywords: Targeting; variance targeting; multivariate GARCH; constant conditional

correlation; asymptotic theory; time series, multivariate regular variation,
stable distributions.

JEL Classification: C32, C51, C58.

1. Introduction

Targeting estimation is, by now, a much applied tool when estimating multivariate
volatility models, see e.g. Laurent et al. (2012), Hafner and Reznikova (2012), and Ca-
porin and McAleer (2012) for recent applications and discussions of targeting estimation
in multivariate GARCH models. Recently, Pedersen and Rahbek (2014) have consid-
ered the asymptotic properties of the (covariance) targeting estimator for multivariate
BEKK-GARCH models, and Kristensen and Linton (2004) and Francq et al. (2011) have
developed the large-sample properties of the (variance) targeting estimator for univariate
GARCH models. As established in these papers, at least finite fourth-order moments of the
observed process are required in order to establish asymptotic normality of the estimators.
In practice such moment restrictions may not be satisfied for asset returns casting serious
doubt on the validity of the inference performed in GARCH models based on targeting
estimation. In the present paper we derive the limiting distribution of the targeting esti-
mator for multivariate extended constant conditional correlation (CCC-)GARCH models
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when the data generating process does not have finite fourth-order moments but still finite
moments of second order (implying consistency of the estimator). We show that under cer-
tain conditions, the limiting distribution of the targeting estimator is multivariate stable.
The rate of consistency is slower than

√
T , the rate of consistency for the quasi-maximum

likelihood estimator (QMLE), and is determined by the tails of the distribution of the
observed vector process. Our conclusions are in line with the ones in a recent paper by
Vaynman and Beare (2013) who consider the limiting distribution of the variance targeting
estimator for univariate GARCH models in a similar setting.

Forecasts of conditional covariance matrices play an important role in a vast amount
of financial applications as in for example the fields of (dynamic) portfolio allocation
and (conditional) Value-at-Risk. Such forecasts can be based on multivariate GARCH
models, see Bauwens et al. (2006) and Silvennoinen and Teräsvirta (2009) for surveys on
such models. A classical multivariate GARCH model is indeed the CCC-GARCH model
proposed by Bollerslev (1990) and its extended version proposed by Jeantheau (1998).
The asymptotic properties of the QMLE for this model have been considered by Ling
and McAleer (2003) and recently by Francq and Zakoïan (2010, Chapter 11) and Francq
and Zakoïan (2012). A drawback of the model, and especially of its extended version, is
the large number of model parameters, which makes classical quasi-maximum likelihood
(QML) estimation difficult, if not infeasible, for a large dimension of the time series. One
can address this curse of dimensionality issue by applying simplified versions of the model,
and/or by considering an alternative estimation method, such as targeting estimation
proposed by Engle and Mezrich (1996).

Targeting estimation is a two-step estimation procedure where, for the CCC-GARCH
model, the model is reparametrized such that the vector of long-run variances enters
explicitly in the equation for the vector of conditional variances. The long-run variances
are estimated by a moment estimator in a first step and conditional on this, the remaining
parameters are estimated in a second step using QML estimation. Regardless of the model
has a simplified representation or not, the two-step estimation leads to optimization over
fewer parameters in the numerical optimization step. Moreover, the targeting estimator
yields consistent estimates of the unconditional variances (given that such exist) under
model misspecification which is an advantage of the estimation method, if e.g. the focus is
to perform long-horizon forecasts, see Francq et al. (2011) for a comprehensive treatment
of this aspect for univariate GARCH models.

Recently Francq et al. (2013) have developed sufficient conditions for consistency and
asymptotic normality of the targeting estimator for CCC-GARCH models. In particular
and similar to the univariate case, see Francq et al. (2011) and Kristensen and Linton
(2004), finite fourth-order moments of the observed process are required in order to estab-
lish asymptotic normality. Such moment restrictions for the observed process may not be
a realistic assumption in practice, and hence it is highly relevant to consider the limiting
distribution of the targeting estimator in the case where the moment restrictions are re-
laxed. This has recently been done by Vaynman and Beare (2013) for univariate GARCH
models, and we extend this to CCC-GARCH models in the present paper. Specifically,
we consider the case where the second-order moments are finite (implying consistency of
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the estimator), but the fourth moments are infinite. In such case a central limit theo-
rem does not apply to the vector of sample variances. As established in e.g. Davis and
Mikosch (1998), Mikosch and Stărică (2000), and Basrak et al. (2002b) for univariate
(G)ARCH models and in Stărică (1999), Fernández and Muriel (2009), and Basrak and
Segers (2009) for multivariate GARCH models, one can exploit that the data generating
process has multivariate regularly varying marginal distributions to show that the limiting
distribution of sample (autoco)variances is multivariate stable. Using that under certain
conditions the CCC-GARCH process is multivariate regularly varying, we establish that
the limiting distribution of the vector of sample variances is multivariate stable. Moreover,
since the score (in the direction of all other parameters) tends to zero in probability when
multiplied by the rate of consistency for the vector of sample variances, the joint targeting
estimator has a singular multivariate stable distribution.

The rest of the paper is organized as follows. In Section 2 we introduce the notion of
multivariate regular variation, which is a key ingredient for the derivation of the limiting
distribution of the targeting estimator. In Section 3 we introduce the targeting CCC-
GARCH model, and Section 4 considers the two-step targeting estimation of the model.
The large-sample theory for the targeting estimator is presented in Section 5. In particular,
we state sufficient conditions for strong consistency, asymptotic normality, and for the
estimator to have a multivariate stable limiting distribution. Section 6 concludes the
paper. All proofs can be found in the appendix that also includes brief summaries of the
notion of vague convergence and point processes (see Appendix D).

Some notation throughout the paper: The absolute value of a ∈ R is denoted |a|. For
n ∈ N, In is the (n× n) identity matrix, and the zero matrix Om×n is an (m× n) matrix
with all elements equal to zero. For an (m× n) matrix A = [aij ] and an (m×m) matrix
B = [bij ], the operators vec, vech, and vech0 are defined as follows.

vec (A)
(mn×1)

..= (a11, a21, ..., am1, a12, ..., am2, a13, ..., amn)′

vech (B)
(m(m+1)/2×1)

..= (b11, b21, ...bm1, b22, ..., bm2, b33, ..., bmm)′

vech0 (B)
(m(m−1)/2×1)

..= (b21, b31, ...bm1, b32, ..., bm2, b43, ..., bm,m−1)′ ,

i.e. vec stacks the columns of a matrix, vech stacks the columns from the principal diagonal
downwards of a square matrix, and vech0 stacks the columns below the principal diagonal
downwards of a square matrix. The trace of a square matrix A is denoted tr (A), and the
determinant is denoted det (A). The operator diag transforms a vector a = (a1, ..., am)′

into a diagonal matrix,

diag (a) =


a1 0

. . .
0 am

 .
For a (k × l) matrix A = [aij ] and an (m× n) matrix B, the Kronecker product of A and
B is the (km× ln) matrix defined by A ⊗ B = [aijB]. The Hadamard product of two
matrices of the same dimension, A = [aij ] and B = [bij ], is defined as A � B = [aijbij ],



TARGETING ESTIMATION OF CCC-GARCH MODELS WITH INFINITE FOURTH MOMENTS 4

and we introduce the non-standard notation A�2 ..= A� A. With ξ1 (A) , ..., ξn (A) the n
eigenvalues of a matrix A, ρ(A) ..= maxi∈{1,...,n} |ξi (A)| is the spectral radius of A. The
Euclidean norm of a matrix or vector, A, is defined as ‖A‖ =

√
tr {A′A}, where A′ is

the transpose of A. We denote the compactified real line by R ..= R ∪ {−∞,∞}. With
1() an indicator function, we denote the point measure concentrated at x ∈ Rd as δx(·),
i.e. for any Borel set A in Rd, δx(A) = 1(x ∈ A). Moreover, “ p→”, “a.s.→”, “ w→”, and “ v→”
denote convergence in probability, almost sure convergence, weak convergence, and vague
convergence, respectively. (As mentioned vague convergence is introduced in Appendix
D.) For two real-valued functions f and g, f(x) ∼ g(x) means limx→∞ f(x)/g(x) = 1.
For a set, A, we denote its boundary by ∂A. The letters c and φ denote positive, finite
generic constants always with φ < 1.

2. Multivariate Regular Variation

In this section we give a brief introduction to multivariate regular variation which will
show up to be a key tool when we derive the limiting distribution of the targeting estimator
in the case where the data generating process does not have finite fourth-order moments.
Regular variation is a standard notion for describing heavy-tailed distributions and tail
dependence. A classical treatment of univariate regular variation can be found in Bingham
et al. (1987), and a fairly recent treatment that includes multivariate regular variation can
be found in Resnick (2007), see also Resnick (1986, 1987, 2004) and Mikosch (2004).

A measurable function f : [0,∞) → [0,∞) is said to be regularly varying (at ∞) with
index κ ∈ R, if for any t > 0 and x→∞

f (tx)
f (x) → tκ,

see e.g. Resnick (2007, pp.20-21). The parameter κ is called the exponent of variation,
and if κ = 0 f is said to be slowly varying. By definition, if f is regularly varying with
index κ one can always write f(x) = xκL(x) where L(x) is slowly varying. In the case of
multivariate distributions it is common to define regular variation in terms of convergence
of measures, and in particular we will make use of the notion of vague convergence, intro-
duced briefly in Appendix D.1. In order to make use of vague convergence, we consider
the space Rd \ {0} instead of Rd. The reason is that sets that are bounded away from
zero in Rd become relatively compact (i.e. they have compact closures) in Rd \ {0} with
respect to the relative topology, as described in e.g. Resnick (2007, pp.172-175). With
B(Rd \{0}) the Borel σ-field of Rd \{0}, recall that a measure µ on B(Rd \{0}) is a Radon
measure if µ(K) < ∞ for all relatively compact K ∈ B(Rd \ {0}). We are now ready to
define multivariate regular variation.1

Definition 2.1 (Mikosch (2004, p.218)). A random vector X ∈ Rd and its distribution
are said to be regularly varying if for a non-null Radon measure µ on B(Rd \ {0})

µx (A) ..= P
(
x−1X ∈ A

)
P (‖X‖ > x) → µ (A) , (2.1)

1The following definitions hold for any choice of norm, ‖·‖.
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as x → ∞ for any A ∈ B(Rd \ {0}) bounded away from the origin with µ(∂A) = 0, i.e.
µx (·) v→ µ(·) as x→∞. The measure µ on B(Rd \{0}) satisfies the homogeneity property
µ(tA) = t−κµ (A) , κ ≥ 0, for all t > 0, and we say that X is multivariate regularly varying
with index κ.

Remark 2.1. An equivalent to Definition 2.1 is the following, see Mikosch (2004, p.218).
A random vector X ∈ Rd and its distribution are said to be regularly varying with index
κ ≥ 0 if there exists a probability measure ϕ (·) on the Borel σ-field of Sd−1 = {x ∈ Rd :
‖x‖ = 1} (the unit sphere in Rd with respect to the norm ‖·‖) such that for all t > 0,
as x→∞,

P
(
‖X‖ > tx, 1

‖X‖X ∈ U
)

P (‖X‖ > x) → t−κϕ (U) , (2.2)

for any U ∈ B(Sd−1), i.e. P(‖X‖ > tx, 1
‖X‖X ∈ ·)/P (‖X‖ > x) w→ t−κϕ (·) as x→∞.

Here ϕ (·) is the spectral measure ofX, and one can interpret multivariate regular variation
as being characterized by (i) a radial part, t−κ, stating that the tails are power laws, and
(ii) a spherical part, ϕ (·), that quantifies the tail dependence. Observe that if we set
U = Sd−1 in (2.2),

P (‖X‖ > tx)
P (‖X‖ > x) → t−κ (2.3)

as x→∞, i.e. P (‖X‖ > x) is regularly varying with index −κ. Moreover, if we set t = 1,
we have that for any U ∈ B(Sd−1),

P
(
‖X‖ > x, 1

‖X‖X ∈ U
)

P (‖X‖ > x) = P
( 1
‖X‖

X ∈ U
∣∣∣∣ ‖X‖ > x

)
→ ϕ (U) (2.4)

as x → ∞. So one can interpret the spherical measure of X as the measure determining
the distribution of the direction of 1

‖X‖X, given that ‖X‖ is large. Moreover, by relations
(2.3) and (2.4) we see that the radial and spherical parts characterizing the multivariate
regular variation of X become independent for ‖X‖ sufficiently large.

Remark 2.2. Another way of characterizing the tails of a multivariate distribution is the
following considered in e.g. Kesten (1973) and Basrak et al. (2002a,b). Every linear
combination of the d-dimensional random vector X is regularly varying if there exists a
κ > 0 and a slowly varying function L such that for all u ∈ Rd \ {0},

lim
x→∞

P (u′X > x)
x−κL (x) = w (u) exists. (2.5)

The function w takes finite values and there exists an u0 6= 0 with w (u0) > 0.
Basrak et al. (2002a) show that if X is multivariate regularly varying, then any linear
combination is regularly varying, and under certain conditions one also has that regular
variation of all linear combinations of X implies multivariate regular variation.

In Section 5 we exploit that under certain conditions the CCC-GARCH process is
multivariate regularly varying and we use this fact, relying on point process techniques,
to derive the limiting distribution of the targeting estimator.
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3. The Targeting CCC-GARCH Model

Consider the extended CCC-GARCH model of Jeantheau (1998) for t ∈ N given by

Xt(θC) = Σ1/2
t (θC)Zt, (3.1)

where {Zt}t∈N is an i.i.d.(0, Id) sequence of random variables. As in Hafner and Preminger
(2009b) and Pedersen and Rahbek (2014) we consider a GARCH(1,1)-type model, where
the (d× d) matrix Σ1/2

t (θC) is the square-root of Σt(θC) given by the equations

Σt(θC) = D̃t(θC)RD̃t(θC), (3.2)

D̃2
t (θC) = diag

(
σ2
t (θC)

)
, (3.3)

σ2
t (θC) = ω +AX�2

t−1(θC) +Bσ2
t−1(θC), (3.4)

where X�2
t (θC) ..= Xt(θC) � Xt(θC), i.e. the vector of the squared elements of Xt, ω

is a vector with strictly positive entries, and R is a (d × d) positive definite conditional
correlation matrix. The (d×d) matrices A and B have non-negative entries. Moreover, θC
is the vector of model parameters defined as θC ..= [ω′, vec(A)′, vec(B)′, vech0 (R)′]′, where
the subscript C indicates the the model has the classical CCC-GARCH representation.
We consider estimation conditional on the initial values X0 and σ2

0.
Throughout the text we assume that ρ (A+B) < 1 (stated formally in Assumption 3

in Section 5), which by He and Teräsvirta (2004, Section 3) implies that there exists a
second-order stationary solution to the CCC-GARCH model. In particular the vector of
unconditional variances of Xt exists and is finite, and is given by

γ ..= E
[
X�2
t

]
= E

[
σ2
t

]
= (Id −A−B)−1 ω, (3.5)

where we have omitted the dependence on θC . Targeting can be represented as rewriting
the model so that the vector of unconditional variances (of the second-order stationary
solution) appears explicitly in the equation for σ2

t , which gives

σ2
t = (Id −A−B) γ +AX�2

t−1 +Bσ2
t−1,

and we say that σ2
t has the targeting CCC-GARCH representation.

In the next section we discuss estimation of the targeting CCC-GARCH model.

4. Targeting Estimation

With R a positive definite correlation matrix, γ (d× 1)-dimensional with strictly posi-
tive entries, and A and B (d× d)-dimensional with non-negative entries, let θ ..= (γ′, λ′)′

denote the vector of parameters, where λ ..= (vec(A)′, vec(B)′, vech0 (R)′)′. In terms of
the parameters the targeting CCC-GARCH model is given by the equations

Xt(γ, λ) = Σ1/2
t (γ, λ)Zt, (4.1)

Σt(γ, λ) = D̃t(γ, λ)RD̃t(γ, λ), (4.2)

D̃2
t (γ, λ) = diag

(
σ2
t (γ, λ)

)
, (4.3)

σ2
t (γ, λ) = (Id −A−B)γ +AX�2

t−1(γ, λ) +Bσ2
t−1(γ, λ). (4.4)
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Note that θ ∈ Θ ..= Θγ × Θλ ⊂ (0,∞)d × [0,∞)2d2 × (−1, 1)d(d−1)/2, and that the model
contains d + 2d2 + d (d− 1) /2 =.. s2 parameters. Let θ0 ..= (γ′0, λ′0)′ denote the vector of
true parameters. We consider the estimation method of targeting proposed by Engle and
Mezrich (1996) where γ0 is estimated by method of moments, and λ0 is estimated by QML
estimation conditional on the method of moments estimates.

For a realization (Xt)t∈{0,...,T} of the targeting CCC-GARCH process with parameter
vector θ0, i.e. Xt

..= Xt(γ0, λ0), the Gaussian log-likelihood function is given by

L̂T (γ, λ) ..= 1
T

T∑
t=1

l̂t(γ, λ), with (4.5)

l̂t(γ, λ) ..= log
{

det
[
Ĥt(γ, λ)

]}
+X ′tĤt(γ, λ)Xt,

where the matrix Ĥt(γ, λ) is given by the equations

Ĥt(γ, λ) = D̂t(γ, λ)R (λ) D̂t(γ, λ), (4.6)

D̂2
t (γ, λ) = diag

(
ĥt (γ, λ)

)
, (4.7)

ĥt (γ, λ) = (Id −A−B) γ +AX�2
t−1 +Bĥt−1 (γ, λ) . (4.8)

In the statistical analysis, the initial value X0 is, as mentioned, conditioned upon and
ĥ0 (γ, λ) ..= ĥ ∈ (0,∞)d is fixed.

Targeting estimation relies on estimating the vector of unconditional variances, γ0, given
in (3.5), by method of moments,

γ̂T ..= 1
T

T∑
t=1

X�2
t .

Substituting this estimator into the log-likelihood function and minimizing yield the tar-
geting estimator for λ0,

λ̂T ..= arg min
λ∈Θλ

L̂T (γ̂T , λ). (4.9)

The two steps yield the targeting estimator, a hybrid of method of moments and QML,
of θ0, θ̂T ..= (γ̂′T , λ̂′T )′.

Remark 4.1. The targeting procedure reduces the number of parameters computed by
numerical optimization of the log-likelihood compared to classical QML estimation. In
the first step d parameters are estimated by method of moments, and in the second step
d (d− 1) /2 + 2d2 parameters are estimated by optimization of the likelihood. Targeting
estimation may in particular be used to estimate simplified CCC models such as diag-
onal and scalar models, where A and B are diagonal matrices and scalars, respectively.
Combining targeting estimation with a simplified model decreases the number of varying
parameters (in the second step) relative to the total number of parameters additionally.

In the next section we consider the large-sample properties of the targeting estimator.
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5. Large-Sample Theory for the Targeting Estimator

Sufficient conditions for consistency and asymptotic normality of targeting estimators
have been considered by Kristensen and Linton (2004) and Francq et al. (2011) for univari-
ate GARCH models and by Pedersen and Rahbek (2014) for multivariate BEKK-GARCH
models, and, as mentioned, in recent work by Francq et al. (2013) for the CCC-GARCH
model. At least finite fourth-order moments are needed in order to derive asymptotic nor-
mality of the targeting estimator for these models. Such moment conditions may not be
satisfied in practice, and in line with Vaynman and Beare (2013) we consider the limiting
distribution of the targeting estimator in the case where the estimator is consistent but
asymptotic normality is infeasible. Our results are new and extend the existing literature
on targeting estimation. The proofs are given in Appendix A.

For completeness we start out by stating sufficient conditions for strong consistency of
the targeting estimator for the true parameter vector θ0. Observe that Xt can be written
as Xt = D̃t(γ0, λ0)εt, where

εt ..= R
1/2
0 Zt, (5.1)

i.e. (εt) is i.i.d.(0, R0) with R0 ..= R(θ0).

Assumption 1. The process (Xt) is strictly stationary and ergodic.

Assumption 2. The distribution of εt, defined in (5.1), admits a density strictly positive
on Rd. Moreover, with εt,j the j-th element of εt, j = 1, ..., d, either E[|εt,j |β] <∞ for all
β > 0 or there exists a β0 > 1 such that E[|εt,j |β] <∞ for β < β0 and E[|εt,j |β0 ] =∞.

Assumption 3. For all λ ∈ Θλ, R is a positive definite correlation matrix and ρ (A+B) <
1.

Assumption 4. The true parameters λ0 ∈ Θλ and Θλ is compact.

Moreover, in light of Assumption 1 it is convenient to introduce the strictly stationary
and ergodic process {ht (γ, λ)} given recursively by

ht (γ, λ) = (Id −A−B) γ +AX�2
t−1 +Bht−1 (γ, λ) . (5.2)

Assumption 5. There exists a t ∈ Z such that if for λ ∈ Θλ, ht(γ0, λ) = ht(γ0, λ0) a.s.
and R (λ) = R(λ0), then λ = λ0.

Remark 5.1. Assumption 1 is in line with existing literature on QML estimation of multi-
variate GARCH and targeting estimation, see e.g. Comte and Lieberman (2003), Hafner
and Preminger (2009a), Francq and Zakoïan (2012), Pedersen and Rahbek (2014), and
Francq et al. (2011). Necessary and sufficient conditions for the existence of a unique
strictly stationary and ergodic solution to the model are stated in Francq and Zakoïan
(2010, Theorem 11.6) and Boussama (1998, Section 5.4). In particular Assumption 1 im-
plies that for the asymptotic analysis the process (Xt)t=0,1,... is assumed to be initiated
from the invariant distribution. As discussed in Pedersen and Rahbek (2014) one might
relax this assumption and establish consistency and asymptotic normality when allowing
for an arbitrary initial value X0 of the data generating process.
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Remark 5.2. The restrictions in Assumption 3 are natural as we only want to consider
parameters where Ĥt (γ, λ) is positive definite and the elements of ĥt are strictly positive.

Remark 5.3. Assumption 5 is a high-level identification condition, primitive identification
conditions are discussed in Francq and Zakoïan (2010, Section 11.4.1).

As stated in the following theorem, the assumptions above are sufficient for strong
consistency of the estimator. Strong consistency does apply under milder conditions, and,
in particular, εt does not need to have a strictly positive density on Rd (Assumption 2),
see e.g. Francq et al. (2011, Theorem 2.1). However, Assumptions 1 and 2 are used in
order to establish multivariate regular variation of the CCC-GARCH process, see Lemma
B.2, and hence needed later when we consider the limiting distribution of the targeting
estimator in the case of infinite fourth moments.

Theorem 5.1. Suppose that Assumptions 1-5 hold. Then θ̂T
a.s.→ θ0 as T →∞.

The assumption of finite second-order moments of Xt, implied by Assumption 3, is in
line with the moment restrictions assumed in Francq et al. (2011) for consistency of the
targeting estimator in the univariate case. The moment restrictions are stronger than the
ones required for consistency of the QMLE of the classical CCC representation in (3.4),
where only a fractional moment of Xt is required to be finite, see e.g. Francq and Zakoïan
(2010, Theorem 11.7).

Next, we turn to the limiting distribution of the targeting estimator. The idea is to
assume that the vector Yt ..= [X�2

t
′, σ2

t (θ0)′]′ is multivariate regularly varying with index
κ ∈ (1, 2), see Definition 2.1, implying that E[‖Yt‖2] = ∞, i.e. Xt has infinite fourth
moments. This assumption is reasonable because, as stated in Lemma B.2 in Appendix
B, Assumptions 1-5 imply that any linear combination of σ2

t (θ0) is regularly varying with
some index κ > 0, see Remark 2.2. This property holds by an application of Kesten’s
theorem, see Kesten (1973) and Basrak et al. (2002b, Theorem 2.4), and has been verified
for CCC-GARCH processes in Fernández and Muriel (2009) and Stărică (1999). As also
stated in Lemma B.2, when κ ∈ (1, 2) it holds that Yt is multivariate regularly varying.
We limit ourselves to the case where κ ∈ (1, 2), because the case where κ = 2 leads to
very complicated derivations, see e.g. Basrak et al. (2002b), and we leave such analysis to
elsewhere. Moreover, the case where κ ∈ (0, 1], implying that the second-order moments
of Xt are infinite, is ruled out by Assumption 2 and that ρ(A0 + B0) < 1 (Assumption
3), and it would not be of much use to do targeting estimation when the variance of Xt

is infinite. In the case where κ > 2 we have that Xt has finite fourth-order moments and
the limiting distribution of the targeting estimator is Gaussian as stated in Remark 5.5
below.

We emphasize that a sufficient condition for Xt having infinite fourth moments is that
εt has infinite fourth moments. Indeed such condition is not necessary, and in contrast to
e.g. Hall and Yao (2003) and Mikosch and Straumann (2006) who (for univariate GARCH
processes) introduce heavy tails to Xt through heavy tails of the noise process, we here do
only assume that the noise process has at least finite second-order moments, but may not
be heavy-tailed. I.e. we can have that Xt has infinite fourth-order moments even if the
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noise process is Gaussian. A necessary and sufficient condition for finite fourth-moments
of Xt is given in Appendix C.

In order to derive the limiting distribution of the targeting estimator, we make the
following standard assumption that enables us to make a mean-value expansion of the
log-likelihood function.

Assumption 6. The true parameter vector, λ0, belongs to the interior of Θλ.

We are now able to state the following result.

Theorem 5.2. Under Assumptions 1-6 suppose that Yt ..= [X�2
t
′, σ2

t (θ0)′]′ is multivariate
regularly varying with index κ ∈ (1, 2). Then there exists a sequence (aT ), 0 < aT → ∞
as T →∞, such that T P(‖Yt‖ > aT )→ 1 as T →∞, and

Ta−1
T

(
γ̂T − γ0

λ̂T − λ0

)
w→

 Id(
Jλ0

)−1
Jγ0

S,
where the matrices Jλ0 and Jγ0 are stated in (A.21) in Appendix A, and S has a d-
dimensional multivariate κ-stable distribution.

The proof of the above theorem is somewhat involved, and we refer to the appendix for
details. Briefly, the proof relies on exploiting the multivariate regular variation of Yt and
showing that the point process

∑T
t=1 δa−1

T Yt
(·) has a limiting distribution. Next, loosely

speaking, one can show that Ta−1
T (γ̂T − γ0) is approximately a continuous mapping of∑T

t=1 δa−1
T Yt

(·), so by the continuous mapping theorem we can find the limiting distribution
of Ta−1

T (γ̂T − γ0) that shows up to be multivariate stable. The conclusion of the theorem
now follows by showing that the score in the direction of all the other parameters tends to
zero in probability when multiplied by Ta−1

T and that the Hessians converge properly. For
an introduction to multivariate stable distributions we refer to Samorodnitsky and Taqqu
(1994, Chapter 2).

Remark 5.4. The limiting distribution in Theorem 5.2 is singular, and the reason is that
the score in the direction of all the other parameters tends to zero in probability when
multiplied by Ta−1

T , see the proof of the theorem for additional details.

Remark 5.5. If we in addition to Assumptions 1-6 have that E[‖Xt‖4] <∞, it follows that
as T →∞ √

T
(
θ̂T − θ0

)
w→ N (0,Σ0)

for some matrix Σ0, which has been shown by Francq et al. (2013). As mentioned, a
necessary and sufficient condition for E[‖Xt‖4] <∞ is given in Appendix C.

Theorem 5.2 states that in the case where Xt has finite second-order moments but in-
finite fourth moments, the targeting estimator obeys consistency at rate Ta−1

T , and the
limiting distribution is multivariate stable. Observing that aT ∼ (cT )1/κ, see Basrak et al.
(2002b, Remark 2.11), the rate of convergence is slower than

√
T , which is the rate of con-

sistency in the case with finite fourth-order moments. Specifically, one should not construct
confidence intervals based on the Gaussian distribution. As pointed out by Vaynman and
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Beare (2013), one can make use of subsampling techniques to construct confidence inter-
vals for the targeting estimator. For the univariate GARCH model, Vaynman and Beare
(2013) perform numerical simulations based on the subsampling techniques proposed by
Politis et al. (1999, Ch.11), and find that such techniques do not perform well. We expect
the same conclusion to hold for the even more complicated CCC-GARCH model.

6. Concluding remarks and extensions

In this paper we have considered the targeting estimator for the extended CCC-GARCH
model. In particular we have investigated the limiting distribution of the estimator in
the case where the fourth moments of the observed process are infinite. By exploiting
that under certain conditions the CCC-GARCH process is multivariate regularly varying,
we have shown that the rate of consistency is slower than

√
T and that the limiting

distribution of the estimator is multivariate stable. Hence one should not make use of
confidence intervals based on the Gaussian distribution when heavy tails are present.

One obvious way of extending the theory derived in this paper is to consider tail trim-
ming, as recently proposed by Hill and Renault (2012) for the variance targeting estimator
in univariate GARCH models, where asymptotic normality may apply in the case of heavy
tails. Moreover, one could consider different ways of obtaining confidence intervals for the
targeting estimator than the subsampling method of Politis et al. (1999, Ch.11) consid-
ered by Vaynman and Beare (2013). One potential problem with that particular method
is that the rate of convergence, Ta−1

T , has to be estimated which may imply additional
uncertainty. Alternatively, one could consider the subsampling method of Sherman and
Carlstein (2004) where unknown rates of convergence are allowed for. We leave such
studies to future research.

Appendix A. Proofs of theorems

Recall from (4.5) that the log-likelihood function is given by

L̂T (γ, λ) = 1
T

T∑
t=1

l̂t(γ, λ),

with

l̂t(γ, λ) = log
{

det
[
Ĥt(γ, λ)

]}
+X ′tĤ

−1
t (γ, λ)Xt,

where Ĥt(γ, ρ, λ) is given by the recursions

Ĥt(γ, ρ, λ) = D̂t(γ, λ)R(λ)D̂t(γ, λ)

D̂2
t (γ, λ) = diag

(
ĥt(γ, λ)

)
ĥt(γ, λ) = (Id −A−B) γ +AX�2

t−1 +Bĥt−1(γ, λ),

and ĥ0(γ, λ) ..= ĥ fixed with strictly positive entries. For technical reasons, we have also
in Section 5 introduced the strictly stationary and ergodic process {ht(γ, λ)} given by the



TARGETING ESTIMATION OF CCC-GARCH MODELS WITH INFINITE FOURTH MOMENTS 12

recursion (5.2). To distinguish between ĥt(γ, λ) and ht(γ, λ) we introduce correspondingly

Ht(γ, λ) = Dt(γ, λ)R(λ)Dt(γ, λ),

D2
t (γ, λ) = diag (ht(γ, λ))

and

LT (γ, λ) ..= 1
T

T∑
t=1

lt(γ, λ) (A.1)

where

lt(γ, λ) ..= log {det [Ht(γ, λ)]}+X ′tH
−1
t (γ, λ)Xt. (A.2)

Observe that both ĥt(γ, λ) and ht(γ, λ) are defined for the same (by Assumption 1) strictly
stationary and ergodic (Xt) generated with θ0. Moreover, we have that by definition

Σt(γ0, λ0) = Ht(γ0, λ0), D̃t(γ0, λ0) = Dt(γ0, λ0), σ2
t (γ0, λ0) = ht(γ0, λ0) (A.3)

for all t.

Proof of Theorem 5.1. By E[‖Xt‖2] <∞ and the ergodic theorem, see e.g. Billingsley
(1995, Theorem 24.1), we have that γ̂T is strongly consistent for γ0. Hence it remains to
show that λ̂T is strongly consistent for λ0. Following Francq et al. (2011, Appendix A.1),
and due to the compactness of Θλ, it suffices to verify the following three conditions:

(i) As T →∞ ,

sup
λ∈Θλ

∣∣∣LT (γ0, λ)− L̂T (γ̂T , λ)
∣∣∣ a.s.→ 0

(ii) E[|lt (γ0, λ0)|] <∞ and for λ ∈ Θλ, if λ 6= λ0 then E [lt (γ0, λ)] > E [lt (γ0, λ0)].
(iii) Any λ ∈ Θλ, λ 6= λ0, has a neighborhood V (λ) such that almost surely,

lim inf
T→∞

inf
λ?∈V(λ)

L̂T (γ̂T , λ?) > E [lt(γ0, λ0)] .

First, by the triangle inequality,

sup
λ∈Θλ

∣∣∣LT (γ0, λ)− L̂T (γ̂T , λ)
∣∣∣ ≤ sup

λ∈Θλ
|LT (γ0, λ)− LT (γ̂T , λ)| ,

+ sup
λ∈Θλ

∣∣∣LT (γ̂T , λ)− L̂T (γ̂T , λ)
∣∣∣ . (A.4)

Next, observe that

sup
λ∈Θλ

|LT (γ0, λ)− LT (γ̂T , λ)| ≤ 1
T

T∑
t=1

sup
λ∈Θλ

|lt (γ0, λ)− lt (γ̂T , λ)| .

By the mean-value theorem,

lt (γ0, λ)− lt (γ̂T , λ) = ∂lt (γ?, λ)
∂γ′

(γ̂T − γ0)

where γ? lies between γ̂T and γ0, as in Jensen and Rahbek (2004, Proof of Lemma 1). For
T sufficiently large, by the consistency of γ̂T ,

sup
λ∈Θλ

|lt (γ0, λ)− lt (γ̂T , λ)| ≤ supθ∈Θγ×Θλ

∣∣∣∣∂lt(γ, λ)
∂γ′

(γ̂T − γ0)
∣∣∣∣ , (A.5)
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where Θγ is chosen to be a compact subset of (0,∞)d containing γ0 and γ̂T for T sufficiently
large. Next observe that

sup
θ∈Θγ×Θλ

∣∣∣∂lt(γ,λ)
∂γ′ (γ̂T − γ0)

∣∣∣ ≤ d∑
i=1
|γ̂T,i − γ0,i| sup

θ∈Θγ×Θλ

∣∣∣∣∂lt(γ, λ)
∂γi

∣∣∣∣ , (A.6)

where γ̂T,i and γ0,i denote the i-th elements of γ̂T and γ0, respectively, and ∂lt(γ, λ)/∂γi
denotes the derivative lt with respect to the i-th element of γ. From Francq and Zakoïan
(2010, equation (11.67)), suppressing the dependence on θ,

∂lt(γ, λ)
∂γi

= − tr
{(
XtX

′
tD
−1
t R−1 +R−1D−1

t XtX
′
t

)
D−1
t

∂Dt

∂γi
D−1
t

}
+2 tr

(
D−1
t

∂Dt

∂γi

)
, (A.7)

with
∂Dt

∂γi
= 1

2D
−1
t diag

(
∂ht
γi

)
. (A.8)

Furthermore, from Francq and Zakoïan (2010, p. 297)

sup
θ∈Θγ×Θλ

∥∥∥D−1
t (γ, λ)

∥∥∥ ≤ c and sup
θ∈Θγ×Θλ

∥∥∥H−1
t (γ, λ)

∥∥∥ ≤ c. (A.9)

Assumption 3 and Lemma B.8 imply that

for any λ ∈ Θλ, ρ (B) < 1. (A.10)

Recursions give that for any θ

∂ht
∂γi

=
∞∑
j=0

Bj (Id −A−B) ∂γ
∂γi

,

which is finite by (A.10) and the compactness of Θλ. Hence,

sup
θ∈Θλ×Θγ

∥∥∥∥∂ht∂γi

∥∥∥∥ <∞. (A.11)

Now, in light of (A.7), (A.8), (A.9), (A.11), Assumption 4, and E ‖Xt‖2 <∞,

E
[

sup
θ∈Θγ×Θλ

∣∣∣∣∂lt(γ, λ)
∂γi

∣∣∣∣
]
<∞, i = 1, ..., d. (A.12)

Using (A.5), (A.6), (A.12), together with the ergodic theorem and the consistency of γ̂T ,
we have that supλ∈Θλ |LT (γ0, λ)− LT (γ̂T , λ)| a.s.→ 0 as T → ∞. Turning to the second
part of (A.4),

sup
λ∈Θλ

∣∣∣LT (γ̂T , λ)− L̂T (γ̂T , λ)
∣∣∣ ≤ sup

θ∈Θγ×Θλ

∣∣∣LT (γ, λ)− L̂T (γ, λ)
∣∣∣ ,

where again Θγ is chosen to be a compact subset of (0,∞)d containing γ0 and γ̂T for T
sufficiently large. From Francq and Zakoïan (2010, p.298),

sup
θ∈Θγ×Θλ

∣∣∣LT (γ, λ)− L̂T (γ, λ)
∣∣∣ a.s→ 0

as T →∞, and we conclude that (i) holds.
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(ii) follows by arguments similar to the ones stated in Francq and Zakoïan (2010, pp.298-
299).

Turning to (iii), as in Francq et al. (2011, Appendix A.1) for all λ ∈ Θλ,λ 6= λ0, as
T →∞, almost surely,

lim inf
T→∞

inf
λ?∈V(λ)∩Θλ

L̂T (γ̂T , λ?) ≥ lim inf
T→∞

inf
λ?∈V(λ)∩Θλ

LT (γ0, λ
?)

+ lim inf
T→∞

inf
λ?∈V(λ)∩Θλ

(
L̂T (γ̂T , λ?)− LT (γ0, λ

?)
)

= lim inf
T→∞

inf
λ?∈V(λ)∩Θλ

LT (γ0, λ
?)

≥ lim inf
T→∞

1
T

T∑
t=1

inf
λ?∈V(λ)∩Θλ

lt(γ0, λ
?)

= E
[

inf
λ?∈V(λ)∩Θλ

lt(γ0, λ
?)
]
,

where the first equality follows from (i), and the last equality follows by applying the
strong law of large numbers to the ergodic process

{
infλ?∈V(λ)∩Θλ lt(γ0, λ)

}
using that for

all λ ∈ Θλ, E [max {−lt(γ0, λ), 0}] < ∞, as in Francq and Zakoïan (2010, p.298). In light
of (ii), we conclude that (iii) holds. �

Proof of Theorem 5.2. First observe that (aT ) exists by Lemma B.4. Define s1 ..=
s2− d, where s2 is the dimension of θ. Using the definition of λ̂T in (4.9) and Assumption
6, consider a mean-value expansion of the first derivative of the log-likelihood function
around θ0,

Os1×1 = ∂L̂T (θ0)
∂λ

+ ĴλT

(
λ̂T − λ0

)
+ ĴγT (γ̂T − γ0) , (A.13)

where
ĴλT

..= ∂2L̂T (θ?)
∂λ∂λ′

, and ĴγT
..= ∂2L̂T (θ?)

∂λ∂γ′
,

for some θ? between θ̂T and θ0, as in Jensen and Rahbek (2004, Proof of Lemma 1).
Initially, we want to verify the following points.
(iv) The matrix Jλ0 ..= E

[
∂2lt(θ0)
∂λ∂λ′

]
is non-singular and

E
[∥∥∥∥∥∂l2t (θ0)

∂θ∂θ′

∥∥∥∥∥
]
<∞.

(v) For i, j = 1, . . . , s2, as T →∞,

∂2LT (θ?)
∂θi∂θj

p→ E
[
∂l2t (θ0)
∂θi∂θ′j

]
.

(vi) There exists a neighborhood V (θ0) of θ0 such that for i, j = 1, . . . , s2, as T →∞,

sup
θ∈V(θ0)

∣∣∣∣∣∂2LT (θ)
∂θi∂θj

− ∂2L̂T (θ)
∂θi∂θj

∣∣∣∣∣ p→ 0.
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(vii) For i = d+ 1, ..., s2, as T →∞,∣∣∣∣∣Ta−1
T

[
∂LT (θ0)
∂θi

− ∂L̂T (θ0)
∂θi

]∣∣∣∣∣ p→ 0.

We choose V (θ0) sufficiently small such that all parameters in A, B, and γ are bounded
away from zero on V (θ0). All the points (iv)-(vii) can be verified by arguments similar
to the ones in Francq and Zakoïan (2012, Section A.4.2) and Francq and Zakoïan (2010,
Section 11.4.3). In particular, point (iv) follows by Lemma B.1 and Assumption 5, and
(v) follows by Lemma B.1 and Theorem 5.1. The points (vi)-(vii) do not depend on the
parametrization and are verified along the lines of Francq and Zakoïan (2012, pp.204-206),
with the latter point following by observing that aT ∼ (cT )1/κ, see Basrak et al. (2002b,
Remark 2.11).

Let s0 ..= (d + 2d2). From Francq and Zakoïan (2012, p.198) we have that for i =
d+ 1, ..., s0,
∂lt(θ0)
∂θi

= tr
{(
Id − εtε′tR−1

0

)(
D−1

0t
∂D0t
∂θi

)}
+tr

{(
Id −R−1

0 εtε
′
t

)(∂D0t
∂θi

D−1
0t

)}
, (A.14)

and for i = s0 + 1, ..., s2,
∂lt(θ0)
∂θi

= tr
{(
Id −R−1

0 εtε
′
t

)(
R−1

0
∂R0
∂θi

)}
. (A.15)

Observe that

tr
{(
Id − εtε′tR−1

0

)(
D−1

0t
∂D0t
∂θi

)}
=

d2∑
j=1

vec
(
Id − εtε′tR−1

0

)
j

vec
(
D−1

0t
∂D0t
∂θi

)
j
, (A.16)

where vec(Id−εtε′tR−1
0 )j is the j-th element of vec(Id−εtε′tR−1

0 ). As in Vaynman and Beare
(2013, Proof of Theorem 3.3), with β0 introduced in Assumption 2, let α ∈ (κ,min {β0, 2}).
Then for any δ > 0

P
(∣∣∣∣∣a−1

T

T∑
t=1

tr
{(
Id − εtε′tR−1

0

)(
D−1

0t
∂D0t
∂θi

)}∣∣∣∣∣ > δ

)

≤
d2∑
j=1

P
(∣∣∣∣∣a−1

T

T∑
t=1

vec
(
Id − εtε′tR−1

0

)
j

vec
(
D−1

0t
∂D0t
∂θi

)
j

∣∣∣∣∣ > δ/d2
)

≤
d2∑
j=1

(
δ/d2

)−α
E

∣∣∣∣∣a−1
T

T∑
t=1

vec
(
Id − εtε′tR−1

0

)
j

vec
(
D−1

0t
∂D0t
∂θi

)
j

∣∣∣∣∣
α


≤ c
d2∑
j=1

2Ta−αT E
[∣∣∣∣∣vec

(
Id − εtε′tR−1

0

)
j

vec
(
D−1

0t
∂D0t
∂θi

)
j

∣∣∣∣∣
α]

= 2cTa−αT
d2∑
j=1

E
[∣∣∣∣vec

(
Id − εtε′tR−1

0

)
j

∣∣∣∣α]E
[∣∣∣∣∣vec

(
D−1

0t
∂D0t
∂θi

)
j

∣∣∣∣∣
α]

≤ cTa−αT → 0, (A.17)

where the first inequality follows by (A.16) and the triangle inequality, the second inequal-
ity follows by the generalized Chebyshev inequality, the third inequality follows by the fact
that {vec(Id − εtε′tR−1

0 )jvec(D−1
0t

∂D0t
∂θi

)j ,Ft} is a martingale difference sequence together
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with von Bahr and Esseen (1965, Theorem 2), and the fourth inequality follows by Lemma
B.1. By similar arguments, we have that for any δ > 0

P
(∣∣∣∣∣a−1

T

T∑
t=1

tr
{(
Id −R−1

0 εtε
′
t

)(∂D0t
∂θi

D−1
0t

)}∣∣∣∣∣ > δ

)
→ 0, (A.18)

and

P
(∣∣∣∣∣a−1

T

T∑
t=1

tr
{(
Id −R−1

0 εtε
′
t

)(
R−1

0
∂R0
∂θi

)}∣∣∣∣∣ > δ

)
→ 0. (A.19)

Considering (A.14) and (A.15), in light of (A.17), (A.18), and (A.19) we have that for any
i = d+ 1, ...., s2

a−1
T T

∂LT (θ0)
∂θi

p→ 0. (A.20)

By (iv)-(vi) we have that ĴλT is invertible with probability approaching one for T sufficiently
large, so with probability approaching

Ta−1
T

(
γ̂T − γ0

λ̂T − λ0

)
=

 Id Od×s1

−
(
ĴλT

)−1
ĴγT −

(
ĴλT

)−1

Ta−1
T

γ̂T − γ0
∂L̂T (θ0)
∂λ

 .
Now (iv)-(vii), (A.20), and Slutsky’s lemma yield

Ta−1
T

(
γ̂T − γ0

λ̂T − λ0

)
w→

 Id(
Jλ0

)−1
Jγ0

S,
where we have used Lemma B.3, and where Jλ0 and Jγ0 are given by

Jλ0
..= E

[
∂2l (θ0)
∂λ∂λ′

]
, and Jγ0

..= E
[
∂2lt (θ0)
∂λ∂γ′

]
. (A.21)

Observe that (Id, [(Jλ0 )−1Jγ0 ]′)′S has a multivariate stable distribution with index κ ∈ (1, 2)
due to Samorodnitsky and Taqqu (1994, Theorems 2.1.2 and 2.5.1(c)). �

Appendix B. Lemmata

Lemma B.1. Under Assumptions 1-6, there exists a neighborhood of θ0, V(θ0), such that
for all i1 = 1, ..., d, all i, j, k = 1, ..., s2 − d(d− 1)/2 and any r0 ≥ 1,

E
[

sup
θ∈V(θ0)

∣∣∣∣∣ 1
ht,i1

∂ht,i1
∂θi

(θ)
∣∣∣∣∣
r0]

<∞, (B.1)

E
[

sup
θ∈V(θ0)

∣∣∣∣∣ 1
ht,i1

∂2ht,i1
∂θi∂θj

(θ)
∣∣∣∣∣
r0]

<∞, (B.2)

E
[

sup
θ∈V(θ0)

∣∣∣∣∣ 1
ht,i1

∂3ht,i1
∂θi∂θj∂θk

(θ)
∣∣∣∣∣
r0]

<∞, (B.3)

and

E
[

sup
θ∈V(θ0)

∣∣∣∣∣h0t,i1
ht,i1

∣∣∣∣∣
r0]

<∞ (B.4)

where ht,i1 and h0t,i1 denote element i1 of ht(θ) and ht(θ0), respectively.

Proof. We choose V(θ0) ⊂ Θ such that all elements of γ,A, and B are bounded away from
zero on V(θ0). Let ht ..= ht(θ). Considering (B.1), recursions give that ht =

∑∞
i=0B

i[(Id−
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A − B)γ + AX�2
t−1−i], where we have used that ρ(B) < 1. For i = 1, ..., d and any i1 and

r0 > 0 we have that

E

[
sup

θ∈V(θ0)

∣∣∣∣∂ht,i1∂θi
(θ)
∣∣∣∣r0
]
<∞,

see (A.11). For i = d+ 1, ..., d2 and any i1

θi
∂ht,i1
∂θi

≤ ht,i1 ,

so indeed (B.1) holds for i = d+ 1, ..., d+ d2. Moreover, for i = d+ d2 + 1, ..., d+ 2d2

∂ht
∂θi

=
∞∑
k=0

(
∂

∂θi
Bk
) [

(Id −A−B) γ +AX�2
t−1−k

]

+
∞∑
k=0

Bk
[
−∂B
∂θi

γ

]
(B.5)

=.. W
(1)
t +W

(2)
t .

First define ft ..= (Id −A−B) γ +AX�2
t−1 and observe that

W
(1)
t,i1

=
∞∑
k=1

d∑
j1=1

kBk(i1, j1)ft−k,j1 ,

where Bk(i1, j1) denotes element (i1, j1) of Bk, and W (1)
t,i1

is element i1 of W (1)
t . Also for

any k ≥ 0 and any j1

ht,i1 =
∞∑
k=0

d∑
j1=1

Bk(i1, j1)ft−k,j1

≥
d∑

j1=1
Bk(i1, j1)ft−k,j1

≥ ζ +Bk(i1, j1)ft−k,j1 , (B.6)

with ζ ..= infk,j1{Bk(i1, j1) [(Id −A−B) γ]j1} > 0, where [(Id −A−B) γ]j1 is element j1
of [(Id −A−B) γ]. Hence for any r0 ≥ 1

1
ht,i1

W
(1)
t,i1

=
∞∑
k=1

d∑
j1=1

k
Bk(i1, j1)ft−k,j1

ht,i1

≤
∞∑
k=1

d∑
j1=1

k
Bk(i1, j1)ft−k,j1

ζ +Bk(i1, j1)ft−k,j1

≤
∞∑
k=1

d∑
j1=1

k

(
Bk(i1, j1)ft−k,j1

ζ

)1/r0

≤ c
∞∑
k=1

d∑
j1=1

kφkj1f
1/r0
t−k,j1 , (B.7)

where the first inequality follows from (B.6), the second follows from the fact that x/ (1 + x) ≤
xs for all x ≥ 0 and s ∈ [0, 1]. Using that ρ(B) < 1 which follows by Assumption 3 and
Lemma B.8, φj1 ∈ [0, 1) is a constant depending on j1, i1, and r0. Considering (B.7),
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we have that for j1 = 1, ..., d, E[supθ∈V(θ0) |ft,j1 |] < ∞ since Xt has finite second-order
moments. Hence for any i1 = 1, ..., d and any r0 ≥ 1, by Minkowski’s inequality,

E
[

sup
θ∈V(θ0)

∣∣∣∣∣ 1
ht,i1

W
(1)
t,i1

∣∣∣∣∣
r0]

<∞. (B.8)

Next, each element of W (2)
t is bounded because ρ(B) < 1, so we conclude, using (B.5) and

(B.8), that (B.1) is true for any i1 = 1, ..., d and r0 ≥ 1. Using similar arguments, one
can establish that also (B.2) and (B.3) hold. Turning to (B.4), observe that h0t,i1 ≤ c +∑∞
k=0

∑d
j1=1B

k
0 (i1, j1)f0t−k,j1 where f0t−k ..= A0X

�2
t−1−k, and for any k ≥ 0 and j1 = 1, ..., d

ht,i1 ≥ ζ +Bk(i1, j1)ft−k,j1 as above. The result now follows by arguments similar to the
ones in Francq and Zakoïan (2012, p.202). �

Lemma B.2. Let σ2
t

..= σ2
t (θ0). Under Assumptions 1-6 there exists a constant κ > 0 and

a function w (y) such that

∀y ∈ Rd \ {0}, lim
u→∞

uκ P
(
y′σ2

t > u
)

= w (y) ,

and w(y) > 0 for any non-negative y 6= 0.
Moreover, if κ is not an even integer the vector Yt ..= (X�2′

t , σ2′
t )′ and all finite dimensional

distributions of (Yt) are multivariate regularly varying with index κ.

Proof. The first part of the lemma follows directly from Fernández and Muriel (2009,
Theorem 5 and Remark 7) and is established using Kesten’s theorem, see e.g. Basrak et al.
(2002b, Theorem 2.4). So we have that any linear combination of σ2

t is regularly varying,
see Remark 2.2, by observing that a constant is slowly varying. When κ is not an even
integer the multivariate regular variation of σ2

t follows by Basrak et al. (2002a, Theorem
1.1 (iii)-(iv)). Next, since Yt = [diag(ε�2

t ), Od×d]′σ2
t and using that E[‖εt‖2u] < ∞ for

some u > κ, as in Basrak et al. (2002b, Proof of Corollary 3.5), Yt is multivariate regularly
varying with index κ by the multivariate version of Breiman’s lemma, see Basrak et al.
(2002b, Proposition A.1).

The regular variation of any finite dimensional distribution of (Yt) follows by induction,
using arguments similar to the ones given in Basrak et al. (2002b, Proof of Corollary 3.5).
Define Yt (k) ..= (Y ′t , ..., Y ′t+k−1)′. Indeed, Yt (1) = Yt is regularly varying with index κ.
Suppose that Yt (k) is regularly varying with index κ for some k ≥ 1. Observe that(

Yt (k)
σ2
t+k

)
=
(

O2kd×1

(Id −A0 −B0) γ0

)
+

 I2kd(
Od×(2(k−1)d), A0, B0

)Yt (k) ,

which is regularly varying with index κ by Basrak et al. (2002b, Proposition A.1). This
implies, again using Basrak et al. (2002b, Proposition A.1), that

Yt (k + 1) =


I2kd O2kd×d

Od×2kd diag(ε�2
t+k)

Od×2kd Id


(
Yt (k)
σ2
t+k

)

is regularly varying with index κ. �
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Lemma B.3. Suppose that the assumptions of Theorem 5.2 are satisfied. Then as T →∞

Ta−1
T (γ̂T − γ0) w→ S,

where the sequence (aT ) is defined in Theorem 5.2, and S has a d-dimensional κ-stable
distribution.

Proof. Following arguments similar to the ones in Pedersen and Rahbek (2014, Proof of
Lemma B.8) and using that ρ(B0) < 1, it can be shown that for any δ < 1

γ̂T − γ0 = 1
T

T∑
t=1

C0
{

diag
(
ε�2
t

)
− Id

}
σ2
t + op

(
T−δ

)
,

where C0 ..= (Id −A0 −B0)−1 (Id −B0) and σ2
t

..= σ2
t (γ0, λ0). Choosing δ = (κ − 1)/κ,

and using that aT ∼ (cT )1/κ, see Basrak et al. (2002b, Remark 2.11), we have that

Ta−1
T (γ̂T − γ0) = C0a

−1
T

T∑
t=1

{
diag

(
ε�2
t

)
− Id

}
σ2
t + op (1) . (B.9)

With Vη the mapping defined in Lemma B.5 and NT and N the point processes defined
in Lemma B.4, observe that Lemmata B.4 and B.5 and the continuous mapping theorem
imply that as T →∞,

Vη (NT (·)) w→ Vη (N(·)) . (B.10)

Combining (B.10) with Lemmata B.6 and B.7 and using Billingsley (1999, Theorem 3.2)
it follows that a−1

T

∑T
t=1{diag(ε�2

t )−Id}σ2
t
w→ S̃ as T →∞ for some random vector S̃ that

has a multivariate κ-stable distribution. We conclude that

Ta−1
T (γ̂T − γ0) w→ C0S̃.

Since κ ∈ (1, 2), we have from Samorodnitsky and Taqqu (1994, Theorems 2.1.2 and
2.5.1(c)) that S = C0S̃ has a multivariate κ-stable distribution. �

Lemma B.4. Let σ2
t

..= σ2
t (θ0) and Yt ..= (X�2′

t , σ2′
t )′, and, moreover, let MP (R2d \ {0})

denote the collection of point measures on R2d \ {0}. Under the assumptions of Theorem
5.2 there exists a sequence (aT ), 0 < aT → ∞ as T → ∞, such that T P(‖Yt‖ > aT ) → 1
as T →∞. Moreover, as T →∞

NT (·) ..=
T∑
t=1

δa−1
T Yt

(·) w→ N (·) , (B.11)

where N is a point process on R2d \ {0} that can be represented as

N(·) D=
∞∑
i=1

∞∑
j=1

δPiQij (·),

consisting of
(1) a Poisson random measure

∑∞
i=1 δPi(·) on (0,∞) with intensity measure ν (dy) =

ψκy−κ−1
1 {y ∈ [0, )} dy, ψ ∈ (0, 1],

(2) an i.i.d. sequence {
∑∞
j=1 δQij (·)}i∈N of point processes in M̃P (R2d \ {0}) ..= {µ ∈

MP (R2d \ {0}) : µ ({y : ‖y‖ > 1}) = 0 and µ({y : y ∈ S2d−1}) > 0} independent of∑∞
i=1 δPi(·).
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Proof. By Lemma B.2 and Resnick (2007, Theorem 3.6) we have that the sequence (aT )
exists. We establish (B.11) by verifying the conditions of Basrak and Segers (2009, The-
orem 4.5) for (Yt). Any finite-dimensional distribution of (Yt) is regularly varying with
index κ by Lemma B.2. The anti-clustering condition, Basrak and Segers (2009, Condition
4.1), can be shown to hold by arguments similar to the ones given in Basrak et al. (2002b,
Proof of Theorem 2.10). First, observe that Yt = AtYt−1 +Bt with

At ..=

diag
(
ε�2
t

)
A0 diag

(
ε�2
t

)
B0

A0 B0

 (B.12)

and

Bt ..=

diag
(
ε�2
t

)
(Id −A0 −B0) γ0

(Id −A0 −B0) γ0

 .
Next, consider the skeleton Y (n)

t
..= Ytn that satisfies the stochastic recurrence equation

Y
(n)
t = A

(n)
t Y

(n)
t−1 +B

(n)
t ,

with A
(n)
t

..= Atn · · ·A(t−1)n+1 and B
(n)
t

..= Btn +
∑n−1
k=1 Atn · · ·Atn−k+1Btn−k. We have

that Y0 = Y
(n)

0 , and since n is fixed, it follows that if Y (n)
t satisfies the anti-clustering

condition, so does Yt. Observe that

P
(

max
τ≤t≤rT

∥∥∥Y (n)
t

∥∥∥ > aTu

∣∣∣∣ ∥∥∥Y (n)
0

∥∥∥ > aTu

)
≤

∑
τ≤t≤rT

P
(∥∥∥Y (n)

t

∥∥∥ > aTu
∣∣∣ ∥∥∥Y (n)

0

∥∥∥ > aTu
)
.

Moreover,

Y
(n)
t =

t−1∏
j=0

A
(n)
t−jY

(n)
0 +

t−1∑
k=0

k−1∏
j=0

A
(n)
t−jB

(n)
t−k =.. It,1Y

(n)
0 + It,2,

with
∏−1
j=0A

(n)
t−j = I2d by convention. By Francq and Zakoïan (2010, Theorem 11.6) the

strict stationarity of (Yt) implies that the top Lyapunov exponent of (At), with At defined
in (B.12), is strictly negative. Since εt has finite second-order moments, E[log+ ‖A(n)

t ‖] <
∞, it follows by Kingman (1973, Theorem 6) that

lim
n→∞

1
n

log
∥∥∥A(n)

t

∥∥∥ < 0 a.s.

Hence for n sufficiently large it holds that E[log ‖A(n)
t ‖] < 0. Moreover, E[‖A(n)

t ‖δ] < ∞
for some δ > 0, so in light of Basrak et al. (2002b, Remark 2.9), see also Ling (2007,
p.167), it follows that for n sufficiently large, there exists an ε > 0 such that

E
[∥∥∥A(n)

t−j

∥∥∥ε] < 1. (B.13)

In particular we choose ε ∈ (0, 1). By the triangle inequality,

P
(∥∥∥Y (n)

t

∥∥∥ > aTu
∣∣∣ ∥∥∥Y (n)

0

∥∥∥ > aTu
)
≤ P

(∥∥∥It,1Y (n)
0

∥∥∥ > aTu/2
∣∣∣ ∥∥∥Y (n)

0

∥∥∥ > aTu
)

+P
(
‖It,2‖ > aTu/2|

∥∥∥Y (n)
0

∥∥∥ > aTu
)
. (B.14)
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For the first term in (B.14) it holds that

P
(∥∥∥It,1Y (n)

0

∥∥∥ > aTu/2
∣∣∣ ∥∥∥Y (n)

0

∥∥∥ > aTu
)
≤ 2ε E

(
‖It,1‖ε

∥∥∥Y (n)
0

∥∥∥ε∣∣∣ ∥∥∥Y (n)
0

∥∥∥ > aTu
)

≤ cE [‖It,1‖ε] (uaT )−ε E
(∥∥∥Y (n)

0

∥∥∥ε∣∣∣ ∥∥∥Y (n)
0

∥∥∥ > aTu
)

where the first inequality follows by the conditional generalized Chebyshev inequality
and the second inequality follows by the fact that It,1 and Y (n)

0 are independent. By an
application of Karamata’s theorem (specifically, Pan et al. (2013, Proposition 4.1)) we
have that

lim sup
T→∞

P
(∥∥∥It,1Y (n)

0

∥∥∥ > aTu/2
∣∣∣ ∥∥∥Y (n)

0

∥∥∥ > aTu
)
≤ cE [‖It,1‖ε]

≤ c
(
E
[∥∥∥A(n)

t

∥∥∥ε])t
where we have used the definition of It,1 and (B.13). Since It,2 and Y (n)

0 are independent
for t ≥ 1, we have that P(‖It,2‖ > aTu/2| ‖Y (n)

0 ‖ > aTu) = P (‖It,2‖ > aTu/2). Moreover,
exploiting that (A(n)

t , B
(n)
t ) is i.i.d.,

P (‖It,2‖ > aTu/2) ≤ a−εT (2/u)ε E [‖It,2‖ε]

= a−εT (2/u)ε E

∥∥∥∥∥∥
t−1∑
k=0

k−1∏
j=0

A
(n)
t−jB

(n)
t−k

∥∥∥∥∥∥
ε

≤ a−εT (2/u)ε
t−1∑
k=0

E

k−1∏
j=0

∥∥∥A(n)
t−j

∥∥∥ε ∥∥∥B(n)
t−k

∥∥∥ε


= a−εT (2/u)ε E
[∥∥∥B(n)

t−k

∥∥∥ε] t−1∑
k=0

(
E
[∥∥∥A(n)

t−j

∥∥∥ε])k
≤ a−εT (2/u)ε E

[∥∥∥B(n)
t−k

∥∥∥ε] ∞∑
k=0

(
E
[∥∥∥A(n)

t−j

∥∥∥ε])k
≤ ca−εT ,

where the first inequality follows by the generalized Chebyshev inequality, and the last
inequality follows by (B.13). Now using arguments similar to the ones in Basrak et al.
(2002b, p.104), we conclude that

lim
τ→∞

lim sup
T→∞

∑
τ≤t≤rT

P
(∥∥∥Y (n)

t

∥∥∥ > aTu
∣∣∣ ∥∥∥Y (n)

0

∥∥∥ > aTu
)

= 0,

i.e. Basrak and Segers (2009, Condition 4.1) is satisfied.
Assumption 2 implies that zero is an interior point of the support of the density of εt. It
then follows by Boussama (1998, Theorem 5.5.3) that (σ2

t ), and thereby (Yt), is strongly
mixing. This implies that the mixing condition, Basrak and Segers (2009, Condition 4.4),
is satisfied as mentioned by Basrak and Segers (2009, p.1070). From Basrak and Segers
(2009, Theorem 4.5) we now have that NT (·) w→ N (·) as T →∞, and the characterization
of the distribution of N(·) in terms of the point process

∑∞
i=1

∑∞
j=1 δPiQij (·) follows by

Basrak and Segers (2009, Remark 4.6). �
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Lemma B.5. Let MP ([0,∞]2d \{0}) denote the collection of point measures on [0,∞]2d \
{0}. For any η > 0 define the mapping Vη : MP ([0,∞]2d \ {0})→ Rd,

Vη

( ∞∑
t=1

δyt(·)
)

=


∑∞
t=1 (yt,1 − yt,d+1)1 {yt,d+1 > η}

...∑∞
t=1 (yt,d − yt,2d)1 {yt,2d > η}

 ,
where yt,i denotes the i-th element of yt. Under the assumptions of Theorem 5.2, Vη is
continuous on a subset of MP ([0,∞]2d \ {0}) containing the point process N(·), defined in
Lemma B.4, with probability one.

Proof. The proof follows by arguments similar to the ones in Vaynman and Beare (2013,
Proof of Lemma A.2). Define the sets Bη = {x ∈ [0,∞]2d \ {0} : maxi=d+1,...,2d(xi) > η}
and Aη = {µ ∈ Mp([0,∞]2d \ {0}) : µ(∂Bη) = 0}. Moreover, consider a sequence (µT ),
µT ∈ Mp([0,∞]2d \ {0}), such that µT

v→ µ ∈ Aη as T → ∞. Since Bη does not contain
the origin it is relatively compact, so it follows by Resnick (1987, Proposition 3.13) that
for T sufficiently large, we can label the points of µT and µ in Bη by (xT,1, ..., xT,k) and
(x1, ..., xk), respectively, for some finite k. Moreover, for each i = 1, ..., k

xT,i → xi as T →∞. (B.15)

Hence for T sufficiently large Vη(µT ) and Vη(µ) do only depend on (xT,1, ..., xT,k) and
(x1, ..., xk), respectively. By (B.15), Vη(µT ) → Vη(µ) as T → ∞, so Vη is continuous on
Aη. The point process N from Lemma B.4 has the representation

N(·) D=
∞∑
i=1

∞∑
j=1

δPiQij (·).

Observe that the event (N(·) /∈ Aη) can only occur if (PiQij ∈ ∂Bη for some i, j). Hence
P(N(·) /∈ Aη) = P(PiQij ∈ ∂Bη for some i, j) ≤

∑∞
i=1

∑∞
j=1 P(PiQij ∈ ∂Bη). The Pois-

son random measure
∑∞
i=1 δPi(·) has intensity measure ν (dy) = ψκy−κ−1

1 {y ∈ R+} dy,
ψ ∈ (0, 1], which is absolutely continuous, so Pi must be a continuous random vari-
able. Moreover, Pi is independent of Qij , so P(PiQij ∈ ∂Bη) = 0, and we conclude that
P(N(·) /∈ Aη) = 0. �

Lemma B.6. Define

ST ..= a−1
T

T∑
t=1

{
diag

(
ε�2
t

)
− Id

}
σ2
t ,

where σ2
t

..= σ2
t (γ0, λ0). Under the Assumptions of Theorem 5.2, with Vη the mapping

defined in Lemma B.5 and NT (·) the point process defined in Lemma B.4, for any δ > 0

lim
η→0

lim sup
T→∞

P (‖ST − Vη(NT )‖ ≥ δ) = 0. (B.16)

Proof. First observe that

Vη (NT (·)) =


a−1
T

∑T
t=1

(
ε2
t,1 − 1

)
σ2
t,11

{
σ2
t,1 > ηaT

}
...

a−1
T

∑T
t=1

(
ε2
t,d − 1

)
σ2
t,d1

{
σ2
t,d > ηaT

}
 ,
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where ε2
t,i and σ2

t,i are the i-th elements of ε�2
t and σ2

t , respectively. For i ∈ {1, .., d}
consider the i-th element of ST ,

a−1
T

T∑
t=1

(
ε2
t,i − 1

)
σ2
t,i = a−1

T

T∑
t=1

(
ε2
t,i − 1

)
σ2
t,i1

{
σ2
t,i ≤ ηaT

}

+a−1
T

T∑
t=1

(
ε2
t,i − 1

)
σ2
t,i1

{
σ2
t,i > ηaT

}
,

with η > 0. As in Vaynman and Beare (2013, Proof of Lemma A.1), let α ∈ (κ,min {β0, 2}),
where β0 is given in Assumption 2. Using that {(ε2

t,i − 1)σ2
t,i,Ft} is a martingale differ-

ence sequence, together with von Bahr and Esseen (1965, Theorem 2), an application of
Karamata’s theorem, and Resnick (2007, Theorem 3.6),

E

∣∣∣∣∣a−1
T

T∑
t=1

(
ε2
t,i − 1

)
σ2
t,i1

{
σ2
t,i ≤ ηaT

}∣∣∣∣∣
α
 ≤ ca−αT T E

[∣∣∣ε2
t,i − 1

∣∣∣α]E [(σ2
t,i)α1

{
σ2
t,i ≤ ηaT

}]

= ca−αT T

ˆ ηaT

0
xα P

(
σ2
t,i ≤ dx

)
∼ ca−αT T (ηaT )α P

(
σ2
t,i > ηaT

)( κ

α− κ

)
= cηαT P

(
σ2
t,i > ηaT

)
T→∞→ cηα−κ

η→0→ 0.

So we conclude, using Chebyshev’s inequality, that for any δ̃ > 0 and any i ∈ {1, ..., d}

lim
η→0

lim sup
T→∞

P
[∣∣∣∣∣a−1

T

T∑
t=1

(
ε2
t,i − 1

)
σ2
t,i1

{
σ2
t,i ≤ ηaT

}∣∣∣∣∣ ≥ δ̃
]

= 0,

and thus, for any δ̃ > 0, and any i ∈ {1, ..., d}

lim
η→0

lim sup
T→∞

P
[∣∣∣∣∣a−1

T

T∑
t=1

(
ε2
t,i − 1

)
σ2
t,i − a−1

T

T∑
t=1

(
ε2
t,i − 1

)
σ2
t,i1

{
σ2
t,i > ηaT

}∣∣∣∣∣ ≥ δ̃
]

= 0.

(B.17)
By the triangle and Boole’s inequalities

P
(
‖ST − Vη(NT )‖ ≥ δ̃

)
≤

d∑
i=1

P
[∣∣∣∣∣a−1

T

T∑
t=1

(
ε2
t,i − 1

)
σ2
t,i − a−1

T

T∑
t=1

(
ε2
t,i − 1

)
σ2
t,i1

{
σ2
t,i > ηaT

}∣∣∣∣∣ ≥ δ̃

d

]
,

so in light of (B.17) we conclude that (B.16) holds. �

Lemma B.7. With Vη the mapping defined in Lemma B.5 and N(·) the point process
defined in Lemma B.4, suppose that the assumptions of Theorem 5.2 are satisfied. Then

Vη(N(·)) w→ S̃ (B.18)

as η → 0, where S̃ is a d-dimensional random vector with a multivariate κ-stable distri-
bution, κ ∈ (1, 2).



TARGETING ESTIMATION OF CCC-GARCH MODELS WITH INFINITE FOURTH MOMENTS 24

Proof. The proof follows the lines of Davis and Hsing (1995, pp.897-898), see also Vaynman
and Beare (2013, Proof of Lemma A.3). Consider the characteristic function of Vη(N(·)),
Ψη : Rd → C. We establish the weak convergence by showing that Ψη(t) converges point-
wise to a function Ψ(t) as η → 0, and that this function is continuous at t = 0. The
weak convergence then follows by Lévy’s Continuity Theorem. We establish the point-
wise convergence by showing that Ψη(t) is Cauchy as η → 0, i.e. for any ε > 0 there exists
an η > 0 such that

sup
0<a<b≤η

|Ψa(t)− Ψb(t)| < ε.

With S(η) ..= Vη(N(·)) and S(η)
j its j-th element, observe that for any δ > 0

|Ψb(t)− Ψa(t)| =
∣∣∣E [exp

(
ıt′S(b)

)
− E

[
exp

(
ıt′S(a)

)]]∣∣∣
≤ E

[∣∣∣exp
(
ıt′S(b)

)
− exp

(
ıt′S(a)

)∣∣∣]
= E

[∣∣∣exp
(
ıt′S(b)

)
− exp

(
ıt′S(a)

)∣∣∣1{ max
j∈{1,...,d}

∣∣∣S(b)
j − S

(a)
j

∣∣∣ ≤ δ}]

+E
[∣∣∣exp

(
ıt′S(b)

)
− exp

(
ıt′S(a)

)∣∣∣1{ max
j∈{1,...,d}

∣∣∣S(b)
j − S

(a)
j

∣∣∣ > δ

}]
,

where we have used Jensen’s inequality. Moreover,∣∣∣exp
(
ıt′S(b)

)
− exp

(
ıt′S(a)

)∣∣∣ =
∣∣∣cos

(
t′S(b)

)
− cos

(
t′S(a)

)
+ ı

[
sin
(
t′S(b)

)
− sin

(
t′S(a)

)]∣∣∣
=

√[
cos

(
t′S(b))− cos

(
t′S(a))]2 +

[
sin
(
t′S(b))− sin

(
t′S(a))]2

=
√

2− 2 cos
(
t′S(b)) (t′S(a))− 2 sin

(
t′S(b)) sin

(
t′S(a))

=
√

2− 2 cos
(
t′
(
S(b) − S(a))),

so we have that

|Ψb(t)− Ψa(t)|

≤ E
[√

2− 2 cos
(
t′
(
S(b) − S(a)))1{maxj∈{1,...,d}

∣∣∣S(b)
j − S

(a)
j

∣∣∣ ≤ δ}] (B.19)

+E
[√

2− 2 cos
(
t′
(
S(b) − S(a)))1{maxj∈{1,...,d}

∣∣∣S(b)
j − S

(a)
j

∣∣∣ > δ
}]
.

Since t is fixed, maxj∈{1,...,d} |S
(b)
j −S

(a)
j | ≤ δ, t′(S(b)−S(a))→ 0 as δ → 0. Moreover, since√

2− 2 cos(x)→ 0 as x→ 0, we conclude that for any ε > 0, choosing δ > 0 small enough,
we have that that

√
2− 2 cos(t′(S(b) − S(a))) < ε/2 when maxj∈{1,...,d} |S

(b)
j − S

(a)
j | ≤ δ.

Thereby the first term of the right-hand side of (B.19) is less than ε/2 for small enough δ.
Next, we fix such δ, and we show that the second term of the right-hand side of (B.19) is less
than ε/2 for small enough η > 0 with η ≥ b > a > 0. Since

√
2− 2 cos(t′(S(b) − S(a))) ∈

[0, 2], we have that

E
[√

2− 2 cos
(
t′
(
S(b) − S(a)))1{ max

j∈{1,...,d}

∣∣∣S(b)
j − S

(a)
j

∣∣∣ > δ

}]
≤ 2P

(
max

j∈{1,...,d}

∣∣∣S(b)
j − S

(a)
j

∣∣∣ > δ

)
,
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so we just have to find an η > 0 such that

P
(

max
j∈{1,...,d}

∣∣∣S(b)
j − S

(a)
j

∣∣∣ > δ

)
< ε/4.

We define Ṽa,b ..= maxj∈{1,...,d} |Vb,j − Va,j |, where Vη,j denotes the the j-th element of Vη.
According to Lemma B.5, Vη is continuous on a subset of MP ([0,∞]2d \ {0}) containing
the point process N(·), defined in Lemma B.4, with probability one. The same must then
hold for Ṽa,b. Hence Ṽa,b(NT ) w→ Ṽa,b(N) as T →∞, and we have that

P
(

max
j∈{1,...,d}

∣∣∣S(b)
j − S

(a)
j

∣∣∣ > δ

)
= P

(
Ṽa,b(N) > δ

)
= lim

T→∞
P
(
Ṽa,b(NT ) > δ

)
. (B.20)

Let S(η)
T,j denote the j-th element of Vη(NT (·)) and let ST,j denote the j-th element of ST

defined in Lemma B.6. Then

Ṽa,b(NT (·)) = max
j∈{1,...,d}

∣∣∣S(b)
T,j − S

(a)
T,j

∣∣∣
≤

d∑
j=1

∣∣∣S(b)
T,j − S

(a)
T,j

∣∣∣
≤

d∑
j=1

(∣∣∣ST,j − S(b)
T,j

∣∣∣+ ∣∣∣ST,j − S(a)
T,j

∣∣∣) . (B.21)

In light of (B.20), (B.21), and Lemma B.6, choosing η > 0 small enough, we have that

sup
0<a<b≤η

P
(

max
j∈{1,...,d}

|Sb,j − Sa,j | > δ

)
= sup

0<a<b≤η
lim
T→∞

P
(
Ṽa,b(NT (·)) > δ

)

≤ sup
0<a<b≤η

lim
T→∞

P

 d∑
j=1

(|Sj,T − Sb,j,T |+ |Sj,T − Sa,j,T |) > δ


< ε/4.

By arguments similar to the ones above, one can show that Ψη(t) is uniformly Cauchy on
a set, A, containing the origin, i.e. for any ε > 0 there exists an η > 0 such that

sup
0<a<b≤η

sup
t∈A
|Ψa(t)− Ψb(t)| < ε.

(In particular we can choose A ..= {t ∈ Rd : maxi∈{1,..,d} |ti| ≤ 1} as in Vaynman and Beare
(2013, Proof of Lemma A.3).) This implies that supt∈A |Ψη(t) − Ψ(t)| → 0 as η → 0, i.e.
Ψη(t) converges uniformly to Ψ(t) on A. Because Ψη(t) is continuous on A we have that,
using Rudin (1976, Theorem 7.12), that Ψ(t) is continuous on A, and in particular at t = 0.
We conclude that as η → 0, (B.18) holds for some d-dimensional random vector S̃ with
characteristic function Ψ . As in Davis and Mikosch (1998, Proof of Proposition 3.3), one
can show that the variable S̃ has a multivariate stable distribution with index κ ∈ (1, 2) by
showing that every linear combination has a stable distribution (see Samorodnitsky and
Taqqu (1994, Theorem 2.1.5)), arguing in line with Davis and Hsing (1995, p.898). �

Lemma B.8. For any matrices A and B with non-negative entries, it holds that ρ (A+B) <
1⇒ ρ (B) < 1.
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Proof. Suppose that ρ (A+B) < 1, then for ω ∈ (0,∞)d there exists a h ∈ (0,∞)d that
solves the equation

h = ω +Ah+Bh. (B.22)

Setting ω̃ ..= ω+Ah ∈ (0,∞)d, observe that h solves h = ω̃+Bh, which is the case if and
only if ρ (B) < 1. �

Appendix C. A Necessary and Sufficient Condition for Finite 4th-order
Moments of a CCC-GARCH Process

Theorem C.1. Let (Xt) be the strictly and second-order stationary solution to the CCC-
GARCH model in (4.1)-(4.4), and define εt ..= R1/2Zt. Suppose that

E
[
diag

(
ε�2
t

)
⊗ diag

(
ε�2
t

)]
exists and is finite. The fourth-order moment matrix of Xt, E[X�2

t (X�2
t )′], exists and is

finite if and only if

ρ
(
E
{[
A diag

(
ε�2
t

)
+B

]
⊗
[
A diag

(
ε�2
t

)
+B

]})
< 1. (C.1)

Proof. Recall the following rules from matrix calculus. Lütkepohl (1996, 2.4.(3)): For
(m× n)-dimensional matrices A and B and (p× q)-dimensional matrices C and D, it
holds that

(A+B)⊗ (C +D) = A⊗ C +A⊗D +B ⊗ C +B ⊗D. (C.2)

Lütkepohl (1996, 2.4.(4)): Let the matrices A, B, C, and D be respectively of dimension
(m× n) , (p× q), (n× r), and (q × s), then

(AC)⊗ (BD) = (A⊗B) (C ⊗D) . (C.3)

Lütkepohl (1996, 7.2.(7)): Let the matrices A, B, and C have respectively dimension
(m× n), (n× r), and (r × s), then

vec (ABC) =
(
C ′ ⊗A

)
vec (B) . (C.4)

First we show that E
[
σ2
t ⊗ σ2

t

]
exists and is finite if and only if (C.1) holds, where σ2

t
..=

σ2
t (γ0, λ0). Observe that X�2

t = diag(ε�2
t )σ2

t , so with ω0 ..= (Id−A0−B0)γ0 we have that

E
[
σ2
t ⊗ σ2

t

]
= E

[{
ω0 +

(
A0 diag

(
ε�2
t−1

)
+B0

)
σ2
t−1

}
⊗
{
ω0 +

(
A0 diag

(
ε�2
t−1

)
+B0

)
σ2
t−1

}]
= (ω0 ⊗ ω0) + E

[
ω0 ⊗

{(
A0 diag

(
ε�2
t−1

)
+B0

)
σ2
t−1

}]
+E

[{(
A0 diag

(
ε�2
t−1

)
+B0

)
σ2
t−1

}
⊗ ω0

]
+E

[{(
A0 diag

(
ε�2
t−1

)
+B0

)
σ2
t−1

}
⊗
(
A0 diag

(
ε�2
t−1

)
+B0

)
σ2
t−1

]
,

where we have used (C.2). Let

Cσ ..= (ω0 ⊗ ω0) + E
[
ω0 ⊗

{(
A0 diag

(
ε�2
t−1

)
+B0

)
σ2
t−1

}]
+E

[{(
A0 diag

(
ε�2
t−1

)
+B0

)
σ2
t−1

}
⊗ ω0

]
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which exists and is finite since Xt is second-order stationary. Thus, using (C.3) and that
εt−1 and σ2

t−1 are independent,

E
[
σ2
t ⊗ σ2

t

]
= Cσ+E

[{(
A0 diag

(
ε�2
t−1

)
+B0

)}
⊗
(
A0 diag

(
ε�2
t−1

)
+B0

)]
E
[
σ2
t−1 ⊗ σ2

t−1

]
.

Recursions give that

E
[
σ2
t ⊗ σ2

t

]
=

τ−1∑
i=0

(
E
[{(

A0 diag
(
ε�2
t

)
+B0

)}
⊗
(
A0 diag

(
ε�2
t

)
+B0

)])i
Cσ

+
(
E
[{(

A0 diag
(
ε�2
t

)
+B0

)}
⊗
(
A0 diag

(
ε�2
t

)
+B0

)])τ
E
[
σ2
t−τ ⊗ σ2

t−τ

]
,

and we conclude that E
[
σ2
t ⊗ σ2

t

]
converges as τ → ∞ if and only if (C.1) holds, see

Lütkepohl (1996, Results 9.3.5(a) and 9.3.2). Observe that

E
[
vec

{
X�2
t

(
X�2
t

)′}]
= E

[
vec

{
diag

(
ε�2
t

)
σ2
t (σ2

t )′ diag
(
ε�2
t

)′}]
= E

[
diag

(
ε�2
t

)
⊗ diag

(
ε�2
t

)]
E
[
σ2
t ⊗ σ2

t

]
vec (Id) ,

where the second equality follows by (C.4) and the independence between εt and σ2
t .

Observe that E[diag(ε�2
t )⊗diag(ε�2

t )] is finite by assumption, so E[vec{X�2
t (X�2

t )′}] exists
and is finite if and only if E

[
σ2
t ⊗ σ2

t

]
exists and is finite. �

Appendix D. Vague convergence and point processes

This section contains brief introductions to the notions of vague convergence and point
processes, based on Resnick (1987, Ch.3). In the following, let F be a subset of Rd

(following Resnick (1987, p.123), we only need that F is a locally compact second countable
Hausdorff space, i.e. that every x ∈ F has a compact neighborhood, there exists open
(Gn)n≥1 such that any open G can be written as G = ∪α∈IGα for a finite and countable
index set I, and that distinct points in F may be separated by disjoint neighborhoods).
Let B (F) be the Borel σ-field generated by the open sets of F.

D.1. Vague convergence. A measure µ is called Radon (or locally finite) if µ (K) <∞
for all subsets K of F that are relatively compact, i.e. the closure of K is compact. Next,
define the sets

C+
K (F) ..= {f : F→ [0,∞) : f is continuous with compact support} ,

and
M+ (F) ..= {µ : µ is nonnegative on B (F) and µ is Radon} .

A topology on M+ (F) can be obtained by letting its subbasis consist of sets of the form

{µ ∈M+ (F) : s < µ(f) < t}

for f ∈ C+
K (F) and 0 ≤ s ≤ t, where µ (f) ..=

´
F f (x)µ (dx). This topology is called the

vague topology. If µn, µ ∈ M+ (F) for all n ≥ 1, then µn converges vaguely (converges in
the vague topology) to µ, written µn

v→ µ, if and only if for all f ∈ C+
K (F),

µn (f)→ µ (f) as n→∞. (D.1)
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Remark D.1. It holds that µn
v→ µ if and only if µn(F )→ µ(F ) for all relatively compact

F ∈ B(F) satisfying µ(∂F ) = 0.
For a detailed treatment of this topic we refer to Resnick (1987, pp.139-149) and Kallenberg
(1983, pp.168-171).

D.2. Point processes. Let (xi)i≥1 be a countable collection of points of F. A point
measure on F is a measure µ defined as µ(·) ..=

∑∞
i=1 δxi(·) and µ is Radon. Next, define

the set
Mp (F) ..= {µ : µ is a point measure on F} ,

and define the σ-fieldMp (F) of Mp (F) to be the smallest σ-field containing all sets of the
form {µ ∈Mp (F) : µ(F ) ∈ B} for F ∈ B (F) and B ∈ B([0,∞]). For a probability space
(Ω,A,P), a point process on F is a measurable map N : (Ω,A,P) → (Mp (F) ,Mp (F)),
i.e. a random element of Mp (F).

Remark D.2. For a fixed ω ∈ Ω, N(ω, ·) is a point measure, and for F ∈ B(F) N(ω, F ) is
the number of points in F for the realization ω.

A special type of point processes, that is of particular interest in this paper, is the
Poisson random measure defined as follows. Let µ be a Radon measure on B(F). A point
process N is a Poisson random measure with mean (or intensity) measure µ if N satisfies
that

(1) for any F ∈ B(F), and any non-negative integer k

P[N(F ) = k] =

exp{−µ(F )}{µ(F )}k/k! if µ(F ) <∞

0 if µ(F ) =∞,

and
(2) for any k ≥ 1, if F1, ..., Fk are mutually disjoint sets in B(F), then {N(Fi)}i=1,...,k

are independent random variables.
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