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Summary

This dissertation consists of three self-contained articles presented in three separate chapters. The

overall aim is to provide a foundation for combining the new theoretical framework of Imperfect

Knowledge Economics (IKE) developed by Frydman and Goldberg (2007, 2011) with the econo-

metric methodology based on the cointegrated VAR model of Johansen (1996) developed at the

University of Copenhagen. In the first chapter, I consider a simple general IKE asset pricing model

and show how internal consistency can be fully incorporated in IKE models in a way that both

allows for internal consistency compatible with individual rationality and accords individuals’ ex-

pectations a partly autonomous role in driving aggregate outcomes. Moreover, I show how internal

consistency conditions imply that the asset price and the exogenous variables in the model are coin-

tegrated with stochastic cointegration parameters during different subperiods. Hence, I show how

internal consistency is crucial for our ability to test empirical implications of IKE models based on

the cointegrated VAR model and potential extensions which allow for stochastic cointegration pa-

rameters. In the second chapter, I simulate a simple model embedding key features of IKE and show

that empirical regularities in the simulated data can be found using the cointegrated VAR model,

despite bounded parameter-instability and stochastic cointegration in the data-generating process.

Finally, the third chapter is a purely econometric article where I use simulations to show that the

persistence frequently found in estimated cointegration relations—and corresponding low estimated

adjustment parameters—can potentially be caused by stochastic cointegration parameters in the

underlying data-generating process. Thereby the results in this thesis confirm the original intuition

behind the attempt to combine IKE and the econometric approach based on the cointegrated VAR

model, that the parameter-instability of IKE models could potentially be an important source of

the persistence found empirically in estimated cointegrated VAR models for macroeconomic and

financial time-series.

In the first chapter—Combining Internal Consistency and Partly Autonomous Expectations in

Imperfect Knowledge Economics Models—I propose a set of conditions on the representation of

expectations in terms of the parameters of the process underpinning aggregate outcomes in IKE

models. The novelty of the conditions is that they allow for internal consistency compatible with in-

dividual rationality and yet accord expectations an autonomous role in driving aggregate outcomes.

I consider a simple general IKE asset pricing model with the key feature that it allows for nonre-

curring structural change in the process underpinning aggregate outcomes. However, it is assumed

that there are subperiods of varying length where these parameters are constant. As a consequence

of nonrecurring structural change, individuals must base their expectations on contingent and in-

herently imperfect knowledge, and as a result expectations become an autonomous input to the
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model which cannot be fully specified. However, until the recent paper by Frydman and Goldberg

(2013 a), IKE models have not focused on internal consistency in specifications of expectations, so

expectations have been accorded a completely autonomous role relative to the rest of the model.

I show how internal consistency can be incorporated in the IKE model by restricting the pa-

rameters in the representation of expectations to the class of stochastically trendless processes with

unconditional means determined by the parameters of the process underpinning the asset price.

However, I do not specify all changes over time in the parameters with a specific stochastic process

within this class. The conditions imply that the forecasting errors and the gap between the asset

price and its fundamental value in terms of the exogenous variables become stochastically trendless

in each of the subperiods. Essentially this means that individuals’ forecasting errors cannot deviate

endlessly from zero over time and that the asset price cannot deviate endlessly from its fundamental

value—although it does not imply that the forecasting errors will converge towards zero over time

nor that the price will converge towards it fundamental value. Moreover, I show that the conditions

imply that the asset price and the exogenous variables are cointegrated with stochastic cointegration

parameters in each of the subperiods. Hence, I present a theoretical result which is crucial for the

ability to test empirical implication of IKE models.

In the second chapter—A Simulation Study of a Simple Imperfect Knowledge Economics Model of

Stock Prices and Earnings with Cointegrated VAR Estimations—I simulate outcomes from a simple

IKE model of stock prices and earnings, which is based on the general IKE model of asset price

swings and risk in Frydman and Goldberg (2013 b) and which satisfies the internal consistency

conditions presented in Chapter 1. The aim is to address whether the cointegrated VAR model

can serve as a valid statistical representation of the simulated data and whether the regularities

in the simulated data can be found econometrically with the cointegrated VAR model as a first

approximation.

The key features of the simple IKE model are: i) that there are streches of time where revisions of

individuals’ forecasting strategies are moderate, and ii) that fluctuations in the stock price around a

benchmark price level determined by earnings are bounded. In modeling these key feature, earnings

are assumed to fluctuate around a non-stationary long-run trend, with deviations caused by a

bounded segmented trend process and a stationary component, and qualitative bounds are imposed

on revisions of individuals’ forecasting strategies, so that the causal parameter linking the stock price

to earnings varies over time within specific bounds. Hence, the deviations between the stock price

and the benchmark price determined by earnings are bounded and the variables are cointegrated as

a linear relation between them is stochastically trendless.

The specification of the cointegrated VAR differs from the specification of the simulated data.

Nonethelesss, the simulation results show that the cointegrated VAR model can serve as a statis-

tically adequate representation of the simulated data. Moreover, the results show that, despite

bounded instability in the time-varying cointegration parameters in the data-generating process of

the simulated data, the cointegrated VAR model can provide a fairly precise estimate of the sample

mean of the boundedly time-varying cointegration parameters. The results indicate that the coin-

tegrated VAR model can serve as a good starting point for econometric analyses of IKE models,

though more work is needed to fully establish this link.

In the third chapter—Stochastic Parameters as a Source of Persistence in the Cointegrated VAR
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Model — A Simulation Study—I use simulations to show that persistence in estimated cointegra-

tion relations and slow adjustment can arise in the cointegrated VAR model as a consequence of

stationary stochastic cointegration parameters in the underlying data-generating process. I simulate

cointegrated data with stochastic cointegration parameters given by βt = β+Bt, where Bt is a mean

zero stationary autoregressive process simulated with different degrees of persistence and volatility.

Hence, the linear relations β′tXt−1 and β′Xt−1 are stochastically trendless, and β′Xt−1 can be in-

terpreted as the long-run average cointegration relations. The simulated data is analysed with the

classic cointegrated VAR model—which has constant cointegration parameters β—using a general-

to-specific modeling procedure, which first focuses on specification and testing of an unrestricted

model as a valid statistical representation of the data, and second on testing for and estimating a

reduced rank model with focus on the cointegration properties of the analysed data.

The results show that the estimated cointegrated VAR models appear to be fairly well-specified

statistical representations of the simulated data, except from cases with high persistence and volatil-

ity in Bt, which result in non-normality of the estimated residuals, and in very long samples with

T = 1000 observations. Moreover, the results show that the trace tests based on standard asymptotic

inference on average suggest the correct reduced rank, except from the extreme cases mentioned,

although the inference is sensitive to the misspecification caused by stochastic cointegration param-

eters. Finally, the results show that the cointegrated VAR model delivers a consistent and very

precise estimate of the unconditional mean β of the stochastic cointegration parameters β = β+Bt,

even in small samples. However, if there is persistence in the stochastic cointegration parameter,

caused by persistence in Bt in the underlying data-generating process, it shows up in the estimated

cointegrated VAR model as persistence in the estimated cointegration relations. As a result the

estimated eigenvalues become small and the estimated adjustment coefficients skewed towards zero.

Thereby, the results show that stationary parameter-instability in the underlying data-generating

process can potentially be a source of persistence in estimated cointegration relations and corre-

sponding low estimated adjustment coefficients. Such persistence and slow adjustment is frequently

found empirically in cointegrated VAR analyses of macroeconomic and financial data, and it has

been a puzzle hard to explain for standard economic theory as it typically predicts a much faster

adjustment to equilibrium and thereby less persistent deviations from the estimated equilibrium.
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Resumé

Afhandlingen best̊ar af tre selvstændige artikler præsenteret i tre kapitler. Det overordnede mål

for afhandlingen er at skabe et fundament for at kombinere det nye teoretiske framework Im-

perfect Knowledge Economics (IKE) udviklet af Frydman and Goldberg (2007, 2011) med den

økonometriske metodologi, baseret p̊a den kointegrerede VAR model af Johansen (1996), udviklet

p̊a Københavns Universitet. I det første kapitel viser jeg i en simpel IKE aktieprismodel, hvor-

dan intern konsistens fuldt kan inkorporeres, s̊aledes at modellen b̊ade er internt konsistent, og

derved kompatibel med individuel rationalitet i modellen, samt tildeler individers forventningsdan-

nelse en delvist autonom role i markedsudfald. Jeg viser, hvordan intern konsistens medfører, at

aktieprisen og de eksogene variable i modellen er periodevis kointegrerede med stokastiske kointe-

grationsparametre. Jeg viser dermed, hvordan intern konsistens er afgørende for vores mulighed

for at teste empiriske implikationer af IKE modeller og at dette kan gøres ved hjælp af den koin-

tegrerede VAR model samt udvidelser med stokastiske parametre. I det andet kapitel simuleres

en simpel model indeholdende hovedelementerne fra IKE og jeg viser, at empiriske regulariteter

kan findes i en økonometrisk analyse baseret p̊a den kointegrerede VAR model, til trods for be-

grænset ustabilitet i parametrene i den data-genererende process. Endeligt er det tredje kapitel

en ren økonometrisk analyse, hvor jeg anvender simulationer til at vise, at den type persistens der

regelmæssigt findes i estimerede kointegrationsrelationer, s̊avel som de tilsvarende lave estimerede

tilpasningskoefficienter, potentielt kan være for̊arsaget af begrænset parameter-ustabilitet i den un-

derliggende data-genererende process. Dermed bekræfter resultaterne den oprindelige intuition bag

ønsket om at kombinere IKE teorien med den økonometrisk metode baseret p̊a den kointegrerede

VAR model, at den begrænset ustabilitet i IKE modeller potentielt kan være en væsentlig kilde til

den persistens som regelmæssigt findes i empiriske analyser af makroøkonomiske og finansielle data

baseret p̊a den kointegrerede VAR model.

I det først kapitel—Combining Internal Consistency and Partly Autonomous Expectations in

Imperfect Knowledge Economics Models—foresl̊ar jeg et nyt sæt restriktioner p̊a repræsentationen

af forventningsdannelsen i forhold til parametrene i den process der understøtter aktieprisen i en

IKE model. Det nye ved restriktionerne er, at de er internt konsistente, og dermed kompatible med

individuel rationalitet i modellen, men samtidig tildeler forventningsdannelsen en autonom role i

prissættelsen.

Jeg analyserer en simpel, generel IKE model for aktiepriser med det væsentlige hovedelement at

den tillader ikke-gentagende strukturelle brud i processen der understøtter aktieprisen. Det antages

dog, at der er del-perioder hvor disse parametre er konstante. Som en konsekvens af ikke-gentagende

strukturelle brud m̊a individer basere deres forventningsdannelse p̊a kontingent og iboende ufuld-
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kommen viden, og som følge deraf bliver forventningsdannelsen et autonomt input til modellen.

Indtil den nylige artikel af Frydman and Goldberg (2013 a) har IKE modeller ikke fokuseret p̊a

intern konsistens i specifikationen af forventninger. Derved har forventningsdannelsen været tildelt

en fuldstændig autonom rolle i forhold til resten af modellen.

Jeg viser, hvordan intern konsistens kan inkorporeres i IKE modellen ved at restriktere parame-

trene i repræsentationen af forventningsdannelsen til klassen af stokastisk trendløse processer med

ubetinget middelværdi bestemt af parametrene i processen der understøtter aktieprisen. Dog speci-

ficerer jeg ikke ændringer i disse parametre over tid at følge en specifik stokastisk process inden

for denne klasse. Restriktionerne medfører, at forventningsfejlene og afstanden imellem aktieprisen

og dens fundamentale værdi i relation til de eksogene variable bliver stokastiske trendløse i hver

del-periode. Dette betyder, at individers forventningsfejl ikke kan afvige vedvarende fra nul over

tid, samt at aktieprisen ikke kan afvige vedvarende fra dens fundamentale værdi—dog betyder det

ikke at forventningsfejlene konvergerer mod nul over tid eller at aktieprisen konvergerer mod sin

fundamentale værdi over tid. Derudover viser jeg, at restriktionerne medfører, at aktieprisen og

de eksogene variable er kointegrerede med stokastiske kointegrationsparametre i hver del-periode.

Dermed præsenterer jeg et teoretisk resultat der er væsentligt for vores mulighed for at teste de

empiriske implikationer af IKE modeller.

I det andet kapitel—A Simulation Study of a Simple Imperfect Knowledge Economics Model of

Stock Prices and Earnings with Cointegrated VAR Estimations—simulerer jeg tidsserier fra en simpel

IKE model for aktiepriser og virksomheders indtjening, som er baseret p̊a den generelle IKE model

for aktiepriser og risiko præsenteret i Frydman and Goldberg (2013 b) og som opfylder betingelserne

for intern konsistens præsenteret i Kapitel 1. Form̊alet er, at addresere hvorvidt den kointegrerede

VAR model i Johansen (1996) kan anvendes som en tilstrækkelig statistisk repræsentation af de

simulerede data, samt hvorvidt regulariteterne i de simulerede data kan genfindes økonometrisk i

den kointegrerede VAR model som en første approksimation.

De primære elementer i den simple IKE model er følgende: i) at der er tidsperioder, hvor revi-

sioner af individers forventningsdannelse er moderate, samt ii) at udsving i aktieprisen omkring et

benchmark prisniveau bestemt af indtjeningen er begrænsede. For at modelere disse primære ele-

menter antages indtjeningen at flukturere omkring en ikke-stationær langsigtstrend, med afvigelserne

for̊arsaget af en segmenteret trend og en stationær process. Desuden p̊alægges kvalitative re-

striktioner p̊a revisioner af individers forventningsdannelse, s̊aledes at den kausale parameter der

forbinder aktieprisen til indtjeningen varierer over tid inden for specifikke grænser. Dermed bliver

afvigelserne mellem aktieprisen og benchmarkprisniveauet, som er bestemt af den langsigtede trend

i indtjeningen, begrænsede og variablene er kointegrerede, da en lineær relation imellem dem er

stokastisk ikke-trendende.

Specifikationen af den kointegrerede VAR model er forskellig fra specifikationen af de simulerede

data fra den simple IKE model. Alligevel viser simulationsresultaterne, at den kointegrerede VAR

model kan anvendes som en tilstrækkelig statistisk repræsentation af de simulerede data. Derudover

viser resultaterne, at den kointegrerede VAR model—til trods for begrænset tidsvariation i kointe-

grationsparameteren i den datagenererende process for de simulerede data—giver et relativt præcist

estimat af gennemsnittet over tidsperioden af den begrænset tidsvarierende kointegrationsparame-

ter. Samlet set indikerer resultaterne, at den kointegrerede VAR model kan anvendes som et godt
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udgangspunkt for økonometrisk analyse af IKE modeller, men mere arbejde er p̊akrævet for fuldt

at etablere dette link.

I det tredje kapitel, Stochastic Parameters as a Source of Persistence in the Cointegrated VAR

Model — A Simulation Study, anvender jeg simulationer til at vise, at persistens i estimerede

kointegrationsrelationer og langsom tilpasning kan fremkomme i den kointegrerede VAR model, som

en konsekvens af stationær parameter-ustabilitet i den underliggende data-genererende process. Jeg

simulerer kointegrerede data med stokastiske kointegrationsparametre givet ved βt = β + Bt, hvor

Bt er en stationær autoregressiv process med ubetinget middelværdi nul, simuleret for forskellige

grader af persistens og volatilitet, og hvor de lineære relationer β′Xt er stokastisk trendløse. De

simulerede data analyseres økonometrisk med den klassiske kointegrerede VAR model baseret p̊a en

general-til-specifik procedure. Først fokuseres p̊a specifikation af modellen og test af en urestrikteret

model som en valid statistisk repræsentation af data. Dernæst fokuseres p̊a test for reduceret rang

og en reduceret rang model estimeres med fokus p̊a kointegrationsegenskaberne for de simulerede

data.

Resultaterne viser, at den estimerede kointegrerede VAR model fremst̊ar som en valid statistisk

repræsentation af data, med undtagelse af tilfælde med høj persistens og volatilitet i Bt samt for

meget lange tidsserier. Derudover viser resultaterne, at trace testet indikerer den korrekte reducerede

rang, med undtagelse af de ekstreme tilfælde nævnt ovenfor. Endeligt viser resultaterne, at den

kointegrerede VAR model giver et konsistent og meget præcist estimat af β, selv for korte tidsserier.

Dog vil persistens i de stokastisk kointegrationsparametre Bt i den underliggende data-genererende

process resultere i persistens i estimerede kointegrationsrelationer i den kointegrerede VAR model.

Som følge heraf bliver de estimerede egenværdier meget sm̊a, i nogle tilfælge endda tæt p̊a nul, og

de estimerede tilpasningskoefficienter bliver skævvredet imod nul.

Dermed viser resultaterne, at stationær parameter-ustabilitet i den underliggende data- gener-

erende process potentielt kan være en kilde til persistens i estimerede kointegrationsrelationer og

dertil hørende lave estimerede tilpasningskoefficienter. S̊adan persistens og langsom tilpasning findes

regelmæssigt n̊ar makroøkonomiske og finansielle data analyseres empirisk med den kointegrerede

VAR model og den har været svær at forklare for standard økonomisk teori der typisk forudsiger

en langt hurtigere tilpasning til ligevægt, og derved mindre persistente afvigelser fra estimerede

ligevægte.
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Combining Internal Consistency

and Partly Autonomous Expectations

in Imperfect Knowledge Economics Models

Morten Nyboe Tabor†

June 12, 2013

Abstract

The promising feature of Imperfect Knowledge Economics (IKE) models, developed by Fry-

dman and Goldberg (2007), is that by allowing for nonrecurring structural breaks in the process

underpinning aggregate outcomes they accord individuals’ expectations an autonomous role in

driving aggregate outcomes. However, until recently IKE models have not focused on internal

consistency in specifications of IKE models, and thereby expectations have been accorded a

completely autonomous role relative to the rest of the model. In this paper, I consider a sim-

ple general IKE asset pricing model and I show how internal consistency can be incorporated

by restricting the parameters in the representation of expectations to the class of stochastically

trendless processes with unconditional means determined by the parameters of the process under-

pinning the asset price. The conditions imply that the representation of expectations becomes

internally consistent with the process underpinning aggregate outcomes, yet they still accord

individuals’ expectations a partly autonomous role in driving aggregate outcomes. I show that

the internal consistency conditions imply that in each subperiod with constant parameters in the

process underpinning the asset price, the forecasting errors and the gap between the asset price

and its fundamental value in terms of the exogenous variables become stochastically trendless.

Essentially this means that individuals’ forecasting errors cannot deviate endlessly from zero over

time and that the asset price cannot deviate endlessly from its fundamental value. Moreover,

I show that the conditions imply that in each subperiod the asset price is cointegrated with

the exogenous variables with stochastic cointegration parameters. Hence, I provide a theoretical

result which is crucial for the ability to test empirical implication of IKE models.
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1.1 Introduction

The key motivation behind the introduction of microfoundations in the pathbreaking Phelps et al.

(1970) volume—which came to be known as the ‘Phelps microfoundations volume’ or just the ‘Phelps

volume’—was the “distinctive feature to accord market participants’ expectations an autonomous

role in economists’ models of aggregate outcomes,” Frydman and Phelps (2013, p. 1). Thus,

individuals’ expectations were seen as an important autonomous input to a theoretical model, which

motivated Phelps’ famous ‘Island Model’ where individuals form expectations independently on

different ‘islands’. In assigning individuals’ expectations an autonomous role in driving aggregate

outcomes the models in the Phelps volume relied on Adaptive Expectations as the representation

of expectations. Hence, individuals revised their expectation of the aggregate outcome next period

by a fixed proportion of their forecasting error in the current period.

However, as argued by Lucas (1996) such a representation of expectations is internally inconstis-

tent with the structure of the model and incompatible with rational individual behavior within the

model as individuals make systematic forecasting errors and forego obvious profit opportunities. To

avoid such internal inconsistency between a model’s representation of expectations and the process

underpinning aggregate outcomes, influential papers such as Lucas (1976) relied on the Rational

Expectations Hypothesis (REH) of Muth (1961) as the representation of expectations. Under REH,

expectations correspond exactly to the time-invariant stochastic structure of a theoretical model.

Implicitly it is assumed that there are no expectational coordination problems, so that a represen-

tative agent can be considered, and that the representative agent has complete knowledge of the

structure and parameters of the model. Hence, the representative agent is assumed to have com-

plete probabilistic knowledge of the structure underpinning aggregate outcomes at all future points

in time. By basing expectations on this knowledge her expectations are internally consistent as they

correspond exactly to the structure of the model and the representative agent does not make any

systematic forecasting errors.

However, while expectations based on REH are internally consistent in time-invariant stochastic

models—and therby compatible with rational individual decisionmaking given the assumptions of

the model—they do not account individuals’ expectations an autonomous role in driving aggregate

outcomes as all changes in expectations over time are driven solely by exogenous shocks to the

stochastic variables in the model, see Frydman and Phelps (2013) for a full discussion.

Imperfect Knowledge Economics (IKE) is a new theoretical framework for modeling aggregate

macroeconomic and financial outcomes from the decision-making of rational individuals. The IKE

framework has been developed and applied to the context of foreign exchange markets by Fryd-

man and Goldberg (2007), while Frydman and Goldberg (2011) gives a nontechnical description

and discussion of the implications of IKE. A crucial element of IKE models is that individuals

must base their expectations on contingent and inherently imperfect knowledge as a consequence

of nonrecurring structural breaks in the process underpinning aggregate outcomes. Hence, in the

IKE models presented in Frydman and Goldberg (2007, 2013 c) individuals’ expectations are to-

tally autonomous compared to the rest of the model and revisions of expectations over time are

restricted solely with qualitative conditions. However, recently Frydman and Goldberg (2013 a)

focused on internal consistency as a core element in portraying rational individual decisionmaking
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in IKE models, but exclusively by restricting the parameters entering expectations to have the same

sign as the parameters in the rest of the model.

In this paper, I show how internal consistency can be fully incorporated in IKE models in

a way that both allow for internal consistency compatible with individual rationality and accord

expectations a partly autonomous role within an IKE model.

I consider a simple general asset pricing model similar to the one discussed in Frydman and

Goldberg (2013 b,). The key feature of the model is that it allows for nonrecurring structural

breaks in the parameters of the stochatic processes of exogenous variables as well as the parameters

linking them to the asset price. However, it is assumed that there are subperiods of varying length

where these parameters are constant. Due to the nonrecurring structural breaks, individuals in

the IKE model must base their expectations on contingent and inherently imperfect knowledge,

which implies that revisions of their expectations over time cannot be fully specified in terms of a

mechanical revision-rule for all points in time. Due to inherently imperfect knowledge of the current

process underpinning the asset price and expectations of structural breaks in the future individuals

make systematic forecasting errors over time, in the sense that the forecasting errors depend on

the exogenous variables and thereby are correlated with information available at the time of the

expectation formation. However, as IKE models so far have not focused on internal consistency

between the representation of expectations and the process underpinning aggregate outcomes, the

forecasting errors can be trending over time and the asset price can trend away from the asset’s

fundamental price, so that the gap between the asset price and its fundamental price can be trending.

The new internal consistency conditions I propose in this paper restrict the parameters entering

the representation of expectations in each subperiod to belong to the class of stochastically trendless

processes (Harris et al., 2002; McCabe et al., 2003) with unconditional means given by the non-

expectational parameters of the model. Thereby, I establish a link between the parameters in the

representation of expectations and the process underpinning the asset price, but I do not represent

the forecasting parameters with a specific stochastic specification within this class of stochastic

processes. The conditions imply that the forecasting errors, while depending on the non-stationary

exogenous variables, become stochastically trendless. Moreover, the conditions imply that in each

of the subperiods the gap between the asset price and its fundamental value based on the exogenous

variables is stochastically trendless, though potentially quite persistent. Thereby, expectations

based on contingent and inherently imperfect knowledge cause the asset price to fluctuate around

the fundamental value, but the gap between them is restricted not to be trending endlessly in

each subperiod. However, the conditions do not imply neither that the forecasting errors converge

towards zero over time nor that the asset price converges towards its fundamental value.

Moreover, I show that the internal consistency conditions are crucial for our ability to test the

empirical implications of IKE models. The internal consistency conditions imply that the asset price

and the exogenous variables are cointegrated within each of the subperiods. This follows from the

result that in each subperiod the gap between the asset price and the fundamental value based on

the exogenous variables is stochastically trendless. Hence, a linear combination of the asset price

and the exogenous variables becomes stochastically trendless and the variables are cointegrated,

although with time-varying cointegration parameters with constant unconditional mean in each

subperiod. Finally, I briefly discuss how a ‘data-first approach’ to econometrics, see Hoover (2006),
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based on the cointegrated VAR model of Johansen (1996) and extensions thereof can be used test

these empirical implications. The challenge for testing empirical implications of IKE models is that

they are partly open as they do not specify a complete stochastic specification which can be directly

estimated. However, the ‘data-first approach’ and the underlying methodology based on a ‘general-

to-specific’ modeling approach is suitable as it does not require that the theoretical model delivers a

complete stochastic specification which can be directly estimated. Rather the ‘data-first approach’

starts with the specification of a stastical model as as valid statistical representation of the data, and

thereby the complete stochastic specification is derived from the data for a specific sample rather

than from economic theory. Although structural breaks cannot be specified in advance based on the

theoretical model, they can nonetheless be identified in an econometric model for historical data.

Moreover, although an IKE model does not impose a specific stochastic process for the time-varying

parameters, the internal consistency conditions restrict the class of stochastic processes and within

this class it can econometrically be addressed if a specific stochastic specification can adequately

represent the data for a specific sample of data.

The rest of this paper is organized in the following way. In section 1.2, I briefly discuss internal

model consistency as the core element in modeling rational individual decisionmaking in formal

economic models. Section 1.3 present the general model considered throughout the paper. In

Section 1.4 a time-invariant stochastic version of the model with REH is discussed, while Section

1.5 discusses the IKE version of the model. Section 1.6 briefly discusses how a ‘data-first approach’

to econometrics can be used to test implications of the IKE model. Section 1.7 concludes.

1.2 Individual Rationality as Internal Model Consistency

Like the majority of contemporary economics, IKE models rely on microfoundations in modeling

aggregate macroeconomic and financial outcomes directly from formal modeling of rational decision-

making of the individuals composing the economy. Thus, a core assumption of IKE—like most of

economics in general—is that individuals can be modeled as rational economic agents. Rationality,

in a broad sense, means that an individual is optimizing in pursuit of specific goals. In economic

decisions rationality means that an individual optimally chooses the actions that satisfy her own

desires, whatever they might be. However, the notion of what is optimal depends crucially on the

context and setting faced by an individual.

In a formal economic model the principle of internal consistency (Frydman and Goldberg, 2013

a) is a core element of portraying rational individual decisionmaking: in a formal economic model

an individual’s actions must be consistent with her assumed goals and her understanding of ag-

gregate outcomes—upon which her expectations are based—must be consistent with the model’s

representation of the aggregate outcomes, as influentially argued by Lucas (1976, 1996). Hence, it

is the assumptions made in a specific model—not reality—which determine how to portray individ-

ual decisionmaking in a internally consistent way compatible with rational decisionmaking within

the model. Whether the context faced by the individuals in a specific model corresponds to the

context faced by individuals in the real world and whether individuals’ model-consistent behavior

corresponds to rational behavior in the real world are separate questions, which can essentially be

reduced to a debate about the empirical relevance of the specific model in explaining real-world
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outcomes.

In an economic model the assumed goal of an individual is typically to maximize her utility as

given by a specific utility function. Internal consistency requires that the individual consistently

chooses the actions which maximize her utility, subject to the constraints she faces and given her

expectations of the uncertain future outcomes of her actions. Choosing feasible actions which are not

utility-maximizing would obviously be inconsistent with her assumed goal of utility maximization,

and it would obviously be irrational for the individual as another feasible action could give her a

greater utility. Hence, given specific assumptions about the individual’s utility function, constraints,

and expectations her rational decision-making can be formally modeled in an internally consistent

way by solving a utility maximization problem.

However, most economic decisions—such as consumption, savings, and investment decisions—

depend on uncertain future outcomes, so to derive the utility-maximizing behavior in a formal model

a representation of the individual’s expectations of the future outcomes of her actions is needed.

The principle of internal consistency requires that the individual’s understanding of the process un-

derpinning aggregate outcomes must be consistent with the economic model’s representation of this

process, so that her expectations are consistent with the actual outcomes, see Lucas (1976, 1996)

and in terms of IKE models the recent paper by Frydman and Goldberg (2013 a). To Lucas (1976,

1996), an important requirement for internal consistency is that a model’s representation of expec-

tations cannot lead individuals to make systematic forecasting errors. As argued by Lucas (1996) in

discussion of REH, internal consistency requires that individuals do not make systematic forecasting

errors, as they would thereby forego obvious profit opportunities which is incompatible with rational

individual behavior within the model. However, this argument depends crucially on what kind of

knowledge is assumed possible for individuals within a formal model, which is determined by core

assumptions about representations of change over time in the model. Under REH a representative

agent is assumed to have complete knowledge of the time-invariant stochastic model and obviously

only using all this knowledge would be internally consistent and lead to unsystematic forecasting er-

rors. However, if individuals are assumed not to have complete knowledge or if complete knowledge

is impossible within a model by design, individuals will make systematic forecasting errors in the

sense that the forecasting errors are correlated with information available at the time the forecasts

were made. However, if this is the case it must still be a requirement for internal consistency that

the representation of expectations is linked to the structure of the rest of the model, so that at a

minimum expectations are not completely autonomous and diverging from the structure of the rest

of the model.

In the next section, I use a simple asset pricing model to discuss how different core assumptions

about the specification of change over time lead to different internally consistent specifications

of expectations in contemporary economic models and in IKE models. In particular, different

assumptions about changes over time lead to different degrees of knowledge possible and thereby to

different internally consistent specification of the expectation formation of rational individuals.
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1.3 A Simple Linear General Asset Pricing Model

Following Frydman and Goldberg (2013 b), consider the simple general linear asset pricing model

in reduced form given by

Pt = at + b′tXt + ctP̂t|t+1 + εp,t (1.1)

Xt = Xt−1 + µt + εx,t (1.2)

where an asset price Pt depends on the (k×1) vector of exogenous variables in Xt and the aggregate

forecast of next period’s asset price P̂t|t+1. The parameters bt and µt are (k × 1) vectors, while at

and ct are scalars. It is assumed that 0 < ct < 1 for all t. The random shocks εp,t and εx,t are

assumed mutually uncorrelated and identically and independently distributed mean zero Gaussian

with variance σ2
p and covariance Σx, respectively.1 The k variables in Xt are assumed exogenous

relative to the asset price, so there is no feedback from the asset price to Xt, but in general the

variables in Xt could be internally related.

Define the sets of parameters θp,t := {at, bt, ct} and θx,t := {µt}. Moreover, let θt := {θp,t, θx,t}.
The parameters in θx,t determine the specification of the exogenous variables Xt, while the param-

eters in θp,t are derived from the preferences of the individuals in the economy and determine how

the exogenous variables load into the asset price at each point in time. Without any restrictions on

changes over time in the parameters in θt and a representation of expectations P̂t|t+1 the model is

completely open and has no empirical implications.

For the representation of expectations to be internally consistent it must be consistent with the

structure in equations (1.1) and (1.2). Hence, time t expectations of the asset price at time t + 1

must take into account that Pt+1 depends on Xt+1, P̂t+1|t+2, and the parameters θp,t+1. Likewise,

the time t expectation of the time t + 1 expectation of the asset price at time t + 2 must take

this structure into account. Iterating this argument forward s > 0 periods implies the following

formulation for an internally consistent representation of expectations

P̂t|t+1 = f(X̂t|t+1, ..., X̂t|t+s; θ̂p,t|t+1, ..., θ̂p,t|t+s; P̂t|t+s), (1.3)

where (̂·)t|t+s denotes the time t expectation of (·)t+s and it is assumed that P̂t|(t+i|t+i+1) = P̂t|t+i+1.

Equation (1.2) can be used to write X̂t|t+τ = Xt +
∑τ

i=1 µ̂t|t+i for τ > 0 (assuming that ε̂t|t+τ = 0)

and without loss of generality it follows that

P̂t|t+1 = f(Xt; θ̂t|t+1, ..., θ̂t|t+s; P̂t|t+s). (1.4)

Hence, an internally consistent representation of expectations of the future asset price must be linked

to the causal variables Xt and the parameters θt, and forming expectations about the future asset

price within the model requires forming expectations about the future changes in the causal variables

as well as expectations about their future impact on the asset price, i.e. forming expectations about

the future values θx,t+s and θp,t+s for s = 1, 2, ....

1For simplicity it is assumed that the random shocks follow a time-invariant distribution, but in general that need
not be the case for an IKE model. For example, the variance of the exogenous shocks can be assumed to vary over time
by pre-multiplying the exogenous shocks with a time-varying factor. However, this would not change the conclusions
in this section.
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Without loss of generality consider the representation of expectations at time t given by

P̂t|t+1 = αt + β′tXt, (1.5)

where αt is a scalar and βt is a (k×1) vector. From equation (1.4) it follows that internal consistency

requires that the parameters αt and βt are linked to the expected future values of the parameters

in θt. However, to what extend knowledge at time t about future changes in the causal variables

and their future impact on the asset price is possible within the model depends crucially on the

assumptions made about changes over time in the parameters in θt. First, the assumptions made

about changes over time in µt determine to what extend Xt+i can be forecasted at time t for i > 0.

Second, given forecasts of Xt+i, the assumptions made about changes over time in θp,t determine to

what extend Pt+i can be forecasted at time t.

The link between the forecasting parameters αt and βt and the parameters in θt defines the

forecasting errors made by individuals over time. The forecasting error at time t + 1, defined as

fet+1 := Pt+1 − P̂t|t+1, is given by

fet+1 = At+1 + Bt+1Xt + υt+1 (1.6)

where

At+1 := (at + ciαt+1 − αt) + (bt + ctβt+1)′µt (1.7)

Bt+1 := (bt + ctβt+1 − βt)′ (1.8)

υt+1 := εp,t+1 + (bt + ctβt+1)′εx,t+1. (1.9)

Hence, in general the forecasting error at time t+ 1 depends on the causal variables Xt and may be

non-zero on average. To what extend individuals make systematic and non-zero forecasting errors

on average over time depends on the link between the forecasting parameters αt and βt and the

parameters in θt. Internal consistency requires as a minimum that the forecasting errors are not

endlessly trending away from zero or positive or negative at all points in time, which could indeed be

the case if the forecasting parameters αt and βt are totally autonomous relative to the parameters

in θt.

The key difference between IKE models and contemporary economic models is the assumptions

made about changes over time in the parameters in θt and given these assumptions the different

following internally consistent representation of expectations. This is the focus of the next sections.

The core of contemporary economics assumes a time-invariant structure where θt = θ for all

t and relies on the Rational Expectations Hypothesis as an internally consistent representation of

expectations. Implicitly it is assumed not only that θt = θ for all t, but also that individuals know

the values of θ and that there are no expectational coordination problems, so that a representative

agent can be considered. Thus, the representative agent is implicitly assumed to have complete

probabilistic knowledge of all future outcomes: at any point in time t all future values Xt+s can

be forecasted based on the time-invariant stochastic process in equation (1.2) with θx,t = θx, and

given these forecasts the asset price at all future times can be forecasted based on equation (1.1)

with θp,t = θp. Thereby the representative agent does not make any systematic forecasting errors.

The internally consistent general representation of expectations in equation (1.4) reduces to a time-

invariant function of Xt and the known values of θ, so that αt = α and βt = β in the representation
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of expectations in equation (1.5) can be reduced to time-invariant functions of the parameters in θ

for all t. Thereby the process underpinning individual and aggregate outcomes is represented with

the exact same stochastic structure at all points in time and the asset price equals its fundamental

value given by the present discounted value of all future values of the exogenous variables in Xt.

All changes over time—including all changes in expectations of future outcomes—are driven solely

by the stochastic shocks from a fixed probability distribution, so revisions of expectations play no

autonomous role.

By contrast, IKE models assume that there are periods of varying length where θt is constant—

so that θt = θi for t = Ti−1 + 1, ..., Ti for i = 1, 2, ... and with Ti−1 < Ti—and importantly that

θi changes in nonrecurring ways over time.2 As a consequence of nonrecurring structural breaks

in θt, individuals cannot, at any point in time t, gain complete knowledge of θt+s for all s > 0.

Thereby, complete probabilistic knowledge of all future outcomes with only stochastic risk is, by

design, impossible in IKE models. Hence, an internally consistent representation of expectations

must take into account that individuals’ expectations must be based on contingent and inherently

imperfect knowledge. This implies that revisions of individuals’ expectations formation cannot

be fully specified with a mechanical revision-rule and that expectations may exhibit larger jumps

as the contingent knowledge changes.3 However, I show that conditions can still be imposed on

the representation of expectations so that the representation of expectations becomes internally

consistent and compatible with individual rationality, yet still allows for a partly autonomous role

of individual expectations in driving aggregate outcomes.

First, I impose the qualitative conditions of ‘guardedly moderate revisions’ on changes in the

forecasting parameters attached to the causal variables Xt, as suggested by Frydman and Goldberg

(2007, 2013 c,), though I impose the conditions on each individual forecasting parameters rather

than the vector of parameters. However, based on these conditions alone the representation of

expectations is totally autonomous compared to the process underpinning market outcomes and

essentially the forecasting parameters are allowed to diverge endlessly from the parameters θi over

time.

Therefore, I propose an additional set of restrictions on the forecasting parameters which ensure

internal consistency and still allow for a partly autonomous role for expectations. I propose to restrict

the parameters of the representation of expectations in each subperiod i to the class of stochastic

processes which are stochastically trendless with unconditional means given by values determined

by θi. However, I do not specify all changes in the forecasting parameters within each subperiod

to follow specific stochastic processes, only that the processes must have this general feature. I

show how this restriction implies internal consistency between the representation of expectations

and the structure of the IKE model, and, moreover, that in each subperiod i the forecasting errors

as well as the gap between the asset price and its fundamental value determined by the exogenous

variables become stochastically trendless. This just means that the representation of expectations

is restricted not to be totally autonomous relative to the rest of the model, so that the deviation

between the asset price and its fundamental value as well as the forecasting errors are not trending

2To be precise, I define nonrecurring structural changes as the assumption that the number of ‘regimes’ i→∞ as
t→∞.

3See for example Dow (2012) for a full discussion about expectations under risk versus under genuine uncertainty.
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over time. However, in each subperiod i the asset price can deviate persistently from its fundamental

value and individuals can make persistent forecasting errors because they base their expectations

on contingent and inherently imperfect knowledge, but the internal consistency conditions imply

that the fundamental gap and forecasting errors are not endlessly trending, so that the average

fundamental gap and the average forecasting errors converge in probability towards zero.

1.4 Contemporary Economics: A Time-Invariant Stochastic

Structure

A core positive heuristic of contemporary economic models is to fully specify all changes in the

causal structure of individual and aggregate outcomes over time, see for example Hoover (1991)

and Dow (2012). This implies that all relevant causal variables and parameters characterizing

individual and aggregate outcomes at all points in time are fully prespecified with deterministic

or stochastic rules and procedures. First, a stochastic specification is assumed for all exogenous

variables, so that all changes over time are driven by exogenous shocks drawn randomly from a

specific probability distribution, which is typically the standard Gaussian distribution. Second,

individuals’ preferences and constraints are typically assumed constant over time and specified with

constant parameters in terms of the set of exogenous variables. Finally, individuals’ expectations

are specified as functions of the same set of causal variables, where the parameters are either

assumed constant over time or fully prespecified with a mechanical procedure determining how

expectations change over time as a function of the shocks to the causal variables. Based on the

assumed preferences, constraints, and expectations the rational individual decisionmaking is deduced

by solving the individuals’ utility maximization problem, and based on an aggregation procedure the

aggregate outcomes are derived. Thereby, individual and aggregate outcomes at all points in time—

past, present, and future—are specified with a time-invariant stochastic structure. All changes over

time driven by random exogenous shocks from a specific probability distribution and the specification

of preferences, constraints, and expectations determine how these shocks load through the system.

In the simple model considered above this implies that the parameters in θt are assumed constant

over time, θt = θ for all t.4 First, by assuming θx,t = θx for all t, the exogenous variables Xt are

specified with the same stochastic process at all times. Second, assuming that individual preferences

and constraints are constant over time implies that θp,t = θp for all t. If a representative agent is

assumed the parameters in θp are derived directly from the assumed preferences and constraints

of the representative agent, but if the model allows for heterogeneity the aggregate parameters are

derived by aggregating over the individuals in the economy.

Assuming θt = θ for all t, and moreover that 0 < c < 1, the model is given by

Pt = a+ b′Xt + cP̂t|t+1 + εp,t (1.10)

Xt = Xt−1 + µ+ εx,t, (1.11)

4Alternatively changes in θt are represented with a specific stochastic process, but in that case the model still
implies a time-invariant stochastic structure, where all changes over time are driven by stochastic shocks from a
specific probability distribution. For example, the stochastic formulation of Xt might allow for switching between a
fixed number of recurring states, such as µ1 and µ2, with fixed switching probabilities.
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for all t. This implies that the process underpinning the asset price in equations (1.10) and (1.11)

is fixed and identical at all points in time, and only a representation of the expected future price

is needed to close the model. The process Xt is non-stationary with a drift given by the vector µ,

which cumulates into a linear deterministic trend. All change over time is driven by the exogenous

shocks εp,t and εx,t, which are assumed drawn randomly from a specific probability distribution, and

the constant parameters θ determine how the exogenous shocks load through the system. Now only

a representation of the expectations of the future asset price is needed to finalize the model.

From the assumption θt = θ for all t it follows that complete knowledge of all future outcomes

as well as their likelihoods is possible within the model based on the time-invariant structure in

equations (1.10) and (1.11). However, knowledge can be assumed incomplete as individuals can be

assumed either to have limited knowledge about the parameters in θ or limited information in the

form of limited access to the variables in Xt. Though, in both cases complete knowledge is possible.

In the former case, individuals can learn about the parameter values over time by relying solely on

standard statistical methods, and thereby they can gain complete knowledge of future outcomes,

upon which to base their expectations.5 In the latter case, complete knowledge is possible if only

individuals gain access to all relevant information, i.e. access to all variables in Xt, though that

might have a cost. Hence, when the process underpinning the aggregate market outcome is assumed

fixed over time, knowledge of about future outcomes can be complete or incomplete, where complete

knowledge is defined in a probabilistic sense and incomplete knowledge can be defined as cases where

complete knowledge can be obtained by design.

1.4.1 The Rational Expectations Hypothesis

The core of contemporary economics relies on the Rational Expectations Hypothesis (REH) of Muth

(1961) in representing expectations (Colander, 2006; Caballero, 2010; Dow, 2012). Under REH, the

aggregate expectations equal the mathematical expectation of the economic model

P̂REHt|t+1 = E[Pt+1|It], (1.12)

where It is all available information up to time t. The model is internally consistent as the represen-

tation of expectations of the aggregate outcome corresponds exactly to the model’s representation of

the aggregate outcome. By design, the representative agent6 is assumed to have complete knowledge

5In learning models the stochastic specification of the exogenous variables is typically assumed time-invariant
and known, i.e. θx,t = θx for all t, so the only unknown parameters would be those corresponding to θp. However,
because θp is assumed constant over time, individuals use standard statistical methods—typically ordinary least
squares regressions—to learn about the parameters and revise their expectations over time, see for example Evans
and Honkapohja (2001, 2013) for an overview of learning models. The key question to address is then if individuals’
expectations converge towards the REH representation of expectation over time, so that ultimately they gain complete
knowledge of the initially unknown parameters. As shown by Evans and Honkapohja (2013) this depends crucially
on the initial values and the learning gain parameters, which determine how much the forecasting parameters are
updated in each period, and in many cases the learning rules are diverging rather than converging towards complete
knowledge.

6For a discussion about coordination of individual expectations in a Rational Expectations Equilibrium (REE),
see Guesnerie (2005, 2013) and Frydman and Phelps (2013). Guesnerie (2013) considers an “eductive game” where
individuals are assumed to known the full structure and parameters of a specific model, but in forming expectations
must take the expectations of others into account. Guesnerie examines whether a mental process of forming expec-
tations about other individuals’ expectations eventually leads all individuals to base their expectations on Rational
Expectations, so that there is expectational coordination with a Rational Expectations Equilibrium (REE). Guesnerie
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of future outcomes in probabilistic terms as all time-invariant parameters in θ are assumed known

and there is access to all the relevant information Xt. Hence, the decisionmaking of the represen-

tative agent takes the form of ‘well-informed optimising choice in pursuit of specific goals’, Dow

(2012, p. 7), which is the center of the ‘Walrasian macroeconomic research program’ as described

in Colander (2006). The representative agent can, at any point in time, take all potential outcomes

and their likelihoods into account, and thereby her optimal decision plan for all points in time can

be deduced by solving a single utility maximization problem.

By plugging in for Pt+1 in equation (1.12), iterating forward, using the law of iterated expecta-

tions E[E[Xt+s+1|It+s]|It] = E[Xt+s+1|It] for all s > 0, and applying a transversality condition the

time t forecast of the asset price at time t+ 1 is given by

P̂REHt|t+1 = ã+ b′E[Xt+1|It] + cb′E[Xt+2|It] + c2b′E[Xt+3|It] + . . .

= ã+
∞∑
i=0

cib′E[Xt+1+i|It] (1.13)

where ã := a/(1 − c). This is a formalization of the general expression in equation (1.3). Hence,

the asset price forecast at time t depends on the present discounted value of all future Xt and a

constant term determined by the preference parameters a and c. At any point in time, all future

realizations of the causal variables, Xt+s for s > 0, can be forecasted up to a random error term from

the current observations Xt. Based on the stochastic specification in equation (1.11) the s-period

ahead forecast of Xt is given by

E[Xt+s|It] = Xt + sµ, (1.14)

and as the effect of the causal variables on the asset price is fixed, b, all future realizations of the

asset price can be forecasted up to a random error term with a fixed probability distribution. Hence,

the time t forecast is given by

P̂REHt|t+1 = αREH + βREH ′Xt (1.15)

where

αREH :=
a

1− c
+

b′µ

(1− c)2
and βREH :=

b

1− c
. (1.16)

Thus, the asset price forecast is a time-invariant function of the causal variables Xt and the constant

parameters αREH and βREH are direct functions of the parameters in θ. It is worth noting that

the weight attached to Xt, i.e. βREH , depends only on the parameters b and c, while the constant

drift in Xt given by the vector µ only enters the constant term αREH . Over time all changes

in expectations are driven by the changes in Xt, and as αREH and βREH are constant revisions of

expectation formation play no autonomous role in driving the aggregate outcomes, see also Frydman

and Phelps (2013) for a discussion.

Under REH the asset price is given by

PREHt = α̃REH + βREH ′Xt + εp,t, (1.17)

where

α̃REH :=
a

1− c
+

cb′µ

(1− c)2
. (1.18)

finds that in general this is not the case, though there are parameter values for which REE occurs, see also Frydman
and Phelps (2013).
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Hence, at every point in time the asset price equals what can be defined as its fundamenatal value

P ?REHt determined by the present discounted value of all future Xt, as given by

P ?REHt := α̃REH + βREH ′Xt, (1.19)

plus a random error term εp,t, so that all deviations from the asset price’s fundamental value over

time are random. An important insight from this is that the fundamental value of the asset price

depends not only on the current Xt and the preference-parameters in θp, but also on the drift term

µ as it determines the future deterministic growth rate in Xt.

Moreover, the forecasting error at time t+ 1 becomes

feREHt+1 = εp,t+1 + βREH ′εx,t+1, (1.20)

as At+1 = Bt+1 = 0. Hence, the forecasting error is uncorrelated with the information at time

t. Thereby, by design of REH the representative agent does not make any systematic forecast-

ing errors, and the internally consistent representation of expectations is compatible with rational

behavior of the representative agent. By contrast, any deviation from the REH representation of

expectations in equation (1.15) would lead the representative agent to make systematic forecasting

errors and thereby forego obvious profit opportunities, which would be incompatible with rational

individual behavior as argued by Lucas (1996). Hence, unless specific assumptions about limited

knowledge or limited information are assumed, REH follows as the only representation of expecta-

tions internally consistent with the model in equations (1.10) and (1.11) and the asset price must

equal its fundamental value determined by the present discounted value of all future Xt. However,

these conclusions follow from the assumption that θt = θ for all t—so that the stochastic structure

underpinning the aggregate outcome is time-invariant—combined with the assumption that the rep-

resentative agent knows θ. Obviously, if the underlying structure is assumed fixed and known, only

expectations based on this structure are rational for the representative agent, and consequently the

asset price will equal its fundamental value and the forecasting errors will be random.

1.5 Imperfect Knowledge Economics

The IKE framework is based on Popper’s (1990) fundamental insight that “quite apart from the fact

that we do not know the future, the future is objectively not fixed. The future is open: objectively

open”, see Frydman and Goldberg (2007, 2011, 2013 a). Hence, IKE models are partly open;

they allow for nonrecurring structural change in the both parameters of the stochastic processes

characterizing exogenous variables and those linking them to the endogenous variables, i.e. they

allow for structural change in the parameters in θt.

However, IKE assumes that there are periods of varying length where the parameters in θt can

be represented as constant, as given by

θt = θi for t = Ti−1 + 1, ..., Ti and i = 1, 2, ..., (1.21)
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and where Ti−1 < Ti for all i, so that

θt = θ1 for t = 1, ..., T1

θt = θ2 for t = T1 + 1, ..., T2

...

and for each subperiod i for t = Ti−1 + 1, ..., Ti and i = 1, 2, ..., the model is given by

Pt = ai + b′iXt + ciP̂t|t+1 + εp,t (1.22)

Xt = Xt−1 + µi + εx,t (1.23)

Hence, the process underpinning aggregate market outcomes is contingent: it changes at unantic-

ipated times and in nonrecurring ways over time. The crucial element here is the nonrecurring

parameter-values over time as these imply that at any point in time t complete knowledge of the

parameters at all future points in time t + s for s > 0 is impossible by design. Whether or not

the breakpoints where the structural break in θt occur can be anticipated or not is of secondary

relevance, because even if they can be anticipated or assigned a probability the new parameters

after a breakpoint cannot be known in advance due to the nonrecurring structure. Moreover, it is

important to note that the nonrecurring structure does not rule out some repititive features over

time—it just does not assume that θi swicthes between a fixed number of values, say θ1 and θ2, as

this would imply that complete knowledge of the underlying structure becomes possible. Further-

more, the nonrecurring structural breaks might involve different compositions of the variables in Xt

if bm,i = 0 for some m = 1, 2, ..., k and some i. Finally, for simplicity I here consider the case where

the breaks in all parameters in θt occur at the same points in time, but in general the breaks can

be allowed to occur at different points in time in an IKE model.

Due to the nonrecurring structural breaks in θi, complete knowledge of the process underpinning

the asset price at all future points in time is impossible by design. In particular, there is no way

individuals can gain complete knowledge of all future values θi+s for all s > 0 solely by relying on

statistical methods based on historical data up to a specific point in time. Internal consistency re-

quires that individuals in the model must be aware of the occurence of these nonrecurring structural

breaks. Hence, they must base their expectations on contingent and inherently imperfect knowl-

edge.7 Knowledge is inherently imperfect in the sense that complete probabilistic knowledge of all

future outcomes is impossible; even if an individual is assumed to know the values of θi at a specific

point in time t she can never know the values of θi+s for s > 0. Thereby it might indeed not even

be optimal to base her expectations on her knowledge of θi as she would be aware that the current

structure might cease to be relevant at some point in time in the future. Moreover, she would have

to take into account the expectation formation of others, including expectations of other individuals’

expectations regarding structural breaks in θi. Finally, the contingency of knowledge implies that

knowledge is fallible, see Soros (1987), and thereby it might be subject to sudden changes and shifts.

7For a full discussion of expectations under quantifiable risk and unquantifiable ‘Knigthian uncertainty’ of Knight
(1921), see chapter Dow (2012). A key element of expectations under genuine uncertainty is that rational individuals
rely on calculations based on fundamental factors as well as psychological and social considerations and conventions,
see also Chapters 7 and 9 in Frydman and Goldberg (2007).
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Because expectations are based on contingent and inherently imperfect knowledge, the parame-

ters αIKEt and βIKEt in the representation of expectations, given by8

P IKEt|t+1 = αIKEt + βIKE′t Xt, (1.24)

cannot be explicitly linked to the parameters in θi, although internal consistency requires as a

minimum that sign(βIKEt ) = sign(bi) for t = Ti−1 + 1, ..., Ti as recently argued by Frydman and

Goldberg (2013 a). Moreover, changes in the forecasting parameters αIKEt and βIKEt cannot be

fully specified with a mechanical revision-rule as there is simply no way to select a specific rule which

can adequately describe how rational individuals would revise these when basing their expectations

on contingent and inherently imperfect knowledge. Indeed, individuals can have very different

expectations of future outcomes even when they have access to exactly the same information as they

interpret it in different ways, and there is simply no way to judge a priori exactly how individuals

rationally process new information over time. For example, if there is an upward current trend in

X1,i with µ1,i > 0 for some t in subperiod i, one individual might rationally expect this trend to

continue for a prolonged period, while another individual might expect a break in the trend in the

near future. Due to nonrecurring structural breaks and the following inherently imperfect knowledge,

both individuals’ expectations can be based on fully rational considerations even though they are

considering the exact same information. The key element is that under contigent and inherently

imperfect knowledge there is no single rational way for individuals to form expectations, so there is

no dualistic separation between rationality and irrationality with respect to individuals’ expectation

formation, which is in contrast to time-invariant models relying on REH, see Dow (2012).

However, instead of linking expectations explicitly to the parameters in θt and restricting all

revisions of expectations to follow a specific revision-rule, IKE models impose enough structure on

expectations for the model to have empirical implications. In the next sections, I first discuss the

conditions of guardedly moderate revisions of Frydman and Goldberg (2007, 2013 c), which impose

qualitative conditions on revisions of the parameters in βIKEt over time, so that expectations play

a completely autonomous role in the model. But as these conditions alone does not imply an

internally consistent representation of expectations, I propose a second set of conditions which link

the forecasting parameters to the parameters in θi in a way that ensures internal consistency and

yet maintains a partly autonomous role for expectations. Moreover, I show how these conditions

are crucial for our ability to test the empirical implications of the IKE model, even though the

conditions do not impose a specific revision-rule.

1.5.1 Guardedly Moderate Revisions

Frydman and Goldberg (2007, 2013 a,) impose the qualitative conditions of guardedly moderate

revisions on changes in the parameters in βIKEt . Consider the total change in expectations from

period t− 1 to t given by

P IKEt|t+1 − P
IKE
t−1|t = ∆αIKEt + βIKE′t−1 ∆Xt + ∆βIKE′t Xt. (1.25)

8In the following, I discuss the representation of the aggregate expectations, as in Frydman and Goldberg (2013
a), rather than a single individual. However, the conditions of ‘guardedly moderate revisions’ are imposed on each
individual’s revisions of expectations in e.g. Frydman and Goldberg (2007) and considering only the aggregate ex-
pectations is strictly speaking inconsistent as the inherently imperfect knowledge stems not only from nonrecurring
changes in θi, but also from inherently imperfect knowledge of other individuals’ expectation formation.
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The first term is the effect of changes in αIKEt , while the second and third terms are the effects of

changes in the exogenous variables and the effects of revisions on βIKEt , respectively.

For each of the k forecasting parameters in βIKEt , the condition of guardedly moderate revisions

is given by9

|∆βIKEm,t | < |βIKEm,t−1∆Xm,tX
−1
m,t| for each m = 1, 2, ..., k. (1.28)

The qualitative condition ensures that individuals do not revise the individual weights attached to

each of the k variables in Xt in ways so that the effect of revisions, ∆βIKEm,t Xm,t, outweights the effect

of changes in the causal variables, βm,t−1∆Xm,t. An important feature of the guardedly moderate

revisions conditions is that they allow individuals to revise the forecasting parameters βIKEt in ways

that either impede or reinforce the changes in Xt over time. Moreover, the conditions are compatible

with experimental findings from behavioral economics that actual market participants tend to revise

their expectations only gradually and conservatively, see for example Edwards (1968) and Shleifer

(2000).

However, the guardedly moderate revisions conditions are not imposed in every single period

as the contingency of knowledge implies that expectations might be subject to sudden shifts in the

expectation formation which does not satisfy these qualitative conditions.

It is important to note that the guardedly moderate revisions only restrict the changes in the

forecasting parameters βIKEt from one period to the next. As they do not relate the parameters

αIKEt and βIKEt to the parameters in θi at any point in time, the representation of expectations

is completely autonomous relative to the rest of the model and hence the conditions alone do not

imply internal consistency in the IKE model. In particular, the conditions allow the representation

of expectations to diverge totally from the structure of the model. Hence, additional conditions on

the forecasting parameters are needed in order to ensure that the representation of expectations is

internally consistent with the process underpinning the asset price within the model.

1.5.2 Internal Consistency Conditions

In addition to the guardedly moderate revisions condition, I propose a new set of conditions on the

representation of expectations which restrict the forecasting parameters in each subperiod i to the

9In Frydman and Goldberg (2007, 2013 c) the conditions in equation (1.26) are imposed on the (k + 1 × 1)
vector β̃IKE

t := (αIKE
t ;βIKE

t ), but here I impose the condition on each individual variable in βIKE
t , as imposing the

qualitative conditions on the vector allows for large changes in e.g. βIKE
1,t with no effect on the change in the price

forecast when only the effect is offset by a large change in the opposite direction in e.g. βIKE
2,t . Intuitively imposing

the conditions on each βIKE
m,t seems more natural, although an additional qualitative condition on changes in αIKE

t is
then needed.

Moreover, Frydman and Goldberg (2007, 2013 c) allow for a larger set of variables to enter the representation of
expectations, so that

P̂ IKE
t|t+1 = αIKE

t + βIKE′
t Xt + γIKE′

t Zt, (1.26)

where Zt is a kz vector of observable variables. However, including Zt in the representation of expectations is internally
inconsistent with the model in equations (1.22) and (1.23), unless it is explicitly assumed that Xt depend on Zt. This
could for example be done by replacing the specification of Xt with the assumption that

Xt = λ′
tZt + εx,t, (1.27)

and thereby including both Xt and Zt in the expectation formation becomes internally consistent.
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class of stochastic processes which are stochastically trendless with unconditional mean given by

values determined by the parameters in θi.
10

Hence, in contrast to Frydman and Goldberg (2007, 2013 c), I assume that the forecasting pa-

rameters αIKEt and βIKEt in each subperiod i can be characterized as a stochastic process. However,

I do not represent the parameters with a specific stochastic process, such as an AR(1) process, as

there is no theoretical basis for selecting a specific one. I only restrict the processes for αIKEt and

βIKEt to a broad class of stochastic processes with general features which ensure that the represen-

tation of expectations is internally consistency with the structure of the model, and moreover are

crucial for our ability to confront the IKE model with empirical evidence.

For each subperiod i, I impose the conditions that the process βIKEt belongs to the class of

stochastically trendless processes with unconditional mean

E[βt] = Bi, (1.30)

and that the process αIKEt belongs to the class of stochastically trendless processes with uncondi-

tional mean

E[αt] = Ai, (1.31)

where11

Ai :=
ai

1− ci
+

b′iµi
(1− ci)2

(1.32)

Bi :=
bi

1− ci
, (1.33)

for t = Ti−1 + 1, ..., Ti and i = 1, 2, ... with Ti > Ti−1. The class of stochastic processes satisfying

these conditions is broad and not mutually exclusive with neither the guardedly moderate revisions

conditions nor larger jumps in the processes within certain ranges.

Consider the forecasting error feIKEt+1 := P IKEt+1 − P IKEt|t+1 for subperiod i, as given by

feIKEt+1 = AIKEt+1 + BIKEt+1 Xt + υIKEt+1 (1.34)

where

AIKEt+1 := (ai + ciα
IKE
t+1 − αIKEt ) + (bi + ciβ

IKE
t+1 )′µi (1.35)

BIKEt+1 := (bi + ciβ
IKE
t+1 − βIKEt )′ (1.36)

υIKEt+1 := εp,t+1 + (bi + ciβ
IKE
t+1 )′εx,t+1. (1.37)

10The process Ut is stochastically trendless if for s→∞ (for fixed t)

Et[Ut+s]− E[Ut+s]
P→ 0, (1.29)

so that the s-step ahead forecast converges towards the unconditional mean for s → ∞, see Harris et al. (2002) and
McCabe et al. (2003). The class of stochastically trendless processes includes weakly stationary processes, such as a
simple AR(1) process, while stochastically trending processes for example include a random walk process.

Harris et al. (2002) show that the process Zt := VtWt, where Vt is a stochastically trendless process with mean zero
and Wt is a stochastically trending process, is a stochastically trendless process. Hence, the stochastically trendless
property of Vt dominates the multiplicative process Zt asymptotically.

11Note the exact correspondence between the parameters Ai and Bi and the REH parameters αREH and βREH

defined in equations (1.16).
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From the conditions above it follows that in each subperiod i for t = Ti−1 + 1, ..., Ti the forecasting

error becomes stochastically trendless as all three terms in equation (1.34) are stochastically trend-

less, even though the second term is a multiplicative process including the stochastically trending

variables Xt. To see that this is the case, consider first the second term. From equation (1.30) it

follows that E[BIKEt+1 ] = 0 for t = Ti−1 + 1, ..., Ti− 1, so BIKEt+1 is a mean zero stochastically trendless

process and the process BIKE′t+1 Xt becomes a stochastically trendless process as it is a multiplicative

process of a mean zero stochastically trendless process and a stochastically trending process. Hence,

the stochastically trendless property of BIKEt+1 dominates the multiplicative process asymptotically,

so that it resembles a mean zero stationary process, although it might be very persistent and het-

eroskedastic. Consider next the term AIKEt+1 . From equation (1.31) it follows that E[AIKEt+1 ] = 0 for

t = Ti−1 +1, ..., Ti−1, so AIKEt+1 is a zero mean stochastically trendless process. Finally, consider the

term υIKEt+1 . From equation (1.30) it follows that E[bi + ciβ
IKE
t+1 ] = Bi for t = Ti−1 + 1, ..., Ti − 1, so

υIKEt+1 is the sum of a Gaussian error term and a multiplicative process of a stochastically trendless

process and a Gaussian error term, which is a stochastically trendless process. Hence, under the

assumptions that αIKEt and βIKEt belong to the class of stochastically trendless properties with

unconditional means Ai and Bi, respectively, the forecasting errors have a mean zero stochastically

trendless representation in each subperiod i, even though they are systematic in the sense that

they depend on Xt. Another way of interpreting the conditions is that the forecasting parameters

αIKEt and βIKEt must fluctuate around Ai and Bi, respectively, to prevent a trend in the forecasting

errors, which would be incompatible with rational individual decisionmaking. Thus, the conditions

ensure internal consistency between the IKE model’s representation of expectations and the process

underpinning the asset price and yet it accords expectations a partly autonomous role.

Moreover, the internal consistency conditions imply that the asset price fluctuates around its

fundamental value, which itself changes over time as a consequence of nonrecurring structural breaks

in θi. Consider the asset price in subperiod i for t = Ti−1 + 1, ..., Ti, as given by

P IKEt = (ai + ciα
IKE
t ) + (bi + ciβ

IKE
t )′Xt + εp,t. (1.38)

By adding and subtracting Ai and Bi, as given in equation (1.32) and (1.33), re-arranging terms,

and using that ai + ciAi = Ai and bi + ciBi = Bi, the asset price in subperiod i can be written as

P IKEt = (Ai + ci(α
IKE
t −Ai)) + (Bi + ci(β

IKE
t −Bi))′Xt + εp,t, (1.39)

Moreover, define the fundamental price in subperiod i for t = Ti−1 + 1, ..., Ti as

P ?IKEt := Ai +B′iXt, (1.40)

which is the fundamental value of the asset price in subperiod i as determined by the present

discounted value of all future Xt if the current structure given by θi was to continue indefinitely.

An important insight from this expression is that the fundamental value is by definition forward-

looking; it is the discounted future values of Xt which determines the fundamental value—not the

past values of Xt. Due to nonrecurring structural breaks in θi, the fundamental value changes over

time not only due to changes in Xt, but also due to changes in θt.

The gap between the current asset price and its current fundamental value in subperiod i is

given by

P IKEt − P ?IKEt = ci(α
IKE
t −Ai) + ci(β

IKE
t −Bi)′Xt + εp,t, (1.41)
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Hence, only for αIKEt = Ai and βIKEt = Bi—which would correspond to imposing REH in each

subperiod i, though that would only be internally consistent if the contingent changes in θi were

replaced with time-invariant θ for all t—would the deviations between the asset price and its current

fundamental value be random and zero on average. But in the IKE model individuals must base

their expectations on contingent and inherently imperfect knowledge so their expectations do not

correspond to those values; first, individuals are not assumed to know the parameters θi, and second,

individuals take into account that θi will be subject to structural break in the future. The latter

part implies that even if individuals at a given point in time t were assumed to know the current

values of θi, it might not even be optimal for them to base their expectations solely on these if they

expect future structural breaks in θi.

If the forecasting parameters αIKEt and βIKEt are totally autonomous relative to the parameters

Ai and Bi the asset price can deviate endlessly from its fundamental value P ?IKEt , so the gap

between the two can be endlessly trending. For example, if αIKEt − Ai > 0 for all t the asset

price will systematically be above its fundamental value for all t (disregarding the second term in

equation (1.41)) and if furthermore αIKEt is allowed to continue increasing over time, the asset price

can diverge endlessly from its current fundamental value.

However, the internal consistency conditions imply that the gap between the asset price and its

current fundamental value is stochastically trendless in each subperiod i. First, from equation (1.31)

it follows that the first term is a stochastically trendless process with E[αIKEt −Ai] = 0. Likewise,

the second term is stochastically trendless as it follows from equation (1.30) that (βIKEt − Bi)

is a stochastically trendless process with E[βIKEt − Bi] = 0, so that the multiplicative process

becomes a stochastically trendless process. Hence, under the internal consistency conditions the

gap between the asset price and its current fundamental value becomes stochastically trendless in

each subperiod i. Essentially this mean that the gap resembles a mean zero stationary—though

potentially persistent and heteroskedastic—process in each subperiod. But due to nonrecurring

structural breaks in θi the asset’s fundamental value itself changes over time, so there are continuous

fluctuations of the asset price around its changing fundamental values and the asset price does not

converge towards its fundamental value over time. Moreover, expectations are still allowed to play

a partly autonomous role; if for example individuals at time t expect a future increase in µi, so that

the slope of the deterministic trends in Xt is expected to increase, they will increase αIKEt above Ai

and the asset price will rise above its current fundamental value. Subsequently one of two things can

happen: either their expectations turn out correct and µi+1 > µi for some t+ s with s > 0, or their

expectations turn out incorrect so µi remains the same for t + s. In the former case, the increase

in µi+1 will imply an increase in Ai, so that αIKEt − Ai falls. In the latter case, individuals must

eventually revise their unfullfilled expectations by lowering αIKEt . Hence, revisions in the forecasting

parameters are inputs to the model driving the aggregate outcomes, but the expectations are only

allowed a partly autonomous role relative to the rest of the model.

1.6 Testing Empirical Implications of the IKE Model

The challenge for testing empirical implications of IKE models is that they are contingent and partly

open along two dimensions; they allow for nonrecurring structural breaks in the the parameters in

19



the process underpinning aggregate outcomes and they do not specify all changes over time in the

forecasting parameters of the model with specific stochastic processes. Thereby, IKE models do

not specify a complete probabilistic structure which can be directly estimated using a ‘theory-first

approach’ to econometrics, see Hoover (2006) and Spanos (2009).

However, partly open IKE models can be confronted with empirical evidence based on the

methodological framework of the LSE-Oxford-Copenhagen approach which relies on a ‘data-first

approach’ to econometrics, see Hoover (2006) or Spanos (2009) for an overview.

A key element in the ‘data-first approach’ is that the stochastic specification of the econometric

model, though guided by economic theory, is chosen based on the data. The approach is based

on general-to-specific modeling, where first a general unrestricted model is specified as a valid

statistical representation of the data over the considered sample period, and thereafter restrictions

are imposed and tested on the general model with the aim of reducing the general model to a more

parsimoniously specific model that accounts for the information of the general model. The first

step focuses on testing the statistical adequacy of the model as a representation of the data for the

sample period considered and is concerned with what Spanos (2010) calls ‘statistical testing’. Once

a valid statistical representation of the data is found, the empirical validity of potentially conflicting

hypotheses from economic theory can be imposed and tested as restrictions on the general model,

which is concerned with what Spanos (2010) calls ‘substantive testing.’

The ‘data-first approach’ is suitable for empirically testing IKE models as it searches for stochas-

tic specifications as valid statistical representations of the data. First, IKE models do not specify

a stochastic formulation for the time-varying parameters, but a specific stochastic process can be

selected in an econometric model because the statistical validity of the econometric model can be

tested against the data. The simplest case to consider is the case of piecewise constant parameters,

while the internal consistency conditions proposed in this paper suggest that a stochastic pro-

cess for the time-varying parameters must belong to the class of stochastically trendless processes.

Within this class of processes, a simple AR(1) representation might be a good first approximation

of the time-varying parameters, although estimation of such time-varying parameter models is not

straightforward. The key point is that while an IKE model does not assume a specific stochas-

tic representation of the time-varying parameters for theoretical reasons, doing so for econometric

reasons in an econometric model is possible because it is testable based on the specific sample of

data. Second, while IKE models allow for structural breaks in both the parameters of the stochas-

tic processes and the parameters linking the variables without specifying exactly when they occur,

statistical tests can be used in an econometric model to test for parameter-constancy. Thereby,

subperiods where a specific statistical model can adequately represent the data can be found and

tested. If a statistical representation can be found which is both compatible with the IKE model and

an adequate statistical representation of the data for a specific sample period it can be concluded

that the IKE model cannot be falsified based on the data for the specific time period.

An important implication of imposing the internal consistency conditions proposed in this paper

is that in each subperiod i the gap between the asset price and its fundamental value determined

by the exogenous variables Xt becomes stochastically trendless, c.f. equation (1.41). As a linear

combination of the variables becomes stochastically trendless the variables are cointegrated with

stochastic cointegration parameters in each subperiod i, see also Chapter 3 in this thesis. In Chapter
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2, I show that the classic cointegrated VAR model of Johansen (1996) can be used as a first-hand

approximation to estimate long-run relations between time-series simulated from a simple IKE

model. These simulations build in the internal consistency conditions proposed in this paper, and

I show that restricting the parameters in the representation of expectations in relation to process

underpinning the asset price is crucial for getting good approximate results from the econometric

analysis. Hence, the internal consistency conditions are crucial for our ability to test the empirical

implications of IKE models. Moreover, I show in Chapter 3 that if data generated from a data-

generating process with stationary stochastic cointegration parameters are analyzed econometrically

with the classic cointegrated VAR model, the underlying parameter-instability can show up in the

estimated model as persistent deviations from estimated cointegration relations and low estimated

adjustment coefficients. Such findings are frequent in analyzes of macroeconomic and financial data

and the results indicate they can potentially stem from time-varying cointegration parameters in

the underlying data-generating process.

1.7 Conclusion

The promising feature of IKE models is that by allowing for nonrecurring structural breaks in

the process underpinning individual and aggregate outcomes they accord individuals’ expectations

an autonomous role in driving aggregate outcomes. However, until recently IKE models have not

focused on internal consistency as an important element in specifications of IKE models, and thereby

expectations have been accorded a completely autonomous role relative to the rest of the model.

In this paper, I have shown how internal consistency can be fully incorporated in IKE mod-

els by restricting the parameters in the representation of expectations to the class of stochastic

processes which are stochastically trendless and with unconditional means determined by the pa-

rameters of stochastic specification of the exogenous variables and the parameters linking these

to the endogenous variables. While the conditions imply that the representation of expectations

becomes internally consistent they still accord individuals’ expectations a partly autonomous role

in driving aggregate outcomes. Moreover, the conditions are useful in terms of extending existing

models to IKE models, and the implication that the asset price and the exogenous variables become

cointegrated in each subperiod is crucial for testing empirical implications of IKE models.

By allowing for nonrecurring structural breaks in the process underpinning aggregate outcomes

IKE models add a degree of openness compared to time-invariant stochastic models relying on REH.

Due to nonrecurring structural change, IKE models allow the future to be partly open relative to the

past instead of directly linked over all points in time through a time-invariant stochastic process.

More importantly, the nonrecurring structural change implies that IKE models portray rational

individual decisionmaking in a setting of contingent and inherently imperfect knowledge rather than

complete probabilistic knowledge. As a consequence, individuals in IKE models make systematic

forecasting errors, but by incorporating internal consistency the forecasting errors in an IKE model

become stochastically trendless, whereas they are i.i.d. in REH models. Likewise the gap between

the asset price and its current fundamental value becomes stochastically trendless in an IKE model,

whereas the gap is i.i.d. in REH models. Hence, the subperiod cointegration relations between the

asset price and the exogenous variables in Xt are stochastically trendless, and hence potentially
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persistent and heteroskedastic, whereas they are assumed i.i.d. in REH models.

These features are promising in terms of explaining empirical puzzles in macroeconomics and

finance. Many of these puzzles share the feature that the degree of persistence in the deviations

from estimated equilibria—typically in terms of estimated cointegration relations—are more per-

sistent than standard economic theory predicts. For example, the seminal paper by Shiller (1981)

showed that stock prices fluctuate much more than their fundamental value based on the present

discounted value of future dividends can account for. The IKE framework appears promising as

such persistent deviations can arise from partly autonomous expectations based on contingent and

inherently imperfect knowledge.
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Abstract

In this paper, I simulate outcomes from a simple Imperfect Knowledge Economics (IKE)

model of stock prices and earnings, based on Frydman and Goldberg (2013 b), with the aim is

to address whether the cointegrated VAR model of Johansen (1996) can serve as a valid sta-

tistical representation of the simulated data and whether the regularities in the simulated data

can be found econometrically with the cointegrated VAR model as a first approximation. The

key features of the simple IKE model are: i) that there are streches of time where forecasting

strategies are revised moderately, and ii) fluctuations in the stock price around a benchmark

price level determined by earnings are bounded. In modeling these key features, earnings are as-

sumed to fluctuate around a non-stationary long-run trend, with deviations caused by a bounded

segmented trend process and a stationary component, and qualitative bounds are imposed on re-

visions of individuals’ forecasting strategies, so that the causal parameter linking the stock price

to earnings varies over time within specific bounds. Hence, deviation between the stock price

and the benchmark price determined by earnings are bounded and the variables are cointegrated

as a linear relation between them is stochastically trendless. The simulation results show that

the cointegrated VAR model can serve as a statistically adequate representation of the simulated

data, though the specification of the cointegrated VAR differs from the specification of the sim-

ulated data. Moreover, the results show that, despite bounded instability in the time-varying

cointegration parameters in the data-generating process of the simulated data, the cointegrated

VAR model can provide a fairly precise estimate of the sample mean of the boundedly time-

varying cointegration parameters. The results indicate that the cointegrated VAR model can

serve as a good starting point for econometric analyses of IKE models.
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2.1 Introduction

A core premise of contemporary economic models is that researchers can adequately specify in proba-

bilistic terms how individuals alter the way they make decisions and how the processes underpinning

market outcomes unfold over time. Based on this core premise individual and aggregate outcomes

at all points in time are represented with a time-invariant stochastic structure. Following Frydman

and Goldberg (2013 a), I refer to such models as determinate. To confront determinate models with

empirical evidence a ‘theory-first approach’ to econometrics is typically used, see Hoover (2006 b)

and Spanos (2009). In the ‘theory-first approach’ the theoretical model delivers a complete stochas-

tic specification that relates aggregate outcomes to a set of explanatory variables, and the role of

econometrics is solely to quantify the theoretical parameters of interest and test their statistical

significance using regression or other statistical techniques (Spanos, 2006).

By contrast, the Imperfect Knowledge Economics (IKE) approach (Frydman and Goldberg, 2007,

2011, 2013 a) recognizes that the process underpinning market outcomes is contingent: it changes

at times and in ways that no one can fully anticipate. Hence, theoretical IKE models are by design

contingent and partly open: they allow for nonrecurring changes in the causal structure. As a

consequence individuals’ expectations of future market outcomes, upon which to base their utility-

maximizing behavior, is based on contingent and inherently imperfect knowledge. Confronting IKE

models with empirical evidence is a challenge due to the contingency, as they imply different causal

structures during different periods of time. Hence, they do not imply a time-invariant causal struc-

ture for aggregate outcomes that can be directly estimated and tested using standard econometric

tools.

This paper presents an initial attempt to address this challenge. I show how the methodolog-

ical framework of the LSE-Oxford-Copenhagen approach can serve as a basis for an econometric

methodology for theoretical IKE model, with the cointegrated VAR model of Johansen (1996) as

the starting point.1 The LSE-Oxford-Copenhagen methodology and the cointegrated VAR model

is based on a ‘data-first approach’ to econometrics, where the stochastic specification of the econo-

metric model is derived from the data based on statistical testing, rather than imposed from the

outset based on a priori assumptions of a determinate theoretical model. Although it is important

to point out that a priori considerations based on economic theory is used as an invaluable guide

in the variable selection, specification, and testing of the econometric model.

The essence of the ‘data-first approach’ to econometrics is the general-to-specific approach,

which first seeks a general unrestricted model as a valid statistical representation of the data for the

sample period considered, and then tests restrictions on the general model with the aim of finding a

specific model that accounts for the information of the general model more parsimoniously. The first

step involves what Spanos (2010) calls ‘statistical testing,’ which focuses on testing the statistical

1The LSE-Oxford-Copenhagen methodology originated from the work of Dennis Sargan at London School of
Economics, but is today mainly associated with the work of David Hendry and co-workers at Oxford University and
Søren Johansen and Katarina Juselius at the University of Copenhagen. For a broad introduction and discussion of
the main econometric methodologies, see Hoover (2006 a), and for a discussion of the ‘data-first’ and ‘theory-first’
approaches, see Hoover (2006 b) and Spanos (2009) .

For a broad introduction to the theory and application of the cointegrated VAR model see Juselius and Johansen
(2006), Johansen (1996), and Juselius (2006). Hendry (1995) provides a broad introduction to econometric modeling
based on a general-to-specific approach, see also Mizon (1995) for a survey.
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adequacy of the model as a representation of the data for the sample period considered. Once a

valid statistical representation of the data is found, the empirical validity of potentially conflicting

hypotheses from economic theory can be imposed and tested as restrictions and reductions of the

general model, which involves what Spanos (2010) calls ‘substantive testing.’

The ‘data-first approach’ is suitable for empirically testing IKE models as it allows for contin-

gency in the underlying data-generating process by searching for stochastic specifications as statis-

tically valid local representations of the data. Because a theoretical IKE model does not specify

exactly when and how structural breaks occur the specification of an IKE econometric model has to

be based upon and tested against the data. The ‘data-first’ methodology of the cointegrated VAR

model allows for structural change to be identified ex post in the historical data without an ex ante

probabilistic specification of exactly when and how the structural breaks occur. The key point here

is that while IKE acknowledges that an economist cannot fully specify the occurence of structural

breaks in an economic model ex ante, an econometrician using the ‘data-first approach’ can test for

and identify structural breaks in the historical economic data ex post. However, it should be noted

that IKE does not imply that there are no empirical relations that are stable at the aggregate level

over time; IKE just don’t start from an a priori assumption that all empirical relations are indeed

stable at all points in time.

The cointegrated VAR model’s system approach and its distilling of time series according to their

degree of persistence has proven to be extremely useful for representing and modeling non-stationary

macroeconomic and financial data. In practice, the specification of a statistically well-specified

cointegrated VAR model requires selecting a suitable lag-length, including level shifts and dummy

variables, and potentially splitting the sample into subsamples with different cointegrated VAR

models for each subsample. With good econometric modeling skills, and a sense of the context under

study, an econometrician can identify samples of historical data in which a specific cointegrated VAR

model adequately represents the data. Inference in the cointegrated VAR model is then valid and

testable hypotheses based on an IKE model can be tested as restrictions on the general model.

Although the ‘data-first approach’ of the cointegrated VAR provides a suitable way to empir-

ically estimate and test IKE models, there are important challenges in bridging the empirics and

theory. First, IKE models allow for contingent change in the stochastic representation of exogenous

variables and the causal parameters linking the variables in IKE models are boundedly unstable over

time, potentially with both frequent changes within qualitative ranges and less frequent large jumps.

By contrast, the classic cointegrated VAR model has constant parameters. Important questions here

are under what conditions can structural breaks in both the stochastic representations of the vari-

ables and the causal parameters linking them be identified using standard statistical procedures

and residual misspecification tests; to what extent and under what conditions can we determine

whether seperate subsample analyses are preferred over a full-sample analysis; or, alternatively,

under which conditions can the time-varying parameters of IKE models be represented stochasti-

cally and estimated using extensions of the cointegrated VAR model with stochastic parameters.

Moreover, many IKE models imply that markets are boundedly unstable: wide price swings away

from benchmark values are eventually reversed and sustained movements back towards these values

occur.2 This implication suggests that there may be a connection between the boundedness of the

2For example, in the Frydman and Goldberg (2007, 2013 b) model of asset price swings and risk, persistent trends
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market process and our ability to estimate cointegration relationships using the cointegrated VAR

model. For example, is it the case that a greater tendency for reversals in the market leads to a

greater chance that the system will be characterized by cointegration relationships?

To analyze these and other questions, this paper simulates outcomes from a simple IKE model

of stock prices and earnings and analyze the simulated data econometrically with the cointegrated

VAR model. The aim is to analyze if the cointegrated VAR model can serve as a approximation

of the simulated data and if the regularities in the simulated data can be found econometrically,

despite bounded parameter-instability in the data-generating process of the simulated data. There

are two key features of this model that underpin our results: i) there are stretches of time in which

market participants either maintain their forecasting strategies or revise them only moderately,

and ii) price swings away from the benchmark value are bounded. In modeling these features, the

simulated earnings fluctuate boundedly around a non-stationary long-run trend, with the bounded

fluctuations being caused by a segmented trend specification, and the parameters linking earnings

to the stock price varies over time within specific bounds. Hence, the simulated stock price and

earnings are assumed to fluctuate persistently, but boundedly so, around a common long-run trend

in earnings, and there exists a linear relation between the two which is stochastically trendless, so

the variables are cointegrated.

The simulations show that even though the specification of the cointegrated VAR model is

‘wrong’ compared to the specification of the data-generating process used to simulate the data

from the simple IKE model, it can nonetheless be used as a statistically adequate representation

of the simulated data with an adequate lag structure. Furthermore, I show that the bounded

instability of the relationship between the simulated asset prices and earnings plays a key role in

our ability to understand and interpret the estimates of the cointegrated VAR model. Cointegration

between the simulated time-series can be found during periods where the time-varying cointegration

parameters of the simulated series are bounded, which implies that the variables are stochastically

cointegrated because the linear relations β′Xt are stochastically trendless. The results show that

despite bounded instability in the time-varying cointegration parameters, with both frequent small

changes and infrequent large jumps within a specific range, the cointegrated VAR model can provide

an estimate of the unconditional sample mean. This extends the results in Chapter 3 of this thesis,

where I show that the cointegrated VAR model can be used as an approximation which provides a

consistent estimate of the unconditional mean of stationary autoregressive stochastic cointegration

parameters.

The rest of the paper is structured in the following way. In section 2.2 a simple IKE model

of stock prices and earnings is presented and the link between boundedness in the model and

cointegration is discussed. Section 2.3 presents the simulation setup for the simple IKE model and

shows an illustration of the simulated data. Section 2.4 introduces the cointegrated VAR model

used for the econometric analysis of the simulated data, and the results from the estimations are

presented in Section 2.5. Finally, Section 2.6 concludes.

in fundamental variables and the influence of psychological and social factors can lead market participants to bid asset
prices persistently away from benchmark values over a stretch of time. But, this instability is bounded: if departures
from benchmark values continued to grow, they would eventully lead market participants to revise their forecasting
strategies in ways that resulted in a sustained countermovement back toward benchmark values.
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2.2 A Simple IKE Model of Stock Prices and Earnings

In this paper I consider a simple version of an IKE model of stock prices and earnings. The model

is a simplified version of the general IKE model of asset price swings and risk presented in Frydman

and Goldberg (2013 b). The simple model considered here captures some—but not all—of the main

ideas of an IKE asset pricing model in a simple way that mimics some of the key features of the

stock market. The simple model allows me to simulate potential outcomes from an IKE model

which can be econometrically analysed with a cointegrated VAR model in a fairly simple setup.

For a full presentation and discussion of the general IKE model of asset price swings and risk, see

Frydman and Goldberg (2013 b).

The general IKE model of long swings in asset prices can be written in reduced form at the

aggregate level as

pt = p̂t|t+1 − ûpt + εp,t, (2.1)

where pt is the asset price at time t, p̂t|t+1 is a representation of the aggregate forecast of the future

asset price, ûpt is an uncertainty premium, and εp,t is an i.i.d. Gaussian error term with variance

σ2
p.

3

A key element of the IKE asset pricing model is the assumption that the uncertainty premium

covaries positively over time with the gap between the asset price and a historical benchmark level.

Defining this gap as

gapt = pt − pBMt , (2.2)

the uncertainty premium can be represented as

ûpt = σ · gapt = σ(pt − pBMt ), (2.3)

where pBMt is the benchmark level for the asset price. The parameter σ determines the effect of the

gap on the asset price, and here we assume for simplicity that the parameter is constant.

Given the specification of the uncertainty premium the asset price can be written as

pt = p̂t|t+1 − σ(pt − pBMt ) + εpt , (2.4)

which is equivalent to

pt = λp̂t|t+1 + (1− λ)pBMt , (2.5)

or

pt = pBMt + λ(p̂t|t+1 − pBMt ). (2.6)

Equation (2.5) shows that in each period the asset price is represented as a weighted average of the

price forecast and the benchmark price with weights given by λ := 1/(1 +σ) and 1−λ, respectively.

Equation (2.6) shows that the asset price can also be represented as the benchmark price plus a

multiple of the deviation between the forecasted price and the benchmark price.

The overall idea of the IKE model of asset price swings and risk is that market participants

base their forecasting strategies of the future price on a combination of fundamental, psychological,

and social factors, and that persistent trends in the fundamental variables and the influence of

3Compared to the model in Frydman and Goldberg (2013 b), I have added the i.i.d. error term.
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psychological and social factors can lead market participants to bid asset prices persistently away

from the benchmark price over a strech of time. However, this instability is bounded: if departures

from benchmark values continued to grow, they would eventually lead market participants to revise

their forecasting strategies in ways that resulted in a sustained countermovement back towards

benchmark values.

The bounded instability implies that the price forecast p̂t|t+1 is allowed to move persistently

away from the benchmark price level pBMt , but ultimately such movements are bounded. Hence,

from equation (2.6) it follows that the asset price pt moves persistently, but boundedly so, around

the benchmark price pBMt .

2.2.1 A Representation of the Benchmark Price and Price Forecast

I now depart from the general IKE model of asset price swings and risk and consider a simple model

of stock prices and earnings. In this simple model both the benchmark price and the representation

of the aggregate price forecast depend only on corporate earnings, and thereby the stock price is

assumed to depend only on corporate earnings. I assume that earnings has a long-run non-stationary

trend and a short-run component fluctuating persistently around the long-run trend. The benchmark

price depends on the long-run trend in earnings, while the price forecast for simplicity is represented

only in terms of currently observed earnings.

First, assume that there is a non-stationary long-run trend in earnings, which can be represented

as a random walk with a drift given by

xt = xt−1 + µx + εx,t = x0 +

t∑
i=1

(µx + εx,i), (2.7)

where µx > 0 is a constant positive drift term and εx,t is an i.i.d. Gaussian error with variance σ2
x.

Assume next that current earnings xt fluctuate persistently around the long-run trend xt, and

that the fluctuations can be represented by a segmented trend specification. The segmented trend

push current earnings persistently away from the long-run trend given by xt, but eventually a reversal

in the segmented trend occurs, thereby causing a countermovement of current earnings back towards

the long-run trend. As current earnings reach the long-run trend level they are allowed to continue

away from the long-run trend in the opposite direction, but eventually another reversal will cause

another countermovement back towards the long-run trend. Hence, the idea is that the short-run

fluctuations in earnings are bounded around the long-run trend, so that current earnings has a

non-stationary long-run trend and a bounded short-run trend represented with a segmented trend

specification.

To capture this idea, assume that current earnings can be represented as

xt = Ψt + χt (2.8)

where Ψt is a segmented trend and χt is a stationary process. First, the stationary process χt is

represented as a first-order autoregressive process given by

χt = ρχt−1 + εx,t, (2.9)
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where εx,t is a standard i.i.d. Guassian error term with variance σ2
x and with 0 < ρ < 1. Hence, χ0

can be given an initial distribution so that the process χt is stationary and has the representation

χt =

∞∑
i=0

ρiεx,t−i. (2.10)

Moreover, it is assumed that the variance of the shocks to χt is greater than the variance of the

long-run trend in earnings xt, i.e. σ2
x > σ2

x.

The segmented trend Ψt has a number, n, of long swings for t = 1, 2, ..., T and we let 0 = T ∗0 <

T ∗1 < T ∗2 < ... < T ∗n = T denote the points in time at which the segmented trend changes direction,

so the length of the i’th swing is given by Ti = T ∗i − T ∗i−1. The segmented trend process is given by

Ψ = Ψt−1 + µt = Ψ0 +
t∑
i=1

µt, (2.11)

where

µt = µi for t = T ∗i−1, ..., T
∗
i − 1 (2.12)

and where µi is restricted to take on values with opposite signs in subsequent segments, so that

sign(µi) 6= sign(µi−1). (2.13)

The IKE model does not specify when the switches in µi occur and what values it can take on

with a probability distribution. Though, it is here assume that the probability of a switch in the

direction of the segmented trend increases with the deviation between the segmented trend process

and the long-run trend in earnings, Ψt− xt.4 Hence, as the gap Ψt− xt increases the probability of

a reversal in the segmented trend increases, and eventually a shift in the direction of the segmented

trend occurs, so that the deviation Ψt − xt is assumed bounded.

Given these specifications, current earnings are given by

xt = Ψ0 +
t∑
i=1

µt +
∞∑
i=0

ρiεx,t−i, (2.14)

so xt can be represented as a combination of segmented trend and a stationary process. Alternatively,

by adding and subtracting xt, the current earnings can be represented as

xt = xt + (Ψt − xt) + χt, (2.15)

which shows that current earnings can be represented as a combination of a non-stationary long-run

component determined by xt, the deviation between the segmented trend and the long-run trend

(Ψt−xt), which by design is a bounded process, and finally a stationary component. The important

implication of the assumed specification is that it follows that the deviation between current earnings

and their long-run trend, xt − xt, is bounded.

Next, the uncertainty premium depends on the gap between current stock price and the bench-

mark price, which it is assumed can be represented as a multiple of the long-run trend in earnings,

as given by

pBMt = B′xt, (2.16)

4In the simulations presented below the probabilities of a switch in the segmented trend are necessarily specified
probabilistically. A simple logistic function is used.
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where B is a parameter assumed to be constant for the sample considered, which however need not

be the case in a general IKE model.

Finally, the aggregate forecast of the future price is represented as

p̂t|t+1 = b′txt, (2.17)

where, for simplicity, it is assumed that the aggregate forecasts of the future stock price can be

represented only in terms of current earnings xt, so that bt is a scalar representing the weight

attached to earnings in the forecasting strategy at time t.

Movements in the price forecast depend on two factors, movements in earnings and revisions of

the forecasting strategies, as given by

∆p̂t|t+1 = b′t−1∆xt + ∆b′txt. (2.18)

In modeling revisions of the forecasting strategies, a slightly modified version of the ‘guardedly

moderate revisions’ conditions of Frydman and Goldberg (2007, 2013 b) is imposed. The guardedly

moderate revisions conditions restrict the changes in the forecasting weights bt from one period to

the next, so that the impact of revisions on the total change in the price forecast is smaller than

the impact of the segmented trend in earnings5, as given by∣∣∆b′txt∣∣ < ∣∣b′t−1µt
∣∣ , (2.19)

where |·| denotes an absolute value and
∣∣b′t−1µt

∣∣ represents the ‘baseline trend’ in the price forecast

which would occur on average over the period from T ∗i to T ∗i−1 if the forecasting strategies were not

revised, i.e. if ∆bt = 0, over the period. The condition embodies the idea that if individuals revise

their forecasting strategies, they are reluctant to do so in ways that would outweight the effect of

the baseline drift caused by the movements in xt.

As the long-run and segmented trends in earnings unfold over time, the way they feed into the

price forecast and the stock price depend on the revisions of the forecasting strategies. During

streches of time where the guardedly moderate revisions hold, the revisions can either reinforce or

impede the trends in earnings. Thus, one can think of the revisions of the forecasting weight to

current earnings as representing how market participants project current trends in earnings into

the future; if, for example, market participants forecast that an upward current trend in earnings is

unsustainable, so that they expect a reversal some time in the near future, they might revise their

forecasting strategies in impeding ways, so that the impact of their revisions counteract the current

trend in earnings. Likewise, market participants forecasting that a downward current trend will

soon be reversed might revise their forecasting strategies in reinforcing ways.

Based on this interpretation of the simple IKE model of stock prices and earnings, it can be

interpreted as equivalent to the present-value model of Barsky and De Long (1993), with earnings

taking the role of dividends in their model. In the Barsky and DeLong present value model a small

part of the shocks to dividends in each period feeds into the future growth rate of dividends, which

changes the present value of the future dividends that determines the stock price. However, while the

5I impose only the first of the two conditions specified in Frydman and Goldberg (2007, 2013 b), as the second
becomes redundant in the univariate case considering here.
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shocks to dividends feed into both current dividends and the growth rate the time-invariant model in

Barsky and De Long (1993) assumes that the impact of such shocks on both the trend in dividends

and the stock price is constant over time. By contrast, this simple IKE model acknowledges that the

way the expected trends in earnings feed into the stock price depends on how market participants

revise their forecasting strategies, and thereby it varies over time within specific bounds. Thereby,

the simple IKE model allows for periods of both over- and underreactions to news about earnings—

in form of exogenous shocks and changes in the segmented trend—within the qualitative ranges.

Such over- and underreaction to news have been found important empirically in behavioral studies,

see for example the influential paper by Barberis et al. (1998), and in the simple IKE model it is a

natural consequence of rational individual behavior under contingent and imperfect knowledge.

Moreover, the contingency of an IKE model allows for non-moderate revisions of the forecasting

strategies at points in time that cannot be specified with a probability distribution. Thus, at points

in time that cannot be anticipated the revisions of the forecasting strategies are allowed not to fall

within the the qualitative range specified by the condition in equation (2.19). However, I do impose

the additional condition that whenever a non-moderate revision of the forecasting strategies occurs,

the new forecasting weight bNMt falls within a qualitatively range which is symmetrically bounded

around the parameter B, as given by the inequalities

b < bNMt < b, (2.20)

where b = B − τb and b = B + τb represent the upper and lower bounds. This additional condition

of non-moderate revisions within the bounds given in equation (2.20) implies that the forecasting

weight bt is symmetrically bounded around the parameter B. Though the guardedly moderate

revisions alone do not imply that the forecasting weight bt is bounded, this additional condition

implies that even if bt is pushed outside the range from b to b, eventually a non-moderate revision

will occur and thereby force bt back within this range.

2.2.2 Bounded Instability and Cointegration Between Stock Prices and

Earnings

Based on equation (2.6) and the above representations of earnings, the benchmark price, and the

price forecast, the stock price can be written as

pt = pBMt + λ
(
p̂t|t+1 − pBMt

)
+ εp,t

= B′xt + λ
(
b′txt −B′xt

)
+ εp,t. (2.21)

For the stock price to fluctuate boundedly around the benchmark level consistent with the long-

run trend in earnings, the deviation between the price forecast and the benchmark price must be

bounded. The simple representation considered here allows me to decompose this deviation into

two components as follows

p̂t|t+1 − pBMt = b′txt −B′xt
= B′ (xt − xt) + (bt −B)′ xt, (2.22)

and boundedness can be considered for each of the two components individually.
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First, the representation of earnings implies that the deviation between current earnings and the

long-run trend in earnings, xt − xt, is bounded, c.f. equation (2.15). The segmented trend cause

current earnings to fluctuate persistently around the long-run trend xt, so even though the long-run

trend xt is non-stationary—and hence not bounded—the deviation between the two is bounded, as

Ψt − xt is bounded by design and χt is a standard stationary process.

The second term in equation (2.22) is a product of (bt−B) and the non-stationary long-run trend

in earnings xt. However, despite that xt itself is not bounded, boundedness of (bt −B)′ xt over time

requires only that bt −B is bounded with mean zero over time. In that case the product of a mean

zero bounded process and a non-bounded process will become bounded, as also confirmed by the

simulation presented below.6 The guardedly moderate revisions condition in equation (2.19) does

not imply boundedness of bt, so to achieve boundedness of bt−B we assume that the probability of

a non-moderate revision increases with the deviation bt − B, and by restricting the non-moderate

revision to the symmetric range around B, c.f. equation (2.20).

Based on the above specifications, each of the two terms xt − xt and bt −B are bounded

xt − xt ∼ bounded, (2.23)

bt −B ∼ bounded, (2.24)

which implies that

(bt −B)′ xt ∼ bounded, (2.25)

so that the deviation between the price forecast and the benchmark price, as given in equation

(2.22), is bounded

p̂t|t+1 − pBMt ∼ bounded. (2.26)

It follows from equation (2.21) that fluctuations of the stock price are bounded around the bench-

mark price over time. Hence, the stock price can move persistently away from the benchmark price

consistent with the long-run trend in earnings, as the segmented trend pushes current earnings away

from their long-run trend, or as the forecasting strategies are revised in reinforcing ways so that bt

move away from B. Moreover, the two effects might impact the stock price in the same direction

during some streches of time, while they might outweigh each other during other streches of time.

However, movements in the stock price away from the benchmark price consistent with the long-run

trend in earnings are ultimately bounded as a reversal in the segmented trend push current earnings

back towards the long-run trend, or as market participants revise their forecasting strategies in non-

moderate ways causing a reversal of the price forecast—and hence the stock price—back towards

the benchmark price.

The important implication of the two boundedness conditions in equations (2.23) and (2.24)

is that, despite the underlying bounded instability, the stock price and current earnings fluctuate

around a common trend given by the non-stationary long-run trend in earnings.

Because the stock price and earnings share a common trend we can think of them both as being

cointegrated with the long-run trend in earnings—as well as with each other—though the specifi-

cation of boundedness does not fully correspond to a standard cointegration relation. First, the

6In a standard stochastic specification the multiplicative process of a stationary mean zero process and a non-
stationary process becomes ‘stochastically trendless’, which means that the stochastically trendless property of the
stationary process dominates the multiplicative process, see Harris et al. (2002) and McCabe et al. (2003).
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boundedness between current earnings and their long-run trend can be thought of as a cointegra-

tion relation with a time-varying adjustment coefficient: when the segmented trend push earnings

away from the long-run trend it corresponds to an equilibrium-increasing adjustment coefficient;

and when the segmented trend push earnings towards the long-run trend it corresponds to an ad-

justment coefficient which is equilibrium-adjusting. Second, as the stock price fluctuates boundedly

around the long-run trend in earnings we can think of the two as being cointegrated, with persistent

deviations from the cointegration relation driven by the two bounded terms in equation (2.22).

As the stock price and current earnings fluctuate boundedly around the same common stochastic

trend given by the non-stationary long-run trend in earnings, the deviation between them is bounded

and we can think of the stock price and current earnings as being cointegrated. Though, the

boundedness of the IKE model is based on a time-varying specification, which differs from a standard

stochastic specification of cointegrated relations.

To see that the deviation between the stock price and current earnings is indeed bounded, rewrite

equation (2.21) to

pt = b′txt − (1− λ)
(
b′txt −B′xt

)
+ εp,t, (2.27)

and re-arrange terms to get

pt − b′txt = − (1− λ)
(
b′txt −B′xt

)
+ εp,t. (2.28)

We know from above that the term b′txt−B′xt is bounded given the assumptions, so the right-hand

side of equation (2.28) is bounded. Hence, the deviation between the stock price and the price

forecast on the left-hand side is bounded. Furthermore, the assumption that (bt −B) is bounded

with mean zero implies that the stock price pt and the multiple of current earnings B′xt are bounded,

and we can think of the stock price and current earnings as being stochastically cointegrated.7 By

rewriting equation (2.28) as

pt −B′xt = (bt −B)′ xt − (1− λ)
(
b′txt −B′xt

)
+ εp,t. (2.29)

it can be seen that all terms on the right-hand side are bounded, once again because the term

(bt −B)′ xt can be thought of as being stochastically trendless. Thus, pt − B′xt becomes bounded

and can loosely be given an interpretation as a cointegration relation.

2.3 Simulations of the IKE Model of Stock Prices and Earnings

I use simulations to examine the link from the bounded instability of an IKE model to estimation

of cointegration relations in a cointegrated VAR model. Thus, I simulate outcomes from the simple

IKE model of stock prices and earnings and analyze the simulated data econometrically with the

cointegrated VAR model.

7In a standard stochastic specification, stochastic cointegration between two variables requires that the time-
varying cointegration parameter βt can be represented as βt = β + β̃t, where β̃t is mean zero stationary. Under this
assumption the cointegration relation with time-varying cointegration parameter βt can be written as

β′
tXt = β′Xt + β̃′

tXt,

where the second term becomes stochastically trendless, see Harris et al. (2002) and McCabe et al. (2003) as well as
Chapter 3 in this thesis.
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The cointegrated VAR model is ‘wrong’ compared to the specification of the IKE model used

to simulate the data: the specification of boundedness in the IKE model does not correspond to

the specification of cointegration relations in a cointegrated VAR model, and the parameters of the

IKE model are boundedly time-varying, while the cointegrated VAR model has constant parameters.

The results in Chapter 3, however, suggest that the cointegrated VAR model is a quite robust model

to use even though there is an underlying bounded parameter instability in the data. Though, it is

unclear if and under what conditions the cointegrated VAR model can be used to estimate empirical

relations between variables based on the specification of a the simple IKE model.

I address this question by using simulations. I show that as long as the deviations of Ψt − xt
and bt−B are not ‘too large’ the cointegrated VAR model can be used as a statistically valid repre-

sentation of the data along the key dimensions, and I do find the simulated stock price and current

earnings to be cointegrated—and hence sharing a common stochastic trend—with the estimated

cointegration coefficients close to the coefficient B as we would expect based on equation (2.29).

2.3.1 The Simulation Design

An IKE model acknowledges contingent changes that cannot be specified in advance with a prob-

ability distribution. By contrast, computer simulations requires a deterministic or probabilistic

specification of both when and how the contingent structural breaks occur. Though, while an IKE

model itself cannot be simulated because it is contingent by design, we can simulate outcomes that

are consistent with an IKE model, and using simulations we can easily check the robustness of a

specific specification.

In the simulations presented here a standard logistic function is used to simulate the probabilities

of a switch in the direction of the segmented trend and the probabilities of non-moderate revision

of the forecasting strategies at each point in time. The logistic function has the form

P (breaki,t) = [1 + exp (−gi (zi,t−1 − ci))]−1 , (2.30)

where ci is a threshold value where the probability of a break is one, gi determines the curvature,

and zi,t−1−ci determines the distance that the probabilities depend on for i = Ψ, b, which represent

the probabilities of a break in the segmented trend and the forecasting weights, respectively.

I let the probability of a break in the segmented trend depend on the absolute deviation

Ψt−1 − xt−1, so I set zΨ,t = |Ψt−1 − xt−1|, and let the probability of a non-moderate revision

of the forecasting strategies depend on the absolute deviation bt−1 − B, so I set zb,t = |bt−1 −B|.
Thus, as |Ψt−1 − xt−1| increases, the probability of a switch in the direction of the segmented trend

increases, and eventually as |Ψt−1 − xt−1| ≥ cΨ the probability of a switch reaches one. Moreover,

after a switch in the direction of the segmented trend cause a countermovement in Ψt towards xt, I

set the probability of a switch in the direction to zero until Ψt has crossed xt. Likewise, as |bt−1 −B|
increases, the probability of a non-moderate revision increases, and eventually the probability of a

non-moderate revision reaches one as |bt−1 −B| ≥ cb.
At each point in time, we make two random draws from a standard uniform distribution at each

point in time, and if they exceed the simulated probabilities we draw a new µt or bt, respectively. The

new µt is uniformly drawn within a specified range from µ to µ, and with opposite sign compared

to µt−1, while the new bNMt is drawn uniformly within the range from B − τb to B + τb.
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The curvature parameters gΨ = gb = 1.0 and the threshold value for non-moderate revisions

cb = 4.0 are all fixed, and simulate the IKE model for different values of the threshold parameter cΨ

and the range for non-moderate revisions τb. These two parameters are crucial determinants of the

degree of bounded instability in the simulated system, and hence they are the parameters of greatest

interest. The greater the threshold parameter cΨ, the greater deviation between current earnings

and the long-run trend is allowed before a reversal eventually occurs. The parameter τb determines

the symmetrical range around B within which a non-moderate revision is randomly drawn. The

guardedly moderate revisions are symmetrical and by themselves do not ensure boundedness of bt

around B, so this boundedness occurs solely through the non-moderate revisions in this specification:

if bt−1 is far above B, but below B + τb, the probability of drawing a new bNMt below bt−1 is large.

The rest of the simulation setup follows the IKE model of stock prices and earnings as described

above. The following parameter values are fixed for all simulations presented here

B = 2.0, (2.31)

b0 = 2.0, (2.32)

λ = 0.5, (2.33)

[σp, σx, σx] = [0.5, 0.5, 0.1] , (2.34)

[p0, x0, x0] = 5.0, (2.35)

ρ = 0.5, (2.36)

µx = 0.01, (2.37)[
µ, µ

]
= [0.02, 0.15] (2.38)

[gΨ, gb] = 1.0, (2.39)

cb = 4.0. (2.40)

I simulate time-series for pt, xt, and xt for i = 1, 2, ..., N different data-generating processes based

on the N = 16 combinations of the parameters

τ ib ∈ {0.25; 0.50; 1.00; 1.50} , (2.41)

and

ciΨ ∈ {2.0; 3.0; 4.0; 5.0} ,

where the upper limits for the two parameters are selected as the upper limits where cointegration

appears to be found among the variables. For each data-generating process i, S = 10, 000 replications

of time-series are simulated with the different sample lenghts t as given by

t ∈ {200; 400; 1000} , (2.42)

so that in total 480, 000 time-series are simulated. All simulations and estimations have been done

in Ox 6.20, see Doornik (2007), with a random seed set to 1, 000 and reset for each new i, so that

the sequences of random shocks are the same across the different data-generating processes i.

A cointegrated VAR model is estimated for each of the simulated time-series for the stock price

pt and earnings xt, and averages of the results over the S = 10, 000 replications are reported for

each data-generating process i for each of the different sample lenghts considered.
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2.3.2 An Illustration of the Simulated Series

The simulated outcomes for the specification i = 7, where τb = 0.5 and cΨ = 4.0, are shown in

Figures 2.1 to 2.5.

Figure 2.1 shows the simulated series xt and xt in the upper panel, the gap between the two

in the middle panel, and finally the simulated probabilities of a reversal in the segmented trend in

the lower panel. From the upper panel the segmented trend specification of xt around xt is evident.

Moreover, it should be noted that after each reversal in the segmented trend, a new value for µt

is randomly drawn within a range, so the segmented trends have different slopes for the different

segments. From the middle panel it can be seen how the gap between current earnings and their

long-run trend is bounded over time, and in the lower panel it can be seen that the probability of a

reversal increases as the segmented trend drives current earnings away from the long-run trend. The

blue squares in the lower panel indicate the 23 reversals in the segmented trend over the sample.

Figure 2.2 shows the simulated weights attached to current earnings in the forecasting strategies.

The upper panel shows the simulated weights bt, along with B and indicators for non-moderate

revisions. It is clear from the graphs that the simulated parameter bt is boundedly unstable over

time, and that the non-moderate revisions imply a number of large jumps in the forecasting weights.

The middle panel shows the qualitative ranges for the guardedly moderate revisions, along with the

simulated revisions of the forecasting strategies within these ranges. The lower panel shows the

probabilities of a non-moderate revision of the forecasting strategies over time. On average this

probability is around 2.5 percent, and over the long sample of 1, 000 observations in the illustration,

22 revisions are simulated as non-moderate as indicated by the blue squares.

Figure 2.3 shows the simulated stock price, the benchmark price, and the price forecast in the

upper panel. As the stock price is represented as a weighted average of the benchmark price and

the price forecasts it lies between the two over the entire sample period. The middle panel shows

the deviation between the price forecast and the benchmark price, which is equivalent to a scaled

version of the gap between the stock price and the benchmark price. The lower panel shows the

decomposition of the deviation between the price forecast and the benchmark price as specified in

equation (2.29). From the graphs it can be seen that each of the two components are bounded over

the sample.

In Figure 2.4 the simulated stock price and current earnings are shown in the upper panel along

with the simulated long-run trend in earnings. The middle panel shows the deviation pt − B′xt,
while the lower panel show the deviation pt −B′xt.

Finally, Figure 2.5 shows the first-differences of the stock price and current earnings in the two

upper panels, and it can be seen that there are a few very large outliers, which are caused by the

jumps in bt due to non-moderate revisions. The lower graph displays the estimated cointegration

relation, which looks almost identical with the graph in the lower panel in Figure 2.4. Despite

the bounded instability in the relation between the stock price and earnings, a cointegrated VAR

model for the series illustrated in Figures 2.1-2.4 finds the two variables to be cointegrated with the

estimated cointegration relation given by β̂′Xt = pt − 2.38xt.
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Figure 2.1: Current earnings, the segmented trend, and the long-run trend in earnings. The upper
panel shows the long-run trend in earnings x̄t (green line), with the segmented trend Ψt (blue line)
and current earnings xt (red line). The middle panel shows the deviation between current earnings
and their long-run trend, x̄t − xt, which determines the simulated probability of a break in the
segmented trend. The simulated probabilities are shown in the lower panel, where the blue squares
indicate a reversal in the direction of the segmented trend.
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Figure 2.2: Revision of forecasting strategies. The upper panel shows the weights attached to
current earnings in the forecasting strategies over time (red line) along with non-moderate revisions
the forecasting strategies (blue squares) and the parameter B (green line). The middle panel shows
the qualitative ranges imposed on the revisions of the forecasting strategies by the guardedly mod-
erate revisions condition (green lines), the simulated revisions of the forecasting strategies (red line),
and the non-moderate revisions the forecasting strategies (blue squares). The lower panel shows
the simulated probability of a non-moderate revision (red line) and the non-moderate revisions the
forecasting strategies (blue squares).
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Figure 2.3: The stock price, benchmark price, price forecast. The upper panel shows the simulated
stock price (blue line), the benchmark price (green line), and the price forecast (red line). The middle
panel shows the deviation between the price forecast and the benchmark price. The lower panel
shows the decomposition of the deviation between the price forecast and the benchmark price into
two terms, which are individually bounded: (bt −B)′zt and B′(xt − x̄t).
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Figure 2.4: The stock price, benchmark price, price forecast. The upper panel shows the simulated
stock price (blue line), the benchmark price (green line), and the price forecast (red line). The middle
panel shows the deviation between the price forecast and the benchmark price. The lower panel
shows the decomposition of the deviation between the price forecast and the benchmark price into
two terms, which are individually bounded: (bt −B)′zt and B′(xt − x̄t).
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Figure 2.5: Estimated cointegration relation and first-differences. The upper and middle panels
show the first-differences of the stock price and earnings data, which are analyzed econometrically
with a cointegrated VAR model. The lower panel shows the estimated cointegration relation β̂′Xt =
pt − 2.38xt.
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2.4 The Cointegrated VAR Model

The p-dimensional vector autoregressive (VAR) model with k lags in error-correction form is given

by

∆Xt = ΠXt−1 +
k−1∑
i=1

Γi∆Xt−i + µ0 + µ1t+ ΦDt + εt, (2.43)

for t = 1, 2, ..., T and where X−k−1, ..., X0 are fixed. The error terms εt are assumed to be indepen-

dent and Gaussian with mean zero and covariance Σ. The parameters Π and Γi for i = 1, ..., k−1 are

of dimension (p× p), the parameters µ0 and µ1 of dimension (p× 1). Dummy variables and mean

shifts can be included in Dt, which has dimension
(
pD × 1

)
, and the parameters Φ has dimensions(

p× pD
)
.

Assumption 1 Assume that the autoregressive polynomial A(z) = I − Az has exactly p − r unit

roots at z = 1 and the remaining roots are larger than one in absolute value, |z| > 0.

Johansen (1996, Theorem 4.2) shows that under Assumption 1 the matrix Π has reduced rank r

and can be represented as

Π = αβ′, (2.44)

where the (p × r) matrices α and β have full column rank, so that the cointegrated VAR model is

given by

∆Xt = αβ′Xt−1 +

k−1∑
i=1

Γi∆Xt−i + µ0 + µ1t+ ΦDt + εt. (2.45)

The levels Xt are nonstationary while the r cointegration relations β′Xt are stationary. Hence, while

the levels Xt are integrated of order one, Xt ∼ I (1), the linear combinations β′Xt are integrated

of order zero, β′Xt ∼ I (0), so that the process ∆Xt is stationary, ∆Xt ∼ I (0). The cointegration

relations determine the deviations from the long-run relations between the variables, while the α-

coefficients measures the rate of adjustments to deviations from the long-run cointegration relations.

For a full introduction to the theory and application of the cointegrated VAR model, see Johansen

(1996) and Juselius (2006).

The notion of cointegration can be interpreted in the following way: there is a stationary long-run

equilibrium relation between the non-stationary variables, and whenever the variables move away

from this long-run relation at least one of the system variables is adjusting, so that the deviations

from the long-run relations are stationary. Hence, even though the non-stationarity makes the

individual system variables path-dependent, the cointegration relations ensure that the deviations

between them are bounded.

Despite that the cointegrated VAR model has constant parameters, it has shown able to estimate

the unconditional mean of time-varying cointegration parameters (at least in small systems) given by

βt = β+β̃t, where β̃t is a mean zero stationary autoregressive process, see Chapter 3. In this case the

linear relations β′Xt−1 and β′tXt−1 are stochastically trendless, see Harris et al. (2002) and McCabe

et al. (2003), and the linear relations β′Xt−1 can be interpreted as the long-run average cointegration

relations. Disregarding deterministic terms and lagged first-differences, a stochastically cointegrated

system can be written as

∆Xt = αβ′tXt−1 + εt, (2.46)
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or equivalently as

∆Xt = αβ′Xt−1 + αβ̃′tXt−1 + εt. (2.47)

As β̃t is a mean zero stationary process, the product β̃′tXt−1 becomes stochastically trendless, and

the system becomes stochastically cointegrated, see McCabe et al. (2003), Harris et al. (2002). Based

on simulations, I show in Chapter 3 that the cointegrated VAR model gives a consistent estimate

of the unconditional mean of the time-varying cointegration parameter in a bivariate system, i.e.

a consistent estimate of β, when β̃t is specified as a stationary first-order autoregressive process

with mean zero. However, if there is a high degree of (stationary) persistence in the time-varying

parameter the underlying parameter instability shows up as an additional degree of persistence in

the estimated cointegrated VAR model, which causes the estimated adjustment coefficients to be

skewed towards zero.

2.5 Estimation Results

For each of the simulated time-series of the stock price pt and current earnings xt, a cointegrated

VAR model is estimated based on an automated procedure. The automatic procedure first selects a

lag-length k for the unrestricted VAR model in equation (2.43), where the lag-length is selected as

the lowest number where the multivariate test of no first-order autocorrelation cannot be rejected

at a 5-percent significance level. Given the lag-length, the automated procedure tests for univariate

and multivariate autocorrelation, normality, and ARCH in the estimated residuals. Next, the rank

test for reduced rank is performed and the largest roots of the companion matrix are calculated.

Finally, the automatic procedure estimates the reduced rank cointegrated VAR model with a rank

of r = 1 imposed, irrespective of the conclusion of the rank test. For details on the estimation and

testing procedures, see Johansen (1996) and Juselius (2006), and references therein.

Tables 2.1-2.9 show the average results over the S = 10, 000 replications for each of the simulated

series and estimations, and for the three different sample lengths considered. It should be noted

that the samples of T = 1, 000 observations are included with the purpose to show the asymptotic

results based on a long sample.

2.5.1 Breakpoints in the Simulated Data

Table 2.1 shows the average simulated probabilities of a break in the segmented trend or a non-

moderate revision of the forecasting strategies for each of the specification, as well as the number

of breaks occuring in each of the two per 100 observations. It can be seen that as the range for

drawing non-moderate revisions increases, the average simulated probability of a non-moderate

revision increases from 2 to 3 percent. Hence, the number of simulated non-moderate revisions

increases from 2.0 to 3.4 on average per 100 observations. As the threshold parameter ciΨ used in

the logistic function to simulate the probabilities of a reversal in the trend increases, the average

simulated probability of a reversal decreases almost exponentially from 8 to 2 percent as ciΨ falls

from 2.0 to 4.0. As the threshold value increases, fewer simulated reversals in the segmented trend

occur. For ciΨ = 2.0 an average of 8 reversals occur per 100 observations, meaning that the swings

in earnings around the long-run trend are not very long and persistent. However, for ciΨ = 4.0
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Table 2.1: Breakpoints in the Simulated Data

i τ ib ciΨ T P (breakb)
a breaksb

b P (breakΨ)a breaksΨ
b

1 0.25 2.00 200 0.02 2.0 0.07 7.0
400 0.02 2.0 0.07 6.8

1000 0.02 2.0 0.07 6.7

2 0.25 3.00 200 0.02 2.0 0.04 4.1
400 0.02 2.0 0.04 3.9

1000 0.02 2.0 0.04 3.8

3 0.25 4.00 200 0.02 2.0 0.03 2.5
400 0.02 2.0 0.02 2.4

1000 0.02 2.0 0.02 2.3

4 0.25 5.00 200 0.02 2.0 0.02 1.7
400 0.02 2.0 0.02 1.6

1000 0.02 2.0 0.02 1.5

5 0.50 2.00 200 0.02 2.2 0.07 7.0
400 0.02 2.2 0.07 6.8

1000 0.02 2.3 0.07 6.7

6 0.50 3.00 200 0.02 2.2 0.04 4.1
400 0.02 2.2 0.04 3.9

1000 0.02 2.3 0.04 3.8

7 0.50 4.00 200 0.02 2.2 0.03 2.5
400 0.02 2.2 0.02 2.4

1000 0.02 2.3 0.02 2.3

8 0.50 5.00 200 0.02 2.2 0.02 1.7
400 0.02 2.2 0.02 1.6

1000 0.02 2.3 0.02 1.5

9 1.00 2.00 200 0.03 2.6 0.07 7.0
400 0.03 2.7 0.07 6.8

1000 0.03 2.8 0.07 6.7

10 1.00 3.00 200 0.03 2.6 0.04 4.1
400 0.03 2.7 0.04 3.9

1000 0.03 2.8 0.04 3.8

11 1.00 4.00 200 0.03 2.6 0.03 2.5
400 0.03 2.7 0.02 2.4

1000 0.03 2.8 0.02 2.3

12 1.00 5.00 200 0.03 2.6 0.02 1.7
400 0.03 2.7 0.02 1.6

1000 0.03 2.8 0.02 1.5

13 1.50 2.00 200 0.03 3.1 0.07 7.0
400 0.03 3.3 0.07 6.8

1000 0.03 3.4 0.07 6.7

14 1.50 3.00 200 0.03 3.1 0.04 4.1
400 0.03 3.3 0.04 3.9

1000 0.03 3.4 0.04 3.8

15 1.50 4.00 200 0.03 3.1 0.03 2.5
400 0.03 3.3 0.02 2.4

1000 0.03 3.4 0.02 2.3

16 1.50 5.00 200 0.03 3.1 0.02 1.7
400 0.03 3.3 0.02 1.6

1000 0.03 3.4 0.02 1.5

All reported values are averages over S = 10, 000 replications.
a Average simulated probability of a non-moderate revision of the forecasting strategies and a

reversal in the segmented trend, respectively.
b Average number of breakpoints per 100 observations.
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the number of simulated reversals decreses to 1.6 per 100 observations, which implies that the

movements in earnings away from the long-run trend, caused by the segmented trend, are very long

and persistent.

2.5.2 Specification and Residual Misspecification Tests

Table 2.2 shows the chosen lag-lengths in the estimated unrestricted VAR model based on the

selection procedure described above. From the table it can be seen that as the threshold value for

the breaks in the segmented trend, ciΨ, increases, the number of lags needed in the unrestricted

model to be able to not reject no autocorrelation increases. The same holds for an increase in the

range for non-moderate revisions, although the effect appears to be smaller. Furthermore, it can be

seen that the number of lags needed in the model increases with the sample size.

Table 2.3 shows the misspecification tests for no autocorrelation in the estimated residuals. It

is of interest that it is possible to get non-autocorrelated residuals by choosing an appropriate lag-

length in all cases. This is important as standard asymptotic inference in the cointegrated VAR

model is extremely sensitive to autocorrelation in the residuals, and it shows that the flexibility of

the lag structure can capture the persistent deviations from the estimated long-run structure caused

by the underlying bounded instability.

The misspecification tests for normality of the estimated residuals are presented in Table 2.4.

The results show that only with low values for both τ ib and ciΨ, combined with a sample of T = 200,

can normality of the residuals not be rejected based on the multivariate test, and even in these cases

the results are really borderline. In all other cases normality is rejected based on the multivariate

test. However, in most cases univariate normality of the residuals in the equation for the stock price

cannot be rejected for samples of T = 200. By contrast, univariate normality of the residuals in the

equation for current earnings cannot be rejected for all specifications and sample lengths.

By looking at Table 2.5, which shows the univariate skewness and excess kurtosis of the stan-

dardized estimated residuals,8 it can be concluded that the rejection of univariate normality in the

stock price equation and the rejection of multivariate normality is caused by a very large degree of

excess kurtosis. Thus, the densities of the residuals have ‘fat tails’, which appears to be primarily

associated with a few large outliers due to large non-moderate revisions in bt. These outliers can

easily be spotted based on a graphical inspection of the data—see for example the first-differences

∆pt in Figure 2.5 in the illustration above—and a careful empirical analysis and modeling of a sin-

gle time-series would—and should—capture the outliers by including a few dummy variables in the

model. Though, it is worth mentioning that the cointegrated VAR is quite robust to excess kurtosis,

see Juselius (2006). By contrast, skewness is more problematic for inference in the cointegrated VAR

model, but the results in Table 2.5 show that skewness is not a problem.

Table 2.6 shows the final misspecification test, and the results show that no ARCH cannot be

rejected for all specifications with high p-values. This is not surprising as the variance of the random

shocks was assumed constant in the simulations. However, ARCH-effects in the residuals might also

arise from time-varying parameters, but there do not appear to be any noticable volatility clustering

in the residuals.

8The skewness of the standardized normally distributed residuals is 0.0, and the kurtosis is 3.0.
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Table 2.2: Selected Lag-Lengths in the Unrestricted Model

i τ ib ciΨ T Av(k)a k = 1b k = 2b k = 3b k ≥ 4b

1 0.25 2.00 200 1.22 0.80 0.18 0.02 0.00
400 1.78 0.44 0.38 0.15 0.04

1000 3.80 0.01 0.11 0.29 0.59

2 0.25 3.00 200 1.36 0.69 0.26 0.04 0.00
400 2.11 0.27 0.43 0.24 0.06

1000 3.92 0.00 0.06 0.29 0.65

3 0.25 4.00 200 1.53 0.57 0.35 0.08 0.01
400 2.46 0.13 0.41 0.34 0.11

1000 4.06 0.00 0.03 0.24 0.72

4 0.25 5.00 200 1.68 0.46 0.40 0.12 0.01
400 2.67 0.08 0.37 0.39 0.16

1000 4.19 0.00 0.02 0.21 0.77

5 0.50 2.00 200 1.27 0.77 0.20 0.03 0.00
400 2.05 0.32 0.40 0.22 0.07

1000 4.40 0.00 0.03 0.18 0.79

6 0.50 3.00 200 1.39 0.66 0.28 0.05 0.00
400 2.27 0.21 0.42 0.28 0.09

1000 4.23 0.00 0.03 0.20 0.77

7 0.50 4.00 200 1.55 0.55 0.35 0.08 0.01
400 2.51 0.12 0.41 0.35 0.13

1000 4.21 0.00 0.02 0.20 0.78

8 0.50 5.00 200 1.69 0.46 0.41 0.12 0.02
400 2.67 0.07 0.37 0.40 0.16

1000 4.26 0.00 0.01 0.19 0.80

9 1.00 2.00 200 1.34 0.71 0.24 0.04 0.01
400 2.34 0.21 0.39 0.28 0.12

1000 4.77 0.00 0.01 0.11 0.88

10 1.00 3.00 200 1.44 0.63 0.30 0.06 0.01
400 2.44 0.15 0.40 0.32 0.12

1000 4.49 0.00 0.01 0.14 0.85

11 1.00 4.00 200 1.57 0.54 0.36 0.09 0.01
400 2.59 0.10 0.39 0.37 0.15

1000 4.39 0.00 0.01 0.16 0.83

12 1.00 5.00 200 1.71 0.45 0.41 0.12 0.02
400 2.72 0.07 0.36 0.39 0.18

1000 4.38 0.00 0.01 0.16 0.83

13 1.50 2.00 200 1.39 0.68 0.26 0.05 0.01
400 2.49 0.17 0.37 0.30 0.16

1000 4.88 0.00 0.01 0.09 0.90

14 1.50 3.00 200 1.49 0.61 0.31 0.07 0.01
400 2.54 0.13 0.38 0.33 0.15

1000 4.59 0.00 0.01 0.12 0.87

15 1.50 4.00 200 1.61 0.52 0.37 0.10 0.02
400 2.67 0.09 0.37 0.37 0.17

1000 4.47 0.00 0.01 0.14 0.85

16 1.50 5.00 200 1.73 0.44 0.41 0.12 0.02
400 2.78 0.06 0.35 0.39 0.20

1000 4.43 0.00 0.01 0.15 0.84

All reported values are averages over S = 10, 000 replications.
a Average lag-length k.
b Percentage with lag length k = 1, 2, 3 and k ≥ 4, respectively.
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Table 2.3: Misspecification Tests Part 1: Autocorrelation

Vector test Vector test Univar. test Univ. test
no autocorr. no autocorr. no autocorr. no autocorr.

order 1a order 1-2b order 1 in ε̂1t
b order 1 in ε̂2t

b

i τ ib ciΨ T χ2(4) p− val χ2(8) p− val χ2(4) p− val χ2(4) p− val
1 0.25 2.00 200 4.55 0.41 9.95 0.79 4.26 0.64 4.28 0.66

400 5.41 0.32 12.43 0.65 6.48 0.42 6.82 0.43
1000 5.76 0.29 13.97 0.39 8.00 0.15 8.44 0.15

2 0.25 3.00 200 4.99 0.36 10.94 0.76 5.15 0.57 5.49 0.58
400 5.56 0.31 12.82 0.58 6.74 0.31 7.34 0.31

1000 5.59 0.31 12.97 0.44 7.18 0.20 7.64 0.19

3 0.25 4.00 200 5.31 0.33 11.77 0.70 5.85 0.48 6.44 0.47
400 5.61 0.30 13.02 0.52 6.77 0.25 7.53 0.23

1000 5.53 0.31 12.50 0.46 6.80 0.23 7.32 0.22

4 0.25 5.00 200 5.44 0.32 12.24 0.65 6.19 0.41 6.92 0.38
400 5.64 0.30 12.97 0.49 6.68 0.24 7.53 0.21

1000 5.51 0.31 12.23 0.47 6.55 0.25 7.08 0.23

5 0.50 2.00 200 4.65 0.40 10.26 0.78 4.21 0.62 4.73 0.63
400 5.50 0.31 12.97 0.58 6.23 0.35 7.54 0.32

1000 5.80 0.29 14.32 0.36 7.40 0.18 8.98 0.13

6 0.50 3.00 200 4.99 0.36 11.02 0.75 4.85 0.56 5.67 0.55
400 5.55 0.31 12.88 0.55 6.16 0.30 7.59 0.26

1000 5.57 0.31 13.04 0.43 6.48 0.23 7.82 0.18

7 0.50 4.00 200 5.26 0.33 11.75 0.70 5.37 0.49 6.48 0.46
400 5.57 0.31 12.92 0.51 6.10 0.27 7.64 0.22

1000 5.49 0.32 12.49 0.46 6.05 0.26 7.39 0.21

8 0.50 5.00 200 5.40 0.32 12.15 0.65 5.65 0.43 6.96 0.37
400 5.57 0.31 12.87 0.48 6.02 0.26 7.64 0.20

1000 5.41 0.33 12.23 0.47 5.81 0.28 7.15 0.23

9 1.00 2.00 200 4.76 0.39 10.68 0.75 3.49 0.63 5.17 0.59
400 5.58 0.31 13.48 0.51 4.63 0.41 8.05 0.25

1000 5.85 0.28 14.64 0.35 4.84 0.34 9.07 0.13

10 1.00 3.00 200 5.01 0.36 11.20 0.73 3.82 0.59 5.87 0.53
400 5.57 0.31 13.13 0.51 4.54 0.41 7.82 0.23

1000 5.59 0.31 13.26 0.42 4.36 0.38 7.78 0.19

11 1.00 4.00 200 5.26 0.34 11.88 0.68 4.17 0.55 6.58 0.44
400 5.58 0.31 13.04 0.49 4.46 0.40 7.75 0.21

1000 5.49 0.32 12.70 0.45 4.10 0.41 7.27 0.22

12 1.00 5.00 200 5.38 0.32 12.17 0.64 4.32 0.51 6.97 0.37
400 5.53 0.31 12.93 0.48 4.39 0.40 7.71 0.20

1000 5.40 0.33 12.42 0.47 3.95 0.43 7.05 0.23

13 1.50 2.00 200 4.85 0.38 10.94 0.74 2.87 0.66 5.33 0.57
400 5.61 0.30 13.65 0.49 3.44 0.53 8.02 0.23

1000 5.94 0.28 15.04 0.34 3.37 0.50 9.05 0.13

14 1.50 3.00 200 5.05 0.36 11.37 0.72 3.05 0.64 5.93 0.52
400 5.59 0.31 13.33 0.49 3.40 0.54 7.78 0.22

1000 5.64 0.30 13.55 0.42 3.15 0.52 7.69 0.19

15 1.50 4.00 200 5.28 0.34 11.90 0.68 3.27 0.62 6.54 0.44
400 5.59 0.31 13.20 0.48 3.38 0.54 7.65 0.21

1000 5.52 0.31 13.00 0.45 3.01 0.54 7.14 0.23

16 1.50 5.00 200 5.40 0.32 12.29 0.64 3.40 0.59 6.93 0.37
400 5.53 0.31 12.98 0.48 3.30 0.54 7.60 0.21

1000 5.49 0.32 12.81 0.47 2.93 0.55 6.94 0.24

All reported values are averages over S = 10, 000 replications.
a Multivariate test for no autocorrelation of order 1 and order 1−2, respectively, in the estimated residuals, see Godfrey

(1988). The first columns report the test values, while the second report the corresponding p-values.
b Univariate tests for no autocorrelation of order 1 in the estimated residuals, see Godfrey (1988). The first columns

report the test values, while the second report the corresponding p-values.
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Table 2.4: Misspecification Tests Part 2: Normality

Vector test Univar. test Univar. test

normalityb normality of ε̂1t
b normality of ε̂2t

b

i τ ib ciΨ T χ2(4) p− val χ2(2) p− val χ2(2) p− val
1 0.25 2.00 200 82.84 0.06 3.01 0.45 1.98 0.51

400 352.36 0.01 5.97 0.36 1.98 0.51
1000 2729.66 0.00 54.37 0.09 2.03 0.50

2 0.25 3.00 200 81.22 0.07 2.85 0.46 2.00 0.51
400 348.04 0.01 5.54 0.37 1.99 0.51

1000 2716.42 0.00 51.41 0.10 2.02 0.50

3 0.25 4.00 200 81.75 0.07 2.89 0.46 2.00 0.51
400 347.58 0.01 5.40 0.38 1.98 0.51

1000 2727.83 0.00 48.94 0.11 2.01 0.50

4 0.25 5.00 200 84.03 0.08 3.06 0.46 2.00 0.51
400 355.81 0.01 5.54 0.38 1.97 0.51

1000 2756.61 0.00 49.01 0.12 2.03 0.50

5 0.50 2.00 200 210.56 0.02 12.99 0.28 1.99 0.51
400 870.60 0.00 59.43 0.10 2.00 0.51

1000 5085.27 0.00 734.24 0.00 2.03 0.50

6 0.50 3.00 200 206.60 0.03 12.03 0.29 2.00 0.51
400 864.28 0.00 56.90 0.11 1.99 0.51

1000 5085.60 0.00 723.64 0.00 2.02 0.50

7 0.50 4.00 200 205.02 0.03 12.21 0.29 2.00 0.51
400 855.95 0.00 56.36 0.11 1.99 0.51

1000 5108.99 0.00 719.21 0.00 2.00 0.50

8 0.50 5.00 200 206.04 0.03 13.31 0.29 2.00 0.51
400 857.49 0.00 58.34 0.12 1.97 0.51

1000 5146.05 0.00 733.15 0.00 2.04 0.50

9 1.00 2.00 200 397.42 0.01 94.32 0.08 1.98 0.51
400 1396.03 0.00 427.84 0.01 1.99 0.51

1000 6543.87 0.00 3302.14 0.00 2.03 0.50

10 1.00 3.00 200 387.15 0.01 90.43 0.09 2.01 0.51
400 1382.05 0.00 424.21 0.01 2.00 0.51

1000 6558.70 0.00 3301.01 0.00 2.01 0.50

11 1.00 4.00 200 388.84 0.01 90.69 0.09 2.02 0.51
400 1369.90 0.00 421.63 0.01 1.99 0.51

1000 6592.66 0.00 3314.13 0.00 2.00 0.50

12 1.00 5.00 200 392.25 0.02 95.31 0.09 2.00 0.51
400 1376.70 0.00 430.00 0.01 1.97 0.51

1000 6669.62 0.00 3368.25 0.00 2.04 0.50

13 1.50 2.00 200 504.76 0.01 211.03 0.04 1.99 0.51
400 1579.83 0.00 833.54 0.00 1.98 0.51

1000 6556.85 0.00 4764.30 0.00 2.03 0.50

14 1.50 3.00 200 494.16 0.01 204.70 0.04 2.01 0.51
400 1573.99 0.00 829.04 0.00 1.99 0.51

1000 6591.70 0.00 4776.29 0.00 2.01 0.50

15 1.50 4.00 200 493.83 0.01 205.75 0.04 2.00 0.51
400 1564.44 0.00 828.07 0.00 1.99 0.51

1000 6648.16 0.00 4815.04 0.00 2.00 0.50

16 1.50 5.00 200 503.71 0.01 209.60 0.04 2.00 0.51
400 1580.12 0.00 842.45 0.00 1.97 0.51

1000 6716.39 0.00 4884.33 0.00 2.04 0.50

All reported values are averages over S = 10, 000 replications.
a Multivariate test for normality of the estimated residuals, see Doornik and Hansen (1994).
b Univariate tests for normality of the estimated residuals, see Doornik and Hansen (1994).
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Table 2.5: Misspecification Tests Part 3: Skewness, Kurtosis, and Standard Deviation

Skewnessa Kurtosisa Std.dev.a

i τ ib ciΨ T ε̂1t ε̂2t ε̂1t ε̂2t ε̂1t ε̂2t

1 0.25 2.00 200 -0.02 -0.00 3.15 2.98 0.56 0.53
400 -0.03 0.00 3.31 2.98 0.56 0.54

1000 -0.03 -0.00 4.09 3.00 0.58 0.54

2 0.25 3.00 200 -0.00 0.00 3.12 2.98 0.57 0.54
400 -0.01 -0.00 3.28 2.99 0.57 0.55

1000 -0.02 -0.00 4.05 3.00 0.58 0.54

3 0.25 4.00 200 0.00 -0.00 3.12 2.98 0.57 0.55
400 -0.00 0.00 3.27 2.98 0.57 0.55

1000 -0.01 -0.00 4.01 2.99 0.58 0.55

4 0.25 5.00 200 0.00 -0.00 3.14 2.97 0.58 0.56
400 0.00 0.00 3.27 2.98 0.58 0.55

1000 -0.00 -0.00 4.01 3.00 0.58 0.55

5 0.50 2.00 200 -0.01 -0.00 3.99 2.98 0.58 0.54
400 -0.01 -0.00 5.20 2.98 0.60 0.54

1000 -0.00 -0.00 11.11 3.00 0.65 0.54

6 0.50 3.00 200 0.01 0.00 3.92 2.98 0.59 0.55
400 0.01 -0.00 5.12 2.99 0.60 0.55

1000 0.00 -0.00 11.02 3.00 0.65 0.55

7 0.50 4.00 200 0.02 -0.00 3.94 2.98 0.59 0.55
400 0.02 0.00 5.11 2.99 0.61 0.55

1000 0.01 -0.00 10.99 2.99 0.65 0.55

8 0.50 5.00 200 0.02 -0.00 4.00 2.98 0.60 0.56
400 0.03 -0.00 5.17 2.98 0.61 0.55

1000 0.02 -0.00 11.16 3.00 0.65 0.55

9 1.00 2.00 200 0.07 -0.00 9.19 2.98 0.68 0.54
400 0.08 -0.00 15.33 2.98 0.74 0.55

1000 0.06 -0.00 35.76 2.99 0.90 0.55

10 1.00 3.00 200 0.07 0.00 8.99 2.98 0.68 0.55
400 0.10 -0.00 15.32 2.99 0.74 0.55

1000 0.06 -0.00 35.87 2.99 0.91 0.55

11 1.00 4.00 200 0.08 -0.00 9.11 2.98 0.69 0.55
400 0.10 -0.00 15.49 2.99 0.74 0.55

1000 0.06 -0.00 36.09 2.99 0.91 0.55

12 1.00 5.00 200 0.07 -0.00 9.52 2.98 0.69 0.56
400 0.10 -0.00 15.98 2.98 0.74 0.55

1000 0.06 -0.00 37.04 2.99 0.91 0.55

13 1.50 2.00 200 0.10 -0.00 16.26 2.98 0.83 0.54
400 0.15 -0.00 26.56 2.98 0.95 0.55

1000 0.08 -0.00 49.79 2.99 1.28 0.55

14 1.50 3.00 200 0.10 0.00 16.01 2.98 0.83 0.55
400 0.16 -0.00 26.66 2.99 0.95 0.55

1000 0.08 -0.00 50.14 2.99 1.28 0.55

15 1.50 4.00 200 0.11 -0.00 16.28 2.98 0.84 0.55
400 0.15 -0.00 27.09 2.99 0.95 0.55

1000 0.08 -0.00 50.61 2.99 1.28 0.55

16 1.50 5.00 200 0.09 -0.00 16.86 2.98 0.85 0.56
400 0.15 -0.00 27.86 2.98 0.96 0.55

1000 0.08 -0.00 51.91 2.99 1.29 0.55

All reported values are averages over S = 10, 000 replications.
a The skewness of the estimated residuals is calculated as skewnessi = T−1 ∑T

t=1(ε̂it/σ̂i)
3 and kurtosisi =

T−1 ∑T
t=1(ε̂it/σ̂i)

4, where ε̂it are the estimated system residuals and σ̂i their standard deviations for
i = 1, 2 as reported in the final column, see Juselius (2006, p. 75).
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Table 2.6: Misspecification Tests Part 4: ARCH

Vector test Vector test Univar. test Univ. test
no. ARCH no ARCH no ARCH no ARCH

order 1a order 1-2a order 1 in ε̂1t
b order 1 in ε̂2t

b

i τ ib ciΨ T χ2(9) p− val χ2(18) p− val χ2(1) p− val χ2(1) p− val
1 0.25 2.00 200 31.43 0.40 40.00 0.41 0.99 0.51 0.95 0.51

400 19.84 0.51 28.76 0.52 1.03 0.51 0.98 0.50
1000 9.78 0.62 19.38 0.60 1.01 0.53 1.00 0.50

2 0.25 3.00 200 28.16 0.43 36.77 0.44 1.00 0.51 0.97 0.51
400 15.46 0.56 24.35 0.56 1.00 0.51 0.97 0.51

1000 9.66 0.62 19.32 0.60 1.01 0.53 0.99 0.50

3 0.25 4.00 200 23.84 0.48 32.40 0.48 1.00 0.51 0.98 0.50
400 11.76 0.60 20.77 0.59 0.99 0.51 0.97 0.50

1000 9.73 0.61 19.35 0.60 1.02 0.53 1.00 0.50

4 0.25 5.00 200 20.37 0.52 29.03 0.51 1.00 0.51 0.98 0.51
400 10.12 0.62 19.01 0.61 1.01 0.51 0.99 0.50

1000 9.77 0.61 19.46 0.60 1.01 0.52 1.02 0.50

5 0.50 2.00 200 20.43 0.46 29.97 0.46 0.95 0.53 0.96 0.51
400 13.22 0.53 23.49 0.52 0.94 0.56 0.96 0.51

1000 11.39 0.59 22.21 0.57 1.18 0.63 1.01 0.50

6 0.50 3.00 200 18.83 0.49 28.35 0.49 0.95 0.53 0.97 0.51
400 12.00 0.55 22.18 0.54 0.93 0.56 0.96 0.51

1000 11.40 0.59 22.30 0.57 1.19 0.63 0.99 0.50

7 0.50 4.00 200 16.69 0.52 26.13 0.51 0.95 0.53 0.98 0.50
400 11.04 0.57 21.41 0.55 0.93 0.56 0.97 0.50

1000 11.38 0.58 22.22 0.57 1.16 0.63 1.00 0.50

8 0.50 5.00 200 15.12 0.54 24.50 0.53 0.95 0.53 0.98 0.51
400 10.55 0.57 20.72 0.56 0.94 0.56 0.98 0.50

1000 11.40 0.58 22.35 0.56 1.20 0.63 1.02 0.50

9 1.00 2.00 200 15.29 0.51 26.01 0.49 0.86 0.62 0.96 0.51
400 12.00 0.55 23.10 0.53 1.00 0.67 0.97 0.50

1000 11.98 0.61 23.24 0.59 1.89 0.69 1.01 0.50

10 1.00 3.00 200 14.33 0.52 24.97 0.50 0.84 0.62 0.97 0.51
400 11.73 0.56 22.80 0.54 0.99 0.67 0.96 0.51

1000 11.92 0.61 23.29 0.59 1.85 0.69 0.99 0.50

11 1.00 4.00 200 13.40 0.54 23.88 0.51 0.86 0.62 0.98 0.50
400 11.49 0.56 22.57 0.54 0.97 0.67 0.97 0.50

1000 11.85 0.61 23.27 0.59 1.86 0.69 1.00 0.50

12 1.00 5.00 200 12.66 0.55 23.07 0.53 0.87 0.62 0.98 0.51
400 11.34 0.57 22.41 0.54 1.00 0.67 0.98 0.50

1000 12.07 0.61 23.54 0.58 1.89 0.70 1.02 0.50

13 1.50 2.00 200 14.00 0.54 25.15 0.51 0.94 0.68 0.96 0.51
400 11.67 0.58 22.94 0.55 1.37 0.69 0.97 0.50

1000 12.65 0.62 24.77 0.58 2.68 0.65 1.00 0.50

14 1.50 3.00 200 13.23 0.55 24.15 0.52 0.92 0.68 0.97 0.51
400 11.53 0.59 22.87 0.56 1.35 0.69 0.97 0.51

1000 12.71 0.62 24.90 0.58 2.68 0.65 0.99 0.50

15 1.50 4.00 200 12.73 0.56 23.58 0.52 0.97 0.67 0.98 0.51
400 11.44 0.59 22.78 0.56 1.37 0.70 0.97 0.50

1000 12.78 0.62 25.17 0.58 2.68 0.65 1.00 0.50

16 1.50 5.00 200 12.03 0.57 22.92 0.54 0.94 0.68 0.98 0.50
400 11.47 0.59 22.87 0.56 1.42 0.70 0.98 0.50

1000 13.05 0.62 25.43 0.58 2.78 0.65 1.02 0.50

All reported values are averages over S = 10, 000 replications.
a Multivariate test for no ARCH of order 1 and order 1 − 2, respectively, in the estimated residuals, see Lötkepohl and

Krätzig (2004).
b Univariate tests for no ARCH of order 1 in the estimated residuals, see Lötkepohl and Krätzig (2004).
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To conclude on the results from the misspecification tests, it appears that the estimated un-

restricted VAR models are fairly good statistical representations of the simulated data when an

adequate lag-length is selected, despite the misspecification of the econometric model compared to

the data-generating process used to simulate the data. In particular, it appears that the stochastic

autoregressive specification of the VAR model is so flexible that it can be used as a valid statis-

tical representation of xt, which was simulated as a combination of a segmented trend around a

non-stationary trend and a standard stationary autoregressive process. This holds even when the

bounds on the segmented trend are quite wide, so that the swings caused by the segmented trend

are quite long and persistent. Moreover, it appears that the jumps in bt cause a number of ‘outliers’

in the equation for pt, and as a consequence excess kurtosis are found in the estimated residuals in

that equation and normality of the estimated residuals is rejeceted, even in small samples. How-

ever, overall the estimated VAR models appear to be fairly well-specified based on the residual

misspecifiation tests.

2.5.3 Reduced Rank Tests and Estimates

The reduced rank tests are reported in Table 2.7. The reduced rank tests test the model with a

rank of r = 0 and r = 1, respectively, against the unrestricted model with full rank r = p. A rank

of r = 0 corresponds to no cointegration in the system, while a rank of r = 1 corresponds to one

cointegration relation and p− r = 1 common stochastic trend in the system. For all specifications a

rank of r = 1 cannot be rejected on average over all repititions, with p-values well over 0.05 in most

cases. However, only for low values of τ ib and ciΨ can a rank of r = 0 be rejected, which would lead

us to choose a reduced rank of r = 1. It must be pointed out, though, that in general setting the

rank is a difficult choice which should not be based solely on the trace test, but by a combination

of different indices—such as the number of near-unit roots in the system—as suggested by Juselius

(2006).

It is clear from Table 2.7, that increasing τ ib does not appear to have a large impact on the rank

tests, while an increase in ciΨ has a large impact leading the test for a rank of r = 0 to not be

rejected, so that the rank test indicates a preferred rank of r = 0. This indicates that the larger

fluctuations of current earnings around the long-run trend, the harder it is to find cointegration

between the stock price and earnings based on the multivariate rank test. This result is not surprising

as an increase in ciΨ makes the deviations between current earnings and the long-run trend in

earnings longer and more persistent as the segmented trend is allowed to move further away from xt

before a reversal occurs. The greater persistence in the relation between the current earnings and

the long-run trend in earnings implies that deviations the estimated cointegration relation in the

estimated cointegrated VAR model becomes more persistent, and consequently the largest estimated

eigenvalues decreases. Moreover, the greater persistence implies that a second near-unit root is

found in the estimated model, as seen from the columns with the roots of the companion matrix in

Table 2.7. Simultaneously, the estimated cointegration adjustment coefficients α̂i for i = p, x in the

reduced rank model with r = 1 decrease, as the estimated adjustment to the cointegration relations

becomes slower, see Table 2.9.

Tables 2.8 and 2.9 present the estimated cointegration coefficients β̂ and the adjustment coeffi-
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Table 2.7: Reduced Rank Determination: Rank Test

Reduced rank tests H(r) against H(p)a Roots of comp. matrixb

i τ ib ciΨ T H(0) p− val H(1) p− val υ̂1,r=2 υ̂2,r=2 υ̂2,r=1

1 0.25 2.00 200 34.04 0.01 3.13 0.24 0.97 0.72 0.72
400 45.43 0.00 2.37 0.30 0.99 0.80 0.80

1000 48.58 0.00 1.35 0.40 1.00 0.90 0.90

2 0.25 3.00 200 24.37 0.04 3.01 0.24 0.97 0.81 0.81
400 29.53 0.02 2.33 0.30 0.99 0.87 0.87

1000 34.52 0.00 1.34 0.40 1.00 0.93 0.93

3 0.25 4.00 200 16.97 0.13 2.77 0.24 0.97 0.88 0.87
400 18.08 0.09 2.25 0.30 0.99 0.93 0.93

1000 22.90 0.02 1.34 0.40 1.00 0.96 0.96

4 0.25 5.00 200 12.78 0.27 2.39 0.25 0.98 0.92 0.91
400 12.20 0.26 2.12 0.30 0.99 0.96 0.96

1000 15.18 0.11 1.34 0.40 1.00 0.97 0.97

5 0.50 2.00 200 31.42 0.01 3.46 0.20 0.97 0.75 0.75
400 35.70 0.01 3.04 0.22 0.99 0.84 0.84

1000 31.34 0.01 1.86 0.30 1.00 0.94 0.94

6 0.50 3.00 200 23.45 0.04 3.34 0.20 0.97 0.82 0.82
400 25.82 0.03 2.99 0.22 0.99 0.89 0.89

1000 26.89 0.01 1.88 0.30 1.00 0.95 0.95

7 0.50 4.00 200 17.03 0.13 3.09 0.20 0.97 0.88 0.88
400 17.69 0.10 2.87 0.22 0.99 0.93 0.93

1000 21.30 0.03 1.88 0.30 1.00 0.96 0.96

8 0.50 5.00 200 13.19 0.24 2.68 0.21 0.97 0.92 0.91
400 12.88 0.23 2.65 0.23 0.99 0.96 0.95

1000 16.33 0.09 1.86 0.30 1.00 0.97 0.97

9 1.00 2.00 200 29.13 0.02 4.24 0.14 0.96 0.77 0.77
400 29.22 0.03 4.60 0.12 0.98 0.88 0.88

1000 27.02 0.01 2.71 0.21 0.99 0.95 0.95

10 1.00 3.00 200 22.84 0.05 4.04 0.14 0.96 0.83 0.83
400 23.60 0.05 4.48 0.12 0.98 0.91 0.91

1000 25.84 0.01 2.76 0.20 0.99 0.95 0.95

11 1.00 4.00 200 17.47 0.12 3.68 0.15 0.96 0.88 0.87
400 18.41 0.09 4.12 0.13 0.98 0.93 0.93

1000 23.58 0.02 2.71 0.20 0.99 0.96 0.96

12 1.00 5.00 200 13.98 0.20 3.13 0.17 0.97 0.91 0.90
400 14.89 0.16 3.60 0.14 0.98 0.95 0.95

1000 20.92 0.04 2.55 0.21 0.99 0.96 0.96

13 1.50 2.00 200 28.91 0.02 5.20 0.10 0.95 0.78 0.78
400 28.92 0.03 5.99 0.08 0.97 0.89 0.88

1000 30.97 0.01 3.13 0.18 0.99 0.94 0.94

14 1.50 3.00 200 23.25 0.05 4.89 0.10 0.95 0.83 0.83
400 24.69 0.04 5.74 0.08 0.97 0.91 0.90

1000 30.41 0.01 3.19 0.17 0.99 0.94 0.94

15 1.50 4.00 200 18.27 0.10 4.34 0.11 0.95 0.88 0.87
400 20.44 0.06 5.07 0.09 0.97 0.93 0.92

1000 28.94 0.01 3.06 0.18 0.99 0.94 0.94

16 1.50 5.00 200 15.01 0.17 3.56 0.14 0.96 0.90 0.90
400 17.34 0.11 4.16 0.11 0.98 0.94 0.93

1000 27.04 0.01 2.79 0.19 0.99 0.95 0.95

All reported values are averages over S = 10, 000 replications.
a Likelihood ratio test of rank r against the unrestricted model with r = p, see Johansen (1996).
b υ̂i,r=j refers to the modulus of the i’th largest root of the companion matrix for the model with rank r = j. Thus, the

first two columns are the two largest unrestricted roots of the companion matrix for the unrestricted model, while the
final column is the largest unrestricted root in the reduced rank model with r = 1 (where the largest root is restricted
to a unit root).
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Table 2.8: Reduced Rank Estimations with r = 1: Cointegration Coefficients β

i τ ib ciΨ T β̂2 β̂∗
2 seβ̂∗2

a τβ̂∗2
b b̄t

c β̂∗
2 − b̄t

d

1 0.25 2.00 200 -2.57 -2.93 0.59 -12.62 -2.00 -0.93
400 -2.33 -2.33 0.16 -21.47 -2.00 -0.33

1000 -2.05 -2.05 0.05 -42.44 -2.00 -0.06

2 0.25 3.00 200 -2.02 -2.46 0.82 -9.20 -2.00 -0.46
400 -2.44 -2.44 0.30 -15.10 -2.00 -0.44

1000 -2.05 -2.05 0.07 -31.21 -2.00 -0.05

3 0.25 4.00 200 -1.50 -1.50 1.09 -6.87 -2.00 0.50
400 -2.22 -2.32 0.53 -10.02 -2.00 -0.32

1000 -2.04 -2.04 0.11 -21.26 -2.00 -0.04

4 0.25 5.00 200 -1.54 -1.73 1.23 -6.17 -2.00 0.27
400 -2.14 -2.14 0.88 -7.16 -2.00 -0.14

1000 -2.04 -2.04 0.17 -14.39 -2.00 -0.04

5 0.50 2.00 200 -2.66 -2.90 0.86 -9.87 -2.00 -0.90
400 -2.83 -2.83 0.33 -14.79 -2.00 -0.83

1000 -2.11 -2.11 0.10 -23.30 -2.00 -0.11

6 0.50 3.00 200 -2.06 -2.26 1.12 -7.50 -2.00 -0.26
400 -2.86 -2.74 0.49 -11.43 -2.00 -0.74

1000 -2.10 -2.10 0.12 -20.05 -2.00 -0.10

7 0.50 4.00 200 0.90 -1.91 1.29 -5.87 -2.00 0.08
400 -4.02 -2.54 0.66 -8.37 -2.00 -0.54

1000 -2.07 -2.07 0.15 -16.08 -2.00 -0.07

8 0.50 5.00 200 6.86 -1.47 1.31 -5.39 -2.00 0.53
400 -1.11 -2.17 0.89 -6.48 -2.00 -0.18

1000 -1.99 -1.99 0.19 -12.46 -2.00 0.01

9 1.00 2.00 200 -1.73 -3.35 1.94 -6.52 -2.00 -1.35
400 -5.63 -3.03 0.80 -8.74 -2.00 -1.03

1000 -2.15 -2.15 0.19 -12.86 -2.00 -0.16

10 1.00 3.00 200 -4.50 -2.27 1.89 -5.20 -2.00 -0.28
400 -10.33 -2.84 0.89 -7.36 -2.00 -0.84

1000 -2.14 -2.14 0.20 -12.20 -2.00 -0.14

11 1.00 4.00 200 -6.03 -1.70 1.80 -4.28 -2.00 0.30
400 -0.57 -2.58 1.04 -6.05 -2.00 -0.58

1000 -2.03 -2.03 0.21 -11.11 -2.00 -0.03

12 1.00 5.00 200 -2.23 -1.19 1.27 -4.09 -2.00 0.81
400 -0.23 -1.60 0.96 -5.19 -2.00 0.40

1000 -1.94 -1.94 0.22 -9.83 -2.00 0.06

13 1.50 2.00 200 1.31 -3.00 2.45 -4.98 -2.00 -1.00
400 -1.17 -3.06 1.10 -6.56 -2.00 -1.06

1000 -2.13 -2.13 0.23 -10.09 -2.00 -0.13

14 1.50 3.00 200 -6.03 -2.69 2.53 -4.08 -2.00 -0.69
400 -2.49 -2.98 1.13 -5.77 -2.00 -0.98

1000 -2.12 -2.12 0.24 -9.81 -2.00 -0.12

15 1.50 4.00 200 -1.24 -2.00 1.98 -3.45 -2.00 -0.00
400 0.41 -2.00 0.97 -4.95 -2.00 -0.00

1000 -2.00 -2.00 0.24 -9.27 -2.00 0.00

16 1.50 5.00 200 -2.62 -1.19 1.43 -3.38 -2.00 0.81
400 -1.23 -2.01 0.81 -4.46 -2.00 -0.01

1000 -1.87 -1.87 0.24 -8.62 -2.00 0.13

The column for β̂2 reports averages over S = 10, 000 replications. However, the columns for β̂∗
2 report

averages where a total of 178 out of the 480, 000 estimates are excluded due to extreme estimates, where

|β̂2| > 1.000.
a Standard error of β̂2.
b T-value of β̂2.
c Sample average of the parameter bt in the simulations.
d Difference between the estimated parameter β̂2 and the sample average of bt.
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Table 2.9: Reduced Rank Estimations with r = 1: Adjustment Coefficients α

i τ ib ciΨ T α̂1 seα̂1
a τα̂1

b α̂2 seα̂2
a τα̂2

b

1 0.25 2.00 200 0.18 0.04 4.65 0.19 0.04 5.02
400 0.17 0.03 5.86 0.18 0.03 6.40

1000 0.10 0.02 5.30 0.11 0.02 6.40

2 0.25 3.00 200 0.11 0.03 3.11 0.12 0.03 3.41
400 0.11 0.02 4.41 0.12 0.02 4.85

1000 0.07 0.02 4.41 0.08 0.01 5.34

3 0.25 4.00 200 0.05 0.04 1.51 0.06 0.03 1.81
400 0.06 0.02 2.97 0.07 0.02 3.33

1000 0.05 0.01 3.47 0.05 0.01 4.23

4 0.25 5.00 200 0.00 0.04 0.28 0.02 0.04 0.60
400 0.03 0.02 1.80 0.04 0.02 2.12

1000 0.03 0.01 2.67 0.03 0.01 3.30

5 0.50 2.00 200 0.12 0.03 3.68 0.13 0.03 4.28
400 0.10 0.02 4.18 0.11 0.02 5.22

1000 0.03 0.01 2.04 0.05 0.01 4.26

6 0.50 3.00 200 0.08 0.03 2.41 0.09 0.03 2.93
400 0.07 0.02 3.22 0.08 0.02 4.12

1000 0.03 0.01 1.89 0.04 0.01 3.94

7 0.50 4.00 200 0.03 0.03 1.06 0.05 0.03 1.55
400 0.04 0.02 2.12 0.05 0.02 2.90

1000 0.02 0.01 1.55 0.03 0.01 3.39

8 0.50 5.00 200 -0.01 0.04 -0.02 0.02 0.04 0.49
400 0.02 0.02 1.14 0.03 0.02 1.85

1000 0.01 0.01 1.15 0.02 0.01 2.77

9 1.00 2.00 200 0.05 0.02 1.98 0.07 0.02 3.12
400 0.02 0.02 1.59 0.05 0.01 3.68

1000 -0.02 0.01 -1.47 0.02 0.01 2.55

10 1.00 3.00 200 0.03 0.02 1.14 0.05 0.02 2.15
400 0.01 0.02 1.02 0.04 0.01 2.96

1000 -0.02 0.01 -1.42 0.02 0.01 2.50

11 1.00 4.00 200 -0.00 0.03 0.18 0.03 0.02 1.16
400 0.00 0.02 0.33 0.03 0.01 2.11

1000 -0.02 0.01 -1.49 0.02 0.01 2.24

12 1.00 5.00 200 -0.03 0.03 -0.63 0.01 0.03 0.38
400 -0.01 0.02 -0.38 0.02 0.01 1.32

1000 -0.02 0.01 -1.60 0.01 0.01 1.90

13 1.50 2.00 200 0.02 0.02 0.85 0.04 0.01 2.45
400 -0.01 0.02 -0.13 0.03 0.01 2.86

1000 -0.04 0.01 -3.38 0.01 0.01 1.84

14 1.50 3.00 200 0.00 0.02 0.23 0.03 0.02 1.71
400 -0.02 0.02 -0.54 0.02 0.01 2.30

1000 -0.04 0.01 -3.34 0.01 0.01 1.82

15 1.50 4.00 200 -0.02 0.03 -0.57 0.02 0.02 0.89
400 -0.03 0.02 -1.10 0.02 0.01 1.59

1000 -0.04 0.01 -3.36 0.01 0.01 1.65

16 1.50 5.00 200 -0.05 0.03 -1.22 0.01 0.02 0.31
400 -0.04 0.02 -1.60 0.01 0.01 0.98

1000 -0.04 0.01 -3.38 0.01 0.01 1.41

All reported values are averages over S = 10, 000 replications.
a Standard error of α̂1 and α̂2, respectively.
b T-value of α̂1 and α̂2, respectively
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cients α̂. The cointegration relations are normalized on β̂1, which is the coefficient to the stock price,

so the cointegration relations are given by pt− β̂2xt. Hence, Table 2.8 presents the average estimates

of β̂2 over all S = 10, 000 replications, as well as an average over all replications excluding a total

of 178 out of 480, 000 very influential estimates, where the estimated coefficient
∣∣∣β̂2

∣∣∣ > 1, 000.9 For

transparency, the average estimates with and without the 178 very influential estimates are shown,

but standard errors and t-values are only shown for the latter. Finally, Table 2.8 reports the aver-

ages over all replications of the individual sample averages of bt, as well as the average difference

between the estimate β̂2 and the sample average of bt.

The results show that the estimated coefficients are fairly close to the sample averages of bt

(which are very close to B as expected) when the sample size is long. For a sample size of T =

200 the estimated coefficients are in many cases far from the sample averages of bt. Though, we

must point out that even after excluding the 178 most influential replications, the averages of the

estimated coefficients are still very influenced by a few number of extreme estimates, which a careful

econometric analysis would not get.

From Table 2.9 it can be seen that the estimated adjustment coefficient for the earnings variable is

found to be equilibrium adjusting in all specifications (i.e. α̂2 > 0), while the stock price is generally

found to be equilibrium-increasing for low values of τ ib and ciΨ (i.e. α̂1 > 0), and equilibrium-

adjusting for higher values of τ ib and ciΨ (i.e. α̂1 < 0). Moreover, in the former case the estimated

adjustment coefficients are on average significant, but as τ ib and ciΨ increase the significance decreases,

and eventually both adjustment coefficients become insignificant. As mentioned above, these results

can be understood from the fact that increasing τ ib and ciΨ allows for a greater degree of persistence

in the fluctuations of pt and xt around the common long-run trend in earnings, and hence a greater

degree of persistence in pt −B′xt.

2.6 Conclusion

To conclude on the simulations, the results from the estimations indicate that the cointegrated

VAR model—with its system approach, lag structure, and decomposition of the data according

to its degree of persistence—can be used as a surprisingly good statistical representation of the

simulated data with an adequate lag structure. Importantly, the estimations also show that in

many cases a ‘correct’ reduced rank of r = 1 is found, and the estimated cointegration coefficients

are close to the corresponding parameters in the simulations. Finally, a large degree of persistence

is found in the estimated cointegrated VAR model, which indicates that the underlying bounded

instability in the individual processes and parameters shows up as persistence in the cointegrated

VAR model.

The results are surprising, in particular when one takes into account that the specification of

the simulations do not correspond to the specification of the cointegrated VAR model, and that

the simulations have bounded instability in the parameters, while the cointegrated VAR model has

constant parameters.

9The exclusion criteria used here is somewhat arbitrary, but for transparency results are shown with and without
the excluded estimates.
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It is important to note that the inclusion of lagged first-differences in the cointegrated VAR model

appears to be an extremely important element in the specification of a general unrestricted VAR

model as a statistically valid representation of the simulated data. It appears that the underlying

bounded instability in the stochastic processes and parameters can be fairly well captured by the

lagged first-differences in the short-run structure—so that the estimated residuals are fairly well-

specified, though with ‘fat tails’ in the density of the estimated residuals—while the cointegration

relations capture the stable long-run relations in the data.

However, it is worth pointing out that the simulations were based on bounded instability in

the short run, but with stability in the causal structure in the long run. On that basis the results

here might not be very surprising, and it will be interesting to expand the fairly simple simulations

considered here. In future work on bridging IKE models with the cointegrated VAR model and

extensions thereof—and more generally the ‘data-first approach’ to econometrics—I intend to allow

for more variables to enter the forecasting strategies in the simulations; allow for contingent change

that is not bounded within a narrow range, so that there are contingent changes in the long-run

structure of the model; focus directly on testing for structural change in the cointegrated VAR

model; and, finally, focus directly on developing and using extensions of the cointegrated VAR

model with stochastic parameters to model the parameter-instability directly.

However, the results presented in this paper show that regularities in the simulated outcomes

from a simple model embedding key features of IKE can indeed be found econometrically in the

frequently used classic cointegrated VAR model. This suggests that the cointegrated VAR model

may serve as a good starting point for empirically testing IKE models.
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Stochastic Cointegration Parameters

as a Source of Persistence
in the Cointegrated VAR Model

– A Simulation Study

Morten Nyboe Tabor†

June 12, 2013

Abstract

In this paper, I simulate cointegrated data with stochastic cointegration parameters given

by βt = β+Bt, where Bt is a mean zero stationary autoregressive process with different degrees

of persistence and volatility, and the linear relations β′Xt are asymptotically stationary. The

simulated data is analysed econometrically with the classic cointegrated VAR model of Johansen

(1996). The results show that the cointegrated VAR model appears to be a fairly well-specified

statistical representation of the simulated data, except from in extremely long samples or with

near non-stationary persistence and high volatility in Bt. Moreover, the results show that the

trace tests suggest the correct reduced rank, except from the extreme cases mentioned. Finally,

the results show that the cointegrated VAR model delivers a consistent and very precise estimate

of β, even in small samples. However, if there is persistence in the stochastic cointegration

parameter Bt in the underlying data-generating process it shows up in the estimated cointegrated

VAR model as persistence in the estimated cointegration relations. As a result the estimated

eigenvalues become very small and the estimated adjustment coefficients are skewed towards

zero. Thereby, the results show that bounded parameter-instability in the underlying data-

generating process can potentially be a source of persistence in estimated cointegration relations

and corresponding low estimated adjustment coefficients. Such persistence and slow adjustment

is frequently found empirically in macroeconomic and financial data, and it has been hard to

explain for standard economic theory maintaining the assumption of constant parameters.
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3.1 Introduction

The cointegrated vector autoregressive (VAR) model of Johansen (1996) has proven extremely use-

ful for representing and modeling of macroeconomic and financial data due to non-stationarity of

such data. The estimated cointegration relations can be given a natural interpretation as corre-

sponding to equilibrium relations of economic theories, and specific economic theories can be tested

empirically by formulating the theoretical implications as testable restrictions on the parameters of

a cointegrated VAR model, see Juselius (2006) and Møller (2008).

However, it is an empirical regularity that deviations from estimated cointegration relations are

found to be very persistent, with deviations frequently lasting many years, and consequently the

estimated adjustment coefficients are found to be very low. For examples of such persistence found

in cointegrated VAR analyses, see for example Juselius (1995, 2009 a), Juselius and MacDonald

(2004), and Johansen et al. (2010) for analyses of ‘purchasing power parity’ and uncovered interest

parity in foreign exchange markets; Johansen and Juselius (1990) and Juselius (2006) for analyses

of domestic money demand and inflation dynamics; and Juselius and Toro (2005) for international

monetary transmission effects.

The persistent deviations and slow adjustment to estimated long-run equilibria found empiri-

cally have been puzzling for standard economic theory, because it typically predicts a much faster

equilibrium adjustment. The ‘purchasing power parity (PPP) puzzle’ provides a notable example of

a ‘persistence puzzle’ in international finance, with consensus estimates of equilibrium adjustments

around 15 percent per year and long swings in exchange rates around the PPP level lasting years,

see Rogoff (1996) for an overview. In response to such empirical ‘persistence puzzles’ economic

theory has broadly focused on either adding highly persistent exogenous shocks, caused for example

by changes in tastes and technology, causing persistent deviations from equilibrium; or on adding

various market imperfections, such as sticky prices or limited capital mobility, causing slow adjust-

ment towards equilibrium. See for example Stockman (1980), Helpman (1981), and Svensson (1985)

for theoretical responses to the ‘PPP puzzle’ of the former kind, and Obstfeld and Rogoff (1995,

2000) for the latter kind.

In this paper, I use simulations to show that persistent deviations from estimated cointegration

relations and slow adjustment can arise in the cointegrated VAR model as a consequence of bound-

edly time-varying cointegration parameters in the underlying data-generating process—even with

instant adjustment and without persistent exogenous shocks to the variables.

The simulations consider cointegrated data with stochastic cointegration parameters given by

βt = β + Bt, where Bt is a mean zero stationary autoregressive process. Importantly, the mul-

tiplicative process B′tXt−1 is stochastically trendless, see Harris et al. (2002) and McCabe et al.

(2003), so the linear relations β′tXt−1 and β′Xt−1 are stochastically trendless and the simulated

process Xt is a cointegrated process with average cointegration relations β′Xt−1. Simulated data

from this class of data-generating processes are analysed econometrically with the cointegrated VAR

model. I show that the cointegrated VAR provides a consistent estimate of the unconditional mean

of the underlying stochastic cointegration parameters as given by β, and thereby the estimated

stationary cointegration relation β̂′Xt can be interpreted as the long-run average equilibrium rela-

tion. However, persistence in Bt in the underlying data-generating process cause persistence in the
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estimated cointegration relations β̂′Xt in a cointegrated VAR model and correspondingly skews the

estimated adjustment coefficients α̂ towards zero. Thereby, the results offer a novel potential under-

standing of the empirical ‘persistence puzzle’ in cointegrated VAR analyses as a result of bounded

parameter-instability in the underlying cointegration relations.

I simulate a simple bivariate system where Πt = αβ′t is stochastic and with reduced rank r = 1.

One variable is a weakly exogenous standard random walk, while the other is instantly adjusting

to the cointegration relation β′tXt−1. The stochastic cointegration parameters are specified as βt =

β + Bt, where Bt is simulated as a first-order autoregressive process. This simple representation

allows me to consider three general cases with respect to Bt and the cointegration properties of the

simulated system: i) Bt = 0, so the parameters are constant and the system is cointegrated in the

standard sense; ii) Bt is stationary with unconditional mean zero, so that β′Xt−1 is stochastically

trendless and the simulated process Xt is cointegrated; and, iii) Bt is non-stationary, so that β′Xt

is non-stationary and the system is not cointegrated. In all three cases the system is simulated for

different volatilities of the stochastic parameters and for different sample lengths. Moreover, in the

case of stationary parameters I consider both i.i.d., medium persistence, and near non-stationary

persistence around a constant unconditional mean.

Using the simulated data, I mimic the modeling of an econometrician (assumed unaware of the

data-generating processes used in the simulations) analysing the data with the cointegrated VAR

model based on the general-to-specific procedure described in Johansen (1996) and Juselius (2006).

Therefore, the econometric analysis is based on standard asymptotic inference. The modeling pro-

cedure focuses first on testing the statistical adequacy of an unrestricted model, and second on the

cointegration properties of the system by testing for and estimating a reduced rank model.

Due to stochastic cointegration parameters in the data-generating process of the simulated data

the cointegrated VAR model is misspecified. However, the simulation study shows that the estimated

cointegrated VAR models appear statistically well-specified based on various residual misspecifica-

tion tests, except from extreme cases with both high persistence and high volatility in the stochastic

parameters and in very long samples. In particular, the results show that autocorrelation and per-

sistence in the estimated cointegration relation caused by persistence in Bt can be captured through

the short-run structure of the cointegrated VAR model by selecting an adequate lag length, so that

the estimated residuals are found not to be autocorrelated.

The results show that the trace tests for reduced rank, on average, suggest the correct rank,

though persistence in Bt skews the test distributions of the rank test towards zero. Moreover, the

rank test is found to correctly reject cointegration when the stochastic cointegration parameters are

non-stationary, in which case the variables are not cointegrated.

Finally, the simulation results show that under stochastic cointegration in the data-generating

process, the cointegrated VAR model produces a consistent estimate of the unconditional mean β

of the stochastic cointegration parameters βt, and that the estimator is very precise even in small

samples. This is an encouraging result as it shows that the cointegrated VAR model can be used as

an approximation of a more complex underlying data-generating process with bounded parameters-

instability if the primary focus is to estimate the average long-run relations. Though inference

is sensitive to the misspecification of this approximation, the results show that the conclusions

with respect to reduced rank and significance of the cointegration and adjustment coefficients are
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qualitatively correct.

However, if Bt is persistent, but stationary with mean zero, the estimated cointegration relation

β̂′Xt becomes persistent, but stationary, with the persistence caused solely by the persistence in Bt.

As a result the largest estimated eigenvalue falls significantly and the estimated adjustment coef-

ficients α̂ get skewed towards zero—though inference on their significance is qualitatively correct.

Moreover, when Bt becomes near non-stationary the modulus of the largest unrestricted charac-

teristic root in the system is found to be almost one, and thereby an additional near unit root is

found in the estimated cointegrated VAR model. These are the key findings which provide a novel

understanding of the source of the ‘persistence puzzle’ as a result of bounded parameter-instability

in the underlying data-generating process.

The rest of the paper is organised as follows. In Section 3.2 the cointegrated VAR model and

extensions with stochastic parameters are described. Section 3.3 presents the simulation design

and Section 3.4 presents the results from the estimations based on the simulated data. Section 3.5

concludes.

3.2 The Cointegrated VAR Model and Extensions with

Stochastic Parameters

Consider the p-dimensional VAR model with one lag and no deterministic terms written in error-

correction form

∆Xt = ΠXt−1 + εt, (3.1)

for t = 1, 2, ..., T , where Π has dimension (p × p) and X0 is fixed. The error terms εt are assumed

independent and Gaussian with mean zero and covariance Σ.

Assumption 2 Assume that the autoregressive polynomial A(z) = Ip(1− z)−Πz has exactly p− r
unit roots at z = 1 and the remaining roots are larger than one in absolute value, |z| > 0.

Johansen (1996, Theorem 4.2) shows that under Assumption 2 the matrix Π has reduced rank r

and can be represented as

Π = αβ′, (3.2)

where the (p×r) matrices α and β have full column rank, and X0 can be given an initial distribution

so that Xt has the representation

Xt = CΣX0 + CΣ

t∑
i=1

εi + CSSt, (3.3)

where St := β′Xt, CΣ := β⊥(α′⊥β⊥)−1α′⊥, CS := α(β′α)−1, and α⊥ and β⊥ are othogonal matrices

of full rank and dimension (p × p − r), such that α′⊥α = 0 and β′⊥β = 0. This is an instance

of Granger’s representation theorem (Engle and Granger, 1987) and it shows that the process Xt

can be represented in terms of a stochastic trend, a stationary process, and the initial values. The

process Xt is a cointegrated I(1) process with p− r common stochastic trends given by α′⊥Xt and r

cointegration relations given by β′Xt. The first-difference ∆Xt and the cointegration relations β′Xt
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are I(0). The cointegration relations measure the deviations from the long-run equilibrium relations

between the variables, while the α-coefficients determine the adjustments to such deviations.

For the derivations in the next sections it is useful to derive the Granger representation. First,

under Assumption 2 the cointegrated VAR model is given by

∆Xt = αβ′Xt−1 + εt. (3.4)

Pre-multiplying equation (3.4) with β′ and re-arranging, the r linear relations St := β′Xt are given

by

St = (Ir + β′α)St−1 + β′εt, (3.5)

which is asymptotically stable if (Ir+β′α) has eigenvalues inside the unit circle. Under Assumption

2 this holds and X0 can be given an initial distribution, so that the r-dimensional process St is

stationary and can be represented as

St =

∞∑
i=0

(Ir − β′α)iβ′εt−i. (3.6)

Pre-multiplying equation (3.4) with α′⊥, re-arranging, and cumulating over t, the (p−r)-dimensional

process α′⊥Xt is given by

α′⊥Xt = α′⊥X0 + α′⊥

t∑
i=1

εi, (3.7)

which are the p− r common stochastic trends in Xt.

Using the following skew-projection from Johansen (1996),

Ip = β⊥(α′⊥β⊥)−1α′⊥ + α(β′α)−1β′, (3.8)

Xt can be decomposed into

Xt = β⊥(α′⊥β⊥)−1α′⊥Xt + α(β′α)−1β′Xt, (3.9)

and by plugging in for α′⊥Xt from equation (3.7) and St := β′Xt from equation (3.6) it follows that

Xt has the representation in equation (3.3).

In the next sections, two extensions of the standard cointegration framework with stochastic

parameters are considered. In the first case αt is stochastic and β constant, and in the second case

α is constant while βt is stochastic. Like the case with constant parameters we want to show that

under specific assumptions the linear combinations β′Xt are stationary and find a representation

for Xt.

3.2.1 Stochastic Adjustment Parameters αt

In the first case the stochastic adjustment parameter is given by

αt = α+At, (3.10)

where At is i.i.d. Gaussian with mean zero and of dimension (p× r). The cointegration parameters

β are constant and the model is then given by

∆Xt = αtβ
′Xt−1 + εt. (3.11)
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As in the case with constant parameters above, consider the r-dimensional process St := β′Xt,

which is given by

St = (Ir + β′αt)St−1 + β′εt, (3.12)

where (Ir +β′αt) is i.i.d. Gaussian with unconditional mean (Ir +β′α). The process St is a random

coefficient autoregressive process with stochastic autoregressive parameter (Ir + β′αt), which under

regularity conditions specified in e.g. Theorem 2 in Rahbek and Nielsen (2012) is geometrically

ergodic and has a stationary representation.

Next, multiply equation (3.11) with the orthogonal matrix α⊥ (where α′⊥α = 0 as above, so that

α′⊥αt = α′⊥α+ α′⊥At = α′⊥At) to get

α′⊥∆Xt = α′⊥AtSt−1 + α′⊥εt (3.13)

where α′⊥At is i.i.d. mean zero Gaussian. Re-arranging and cumulating over t, the linear process

α′⊥Xt is given by

α′⊥Xt = α′⊥X0 + α′⊥

t∑
i=1

(εi +AiSi−1). (3.14)

Using the skew-projection in equation (3.9) again, with St and α′⊥Xt given in equations (3.12) and

(3.14), respectively, it follows that Xt has the represention

Xt = CΣX0 + CΣ

t∑
i=1

(εi +AiSi−1) + C−1
S St, (3.15)

where CΣ := β⊥(α′⊥β⊥)−1α′⊥ and CS := α(β′α)−1, as above. Thus, the process Xt can be repre-

sented in terms of a stochastic trend, a stationary process, and the initial values. The stochastic

trend component C
∑t

i=1(εi + AiSi−1) is asymptotically equivalent to a random walk process, as

it satisfies a functional central limit theorem if normalized correctly, see also Kristensen and Rah-

bek (2010, 2013). To sum up, for αt = α + At with At i.i.d. mean zero Gaussian, the process Xt

is asymptotically I(1) and the cointegration relations St := β′Xt are stationary under regularity

conditions.

Extensions of the classic cointegrated VAR model within the class of models with stochastic

adjustment parameters, αt, has recently been an active area of research. The asymptotic theory

has been developed and estimation techniques for this class of models have already been developed.

For example, Bec and Rahbek (2004) consider regime switching in the adjustment coefficients;

Bec et al. (2008) and Paruolo et al. (2013) consider mixture models with smooth transition in the

adjustment parameters; and Kristensen and Rahbek (2010, 2013) consider nonlinear and asymmetric

adjustments parameters.

3.2.2 Stochastic Cointegration Parameters βt

Consider next the case of stochastic cointegration parameters as given by

βt = β +Bt, (3.16)

where Bt is i.i.d. Gaussian with mean zero and of dimension (p× r). The adjustment parameters α

are constant and the model is then given by

∆Xt = αβ′tXt−1 + εt. (3.17)
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Consider again the r linear relations St := β′Xt, which are now given by

St = (Ir + β′α)St−1 + β′αB′tXt−1 + β′εt

=
t−1∑
i=0

(Ir + β′α)iβ′εt +
t−1∑
i=0

(Ir + β′α)iβ′αB′t−iXt−1−i (3.18)

where S0 = 0 is assumed for simplicity. The first term is recognized from the standard case with

constant parameters and is stationary if (Ir+β′α) has eigenvalues inside the unit circle, which is the

case under Assumption 2. The second term is a sum of the multiplicative process B′t−iXt−1−i for

i = 1, ..., t−1 with exponentially decreasing coefficients. This multiplicative process is stochastically

trendless, as defined by Harris et al. (2002) and McCabe et al. (2003), with E[B′tXt−1] = 0. This

holds because the stochastically trendless property of Bt dominates the multiplicative process, even

though Xt has a stochastic trend. Thus, the process St is asymptotically stationary despite the

presence of B′tXt−1.

Next, pre-multiply equation (3.17) by α′⊥, re-arrange, and cumulate over t to get

α′⊥Xt = α′⊥X0 + α′⊥

t∑
i=1

εt, (3.19)

as α′⊥α = 0. Hence, the p − r common stochastic trends α′⊥Xt are identical to the standard case

with constant parameters in equation (3.7), and hence they are I(1).

Finally, using the skew-projection in equation (3.9) again, with St and α′⊥Xt given in equations

(3.18) and (3.19), respectively, it follows that Xt has the represention

Finally, by using the skew-projection in equation (3.9) again it follows that Xt has the represen-

tion

Xt = CΣX0 + CΣ

t∑
i=1

εi + CSSt, (3.20)

where, once again, CΣ := β⊥(α′⊥β⊥)−1α′⊥ and CS := α(β′α)−1. Now the process Xt can be rep-

resented in terms of a stochastic trend, a stochastically trendless process, and the initial values.

The common stochastic trends are I(1) and identical to the case with constant parameters. The

component α(β′α)−1St is stochastically trendless as the multiplicative process B′tXt−1 is stochasti-

cally trendless. However, the theory for stochastic cointegration parameters βt is not yet developed

and, in particular, we miss a full theory for the impact of the last term in the interpretation of

cointegration. To sum up, for βt = β+Bt with Bt i.i.d. mean zero Gaussian, the process Xt is I(1)

and the cointegration relations St := β′Xt are stochastically trendless.

The simulations presented next consider a more general case of stochastic cointegration parame-

ters βt = β+Bt than considered above, as Bt is simulated as a mean zero first-order autoregressive

process rather than a mean zero Gaussian process. However, the stochastically trendless property of

the multiplicative process B′tXt−1 holds in the more general case where Bt is a mean zero stationary

autoregressive process, see Harris et al. (2002) and McCabe et al. (2003), and thereby β′Xt is still

stochastically trendless. The purpose is to use simulations to address to what extent the cointe-

grated VAR model can be used as a approximation to estimate β when the data-generating process

has a stochastic βt = β +Bt. Moreover, it is of interest to what extent the misspecification caused
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by the presence of Bt 6= 0 in the data-generating process can be identified using misspecification

tests and how it affects the estimations and inference.

Note that both cases with stochastic parameters considered nest standard cointegration as the

special case where At = 0 or Bt = 0. In these cases the representations of Xt in equations (3.15)

and (3.20) are reduced to the representation of Xt in equation (3.9).

3.3 The Simulation Design

The data-generating process for the simulated time series X
(i)
t for i = 0, 1, ..., 16 is the simple

bivariate system given by

∆X
(i)
t = αβ

(i)′
t X

(i)
t−1 + εt, (3.21)

for t = 1, 2, ..., T , where X
(i)
t has dimension p = 2. The system is initialized at X10 = X20 = 0. The

random shocks εt are i.i.d. standard Gaussian and mutually uncorrelated.

The parameters α and β
(i)
t of dimension (p× r) are given by

α =

[
−1

0

]
and β

(i)
t = β +B

(i)
t =

[
1

−b

]
+

[
0

−b(i)t

]
, (3.22)

where β = (1,−b)′ and B
(i)
t = (0,−b(i)t )′, so that Π

(i)
t = αβ

(i)′
t has reduced rank r = 1. The

stochastic parameter b
(i)
t has dimension (1× 1) and is simulated as an AR(1) process given by

b
(i)
t = ρ(i)b

(i)
t−1 + σ(i)ηt, (3.23)

where the random shocks ηt are i.i.d. standard Gaussian and uncorrelated with εt. For −1 < ρ(i) < 1

the process b
(i)
t is stationary with unconditional mean zero, and hence the process b+b

(i)
t is stationary

with unconditional mean b. The system is simulated for different combinations of the parameters

(ρ(i), σ(i)), while b = 1 is fixed and b
(i)
t is initialized at b0 = 0. Hence, the differences between the

simulated time-series stems solely from differences in the parameters ρ(i) and σ(i).

The cointegration properties of X
(i)
t depend on whether the stochastic parameter b

(i)
t is station-

ary, which is determined by the autoregressive parameter ρ(i). The parameter σ(i) determines the

standard deviation of shocks to b
(i)
t relative to the normalized shocks to the system variables X

(i)
t .

As ∆X2t = ε2t and X20 = 0 the variable X2t is a weakly exogenous random walk given by

X2t =

t∑
i=1

ε2i, (3.24)

and hence it is identical for all i and integrated of first order, X2t ∼ I(1), in the standard sense.

The level of X
(i)
1t is given by

X
(i)
1t = (1 + b

(i)
t )X2t−1 + ε1t =

t−1∑
i=1

ε2i + b
(i)
t

t−1∑
i=1

ε2i + ε1t, (3.25)

Thus, X
(i)
1t contains a standard I(1) stochastic trend given by the cumulated shocks to the weakly ex-

ogenous variable X2t, a multiplicative process of b
(i)
t and the stochastic trend, and an i.i.d. Gaussian

error term. For −1 < ρ(i) < 1 the stochastic parameter b
(i)
t is stationary with unconditional mean
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zero and the multiplicative process b
(i)
t X2t−1 becomes stochastically trendless—as the stochastically

trendless property of b
(i)
t dominates the multiplicative process—and heteroskedastic.

Finally, the r linear relations β′X
(i)
t = X

(i)
1t −X2t are given by

β′X
(i)
t = ε1t − ε2t + b

(i)
t

t−1∑
i=1

ε2i, (3.26)

which is a combination of the i.i.d. Guassian error terms and the multiplicative process b
(i)
t X2t−1,

as the common stochastic trend
∑t−1

i ε2t−1 cancels out. Once again, for −1 < ρ(i) < 1 the mul-

tiplicative process b
(i)
t X2t−1 = b

(i)
t

∑t−1
i=1 ε2i is stochastically trendless, with E[b

(i)
t X2t−1] = 0, and

heteroskedastic. Hence, the linear relation β′X
(i)
t becomes stochastically trendless and heteroskedas-

tic, and X
(i)
t is a cointegrated process with average cointegration relations β′X

(i)
t = X

(i)
1t −X2t.

In total N = 17 data-generating processes i = 0, 1, 2, . . . , N−1 are simulated. The first simulated

system is the benchmark case of constant parameters, so for i = 0 the parameters are (ρ(0), σ(0)) =

(0, 0). In the 16 remaining data-generating processes (ρ(i), σ(i)) are given by all combinations of the

following values

ρ(i) ∈ {0.0; 0.5; 0.95; 1.0} (3.27)

σ(i) ∈ {0.1; 0.2; 0.5; 1.0}, (3.28)

see also Table 3.1, which allows me to consider the following general cases:

• i = 0: Constant parameters and standard cointegration.

The benchmark case of constant parameters as (ρ(0), σ(0)) = (0, 0). As b
(0)
t = 0, the process

X
(0)
t reduces to a standard cointegrated I(1) process, where X2t is weakly exogenous and X

(0)
1t

is purely adjusting, and the cointegration relation β′X
(0)
t = X

(0)
1t − X2t becomes i.i.d. mean

zero.

• i = 1 to 12: Stationary parameters and cointegration.

As 0 < ρ(i) < 1 for i = 1, 2, ..., 12, b
(i)
t is mean zero stationary, so the linear relation β′X

(i)
t =

X
(i)
1t − X2t is stochastically trendless and the process X

(i)
t is cointegrated. Different degrees

of persistence in b
(i)
t are considered. First, ρ(i) = 0.0 for i = 1, ..., 4, so the parameter b

(i)
t is

i.i.d. mean zero Gaussian, so β′X
(i)
t is mean zero heteroskedastic due to the non-linear effect of

shocks to b
(i)
t in the multiplicative process b

(i)
t X2t−1. Second, ρ(i) = 0.5 for i = 5, ..., 8, so there

is medium persistence in the stationary parameter b
(i)
t and β′X

(i)
t becomes heteroskedastic

and persistent, but still stochastically trendless. Finally, ρ(i) = 0.95 for i = 9, ..., 12, so the

parameter b
(i)
t is almost non-stationary and β′X

(i)
t becomes heteroskedastic and stochastically

trendless, though very persistent.

• i = 13 to 16: Non-stationary parameters and no cointegration.

As ρ(i) = 1.0 for i = 13, ..., 16, b
(i)
t is non-stationary, so the linear relations β′X

(i)
t are non-

stationary as the multiplicative process b
(i)
t X2t−1 is not stochastically trendless. Hence, the

system is not cointegrated.

Moreover, all cases are considered for different values of σ(i), which determines the variance of the

shocks to b
(i)
t compared to the normalized variances of the shocks to the levels of the variables,
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and the time series are simulated with sample lengths of T = {100, 200, 400, 1000} observations,

respectively. The shorter samples are most interestingly from an economic point of view as these

are typical sample lengths for macroeconomic and (low frequency) financial data, while T = 1000

is included to study the large sample properties of the cointegrated VAR model. For each data

generating process S = 10, 000 replications of the series are simulated for each sample length, so a

total of 680, 000 systems of time series are simulated. The same sequences of random shocks εt and

ηt for t = 1, 2, ..., T are used for simulations for the different specifications, so the only variation

between the simulated time-series stem from the different values of (ρ(i), σ(i)). All simulations and

estimations have been done in Ox 6.20, see Doornik (2007). Simulated outcomes from the different

cases are presented in section 3.3.2.

3.3.1 Econometric Modeling and Estimation

For each of the simulated bivariate time-series a cointegrated VAR model is estimated based on

the automated procedure described in details below. The idea is to mimic—to the extent possi-

ble when estimating 680, 000 models—the procedure of an econometrician, unaware of the actual

data-generating process used in the simulations, using the cointegrated VAR model based on the

general-to-specific modeling procedure described in Johansen (1996) and Juselius (2006). There-

fore, standard asymptotic inference derived based on the assumption of i.i.d. Gaussian residuals

and constant parameters is used in the entire modeling and testing process.

The econometric approach is based on a ‘data-first’ approach to econometrics, see Hoover (2006),

Hoover et al. (2008), and Juselius (2009 b). Based on this approach, the first step of the modeling

procedure focuses on specification of an unrestricted VAR model as a statistically adequate descrip-

tion of the data, while the second part focuses on testing and imposing reduced rank restrictions on

the model.

First, the unrestricted CVAR model given by

∆X
(i)
t = ΠX

(i)
t−1 +

k−1∑
j=1

Γj∆X
(i)
t−j + µ0 + µ1t+ εt, (3.29)

is estimated for t = 1, 2, ..., T . The initial values X
(i)
−k+1, ..., X

(i)
0 are fixed and the residuals are

assumed independent and Guassian with mean zero and covariance matrix Ω.

The lag length k is chosen as the minimum k needed so that the multivariate test for no first-

order autocorrelation of the residuals is not rejected at the 5 percent significance level.1 Thus, first

the model in equation (3.29) is estimated for k = 1, and the test for no multivariate first-order

autocorrelation is performed based on the estimated residuals. If the null of no autocorrelation is

rejected at the 5 percent significance level the model is re-estimated with an additional lag included,

i.e. k = 2. This specific-to-general process for the lag length specification continues until the null

of no autocorrelation in the estimated residuals cannot be rejected.

Given the selected lag lenght, univariate and multivariate misspecification tests for autocorrela-

tion, normality, and ARCH in the estimated residuals of the unrestricted model are performed to

1Results similar to those presented are found if the lag length selection is set based on no second-order multivariate
autocorrelation or no combined first-second order autocorrelation

72



check if the estimated model is a statistically adequate representation of the data for the sample con-

sidered, see Juselius (2006, chapter 3), Dennis et al. (2006), and references therein for descriptions

of the various misspecification tests.

Moreover, the two eigenvalues of the unrestricted model as well as the modulus of the two largest

unrestricted characteristic root of the companion matrix for the unrestricted are reported.

Second, the reduced rank model

∆X
(i)
t = αβ′X

(i)
t−1 +

k−1∑
j=1

Γj∆X
(i)
t−j + µ0 + εt (3.30)

under the hypothesis H(r) : Π = αβ′ is considered, where the constant term µ0 is included unre-

stricted. To determine the cointegration rank r, the trace test for the reduced rank H(r) against

H(p) of Johansen (1996) is performed. A top-down procedure—where H(0) is tested first, and if

rejected H(1) is tested, etc. until H(r) cannot be rejected—is used as suggested by Johansen (1996)

and Juselius (2006). Next, the reduced rank model for r = 1 is estimated for all simulated series,

including those where the rank test indicates a reduced rank of r = 0.

The maximum likelihood estimator of β solves the eigenvalue problem

|λS11 − S10S00−1S01| = 0, (3.31)

for the eigenvalues 1 > λ̂1 > ...λ̂p > 0 and the eigenvectors V̂ = (υ̂1, ..., υ̂p), which are normalized

by V̂ ′S11V̂ = I, see Johansen (1996, Theorem 6.1). The cointegration parameters β are given by

the first r eigenvectors

β̂ = (υ̂1, ..., υ̂r), (3.32)

where the eigenvectors are ordered according to the eigenvalues. Note the correspondence between

the estimated eigenvalues, adjustment parameters, and cointegration parameters as given by

diag(λ̂1, ..., λ̂r) = α̂S−1
00 α̂ = β̂′S10S

−1
00 S01β̂. (3.33)

Each eigenvalue λ̂i can be interpreted as a measure of the ‘stationarity’ of cointegration relation i;

the greater the eigenvalue the ‘more stationary’ the cointegration relation (Juselius, 2006, p. 119).

The reported estimates of β̂ are normalized on β1, and as the β-vector is identified standard

errors and corresponding t-values for β̂ are calculated based on equation (12.13) in Juselius (2006,

p. 215). Given cointegration, α̂ is estimated by OLS for a given β̂, with corresponsing standard

errors and t-values.

3.3.2 Illustration

Figures 3.1 and 3.2 illustrate a simulated outcome for nine of the data-generating processes. The

graphs in the first columns show the simulated variables X
(i)
1t (red line) and X2t (blue line). Note,

that because the same random shocks εt are used for all i, the weakly exogenous variables X2t are

identical for all i (though the scales of the axes differ in the graphs), while the simulated X
(i)
1t differ

due to the different simulated b
(i)
t . The simulated outcomes of the stochastic variable b + b

(i)
t are

shown as the blue line in the graphs in the second columns along with the constant b = 1 (red
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Figure 3.1: Illustration of the simulated data, part 1. The graph shows the simulated series

for different data-generating processes i. The first column shows the levels of X
(i)
1t (red line) and

X2t (blue line). The second column shows the stochastic parameter b + b
(i)
t (red line) and the

constant b = 1 (blue line), so the difference between the two equals b
(i)
t . The third column shows

the linear relation β′X
(i)
t = X

(i)
1t −X2t = ε1t − ε2t + b

(i)
t X2t−1, and the final column shows the term

−B(i)′
t X

(i)
t−1 = b

(i)
t X2t−1.
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Figure 3.2: Illustration of the simulated data, part 2. The graph shows the simulated series

for different data-generating processes i. The first column shows the levels of X
(i)
1t (red line) and

X2t (blue line). The second column shows the stochastic parameter b + b
(i)
t (red line) and the

constant b = 1 (blue line), so the difference between the two equals b
(i)
t . The third column shows

the linear relation β′X
(i)
t = X

(i)
1t −X2t = ε1t − ε2t + b

(i)
t X2t−1, and the final column shows the term

−B(i)′
t X

(i)
t−1 = b

(i)
t X2t−1.
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line). The graphs in the two last columns show the linear combinations β′X
(i)
t = X

(i)
1t − X2t =

ε1t − ε2t + b
(i)
t X2t−1 and −B(i)′

t Xt−1 = b
(i)
t X2t−1, respectively.

In the cases of cointegration with b
(i)
t 6= 0 (i.e. for i = 1, ..., 12) it can be seen that X

(i)
1t

fluctuates around X2t. While these fluctuations can be heteroskedastic as well as persistent, it is

clear that X
(i)
1t is mean-reverting to the level of X2t, so that the deviation between the levels of

the two variables is bounded. Hence, the linear combination β′X
(i)
t = X

(i)
1t − X2t is stationary,

though heteroskedastic and potentially persistent. The graphs clearly show that an increase in σ(i)

increases the heteroskedasticity in β′X
(i)
t and −B(i)′

t X
(i)
t−1 as the volatility of b

(i)
t increases. Thereby,

the heteroskedasticity in the fluctuations of X
(i)
1t around X2t increases. Moreover, an increase in ρ(i)

for 0 < ρ(i) < 1 adds persistence in the stochastic parameter b
(i)
t . As a consequence, −B(i)′

t X
(i)
t−1

becomes persistent and thereby β′X
(i)
t becomes persistent as X

(i)
1t fluctuates heteroskedastically and

persistently around X2t.

For non-stationary b
(i)
t (for i = 13, ..., 16 as ρ(i) = 1) it can clearly be seen from the graphs in the

last row of Figure 3.2 that the variables X
(i)
1t and X2t are not cointegrated. Due to non-stationarity

of b
(i)
t the linear relations β′X

(i)
t−1 and −B(i)′

t X
(i)
t−1 are not stochastically trendless and the system is

not cointegrated, as clearly evident from the graphs.

3.4 Results

The results from the cointegrated VAR estimations are divided into two parts. First, section 3.4.1

presents the specification of the lag length and tests for misspecification of the estimated residuals

for the different data-generating processes. Second, Section 3.4.2 presents the tests for reduced rank

and the estimates of the reduced rank model with r = 1.

Tables 3.1-3.9 present the average results over the S = 10, 000 replications for each of the N = 17

data-generating processes i = 0, 1, 2, ..., N − 1 and for time-series of lengths T = 100, 200, 400, 1000.

All inference presented is based on standard asymptotic inference of the cointegrated VAR model.

Figures 3.3-3.8 present the estimated kernel densities of the simulated distributions of the reduced

rank tests for r = 0 and r = 1, the estimated modulus of the largest unrestricted characteristic root

of the companion matrix for the estimated reduced rank model with r = 1, and, finally, the β̂ and

α̂ coefficients.

3.4.1 Lag Length Specification and Misspecification Tests

This section first presents the lag length specification and misspecification tests for no autocor-

relation in the estimated residuals, and thereafter results from residual misspecification tests for

normality, skewness and kurtosis, and finally residual misspecification tests for no ARCH.

Lag Length Specification and No Autocorrelation

Table 3.1 shows the average selected lag lengths for each of the data-generating processes as well

as the fraction of estimated models with a lag length of k = 1, 2, 3 and k ≥ 4, respectively. Table

3.2 shows the multivariate tests of no first-order autocorrelation (Godfrey, 1988), which was used

to select the lag length as described above, as well as the combined first- and second-order test
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Table 3.1: Selected Lag-Lengths in the Unrestricted Model

i ρ(i) σ(i) T Av(k)a k = 1b k = 2b k = 3b k ≥ 4b

0 0.00 0.00 100 1.06 0.94 0.05 0.00 0.00
200 1.05 0.95 0.05 0.00 0.00
400 1.05 0.95 0.05 0.00 0.00

1000 1.05 0.95 0.05 0.00 0.00

1 0.00 0.10 100 1.07 0.94 0.06 0.00 0.00
200 1.07 0.94 0.06 0.00 0.00
400 1.06 0.94 0.06 0.00 0.00

1000 1.08 0.93 0.07 0.00 0.00

2 0.00 0.20 100 1.07 0.93 0.07 0.00 0.00
200 1.09 0.92 0.07 0.00 0.00
400 1.09 0.92 0.08 0.01 0.00

1000 1.11 0.90 0.09 0.01 0.00

3 0.00 0.50 100 1.09 0.91 0.08 0.01 0.00
200 1.11 0.90 0.09 0.01 0.00
400 1.12 0.90 0.09 0.01 0.00

1000 1.13 0.89 0.10 0.01 0.00

4 0.00 1.00 100 1.11 0.90 0.09 0.01 0.00
200 1.12 0.89 0.10 0.01 0.00
400 1.13 0.89 0.10 0.01 0.00

1000 1.13 0.88 0.10 0.01 0.00

5 0.50 0.10 100 1.06 0.94 0.06 0.00 0.00
200 1.08 0.93 0.07 0.00 0.00
400 1.12 0.89 0.11 0.01 0.00

1000 1.22 0.79 0.19 0.01 0.00

6 0.50 0.20 100 1.07 0.93 0.07 0.00 0.00
200 1.09 0.91 0.08 0.00 0.00
400 1.12 0.89 0.10 0.01 0.00

1000 1.15 0.87 0.12 0.01 0.00

7 0.50 0.50 100 1.09 0.92 0.08 0.00 0.00
200 1.10 0.90 0.09 0.01 0.00
400 1.12 0.89 0.10 0.01 0.00

1000 1.13 0.88 0.11 0.01 0.00

8 0.50 1.00 100 1.10 0.91 0.09 0.01 0.00
200 1.12 0.89 0.10 0.01 0.00
400 1.13 0.88 0.11 0.01 0.00

1000 1.14 0.88 0.11 0.01 0.00

9 0.95 0.10 100 1.34 0.70 0.28 0.03 0.00
200 1.86 0.28 0.58 0.12 0.01
400 2.15 0.15 0.59 0.23 0.03

1000 2.14 0.17 0.57 0.22 0.04

10 0.95 0.20 100 1.25 0.77 0.21 0.02 0.00
200 1.47 0.57 0.39 0.04 0.00
400 1.54 0.52 0.43 0.05 0.00

1000 1.49 0.56 0.40 0.04 0.00

11 0.95 0.50 100 1.10 0.91 0.09 0.01 0.00
200 1.12 0.89 0.10 0.01 0.00
400 1.14 0.87 0.12 0.01 0.00

1000 1.14 0.87 0.12 0.01 0.00

12 0.95 1.00 100 1.10 0.91 0.08 0.01 0.00
200 1.10 0.91 0.09 0.01 0.00
400 1.12 0.89 0.10 0.01 0.00

1000 1.12 0.89 0.10 0.01 0.00

13 1.00 0.10 100 1.49 0.56 0.38 0.05 0.00
200 2.00 0.19 0.64 0.16 0.02
400 2.10 0.14 0.64 0.19 0.02

1000 1.97 0.20 0.65 0.14 0.01

14 1.00 0.20 100 1.28 0.74 0.24 0.02 0.00
200 1.43 0.61 0.36 0.03 0.00
400 1.43 0.61 0.35 0.03 0.00

1000 1.34 0.69 0.28 0.03 0.00

15 1.00 0.50 100 1.10 0.91 0.08 0.01 0.00
200 1.11 0.90 0.09 0.01 0.00
400 1.12 0.89 0.10 0.01 0.00

1000 1.11 0.90 0.10 0.01 0.00

16 1.00 1.00 100 1.10 0.91 0.08 0.01 0.00
200 1.10 0.90 0.09 0.01 0.00
400 1.10 0.91 0.08 0.01 0.00

1000 1.11 0.90 0.09 0.01 0.00

All reported values are averages over S = 10, 000 replications.
a Average lag-length k.
b Percentage with lag length k = 1, 2, 3 and k ≥ 4, respectively.
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for no multivariate autocorrelation and the univariate test for no first-order autocorrelation in the

estimated residuals in each of the two equations.

Importantly, the results show that for all cases considered the lag length can be set so that no

multivariate first-order autocorrelation in the estimated residuals cannot be rejected with p-values

of roughly 40 to 50 percent. This holds both with respect to univariate and multivariate tests

for no first-order autocorrelation and the multivariate test for no combined first and second order

autocorrelation. More importantly, it holds for all sample lengths considered. The p-values for the

univariate tests for no first-order autocorrelation are found to be approximately 60 to 70 percent,

and for the multivariate test for no combined first and second order autocorrelation the p-values are

found to be approximately 80 percent.

Generally, the lag length necessary to not reject no autocorrelation in the estimated residuals

increases with the persistence in the stochastic parameter b
(i)
t . This suggests that potential auto-

correlation and persistence in the data caused by the term b
(i)
t X2t−1 can be captured through the

inclusion of lagged first-differences in the short-run structure of the cointegrated VAR model, so

that the estimated residuals are not found to be autocorrelated. This holds even when ρ(i) = 1, so

that X
(i)
t is not a cointegrated process. This is an important finding as it is well-known that stan-

dard asymptotic inference in the cointegrated VAR model, based on the assumption of independent

residuals, is very sensitive to residual autocorrelation (Juselius, 2006, p. 74).

In the constant parameter case (i = 0) the average selected lag length is just above k = 1, with

only around 5 percent of the estimated models having a lag length above one, which reflects the

5 percent significance level used for the tests for no autocorrelation in determining the lag length.

The univariate tests for no autocorrelation in ε̂1t and ε̂2t are, on average, not rejected with average

test sizes of roughly χ2(4) = 1.9 and corresponding average p-values of 0.7 in both cases.

With stochastic b
(i)
t in the data-generating process (i = 1, . . . , 16) the selected lag length increases

with the autoregressive parameter ρ(i) and with the sample length. Increasing σ(i) does not have

a large effect on the selected lag length, though the lag length increases slightly with σ(i) for

ρ(i) = (0.0; 0.5) and decreases slightly with σ(i) for ρ(i) = (0.95; 1.0).

As ρ(i) increases, the average test size of the multivariate test for no first-order autocorrelation

decreases (even as the selected lag length on average increases), though the average p-values remain

above 39 percent. Likewise the average univariate test for no first-order autocorrelation in ε̂1t

decreases with ρ(i), though the average p-values are above 59 percent. The test for no first-order

univariate autocorrelation in ε̂2t remains unaffected, reflecting that X2t is simulated as a weakly

exogenous random walk.

Normality, Skewness, and Excess Kurtosis

Table 3.3 shows the average results of multivariate and univariate test for normality of the estimated

residuals (Doornik and Hansen, 1994), while Table 3.4 shows the skewness, kurtosis, and standard

deviations of the estimated residuals.

In the case with constant parameters in the data-generating process (i = 0) the null of normality

of the estimated residuals can clearly not be rejected for both the multivariate and univariate tests

and for all sample lengths. Moreover, there are no signs of skewness or excess kurtosis.
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Table 3.2: Misspecification Tests Part 1: Autocorrelation

Vector test no Vector test no Univ. test no Univ. test no
autocorr.(1)a autocorr.(1-2)a autocorr.(1) in ε̂1t

a autocorr.(1) in ε̂2t
a

i ρ(i) σ(i) T χ2(4) p− val χ2(8) p− val χ2(4) p− val χ2(4) p− val
0 0.00 0.00 100 3.61 0.52 7.74 0.82 1.89 0.71 1.94 0.70

200 3.64 0.52 7.64 0.83 1.86 0.72 1.90 0.71
400 3.58 0.53 7.59 0.83 1.84 0.71 1.89 0.71

1000 3.58 0.53 7.63 0.83 1.84 0.71 1.89 0.71

1 0.00 0.10 100 3.60 0.52 7.61 0.82 1.91 0.70 1.93 0.70
200 3.65 0.52 7.58 0.82 1.90 0.71 1.89 0.71
400 3.72 0.51 7.66 0.81 1.93 0.69 1.88 0.71

1000 3.82 0.50 7.77 0.80 2.03 0.68 1.88 0.71

2 0.00 0.20 100 3.68 0.51 7.68 0.81 1.98 0.69 1.92 0.70
200 3.76 0.51 7.70 0.81 2.00 0.69 1.89 0.71
400 3.82 0.50 7.89 0.80 2.08 0.67 1.87 0.71

1000 3.93 0.49 8.04 0.79 2.18 0.65 1.88 0.71

3 0.00 0.50 100 3.80 0.50 7.91 0.80 2.18 0.66 1.93 0.70
200 3.86 0.49 7.98 0.79 2.21 0.65 1.88 0.71
400 3.90 0.49 8.10 0.79 2.26 0.64 1.87 0.71

1000 3.96 0.48 8.19 0.79 2.34 0.63 1.86 0.71

4 0.00 1.00 100 3.84 0.50 8.02 0.79 2.31 0.65 1.93 0.70
200 3.89 0.49 8.09 0.79 2.33 0.63 1.88 0.71
400 3.91 0.49 8.14 0.79 2.36 0.63 1.87 0.71

1000 3.97 0.48 8.23 0.79 2.41 0.62 1.86 0.71

5 0.50 0.10 100 3.62 0.52 7.66 0.82 1.88 0.71 1.93 0.70
200 3.81 0.50 7.94 0.81 1.95 0.69 1.89 0.71
400 4.01 0.47 8.33 0.79 2.08 0.67 1.86 0.71

1000 4.23 0.45 8.68 0.77 2.31 0.64 1.83 0.71

6 0.50 0.20 100 3.69 0.51 7.86 0.82 1.96 0.70 1.93 0.70
200 3.83 0.50 8.22 0.80 2.08 0.68 1.88 0.71
400 3.93 0.48 8.52 0.79 2.27 0.66 1.86 0.71

1000 4.00 0.48 8.69 0.79 2.52 0.64 1.85 0.71

7 0.50 0.50 100 3.83 0.50 8.35 0.80 2.27 0.67 1.93 0.70
200 3.86 0.49 8.57 0.79 2.48 0.65 1.88 0.71
400 3.94 0.48 8.75 0.78 2.76 0.64 1.85 0.71

1000 3.96 0.48 8.88 0.78 3.02 0.62 1.86 0.71

8 0.50 1.00 100 3.90 0.49 8.57 0.79 2.57 0.65 1.92 0.70
200 3.88 0.49 8.71 0.79 2.82 0.64 1.88 0.71
400 3.96 0.48 8.85 0.78 3.09 0.62 1.85 0.71

1000 3.97 0.48 8.94 0.78 3.25 0.62 1.86 0.71

9 0.95 0.10 100 4.66 0.40 9.23 0.79 2.36 0.67 1.87 0.70
200 4.84 0.39 9.53 0.74 2.76 0.64 1.79 0.72
400 4.62 0.41 9.14 0.71 2.94 0.60 1.83 0.72

1000 4.41 0.43 8.82 0.74 2.95 0.59 1.84 0.71

10 0.95 0.20 100 4.48 0.42 8.81 0.80 2.52 0.67 1.88 0.70
200 4.51 0.42 8.87 0.79 2.79 0.66 1.83 0.71
400 4.35 0.44 8.76 0.78 2.92 0.64 1.84 0.71

1000 4.23 0.45 8.76 0.77 3.04 0.62 1.84 0.71

11 0.95 0.50 100 3.87 0.49 8.31 0.79 2.53 0.65 1.93 0.70
200 3.95 0.48 8.53 0.77 2.81 0.63 1.87 0.71
400 3.99 0.48 8.61 0.77 2.97 0.62 1.86 0.71

1000 4.00 0.48 8.82 0.76 3.19 0.60 1.85 0.71

12 0.95 1.00 100 3.76 0.51 8.29 0.78 2.60 0.64 1.92 0.70
200 3.84 0.50 8.53 0.77 2.86 0.62 1.87 0.71
400 3.90 0.49 8.61 0.76 3.02 0.61 1.86 0.71

1000 3.95 0.48 8.84 0.75 3.23 0.59 1.85 0.71

13 1.00 0.10 100 4.81 0.39 9.57 0.78 2.70 0.65 1.84 0.71
200 4.76 0.39 9.38 0.73 2.96 0.60 1.77 0.72
400 4.56 0.42 9.00 0.74 2.87 0.60 1.82 0.72

1000 4.32 0.44 8.67 0.77 2.69 0.62 1.79 0.72

14 1.00 0.20 100 4.57 0.41 8.94 0.80 2.73 0.67 1.89 0.70
200 4.51 0.42 8.88 0.80 2.86 0.65 1.82 0.71
400 4.34 0.44 8.78 0.79 2.83 0.64 1.84 0.71

1000 4.23 0.45 8.71 0.79 2.81 0.64 1.82 0.71

15 1.00 0.50 100 3.81 0.50 8.26 0.79 2.60 0.65 1.94 0.70
200 3.83 0.50 8.32 0.78 2.75 0.63 1.88 0.71
400 3.79 0.50 8.29 0.78 2.78 0.63 1.85 0.71

1000 3.78 0.50 8.37 0.77 2.81 0.62 1.84 0.71

16 1.00 1.00 100 3.68 0.52 8.21 0.78 2.68 0.63 1.92 0.70
200 3.72 0.51 8.27 0.78 2.77 0.63 1.86 0.71
400 3.75 0.51 8.30 0.78 2.81 0.62 1.86 0.71

1000 3.75 0.51 8.35 0.77 2.83 0.62 1.83 0.71

All reported values are averages over S = 10, 000 replications.
a Multivariate and univariate tests for no autocorrelation of order 1 or order 1− 2, respectively, in the estimated residuals,

see Godfrey (1988).
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Table 3.3: Misspecification Tests Part 2: Normality

Vector test Univar. test Univar. test

normalitya normality of ε̂1t
b normality of ε̂2t

b

i ρ(i) σ(i) T χ2(4) p− val χ2(2) p− val χ2(2) p− val
0 0.00 0.00 100 3.82 0.53 1.92 0.52 1.90 0.52

200 3.91 0.52 1.94 0.51 1.93 0.52
400 3.96 0.51 1.98 0.51 1.97 0.51

1000 3.95 0.51 2.00 0.50 1.98 0.51

1 0.00 0.10 100 4.52 0.48 2.28 0.49 1.91 0.52
200 6.78 0.39 3.48 0.42 1.93 0.52
400 16.80 0.21 9.32 0.26 1.97 0.51

1000 75.34 0.03 48.86 0.06 1.98 0.51

2 0.00 0.20 100 7.03 0.37 3.98 0.38 1.92 0.52
200 15.39 0.19 9.61 0.22 1.93 0.52
400 43.07 0.04 30.26 0.06 1.97 0.51

1000 157.72 0.00 126.98 0.00 1.98 0.51

3 0.00 0.50 100 14.47 0.16 10.52 0.16 1.91 0.52
200 33.18 0.05 26.87 0.05 1.94 0.52
400 79.14 0.01 69.68 0.01 1.96 0.51

1000 226.75 0.00 213.54 0.00 1.98 0.51

4 0.00 1.00 100 19.40 0.10 16.24 0.08 1.91 0.52
200 41.57 0.03 37.57 0.02 1.94 0.52
400 90.95 0.01 86.25 0.00 1.96 0.51

1000 242.79 0.00 237.51 0.00 1.98 0.51

5 0.50 0.10 100 4.51 0.48 2.31 0.48 1.91 0.52
200 6.65 0.39 3.45 0.42 1.93 0.52
400 15.93 0.21 8.95 0.26 1.97 0.51

1000 70.00 0.03 46.04 0.05 1.98 0.51

6 0.50 0.20 100 6.83 0.37 3.92 0.38 1.92 0.52
200 14.57 0.20 9.24 0.22 1.93 0.52
400 40.35 0.05 28.71 0.07 1.97 0.51

1000 149.18 0.00 121.14 0.00 1.99 0.50

7 0.50 0.50 100 13.77 0.17 10.11 0.17 1.91 0.52
200 31.54 0.05 25.74 0.05 1.94 0.52
400 76.18 0.01 67.35 0.01 1.96 0.51

1000 221.75 0.00 209.12 0.00 1.99 0.50

8 0.50 1.00 100 18.58 0.11 15.59 0.09 1.91 0.52
200 40.12 0.03 36.31 0.03 1.94 0.52
400 88.97 0.01 84.44 0.00 1.97 0.51

1000 239.98 0.00 234.80 0.00 1.99 0.50

9 0.95 0.10 100 4.52 0.48 2.48 0.46 1.91 0.52
200 6.10 0.40 3.54 0.40 1.94 0.52
400 12.82 0.24 8.05 0.25 1.98 0.51

1000 54.53 0.04 38.70 0.05 1.98 0.51

10 0.95 0.20 100 6.27 0.38 3.99 0.36 1.91 0.52
200 11.72 0.23 8.36 0.22 1.94 0.52
400 31.04 0.07 24.11 0.07 1.97 0.51

1000 121.11 0.00 102.83 0.00 1.98 0.51

11 0.95 0.50 100 11.26 0.22 8.76 0.19 1.91 0.52
200 24.09 0.08 20.59 0.07 1.93 0.52
400 59.62 0.01 54.13 0.01 1.97 0.51

1000 189.66 0.00 180.62 0.00 1.98 0.51

12 0.95 1.00 100 14.48 0.15 11.95 0.12 1.91 0.52
200 30.12 0.05 27.08 0.04 1.93 0.52
400 70.10 0.01 66.29 0.01 1.96 0.51

1000 208.13 0.00 203.55 0.00 1.98 0.51

13 1.00 0.10 100 4.73 0.46 2.66 0.45 1.92 0.52
200 6.93 0.36 4.42 0.36 1.94 0.52
400 15.61 0.18 11.79 0.18 1.97 0.51

1000 61.11 0.02 50.72 0.02 1.98 0.51

14 1.00 0.20 100 6.91 0.35 4.56 0.34 1.91 0.52
200 13.65 0.20 10.21 0.19 1.94 0.52
400 33.62 0.05 27.05 0.05 1.97 0.51

1000 108.82 0.00 89.41 0.00 1.98 0.51

15 1.00 0.50 100 12.39 0.19 9.03 0.18 1.91 0.52
200 25.20 0.08 19.55 0.07 1.94 0.52
400 53.63 0.02 42.76 0.02 1.96 0.51

1000 141.15 0.00 113.69 0.00 1.98 0.51

16 1.00 1.00 100 15.26 0.14 11.24 0.13 1.92 0.52
200 29.35 0.06 22.62 0.06 1.94 0.52
400 59.00 0.01 46.77 0.01 1.96 0.51

1000 147.58 0.00 118.31 0.00 1.98 0.51

All reported values are averages over S = 10, 000 replications.
a Multivariate test for normality of the estimated residuals, see Doornik and Hansen (1994).
b Univariate tests for normality of the estimated residuals.
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Table 3.4: Misspecification Tests Part 3: Skewness, Kurtosis, and Standard Deviation

Skewnessa Kurtosisa Std.dev.a

i ρ(i) σ(i) T ε̂1t ε̂2t ε̂1t ε̂2t σ̂1 σ̂2

0 0.00 0.00 100 -0.00 -0.00 2.94 2.94 1.38 0.97
200 -0.00 -0.00 2.97 2.97 1.40 0.99
400 -0.00 -0.00 2.99 2.99 1.41 0.99

1000 0.00 0.00 3.00 2.99 1.41 1.00

1 0.00 0.10 100 0.00 -0.00 3.04 2.94 1.54 0.97
200 -0.00 -0.00 3.21 2.97 1.69 0.99
400 0.00 -0.00 3.51 2.99 1.93 0.99

1000 -0.00 0.00 4.08 2.99 2.49 1.00

2 0.00 0.20 100 0.00 -0.00 3.38 2.94 1.90 0.97
200 -0.00 -0.00 3.81 2.97 2.30 0.99
400 0.00 -0.00 4.39 2.99 2.92 0.99

1000 -0.00 0.00 5.14 2.99 4.23 1.00

3 0.00 0.50 100 0.00 -0.00 4.38 2.94 3.42 0.97
200 -0.00 -0.00 5.02 2.97 4.63 0.98
400 0.00 -0.00 5.61 2.99 6.41 0.99

1000 -0.00 0.00 6.08 2.99 9.95 1.00

4 0.00 1.00 100 -0.00 -0.00 5.08 2.94 6.31 0.97
200 -0.00 -0.00 5.63 2.97 8.86 0.98
400 0.00 -0.00 6.05 2.99 12.53 0.99

1000 -0.00 0.00 6.31 2.99 19.71 1.00

5 0.50 0.10 100 0.00 -0.00 3.04 2.94 1.56 0.97
200 -0.00 -0.00 3.21 2.97 1.72 0.99
400 -0.00 -0.00 3.50 2.99 1.97 0.99

1000 -0.00 0.00 4.04 2.99 2.52 1.00

6 0.50 0.20 100 0.00 -0.00 3.38 2.94 1.94 0.97
200 -0.00 -0.00 3.79 2.97 2.34 0.99
400 0.00 -0.00 4.34 2.99 2.96 0.99

1000 -0.00 0.00 5.07 2.99 4.26 1.00

7 0.50 0.50 100 0.00 -0.00 4.33 2.94 3.46 0.97
200 -0.00 -0.00 4.95 2.97 4.67 0.98
400 0.00 -0.00 5.54 2.99 6.44 0.99

1000 -0.00 0.00 6.03 2.99 9.97 1.00

8 0.50 1.00 100 -0.00 -0.00 5.01 2.94 6.36 0.97
200 -0.00 -0.00 5.56 2.97 8.89 0.98
400 0.00 -0.00 6.00 2.99 12.56 0.99

1000 -0.00 0.00 6.29 2.99 19.73 1.00

9 0.95 0.10 100 0.00 -0.00 3.08 2.94 1.66 0.97
200 -0.00 -0.00 3.24 2.97 1.84 0.98
400 -0.00 -0.00 3.48 2.99 2.09 0.99

1000 0.00 0.00 3.94 2.99 2.64 1.00

10 0.95 0.20 100 0.00 -0.00 3.40 2.94 2.10 0.97
200 -0.01 -0.00 3.74 2.97 2.51 0.98
400 -0.00 -0.00 4.19 2.99 3.12 0.99

1000 0.00 0.00 4.85 2.99 4.39 1.00

11 0.95 0.50 100 0.00 -0.00 4.17 2.94 3.80 0.97
200 -0.00 -0.00 4.65 2.97 4.98 0.98
400 -0.00 -0.00 5.17 2.99 6.70 0.99

1000 0.00 0.00 5.74 2.99 10.15 1.00

12 0.95 1.00 100 0.00 -0.00 4.59 2.94 7.02 0.97
200 -0.00 -0.00 5.06 2.97 9.46 0.98
400 -0.00 -0.00 5.52 2.99 13.01 0.99

1000 0.00 0.00 5.98 2.99 20.03 1.00

13 1.00 0.10 100 0.00 -0.00 3.13 2.94 1.76 0.96
200 -0.00 -0.00 3.35 2.97 2.05 0.98
400 -0.00 -0.00 3.69 2.99 2.48 0.99

1000 0.00 0.00 4.15 2.99 3.39 1.00

14 1.00 0.20 100 0.00 -0.00 3.51 2.94 2.40 0.97
200 -0.00 -0.00 3.90 2.97 3.08 0.98
400 -0.00 -0.00 4.31 2.99 4.08 0.99

1000 0.00 0.00 4.69 2.99 6.12 1.00

15 1.00 0.50 100 0.00 -0.00 4.21 2.94 4.78 0.97
200 -0.00 -0.00 4.58 2.97 6.69 0.98
400 -0.00 -0.00 4.84 2.99 9.41 0.99

1000 0.00 0.00 4.99 2.99 14.76 1.00

16 1.00 1.00 100 0.00 -0.00 4.51 2.94 9.12 0.97
200 -0.00 -0.00 4.78 2.97 13.04 0.98
400 -0.00 -0.00 4.96 2.99 18.57 0.99

1000 0.00 0.00 5.05 2.99 29.35 1.00

All reported values are averages over S = 10, 000 replications.
a The skewness of the estimated residuals is calculated as skewnessi = T−1 ∑T

t=1(ε̂it/σ̂i)
3 and kurtosisi =

T−1 ∑T
t=1(ε̂it/σ̂i)

4, where ε̂it are the estimated system residuals and σ̂i their standard deviations for
i = 1, 2 as reported in the final column, see Juselius (2006, p. 75).
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Under cointegration with stochastic parameters in the data-generating process the tests reveal

problems with non-normality of the estimated residuals, but only for long samples and more pro-

nounced for high volatility in the stochastic parameter b
(i)
t as determined by σ

(i)
i . In samples with

T = 100 or T = 200 observations, which are common samples length for typical macroeconomic

data, the multivariate test for non-normality can, on average, not be rejected as long as the volatility

of b
(i)
t is small, i.e. when σ(i) is small. Though, the test becomes borderline rejected in the extreme

cases of both high persistence and high volatility in b
(i)
t (i = 11 and i = 12). For long samples the

multivariate test reveals the non-normality of the estimated residuals. The univariate tests reveal

that when multivariate normality is rejected it is caused by non-normality of ε̂1t, as expected, while

the null of normality cannot be rejected for ε̂2t in all cases considered. Looking at the skewness and

kurtosis it can be seen that normality of ε̂1t is rejected due to excess kurtosis in ε̂1t, while there are

no problems with skewness on average.

The normality tests reveal that an increase in σ(i) (for fixed ρ(i)) significantly increases the

average test sizes and lowers the average p-values of the normality tests, while an increase in ρ(i)

does not have a big impact on the normality tests for a fixed σ(i). This reflects that as σ(i) increases,

the volatility of the heteroskedastic term b
(i)
t X2t−1 in the simulated data increases, causing excess

kurtosis and fat tails in the estimated residuals ε̂1t in the estimated cointegrated VAR model.

However, it requires a longer sample than is typically available for macroeconomic data to identify

this non-normality in the estimated residuals.

It is worth noting that the average standard deviations of the residuals clearly reveal the non-

linear effect of the random shocks to the stochastic parameter b
(i)
t on the level of X

(i)
1t . As ρ(i)

increases, the standard deviation of ε̂1t increases dramatically and becomes up to 20 times larger

than the standard deviation of ε̂2t on average in the case of stochastic cointegration, and up to 30

times larger than the standard deviation of ε̂2t for ρ(i) = 1.0.2

No ARCH

Table 3.5 presents the results of the univariate and multivariate tests for no ARCH in the estimated

residuals (Lötkepohl and Krätzig, 2004). Based on the multivariate test the null of no ARCH cannot

be rejected on average, except from the cases with high σ(i) in very long samples with T = 1000.

As was the case for the normality tests, increasing σ(i) has some effect on the tests for no ARCH,

while increasing ρ(i) has much less effect. As the sample size increases, the test values increase and

the p-values decrease. However, in samples with T = 1000 observations the null of no multivariate

first-order ARCH can only be boarderline rejected, while the univariate test for no ARCH in ε̂1t can

be boarderline rejected in samples with T = 400 observations for σ(i) ≥ 0.5. When the null of no

multivariate ARCH can be rejected it can be seen from the univariate tests that it is due to ARCH

effects in ε̂1t as expected.

2It is also worth noting that in the case of constant parameters in the data-generating process, the average standard
deviation of ε̂1t is well above 1.0. This seems to reflect that the X2t is weakly exogenous while X

(i)
1t is purely adjusting.

Hence, only shocks to X2t cumulate into a common stochastic trend, which is very well estimated in the cointegrated
VAR model, while the shocks to X

(i)
1t do not have a long-run effect and thereby are less precisely estimated. However,

by imposing reduced rank and weak exogeneity of X2t, the standard deviation of ε̂1t eventually becomes 1.0 on average
in this case.
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Table 3.5: Misspecification Tests Part 4: ARCH

Vector test no Vector test no Univ. test no Univ. test no
ARCH(1)a ARCH(1-2)a ARCH(1) in ε̂1t

a ARCH(1)in ε̂2t
a

i ρ(i) σ(i) T χ2(9) p− val χ2(18) p− val χ2(1) p− val χ2(1) p− val
0 0.00 0.00 100 8.46 0.59 17.60 0.56 0.89 0.51 0.90 0.51

200 8.69 0.58 17.71 0.57 0.92 0.51 0.97 0.50
400 8.66 0.59 17.82 0.57 0.97 0.50 0.98 0.50

1000 8.83 0.57 17.84 0.57 0.99 0.51 0.98 0.50

1 0.00 0.10 100 8.36 0.59 17.40 0.57 0.98 0.50 0.89 0.51
200 9.50 0.54 19.04 0.52 1.43 0.47 0.97 0.50
400 13.29 0.40 25.73 0.36 3.33 0.35 0.98 0.51

1000 30.79 0.12 56.00 0.07 14.92 0.11 0.99 0.50

2 0.00 0.20 100 9.08 0.56 18.76 0.52 1.40 0.47 0.89 0.51
200 12.11 0.44 23.62 0.39 3.12 0.36 0.97 0.50
400 19.71 0.24 36.49 0.18 8.44 0.17 0.98 0.51

1000 43.88 0.04 77.33 0.02 29.39 0.01 0.99 0.50

3 0.00 0.50 100 10.93 0.48 21.90 0.43 2.76 0.38 0.89 0.51
200 15.66 0.33 29.51 0.27 6.43 0.20 0.97 0.50
400 24.85 0.16 44.78 0.11 14.71 0.06 0.98 0.51

1000 50.31 0.03 87.40 0.01 39.42 0.00 0.99 0.50

4 0.00 1.00 100 11.76 0.45 23.23 0.40 3.63 0.33 0.90 0.51
200 16.74 0.31 31.24 0.24 7.82 0.15 0.97 0.50
400 25.94 0.15 46.47 0.10 16.43 0.04 0.98 0.51

1000 51.39 0.03 89.04 0.01 41.37 0.00 0.99 0.50

5 0.50 0.10 100 8.36 0.59 17.36 0.57 0.98 0.51 0.90 0.51
200 9.54 0.54 18.98 0.52 1.46 0.46 0.97 0.50
400 13.55 0.39 25.73 0.35 3.40 0.35 0.98 0.51

1000 30.98 0.11 55.18 0.07 14.96 0.10 0.99 0.50

6 0.50 0.20 100 9.00 0.56 18.54 0.53 1.40 0.47 0.90 0.51
200 12.05 0.44 23.24 0.40 3.12 0.36 0.97 0.50
400 19.52 0.24 35.74 0.19 8.36 0.17 0.98 0.51

1000 43.31 0.04 75.81 0.02 29.06 0.01 0.98 0.50

7 0.50 0.50 100 10.73 0.49 21.41 0.45 2.75 0.38 0.90 0.51
200 15.49 0.33 28.94 0.28 6.43 0.20 0.97 0.50
400 24.70 0.16 44.24 0.11 14.67 0.06 0.98 0.51

1000 50.20 0.03 86.87 0.01 39.35 0.00 0.99 0.50

8 0.50 1.00 100 11.60 0.46 22.79 0.41 3.65 0.32 0.90 0.51
200 16.68 0.30 30.86 0.25 7.86 0.15 0.97 0.50
400 26.00 0.15 46.27 0.10 16.52 0.04 0.98 0.51

1000 51.51 0.03 88.90 0.01 41.49 0.00 0.99 0.50

9 0.95 0.10 100 8.26 0.60 17.10 0.58 1.04 0.50 0.89 0.51
200 9.15 0.55 18.29 0.54 1.53 0.46 0.96 0.50
400 12.82 0.41 24.27 0.38 3.43 0.34 0.98 0.50

1000 28.52 0.13 50.10 0.08 14.21 0.09 0.99 0.50

10 0.95 0.20 100 8.92 0.57 18.08 0.54 1.52 0.47 0.89 0.51
200 11.57 0.45 22.25 0.42 3.14 0.35 0.97 0.50
400 18.35 0.26 33.64 0.20 7.82 0.17 0.98 0.50

1000 40.49 0.05 71.05 0.02 26.96 0.02 0.98 0.50

11 0.95 0.50 100 10.92 0.48 21.17 0.45 2.71 0.38 0.89 0.51
200 15.66 0.32 28.90 0.26 6.01 0.21 0.97 0.50
400 24.71 0.15 44.02 0.10 13.48 0.07 0.98 0.51

1000 49.46 0.03 85.88 0.01 37.21 0.00 0.98 0.50

12 0.95 1.00 100 12.05 0.43 22.84 0.40 3.37 0.34 0.90 0.51
200 17.30 0.28 31.40 0.23 7.11 0.17 0.97 0.50
400 26.63 0.13 47.00 0.09 15.17 0.05 0.98 0.51

1000 51.47 0.02 89.02 0.01 39.54 0.00 0.98 0.50

13 1.00 0.10 100 8.59 0.59 17.72 0.56 1.09 0.50 0.89 0.51
200 10.66 0.49 21.18 0.46 1.92 0.43 0.96 0.50
400 17.77 0.26 33.17 0.22 4.68 0.28 0.98 0.50

1000 47.74 0.03 83.11 0.01 16.95 0.06 0.98 0.50

14 1.00 0.20 100 9.89 0.53 19.80 0.50 1.69 0.45 0.89 0.51
200 14.69 0.35 27.71 0.30 3.69 0.31 0.97 0.50
400 26.61 0.13 47.35 0.09 8.49 0.15 0.98 0.51

1000 66.30 0.01 112.75 0.01 24.34 0.02 0.98 0.50

15 1.00 0.50 100 12.63 0.42 24.00 0.38 2.79 0.38 0.89 0.51
200 19.85 0.23 35.72 0.18 5.80 0.21 0.97 0.50
400 34.48 0.08 59.17 0.05 11.59 0.08 0.98 0.51

1000 77.29 0.01 129.41 0.00 28.25 0.01 0.98 0.50

16 1.00 1.00 100 13.90 0.38 25.81 0.34 3.25 0.34 0.89 0.51
200 21.42 0.20 38.04 0.16 6.38 0.19 0.97 0.50
400 36.29 0.07 61.93 0.04 12.26 0.08 0.98 0.51

1000 79.17 0.01 132.33 0.00 28.91 0.01 0.98 0.50

All reported values are averages over S = 10, 000 replications.
a Multivariate and univariate tests for no ARCH of order 1 or order 1 − 2, respectively, in the estimated residuals, see

Lötkepohl and Krätzig (2004).
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To conclude on the results from the misspecification tests, the results reveal that in samples

of T = 100 or T = 200 observations the estimated unrestricted VAR models appear to be fairly

good statistical representations of the simulated data based on the various misspecification tests

considered. This holds regardless of the cointegration properties of the underlying data-generating

process. However, in cases of both high persistence and volatility in b
(i)
t and in very long samples

the misspecification can be identified based on the misspecification tests.

The results show that when the parameter ρ(i) increases, the persistence it creates in the sim-

ulated data through the term b
(i)
t X2t−1 can to some degree be captured in the unrestricted VAR

model by including lagged first-differences. Hence, the null of no autocorrelation in the estimated

residuals cannot be rejected. Moreover, when the parameter σ(i) increases, the heteroskedasticity in

b
(i)
t X2t−1 increases the heteroskedasticity in the simulated data, which cause some excess kurtosis

and non-normality in the estimated residuals. However, standard asymptotic inference in the coin-

tegrated VAR model is less sensitive to misspecification due to excess kurtosis and non-normality

than to skewness and autocorrelation (Juselius, 2006, p. 77), and most likely an econometrician

would continue the econometric analysis despite signs of such misspecification—except in cases of

both high persistence and high volatility of the stochastic cointegration parameter, i.e. high ρ(i)

and high σ(i), or with very long samples. Next section considers the tests for reduced rank and

estimation of the cointegration relations.

3.4.2 Reduced Rank Tests and Estimates

The main focus of the econometric analysis is on the cointegration properties, in particular to

what extent the cointegrated VAR model can be used as an approximation to estimate β when

the data-generating process has a stochastic β
(i)
t = β + B

(i)
t , where B

(i)
t is a mean zero stationary

autoregressive process. Thus, it is first of interest whether a reduced rank of r = 1 is found in the

estimated cointegrated VAR model based on the trace test of Johansen (1996); second, whether

the estimated cointegration parameters are consistent estimates of β = (1,−1)′ as used in the

data-generating process of the simulated data; and finally, how the misspecification caused by the

stochastic cointegration parameters β
(i)
t = β + B

(i)
t affects the inference of the trace tests and the

reduced rank estimators. Results from tests for reduced rank are considered first, and next the

estimates from the reduced rank model with r = 1 imposed.

Reduced Rank Tests

The average results from the maximum likelihood test for reduced rank of Johansen (1996), known

as the trace test, are presented in Table 3.6 along with p-values and rejection frequencies. The

tests for H(r) against H(p) are reported for r = 0 and r = 1, respectively, with p-values based

on the Gamma approximation (Doornik, 1998) of the asymptotic distributions derived in Johansen

(1996). The quantiles of this approximation are reprinted in Juselius (2006) and Dennis et al. (2006).

The asymptotic distribution depends on the number of of unit roots in the system, p − r, and the

deterministic specification. For H(0) there are p − r = 2 unit roots (and no cointegration) and in

the case of an unrestricted constant the 95 percent quantile is 15.41. For H(1) with p− r = 1 unit

root (and one cointegration relation) the 95 percent quantile is 3.84. Figures 3.3 and 3.4 show the
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estimated kernel densities of the estimated trace tests for H(0) and H(1) against H(p), respectively.

The 95 percent quantiles are shown as the vertical black lines.

The rank of Π
(i)
t = αβ

(i)
t in the data-generating process of the simulated data was constant

r = 1 for all cases with constant or stationary parameter b
(i)
t (i = 0, ..., 12). Using a top-down

testing procedure as suggested by Johansen (1996) and Juselius (2006)—where H(0) is first tested

against H(p), and if rejected, H(1) is tested against H(p) etc. until the lowest rank which cannot

be rejected is found—we would hope that H(0) is rejected and H(1) not rejected, so that the trace

test suggests a cointegration rank of r = 1 for i = 0, ..., 12. In the case of non-stationary stochastic

parameters (i = 13, ..., 16) we would hope that the trace test rejects cointegration, which corresponds

to the null of rank r = 0 for H(1) not being rejected.

In the case of constant parameters in the underlying data-generating process (i = 0) the null

of r = 0 is clearly rejected in all cases, with a rejection rate of 1.0 suggesting a high power of

the test in rejecting the false null.3 From Figure 3.3 it is clear how increasing the sample skews

the test sizes further away from the 95 percent quantile leading to a clearer rejection of the null.

The tests for H(1) show that on average the null of r = 1, which is correct, is not rejected with

average p-values of 20 percent. However, the results reveal some size distortion as the null of r = 1

is falsily rejected approximately 30 percent of the time, independently of the sample length, which

is also evident from Figure 3.4. This illustrates the well-known problems with both size and power

distortions of the trace test based on standard asymptotic inference, which has been documented in

numerous simulation studies, see Juselius (2006, ch. 8) and references therein. Therefore, Juselius

(2006) suggests that the rank selection in a cointegrated VAR model must be based on trace test

as well as other indices, such as the α-estimates in the unrestricted model (not presented) and the

characteristic roots of the companion matrix (presented in Table 3.7).

Consider next the cases of stochastic cointegration in the underlying data-generating process

and with no or low persistence in b
(i)
t (for i = 1, ..., 8). With no persistence in b

(i)
t there is almost

no effect on the average sizes of the trace tests compared to the case with constant parameters. A

rank of r = 0 is rejected with a rejection rate of 1.0, while a rank of r = 1 cannot on average be

rejected with p-values of approximately 20 percent as in the case with constant parameters in the

data-generating process. However, the trace test of r = 1 is still rejected in almost one third of

the cases, which is also clear from Figure 3.4 where approximately a third of the estimated kernel

density lies in the rejection area to the right of the critical value. Increasing ρ(i) to 0.5 skews the test

size of H(0) to the left, while the test size for H(1) is almost not affected as evident from Figures

3.3 and 3.4, respectively. However, the conclusions with respect to the rank remains unchanged;

the trace tests clearly reject a reduced rank of r = 0 and in most cases a reduced rank of r = 1

cannot be rejected as evident from Table 3.6 for all cases with ρ(i) ≤ 0.5. Thus, the results show

that standard asymptotic inference of the trace test is not very sensitive to misspecification caused

by stochastic cointegration parameters in the underlying data-generating process as long as there is

no or low persistence in the stochastic coitegration parameters.

By contrast, near non-stationary or non-stationary persistence in b
(i)
t can be seen to have a big

3Here the special case with full adjustment to the cointegration relation in each period is considered as α = (−1, 0)′.
This might be the reason why the trace test always reject the false null of r = 0, which is in contrast to power distortions
of the trace test found in many simulation studies.
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Table 3.6: Reduced Rank Determination: Rank Test

Reduced rank tests H(r) against H(p)a

i ρ(i) σ(i) T H(0) p− val Reject H(1) p− val Reject

0 0.00 0.00 100 73.42 0.00 1.00 3.06 0.22 0.30
200 141.44 0.00 1.00 3.06 0.21 0.30
400 276.72 0.00 1.00 3.04 0.22 0.30

1000 685.23 0.00 1.00 3.06 0.22 0.31

1 0.00 0.10 100 73.27 0.00 1.00 3.06 0.22 0.30
200 140.75 0.00 1.00 3.05 0.21 0.30
400 276.18 0.00 1.00 3.04 0.22 0.30

1000 678.39 0.00 1.00 3.06 0.22 0.30

2 0.00 0.20 100 73.36 0.00 1.00 3.06 0.22 0.30
200 140.14 0.00 1.00 3.06 0.21 0.30
400 274.02 0.00 1.00 3.04 0.22 0.30

1000 671.41 0.00 1.00 3.06 0.22 0.30

3 0.00 0.50 100 73.42 0.00 1.00 3.06 0.22 0.30
200 139.33 0.00 1.00 3.06 0.21 0.30
400 271.86 0.00 1.00 3.04 0.22 0.30

1000 666.44 0.00 1.00 3.06 0.22 0.30

4 0.00 1.00 100 73.35 0.00 1.00 3.06 0.22 0.30
200 139.04 0.00 1.00 3.06 0.21 0.30
400 271.13 0.00 1.00 3.04 0.22 0.30

1000 666.01 0.00 1.00 3.06 0.22 0.30

5 0.50 0.10 100 60.09 0.00 1.00 3.06 0.22 0.30
200 102.48 0.00 1.00 3.06 0.21 0.30
400 173.39 0.00 1.00 3.05 0.22 0.30

1000 350.27 0.00 1.00 3.06 0.22 0.31

6 0.50 0.20 100 50.05 0.00 1.00 3.06 0.21 0.30
200 82.73 0.00 1.00 3.06 0.21 0.30
400 141.96 0.00 1.00 3.05 0.22 0.30

1000 311.00 0.00 1.00 3.06 0.22 0.31

7 0.50 0.50 100 40.68 0.00 0.99 3.07 0.21 0.31
200 69.06 0.00 1.00 3.07 0.21 0.30
400 125.28 0.00 1.00 3.05 0.22 0.30

1000 293.04 0.00 1.00 3.06 0.22 0.30

8 0.50 1.00 100 37.99 0.00 0.99 3.07 0.21 0.31
200 65.90 0.00 1.00 3.07 0.21 0.30
400 121.96 0.00 1.00 3.05 0.22 0.30

1000 289.65 0.00 1.00 3.06 0.22 0.30

9 0.95 0.10 100 31.57 0.08 0.75 2.89 0.22 0.28
200 27.26 0.09 0.68 2.95 0.21 0.29
400 25.47 0.04 0.82 3.01 0.22 0.31

1000 37.94 0.00 0.99 3.09 0.21 0.31

10 0.95 0.20 100 20.43 0.14 0.56 2.77 0.23 0.26
200 19.18 0.12 0.56 2.87 0.22 0.28
400 22.22 0.05 0.77 3.00 0.22 0.31

1000 36.51 0.00 0.99 3.09 0.21 0.31

11 0.95 0.50 100 14.53 0.21 0.37 2.63 0.23 0.24
200 16.02 0.16 0.46 2.83 0.22 0.28
400 20.60 0.06 0.74 3.00 0.21 0.30

1000 35.38 0.00 0.99 3.09 0.21 0.31

12 0.95 1.00 100 13.26 0.24 0.30 2.58 0.24 0.23
200 15.11 0.17 0.42 2.81 0.22 0.28
400 19.95 0.06 0.72 3.00 0.21 0.31

1000 34.86 0.00 0.99 3.09 0.21 0.31

13 1.00 0.10 100 23.81 0.15 0.57 2.60 0.25 0.24
200 15.81 0.24 0.36 2.41 0.26 0.21
400 12.61 0.29 0.25 2.28 0.27 0.18

1000 11.56 0.32 0.20 2.23 0.27 0.17

14 1.00 0.20 100 16.01 0.22 0.39 2.40 0.26 0.20
200 12.94 0.28 0.27 2.30 0.27 0.19
400 11.85 0.30 0.22 2.23 0.27 0.18

1000 11.38 0.32 0.19 2.22 0.27 0.17

15 1.00 0.50 100 12.24 0.30 0.24 2.23 0.27 0.17
200 11.58 0.32 0.21 2.22 0.27 0.17
400 11.36 0.32 0.19 2.19 0.28 0.17

1000 11.17 0.33 0.18 2.20 0.27 0.17

16 1.00 1.00 100 11.49 0.32 0.20 2.17 0.28 0.16
200 11.22 0.33 0.19 2.20 0.27 0.17
400 11.18 0.33 0.18 2.18 0.28 0.17

1000 11.10 0.33 0.18 2.19 0.27 0.16

All reported values are averages over S = 10, 000 replications.
a LR-test of rank r against the unrestricted model with full rank p, see Johansen (1996). The first column

reports the average test sizes, the second the p-value based on the asymptotic distributions in Doornik
(1998), and the third column reports the rejection frequency.
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Figure 3.3: Estimated kernel densities of the reduced rank testsH(0) againstH(p). The solid black
vertical lines indicate the 95 quancentile of the the asymptotic distribution, derived in Johansen
(1996), based on the Gamma approximation in Doornik (1998).
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Figure 3.4: Estimated kernel densities of the reduced rank testsH(1) againstH(p). The solid black
vertical lines indicate the 95 quancentile of the the asymptotic distribution, derived in Johansen
(1996), based on the Gamma approximation in Doornik (1998).
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impact on the trace test for r = 0, while the trace test for r = 1 is still almost unaffected. In the

case of near non-stationary b
(i)
t (i.e. ρ(i) = 0.95 in i = 9, ..., 12) the trace test for r = 0 is skewed

dramatically towards zero, in particular this is evident for the very long samples with T = 1000

compared to the cases with less persistence in b
(i)
t . As the test size gets skewed towards zero the

probability of not rejecting the null of a rank of r = 0 increases. This is clearly evident from the

estimated kernel densities of the trace test for r = 0 in Figure 3.3, and from Table 3.6 it can be

seen that the rejection rate of r = 0 falls as ρ(i) increases. For example, in samples of T = 100

observations the rank r = 0 is only rejected in 75 percent of the models for i = 9 and 56 percent for

i = 10, so for a significant part of the simulated data a rank of r = 0 cannot be rejected. However,

in very long samples with T = 1000 observations the rejection rate of H(0) increases to 99 percent.

In the extreme case with both close to non-stationary persistence and high volatility in b
(i)
t (i = 12)

the null of r = 0 is only rejected for 30 percent of the simulated series for T = 100 observations,

and 42 percent for T = 200 observations. However, in long samples with T = 1000 observations the

null of r = 0 can be rejected in 99 percent of the simulated series for all i = 9, ..., 12. The trace test

for r = 1 is almost unaffected by the persistence in b
(i)
t , though a decrease in the rejection rate can

be seen in small samples with high persistence and volatility in b
(i)
t .

For non-stationary b
(i)
t (i = 13, ..., 16) the null of r = 0 is rejected with average p-values well

above the standard 5 percent significance level for all i = 13, ..., 16 and for all sample lenghts

considered. However, for small samples the null of r = 0 is rejected in up to 59 percent of the

series (i = 13 with T = 100), which shows that when the variance of the shocks to b
(i)
t is small it

requires a fairly long sample to reject H(0) even though b
(i)
t is simulated as non-stationary. As the

sample size increases, the rejection frequency decreases, though the null of r = 0 is still rejected in

approximately 20 percent of the series in samples with T = 1000 observations, irrespective of σ(i).

To conclude, the results show that the trace test based on the approximations of the standard

asymptotic distributions are not very sensitive to misspecification caused by stochastic cointegration

parameters in the underlying data-generating process, as long as there is no or low persistence in

the stochastic cointegration parameters in the underlying data-generating process. Though the

distribution of test sizes for H(0) gets skewed toward zero the null of r = 0 is clearly rejected based

on standard asymptotic inference. Hence, despite that standard asymptotic inference is invalid

the conclusions based on such inference appear to be qualitatively correct as the trace tests on

average suggest a reduced rank of r = 1. However, when b
(i)
t is simulated as near non-stationary

the distribution of test sizes for H(0) get so skewed towards zero that the null of r = 0 cannot be

rejected in a significant proportion of the simulated series unless the sample is very long.

Eigenvalues and Characteristic Roots

Consider next the characteristic roots of the companion matrix and the eigenvalues of Π̂, shown in

Table 3.7. The former are informative about the persistence in the estimated model as measured

by the number of unit roots, while the latter are informative about the degree of persistence in the

linear combinations β′X
(i)
t .

First, the last columns in Table 3.7 show the modulus of the two largest characteristic roots in

the system for the unrestricted model with full rank, and the modulus of the largest unrestricted
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Table 3.7: Eigenvalues and Characteristic Roots

Eigenvaluesa Characteristic Rootsb

i ρ(i) σ(i) T λ̂1 λ̂2 ν̂1,r=2 ν̂2,r=2 ν̂2,r=1

0 0.00 0.00 100 0.51 0.03 0.95 0.10 0.10
200 0.50 0.02 0.97 0.07 0.07
400 0.49 0.01 0.99 0.05 0.05

1000 0.49 0.00 0.99 0.04 0.04

1 0.00 0.10 100 0.50 0.03 0.95 0.11 0.11
200 0.50 0.02 0.97 0.08 0.08
400 0.49 0.01 0.99 0.06 0.06

1000 0.49 0.00 0.99 0.05 0.05

2 0.00 0.20 100 0.50 0.03 0.95 0.12 0.12
200 0.49 0.02 0.97 0.09 0.09
400 0.49 0.01 0.99 0.08 0.08

1000 0.49 0.00 0.99 0.06 0.06

3 0.00 0.50 100 0.50 0.03 0.95 0.14 0.14
200 0.49 0.02 0.97 0.11 0.11
400 0.49 0.01 0.99 0.09 0.09

1000 0.48 0.00 0.99 0.07 0.07

4 0.00 1.00 100 0.50 0.03 0.95 0.15 0.15
200 0.49 0.02 0.97 0.12 0.12
400 0.49 0.01 0.99 0.09 0.09

1000 0.48 0.00 0.99 0.07 0.07

5 0.50 0.10 100 0.43 0.03 0.95 0.17 0.17
200 0.39 0.02 0.97 0.23 0.23
400 0.34 0.01 0.99 0.31 0.31

1000 0.29 0.00 0.99 0.40 0.40

6 0.50 0.20 100 0.37 0.03 0.95 0.27 0.27
200 0.33 0.02 0.97 0.35 0.35
400 0.29 0.01 0.99 0.41 0.41

1000 0.26 0.00 0.99 0.46 0.46

7 0.50 0.50 100 0.31 0.03 0.95 0.39 0.39
200 0.28 0.02 0.97 0.44 0.44
400 0.26 0.01 0.99 0.47 0.47

1000 0.25 0.00 0.99 0.48 0.48

8 0.50 1.00 100 0.29 0.03 0.95 0.43 0.43
200 0.27 0.02 0.97 0.46 0.46
400 0.26 0.01 0.99 0.48 0.48

1000 0.25 0.00 0.99 0.49 0.49

9 0.95 0.10 100 0.24 0.03 0.95 0.54 0.54
200 0.11 0.01 0.97 0.78 0.78
400 0.05 0.01 0.99 0.89 0.89

1000 0.03 0.00 0.99 0.93 0.93

10 0.95 0.20 100 0.16 0.03 0.95 0.70 0.70
200 0.08 0.01 0.97 0.85 0.85
400 0.05 0.01 0.99 0.91 0.91

1000 0.03 0.00 0.99 0.93 0.93

11 0.95 0.50 100 0.11 0.03 0.95 0.80 0.80
200 0.06 0.01 0.97 0.88 0.88
400 0.04 0.01 0.99 0.92 0.92

1000 0.03 0.00 0.99 0.94 0.94

12 0.95 1.00 100 0.10 0.03 0.95 0.82 0.82
200 0.06 0.01 0.97 0.89 0.89
400 0.04 0.01 0.99 0.92 0.92

1000 0.03 0.00 0.99 0.94 0.94

13 1.00 0.10 100 0.18 0.03 0.95 0.66 0.65
200 0.06 0.01 0.98 0.89 0.88
400 0.03 0.01 0.99 0.96 0.96

1000 0.01 0.00 1.00 0.99 0.98

14 1.00 0.20 100 0.12 0.02 0.95 0.78 0.77
200 0.05 0.01 0.98 0.91 0.91
400 0.02 0.01 0.99 0.96 0.96

1000 0.01 0.00 1.00 0.99 0.98

15 1.00 0.50 100 0.09 0.02 0.96 0.85 0.84
200 0.05 0.01 0.98 0.93 0.92
400 0.02 0.01 0.99 0.96 0.96

1000 0.01 0.00 1.00 0.99 0.99

16 1.00 1.00 100 0.09 0.02 0.96 0.86 0.85
200 0.04 0.01 0.98 0.93 0.93
400 0.02 0.01 0.99 0.97 0.96

1000 0.01 0.00 1.00 0.99 0.99

All reported values are averages over S = 10, 000 replications.
a λi is the i’th largest solution to the eigenvalue problem |λS11 − S10S

−1
00 S01| = 0, see Johansen

(1996, Theorem 6.1).
b ν̂i,r=j refers to the modulus of the i’th largest root of the companion matrix for the model with

rank r = j.
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Figure 3.5: Modulus of the largest unrestricted root of the companion matrix for the reduced rank
model with r = 1.
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characteristic root of the reduced rank model with r = 1, where a unit root is imposed on the

largest characteristic root. Moreover, Figure 3.5 shows the estimated kernel densities of the largest

unrestricted characteristic root in the reduced rank model is shown.

In the case with b
(i)
t = 0 (for i = 0) in the data-generating process of the simulated data a root

indistinguishably close to a unit root is found, while the second largest characteristic root is low

and close to zero. For example, with T = 100 observations the largest root is found to be 0.95, on

average, which for the short sample is indistinguishable from a unit root, as shown by e.g. Johansen

(2006). As the number of observations increases the largest characteristic root converges towards

one, while the second largest characteristic root converges towards zero. By imposing a reduced

rank r = 1 the largest characteristic root is restricted to be a unit root, see Assumption 2, and the

second largest characteristic root is left unrestricted.

For stationary b
(i)
t (for i = 1, ..., 12) in the data-generating process of the simulated data the

largest characteristic root remains indistinguishably close to a unit root, as in the case with constant

cointegration parameters. However, an increase in ρ(i) increases the persistence in b
(i)
t , and as a result

the second largest characteristic root of the unrestricted system increases, and it increases with the

sample length for fixed (ρ(i), σ(i)). In the cases with both high ρ(i) and high σ(i) the second largest

characteristic root is even found to be close to a unit root. As can be seen from the final column in

Table 3.7, imposing a reduced rank of r = 1, and thereby restricting the largest characteristic root to

a unit root, leaves a large unrestricted characteristic root in the estimated reduced rank model. As is

evident from Figure 3.5 the estimated kernel densities of the largest unrestricted characteristic root

in the reduced rank model increases with the size of ρ(i). For ρ(i) = 0.95 the largest unrestricted

characteristic root is very close to a unit root, which in the standard cointegrated VAR model

typically would be interpreted as I(2)-type persistence. This shows that persistence in the process

X
(i)
t , caused by a high degree of persistence in b

(i)
t , shows up as an ‘extra’ degree of persistence in

the estimated cointegrated VAR model.

Consider next the estimated eigenvalues presented in Table 3.7. Recall that the eigenvalues

1 > λ̂1 > λ̂2 > 0 can be interpreted as a measure of the ‘stationarity’ of the cointegration relation

i for i = 1, 2. The greater the eigenvalue, the more ‘stationary’ is the linear relation and the

cointegration rank is determined by the number of non-zero eigenvalues. With an eigenvalue λ̂i = 0

the linear combination β̂′X
(i)
t is non-stationary, and consequently α̂i = 0, see equation (3.33).

With constant parameters the largest eigenvalue is, on average, found to be 0.5, while the second

eigenvalue is, on average, found to be close to zero. This clearly indicates that the bivariate system

has one stationary cointegration relation to which at least one variable is equilibrium adjusting, as

also indicated by the rank test.

With ρ(i) = 0 for i = 1, ..., 4 the eigenvalues are, on average, identical to those found in the

case with constant parameters in the data-generating process of the simulated data. As b
(i)
t is i.i.d.,

b
(i)
t X2t−1 is a heteroskedastic term with no persistence, so the estimated cointegration relation β̂′X

(i)
t

is heteroskedastic, but with no persistence, so the eigenvalues are (almost) not affected by b
(i)
t .

With 0 < ρ(i) < 1 for i = 5, ..., 12, the largest estimated eigenvalues decrease with ρ(i) and

with σ(i), and moreover they decrease significantly with the sample size. Hence, the greater the

persistence and volatility in b
(i)
t , the lower the largest estimated eigenvalue and the ‘less stationary’

is the cointegration relation β̂′X
(i)
t . When there is both near non-stationary persistence and high
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volatility in b
(i)
t the largest estimated eigenvalue becomes extremely close to zero. For example,

for i = 12 the largest eigenvalue is, on average, λ̂1 = 0.1 for T = 100 observations, λ̂1 = 0.06 for

T = 200 observations, and λ̂1 = 0.03 for T = 1000 observations. These low eigenvalues illustrate

why the trace test in these cases could not reject a reduced rank of r = 0, except from in extremely

long samples, as this corresponds to λ̂1 = 0.

These results show that persistence in the stochastic cointegration parameter of the underlying

data-generating process, through the stochastically trendless term b
(i)
t X2t−1, results in persistence

in the estimated cointegration relation β̂′X
(i)
t in the cointegrated VAR model. Thereby, the largest

estimated eigenvalue becomes very small, and if the persistence in b
(i)
t is close to non-stationary it

can even be found to be very close to zero.

Reduced Rank Estimation of β

As the estimated cointegration vector β̂ is normalized on β̂1, so that β̂ = (1, β̂2), Table 3.8 shows only

the average estimates of β̂2 over the S = 10, 000 replications. The estimated cointegration parameter

β̂2 is directly comparable to −b = −1 for 0 ≤ ρi < 1.0, in which case −b is the unconditional mean of

the stochastic cointegration parameter given by −(b+ b
(i)
t ). As the cointegration rank is r = 1, the

estimated cointegration vector is identified, and hence standard errors based on equation (12.13) in

Juselius (2006) and corresponding t-ratios are presented in Table 3.8. Figure 3.6 shows the estimated

kernel densities of the estimated cointegration parameter β̂2.

In the case of constant parameters in the data-generating process of the simulated data (i = 0)

β̂2 is a superconsistent estimate of −b, see Johansen (1996). This is evident from Figure 3.6, where

the distribution of the estimator collapses rapidly around the true value −b = −1 as T increases.

From Table 3.8 it can be seen that the estimates are very precise and statistically significant, with

very small standard errors and very high t-values on average.

In cases of stationary b
(i)
t in the data-generating process (i = 1, ..., 12) the results show that the

reduced rank estimator is a consistent estimator of the unconditional mean −b of the stochastic

cointegration parameters −(b+ b
(i)
t ), though the rate of convergence is slower than in the case with

constant parameters. From Figure 3.6 it is evident that as the sample length increase the estimated

kernel density of β̂ collapses around −b = −1. An increase in either ρ(i) or σ(i) (holding the

other fixed) slows the convergence and increases the estimated standard errors based on standard

asymptotic inference, as can be seen from Table 3.8. For example, keeping ρ(i) = 0.0 fixed, an

increase in σ(i) from 0.1 to 1.0 increases the average standard errors by a multiple of roughly 5,

with an increase from an average standard error of 0.03 for T = 100 to 0.16 for T = 1000. However,

the estimates of β̂2 are still found to be clearly significant on average, except from the extreme case

with high ρ(i) and high σ(i) for i = 12. In the latter case the estimator still converges towards −b,
but very slowly, and for small samples the distributions are very dispersed.

In cases with non-stationary b
(i)
t the estimator does not converge, which is expected as the

variables are not found to be cointegrated.

To conclude, the results show that the cointegrated VAR model provides a consistent and very

precise estimate of the unconditional mean of the stochastic cointegration parameters in the un-

derlying data-generating process, except from the case of near non-stationarity and high volatility
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Table 3.8: Reduced Rank Estimations with r = 1: Cointegration Coefficients β

i ρ(i) σ(i) T β̂∗
2 seβ̂∗2

a τβ̂∗2
1

0 0.00 0.00 100 -1.00 0.03 -39.97
200 -1.00 0.02 -77.65
400 -1.00 0.01 -153.78

1000 -1.00 0.00 -380.13

1 0.00 0.10 100 -1.00 0.03 -32.31
200 -1.00 0.02 -55.75
400 -1.00 0.01 -93.47

1000 -1.00 0.01 -174.30

2 0.00 0.20 100 -1.00 0.04 -24.33
200 -1.00 0.03 -38.56
400 -1.00 0.02 -59.24

1000 -1.00 0.01 -100.46

3 0.00 0.50 100 -1.00 0.09 -13.03
200 -1.00 0.06 -18.78
400 -1.00 0.04 -26.73

1000 -1.00 0.03 -42.60

4 0.00 1.00 100 -1.00 0.16 -7.06
200 -1.00 0.11 -9.84
400 -1.00 0.08 -13.68

1000 -1.00 0.05 -21.50

5 0.50 0.10 100 -1.00 0.04 -26.55
200 -1.00 0.03 -41.89
400 -1.00 0.02 -63.66

1000 -1.00 0.01 -105.17

6 0.50 0.20 100 -1.00 0.06 -17.33
200 -1.00 0.05 -24.77
400 -1.00 0.03 -34.79

1000 -1.00 0.02 -54.38

7 0.50 0.50 100 -1.00 0.15 -7.89
200 -1.00 0.11 -10.50
400 -1.00 0.08 -14.18

1000 -1.00 0.05 -21.86

8 0.50 1.00 100 -1.00 0.30 -4.03
200 -1.01 0.22 -5.30
400 -1.00 0.16 -7.10

1000 -1.00 0.10 -10.93

9 0.95 0.10 100 -1.01 0.15 -13.13
200 -0.96 0.18 -12.30
400 -0.99 0.13 -11.81

1000 -1.00 0.09 -13.81

10 0.95 0.20 100 -1.02 0.43 -6.38
200 -0.94 0.48 -5.62
400 -1.04 0.29 -5.58

1000 -1.01 0.18 -6.76

11 0.95 0.50 100 -0.59 1.53 -2.28
200 -0.47 1.17 -2.10
400 -1.04 0.69 -2.14

1000 -1.00 0.46 -2.65

12 0.95 1.00 100 -0.71 3.29 -1.08
200 -2.09 2.59 -1.04
400 -1.12 1.42 -1.05

1000 -1.01 0.93 -1.32

13 1.00 0.10 100 -1.80 0.70 -9.33
200 -1.24 0.91 -6.13
400 -0.57 2.72 -3.96

1000 -2.38 2.82 -2.32

14 1.00 0.20 100 -1.09 1.51 -4.28
200 8.06 4.71 -2.77
400 -7.15 6.50 -1.92

1000 4.70 7.76 -1.16

15 1.00 0.50 100 -1.54 3.58 -1.46
200 -3.14 8.35 -1.03
400 -26.91 16.55 -0.79

1000 -0.29 14.53 -0.47

16 1.00 1.00 100 -1.00 8.73 -0.66
200 -15.54 24.07 -0.51
400 27.04 28.45 -0.43

1000 -8.30 26.19 -0.25

All reported values are averages over S = 10, 000 replications.
a Maximum likelihood estimated of β̂2 (Johansen, 1996, Theorem 6.1), along

with standard errors and t-values as given by equation (12.13) in Juselius
(2006).
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Figure 3.6: Estimated kernel density of the estimated cointegration parameter β̂2. The estimated
β vector is normalized on β̂1, so β̂ = (1, β̂2) and β̂2 is comparable to −b in the data-generating
process of the simulated data.
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in b
(i)
t . Though the rate of convergence is slower than in the case of constant parameters in the

data-generating process, the estimates of β̂2 are found to be clearly significant based on standard

asymptotic inference.

Reduced Rank Estimation of α

Finally, consider the estimated adjustment coefficients α̂ presented in Table 3.9, while Figures 3.7

and 3.8 present the estimated kernel densities of α̂1 and α̂2, respectively. In the simulations α =

(−1, 0)′ was used, so, for 0 ≤ ρ(i) < 1, X2t was a weakly exogenous random walk and X
(i)
1t was purely,

and instantly, adjusting to the cointegration relation with stochastic cointegration parameters given

by β
(i)′
t X

(i)
t−1 = (β+B

(i)
t )′X

(i)
t−1. However, in the estimated cointegrated VAR model α̂ measures the

adjustment to the estimated cointegration relation β̂′X
(i)
t−1, rather than β

(i)′
t X

(i)
t−1 and therefore we

would not expect α̂ to be a consistent estimate of α for 0 < ρ(i) < 1.

In the constant parameter case, b
(i)
t = 0 for i = 0, α̂1 = −1 and clearly significant, while α̂2 = 0

and clearly insignificant, on average, for all sample lengths. As the sample length increases, the

average standard errors of both α̂1 and α̂2 decreases.

For ρ(i) = 0 and i.i.d. stochastic parameter b
(i)
t , the same results are found; α̂1 = −1 and clearly

significant, while α̂2 = 0 and clearly insignificant, on average. In fact, the standard errors decrease

on average compared to the case with constant cointegration parameters, and, in particular, an

increase in σ(i) for fixed ρ(i) = 0 decreased the average estimated standard errors.

However, adding persistence in b
(i)
t has a significant impact on the estimated adjustment coeffi-

cients. From Figures 3.7 and 3.8 it can be seen that as ρ(i) increases (for 0 < ρ(i) < 1) the estimated

kernel density of α̂1 gets skewed towards zero, while the estimated kernel density of α̂2 collapses

around zero. Moreover, as ρ(i) and σ(i) increase, the estimated kernel density of α̂1 converges faster

towards zero as the number of observations T increases, and the estimated kernel density of α̂2

collapses faster around zero as T increases. These results are also evident from table 3.9, where

it can be seen that on average α̂1 and α̂2 become smaller as ρ(i) increases. However, the average

standard errors are also decreasing, although at a slower rate than the parameter estimates, so on

average α̂1 is found to be significant, while α̂2 is clearly found to be insignificant on average. Thus,

despite the low estimated adjustment coefficients the estimates correctly finds that X
(i)
1t is adjusting

to the estimated cointegration relation, while X2t is found to be weakly exogenous.

The finding that persistence in b
(i)
t skews the estimated kernel density towards zero (for 0 <

ρ(i) < 1) is a direct result of persistence in the estimated cointegration relation β̂′X
(i)
t caused by

the stochastically trendless term b
(i)
t X2t−1 in the underlying data-generating process. As a result of

persistence in β̂′X
(i)
t , the estimated eigenvalues gets skewed towards zero, whereby the estimated

adjustment coefficients get skewed towards zero, c.f. the relation between the estimated eigenvalues

and adjustment parameters in equation (3.33).

To summarize the main findings for the reduced rank estimations, the results show that the

cointegrated VAR model delivers a consistent estimate of the unconditional mean of the stochastic

cointegration parameters of the underlying data-generating process. However, if there is persis-

tence in the stochastic cointegration parameters of the data-generating process, this persistence

implies persistence in the estimated cointegration relation. As a consequence, the largest estimated
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Table 3.9: Reduced Rank Estimations with r = 1: Adjustment Coefficients α

i ρ(i) σ(i) T α̂1 seα̂1
a τα̂1

b α̂2 seα̂2
a τα̂2

b

0 0.00 0.00 100 -1.02 0.15 -7.07 -0.00 0.10 -0.00
200 -1.01 0.10 -9.95 -0.00 0.07 -0.01
400 -1.01 0.07 -13.97 0.00 0.05 0.00

1000 -1.00 0.05 -22.08 0.00 0.03 0.01

1 0.00 0.10 100 -1.02 0.14 -7.64 -0.00 0.09 0.00
200 -1.01 0.09 -11.14 -0.00 0.06 -0.00
400 -1.01 0.06 -16.45 -0.00 0.03 0.00

1000 -1.00 0.04 -27.47 0.00 0.02 0.01

2 0.00 0.20 100 -1.03 0.13 -8.33 0.00 0.07 0.01
200 -1.02 0.08 -12.19 0.00 0.04 0.00
400 -1.01 0.06 -17.90 -0.00 0.02 -0.00

1000 -1.00 0.03 -29.29 0.00 0.01 0.01

3 0.00 0.50 100 -1.04 0.11 -9.33 0.00 0.04 0.01
200 -1.02 0.08 -13.32 0.00 0.02 0.00
400 -1.01 0.05 -19.06 -0.00 0.01 0.00

1000 -1.00 0.03 -30.31 0.00 0.00 0.01

4 0.00 1.00 100 -1.04 0.11 -9.76 0.00 0.02 0.01
200 -1.02 0.08 -13.70 0.00 0.01 0.00
400 -1.01 0.05 -19.35 -0.00 0.01 0.00

1000 -1.00 0.03 -30.53 0.00 0.00 0.01

5 0.50 0.10 100 -0.87 0.13 -6.62 0.00 0.08 0.01
200 -0.79 0.09 -8.94 -0.00 0.05 -0.00
400 -0.71 0.06 -12.04 -0.00 0.03 0.00

1000 -0.62 0.03 -17.94 0.00 0.02 0.01

6 0.50 0.20 100 -0.75 0.12 -6.32 0.00 0.06 0.01
200 -0.66 0.08 -8.52 0.00 0.04 0.00
400 -0.60 0.05 -11.65 -0.00 0.02 -0.00

1000 -0.55 0.03 -17.99 0.00 0.01 0.01

7 0.50 0.50 100 -0.63 0.10 -6.14 0.00 0.03 0.02
200 -0.57 0.07 -8.35 0.00 0.02 0.01
400 -0.54 0.05 -11.59 -0.00 0.01 -0.00

1000 -0.52 0.03 -18.09 0.00 0.00 0.01

8 0.50 1.00 100 -0.59 0.10 -6.14 0.00 0.02 0.01
200 -0.55 0.07 -8.36 0.00 0.01 0.01
400 -0.52 0.05 -11.60 -0.00 0.00 -0.00

1000 -0.51 0.03 -18.10 0.00 0.00 0.01

9 0.95 0.10 100 -0.48 0.11 -4.14 -0.00 0.07 0.00
200 -0.26 0.06 -3.69 -0.00 0.04 -0.01
400 -0.14 0.04 -3.83 0.00 0.02 -0.00

1000 -0.09 0.02 -5.22 -0.00 0.01 -0.01

10 0.95 0.20 100 -0.29 0.08 -3.22 0.00 0.04 0.01
200 -0.16 0.04 -3.23 -0.00 0.02 -0.01
400 -0.10 0.02 -3.81 0.00 0.01 0.00

1000 -0.07 0.01 -5.42 -0.00 0.00 -0.00

11 0.95 0.50 100 -0.18 0.06 -2.66 0.00 0.02 0.01
200 -0.11 0.03 -3.06 0.00 0.01 0.00
400 -0.08 0.02 -3.84 0.00 0.00 0.00

1000 -0.06 0.01 -5.51 -0.00 0.00 -0.01

12 0.95 1.00 100 -0.15 0.05 -2.50 0.00 0.01 0.01
200 -0.10 0.03 -2.98 0.00 0.00 0.00
400 -0.08 0.02 -3.82 0.00 0.00 0.00

1000 -0.06 0.01 -5.50 -0.00 0.00 -0.01

13 1.00 0.10 100 -0.34 0.09 -3.23 0.00 0.05 0.01
200 -0.12 0.04 -2.25 -0.00 0.02 -0.02
400 -0.04 0.02 -1.84 0.00 0.01 0.02

1000 -0.01 0.01 -1.66 -0.00 0.00 -0.00

14 1.00 0.20 100 -0.20 0.07 -2.37 0.00 0.03 0.00
200 -0.07 0.03 -1.91 -0.00 0.01 -0.02
400 -0.03 0.01 -1.70 0.00 0.00 0.01

1000 -0.01 0.01 -1.60 -0.00 0.00 -0.00

15 1.00 0.50 100 -0.11 0.05 -1.77 0.00 0.01 0.01
200 -0.05 0.03 -1.64 -0.00 0.00 -0.01
400 -0.02 0.01 -1.57 0.00 0.00 0.02

1000 -0.01 0.01 -1.54 -0.00 0.00 -0.01

16 1.00 1.00 100 -0.10 0.05 -1.60 0.00 0.01 0.00
200 -0.05 0.03 -1.55 0.00 0.00 -0.01
400 -0.02 0.01 -1.53 0.00 0.00 0.02

1000 -0.01 0.01 -1.52 -0.00 0.00 -0.01

All reported values are averages over S = 10, 000 replications.
a Standard errors of α̂1 and α̂2, respectively, as given by equation (12.14) in Juselius (2006).
b Corresponding t-values of α̂1 and α̂2, respectively
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Figure 3.7: Estimated cointegration adjustment parameter α̂1.
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Figure 3.8: Estimated cointegration adjustment parameter α̂2.
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eigenvalue decreases significantly and the estimated adjustment parameters get skewed significantly

towards zero. Though standard asymptotic inference is found to be sensitive to the misspecification

caused by the stochastic cointegration parameters in the data-generating process, the conclusions

reached based on the standard inference appears to be qualitatively correct, in the sense that in

most cases considered a reduced rank of r = 1 is found, the estimated cointegration parameters are

clearly significant, and the correct variable is found to be significantly adjusting to the estimated

cointegration relation.

3.5 Conclusion

The purpose of the simulation study presented in this paper is to address to what extent the classic

cointegrated VAR model can be used as an approximation to estimate the unconditional mean of

stochastic cointegration parameters—given by βt = β + Bt, where Bt is a mean zero stationary

process so that β is the unconditional mean of βt—and how the misspecification caused by Bt not

being captured by the constant parameter cointegrated VAR model affects the results and inference.

First, the results show that the estimated cointegrated VAR models appear statistically well-

specified in shorter samples typical for macroeconomic data (except from the extreme cases with

both very persistent and very volatile stochastic parameters), despite the misspecification of the coin-

tegrated VAR model compared to the data-generating process of the simulated data. Importantly,

it is found that persistence caused by the stochastic parameters of the underlying data-generating

process can be captured through the short-run structure in the cointegrated VAR model, so that

the estimated residuals are found not to be autocorrelated. Though, heteroskedasticity caused by

the stochastic parameters cause problems with excess kurtosis and non-normality in the estimated

residuals of the cointegrated VAR model, but identifying this misspecification requires a fairly long

sample, except if the variance of the shocks to the stochastic cointegration parameters is of the same

magnitude as the variance of the shocks to the levels of the variables.

Second, the results show that though the trace test based on standard asymptotic inference

is sensitive to the misspecification caused by the stochastic cointegration parameters in the data-

generating process, the trace test correctly suggests a reduced rank of r = 1 and thereby it appears

to be qualitatively correct, except from cases with near non-stationary persistence and high volatility

in the stochastic cointegration parameters.

Third, the results show that the cointegrated VAR model provides a consistent and very precise

estimate of the constant unconditional mean of the stochastic cointegration parameters. Persis-

tence in the underlying stochastic parameters shows up in the estimated cointegrated VAR model

as persistent deviations from the estimated cointegrated relations, low estimated eigenvalues, and

adjustment coefficients skewed towards zero. Moreover, it shows up in the short-run structure as

inclusion of lagged first-differences is required to remove autocorrelation in the estimated residuals,

and it results in excess kurtosis and non-normality of the estimated residuals.

A limitation of the presented simulation study is that recursive tests for parameter instability are

not considered, and such tests might identify the parameter instability. The results presented in this

paper suggest that bounded underlying parameter-instability is most likely identified as persistence

and in the adjustment coefficients, the short-run structure, and the residuals in the cointegrated
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VAR model, rather than in the estimated cointegration parameters. Though, recursive tests for

parameter non-constancy are interesting potential extensions left for future work.

However, the point of this study is not to show how underlying bounded parameter-instability

might be identified and modeled directly, which would require other tests and another econometric

model than the classic cointegrated VAR model considered in this paper. Rather the point is to show

that if misspecification caused by bounded parameter-instability in the underlying data-generating

process is not identified, it will show up in an estimated cointegrated VAR model as persistent

deviations from the estimated cointegration relations and correspondingly low estimates of the

adjustment coefficients. In this case, the estimated cointegration relations can still be interpreted

as long-run equilibrium relations, but they are defined by the unconditional mean of the stationary

stochastic cointegration parameters rather than constant parameters, and the persistent deviations

and slow estimated adjustment are consequences of the underlying bounded parameter-instability.

Thereby, the findings in this paper provide a new potential explanation for the ‘persistence puz-

zle’, which is a frequent puzzle when standard macroeconomic and financial theories are estimated

and tested empirically with the cointegrated VAR model. The novelty consists in the result that

persistent deviations from the estimated long-run equilibrium relations and slow estimated adjust-

ment can potentially be caused by persistent, but stationary, parameter-instability and stochastic

cointegration in the underlying data-generating process—even when the adjustment to the stochas-

tic equilibrium takes place instantly and the exogenous shocks to the levels of the variables are not

persistent. The results presented suggest that if such underlying bounded parameter-instability is

present, it is not captured and hard to identify in the cointegrated VAR model, thus leading to the

conclusion of an empirical ‘persistence puzzle’ as long as the assumption of constant parameters is

maintained.

An interesting extension for future work is to address how persistence caused by boundedly time-

varying cointegration parameters can be distinguished from persistence caused by slow adjustment

or persistent exogenous shocks. It might indeed be possible to distinguish between these sources of

persistence within the cointegrated VAR model, for example through recursive tests for parameter

constancy, but more likely it requires development of new econometric methods to directly estimate

extensions of the cointegrated VAR model with stochastic cointegration parameters.
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