#### Jahn-Teller beads on a string

#### synthesis and magnetic properties of one-dimensional fluoride-bridged manganese(III)-systems

Sørensen, Mikkel Agerbæk; Pedersen, Kasper Steen; Piligkos, Stergios; Bendix, Jesper

Publication date: 2013

Document version Publisher's PDF, also known as Version of record

Citation for published version (APA): Sørensen, M. A., Pedersen, K. S., Piligkos, S., & Bendix, J. (2013). Jahn-Teller beads on a string: synthesis and magnetic properties of one-dimensional fluoride-bridged manganese(III)-systems. Poster session presented at Zing Coordination Chemistry Conference, Xcaret, Mexico.

# Jahn-Teller beads on a string: Synthesis and magnetic properties of one-dimensional fluoride-bridged manganese(III)-systems

Mikkel A. Sørensen,<sup>a</sup> Kasper S. Pedersen,<sup>a</sup> Stergios Piligkos<sup>a</sup> and Jesper Bendix<sup>a</sup>

a) Department of Chemistry, University of Copenhagen, Denmark

E-mail: mikkel.agerbaek@chem.ku.dk

#### Introduction

The system *catena*-[Mn<sup>III</sup>(F)(salen)] (salenH<sub>2</sub> = N,N'-bis(salicylidene)ethylenediamine), as published by Birk et al., [1], presented the first example of a fluoride-bridged chain based on the ubiquitous [Mn<sup>III</sup>(salen)]<sup>+</sup>-unit. To expand this class of compounds, a new and more general route to catena-[Mn(F)(Schiff base)]-systems has been developed. By varying the Schiff base ligand, systems with both strictly linear bridges as in *catena*-[Mn<sup>III</sup>(F)(5-MeO-salen)] $\cdot \frac{1}{2}$ MeOH $\cdot \frac{1}{2}$ H<sub>2</sub>O (**1**), somewhat bent bridges as in *catena*-[Mn<sup>III</sup>(F)(5-Me-saldmen)]·MeOH (**2**) (164°), and even quite bent bridges as in *catena*-[Mn<sup>III</sup>(F)(salpn)] (**3**) (146°) and *catena*-[Mn<sup>III</sup>(F)(5-MeO-salpn)] (**4**) (144°), have been synthesized. In these compounds, the Jahn-Teller axis is along the Mn-F bonds, providing sufficient basicity of the fluoride ligand to make fluoride-bridging the structure-

## **Synthesis**

The synthetic protocol published for *catena*-[Mn<sup>III</sup>(F)(salen)], [1], fails upon sufficient modification of the Schiff base type ligand. Instead catena-[Mn<sup>III</sup>(F)(Schiff base)] systems can be prepared by addition of fluoride to  $[Mn^{III}(Schiff base)X_2]^{n+}$  or  $[Mn^{III}_2(Schiff base)_2X_2]^{n+}$  precursors (X = solvent molecules or triflate counterions) in acetone/ethanol binary solvents. Crystals suitable for single crystal X-ray diffraction studies are obtained from MeOH/Et<sub>2</sub>O.







directing motif. Sizeable antiferromagnetic intrachain exchange interactions are found in all the compounds, emphasizing the potential of fluoride as a good mediator of magnetic exchange interaction in polynuclear complexes. By tuning the bridging angle and crystal packing, interesting magnetic properties arise, and in **3**, slow relaxation of the magnetization is observed. The slow relaxation is a result of a small canting of the spins on neighboring manganese(III)-centers in the chains.



### Magnetic hysteresis behavior of 3

In **3**, the bending of the fluoride bridges weakens the antiferromagnetic exchange interaction between neighboring manganese(III)-centers, as evident from the fitting of the static magnetic susceptibility data to the isotropic Heisenberg Hamiltonian:

H<sub>dc</sub> = 1000 Oe △ **3** – ∠<sub>Mn-F-Mn</sub> = 146°

# Antiferromagnetic ordering in 4

In 4, a substantial antiferromagnetic intrachain exchange interaction is found, and following similar considerations as for **3**, an uncompensated magnetic moment perpendicular to the chains is expected. From maxima in the numerical field deri-

 $\hat{H} = J \sum \hat{S}_i \cdot \hat{S}_{i+1} + \mu_{\rm B} g B \sum \hat{S}_i$ (1)

by use of the classical Fisher expression for the magnetic susceptibility of an infinite chain of classical spins, [2]:

 $\chi = \frac{N_{\rm A}g^2 \mu_{\rm B}^2 S(S+1)}{3kT} \frac{1+u}{1-u} \qquad , \qquad u = \left(\frac{kT}{S(S+1)J}\right) - \coth\left(\frac{S(S+1)J}{kT}\right)$ 

The chain motif is generated by 2, screw axes, making neighboring manganese(III)-centers magnetically inequivalent as well as generating two magnetically inequivalent

chains within the unit cell, A and B. Due to the large local axial anisotropy ( $D \sim -3.5$  cm<sup>-1</sup>), each to-structural considerations regarding the size of J, D and the angle between the easy axes and the chain axis, [3], a canting angle of  $1.4^{\circ}$  is calculated, meaning that each chain has a small uncompensated magnetic moment perpendicular to the chain,  $\rightarrow$  . Below T = 8 K a phase transition to a phase showing magnetic bistability occurs, with the opening of a hysteresis loop at T = 4 K.



- Fit to classical Fisher model = J = 29 cr Mn(F)(salen) – average ∠<sub>Mn−F−Mn</sub> = 161 Fit to classical Fisher model =

vative of the magnetization and the low-temperature magnetic susceptibility, a transition to an antiferromagnetically ordeJUDON

red phase with  $T_N = 13$  K and  $H_C = 0.90$  T is concluded. The unusual behavior of M at T = 2 K might be a result of a transition to a structural phase with much stronger interchain interactions.



#### A different kind of chain

The reaction between [Mn<sup>III</sup>(salophen)(CF<sub>3</sub>SO<sub>3</sub>)] and [Re<sup>IV</sup>F<sub>6</sub>]<sup>2-</sup> yields a fluoride-bridged one-dimensional manganese(III) coordination polymer, consisting of both mononuclear [Mn<sup>III</sup>(salophen)]<sup>+</sup>units and [Mn<sup>III</sup><sub>2</sub>(salophen)<sub>2</sub>]<sup>2+</sup> out-of-plane dimers, with octahedral [Re<sup>IV</sup>F<sub>6</sub>]<sup>2-</sup> counterions neutralizing the charge of the chains. The fluoride linkers are believed to stem from a possibly redox promoted fluoride abstraction from the otherwise robust hexafluoridorhenate(IV). The magnetic properties await future studies.

#### A mononuclear exception

If the general synthetic procedure is followed with  $[Mn^{III}(salophen)(CF_3SO_3)]$  as precursor, the outcome is the mononuclear complex *trans*-[Mn<sup>III</sup>(F)(MeOH)(salophen)]. The complex forms a one-dimensional network through O-H…F hydrogen-bonding.



**Reddish black blocks** 

#### References

[1] Birk, T.; Pedersen, K. S.; Piligkos, S.; Thuesen, C. A.; Weihe, H.; Bendix, J., Inorg. Chem., **2011**, 50, 5312. [2] Fisher, M. E., Am. J. Phys., **1968**, 32, 343. [3] Mossin, S.; Weihe, H.; Sørensen, H. O.; Lima, N.; Sessoli, R., Dalton Trans., 2004, 632.

Space group: P-1  $F-Mn-F = 156.67^{\circ}$  and  $164.44^{\circ}$ Mn-F = 1.9836 Å, 1.9955 Å, 2.0721 Å and 2.1156 Å  $(Mn \cdots Mn)_{out-of-plane dimer} = 3.259 \text{ Å and } 3.349 \text{ Å}$ 

#### Conclusions

This work shows the versatility of fluoride as bridging ligand, and therefore structure-directing motif, in polynuclear coordination compounds. The fluoride ligand mediates relatively strong magnetic exchange interaction with  $J_{Mn-Mn} \sim 25 - 40 \text{ cm}^{-1}$ . Through minor structural changes, e.g. tuning of the bridging angle, systems with highly different properties can be constructed.

**Dark orange prisms** 

Dr. Hab. Rodolphe Clérac (CNRS, Centre de Recherche Paul Pascal, France and University of Bordeaux, France) is thanked for fruitful discussions of the magnetic properties of these chain systems.