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Abstract

We present the theoretical foundations of a general principle to infer structure ensembles of flexible biomolecules from
spatially and temporally averaged data obtained in biophysical experiments. The central idea is to compute the Kullback-
Leibler optimal modification of a given prior distribution t(x) with respect to the experimental data and its uncertainty. This
principle generalizes the successful inferential structure determination method and recently proposed maximum entropy
methods. Tractability of the protocol is demonstrated through the analysis of simulated nuclear magnetic resonance
spectroscopy data of a small peptide.
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Introduction

The rigorous analysis of experimental data probing the structure

of biological macromolecules forms the foundation of many

biophysical studies [1]. The sources of experimental data include

nuclear magnetic resonance spectroscopy spectroscopy (NMR)

and small-angle X-ray- and neutron scattering. This article

addresses several issues which often make inference of biomolec-

ular structure from such data particularly challenging. First, in

these experiments, the time-scale of acquisition typically exceeds

that of molecular fluctuations. Second, the samples studied are

often near molar concentrations. Third, data is frequently

incomplete, or even sparse, and subject to experimental noise.

Consequently, data obtained from such techniques yield incom-

plete, noisy, spatially and temporally averaged information on the

Boltzmann ensemble of the observed system. Thus, such data are

ideally analyzed through models that take these properties into

account. While this fact has long been recognized, the analysis of

these types of data has revolved predominantly around structure

determination – that is, fitting a single conformation to fulfill all

derived geometrical restraints [2]. Such structure determination

methods do not adequately handle sparse, noisy and averaged

data. Here, we propose an alternative method which addresses

these shortcomings.

Typically, structure determination from experimental data

proceeds through hybrid energy minimization [3]. In this method,

an energy function Eexp that brings in the experimental data is

combined with an approximative physical forcefield Ephys. The

term Eexp is typically a straight-forward combination of a forward-

and an error-model. A forward-model relates a protein confor-

mation to experimental data, whereas an error-model concerns

experimental errors. Alternatively, a Bayesian formulation known

as inferential structure determination (ISD) has been proposed,

formulating structure determination in a rigorous probabilistic

framework [4]. In ISD, a posterior distribution is constructed by

combining a data likelihood with prior distributions on confor-

mational and nuisance parameters. The likelihood and the prior

concerning biomolecular structure correspond to Eexp and Ephys,

respectively. This Bayesian approach extends the common hybrid

energy minimization by solving the important problems of

choosing appropriate error-models, treating model-parameters

coherently and performing inference through posterior sampling

rather than minimization. However, by construction, these

approaches assume that conformational variability can be

represented through uncorrelated, homoscedastic fluctuations

around one average structural representation. Consequently, the

conformational heterogeneity present in the posterior distribution

reflects the quality and completeness of the experimental data and

the prior distributions, but not necessarily any physical fluctuations

[5]. Despite this well-known limitation, the approximation tends to

yield good results for well-folded proteins when conformational

fluctuations are modest.

Early attempts to model ensemble NMR data involved

averaging along molecular dynamics trajectories [6,7]. In these

protocols, a memory function specifies an averaging time-span

which is used to obtain a time-averaged representation of the

experimental data. While this approach displayed initial promise,

the short timescales accessible through routine molecular dynam-

ics limit its use [8]. An alternative approach, which involves

explaining the data using an average of several conformations,
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emerged around the same time [9]. This approach has since

shown to be more viable.

During the past two decades there has been an increasing

interest in biomolecules that undergo significant conformational

fluctuations, such as natively unfolded and partially unfolded

proteins [10]. Consequently, there have been many efforts to

overcome the limitations of structure determination procedures

with respect to the flexibility of these molecular systems.

Prevalently, conformational fluctuations are represented by finite

ensembles: the data is explained by a weighed average of Nw1
conformations, introduced above. In effect, this corresponds to

discretizing the Boltzmann ensemble. Such discrete ensembles

may be constructed in a multitude of ways, including database-

derived explicit ensembles [11,12], data-optimized explicit ensem-

bles [13–17], fragment based ensemble construction [18–20] and

multi-conformer refinement, molecular dynamics and Monte

Carlo methods [8,21–23] and maximum entropy methods [24].

Another important approach uses multiple replicas in the

calculation of the hybrid energy used in restrained molecular

simulations [8,25,26]. However, the discretization of the confor-

mational ensemble is inherently problematic because determining

the optimal ensemble size N, and its associated uncertainty, is

difficult.

Restraining simulations using an average of multiple replicas is a

sensible solution, as it was recently shown that multiple replica

restrained simulations constitute the least biased method when the

number of replicas goes to infinity in the absence of experimental

noise [27–29]. However, a measurable bias is introduced when the

number of replicas used is too small [28]. Since the use of large

numbers of replicas may prove to be computationally intractable

or impossible, the development of approaches which are

independent of this discretization is highly desirable.

In this work, we approach the problem of modeling sparse,

spatially and temporally averaged data through the principles of

Bayesian statistics and information theory. Unlike the previous

Bayesian efforts [4,16], we explicitly take into account the

experimental data as noisy, average quantities of an underlying

heterogenous ensemble in continuous space. We derive a general

posterior distribution from first principles which imposes the least

necessary bias on our prior knowledge to fulfill the experimental

data.

We outline a number of general, theoretical advances concern-

ing biomolecular structure determination and restrained molecular

simulations. To ensure a focused and concise presentation we

limited the number of practical examples. However, one example

given uses synthetic data of a small idealized peptide GB1

generated using the PROFASI forcefield at high temperature [30].

This choice allows us to carefully evaluate the theory presented by

avoiding confounding variables. Finally, our findings are com-

pared to existing methodology and is shown to generalize these.

Results and Discussion

A hierarchical model of spatially and temporally
averaged restraints

Ultimately, our aim is to sample from the conditional

probability distribution p(xjd), where x denotes a protein’s

conformation and d denotes spatially and temporally averaged,

experimental data. The variable x represents a positional

microstate in atomic detail. Through a forward model f (x) we

can calculate a coarse-grained representation, f, of a protein

conformation x. That is, our forward model is a mapping,

f : R3N?RM , of the N atoms of x to an Mv3N-dimensional

coarse grained representation, f. Conceptually, f may be

interpreted as the instantaneous ’experimental data’ back-calcu-

lated from a positional micro-state, x. However, as d represents an

averaged quantity we need to introduce a variable, e, to represent

an ensemble average of the simulated experimental data f. Conse-

quently, our full posterior distribution becomes p(x,f,ejd).

We clarify the relation between f, e and d using the example we

will present later on. In the case of nuclear Overhauser

enhancement (NOE) data obtained from an NMR experiment

[31], the coarse-grained variable f is a vector related to pairwise

distances between atoms in a protein conformation x. In one case,

this is simply a vector of these distances. The variable e is an

average of f vectors from an ensemble of protein conformations.

The experimental NOE data d can be interpreted as a noisy

observation of the vector of averages, e. In general, there is no

simple relationship between the vector f and the averaged vector

e, but a simple probabilistic model that relates them can be

developed, as we discuss next.

We start by considering the coarse-grained representations of

the distribution, f, e and d, without considering the fine-grained

representation, x. Following the Bayesian probability calculus, we

formulate a posterior distribution,

p(f,ejd) !p(djf,e)p(f,e)

~p(dje)p(f,e),
ð1Þ

where the first term is the likelihood and the second term is the

prior distribution. Note that the prior of d is in variant during

inference and left out, hence the proportionality. The equality is

due to the redundancy of f in the evaluation of the likelihood

function – d is a noisy observation of e, which does not involve f.

The independence assumptions of the model are shown in the

corresponding graphical model in Figure 1.

Applying the product rule of probability theory to equation (1),

we obtain

p(f,ejd)!p(dje)pf (fje)pe(e): ð2Þ

pf (fje) is the prior distribution of the simulated data f given their

averaged value e, and pe(e) is the prior distribution over the

simulated ensemble averaged data e.

Equation (2) is a probabilistic model of the relationship between

noisy, ensemble averaged data, and conformational micro-states in

a coarse-gained space. However, to obtain a probability distribu-

Figure 1. A directed graphical model of the ensemble model
(on the left) and its interplay with a fine-grained conforma-
tional prior distribution (top right) through the reference ratio
method, (bottom right). In the graphical model, the black circles are
random variables, and the arrows determine their conditional
independencies. The parameter s, marked in grey on the left, is fixed
and given, and denotes the experimental error in this particular
example. tf (f) denotes the reference distribution.
doi:10.1371/journal.pone.0079439.g001
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tion p(x,f,ejd) which features atomic detail, we need to combine

(2) with a fine-grained physical forcefield or a probability

distribution, t(x). This can be done by using the reference ratio

method [32,33],

p(x,f,ejd) !
p(dje)pf (fje)pe(e)

tf (f)
t(x): ð3Þ

tf (f) is called the reference distribution, and is the distribution

induced in the coarse-grained space by the fine-grained prior, t(x).
That is, the prior distribution of x, directly implies a prior

distribution on f, due to the parameters deterministic relationship

through the forward model, f (:). This induced prior is called the

reference distribution.

The reference ratio method yields the Kullback-Leibler optimal

modification of the fine-grained model t(x) with respect to the

coarse-grained information (for proof, see chapter 4 in [34]).

Kullback-Leibler optimality is closely linked to the maximum

entropy principle of Jaynes [35]. In essence, our approach can be

seen as a maximum entropy solution given the noisy observation of

an ensemble average. It should be noted that even if the

distribution given by Equation (2) is unimodal, the posterior given

by Equation (3) can still be multimodal due to the nature of the

conformational prior, t(x).

The relationship to other methods
The model given by Equation (3) may be reduced to the ISD

framework [4]

p(x,fjd)!p(djf)t(x) ð4Þ

if we choose the Dirac delta function d(f{e) for pf (fje)pe(e)

and assume that tf (f) is uniform. Choosing the Dirac delta

function corresponds to assuming the Boltzmann distribution is

infinitely narrow. Hence, our model can be seen as a generaliza-

tion of ISD. The choice of the uniform distribution for tf (f)

corresponds to assuming that t(x) implies a suitable prior for f as

well. This may be inappropriate in some cases (see below).

We also observe that Equation (2) may be reduced to the

previously proposed maximum entropy restraining methods [27–

29]. This is evident if we consider the case where p(dje) is the

normal distribution and pf (fje)pe(e) is a log-linear model G(:) with

a linear link-function, ‘(A,b)~Ab. The link function allows us to

include the Lagrange multipliers used to relate the coarse-grained

variable f to the mean value f [36]. Thus,

G(fjL,e)~ exp½czfT‘(L,e)�! exp (fTLe). We have

p(f,ejd)!p(dje)pf (fje)pe(e)~N (dje,s)G(fjL,e) ð5Þ

where L is a diagonal matrix of Lagrange multipliers. If we now

consider the limit where the experimental noise vanishes we

obtain,

lim
s?0
N (dje,s)G(fjL,e)~G(fjL,d): ð6Þ

In minus log -space Equation 6 is proportional to minus fTLd.

This corresponds to the empirical term of the previously reported

maximum entropy method in absence of experimental uncertainty

[27]. We note that this method does not explicitly account for the

reference distribution tf (f) when combining the empirical term in

the coarse-grained space with a fine-grained prior distribution,

t(x). However, if the prior tf (f) is appropriate, then the Lagrange

multipliers L may provide the necessary means for minor

adjustments.

Reconstructing a high temperature ensemble from
sparse data

To test the presented theory, we use synthetic NOE data,

obtained from an ensemble of the GB1 hair-pin simulated at 400K
in the Profasi forcefield [30]. This simple, idealized system was

chosen to minimize the chances of undersampling, as well as to

avoid confounding associated with experimental data.

The restraints used here are visualized on a random confor-

mation of the GB1 hairpin in Figure 2. Historically, NOEs

constitute one of the most important sources of semi-quantitative

information in NMR structure determination. Under the isolated

spin-pair approximation for rigid molecules, NOEs are related to

an interatomic distance r as NOE!Sr{6T [37]. As an example,

we will apply equation (2) to two cases of averaged pairwise

distance data – these two cases involve the arithmetic mean SrT,

and the power-averaged mean Sr{6T, respectively. They repre-

sent two different averaging processes that are common in

biophysical data.

We use the log-normal distribution as an appropriate error-

model for pairwise distances derived from NOEs, which is the

approach adopted by ISD [38]. The choice for the prior pf (fje) is

less obvious and depends on the type of experimental data. Here,

we use the exponential distribution with mean b, E(xjb)~e{x
bb{1,

since it constitutes the least biasing continuous distribution on the

positive real axis, when no higher order moments are observed

Figure 2. A random backbone conformation of the GB1
hairpin. The restraints listed in Table 1 are shown as dashed lines.
The distance shown in red is used as the reaction coordinate f0 used in
Figures 3 and 4. This figure was created using PyMOL (DeLano Scientific
LCC).
doi:10.1371/journal.pone.0079439.g002
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[39]. The prior on f thus becomes: pf (fje)~pf (fje,w)~

PiE(f ijeiwi), where the product runs over all data-points and

the scale vector w is a free parameter (discussed below). It follows

that

p(x,f,ejd)!
N ( ln dj ln e,s)pf (fje,w)pe(e)

tf (f)
t(x), ð7Þ

where s is the experimental error, which is fixed and given, and

N (:) is the normal distribution. As prior on the ensemble average

e we choose pe(e)!e{1. This prior has previously been shown to

provide good results for variables confined to the positive real axis

[40].

Equation (7) provides a general solution to the problem of

modeling averaged NOE data subject to experimental uncertainty.

The only parameter to be estimated is the scale vector w, which

relates f to e in pf (fje,w).

In the ideal case, an optimal choice for w results in the desired

distribution for f as calculated from the structures x. More

precisely, it results in a marginal posterior distribution of Equation

(7) for x, such that, when e is fixed, the expectation of f is equal to

e. In practice, a satisfactory point estimate for w can be obtained in

an iterative manner, using an empirical Bayes approach (see

Materials and Methods). The parameter w compensates for the

approximate nature the reference distribution tf (f), which is

difficult to estimate accurately [33]. The introduction of w
provides a simple, yet effective measure to compensate for this.

We use equation (7) to model synthetic pairwise distance

restraints in the GB1 hairpin. For t(x) we use probabilistic models

of the conformational space of the main chain [41] and the side

chains [42], as these models recently yielded excellent results when

combined with the ISD method [43]. As the prior distribution and

the likelihood concern local and nonlocal features of protein

structure, respectively, their information content shows little

overlap. More informative priors, for example based on physical

energy functions, can be envisaged, but this is beyond the scope of

this article.

Evaluation of inferred ensembles
The prior distribution used in this study concerns protein

structure on a local length scale, and thus does not model long

range distances accurately. Consequently, as a reaction coordi-

nate, we chose a representative distance f0 between atoms Ca41

and Ca51 – which are separated farthest in sequence – to illustrate

the long-range properties of the eight different ensembles

considered here. Histograms of this pair-wise distance in the

different ensembles are shown in Figures 3 and 4. This pair-wise

distance is highlighted with yellow color in Figure 2.

The conformational prior and PROFASI, which was used to

generate the averaged data, result in different distance distribu-

tions (Figure3). However, if we modify the prior using the

reference ratio method as described above, we obtain good fits

with the PROFASI distribution for both linearly and power-

averaged data. The ISD ensemble, which does not take the

ensemble nature of the data into account, is overly tightly peaked

around the (correct) mean.

A similar pattern is observed for the distribution of the gyration

radii Rg. The gyration radii are not used in the estimation of the

probability distributions, and can thus be used for cross-validation.

The average and standard deviation of the gyration radii of the

ensemble used to generate the data is 9.7161.5Å. The ensembles

obtained with our method from the power averaged and linearly

averaged data resulted in a slightly higher average (10.3061.8Å

and 10.1961.6Å, respectively), but essentially the correct standard

deviation. This is an excellent result, as a perfect fit is not expected

due to the sparse and noisy nature of the data. Again, the ISD

ensemble provides an overly narrow distribution (9.8860.6Å).

Finally, sampling from the prior distribution alone results in an

average radius of gyration of 11.3461.8Å, which is considerably

too high.

In some cases, compensating for the bias introduced by the

reference distribution is not critical to obtain good results. As it

constitutes an additional obstacle in terms of estimation and

simulation time, we evaluate its significance on the obtained

results. In the power averaged case we achieved this by chosing the

reference distribution tf (f) and the scale vector, w, in equation (7)

to be the uniform distribution and the unit vector, respectively. In

the linearly averaged case, the scale vector was kept fixed equal to

the 1-vector, as tf (f) was assumed to be uniform in the results

presented above. The results are shown in figure 4. In the case of

the power averaged data, with tf (f) uniform and w equal to the 1-

vector, severely skews the distribution of the distances (green line

in figure 4). When the scale vector w is estimated, while still

assuming tf (f) uniform, the fit improves (blue line), but without

resulting in a satisfactory distribution. In the linearly averaged

case, we find that a 1-vector for w provides a good fit (red line).

Table 1. Synthetic datasets used in this study.

Ca-pair Sr{6
i T SriT

41–51 4:799:10{7 19.40

42–48 1:32:10{6 14.36

44–46 2:07:10{5 6.06

44–54 2:17:10{7 19.39

53–54 13:29:10{4 3.51

First colum: Ca atoms involved in the pairwise distance. Second and last
columns: averaged and power-averaged pairwise distances, respectively.
doi:10.1371/journal.pone.0079439.t001

Figure 3. Histograms, p(f0), of a representative pairwise

distance f0 (between Ca41-Ca51, in A) in the ensembles. The
black and blue lines are obtained from the PROFASI and ISD ensembles
respectively, while the cyan line represent the prior t(x). Finally, the
green and red lines respectively represent ensembles obtained from the
power-averaged and linearly averaged data.
doi:10.1371/journal.pone.0079439.g003
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If we again consider the gyration radii as providing comple-

mentary views of the ensembles, we find that the power-averaged

ensemble with uniform tf (f) and unit scale vector yields an overly

extended ensemble, 11.9461.63Å. The results in the linearly

averaged case compare to those with an estimated scale-vector,

10.3461.69Å, presented above.

To summarize, in the power averaged case, both tf (f) and w

are required for a satisfactory distribution. In the case of the

linearly averaged data, our results suggest that w and tf (f) may be

approximated by the 1-vector and uniform distribution, respec-

tively. This is particularly interesting as it may be a general feature

of applying other kinds of linearly averaged data. This may make

the use of these types of data for restraining easier.

Conclusions

In conclusion, we present the theoretical foundations of a

Bayesian principle to infer ensembles of protein structures from

noisy experimental data subject to ensemble and time averaging.

We demonstrate the principle constitutes a generalization of ISD

and previously proposed maximum entropy restraining approach-

es. Finally, the principle is successfully evaluated using synthetic

experimental data of a small idealized system.

Our approach combines a coarse-grained Bayesian model of the

data with a fine-grained model of protein conformational space.

The combination is accomplished using the reference ratio

method [33], which corresponds to a maximum entropy solution

in the presence of experimental noise. The role of the reference

distribution tf (f) is considerable. When we assumed tf (f) to be

uniform, we were unable to construct sufficiently accurate

distribution of pair-wise distance geometry, in the case of power-

averaged data.

The Bayesian model may in principle be applied to denser and/

or ambiguous [44] datasets and to data from other sources such as

small angle X-ray- or neutron scattering, or other NMR

experiments. Also, low-resolution data may be combined with

more sophisticated physical prior distributions such as those

embodied in force fields. The presented method is thus a general

method to obtain physically sound ensemble models of solution

and endogenous states of biomolecules, given appropriate

experimental data. Practical implementation of protocols for other

data sources and larger systems clearly is necessary. Possible issues

arising with this methodology include insufficient sampling of the

conformational space and difficult estimation procedures for

reference distributions and scale parameters alike. However, the

work presented herein provides the guiding principles for these

future developments.

Materials and Methods

Synthetic datasets
A synthetic dataset was created for the GB1 hairpin (Protein

data bank identifier: 1LE3; sequence variant [Y45W, F52W,

V54W]). The data were generated by simulating the protein at

400K with the PROFASI forcefield [30], using Engh-Huber

parameters for bond-angles and bond-lengths [45]. The high

temperature was used to emulate the effect of a denatured,

disordered state. A total of 3:5:108 steps were performed using the

Metropolis-Hastings algorithm in the PHAISTOS Markov chain

Monte Carlo framework (http://www.phaistos.org). We used a

Monte Carlo move set previously described [43]. Samples were

saved in intervals of 5000 steps. These samples were used to form

five non-redundant, averaged Ca{Ca distance restraints (see

Tabel 1).

To mimic the effect of distance averaging in a dipolar

interaction undergoing fast motion compared to the cross-

relaxation but slow motion when compared to molecular

tumbling, we calculated a power averaged variant of the dataset

as Ii~Sr{6
i T, where ri is an inter-atomic distance and the angular-

brackets denote ensemble averaging [46]. We used an experimen-

tal uncertainty for the power averaged dataset sI of the same

relative amplitude as for the average restraint set sd , by enforcing

the signal-to-noise ratio to be constant. Hence,
d

sd

~
I

sI

[sI~
I

d
,

as sd~1, where I and d denote the datapoints corresponding to

the largest average distance in the power and linearly averaged

datasets, respectively. Noise with standard-deviation sI was added

to the power-averaged data.

Estimation of p(x,e,fjd) and scale vector w
This section describes the estimation of the reference distribu-

tion tf (f) and the vector w needed for the posterior distribution:

p(x,f,ejd)!
N ( ln dj ln e,s)pf (fje,w)pe(e)

tf (̂ff)
t(x): ð8Þ

In the case of the power-averaged data, the reference

distribution tf (̂ff) was approximated by a product of exponential

distributions:

tf (̂ff)!PiE({f̂f i=bi): ð9Þ

The mean b was estimated using a Monte Carlo scheme similar

to that used to form the synthetic datasets, but only using the prior

t(x), consisting of the probabilistic models TorusDBN [41] and

Basilisk [42] along with a simple binary term assuring atoms do

not overlap [47]. The coarse graining, f̂f, was the inverse pairwise

distance between the Ca atoms listed in Table 1. For the linearly-

averaged data, tf (̂ff) was approximated by a uniform distribution.

Figure 4. The influence of tf (f) and w on the ensembles. The
figure shows histograms, p(f0), of a representative pairwise distance f0

(between Ca41-Ca51, in Å ) in the ensembles obtained without the
reference distribution tf (f) or the scale vector w. The black line denotes
the PROFASI target ensemble; the red and green lines denote the
ensembles obtained using the linearly and the power averaged data,
respectively. The blue line denotes the case of the power averaged data
without tf (f), but with w.
doi:10.1371/journal.pone.0079439.g004
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We obtain a point estimate of w following an empirical Bayes

approach. We start by initializing all the elements of w to unity.

Subsequently, we sample an ensemble according to Equation (8),

and update w based on the sampled values of f and e. To update w
we make use of the moment estimator for the mean of the

exponential distribution:

wnz1,i~wn,i
fi

ei

:

f and e are posterior expectations of the coarse-grained variable

and the ensemble averages using scale vector wn, respectively, and

wnz1 is the updated scale vector. This procedure is repeated until

convergence. Convergence was assumed when fluctuations in f
were within the experimental uncertainty. Each step in the

algorithm runs for 2:5:106 MCMC steps, and a final production

ensemble is produced using 25:106 MCMC steps.

Sampling of e
To sample e from the prior e{1 we sampled a factor D from a

log-normal distribution D* exp½N (0,s)�, where s has the same

order of magnitude as the experimental uncertainty. A change

from e to eD was accepted according to the Metropolis acceptance

probability a:

a(e?eD)~ min 1,
p(eD)

p(e)

� �
,

where p(:)~
p(ejf,x,d)

pe(e)
.
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