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Abstract. Methodological contributions: This paper introduces a family
of kernels for analyzing (anatomical) trees endowed with vector valued
measurements made along the tree. While state-of-the-art graph and
tree kernels use combinatorial tree/graph structure with discrete node
and edge labels, the kernels presented in this paper can include geo-
metric information such as branch shape, branch radius or other vector
valued properties. In addition to being flexible in their ability to model
different types of attributes, the presented kernels are computationally
efficient and some of them can easily be computed for large datasets
(N ∼ 10.000) of trees with 30 − 600 branches. Combining the kernels
with standard machine learning tools enables us to analyze the relation
between disease and anatomical tree structure and geometry. Experimen-
tal results: The kernels are used to compare airway trees segmented from
low-dose CT, endowed with branch shape descriptors and airway wall
area percentage measurements made along the tree. Using kernelized hy-
pothesis testing we show that the geometric airway trees are significantly
differently distributed in patients with Chronic Obstructive Pulmonary
Disease (COPD) than in healthy individuals. The geometric tree kernels
also give a significant increase in the classification accuracy of COPD
from geometric tree structure endowed with airway wall thickness mea-
surements in comparison with state-of-the-art methods, giving further
insight into the relationship between airway wall thickness and COPD.
Software: Software for computing kernels and statistical tests is available
at http://image.diku.dk/aasa/software.php.

1 Introduction

Anatomical trees like blood vessels, dendrites or airways, carry information about
the organs they are part of, and if we can meaningfully compare anatomical



trees and measurements made along them, then we can learn more about as-
pects of disease related to the anatomical trees [11, 23]. For example, airway
wall thickness is known to be a biomarker for Chronic Obstructive Pulmonary
Disease (COPD), and in order to compare airway wall thickness measurements
in different patients, a typical approach is to compare average airway wall area
percentage measurements for given airway tree generations of particular sub-
trees [10, 11]. These approaches assume that measurements made in different
locations of the lung are comparable on a common scale, which is not always the
case [10, 11]. If we can compare tree structures attributed with measurements
made along them in a way which respects the structure and geometry of the tree,
then we can be more robustly compare measurements whose values are location
sensitive. In this paper we present a family of kernels for comparing anatomi-
cal trees endowed with vector attributes, and use these to get a more detailed
understanding of how COPD correlates with airway structure and geometry.

Related work. Several approaches to statistics on attributed (geometric) trees
have recently appeared, and some of them were applied to airway trees [7, 8,
16, 17]. These methods only consider branch length or shape and do not allow
for using additional measurements along the airway tree, such as branch radius
or airway wall area percentage. Moreover, these methods are computationally
expensive [6], or need a set of leaf labels [8,17], making them less applicable for
general trees. Sørensen [20] treats the airway tree as a set of attributed branches
which are matched and then compared using a dissimilarity embedding combined
with a k-NN classifier. The matching introduces an additional computational
cost and makes the approach vulnerable to incorrect matches.

Kernels are a family of similarity measures equivalent to inner products be-
tween data points implicitly embedded in a Hilbert space. Kernels are typically
designed to be computationally fast while discriminative for a given problem,
and often give nonlinear similarity measures in the original data space. Using the
Hilbert space, many Euclidean data analysis methods are extended to kernels,
such as classification [4] or hypothesis testing [9]. Kernels are popular because
they give computational speed, modeling flexibility and access to linear data
analysis tools for data with nonlinear behavior.

There are kernels available for structured data such as strings [5,13], trees [22],
graphs [3, 19, 21] and point clouds [1]. The current state-of-the-art graph kernel
in terms of scalability is the Weisfeiler-Lehman (WL) [19] kernel, which com-
pares graphs by counting isomorphic labeled subtrees of a particular type and
“radius” h. The WL scales linearly in h and the number of edges, but the scala-
bility depends on algorithmic constructions for finite node label sets. Thus, the
WL kernel, like most fast kernels developed in natural language processing and
bioinformatics [5,13,22], does not generalize to vector-valued branch attributes.

Walk- and path based kernels [1, 3, 21], which reduce to comparing sub-
walks or -paths of the graphs, are state-of-the-art among kernels which include
continuous-valued graph attributes. Random walk-type kernels [1,21] suffer from
several problems including tottering [15] and high computational cost. The short-



est path kernel [3] by default only considers path length, and some of the kernels
developed in this paper can be viewed as extensions of the shortest path kernel.

Contributions. We develop a family of kernels which are computationally fast
enough to run on large datasets, and can incorporate any vectorial attributes on
nodes1, e.g., shape or airway wall measurements. Using the kernels in classifica-
tion and hypothesis testing experiments, we show that classification of COPD
can be substantially improved by taking geometry into account. This illustrates,
in particular, that airway wall area percentage measurements made at different
locations in the airway tree are not comparable on a common scale.

We compare the developed kernels to state-of-the-art methods. We see, in
particular, that COPD can also be detected from combinatorial airway tree
structure using state-of-the-art kernels on tree structure alone, but we show
that these contain no more information than a branch count kernel, as opposed
to the geometric tree kernels.

2 Geometric trees and geometric tree kernels

Anatomical trees like airways are geometric trees: they consist of both combina-
torial tree structure and branch geometry (e.g., branch length or shape), where
continuous changes in the branch geometry can lead to continuous transitions
in the combinatorial tree structure. In addition to its geometric embedding, a
geometric tree can be adorned with additional features measured along the tree,
e.g., airway branch radius, airway wall thickness, airway wall thickness/branch
radius, airway wall area percentage in an airway cross section, etc.

Definition 1 A geometric tree is a pair (T, x) where T = (V,E, r) is a combi-
natorial tree with nodes V , root r and edges E ⊂ V × V , and x : V → Rn is
an assignment of (geometric) attributes from a vector space Rn to the nodes of
T , e.g. 3D position or landmark points. An attributed geometric tree is a triple
(T, x, a) where (T, x) is a geometric tree and a : x(T )→ Rd is a map assigning a
vector valued attribute a(p) ∈ Rd to each point p ∈ x(T ).

A common strategy for defining kernels on structured data such as trees,
graphs or strings is based on combining kernels on sub-structures such as strings,
walks, paths, subtrees or subgraphs [1,3,5,13,19,21,22]. These are all instances
of the so-called R-convolution kernels by Haussler [12]. We shall use paths in
trees as building blocks for defining kernels on trees.

Let (T, x) be a geometric tree. Given vertices vi, vj ∈ V there is a unique
path πij from vi to vj in the tree, defined by the sequence of visited nodes:

πij =
[
vi, p

(1)(vi), p
(2)(vi), . . . , w, . . . , p

(2)(vj), p
(1)(vj), vj

]
,

where p(0)(v) = v, p(1)(v) = p(v) is the parent node of v, more generally p(k)(v) =
p(p(k−1)(v)), and w is the highest level common ancestor of vi and vj in T . We

1 Our formulation allows both node and edge attributes, as edge attributes are equiv-
alent to node attributes on rooted trees: assign each edge attribute to its child node.



call πij the node-path from vi to vj in T and for each j let the node-rootpath πjr
be the node-path from vj to the root.

If the geometric node attributes x(v) : I → Rn denote embeddings of the edge
(v, p(v)) into the ambient space Rn, a continuous path xij : [0, 1] → Rn can be
defined, connecting the embedded nodes x(vi), x(vj) ∈ Rn along the embedded
tree x(V ) ⊂ Rn. We call xij the embedded path from xi to xj in T .

Throughout the rest of this section, we shall define different kernels for pairs
of trees T1 and T2, where Ti = (Vi, Ei, ri, xi, ai) are attributed geometric trees
(including non-attributed geometric trees as a special case with ai ≡ 1), i = 1, 2.
All kernels defined in this section are positive semidefinite, as they are sums
of linear and Gaussian kernels composed with known feature maps. This is a
necessary condition for a kernel to be equivalent to an inner product in a Hilbert
space [2], needed for the analysis methods used in Sec. 3.

2.1 Path-based tree kernels

All-pairs path kernels. The all-pairs path kernel is a basic path-based tree
kernel. Given two geometric trees, it is defined as

Ka (T1, T2) =
∑

(vi, vj) ∈ V1 × V1,
(vk, vl) ∈ V2 × V2

kp(pij , pkl), (2)

where kp is a kernel defined on paths, and pij , pkl are paths connecting vi to vj
and vk to vl in T1 and T2, respectively – for instance, πij and πkl, or xij and xkl,
as defined above. Note that if the path kernel kp is a path length kernel, then the
all-pairs path kernel is a special case of the shortest path kernel on graphs [3].

The kernel kp should take large values on paths that are geometrically similar,
and small values on paths which are not, giving a measure of the alignment of
the two tree-paths pij and pkl, making Ka an overall assessment of the similarity
between the two geometric trees T1 and T2. The all-pairs path kernel is nice in
the sense that it takes every possible choice of paths in the trees into account. It
is, however, expensive: The computational cost is O(|V |4) · O(kp), where |V | =
max{|V1|, |V2|} and O(kp) is the cost of the path kernel kp.

Rootpath kernels. The computational complexity can be reduced by only
considering rootpaths, giving a rootpath kernel Kr defined as:

Kr (T1, T2) =
∑

vi∈V1,vj∈V2

kp(pir, pjr) (3)

where kp is a path kernel as before, and pir is the path from vi to the root r.
This reduces the computational complexity to O(|V |2)O(kp).

2.2 Path kernels

The modeling capabilities and computational complexity of the kernels Ka and
Kr depend on the choices of path kernel kp and path representation p.



Landmark point representation of embedded paths. From a shape mod-
eling point of view, equidistantly sampled landmark points give a reasonable
representation of a path through the tree. Representing paths by N equidis-
tantly sampled landmark points xij ∈ (Rn)N , the path kernel kp = kx is either
a linear or Gaussian kernel:

kx(xij , x
′
kl) =

{
〈xij , x′kl〉 (linear, i.e., dot product)

e−λ‖xij−x′kl‖
2
2 (Gaussian)

(4)

for a scaling parameter λ which regulates the width of the Gaussian.

Node-path kernels. The landmark point kernels are expensive to compute (see
Table 1). In particular, two embedded tree-paths may have large overlapping
segments without having a single overlapping equidistantly sampled landmark
point, as the distance between landmark points depends on the length of the
entire path. Thus, most landmark points will only appear in one path, giving
little opportunity for recursive algorithms or dynamic programming that take
advantage of repetitive structure. To enable such approaches, we use node-paths.

Assume that π1 = [π1(1), π1(2), . . . , π1(m)] and π2 = [π2(1), π2(2), . . . , π2(l)]
are node-paths in T1, T2, respectively, as defined above, that is, sequences of
consecutive nodes πi(j) ∈ Vi in Ti. We define

kπ(π1, π2) =

{∑L
i=1 kn

(
x1(π1(i)), x2(π2(i))

)
if |π1| = |π2| = L

0 otherwise
(5)

where kn is a node kernel. In this paper kn(v1, v2) is either a linear kernel with-
out/with additional attributes ai:

〈x1(v1), x2(v2)〉, 〈x1(v1), x2(v2)〉〈a1(v1), a2(v2)〉

or a Gaussian kernel with/without attributes ai

e−λ1‖x1(v1)−x2(v2)‖2 , e−λ1‖x1(v1)−x2(v2)‖2 · e−λ2‖a1(v1)−a2(v2)‖2 ,

where the Gaussian weight parameters are heuristically set to the inverse dimen-
sion of the relevant feature space, i.e., λ1 = 1

n and λ2 = 1
d .

Now the node-rootpath tree kernel Kr can be rewritten as:

Kr(T1, T2) =

h∑
l=1

∑
v1∈V l

1

∑
v2∈V l

2

l∑
i=1

kn (x1(π1(i)), x2(π2(i))) , (6)

where h = min{height(Ti), i = 1, 2}. This can be reformulated as a weighted
sum of node kernels, giving substantially improved computational complexity:

Proposition 7 For each l ≤ h, let V li be the set of vertices at level l in Ti. Then

Kr(T1, T2) =

h∑
i=1

∑
v1∈V l

1

∑
v2∈V l

2

〈δv1 , δv2〉kn (v1, v2) , (8)



where δvi is an h-dimensional vector whose jth coefficient counts the number of
descendants of vi at level j in Ti, respectively. The complexity of computing Kr

is O(hmaxl |V l|2(n+ h)).
When kn is a linear kernel 〈x1(v1), x2(v2)〉 or 〈x1(v1), x2(v2)〉〈a1(v1), a2(v2)〉,

the kernel Kr can be further decomposed as

Kr(T1, T2) =
∑h
l=1〈γ(T1, l), γ(T2, l)〉,

γ(Ti, l) =

{∑
v∈V l

i
xi(v)⊗ δ(v), no ai∑

v∈V l
i
ai(v)⊗ xi(v)⊗ δ(v), with ai

(9)

at total complexity O(|V |hn) / O(|V |hnd) (without/with attributes ai). Here, ⊗
denotes the Kronecker product.

Proof. Eq. (8) follows from the fact that the terms kn(v1, v2) in kernel (6) will
be counted once for every pair (w1, w2) of descendants of v1 and v2, respectively,
which are at the same level. The descendant vectors δ(vi) for all vi ∈ Vi can
be precomputed using dynamical programming at computational cost O(|V |h),
since δ(v) = [1,⊕p(w)=vδ(w)], where ⊕ is defined as left aligned addition of
vectors2. The cost of computing Kr is thus

O(|V |h+ hmax
l
|V l|2(h+ n)) = O(hmax

l
|V l|2(n+ h)),

where O(n) is the cost of computing each node kernel kn(v1, v2).
To prove (8) without attributes ai, let x1(v1), x2(v2), δ(v1) and δ(v2) be col-

umn vectors and use the Kronecker trick (〈ai, aj〉〈bi, bj〉 = 〈bi ⊗ ai, bj ⊗ aj〉):

K(T1, T2) =
∑h
l=1

∑
v1∈V l

1

∑
v2∈V l

2
〈δ(v2), δ(v1)〉〈x1(v1), x2(v2)〉

=
∑h
l=1〈

∑
v2∈V l

2
(x2(v2)⊗ δ(v2)) ,

∑
v1∈V l

1
x1(v1)⊗ δ(v1)〉

=
∑h
l=1〈γ(T1, l), γ(T2, l)〉.

The total complexity is thus O(maxl,i |V li |hn) + O(|V |h) = O(|V |hn). Similar
analysis proves the attributed case. �

2.3 Pointcloud kernels

Anatomical measurements can also be weighed by location using 3D position
alone in a pointcloud kernel. The pointcloud kernel does not use the tree struc-
ture but treats each edges in the tree as a point and compares all points:

KPC(T1, T2) =
∑
e1∈E1

∑
e2∈E2

ke(e1, e2) (10)

where ke is a kernel on attributed edges. We use a Gaussian edge kernel (GPC):

ke(e1, e2) = e−λ1‖x(e1)−x(e2)‖2︸ ︷︷ ︸
c1

e−λ2‖a(e1)−a(e2)‖2︸ ︷︷ ︸
c2

. (11)

2 e.g., [a, b, c]⊕ [d, e] = [a + d, b + e, c].



The kernel is designed to weight the contribution to the total kernel KPC of
the airway wall area percentage kernel value c1 between edges e1 and e2 by the
geometric alignment of the same edges, defined by the geometric kernel value c2.

2.4 Baseline kernels

The kernels presented in this paper are compared to a set of baseline kernels.
Standard airway wall area percentage measurements are often compared by using
an average measure over parts of the tree or a vector of average measures in
chosen generations. We use two baseline airway wall area percentage kernels:

KAAW%(T1, T2) = e−‖â1−â2‖
2

, (12)

KAgAW%(T1, T2) = e−‖(â1)(3−6)−(â2)(3−6)‖2 (13)

where âi is the average airway wall area percentage averaged over all centerline
points in the tree, and (âi)(3−6) is a 4-dimensional vector of average airway wall
area percentages averaged over all centerline points in generations 3− 6 in tree
Ti. For these kernels (AAW%, AgAW%), linear versions were also computed (i.e.

e−‖w1−w2‖2 replaced with 〈w1, w2〉), but the corresponding classification results
are not reported as they were consistently weaker than the Gaussian kernels.

Airway segmentation is likely more difficult in diseased as opposed to healthy
subjects, as also observed by [20]. In order to check whether the number of
detected branches may be a bias in the studied kernels, we compare our kernels
to a linear and a Gaussian branchcount kernel (LBC/GBC) defined by

KLBC(T1, T2) = ](V1) · ](V2), KGBC(T1, T2) = e−‖](V1)−](V2)‖2 . (14)

The linear kernel LBC is the most natural, since the Hilbert space associated to
a linear kernel on w ∈ Rn is just Rn. However, a linear kernel on 1-dimensional
input cannot be normalized, as (15) produces a kernel matrix with entries ≡ 1,
and the GBC kernel is used for comparison in Table 4 to show that the geometric
tree kernels are, indeed, measuring something other than branch count.

Several state-of-the-art graph kernels were also used. The random walk ker-
nel [21] did not finish computing within reasonable time. The shortest path

Embedded paths Node-path
(m landmark points)

All-paths O(|V |4mn) O(|V |2hmaxl |V l|2(n + h)

Root-paths O(|V |2mn) O(hmaxl |V l|2)(n + h)

Attributed all-paths N/A O(h|V |2 maxl |V l|2)(n + d + h)

Attributed root-paths N/A O(hmaxl |V l|2)(n + d + h)

Attributed linear root-paths N/A O(|V |hnd)

Pointcloud kernel N/A O(|V |2nd)
Table 1. Computational complexities for the considered kernels. Trees are assumed to
be embedded in Rn and admit additional vector valued measurements in Rd.



Kernel Linear Gaussian average average Shortest Weisfeiler
root-node- branchcount AW % generation path Lehman

path AW % (h = 10)

Comp. time 46 m 43 s 23 m 3 s 0.87 s 1.61 s 42 m 26 s 59 m 23 s
Table 2. Runtime for selected kernels on a larger set of 9710 airway trees.

kernel [3] was computed with edge number as path length, and the Weisfeiler-
Lehman kernel [19] was computed with node degree as node label. Results are
reported in Tables 2, 3 and 4.

3 Experiments

Analysis was performed on airway trees segmented from CT-scans of 1966 sub-
jects from a national lung cancer screening trial. Triangulated mesh representa-
tions of the interior and exterior wall surface were found using an optimal surface
based approach [18], and centerlines were extracted from the interior surface us-
ing front propagation [14]. As the resulting centerlines are disconnected at bifur-
cation points, the end points were connected using a shortest path search within
an inverted distance map of the interior surface. The airway centerline trees
were normalized using person height as an isotropic scaling parameter. Airway
wall thickness and airway radius were estimated from the shortest distance from
each surface mesh vertex to the centerline. The measurements were grouped and
averaged along the centerline by each nearest landmark point.

Out of the 1966 participants, 980 were diagnosed with COPD level 1-3 based
on spirometry, and 986 were symptom free. The minimal/maximal/average num-
ber of branches in an airway tree was 29/651/221.5, respectively.

3.1 Kernel computation and computational time

The kernels listed in table 4 were implemented in Matlab 3 and computed on a
2.40GHz Intel Core i7-2760QM CPU with 32 GB RAM. Each kernel matrix was
normalized to account for difference in tree size:

Knorm(T1, T2) =
K(T1, T2)√

K(T1, T1)K(T2, T2)
. (15)

An exception was made for linear kernels between scalars (LBC and AAW%),
since normalization such kernels results gives matrix coefficients ≡ 1.

Computation times for the different kernels used in the classification experi-
ments in Section 3.3 on 1966 airway trees are shown in Table 4. To demonstrate
scalability, some of the kernels were ran on 9710 airways from a longitudinal
study of the 1966 participants, see Table 2. The slower kernels were not included.

For classification and hypothesis testing, a set of 1966 airway trees from 1966
distinct subjects was used (980 diagnosed with COPD at scan time).

3 Software: http://image.diku.dk/aasa/software.php; published software was used for
SP, WL [19].



3.2 Hypothesis testing: Two-sample test for means

Let X denote a set of data objects. Given any positive semidefinite kernel k : X ×
X there exists an implicitly defined feature map φ : X → H into a reproducing
kernel Hilbert space (H, 〈·〉) such that k(x1, x2) = 〈φ(x1), φ(x2)〉 for all x1, x2 ∈
X [2]. Hypothesis tests can be defined in H to check whether two samples A,B ⊂
X are implicitly embedded by φ into distributions on H that have, e.g., the same
means µA = µB [9]. Denote by µ̂A and µ̂B the sample means of φ(A) and φ(B)
in H, respectively; we use as a test statistic the distance

T (A,B) = ‖µ̂A − µ̂B‖H

between the sample means and check the null hypothesis using a permutation
test. Writing |A| = a and |B| = b, we divide X = A∪B into N random partitions
Ai, Bi of size |Ai| = a and |Bi| = b, i = 1 . . . N , compute the test statistic Ti
for each partition, and compare it with the statistic T0 obtained for the original
partition X = A∪B. An approximate p-value giving the probability of φ(A) and
φ(B) coming from distributions with identical means µA = µB is now given by

p = |{Ti|Ti≥T0,i=1...N}|+1
N+1 . The T statistic can be computed from a kernel matrix

since distances in H can be derived directly from the values of k(X ,X ) using
the binomial formula:

‖µ̂A − µ̂B‖2 = 〈 1a
∑a
i=1 φ(ai)− 1

b

∑b
j=1 φ(bj),

1
a

∑a
i=1 φ(ai)− 1

b

∑b
j=1 φ(bj)〉

= 1
a2

∑a
i=1

∑a
m=1〈φ(ai), φ(am)〉 − 2

ab

∑a
i=1

∑b
j=1〈φ(ai), φ(bj)〉

+ 1
b2

∑b
j=1

∑b
n=1〈φ(bj), φ(bjn)〉

= 1
a2

∑a
i=1

∑a
m=1 k (ai, am)− 2

ab

∑a
i=1

∑b
j=1 k (ai, bj)

+ 1
b2

∑b
j=1

∑b
n=1 k (bj , bn) .

Using the test with selected kernels we show that healthy airways and COPD
airways do not come from the same distributions (Table 3).

3.3 COPD classification experiments

Based on the kernel matrices corresponding to the kernels described in Sec. 3.1
for a set of 1966 airway trees, classification into COPD/healthy was done using a
support vector machine (SVM) [4]. The SVM slack parameter was trained using

Kernel Gaussian Gaussian Average Generation-
pointcloud branchcount AW-wall % average AW-wall %

p-value 9.99 · 10−5 9.99 · 10−5 9.99 · 10−5 9.99 · 10−5

Kernel Linear Linear Shortest Weisfeiler
all-node-path Root-node-path path Lehman

p-value 9.99 · 10−5 9.99 · 10−5 9.99 · 10−5 9.99 · 10−5

Table 3. Permutation tests for the means of the COPD patient and healthy subject
samples. All permutation tests are made with 10.000 permutations.



Kernel type Mean class. Kernel matrix Mean class.
accuracy computation time accuracy

K + KGBC

Rootpath, linear (3), (4) 62.4± 0.7% 9 h 9 m 20 s 66.8± 0.4%

Rootpath, Gaussian (3), (4) 64.9± 0.4% 6 h 53 m 21 s 68.2± 0.5%

All-node-paths, linear (2), (5) 62.0± 0.6% 3 h 7 s 63.2± 0.5%

Root-node-path, linear (3), (5) 61.8± 0.7% 4 m 24 s 62.9± 0.8%

Root-node-path, Gaussian (3), (5) 64.4± 0.8% 97 h 21 m 45 s 64.9± 0.6%

Root-node-path, linear, ai (3), (5) 58.6± 0.6% 19 m 44 s 62.3± 0.8%
airway wall area % attribute

Pointcloud, Gaussian (10) 64.4± 0.6% 18 h 40 m 26 s 66.5± 0.6%

Branchcount, linear (14) 62.3± 1.0% 0.08 s N/A

Branchcount, Gaussian 63.3± 0.4% 0.2 N/A

Linear kernel on % 56.2± 0.6% 0.62 s 63.3± 0.5%
average airway wall area (12)

Gaussian kernel on average 60.3± 0.2% 0.35 s 63.3± 0.5%
airway wall area %,

generations 3− 6 (13)

Shortest path [3] 62.6± 0.4% 20 m 24 s 63.4± 0.4%

Weisfeiler Lehman (h = 10) [19] 62.1± 0.5% 14 m 40 s 62.9± 0.5%
Table 4. Classification results for COPD on 1966 individuals, of which 893 have COPD.

cross validation on 90% of the entire dataset, and tested on the remaining 10%.
This experiment was repeated 10 times and the mean accuracies along with their
standard deviations are reported in Table 4. All kernel matrices were combined
with the GBC kernel matrix in order to check whether the kernels were, in fact,
detecting something other than branch number.

4 Discussion

We have constructed a family of kernels that operate on geometric trees, and
seen that they give a fast way to compare large sets of trees. We have applied the
kernels to hypothesis testing and classification of COPD based on airway tree
structure and geometry, along with state-of-the-art methods. We show that there
is a connection between COPD and airway wall area percentage, and the COPD
detected based on our weighted airway wall area percentage kernels is stronger
than what can be found using average airway wall area percentage measurements
over different airway tree generations, which is commonly done [10,11].

Efficient kernels for trees with vector-valued node attributes are difficult to
design because algorithmically, similarity of vector-valued attributes is more
challenging to efficiently quantify than equality of discrete-valued attributes.
Nevertheless, some of the defined kernels for vector-attributed trees are fast
enough to be applied to large datasets from clinical trials.

Vector-valued attributes are important from a modeling point of view, as they
allow inclusion of geometric information such as branch shape or clinical mea-
surements in the trees. However, there is a tradeoff between computational speed



and optimal use of the attributes. The efficient node paths are less robust than
the embedded paths in airway segmentations with missing or spurious branches,
and we observe a small drop in classification performance in Table 4. Rootpath
kernels are introduced to improve computational speed. However, they do intro-
duce a bias towards increased weighting of parts of the tree close to the root,
which are contained in more root-paths. Gaussian local kernels perform signifi-
cantly better than linear ones (Table 4), which is particularly pronounced in the
pointcloud kernel. In convolution kernels based on quantification of substructure
similarity rather than isomorphic substructure, all the dissimilar substructures
are still contributing to the total value of the kernel, and the Gaussian local ker-
nel downscales the effect of dissimilar substructures much more efficiently than
the linear kernel. This is particularly pronounced in kernels that use geometric
weighting of airway wall measurement comparison. Unfortunately, however, al-
gorithmic constructions like the Kronecker trick (Prop. 7) do not work for the
Gaussian kernels, which do not scale well to larger datasets.

Using hypothesis tests for kernels we show that the healthy and COPD diag-
nosed airway trees come from different distributions. Using SVM classification we
show that COPD can be detected by kernels that depend on tree geometry, tree
geometry attributed with airway wall area percentage measurements, or combi-
natorial airway tree structure. Another efficient detector of COPD is the number
of branches detected in the airway segmentation. It is thus important to clarify
that our defined kernels are not just sophisticated ways of counting the detected
branches. Combining the GBC kernel with the other kernels improves classifi-
cation performance of the geometrically informed tree and pointcloud kernels,
showing that these kernels must necessarily contain independent information,
and the connection between COPD and airway shape is more than differences
in detected airway branch numbers. In contrast, graph kernels that only use the
tree structure are not significantly improved by combination with the branch
count kernel. Future work includes efficient ways of computing all-paths kernels
with linear node attributes, efficient kernels for trees with errors in them, as well
replacing the Gaussian local kernels with more efficient RBF type kernels.
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