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Correlationsand Non-Linear Probability Models

Abstract

Although the parameters of logit and probit andeothon-linear probability models are often
explained and interpreted in relation to the regjoes coefficients of an underlying linear latent
variable model, we argue that they may also beullgehterpreted in terms of the correlations
between the dependent variable of the latent Variaodel and its predictor variables. We show
how this correlation can be derived from the patanseof non-linear probability models,
develop tests for the statistical significancehaf tlerived correlation, and illustrate its usefate
in two applications. Under certain circumstancebjcv we explain, the derived correlation
provides a way of overcoming the problems inhenentcross-sample comparisons of the

parameters of non-linear probability models.



Correlationsand Non-Linear Probability Models

Both textbook expositions and discussions of retedindings commonly interpret the
coefficients of non-linear probability models (hefarth NLPMs) such as logits, probits, the
ordered logit and probit, and the multinomial logis the coefficients of an underlying latent
linear model, albeit identified only up to scala. this paper—drawing on and extending the
work of McKelvey and Zavoina (1975)—we point obatt the coefficients of NLPMs are, in
fact, closely related to the correlations betwea® dependent and predictor variables of the
latent linear model, and, in some circumstancdsypreting them in the light of this could be
particularly useful. This is especially so when want to compare the effects of the same
variable in the same NLPM fitted to different greufior the problems in doing this see Allison
1999).

We first develop the logit and probit models ina¢éeht variable framework and show
how their coefficients can be used to recover tireetation between a predictor variableand
y*, the underlying latent dependent variable. We udiscthe conditions under which the
correlation coefficient is likely to prove usefuhchwe provide statistical tests of the derived
correlation coefficient and for differences in aations between samples. We also show how to
derive the correlation in the ordered and multirdntase. We conclude the paper with two
examples dealing with trends in educational indtualhe first is a reanalysis of data on
educational inequality in Europe (Breenal 2009). The second uses GSS data to study the trend
in educational inequality in the U.S. among cohdrten between 1930 and 1969. Four

appendices contain some technical details of oproggh.



A Latent Variable Formulation of L ogit and Probit M odels
Let y* denote a continuous outcome variable, and bet a predictor variable whose effectydn

we want to estimate. We can write a regression hfodg* as
y*=a+ B, X+Uu, with sdu) = g,. 1)
Here u is a random error term and, its standard deviation, which summarizes that pathe

variation iny* unexplained by.a is the intercept of the model, afd., captures the effect of

ony*. a, B, and g, are all unknown parameters.

However, we assume thgt is unobserved and instead we observe:

=1if y*>1
z =0 if Z/** <T. @)
This means that we only observe whether an obsemnstvalue ofy* is greater or less than a
constant,r which is a threshold parameter whose value is unkné-ollowing a standard latent
variable formulation of discrete choice models werite the error term in (1) such thaE S.

For the logit model, we assume that is a standard logistic random variable, with mearo

and variancen’/3 ands is a scale parameter, yielding a variancert s?72/3 for the error

term in (1). For the probit model, we assume thais a standard normal random variable, with
mean zero and unit variance asiis a scale parameter, yielding a varianceopf= s* for the
error term in (1).

For the logit case we specify the probability ofsess as a function wf

S S

p[aﬂj
Prly=1)= Prly*>7)= P{§>{a—r+ﬁm xD: > >



where the final equality holds because we assuméd be a standard logistic random variable.
Taking the logarithm of the odds of the probability(3a), we obtain the well-known logistic

regression model:

a1, Prxye an b, x. (3b)
S

logit(Pr(y = 1))=

For the probit case we also specify the probabidftguccess as a functionyof

Pr(y*>r)=¢{%+%x}=¢(a+ B3 (@)

Where ®([J] denotes the cumulative distribution function of #tandard normal distribution, and

where the first equality holds because we assuméd be a standard normal random variable.
The intercept of the logit or probit model dependsthe intercept of the underlying linear

model (@) and the threshold parametédr) (@nd these two cannot be recovered separatelyy bei
absorbed in the intercem, of the logit or probit. The parameteh}x in the logit and probit

models are equal to the regression coefficients filoe underlying linear model in (1) divided
by the scale parameter, which is a function ofutthderlying conditional error variance. Thus in
probit and logit models we can identify regressamefficients only up to scale, which is a
function of the conditional standard deviation be tlatent outcome variable. This presents
particular difficulties for parameter comparisondiether these are between parameter estimates
for the same variable in different model specifmas (for example, with and without control
variables; see Karlson, Holm and Breen 2012) oarpater estimates for the same variable in the
same models fitted to different samples (Allisorf9P In both cases, real differences in a
variable’s effect will be confounded by possibl&#eatiences in scaling.

The issues pertaining to scale identification o€&fticients from non-linear probability

models have wide-ranging consequences for comparegsearch analyzing discrete outcomes.



Most significantly, because these coefficients iateerently standardized, researchers cannot
generally follow the recognized advice of using stamdardized coefficients” in group
comparisons (Tukey 1954; Blalock 1967). Conseqyemie need to look to other metrics that

might prove useful in certain areas of sociologreslearch.

The Problem in Group Comparisons When Not Assumirgtent Outcome Variable

The previous derivations hold under the assumgtiabhwe observe the latent outcorg&, via

its binary manifestationy. However, in some sociological applications, matitvg the logit
model in terms of latent variables is less obvioist, even when the binary outcome variable
can be said to be truly binary, the problem in carmy logit or other nonlinear probability
model coefficients across groups remains. Using dminction between marginal and
conditional models (Agresti 2002), in Appendix A wfeow that the group comparison problem
also applies when the outcome can be said to belimiary and the latent variable formulation
consequently does not apply. In either case, goaupparisons of coefficients are distorted by
differences in unmeasured heterogeneity acrosgpgreven when the unmeasured heterogeneity

is independent of the observed predictor variables.

The Correlation and Its Relation to the L ogit or Probit Coefficient

Rather than interpreting logit and probit coeffidie as underlying effects identified up to scale,
they can also be interpreted as functions of theeladion coefficient between the predictor
and the underlying latent variabl. To show this, we use results from the early ditigre on
the relationship between coefficients from lineawdels and correlations (e.g., Blalock 1964,
1967; Linn and Werts 1969; Theil 1972). The onlifedence is that we apply the resultsytg

allowing us to derive the correlation coefficierdarh the probit and logit model.



We can write the variance of the underlying lateariable y*, as

varfy*) = B3, var§) +vary* | X) = B, var§) + s’ var@) (5)
and the correlation betwegh andx is equal to
sd( X
M., = .
Y*X ﬁy* X Sd( y\_)

Using (5) and the fact that the logit or probit ffiméent, b equals& we can write
S

yx1

b, sCsd 3 _ b Osd X
\/bjxsz var(x)+ ¢ varw) \/ i, var(x+ varf )’

(6)

rwx =

since thes terms cancel.

For the logit we substitutevar(w) = 77°/3 and for the probitvar)=1. With a single
predictor variable the correlation in (6) equals thlly standardized coefficient suggested by
McKelvey and Zavoina (1975: 115).

Using (6) we can write the logit or probit coeiict as a function of the correlation

sd(y | %

coefficient. To do so, we solve férin b, =k[t, . Using thats= -

and writing the

correlation ando,, coefficient in terms of variances and covariances,

COV(X,¥*) _ |, _COV(X, ¥*)

var(x)s sdXsq Y’

we obtain

- COVOG,Y)sdw)sd xs@Y ) gy _ 1 o
covi,yvar)sd(y [ 3 sd xsdy X fi-r, 7 )

and thus



b _Lsd(w} . %
o fimrz, sdy

Thus logit and probit coefficients can be expressethe square root of the ratio of the explained

to unexplained variance gf scaled by the ratio of the standardized standaxdation to the

standard deviation of the predictor variabletom this we see that a logit or probit coeffitien

r
has two parts, one which is scale invaria\?g%, and one which is scale-dependei%%.
1-r S
Y*X

As we will argue, this separation provides an ernirp addressing the problem of making
comparisons between groups when using NLPMs.

The derivative of the logit or probit coefficienttivrespect to the correlation is

ob, _ sd(w)
or,., sd(x)@-r?)>*?

The derivative tells us that the logit or probiteffacient increases as the correlation deviates

from zero.

From the forgoing we see that the relationship betwthe correlation and th%/x

coefficients depends only on known quantities—ngasu«) , which is known (by assumption),

and sd(x) which is known from the data. This is in contrasttte relationship betweellg’(x and

By

which depends on the unknown quantgy,

L In the probit casesd(w) =1, and if we standardizeto have unit standard deviation, the squared podfficient
will equal the ratio of explained to unexplainedisace in the underlying latent variable regression



Partial, Semi-Partial, and Fully Standardized PaitCoefficients

Equation (6) applies when there is a single predistariable. With two or more predictor
variables, we can derive the partial correlatadnx and y* given z (this is demonstrated in
Appendix B) as

byszd(X | Z)

yne = \/ b2  var(x| z) + var(w) | (8)

yXz
and, as a consequence, we can write the partidldogrobit coefficient as

b =y SU&) )

e fimrz,, sdix2)

The extension to the case with several controlabdes is straightforward. Despite this, the

extension from the simple to the partial case les®nbefore been demonstrated, as far as we are

aware. As in the linear case (Blalock 1967: 13Bg partial correlation in (8) will generally
differ from the fully standardized partial coefiait, b;“, used by McKelvey and Zavoina

(1975),

b, ,sd( ¥
var(z)+ 2b, b, cov(x, 2} var | (10)

X zMyz X

b*XZ =
g \/b;.Zvar(x)+ b?

Z X

their analytical relation being:

_r2
b= 1-r,,
yx.z_ryxz > !

1-r

Similarly, we derive the semi-partfatorrelation betweey* andx givenz as

2 The semi-partial correlation is also known asghg correlation.
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b, ,sd( X 2
var(z)+ 2b,, ,b,, ,cov(x, 2} var

X Z27yz X

r =
yi(x 2

\/bsx.zvar(x)-'- bf/z X
meaning that the semi-partial correlation and thly fstandardized partial coefficient have the

following relation:

oL sy 1
yX.z )’(XZSd(Xla W xxe =2

Xz

Thus, the fully standardized partial coefficienhdze viewed as a rescaled version of the semi-

partial correlation, with the scale factor being #guare root of the proportion of the variance in

x that is unexplained t® /1-r> .

When Isthe Correlation a Useful Metric?

Using correlations rather than logit or probit dagénts themselves implies a shift of focus for
researchers interested in group comparisons. b déction, we clarify the conditions under
which the correlation coefficient is a useful metfor group comparisons and suggest which

methods researchers might consider if the conditiwea outline are not met.
When the Correlation Is Useful

We have shown how to derive the correlation from parameters of an NLPM: but when, and
why, should we want to do this? We outline thregewnstances.The first circumstance in which
the correlation will be useful is when we want tonpare the variation ip* between and within
values ofx. This is particularly the case whens categorical, as, for example, in studies that
focus on the relationship between educationalrattant and social class background. In many
studies the observed dependent variahles whether or not a student makes a given edurgti

transition (such as the transition from High SchimoCollege) and the unobservgti could be
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interpreted as his or her propensity to do soh&s¢ sorts of analysis we are often interested in
the changing relationship, over birth cohorts, e dummy variablex, representing social
classes, and/* (e.g. Shavit and Blossfeld 1993). The conventioapproach would take

comparisons ofg., over cohorts as the ideal measure, and one woylth trecover these by
estimating the corresponding logit or probit caménts, b,. Logit or probit coefficients

declining in magnitude over successive birth cahavbuld then suggest equalization in the
particular educational transition. But the problesth this interpretation is that we cannot know

the extent to which declines over cohortsbjpare due to declines if,., or to increases in the

residual variation of*.

An alternative measure of equalization is the dedgo which variation in the propensity to
make the transition exists between students frdferdnt classes, relative to the variation that
exists among students within the same class. Argeolver cohorts in the variation yi tells us
that there is less variation as a whole: in thisecthe correlation would decline only if the
variation between students from different class@s declining more quickly than the total

variation. Thus, if the correlation was constanerobirth cohorts,b,could decline only as a

result of a reduction in the varianceydf and/or an increase in the variancexoBut it was to
remove these ‘spurious’ influences on the meastirgequality that led sociologists to the use of
NLPMs in the first place (Mare 1981): by the sammguanent, they should then prefer the
(partial) correlation as a measure of educatiameguality.

The second circumstance in which the correlatiam loa informative is when we care
about the relative, rather than the absolute, valfighe outcome variable. In studies of
intergenerational income mobility, for example,ist reasonable to focus on an individual's

position within a given income distribution (thaf relative to others) rather than, or in addition
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to, the individual's absolute level of income. Fois reason, the correlation of (the logarithm of)
parent's and child’s incomes is sometimes preferrasl a measure of intergenerational
immobility, to the elasticity (the coefficient frothe regression of log of child’s income on log
of parent’s income) because it is insensitive tifetBnces in the variance of income in the
parental and child generations (see Bjérklund @mdtiJ2009).

Because we can recover the correlation betw&eand one or more predictor variables,
we can estimate the standardized regression cieetfic linking them, and these will be
particularly useful when we care about relativeheatthan absolute position. Consider the
following example:

one would expect the impact of a scholar’s rat@uiflication on his or her academic

salary to be affected by the mean and variancedh ef these two variables within the

scholar’s field. The publication of two papers gear more than the mean publication
rate in mathematics is a more impressive performahan the same achievement in
chemistry because the variance of publication reteauch larger in the latter field ...

Since the variance of annual salaries also difiersss fields, it is unreasonable to expect

that publishing one additional paper during a perad time will have an equivalent

impact on annual salary across fields. In contiaseems more reasonable to expect that
the impact of increasing one’s publication ratedme field-specific standard deviation
will have an equivalent impact on field-specifiarstiard scores for academic salary

across fields (Hargens 1976: 252).

If we substitute the phrase ‘propensity to obta&nure’ for ‘annual salary’ we have a binary
outcome and here an interpretation of logit or firobefficients in terms of the-y* correlations
or standardized regression coefficients should teéeped over an interpretation of them as

underlying regression coefficients identified ugstale.
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The third circumstance concerns the situation imctv researchers are interested in
conditional inference; that is, interested in tesaxiation between two variablgg @ndx) net of
a third variable ). For example, stratification researchers mighhtwia compare across birth
cohorts the magnitude of the association betwedagsocompletion and parental social status
net of race. In such situations, the semi-partatadation will often be preferred over the partial
correlation. The latter correlation partials ow trariance in botlg* andx explained byz, while
the former only partials out the variancexrexplained byz. In other words, the semi-partial
correlation (or its squared counterpart) is a mesasil the fraction of explained varianceyih
due tox net ofz relative to the unconditional or total varianceyin In contrast to the partial
correlation, the semi-partial correlation is unefésl by the predictive power afony*, thereby
not conflating differences in the predictive powée in group comparisons.

An alternative to the semi-partial correlatiorthe fully standardized partial coefficient of
McKelvey and Zavoina (1975), stated in Equation)(3@hile this coefficient is just a rescaled
version of the semi-partial correlation, it is uge’henever researchers are concerned with the
relative, rather than the absolute, value of th&camue variable, as outlined above. In this
situation, the fully standardized partial coeffidiecan be interpreted as the expected standard
deviation change in y* for a standard deviationng®inx, givenz. For example, stratification
researchers might want to know whether the depeydehthe son's relative position in the
socioeconomic status distribution on the relativesifion of his father in the father's
corresponding distribution, once race is contrqlleas changed over the 20th century. In such a
situation, the fully standardized partial coeffrdienight be preferred.

One thing which is clear from these examples oénetithe correlation may prove useful, is

that, when these conditions prevail, interpretitng tcoefficients of NLPMs in terms of
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correlations also provides a solution to the pnobtd comparing the effects of variables across

samples, between which the residual variation,uragtin the scale parametsrmight differ.

When the Correlation Is Not Useful

The conditions under which the correlation is afwismetric for group comparisons may not
always be met. In this subsection we first briefiytline these conditions and then discuss two

other methods that might be useful when the camtstare not met.

Unstandardized or Standardized Coefficients?

Unstandardized regression coefficients have lorenh@eferred over standardized coefficients
in social science research because the formerrafiegted by the distributions of the variables
involved in the model (Blalock 1967; Kim and Muell976; Schoenberg 1972; Tukey 1954). In
the linear regression model, the unstandardizessmn coefficient ok ony is given by
_ cov(x,y)
var(x)
yielding the expected change ynfor a unit change in x. The standardized—or eajaivt

correlation—coefficient is given by

sd(%

Py

and is affected by both the effecbobny and the distributions of andy. Using standardized or

correlation coefficients for group comparisons wiinflate differences in true effects, captured
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by £, with potential differences in the distributionfsbmth x andy, captured byd(x)andsd(y)

For this reason, and for reasons stated througha@upaper, using the correlation coefficient for
group comparisons is not informative about diffeesnin effects; it is merely informative about
differences in the predictive power vony (Achen 1977; King 1986) or about the association

between relative positions in the distributions.

For example, the correlation coefficient would betuseful for comparing the influence
of high school grades on college enrollment betwaen and women. Because the correlation
standardizes grades and the latent college ennallprepensity within gender, we cannot know
whether gender differences in correlations refldiffierences in effects or differences in the
dispersion in the latent propensity distributionirothe grade distribution. If the effecf, and
the dispersion in the latent propensisd(y) were the same for men and women, but the
dispersion in the grade distributiosd(x) was larger among men than women, then we would
see larger correlations among men than women. &itfelhences would not be informative about
gender differences in the influence of grades dlege enroliment, even if we interpreted them
as associations between relative positions in thiiloltions. This interpretation would imply
that women (men) only compete with other women (n@mbtaining college positions. But this
is unlikely to be true in most countries. Similafamples can be given of comparison across

subpopulations that compete for the same goods

Nevertheless, although using the correlation femparative purposes is restricted in
many respects, the same applies to nonlinear pildgpanodels in which the coefficients, by
design, are inherently standardized on the latemtome variable via the scale parameter,

Since the true effec,.,, cannot be separately identified, obtaining urddadized coefficients

is not possible in nonlinear probability models.dfsince the scale parametgrdepends on both
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the total variance in the latent outcome and tlegliptive power of, coefficients of nonlinear
probability models are difficult to interprétThis is precisely the reason why we propose
viewing these coefficients in terms of correlatiomsich, although limited in their use, have a

well-defined interpretation.

However, viewing nonlinear probability model coe#nts as correlation coefficients is
only one way of approaching the limitations of thieerent standardization of these coefficients.
As we have already pointed out, the correlatiorffament is standardized on both the predictor
variable and the outcome variable. Yet, becaus&mnwev the scale of the predictor variabke,
standardizing the coefficient or is not necessary. Researchers may instead opthéor
coefficient standardized on the latent outcome aldrhis coefficient was introduced in the
seminal work by Winship and Mare (1984 the simple case with only two variables, it is

given by

b

YSTD= /By*x — yX

" Tsd(y) Joz var(x)+ var@)

This partially standardized coefficient differs rinathe fully standardized counterpart in (6) by
not includingsd(x)in the numerator. It yields the expected stand@idation change ig* for a

unit change irx, and can easily be extended to the multiple case,

YSTD Igy*xz — byx.z

7 sd(y) _\/bfx_zvar(x)+ b2, var(z)+ 2b_ b, cov(x, 2+ vam

Yz X YX 27yz X

3 The interpretation of coefficients of nonlineaolpability models is even more complicated when seygedictor
variables are included. In this situation, the fiornts reflect the true effects of interest ahd predictive power of
all predictor variables.

4 Breen and Karlson (2013) discuss the advantagesing coefficients standardized on the outconaairsal
inference involving nonlinear probability modelsdashow the equivalence between these coefficied<ahen's
d, an effect size metric much used in evidence-bessehrch.
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In the multiple case, the coefficient expressesettyected standard deviation changg*irfor a

unit change irx, holdingz constant.

The partially standardized coefficient may proweful in certain areas of comparative
research. For example, in studying the black andewdap in college attainment over the 20th
century U.S, researchers might want to know whethergap in the underlying propensity to
complete college narrowed over time. In this sibmtthe partially standardized coefficient
could be used to compare the black-white gap*inmeasured in standard deviations, across
different time periods. Such an analysis would ffermative about the changes in the black-
white gap in college completion as a positionaldyddoreover, if researchers were interested in
comparing these gaps net of socioeconomic stdtaspdrtially standardized coefficient for the

multiple case could be used.

Given the often complicated interpretation of mo@hr probability model coefficients,
the partially standardized coefficient is an atikec alternative that acknowledges the inherent
standardization on the latent outcome variableratains the scale interpretation of the predictor
variable of interest. Because this coefficient & sensitive to the distribution x it may be
useful in certain areas of comparative research.ndfe turn to two other alternatives to using

logit and probit models in group comparisons ini@ogical research.

Using Predicted Probabilities

The issue of comparing logit or probit coefficier#tsross groups was addressed by Ai and
Norton (2003) whose approach uses the predictegesairom the logit or probit model, and

Long (2009) shows how to implement the method wiesearchers want to use it to make group
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comparisons. Because predicted probabilities arelinear, group differences in them will vary

across the distribution of the predictor variablenterest. This means that an interaction effect
cannot be reduced to a single quantity, but h&etstudied graphically across the distribution of
the predictor variable. To implement this idea, §®uggests using a logit or probit model to
estimate, for each group, the predicted probabiitythe outcome at different values of a
predictor variable of interest and then plotting ttlifference between the groups' predicted
probabilities across the distribution of the préalicvariable. Long (and Ai and Norton) also

suggest statistical tests of group difference obpbilities.

This approach could be applied when hypothesesatajroup differences can be tested
through their implications for probabilities. It &so likely to be valuable in showing that the
magnitude of group differences can vary acrosdisibution of predictor variables. This can
often best be seen graphically; indeed, as Gre2diE0} notes, such graphical output is needed
whenever we are to evaluate interaction effectdhenprobability margin. Nevertheless, this
method has some limitations. As Greene (2010: 2@Serves”partial [marginal] effects are
neither coefficients nor elements of the speciitcabf the model. They are implications of the
specified and estimated model" (brackets addedg €dmsequence of this property is that tests
of significanceof differences in predicted probabilities cannotibterpreted in the way we
would interpret tests of significance of differeade coefficientsFurthermore, while the method
is simple to implement in models with binary out@snin the ordinal or multinomial case the

graphical output will rapidly become cumbersome.

Using the Heteroskedastic Non-Linear Probabilityddlo

As well as pointing to the problem of making comgpans across groups when using non-linear

probability models, Allison (1999) also proposesdadution that involved estimating the ratio of
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error variances between groups. Williams (2009 n&tbthat Allison’s method is a special case
of what is variously termed a "heteroskedastic lear probability model”, a "heterogeneous
choice model", and a "location-scale model". Thizdel is characterized by an equation for the
variance as well as the mean. The variance carritterwas a function of any relevant predictor
variables, but, in the context of group comparisaves would be most interested in models that
allowed the variance to differ according to dumnayiables for groups. For example, applying
the model to the male-female biochemist data caigrused by Allison, Williams (2009: 540)

reports that the residual variance for women i$ 1irBes larger than for men.

What appears to have been overlooked in discusb these models, however, is the
issue of identification; that is, our ability toaidv inferences about the parameters of interest,
such as differences in true coefficients acrossiggo If we consider the case of comparisons
using the ordered logit or probit model (see equafil1), belowd, then two groups can differ in
one or all of their threshold parameters, their regression coefficients?, and their scaling
factor, s. A model in which all of these differ n®t identified. This follows because such a
model is equivalent to fitting a separate modeldach group and so, if it were identified, this
would allow us to recover the group specific saalfactor from that group’s ordered logit
model—something which we know is not possible. Thosidentify the relative sizes of the

different groups’ scaling factors, it is necesgarympose a group constraint on either or both of

r; and B (see Wiliams 2009: 551, whose application of Heterogeneous choice ordered

probit model is "contingent on the thresholds belregsame for both men and women").

5 Everything that follows holds for binomial as wel ordinal outcomes and, indeed, for non-lineabalility
models as a whole.
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Whenever we have reason to believe that a constoai S or 7, is defensible, the

model may be a good choice for making comparisses,(e.g., Mouw and Sobel 2001) because
we can recover the group difference in the trudfmoents of interest. However, as Long (2009)
argues, in sociology we rarely have either the boidgccumulated knowledge or strong theory
that would make the imposition of such constraartgthing other than ad héc hus, whenever
the condition cannot be met, differences in unknahresholds will be confounded with
differences in unknown scaling factors, and sorbstedastic non-linear probability models will

not solve the group comparability problem.

Some Further Results

Extension to the Ordered and Multinomial Case

In the ordered logit and probit we observe not tyendethery* exceeds an unknown value or
not (as in the binary logit or probit) but into whiinterval ofy* a given observation falls.
Thresholds divide the range ¢f into disjoint and exhaustive intervalg, <7, <...<T, where

7, =-o and7, =, These allow us to defing® = j if I, <Y*<rt; where y°is an ordered,

discrete variable witll categories and the ordered probit or logit modkets the form:
. T;
oPry >7,) =L+ Ex, (11)

whereg(.) is a link function—the logit or the cumulative naal in the ordered logit and ordered

probit respectively—andh = g/s is the ordered logit or ordered probit coefficieftx. Because

the underlying latent variable model in the ordemsatlels is the same as in the binary case (the

81t is, of course, possible to make the residudbvae depend on other variables. But in so fahese variables do
not wholly determine the error variance we aré istithe dark as to how much it differs betweenug®.
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difference between them being only in the degrewhmh y* is observed), the expressions we
have derived for the correlation and partial catieh (and for the coefficient of determination
which we derive in Appendix D) apply directly toetbrdered case.

The multinomial case is more complicated becauséawe a number of underlying latent
variables. We defin& as before, but we now defing, as the propensity of an individual to
choose alternativa from among a set of A possibilities. We assumé thandy*. are related

such that

Yo =, + Bx+ s [, (12)
where £, captures the effect of for alternativea, ua is an alternative-specific random error
term, which is independent across alternatives falidws a standard type-l extreme value
distribution, andsa is an alternative-specific scale parameter. Wg oblserve which of the A
alternatives the individual actually chooses and agsume that the individual chooses the
alternative for which he or she has the greategiensity:

y=aif y-y >0 0a% ¢
McFadden (1974) shows that the probability of cimgalternativea givenx is equal to

(13)

with normalization such ak_, =h,_, =0 to secure identification, and where

The odds of choosing rather than the baseline categahare exp(k, +b,X) and from this we

can derive the correlation betweafy—y,. andx in much the same way as in the binary case,

when we add one important qualifier: The standawdation ofx used in the correlation should
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be calculated not on the entire sample, but orséineple which has chosen either the alternative,
a, or the reference categorg, The reason for this is that the standard dewviatibx on the
contrast-specific sample can differ from the staddieviation of x in the full sample. We may
then derive the correlation as

_ bsd(®,
My ™ :
R 02 var(x), + 777 13

(14)

where we definesd( ), as the standard deviationbn the sample pertaining to the alternative

a versus the references contrasiand var(x), is its squared counterpart). The expression in

(14) generalizes easily to any contrast betweenatteonatives.

Sensitivity to Mis-Specified Error Term
As we saw earlier, the correlation between a ptedi@nd the latent outcome can be recovered

from the parameters of a NLPM because we know Hrance of the predictor andar(w) is

given by assumption. Typically, whgris a binary realization of* we assumec. to have either

a standard normal (for the probit) or standarddbgi(for the logit) distribution. But this raises
the question: how sensitive are our estimates efdbrrelation to such an assumption? To
answer it we ran a Monte Carlo simulation in whieh fitted logit and probit models to data in
which we varied the true underlying error distribat the sample size, and the magnitude of the
correlation. In Table 1 we report the mean, ovel &fplications, of the absolute deviation from
the true correlation. It is noticeable that, exdeptthe uniformly distributed error, the metric is
largely insensitive to pure misspecifications, vilte mean deviations for the misspecified cases

differing little from those where the model is amtly specified (the logit-logistic and probit-
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normal cases). This holds even for a lognormatibistion with a skewness of -1 where the error
term is highly asymmetric. As we would have expectbe sensitivity is less pronounced the

larger the sample size.

--TABLE 1 HERE --

Relationship to the Polyserial Correlation Coeftict

The correlation coefficient we present in this papeclosely related to the polyserial correlation
coefficient widely used in psychometrics (Cox 19Mlsson, Drasgow, and Dorens 1982).
However, we believe that our approach is more génerore flexible, and easier to implement.
The polyserial correlation assumes tifatandx follow a bivariate normal distribution, whereas
our measure places no assumptions on the distiibwfix and allowsy* to have distributions
other than normal (e.g., the logistic, complemagntag-log). Our method is easily generalizable
to partial correlations (using partial logits armhditional standard deviation @f whereas the
partial polyserial correlation has to be derivednir several polyserial correlations, severely
complicating the derivation of standard errors.tfkemore, unlike the polyserial coefficient, our
method extends to partial correlations without mgkany assumptions about the distribution of

the control variablez

Significance Testing
Because the correlation is asymmetrically disteblyttests of its statistical significance are
usually undertaken on the Fisher transformed cdefft. The Fisher transformation of the

correlation coefficient, is
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F(r)= %Inct—:j =arctankr) (15)

F(r) is approximately normally distributed with a knowrean and standard error under the null.
However, in our case the correlation is not disectliculated from data: rather it is computed as
a function of an estimated quantibyy. In calculating the standard errork(f) we therefore take
this into account, but, having done this, we cantbxploit the normality oF(r) to calculate
confidence intervals and significance tests.

We compute the standard errorgf) using the delta method. The asymptotic standawdt e

obtained from this approach depends on the patéavative ofF(r) with respect td and we

F F
compute this using the chain ru%% = aair)aaTr' The standard error also depends on the
yX yX

variance obyx. We can write the asymptotic varianceFgr) as:

dF(r) dr |

|: dr dbyx:| Var(be) (16)
where

dF(r) dr _ sd(x)

dr db, \/ b?, var(x) + var()

The asymptotic standard error I6fr) is given by the square root of equation (16). Beeahe
Fisher transformed correlation is asymptoticallymally distributed under the null, we can test

the null hypothesis of zero correlation via:

F(r)
Z= . 17
se( F(n) (17)

We analyzed the power of the test score in (1/#)guai Monte Carlo study. The results are
reported in Table 2. We generated the data usingtemp (1) withx normally distributed and

having a standard logistic distribution and we =i the estimated correlation from a logit
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model. We varied the true correlation and the samspe and, for each scenario, we report the
percentage of times out of 1000 replications thattest rejected the null hypothesis (based on a
.05 critical value). In scenario A of Table 2 thdlrhypothesis is true, and here our test rejects
the null hypothesis 5% of the time or less. In se@s B through F, the null hypothesis is false,
and our test fails to reject it only when the samgke is small and the true correlation is quite
small. Even in samples of 200 and for a correlatib@.25 a false null has a 90% rejection rate.
In samples of 1,000 observations or larger, weinlstgpower of above 80 percent even for small

correlations.
-- TABLE 2 HERE --

The Fisher transform can easily be extended totheshull hypothesis of zero difference

between groups in their correlations:

F(ry2) = F(rym,)

* e, vare ) -

Here the subscript 1 and 2 indicates different desnpetween which we want to compare
correlations. We conducted a Monte Carlo studyviauate the power of this test. The results
can be found in Appendix C. They show that thedatfe difference between correlations and
the larger the sample size, the more likely theiget® reject the null hypothesis of no difference
in correlations. With a sample of 1000 the tesffective at rejecting the null hypothesis when
the difference in correlations is 0.2 or greater. & sample of 5000 the test performs well for

differences in correlations of more than about .07.

Applications
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The final part of our exposition applies the methade have proposed to two examples that
illustrate the relationship between the correlatard the coefficients of NLPMs. Our first
example is a reanalysis of data on trends in eduadtinequality in Europe (Breest al 2009).
Using the correlation slightly modifies the findsgf the original study and we explain why by
investigating the source of the differences thatfiwe between the ordered logit coefficients on
which the original conclusions were based and thieetations on which we rest our conclusions.
Our second example uses data from the General|SRuaey (GSS) to examine trends in the
relationship between educational attainment artefat socio-economic index over cohorts born
between 1930 and 1969, and here we find that tfferelnces between trends based on an

ordered logit model and those based on the coiwelate much more pronounced.

Non-Persistent Inequality in Educational Attainment
Shavit and Blossfeld (1993) summarize the resultsheir seminal study of inequalities in
educational attainment across different cohortseutige titlePersistent InequalityThey claim
that, despite dramatic educational expansion duhegtwentieth century, all but two (Sweden
and the Netherlands) of the thirteen countriesistuth their project “exhibit stability of socio-
economic inequalities of educational opportuniti€Shavit and Blossfeld 1993: 22). Recently,
Breen, Luijkx, Miller and Pollak (2009) have chaljed Shavit and Blossfeld’s conclusions
using data on educational inequality in the twehtieentury in eight European countries (see
also Breen and Jonsson 2005; Breen, Luijkx, Midhet Pollak 2010).

All these studies base their comparisons betwaémdohorts on the use of NLPMs: logits
in the case of the Shavit and Blossfeld (1993) mauthe ordered logit in the Breetal (2009,

2010) analysis. This implies that their conclusiamsy confound real differences in educational
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inequality across cohorts with differences in rasidvariation. Here we re-analyze data from
three of the eight countries in the Brestnal study and compare the coefficients—and thus the
conclusions drawn—from the original model with tb@responding partial correlations. The
correlation, as a standardized measure, is pati@ppropriate in this case because, from the
perspective of the study of inequality, educatian be seen as a positional good: what matters is
a person’s position in the distribution rather thiais or her absolute level of education.
Furthermore, when, as here, the predictor variadnleslummies, the correlation has an attractive
interpretation, telling us how much of the variameehe latenty* lies between classes rather
than within them.

The data we use relate to men in Germany, Framcethee Netherlands, born in one of five
cohorts: 1908-24, 1925-34, 1935-44, 1945-54, arsb¥. The dependent variable is highest
level of educational attainment measured usingdndered categories:

1 Compulsory education with or without elementaogational education,
2 Secondary intermediate education, vocationakoetal,

3 Full secondary education,

4  Lower tertiary education,

5 Higher tertiary.

The predictor variable is social class origins,doasn the respondent’s report of his father’s
occupation when he was growing up. Seven classedligtinguished using the EGP class
schema (Erikson and Goldthorpe 1992, chapter 2):

I Upper service,
Il Lower service,
Illa  Higher grade routine non-manual workers,

IVab Self-employed and small employers,
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IVc  Farmers,

V+VI Skilled manual workers, technicians and sujsass,

Vilab+lllb Semi- and unskilled manual, agricultyrand lower grade routine non-
manual workers.

Sample sizes are 17,124 for Germany, 51,705 fandésaand 19,751 for the Netherlands.
Further detail on the data and on the surveys fadnich they were obtained can be found in
Breenet al (2009: 1480-5). These three countries were chitgereanalysis here because Breen
et al found significant decline in class inequality idueational outcomes over successive birth
cohorts in all three countries, whereasHarsistent Inequalitya decline was found for the
Netherlands but not for Germany (France was noduded). The question we now seek to
answer is whether Breeet al's claim of ‘non-persistent’ inequality is robust wie use the
correlation as our measure of inequality in edoceti attainment.

We begin our analysis by replicating theirs. Breealuse an ordered logit model to regress
the five educational categories, considered annafldianking of educational attainment, on
dummy variables representing the origin classegyTit a separate model to each of the five
birth cohorts and present their results in a seridgures, of which the most important is Figure
4 on page 1495 of their paper. Our replicatiorheifrtanalysis is shown here in Figure 1 and this

is identical with their Figure 4.

-- FIGURE 1 HERE --

Class | serves as the omitted category, havingrgtidit coefficient of zero, and the lines

plotting the coefficients for the other classesifihmeasure the extent to which the particular

class’s log-odds of exceeding any given level afcadion differ from those of class I) show a
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general trend of convergence towards zero as wesrfrom later- to earlier-born cohorts. This
trend extends across the whole of thé 2@ntury in the Netherlands but does not beginl unti
after the cohort born 1925-34 in Germany and Frahbe trend is most pronounced among the
initially most disadvantaged classes, particuléatyners (IVc) and unskilled workers (VII+lIIb)
(see Breemt al 2009: 1494-6).

Figure 2 shows, for each class, the partial carogigthat is, controlling for the effect of the
other class dummies) with latent educational atteint,y*. These are all negative (because they
are all measured relative to class I) and so aitirfggure 2 that rises towards zero over cohorts
(a notable example is the line for class IVab & Ketherlands) tells us that a declining share of

the conditional variance in y* lies between thagior class and class I.

-- FIGURE 2 HERE --

The trend towards greater equality, measured asdhgergence of class coefficients, is
somewhat less pronounced in Figure 2 (correlatitingh in Figure 1 (logits), especially for
France, and, in both France and Germany, Figurgggests that the trend to equalization began
later (after the 1935-44 cohort) than Brestnal found. Trends for particular classes are not
always the same in the two figures: e.g. in Fraheepartial correlations show that the positions
of classes Ill and V+VI worsened relative to claswhereas the logit coefficients in Figure 1
show that their position either remained unchangeuanproved. Equation (8) tells us that such

discrepancies must be due to changes in the condit{on the other classes) variance of the
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class dummies which will, to a considerable exteefiect the changing relative sizes of the
social classes.
We can investigate the differences between the tmgifficients and the partial correlations

by returning to equation (9) that shows that thetigdogit coefficient is equal to the square root

of the ratio of the explained to the unexplainedditional variation in the latents, —22_ |

2
1-r.,,

scaled by the ratio of the standardized standavihtien of the error {7/ V3 in the logit case) to

the residual standard deviation xf sdla)/sd(x|z). We can therefore decompose the logit
coefficients into these two parts. In Table 3 wgoré these two parts for the three countries. In
these expressiong, stands for the dummy variables for the classesrattman the one being

studied. The logit coefficients shown in Figureré the product of these two components.

--TABLE 3 HERE --

The trend in the French results reported in Figu@e very similar to those of the ratio

Fyv./A[1=15,, shown in Table 3. But the more pronounced dedlinelass origin effects in

France seen in the logits of Figure 1 is due tostieep reduction in the ratisd(c.)/sd(x |2).
And since sd(«) is constant over cohorts, this change reflectsiribeease in the conditional
standard deviations of the dummy variables oveodshThe Dutch case is similar: increases in
the conditional standard deviations of the dummyiatdes together with declines in their

explanatory power give rise to the even more maseauhlization shown in Figure 1. But the

7 The conditional variance of a class dummy is thigance of the residual from a regression of thiaahy variable
on the dummy variables for the other classes. T¢hemnge over cohorts in the conditional varianca pérticular
dummy reflects not just changes in the relative sizthat particular class; it is also sensitivelianges in the entire
class distribution, albeit in a complicated way.
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German experience is somewhat different: here Egyirand 2 are more similar because less of
the decline in the logits is attributable to chamgehe conditional standard deviations of the

class dummies. As the trend in the rat&g(«)/sd(x|2z), in Table 3 shows, although the

conditional standard deviations of the class duranhiave mainly increased (and so the ratio
reported in the figure declines) they have remaingkin a narrower range.

In general, changes in the residual standard dewiaf the predictor variables could cause
logits (or, generally, NLPMs) to exaggerate or uptiey trends or differences in the degree to

which the predictors account for variation in theehty*. If sd(x|z) increases over cohorts, as

here, it will exaggerate a declining trend in ediosceal inequality when measured with logit
coefficients but underestimate the opposite trerfierw measured with partial correlation
coefficients. A decliningsd(x|z) will magnify an increasing trend in logit coeficits but
dampen a declining one.

In the case at hand, where changessi{x|z) magnify a declining trend, our overall

conclusion would nevertheless be that inequalitieeducational attainment declined over the
20" century. To support this conclusion, we reporFigure 3 the estimated?Ralues (derived

in Appendix D) for each cohort. We find a clear ldex in the degree to which class origins
account for variation in latent educational attagmtn And, because correlations are standardized
measures, we can also compare them across courtmiegthe oldest cohort class origins
explained most variation in educational attainmanGermany (30%), but this is the country in
which there has been the greatest absolute denliRéand by the youngest cohort class origins
account for about 15% of the variance in both Geymand France. In all cohorts the

Netherlands displays the lowest amount of variaaqadained by class origins: in the youngest
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cohort this is only 8%. In all three countries #t@re of the variance in educational attainment
lying between classes has been approximately halved the 20 century: i.e., class origins
were a much weaker factor in explaining the vasiatn educational attainment among men born

in the middle of the century than among those labits start.

--FIGURE 3 HERE—

Trends in Inequality of Educational Attainmenttie tJ.S.

In this example we use data from the General S&ialey (GSS), 1988-2010, to study trends in
inequalities in educational attainment across foolmorts born between 1930 and 1969 in the
U.S. Houtet al (1993) analyzed earlier GSS data using logit nodeld found no evidence for
declining effects of father's occupational prestageoss cohorts born between 1905 and £954.
Their results were similar to those reported by &4@981), who found no major changes in the
logit coefficients for the impact of father’s priggt on educational transitions among white males
born between 1907 and 1951.

We restrict the GSS sample to respondents agedebrt®@0 and 69 at interview and born in
one of four birth cohorts: 1930-1939, 1940-1949%@92959, or 1960-1969. The final sample
consists of 16,077 individuals. To account for wempling design, we apply the weight
suggested by GSS (Smi#t al 2011). Following Houtet al (1993) we report results for the
pooled sample. Our dependent variable is highest & educational attainment categorized as:

1 Less than high school

2 High school

8 Hout et al. (1993) estimated family backgrounceet for successive educational transitions, agesigd by
Mare (1981). In addition to father's prestige, #hamodels also included sex, parental education, fand
background.
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3 Junior college

4  Bachelor

5 Graduate

We use father's socio-economic index (SEI) as oeasure of social origirlsWe fit an

ordered logit model to each cohort, and, using goguog6), we derive the correlation between
paternal SEI and the latent variable assumed teeniadthe categorical measure of highest
education. In Table 4 we show the trends in théfictents from the ordered logit model and the
corresponding, derived correlations. The logit Gioeits indicate equalization in educational
outcomes across cohorts born in the mid-20th centS and this trend is statistically

significant (one-tailed test, five percent sigrafce level).

-- TABLE 4 HERE --

But the trend in correlations runs in the oppoditection, suggesting increasing inequality,
though, in fact, all the correlation coefficientg avithin an interval of 0.34 through 0.38 and we
cannot reject a hypothesis of no change in themsaarohorts. They suggest that SEI explains
between 12 and 15 percent of the variance in ttemtiaeducational propensity over the entire
period studied. Thus the substantive conclusiormutalrends in inequalities in educational
attainment change, once we base our inferencesi@redrrelation coefficient rather than the
logit coefficient: the logit coefficients point @ decline in inequalities, while the correlation
points to constancy. But, given equation (7), wa eaplain why this comes about. Table 4
shows that the dispersion of SEI increases draalgtiacross cohorts: its standard deviation is

roughly 25% larger in the 1960-69 cohort than ie #930-39 cohort. These changes in the
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marginal distribution of SEI explain why logit cdiefents show a modest trend towards
equalization whereas the correlation shows growieguality. The apparent equalization in the

case of the US is very much an artifact of the giandistribution of social origins.

Conclusions

Although textbooks commonly relate the coefficienfsnon-linear probability models to the
corresponding parameters of an underlying latenalbbe regression, a strong case can be made
for interpreting them in terms of underlying coatns. The logit or probit coefficient is a
transformation of the correlation between a predjck, and the lateny*. The correlation
coefficient is a standardized metric, invariantlifberences in the marginal distributions>oénd

y* across groups, and it may therefore be used irpagative social research, solving a part of
the problem of making group comparisons using $ogit probits identified by Allison (1999).
Our solution will be appropriate only when it isefid to base comparisons on the correlation
coefficient, and we sought to outline what thosewnstances are and when they are likely to
arise. Finally, the methods we have presented eadily be implemented using a Sfata

program callechlcorr (http://ideas.repec.org/c/boc/bocode/s457289atml

® This measure is already provided in the GSS deiabased on the 1980 Census occupational scheme.
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Appendices

Appendix A: Group Comparison under the Assumptfa Truly Discrete Variable

We show that—without assuming the existence daitent outcome variable—estimated logit
coefficients can differ between groups accordincatbitrary heteroskedasticity in the binary
outcome. The result follows from standard resuftsr@arginal versus conditional interpretations

of nonlinear probability models, as discussed byeaf (2002:498-501).

Write the logit for y = 1 for two groups,
logit(Y =1)= g+ x+ y, 4 (A1)
logit(Y =) =a + B x+y,u (A2)

whereu,, j = 1,2, are unobserved variables assumed tabevise independent of, anda; are

logit constant terms.

The role of the unobserved variable can differ leetw groups in two ways. First, the

unobserved variables can have different effegts, on the binary outcome. Second, the

distribution of unobservables;, wan differ. Because we cannot obsery¢he unobservables are
essentially “integrated out” of the estimating etpra (i.e., the first derivatives of the log-
likelihood function). In other words, we do notigsite parameters based on (Al) and (A2), but
rather the averaged versions of the estimationtemsa averaged over the distribution of the

effect of the unobservables:
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E(Y :1): eXp(aj+b]X+ijl) : j=1,2- (A3)
J 1+exp@, +b x+y;y )

For general distributions of,/A3) does not have a closed form solution. Howewdenever

y;u,are normally distributed, we have that

[ @o(a +nX)
E(Y, =1)= 1+ ex[(é_j (aj +h X))

=12,

whered, = (1+0.67, }V?, and whered: is the standard error of the distribution gl , with
J J J 1]

corresponding logit equations
logit(Y =1) = g6+ B (A2)
logit(Y =1) = &+ B (A5)

where &=9,a t‘){o:qq . The estimates based on (A4) and (A5) are usuefgrred to as

marginal or population averaged parameters. Bedausemultiplied by 3, and becaus@, can
differ across groups, the estimated population ayest parameters may differ across groups,
even whenb, = b,. Because the variances of the unobservableare unobserved, the relation

between the group-specific factozg,, is not identified. In other words, group diffecexs in the

dispersion of unobservableg];, might conflate any true difference in effects>obetween

groups. In effect, this result parallels that dedwnder the assumption of a latent, continuous

outcome variables.



41

Becauseo; depend on botly,andu;, we notice that the scale factads, might differ when

the unobservables have different effects acrosspgradifferent distributions across groups, or

both. We further notice that this result does nettgin to linear models. In these models,

E(Y, =y= E(al. +5 Xty u+ Je) =a +fB X F1,2, when x and u are mean independent, i.e.

E(yu+e| ¥ =0. Hence, in the linear model, the residual varignee(yu+€)) and the mean

are independent, so heteroscedasticity does reattdaffe conditional mean function.

Appendix B: Partial Correlation between x and yven z
We show how to recover the partial correlation lestmx and the latent variablg?, controlling

for one or more variableg, Here we have:
varl*) = B2, var@) + 52, var@) + 23, , 3, ., COV(x 2) +var(y* | x 2)
with var(y* | x, z) = s” var(w) . The partial regression coefficient fpr onx controlling forzis

By, = cov(y*, x| 2) ’

var(x | z)
and so we can write the partial correlation as

. _ ﬁwxzsd(x|z) B byXZ slsd(x| z)
e Nary* 12 Jvar(y*|2)

whereb is the probit or logit coefficient. Using the résihat
varly*| 2) = 35, vark| 2) +varf* | x2),

we obtain (8).
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Appendix C: Statistical Tests

Table Al shows the results of a Monte Carlo analysistudy the power of the test given in
equation (18). We simulated two populations, edch million, one withr(x,y*)=0.5, the other
with a correlation varying from 0 to 0.45. We thérew a sample from each population and
applied equation (18) to test the significancer(gghe .05 critical value) of the difference in
their correlations. The figures in Table A1 show ghroportion of times, out of 1000 replications,
that the null hypothesis of no difference was rgecusing sample sizes ranging from 100 to
5000. In this case bothandy* were normally distributed and the correlation wasved from a
probit model. As we should have expected, the fatige difference in the correlation and the
larger the sample size, the more likely the teso iseject the null hypothesis. With a sample of
1000 the test is effective at rejecting the nupdipesis when the difference in correlations is 0.2
or greater: for a sample of 5000 the test perfowaB for differences in correlations of more

than about .07.

-- TABLE Al HERE --

Appendix D: Coefficient of Determination
In some situations researchers are interested mmmsuizing the share of variation iy
explained by the predictor variables. With a singkedictor this is just the square of the
correlation in (6). For simplicity, we derive theedfficient of determination assuming that we
have two predictor variables andz

The explained variance of the model in whigh depends on botlk and z is equal to

varly*) —varly* | x 2), where var(y*) is
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Igff‘XZ Varé() + /832}*zx Var&) + 218 V4 xzﬂyfzx COV(X Z) + VarG/* | X Z)
Because the coefficient of determination is therat the explained to the total varianceysf

we have:

CBE var(x) + B2, var(2) + 208 B, COV(X 2) + var(y* | % 2)

Substituting the logit or probit coefficient and paxding varf/*|xz) we can rewrite the
preceding equation as

b2
2 yXxz
b?,,s” var(x) + by, s* var(z) + 2b , b, s* cov(x z) + s* var(w)

yxz yzX

s®var(x) +b, s* var(z) + 2b , b, s* cov(x 2)

yzZXx

The s?term cancels to leave a function of known values:

bZ., var(x) + b, var(z) +2b b, cov(x 2)

2 _ yxz yzx

" b2 var(x) + b2, var(z) + 2b pDyzx COV(X 2) + var(w)

yxz yzX

This coefficient of determination equals that pregsd by McKelvey and Zavoina (1975) and can

easily be extended to the case with more than tedigtor variables.
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TABLES

TABLE 1. Monte Carlo study of sensitivity of coraglon metric to pure misspecification of
error term. 500 replications. Mean absolute demmafrom true correlation reported.

N =200 N =1,000 N = 5,000

Scenario-(lj-irsut?. error Logit Probit Logit Probit Logit Probit
r=0.25

1A Normal 0.04 0.04 0.03 0.02 0.03 0.01
1B Logistic 0.04 0.05 0.02 0.03 0.01 o0.08
1C t(6) 0.04 0.05 0.02 0.04 0.01 o0.04
1D Lognormal 0.04 0.05 0.02 0.03 0.01 o0.02
1E Uniform 0.08 0.06 0.09 0.06 0.08 0.06
r =0.50

2A Normal 0.05 0.04 0.04 0.02 0.04 0.01
2B Logistic 0.04 0.04 0.02 0.03 0.01 o0.08
2C t(6) 0.04 0.05 0.02 0.05 0.01 0.05
2D Lognormal 0.04 005 0.02 0.03 0.01 o0.03
2E Uniform 0.12 0.08 0.12 0.08 0.12 0.08
r=0.75

3A Normal 0.03 0.03 0.02 0.01 0.02 o0.01
3B Logistic 0.03 0.03 0.01 0.02 0.01 o0.01
3C t(6) 0.03 0.03 0.02 0.02 0.01 0.02
3D Lognormal 0.03 0.03 0.01 0.02 0.01 o0.02
3E Uniform 0.06 0.04 0.06 0.03 0.06 0.03

Note: t(6) is the t distribution with six degreddreedom.
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TABLE 2. Monte Carlo study of power of statisticedst of a single correlation. 1,000
replications. Proportion of rejections of keported.

Scenario Ho Truecorr. N=100 N=200 N=1,000 N =2,000

A False 0.00 5% 5% 4% 5%

B True 0.10 16% 25% 82% 98%
C True 0.25 61% 90% 100% 100%
D True 0.50 100%  100% 100% 100%
E True 0.75 100%  100% 100% 100%
F

True 0.90 100%  100% 100% 100%
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TABLE 3. Decomposition of logit coefficients by auny, cohort, and social class

[l ]} IVab IVc V+VI Vil+llb

r sd(w) r sd(w) r sd(w) r sd(w) r sd(w) r sd(w)
Birth cohort Vi-r? sd(X 3 1-r?> sd(xl3 1-r? sd(xl) 1-r2 sd(X 3 1-r?> sd(X 3 1-r*> sd(x 3
German men
1908-24 -0.0429.740 -0.137 9.945 -0.232 8.569 -0.380 8.557 -0.365 7.726 -0.453 8.286
1925-34 -0.0999.879 -0.172 10.122 -0.236 9.517 -0.389 8.937 -0.347 8.199 -0.445 8.669
1935-44 -0.1028.168 -0.164 8.985 -0.226 8.261 -0.361 8.495 -0.397 6.799 -0.459 7.414
1945-54 -0.0808.026 -0.119 8.532 -0.150 8.746 -0.265 8.737 -0.329 6.586 -0.362 7.213
1955-64 -0.0527.871 -0.095 8.605 -0.138 8.796 -0.249 9.113 -0.310 6.214 -0.355 6.952
French men
1908-24 -0.06013.616 -0.161 11.895 -0.225 9.840 -0.405 9.403 -0.276 9.879 -0.369 9.548
1925-34 -0.06612.824 -0.168 11.299 -0.214 9.460 -0.433 8.976 -0.303 9.216 -0.390 9.024
1935-44 -0.10711.419 -0.178 10.509 -0.245 8.547 -0.447 8.093 -0.341 8.128 -0.427 7.980
1945-54 -0.099 9.825 -0.195 9.746 -0.227 8.195 -0.357 7.936 -0.345 7.469 -0.419 7.492
1955-64 -0.085 9.313 -0.204 9.152 -0.197 8.375 -0.322 8.267 -0.332 7.007 -0.390 7.308
Dutch men
1908-24 -0.051 9.311 -0.078 12.107 -0.202 7.840 -0.297 7.854 -0.245 7.843 -0.328 7.438
1925-34 -0.0139.032 -0.05511.286 -0.176 7.911 -0.257 7.932 -0.222 7.603 -0.307 7.337
1935-44 -0.038 8.094 -0.07010.018 -0.167 7.474 -0.215 7.686 -0.246 7.043 -0.304 6.806
1945-54 -0.015 7.365 -0.055 9.098 -0.148 7.383 -0.153 7.782 -0.202 6.432 -0.239 6.489
1955-64 -0.007 6.703 -0.061 8.833 -0.088 7.459 -0.169 7.899 -0.194 5.800 -0.240 6.079
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TABLE 4. Logit coefficients, correlations coeffitciess and standard deviations of SEI by US
cohorts, GSS data 1988-2010

Birth cohort Logit coef. Correlation Standard deviations

of SEI
1930-1939 0.0424 0.3473 15.85
1940-1949 0.0400 0.3615 17.59
1950-1959 0.0368 0.3578 18.88
1960-1969 0.0377 0.3768 19.58

Note: Weight used (wtssall).
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TABLE Al. Monte Carlo study of power of statisticist of the cross-sample difference
between two correlations. Sample 1 is drawn fropoulation with a true correlation of 0.5.
1,000 replications. Proportion of rejections ofrdported.

Scenario., "€ " N'=100 N=500 N=1,000 N = 5,000
in sample 2

A 0.00 81%  100% __ 100% 100%

B 0.10 66%  100%  100% 100%

C 0.20 47%  98% 100% 100%

D 0.30 26%  79% 98% 100%

E 0.40 11%  33% 53% 100%

F 0.45 8% 13% 21% 63%




FIGURES

FIGURE 1. Ordered logit results
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FIGURE 2. Partial correlation results
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FIGURE 3. R-squared values by country and cohort
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