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Correlations and Non-Linear Probability Models  

 

Abstract 

Although the parameters of logit and probit and other non-linear probability models are often 

explained and interpreted in relation to the regression coefficients of an underlying linear latent 

variable model, we argue that they may also be usefully interpreted in terms of the correlations 

between the dependent variable of the latent variable model and its predictor variables. We show 

how this correlation can be derived from the parameters of non-linear probability models, 

develop tests for the statistical significance of the derived correlation, and illustrate its usefulness 

in two applications. Under certain circumstances, which we explain, the derived correlation 

provides a way of overcoming the problems inherent in cross-sample comparisons of the 

parameters of non-linear probability models. 
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Correlations and Non-Linear Probability Models 

 

Both textbook expositions and discussions of research findings commonly interpret the 

coefficients of non-linear probability models (henceforth NLPMs) such as logits, probits, the 

ordered logit and probit, and the multinomial logit, as the coefficients of an underlying latent 

linear model, albeit identified only up to scale. In this paper––drawing on and extending the 

work of McKelvey and Zavoina (1975)––we point out that the coefficients of NLPMs are, in 

fact, closely related to the correlations between the dependent and predictor variables of the 

latent linear model, and, in some circumstances, interpreting them in the light of this could be 

particularly useful. This is especially so when we want to compare the effects of the same 

variable in the same NLPM fitted to different groups (for the problems in doing this see Allison 

1999).  

We first develop the logit and probit models in a latent variable framework and show 

how their coefficients can be used to recover the correlation between a predictor variable, x, and 

y*, the underlying latent dependent variable. We discuss the conditions under which the 

correlation coefficient is likely to prove useful and we provide statistical tests of the derived 

correlation coefficient and for differences in correlations between samples. We also show how to 

derive the correlation in the ordered and multinomial case. We conclude the paper with two 

examples dealing with trends in educational inequality. The first is a reanalysis of data on 

educational inequality in Europe (Breen et al 2009). The second uses GSS data to study the trend 

in educational inequality in the U.S. among cohorts born between 1930 and 1969. Four 

appendices contain some technical details of our approach. 
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A Latent Variable Formulation of Logit and Probit Models 

Let y* denote a continuous outcome variable, and let x be a predictor variable whose effect on y* 

we want to estimate. We can write a regression model for y* as 

  uxy xy ++= ** βα , with uusd σ=)( .      (1) 

Here u  is a random error term and uσ  its standard deviation, which summarizes that part of the 

variation in y* unexplained by x.α is the intercept of the model, and *y xβ  captures the effect of x 

on y*. α , *y xβ , and uσ  are all unknown parameters. 

 However, we assume that y* is unobserved and instead we observe:  

  
1  if  *

0  if  * .

y y

y y

τ
τ

= >
= ≤

         (2) 

This means that we only observe whether an observation’s value of y* is greater or less than a 

constant, τ , which is a threshold parameter whose value is unknown. Following a standard latent 

variable formulation of discrete choice models we rewrite the error term in (1) such that u sω= . 

For the logit model, we assume that ω  is a standard logistic random variable, with mean zero 

and variance π 2 /3 and s is a scale parameter, yielding a variance of 2 2 2 / 3u sσ π=  for the error 

term in (1). For the probit model, we assume that ω  is a standard normal random variable, with 

mean zero and unit variance and s is a scale parameter, yielding a variance of σu
2 = s2 for the 

error term in (1). 

 For the logit case we specify the probability of success as a function of x: 

  

*

*

*

exp

Pr( 1) Pr( * ) Pr

1 exp

y x

y x

y x

x
s su

y y x
s s s

x
s s

βα τ
βα ττ

βα τ

 − +   −  = = > = > − + =  
 −   + + 
 

, (3a) 
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where the final equality holds because we assumed ω  to be a standard logistic random variable. 

Taking the logarithm of the odds of the probability in (3a), we obtain the well-known logistic 

regression model: 

  *logit(Pr( 1)) y x
yxy x a b x

s s

βα τ−= = + = + .      (3b) 

For the probit case we also specify the probability of success as a function of x: 

  *Pr( * ) ( )y x
yxy x a b x

s s

βα ττ  −> = Φ + = Φ + 
 

     (4) 

Where ( )Φ ⋅  denotes the cumulative distribution function of the standard normal distribution, and 

where the first equality holds because we assumed ω  to be a standard normal random variable. 

 The intercept of the logit or probit model depends on the intercept of the underlying linear 

model (α ) and the threshold parameter (τ ) and these two cannot be recovered separately, being 

absorbed in the intercept, a, of the logit or probit. The parameters yxb
 
in the logit and probit 

models are equal to the regression coefficients from the underlying linear model in (1) divided 

by the scale parameter, which is a function of the underlying conditional error variance. Thus in 

probit and logit models we can identify regression coefficients only up to scale, which is a 

function of the conditional standard deviation of the latent outcome variable. This presents 

particular difficulties for parameter comparisons, whether these are between parameter estimates 

for the same variable in different model specifications (for example, with and without control 

variables; see Karlson, Holm and Breen 2012) or parameter estimates for the same variable in the 

same models fitted to different samples (Allison 1999). In both cases, real differences in a 

variable’s effect will be confounded by possible differences in scaling.  

 The issues pertaining to scale identification of coefficients from non-linear probability 

models have wide-ranging consequences for comparative research analyzing discrete outcomes. 
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Most significantly, because these coefficients are inherently standardized, researchers cannot 

generally follow the recognized advice of using "unstandardized coefficients" in group 

comparisons (Tukey 1954; Blalock 1967). Consequently, we need to look to other metrics that 

might prove useful in certain areas of sociological research. 

 

The Problem in Group Comparisons When Not Assuming a Latent Outcome Variable 

The previous derivations hold under the assumption that we observe the latent outcome, y*, via 

its binary manifestation, y. However, in some sociological applications, motivating the logit 

model in terms of latent variables is less obvious. Yet, even when the binary outcome variable 

can be said to be truly binary, the problem in comparing logit or other nonlinear probability 

model coefficients across groups remains. Using the distinction between marginal and 

conditional models (Agresti 2002), in Appendix A we show that the group comparison problem 

also applies when the outcome can be said to be truly binary and the latent variable formulation 

consequently does not apply. In either case, group comparisons of coefficients are distorted by 

differences in unmeasured heterogeneity across groups even when the unmeasured heterogeneity 

is independent of the observed predictor variables.   

 

The Correlation and Its Relation to the Logit or Probit Coefficient 

Rather than interpreting logit and probit coefficients as underlying effects identified up to scale, 

they can also be interpreted as functions of the correlation coefficient between the predictor x 

and the underlying latent variable, y*. To show this, we use results from the early literature on 

the relationship between coefficients from linear models and correlations (e.g., Blalock 1964, 

1967; Linn and Werts 1969; Theil 1972). The only difference is that we apply the results to y*, 

allowing us to derive the correlation coefficient from the probit and logit model. 
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 We can write the variance of the underlying latent variable, y*, as 

  )var()var()|*var()var(*)var( 22
*

2
* ωββ sxxyxy xyxy +=+=     (5) 

and the correlation between y* and x is equal to 

* *

( )

( *)y x y x

sd x
r

sd y
β= .        

Using (5) and the fact that the logit or probit coefficient, yxb , equals 
s

xy*β
 we can write 

* 2 2 2 2

( ) ( )

var( ) var( ) var( ) var( )

yx yx
y x

yx yx

b s sd x b sd x
r

b s x s b xω ω

⋅ ⋅
= =

+ +
,   (6)  

since the s terms cancel. 

 For the logit we substitute var(ω ) = π 2 /3 and for the probit var(ω) =1. With a single 

predictor variable the correlation in (6) equals the fully standardized coefficient suggested by 

McKelvey and Zavoina (1975: 115).  

 Using (6) we can write the logit or probit coefficient as a function of the correlation 

coefficient. To do so, we solve for k in *yx y xb k r= ⋅ . Using that
*( | )

 
( )

sd y x
s

sd ω
=  and writing the 

correlation and yxb  coefficient in terms of variances and covariances, 

  
cov( , *) cov( , *)

var( ) ( ) ( *)

x y x y
k

x s sd x sd y
= , 

we obtain 

  
* * 2

*

cov( , *) ( ) ( ) ( *) ( ) ( *) 1 ( )

cov( , *) var( ) ( | ) ( ) ( | ) ( )1 y x

x y sd sd x sd y sd sd y sd
k

x y x sd y x sd x sd y x sd xr

ω ω ω= = =
−

 

and thus 
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  *

2
*

( )

( )1

y x
yx

y x

r sd
b

sd xr

ω=
−

 .        (7) 

Thus logit and probit coefficients can be expressed as the square root of the ratio of the explained 

to unexplained variance of y* scaled by the ratio of the standardized standard deviation to the 

standard deviation of the predictor variable.1 From this we see that a logit or probit coefficient 

has two parts, one which is scale invariant, *
2
*1

y x

y x

r

r−
, and one which is scale-dependent, ( )

( )

sd

sd x

ω . 

As we will argue, this separation provides an entry into addressing the problem of making 

comparisons between groups when using NLPMs.    

The derivative of the logit or probit coefficient with respect to the correlation is 

2/32
* )1)((

)(

rxsd

sd

r

b

xy

yx

−
=

∂
∂ ω

      

The derivative tells us that the logit or probit coefficient increases as the correlation deviates 

from zero. 

From the forgoing we see that the relationship between the correlation and the yxb

coefficients depends only on known quantities––namely )(ωsd , which is known (by assumption), 

and )(xsd  which is known from the data. This is in contrast to the relationship between yxb
 and 

*y xβ
 which depends on the unknown quantity, s.  

 

 

 

                                                 
1 In the probit case, ( ) 1sd ω = , and if we standardize x to have unit standard deviation, the squared probit coefficient 

will equal the ratio of explained to unexplained variance in the underlying latent variable regression. 
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Partial, Semi-Partial, and Fully Standardized Partial Coefficients 

Equation (6) applies when there is a single predictor variable. With two or more predictor 

variables, we can derive the partial correlation of x and y* given z (this is demonstrated in 

Appendix B) as  

  )var()|var(

)|(
2

.

.
.*

ω+
=

zxb

zxsdb
r

zyx

zyx
zxy

,       (8)
 

and, as a consequence, we can write the partial logit or probit coefficient as 

)|(

)(

1 2
.*

.*
. zxsd

sd

r

r
b

zxy

zxy
zyx

ω
−

=
.

        (9) 

The extension to the case with several control variables is straightforward. Despite this, the 

extension from the simple to the partial case has never before been demonstrated, as far as we are 

aware. As in the linear case (Blalock 1967: 133), the partial correlation in (8) will generally 

differ from the fully standardized partial coefficient, *
.yx zb , used by McKelvey and Zavoina 

(1975),  

 

.*
. 2 2

. . . .

( )

var( ) var( ) 2 cov( , ) var( )

yx z
yx z

yx z yz x yx z yz x

b sd x
b

b x b z b b x z ω
=

+ + + ,   (10)

 

their analytical relation being: 

 
2
**

. * . 2

1

1

y z

yx z y x z

xz

r
b r

r

−
=

−
, 

Similarly, we derive the semi-partial2 correlation between y* and x given z as  

                                                 
2 The semi-partial correlation is also known as the part correlation. 
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 .
*( . ) 2 2

. . . .

( | )

var( ) var( ) 2 cov( , ) var( )

yx z
y x z

yx z yz x yx z yz x

b sd x z
r

b x b z b b x z ω
=

+ + + .  

 

meaning that the semi-partial correlation and the fully standardized partial coefficient have the 

following relation: 

*
. *( . ) *( . ) 2

( ) 1

( | ) 1
yx z y x z y x z

xz

sd x
b r r

sd x z r
= =

−
.      

 

Thus, the fully standardized partial coefficient can be viewed as a rescaled version of the semi-

partial correlation, with the scale factor being the square root of the proportion of the variance in 

x that is unexplained by z, 21 xzr− . 

 

When Is the Correlation a Useful Metric? 

Using correlations rather than logit or probit coefficients themselves implies a shift of focus for 

researchers interested in group comparisons. In this section, we clarify the conditions under 

which the correlation coefficient is a useful metric for group comparisons and suggest which 

methods researchers might consider if the conditions we outline are not met. 

When the Correlation Is Useful 

We have shown how to derive the correlation from the parameters of an NLPM: but when, and 

why, should we want to do this? We outline three circumstances.The first circumstance in which 

the correlation will be useful is when we want to compare the variation in y* between and within 

values of x. This is particularly the case when x is categorical, as, for example, in studies that 

focus on the relationship between educational attainment and social class background. In many 

studies the observed dependent variable, y, is whether or not a student makes a given educational 

transition (such as the transition from High School to College) and the unobserved y* could be 
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interpreted as his or her propensity to do so. In these sorts of analysis we are often interested in 

the changing relationship, over birth cohorts, between dummy variables, x, representing social 

classes, and y* (e.g. Shavit and Blossfeld 1993). The conventional approach would take 

comparisons of βy* x  over cohorts as the ideal measure, and one would try to recover these by 

estimating the corresponding logit or probit coefficients, byx . Logit or probit coefficients 

declining in magnitude over successive birth cohorts would then suggest equalization in the 

particular educational transition. But the problem with this interpretation is that we cannot know 

the extent to which declines over cohorts in byxare due to declines in βy* x  or to increases in the 

residual variation of y*.  

 An alternative measure of equalization is the degree to which variation in the propensity to 

make the transition exists between students from different classes, relative to the variation that 

exists among students within the same class. A decline over cohorts in the variation in y* tells us 

that there is less variation as a whole: in this case the correlation would decline only if the 

variation between students from different classes was declining more quickly than the total 

variation. Thus, if the correlation was constant over birth cohorts, byxcould decline only as a 

result of a reduction in the variance of y* and/or an increase in the variance of x. But it was to 

remove these ‘spurious’ influences on the measure of inequality that led sociologists to the use of 

NLPMs in the first place (Mare 1981): by the same argument, they should then prefer the 

(partial) correlation as a measure of educational inequality. 

The second circumstance in which the correlation can be informative is when we care 

about the relative, rather than the absolute, value of the outcome variable. In studies of 

intergenerational income mobility, for example, it is reasonable to focus on an individual’s 

position within a given income distribution (that is, relative to others) rather than, or in addition 
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to, the individual’s absolute level of income. For this reason, the correlation of (the logarithm of) 

parent’s and child’s incomes is sometimes preferred, as a measure of intergenerational 

immobility, to the elasticity (the coefficient from the regression of log of child’s income on log 

of parent’s income) because it is insensitive to differences in the variance of income in the 

parental and child generations (see Björklund and Jäntti 2009).   

Because we can recover the correlation between y* and one or more predictor variables, 

we can estimate the standardized regression coefficients linking them, and these will be 

particularly useful when we care about relative rather than absolute position. Consider the 

following example: 

one would expect the impact of a scholar’s rate of publication on his or her academic 

salary to be affected by the mean and variance of each of these two variables within the 

scholar’s field. The publication of two papers per year more than the mean publication 

rate in mathematics is a more impressive performance than the same achievement in 

chemistry because the variance of publication rates is much larger in the latter field ... 

Since the variance of annual salaries also differs across fields, it is unreasonable to expect 

that publishing one additional paper during a period of time will have an equivalent 

impact on annual salary across fields. In contrast, it seems more reasonable to expect that 

the impact of increasing one’s publication rate by one field-specific standard deviation 

will have an equivalent impact on field-specific standard scores for academic salary 

across fields (Hargens 1976: 252). 

If we substitute the phrase ‘propensity to obtain tenure’ for ‘annual salary’ we have a binary 

outcome and here an interpretation of logit or probit coefficients in terms of the  x-y* correlations 

or standardized regression coefficients should be preferred over an interpretation of them as 

underlying regression coefficients identified up to scale. 
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 The third circumstance concerns the situation in which researchers are interested in 

conditional inference; that is, interested in the association between two variables (y* and x) net of 

a third variable (z). For example, stratification researchers might want to compare across birth 

cohorts the magnitude of the association between college completion and parental social status 

net of race. In such situations, the semi-partial correlation will often be preferred over the partial 

correlation. The latter correlation partials out the variance in both y* and x explained by z, while 

the former only partials out the variance in x explained by z. In other words, the semi-partial 

correlation (or its squared counterpart) is a measure of the fraction of explained variance in y* 

due to x net of z relative to the unconditional or total variance in y*. In contrast to the partial 

correlation, the semi-partial correlation is unaffected by the predictive power of z on y*, thereby 

not conflating differences in the predictive power of z in group comparisons. 

 An alternative to the semi-partial correlation is the fully standardized partial coefficient of 

McKelvey and Zavoina (1975), stated in Equation (10). While this coefficient is just a rescaled 

version of the semi-partial correlation, it is useful whenever researchers are concerned with the 

relative, rather than the absolute, value of the outcome variable, as outlined above. In this 

situation, the fully standardized partial coefficient can be interpreted as the expected standard 

deviation change in y* for a standard deviation change in x, given z. For example, stratification 

researchers might want to know whether the dependency of the son's relative position in the 

socioeconomic status distribution on the relative position of his father in the father's 

corresponding distribution, once race is controlled, has changed over the 20th century. In such a 

situation, the fully standardized partial coefficient might be preferred.  

 One thing which is clear from these examples of where the correlation may prove useful, is 

that, when these conditions prevail, interpreting the coefficients of NLPMs in terms of 
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correlations also provides a solution to the problem of comparing the effects of variables across 

samples, between which the residual variation, captured in the scale parameter, s, might differ. 

 

When the Correlation Is Not Useful 

The conditions under which the correlation is a useful metric for group comparisons may not 

always be met. In this subsection we first briefly outline these conditions and then discuss two 

other methods that might be useful when the conditions are not met. 

 

Unstandardized or Standardized Coefficients? 

Unstandardized regression coefficients have long been preferred over standardized coefficients 

in social science research because the former are unaffected by the distributions of the variables 

involved in the model (Blalock 1967; Kim and Mueller 1976; Schoenberg 1972; Tukey 1954). In 

the linear regression model, the unstandardized regression coefficient of x on y is given by 

 
cov( , )

var( )

x y

x
β = , 

yielding the expected change in y for a unit change in x. The standardized––or equivalent 

correlation––coefficient is given by 

 
( )

( )

sd x
r

sd y
β= , 

and is affected by both the effect of x on y and the distributions of x and y. Using standardized or 

correlation coefficients for group comparisons will conflate differences in true effects, captured 
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by β , with potential differences in the distributions of both x and y, captured by sd(x) and sd(y). 

For this reason, and for reasons stated throughout this paper, using the correlation coefficient for 

group comparisons is not informative about differences in effects; it is merely informative about 

differences in the predictive power of x on y (Achen 1977; King 1986) or about the association 

between relative positions in the distributions. 

 For example, the correlation coefficient would not be useful for comparing the influence 

of high school grades on college enrollment between men and women. Because the correlation 

standardizes grades and the latent college enrollment propensity within gender, we cannot know 

whether gender differences in correlations reflect differences in effects or differences in the 

dispersion in the latent propensity distribution or in the grade distribution. If the effect, β , and 

the dispersion in the latent propensity, sd(y), were the same for men and women, but the 

dispersion in the grade distribution, sd(x), was larger among men than women, then we would 

see larger correlations among men than women. Such differences would not be informative about 

gender differences in the influence of grades on college enrollment, even if we interpreted them 

as associations between relative positions in the distributions. This interpretation would imply 

that women (men) only compete with other women (men) in obtaining college positions. But this 

is unlikely to be true in most countries. Similar examples can be given of comparison across 

subpopulations that compete for the same goods  

 Nevertheless, although using the correlation for comparative purposes is restricted in 

many respects, the same applies to nonlinear probability models in which the coefficients, by 

design, are inherently standardized on the latent outcome variable via the scale parameter, s. 

Since the true effect, *y xβ , cannot be separately identified, obtaining unstandardized coefficients 

is not possible in nonlinear probability models. And since the scale parameter, s, depends on both 



 16

the total variance in the latent outcome and the predictive power of x, coefficients of nonlinear 

probability models are difficult to interpret.3 This is precisely the reason why we propose 

viewing these coefficients in terms of correlations which, although limited in their use, have a 

well-defined interpretation. 

 However, viewing nonlinear probability model coefficients as correlation coefficients is 

only one way of approaching the limitations of the inherent standardization of these coefficients. 

As we have already pointed out, the correlation coefficient is standardized on both the predictor 

variable and the outcome variable. Yet, because we know the scale of the predictor variable, x, 

standardizing the coefficient on x is not necessary. Researchers may instead opt for the 

coefficient standardized on the latent outcome alone. This coefficient was introduced in the 

seminal work by Winship and Mare (1984).4 In the simple case with only two variables, it is 

given by 

 *

2( *) var( ) var( )

y x yxYSTD
yx

yx

b
b

sd y b x

β

ω
= =

+
. 

This partially standardized coefficient differs from the fully standardized counterpart in (6) by 

not including sd(x) in the numerator. It yields the expected standard deviation change in y* for a 

unit change in x, and can easily be extended to the multiple case,   

 * . .
. 2 2

. . . .
( *) var( ) var( ) 2 cov( , ) var( )

y x z yx zYSTD
yx z

yx z yz x yx z yz x

b
b

sd y b x b z b b x z

β

ω
= =

+ + +
, 

                                                 
3 The interpretation of coefficients of nonlinear probability models is even more complicated when several predictor 
variables are included. In this situation, the coefficients reflect the true effects of interest and the predictive power of 
all predictor variables. 
4 Breen and Karlson (2013) discuss the advantages of using coefficients standardized on the outcome in causal 
inference involving nonlinear probability models and show the equivalence between these coefficients and Cohen's 
d, an effect size metric much used in evidence-based research. 
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In the multiple case, the coefficient expresses the expected standard deviation change in y* for a 

unit change in x, holding z constant. 

 The partially standardized coefficient may prove useful in certain areas of comparative 

research. For example, in studying the black and white gap in college attainment over the 20th 

century U.S, researchers might want to know whether the gap in the underlying propensity to 

complete college narrowed over time. In this situation, the partially standardized coefficient 

could be used to compare the black-white gap in y*, measured in standard deviations, across 

different time periods. Such an analysis would be informative about the changes in the black-

white gap in college completion as a positional good. Moreover, if researchers were interested in 

comparing these gaps net of socioeconomic status, the partially standardized coefficient for the 

multiple case could be used. 

 Given the often complicated interpretation of nonlinear probability model coefficients, 

the partially standardized coefficient is an attractive alternative that acknowledges the inherent 

standardization on the latent outcome variable and retains the scale interpretation of the predictor 

variable of interest. Because this coefficient is not sensitive to the distribution in x it may be 

useful in certain areas of comparative research. We now turn to two other alternatives to using 

logit and probit models in group comparisons in sociological research. 

 

Using Predicted Probabilities 

The issue of comparing logit or probit coefficients across groups was addressed by Ai and 

Norton (2003) whose approach uses the predicted values from the logit or probit model, and 

Long (2009) shows how to implement the method when researchers want to use it to make group 
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comparisons. Because predicted probabilities are non-linear, group differences in them will vary 

across the distribution of the predictor variable of interest. This means that an interaction effect 

cannot be reduced to a single quantity, but has to be studied graphically across the distribution of 

the predictor variable. To implement this idea, Long suggests using a logit or probit model to 

estimate, for each group, the predicted probability of the outcome at different values of a 

predictor variable of interest and then plotting the difference between the groups' predicted 

probabilities across the distribution of the predictor variable. Long (and Ai and Norton) also 

suggest statistical tests of group difference in probabilities. 

 This approach could be applied when hypotheses about group differences can be tested 

through their implications for probabilities. It is also likely to be valuable in showing that the 

magnitude of group differences can vary across the distribution of predictor variables. This can 

often best be seen graphically; indeed, as Greene (2010) notes, such graphical output is needed 

whenever we are to evaluate interaction effects on the probability margin. Nevertheless, this 

method has some limitations. As Greene (2010: 295) observes, "partial [marginal] effects are 

neither coefficients nor elements of the specification of the model. They are implications of the 

specified and estimated model" (brackets added). One consequence of this property is that tests 

of significance of differences in predicted probabilities cannot be interpreted in the way we 

would interpret tests of significance of differences in coefficients. Furthermore, while the method 

is simple to implement in models with binary outcomes, in the ordinal or multinomial case the 

graphical output will rapidly become cumbersome. 

Using the Heteroskedastic Non-Linear Probability Model 

As well as pointing to the problem of making comparisons across groups when using non-linear 

probability models, Allison (1999) also proposed a solution that involved estimating the ratio of 
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error variances between groups. Williams (2009) showed that Allison’s method is a special case 

of what is variously termed a "heteroskedastic non-linear probability model", a "heterogeneous 

choice model", and a "location-scale model". This model is characterized by an equation for the 

variance as well as the mean. The variance can be written as a function of any relevant predictor 

variables, but, in the context of group comparisons, we would be most interested in models that 

allowed the variance to differ according to dummy variables for groups. For example, applying 

the model to the male-female biochemist data originally used by Allison, Williams (2009: 540) 

reports that the residual variance for women is 1.35 times larger than for men. 

  What appears to have been overlooked in discussions of these models, however, is the 

issue of identification; that is, our ability to draw inferences about the parameters of interest, 

such as differences in true coefficients across groups. If we consider the case of comparisons 

using the ordered logit or probit model (see equation (11), below)5, then two groups can differ in 

one or all of their threshold parameters, jτ , their regression coefficients, β , and their scaling 

factor, s. A model in which all of these differ is not identified. This follows because such a 

model is equivalent to fitting a separate model for each group and so, if it were identified, this 

would allow us to recover the group specific scaling factor from that group’s ordered logit 

model—something which we know is not possible. Thus, to identify the relative sizes of the 

different groups’ scaling factors, it is necessary to impose a group constraint on either or both of 

jτ  and β  (see Williams 2009: 551, whose application of the heterogeneous choice ordered 

probit model is "contingent on the thresholds being the same for both men and women"). 

                                                 
5 Everything that follows holds for binomial as well as ordinal outcomes and, indeed, for non-linear probability 
models as a whole. 
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 Whenever we have reason to believe that a constraint on β  or jτ  is defensible, the 

model may be a good choice for making comparisons (see, e.g., Mouw and Sobel 2001) because 

we can recover the group difference in the true coefficients of interest. However, as Long (2009) 

argues, in sociology we rarely have either the body of accumulated knowledge or strong theory 

that would make the imposition of such constraints anything other than ad hoc.6 Thus, whenever 

the condition cannot be met, differences in unknown thresholds will be confounded with 

differences in unknown scaling factors, and so heteroskedastic non-linear probability models will 

not solve the group comparability problem. 

 

Some Further Results 

Extension to the Ordered and Multinomial Case 

In the ordered logit and probit we observe not merely whether y* exceeds an unknown value or 

not (as in the binary logit or probit) but into which interval of y* a given observation falls. 

Thresholds divide the range of y* into disjoint and exhaustive intervals, τ1 <τ2 < ...<τJ where 

−∞=1τ  and Jτ = ∞ . These allow us to define jj
O yjy ττ <<= − * if 1  where Oy is an ordered, 

discrete variable with J categories and the ordered probit or logit model takes the form: 

   t
j

j x
ss

y
βτ

τ +=> ))(Pr(g * ,        (11) 

where g(.) is a link function—the logit or the cumulative normal in the ordered logit and ordered 

probit respectively—and sb /= β  is the ordered logit or ordered probit coefficient of x. Because 

the underlying latent variable model in the ordered models is the same as in the binary case (the 

                                                 
6 It is, of course, possible to make the residual variance depend on other variables. But in so far as these variables do 
not wholly determine the error variance we are still in the dark as to how much it differs between groups.  
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difference between them being only in the degree to which y* is observed), the expressions we 

have derived for the correlation and partial correlation (and for the coefficient of determination 

which we derive in Appendix D) apply directly to the ordered case. 

The multinomial case is more complicated because we have a number of underlying latent 

variables. We define x as before, but we now define y*a as the propensity of an individual to 

choose alternative a from among a set of A possibilities. We assume that x and y*a are related 

such that  

*
a a a a ay x s uα β= + + ⋅ ,        (12) 

where aβ  captures the effect of x for alternative a, ua is an alternative-specific random error 

term, which is independent across alternatives and follows a standard type-I extreme value 

distribution, and sa is an alternative-specific scale parameter. We only observe which of the A 

alternatives the individual actually chooses and we assume that the individual chooses the 

alternative for which he or she has the greatest propensity: 

* *  if  0,   a ay a y y a a′ ′= − > ∀ ≠  

McFadden (1974) shows that the probability of choosing alternative a given x is equal to 

  
∑ +

+
==

a
aa

aa

xbk

xbk
ay

)exp(

)exp(
)Pr( ,         (13) 

with normalization such as 1 1 0a ak b= == =  to secure identification, and where 

a
a

a

k
s

α
=  and a

a
a

b
s

β
=  . 

The odds of choosing a rather than the baseline category a' are ( )exp a ak b x+  and from this we 

can derive the correlation between *
'

*
aa yy −  and x in much the same way as in the binary case, 

when we add one important qualifier: The standard deviation of x used in the correlation should 
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be calculated not on the entire sample, but on the sample which has chosen either the alternative, 

a, or the reference category, a'. The reason for this is that the standard deviation of x on the 

contrast-specific sample can differ from the standard deviation of x in the full sample. We may 

then derive the correlation as 

 * *
'( ), 2 2

( )

var( ) / 3a a

a a
y y x

a a

b sd x
r

b x π−
=

+
,        (14) 

where we define ( )asd x  as the standard deviation of x on the sample pertaining to the alternative 

a versus the references contrast a' (and var( )ax  is its squared counterpart). The expression in 

(14) generalizes easily to any contrast between two alternatives. 

 

 

Sensitivity to Mis-Specified Error Term 

As we saw earlier, the correlation between a predictor and the latent outcome can be recovered 

from the parameters of a NLPM because we know the variance of the predictor and )var(ω is 

given by assumption. Typically, when y is a binary realization of y* we assume ω  to have either 

a standard normal (for the probit) or standard logistic (for the logit) distribution. But this raises 

the question: how sensitive are our estimates of the correlation to such an assumption? To 

answer it we ran a Monte Carlo simulation in which we fitted logit and probit models to data in 

which we varied the true underlying error distribution, the sample size, and the magnitude of the 

correlation. In Table 1 we report the mean, over 500 replications, of the absolute deviation from 

the true correlation. It is noticeable that, except for the uniformly distributed error, the metric is 

largely insensitive to pure misspecifications, with the mean deviations for the misspecified cases 

differing little from those where the model is correctly specified (the logit-logistic and probit-
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normal cases). This holds even for a lognormal distribution with a skewness of -1 where the error 

term is highly asymmetric. As we would have expected, the sensitivity is less pronounced the 

larger the sample size. 

 

--TABLE 1 HERE -- 

 

Relationship to the Polyserial Correlation Coefficient 

The correlation coefficient we present in this paper is closely related to the polyserial correlation 

coefficient widely used in psychometrics (Cox 1974; Olsson, Drasgow, and Dorens 1982). 

However, we believe that our approach is more general, more flexible, and easier to implement. 

The polyserial correlation assumes that y* and x follow a bivariate normal distribution, whereas 

our measure places no assumptions on the distribution of x and allows y* to have distributions 

other than normal (e.g., the logistic, complementary log-log). Our method is easily generalizable 

to partial correlations (using partial logits and conditional standard deviation of x) whereas the 

partial polyserial correlation has to be derived from several polyserial correlations, severely 

complicating the derivation of standard errors. Furthermore, unlike the polyserial coefficient, our 

method extends to partial correlations without making any assumptions about the distribution of 

the control variable, z. 

 

Significance Testing 

Because the correlation is asymmetrically distributed, tests of its statistical significance are 

usually undertaken on the Fisher transformed coefficient.  The Fisher transformation of the 

correlation coefficient, r, is 
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F(r) is approximately normally distributed with a known mean and standard error under the null. 

However, in our case the correlation is not directly calculated from data: rather it is computed as 

a function of an estimated quantity, byx. In calculating the standard error of F(r) we therefore take 

this into account, but, having done this, we can then exploit the normality of F(r) to calculate 

confidence intervals and significance tests. 

We compute the standard error of F(r) using the delta method.  The asymptotic standard error 

obtained from this approach depends on the partial derivative of F(r) with respect to b and we 

compute this using the chain rule 
yxyx b
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. The standard error also depends on the 

variance of byx. We can write the asymptotic variance of F(r) as: 
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The asymptotic standard error of F(r) is given by the square root of equation (16). Because the 

Fisher transformed correlation is asymptotically normally distributed under the null, we can test 

the null hypothesis of zero correlation via: 

  
( )

( )

( )

F r
Z

se F r
= .          (17) 

We analyzed the power of the test score in (17) using a Monte Carlo study. The results are 

reported in Table 2. We generated the data using equation (1) with x normally distributed and u 

having a standard logistic distribution and we derived the estimated correlation from a logit 
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model. We varied the true correlation and the sample size and, for each scenario, we report the 

percentage of times out of 1000 replications that our test rejected the null hypothesis (based on a 

.05 critical value). In scenario A of Table 2 the null hypothesis is true, and here our test rejects 

the null hypothesis 5% of the time or less. In scenarios B through F, the null hypothesis is false, 

and our test fails to reject it only when the sample size is small and the true correlation is quite 

small. Even in samples of 200 and for a correlation of 0.25 a false null has a 90% rejection rate. 

In samples of 1,000 observations or larger, we obtain a power of above 80 percent even for small 

correlations. 

 

 -- TABLE 2 HERE -- 

 

The Fisher transform can easily be extended to test the null hypothesis of zero difference 

between groups in their correlations: 

( ) ( ))(var)(var

)()(

2,*1,*

1,*2,*

xyxy

xyxy

rFrF

rFrF
Z

+

−
=      (18) 

Here the subscript 1 and 2 indicates different samples between which we want to compare 

correlations. We conducted a Monte Carlo study to evaluate the power of this test. The results 

can be found in Appendix C. They show that the larger the difference between correlations and 

the larger the sample size, the more likely the test is to reject the null hypothesis of no difference 

in correlations. With a sample of 1000 the test is effective at rejecting the null hypothesis when 

the difference in correlations is 0.2 or greater: for a sample of 5000 the test performs well for 

differences in correlations of more than about .07. 

 

Applications 
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The final part of our exposition applies the methods we have proposed to two examples that 

illustrate the relationship between the correlation and the coefficients of NLPMs. Our first 

example is a reanalysis of data on trends in educational inequality in Europe (Breen et al 2009). 

Using the correlation slightly modifies the findings of the original study and we explain why by 

investigating the source of the differences that we find between the ordered logit coefficients on 

which the original conclusions were based and the correlations on which we rest our conclusions. 

Our second example uses data from the General Social Survey (GSS) to examine trends in the 

relationship between educational attainment and father’s socio-economic index over cohorts born 

between 1930 and 1969, and here we find that the differences between trends based on an 

ordered logit model and those based on the correlation are much more pronounced. 

 

 

Non-Persistent Inequality in Educational Attainment 

Shavit and Blossfeld (1993) summarize the results of their seminal study of inequalities in 

educational attainment across different cohorts under the title Persistent Inequality. They claim 

that, despite dramatic educational expansion during the twentieth century, all but two (Sweden 

and the Netherlands) of the thirteen countries studied in their project “exhibit stability of socio-

economic inequalities of educational opportunities” (Shavit and Blossfeld 1993: 22). Recently, 

Breen, Luijkx, Müller and Pollak (2009) have challenged Shavit and Blossfeld’s conclusions 

using data on educational inequality in the twentieth century in eight European countries (see 

also Breen and Jonsson 2005; Breen, Luijkx, Müller and Pollak 2010). 

 All these studies base their comparisons between birth cohorts on the use of NLPMs: logits 

in the case of the Shavit and Blossfeld (1993) volume, the ordered logit in the Breen et al (2009, 

2010) analysis. This implies that their conclusions may confound real differences in educational 
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inequality across cohorts with differences in residual variation. Here we re-analyze data from 

three of the eight countries in the Breen et al study and compare the coefficients—and thus the 

conclusions drawn—from the original model with the corresponding partial correlations. The 

correlation, as a standardized measure, is particular appropriate in this case because, from the 

perspective of the study of inequality, education can be seen as a positional good: what matters is 

a person’s position in the distribution rather than his or her absolute level of education. 

Furthermore, when, as here, the predictor variables are dummies, the correlation has an attractive 

interpretation, telling us how much of the variance in the latent y* lies between classes rather 

than within them. 

The data we use relate to men in Germany, France, and the Netherlands, born in one of five 

cohorts: 1908-24, 1925-34, 1935-44, 1945-54, and 1955-64.  The dependent variable is highest 

level of educational attainment measured using five ordered categories:  

1 Compulsory education with or without elementary vocational education,  

2 Secondary intermediate education, vocational or general,  

3 Full secondary education,  

4 Lower tertiary education,  

5 Higher tertiary.  

The predictor variable is social class origins, based on the respondent’s report of his father’s 

occupation when he was growing up. Seven classes are distinguished using the EGP class 

schema (Erikson and Goldthorpe 1992, chapter 2):  

I Upper service,  

II Lower service,  

IIIa Higher grade routine non-manual workers,  

IVab Self-employed and small employers,  
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IVc Farmers,  

V+VI Skilled manual workers, technicians and supervisors,  

VIIab+IIIb Semi- and unskilled manual, agricultural, and lower grade routine non-

manual workers. 

Sample sizes are 17,124 for Germany, 51,705 for France, and 19,751 for the Netherlands.  

Further detail on the data and on the surveys from which they were obtained can be found in 

Breen et al (2009: 1480-5). These three countries were chosen for reanalysis here because Breen 

et al found significant decline in class inequality in educational outcomes over successive birth 

cohorts in all three countries, whereas in Persistent Inequality a decline was found for the 

Netherlands but not for Germany (France was not included). The question we now seek to 

answer is whether Breen et al’s claim of ‘non-persistent’ inequality is robust if we use the 

correlation as our measure of inequality in educational attainment. 

We begin our analysis by replicating theirs. Breen et al use an ordered logit model to regress 

the five educational categories, considered an ordinal ranking of educational attainment, on 

dummy variables representing the origin classes. They fit a separate model to each of the five 

birth cohorts and present their results in a series of figures, of which the most important is Figure 

4 on page 1495 of their paper. Our replication of their analysis is shown here in Figure 1 and this 

is identical with their Figure 4. 

 

-- FIGURE 1 HERE -- 

 

Class I serves as the omitted category, having an implicit coefficient of zero, and the lines 

plotting the coefficients for the other classes (which measure the extent to which the particular 

class’s log-odds of exceeding any given level of education differ from those of class I) show a 
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general trend of convergence towards zero as we move from later- to earlier-born cohorts. This 

trend extends across the whole of the 20th century in the Netherlands but does not begin until 

after the cohort born 1925-34 in Germany and France. The trend is most pronounced among the 

initially most disadvantaged classes, particularly farmers (IVc) and unskilled workers (VII+IIIb) 

(see Breen et al 2009: 1494-6). 

Figure 2 shows, for each class, the partial correlation (that is, controlling for the effect of the 

other class dummies) with latent educational attainment, y*. These are all negative (because they 

are all measured relative to class I) and so a line in Figure 2 that rises towards zero over cohorts 

(a notable example is the line for class IVab in the Netherlands) tells us that a declining share of 

the conditional variance in y* lies between that origin class and class I. 

 

-- FIGURE 2 HERE -- 

 

The trend towards greater equality, measured as the convergence of class coefficients, is 

somewhat less pronounced in Figure 2 (correlations) than in Figure 1 (logits), especially for 

France, and, in both France and Germany, Figure 2 suggests that the trend to equalization began 

later (after the 1935-44 cohort) than Breen et al found. Trends for particular classes are not 

always the same in the two figures: e.g. in France the partial correlations show that the positions 

of classes III and V+VI worsened relative to class I, whereas the logit coefficients in Figure 1 

show that their position either remained unchanged or improved. Equation (8) tells us that such 

discrepancies must be due to changes in the conditional (on the other classes) variance of the 
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class dummies which will, to a considerable extent, reflect the changing relative sizes of the 

social classes.7 

We can investigate the differences between the logit coefficients and the partial correlations 

by returning to equation (9) that shows that the partial logit coefficient is equal to the square root 

of the ratio of the explained to the unexplained conditional variation in the latent y*, * .

2
* .1

y x z

y x z

r

r−
, 

scaled by the ratio of the standardized standard deviation of the error ( 3/π  in the logit case) to 

the residual standard deviation of x, sd(ω) /sd(x |z). We can therefore decompose the logit 

coefficients into these two parts. In Table 3 we report these two parts for the three countries. In 

these expressions, z stands for the dummy variables for the classes other than the one being 

studied. The logit coefficients shown in Figure 1 are the product of these two components. 

 

--TABLE 3 HERE -- 

 

The trend in the French results reported in Figure 2 are very similar to those of the ratio 

2
.*.* 1/ zxyzxy rr −  shown in Table 3. But the more pronounced decline in class origin effects in 

France seen in the logits of Figure 1 is due to the steep reduction in the ratio sd(ω) /sd(x |z) . 

And since )(ωsd  is constant over cohorts, this change reflects the increase in the conditional 

standard deviations of the dummy variables over cohorts. The Dutch case is similar: increases in 

the conditional standard deviations of the dummy variables together with declines in their 

explanatory power give rise to the even more marked equalization shown in Figure 1. But the 

                                                 
7 The conditional variance of a class dummy is the variance of the residual from a regression of that dummy variable 
on the dummy variables for the other classes. Thus, change over cohorts in the conditional variance of a particular 
dummy reflects not just changes in the relative size of that particular class; it is also sensitive to changes in the entire 
class distribution, albeit in a complicated way. 
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German experience is somewhat different: here Figures 1 and 2 are more similar because less of 

the decline in the logits is attributable to change in the conditional standard deviations of the 

class dummies. As the trend in the ratio, )|(/)( zxsdsd ω , in Table 3 shows, although the 

conditional standard deviations of the class dummies have mainly increased (and so the ratio 

reported in the figure declines) they have remained within a narrower range. 

In general, changes in the residual standard deviation of the predictor variables could cause 

logits (or, generally, NLPMs) to exaggerate or underplay trends or differences in the degree to 

which the predictors account for variation in the latent y*. If )|( zxsd  increases over cohorts, as 

here, it will exaggerate a declining trend in educational inequality when measured with logit 

coefficients but underestimate the opposite trend when measured with partial correlation 

coefficients. A declining )|( zxsd  will magnify an increasing trend in logit coefficients but 

dampen a declining one. 

In the case at hand, where changes in )|( zxsd  magnify a declining trend, our overall 

conclusion would nevertheless be that inequalities in educational attainment declined over the 

20th century. To support this conclusion, we report in Figure 3 the estimated R2 values (derived 

in Appendix D) for each cohort. We find a clear decline in the degree to which class origins 

account for variation in latent educational attainment. And, because correlations are standardized 

measures, we can also compare them across countries. In the oldest cohort class origins 

explained most variation in educational attainment in Germany (30%), but this is the country in 

which there has been the greatest absolute decline in R2 and by the youngest cohort class origins 

account for about 15% of the variance in both Germany and France. In all cohorts the 

Netherlands displays the lowest amount of variance explained by class origins: in the youngest 
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cohort this is only 8%. In all three countries the share of the variance in educational attainment 

lying between classes has been approximately halved over the 20th century: i.e., class origins 

were a much weaker factor in explaining the variation in educational attainment among men born 

in the middle of the century than among those born at its start.  

 

--FIGURE 3 HERE— 

 

Trends in Inequality of Educational Attainment in the U.S. 

In this example we use data from the General Social Survey (GSS), 1988-2010, to study trends in 

inequalities in educational attainment across four cohorts born between 1930 and 1969 in the 

U.S. Hout et al (1993) analyzed earlier GSS data using logit models and found no evidence for 

declining effects of father’s occupational prestige across cohorts born between 1905 and 1954.8 

Their results were similar to those reported by Mare (1981), who found no major changes in the 

logit coefficients for the impact of father’s prestige on educational transitions among white males 

born between 1907 and 1951. 

We restrict the GSS sample to respondents aged between 30 and 69 at interview and born in 

one of four birth cohorts: 1930-1939, 1940-1949, 1950-1959, or 1960-1969. The final sample 

consists of 16,077 individuals. To account for the sampling design, we apply the weight 

suggested by GSS (Smith et al 2011). Following Hout et al (1993) we report results for the 

pooled sample. Our dependent variable is highest level of educational attainment categorized as: 

 1 Less than high school 

 2 High school 

                                                 
8 Hout et al. (1993) estimated family background effects for successive educational transitions, as suggested by 
Mare (1981). In addition to father’s prestige, these models also included sex, parental education, and farm 
background. 
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 3 Junior college 

 4 Bachelor 

 5 Graduate 

We use father’s socio-economic index (SEI) as our measure of social origins.9 We fit an 

ordered logit model to each cohort, and, using equation (6), we derive the correlation between 

paternal SEI and the latent variable assumed to underlie the categorical measure of highest 

education. In Table 4 we show the trends in the coefficients from the ordered logit model and the 

corresponding, derived correlations. The logit coefficients indicate equalization in educational 

outcomes across cohorts born in the mid-20th century U.S and this trend is statistically 

significant (one-tailed test, five percent significance level). 

 

 -- TABLE 4 HERE -- 

 

But the trend in correlations runs in the opposite direction, suggesting increasing inequality, 

though, in fact, all the correlation coefficients are within an interval of 0.34 through 0.38 and we 

cannot reject a hypothesis of no change in them across cohorts. They suggest that SEI explains 

between 12 and 15 percent of the variance in the latent educational propensity over the entire 

period studied. Thus the substantive conclusions about trends in inequalities in educational 

attainment change, once we base our inferences on the correlation coefficient rather than the 

logit coefficient: the logit coefficients point to a decline in inequalities, while the correlation 

points to constancy. But, given equation (7), we can explain why this comes about. Table 4 

shows that the dispersion of SEI increases dramatically across cohorts: its standard deviation is 

roughly 25% larger in the 1960-69 cohort than in the 1930-39 cohort. These changes in the 
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marginal distribution of SEI explain why logit coefficients show a modest trend towards 

equalization whereas the correlation shows growing inequality. The apparent equalization in the 

case of the US is very much an artifact of the changing distribution of social origins. 

 

Conclusions 

Although textbooks commonly relate the coefficients of non-linear probability models to the 

corresponding parameters of an underlying latent variable regression, a strong case can be made 

for interpreting them in terms of underlying correlations. The logit or probit coefficient is a 

transformation of the correlation between a predictor, x, and the latent y*. The correlation 

coefficient is a standardized metric, invariant to differences in the marginal distributions of x and 

y* across groups, and it may therefore be used in comparative social research, solving a part of 

the problem of making group comparisons using logits or probits identified by Allison (1999). 

Our solution will be appropriate only when it is useful to base comparisons on the correlation 

coefficient, and we sought to outline what those circumstances are and when they are likely to 

arise. Finally, the methods we have presented can readily be implemented using a Stata© 

program called nlcorr (http://ideas.repec.org/c/boc/bocode/s457289.html). 

                                                                                                                                                             
9 This measure is already provided in the GSS data. It is based on the 1980 Census occupational scheme. 
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Appendices 

 

Appendix A: Group Comparison under the Assumption of a Truly Discrete Variable 

We show that––without assuming the existence of a latent outcome variable––estimated logit 

coefficients can differ between groups according to arbitrary heteroskedasticity in the binary 

outcome. The result follows from standard results on marginal versus conditional interpretations 

of nonlinear probability models, as discussed by Agresti (2002:498-501). 

Write the logit for y = 1 for two groups, 

 1 1 1 1logit( 1)Y a b x uγ= = + +         (A1) 

 2 2 2 2logit( 1)Y a b x uγ= = + + ,                  (A2) 

where ju , j = 1,2, are unobserved variables assumed to be pair wise independent of xj, and aj are 

logit constant terms. 

The role of the unobserved variable can differ between groups in two ways. First, the 

unobserved variables can have different effects, jγ , on the binary outcome. Second, the 

distribution of unobservables, uj, can differ. Because we cannot observe uj, the unobservables are 

essentially “integrated out” of the estimating equation (i.e., the first derivatives of the log-

likelihood function). In other words, we do not estimate parameters based on (A1) and (A2), but 

rather the averaged versions of the estimation equations, averaged over the distribution of the 

effect of the unobservables: 
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exp( )
( 1) ; 1,2

1 exp( )
j j j j

j
j j j j

a b x u
E Y E j

a b x u

γ
γ

 + +
= = =  + + + 

.     (A3) 

For general distributions of uj, (A3) does not have a closed form solution. However, whenever 

j juγ are normally distributed, we have that 

  
( )( )

( )( )
exp

( 1) ; 1,2
1 exp

j j j

j

j j j

a b x
E Y j

a b x

δ

δ

 +
 = = =
 + +
 

 ,  

 where 1/2(1 0.6 )j jδ σ −= + , and where jσ is the standard error of the distribution of j juγ , with 

corresponding logit equations 

1 1logit( 1)Y a b x= = + %%          (A4) 

2 2logit( 1)Y a b x= = + %%                    (A5) 

where j j ja aδ=% , j j jb bδ=% . The estimates based on (A4) and (A5) are usually referred to as 

marginal or population averaged parameters. Because bj is multiplied by jδ  and because jδ can 

differ across groups, the estimated population averaged parameters may differ across groups, 

even when 1 2b b= . Because the variances of the unobservables jσ  are unobserved, the relation 

between the group-specific factors, jδ , is not identified. In other words, group differences in the 

dispersion of unobservables, jσ , might conflate any true difference in effects of x between 

groups. In effect, this result parallels that derived under the assumption of a latent, continuous 

outcome variables. 
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Because jσ depend on both jγ and ju , we notice that the scale factors,jδ , might differ when 

the unobservables have different effects across groups, different distributions across groups, or 

both. We further notice that this result does not pertain to linear models. In these models,

( )( ) ; 1,2j j j j j j j jE Y y E x u e x jα β γ α β= = + + + = + = , when x and u are mean independent, i.e. 

( )| 0E u e xγ + = . Hence, in the linear model, the residual variance( )( )var u eγ +  and the mean 

are independent, so heteroscedasticity does not affect the conditional mean function. 

 

Appendix B: Partial Correlation between x and y* given z 

We show how to recover the partial correlation between x and the latent variable, y*, controlling 

for one or more variables, z.  Here we have: 

),|*var(),cov(2)var()var(*)var( .*.*
2

.*
2

.* zxyzxzxy xzyzxyxzyzxy +++= ββββ  

with )var(),|*var( 2 ωszxy = . The partial regression coefficient for y* on x controlling for z is 

)|var(

)|*,cov(
.* zx

zxy
zxy =β , 

and so we can write the partial correlation as 

)|*var(

)|(

)|*var(

)|( ..*
.*

zy

zxsdsb

zy

zxsd
r zyxzxy

zxy

⋅
==

β
, 

where b is the probit or logit coefficient. Using the result that 

),|*var()|var()|*var( 2
.* zxyzxzy zxy += β , 

we obtain (8).  
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Appendix C: Statistical Tests 

Table A1 shows the results of a Monte Carlo analysis to study the power of the test given in 

equation (18). We simulated two populations, each of 5 million, one with r(x,y*)=0.5, the other 

with a correlation varying from 0 to 0.45. We then drew a sample from each population and 

applied equation (18) to test the significance (using the .05 critical value) of the difference in 

their correlations. The figures in Table A1 show the proportion of times, out of 1000 replications, 

that the null hypothesis of no difference was rejected, using sample sizes ranging from 100 to 

5000. In this case both x and y* were normally distributed and the correlation was derived from a 

probit model. As we should have expected, the larger the difference in the correlation and the 

larger the sample size, the more likely the test is to reject the null hypothesis. With a sample of 

1000 the test is effective at rejecting the null hypothesis when the difference in correlations is 0.2 

or greater: for a sample of 5000 the test performs well for differences in correlations of more 

than about .07. 

   

-- TABLE A1 HERE -- 

 

Appendix D: Coefficient of Determination 

In some situations researchers are interested in summarizing the share of variation in y* 

explained by the predictor variables. With a single predictor this is just the square of the 

correlation in (6). For simplicity, we derive the coefficient of determination assuming that we 

have two predictor variables, x and z.  

The explained variance of the model in which y* depends on both x and z is equal to

),|*var(*)var( zxyy − , where var(y*) is  
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),|*var(),cov(2)var()var( .*.*
2

.*
2

.* zxyzxzx xzyzxyxzyzxy +++ ββββ  

Because the coefficient of determination is the ratio of the explained to the total variance of y* 

we have:   

),|*var(),cov(2)var()var(

),cov(2)var()var(

.*.*
2

.*
2

.*

.*.*
2

.*
2

.*2

zxyzxzx

zxzx
R

xzyzxyxzyzxy

xzyzxyxzyzxy

+++
++

=
ββββ

ββββ
  

Substituting the logit or probit coefficient and expanding ),|*var( zxy  we can rewrite the 

preceding equation as 

)var(),cov(2)var()var(

),cov(2)var()var(
22

..
22

.
22

.

2
..

22
.

22
.2

ωszxsbbzsbxsb

zxsbbzsbxsb
R

xyzzyxxyzzyx

xyzzyxxyzzyx

+++
++

=  

The 2s term cancels to leave a function of known values: 

)var(),cov(2)var()var(

),cov(2)var()var(

..
2

.
2

.

..
2

.
2

.2

ω+++
++

=
zxbbzbxb

zxbbzbxb
R

xyzzyxxyzzyx

xyzzyxxyzzyx     

This coefficient of determination equals that proposed by McKelvey and Zavoina (1975) and can 

easily be extended to the case with more than two predictor variables. 
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TABLES 

 

TABLE 1. Monte Carlo study of sensitivity of correlation metric to pure misspecification of 
error term. 500 replications. Mean absolute deviation from true correlation reported. 
  N = 200 N = 1,000 N = 5,000 

Scenario 
True error 
distr. 

Logit Probit Logit Probit Logit Probit 

r = 0.25 
1A Normal 0.04 0.04 0.03 0.02 0.03 0.01 
1B Logistic 0.04 0.05 0.02 0.03 0.01 0.03 
1C t(6) 0.04 0.05 0.02 0.04 0.01 0.04 
1D Lognormal 0.04 0.05 0.02 0.03 0.01 0.02 
1E Uniform 0.08 0.06 0.09 0.06 0.08 0.06 
r = 0.50 
2A Normal 0.05 0.04 0.04 0.02 0.04 0.01 
2B Logistic 0.04 0.04 0.02 0.03 0.01 0.03 
2C t(6) 0.04 0.05 0.02 0.05 0.01 0.05 
2D Lognormal 0.04 0.05 0.02 0.03 0.01 0.03 
2E Uniform 0.12 0.08 0.12 0.08 0.12 0.08 
r = 0.75 
3A Normal 0.03 0.03 0.02 0.01 0.02 0.01 
3B Logistic 0.03 0.03 0.01 0.02 0.01 0.01 
3C t(6) 0.03 0.03 0.02 0.02 0.01 0.02 
3D Lognormal 0.03 0.03 0.01 0.02 0.01 0.02 
3E Uniform 0.06 0.04 0.06 0.03 0.06 0.03 
Note: t(6) is the t distribution with six degrees of freedom. 
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TABLE 2. Monte Carlo study of power of statistical test of a single correlation. 1,000 
replications. Proportion of rejections of H0 reported. 
Scenario H0 True corr. N = 100 N = 200 N = 1,000 N = 2,000 
A False 0.00 5% 5% 4% 5% 
B True 0.10 16% 25% 82% 98% 
C True 0.25 61% 90% 100% 100% 
D True 0.50 100% 100% 100% 100% 
E True 0.75 100% 100% 100% 100% 
F True 0.90 100% 100% 100% 100% 
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TABLE 3. Decomposition of logit coefficients by country, cohort, and social class 

 

 II IIIa IVab IVc V+VI VII+IIIb 

Birth cohort 21

r

r−
 ( )

( | )

sd

sd x z

ω  
21

r

r−
 ( )

( | )

sd

sd x z

ω  
21

r

r−
 ( )

( | )

sd

sd x z

ω  
21

r

r−
 ( )

( | )

sd

sd x z

ω  
21

r

r−
 ( )

( | )

sd

sd x z

ω  
21

r

r−
 ( )

( | )

sd

sd x z

ω  

German men 

1908-24 -0.042 9.740 -0.137 9.945 -0.232 8.569 -0.380 8.557 -0.365 7.726 -0.453 8.286 
1925-34 -0.099 9.879 -0.172 10.122 -0.236 9.517 -0.389 8.937 -0.347 8.199 -0.445 8.669 
1935-44 -0.102 8.168 -0.164 8.985 -0.226 8.261 -0.361 8.495 -0.397 6.799 -0.459 7.414 
1945-54 -0.080 8.026 -0.119 8.532 -0.150 8.746 -0.265 8.737 -0.329 6.586 -0.362 7.213 
1955-64 -0.052 7.871 -0.095 8.605 -0.138 8.796 -0.249 9.113 -0.310 6.214 -0.355 6.952 
French men 

1908-24 -0.060 13.616 -0.161 11.895 -0.225 9.840 -0.405 9.403 -0.276 9.879 -0.369 9.548 
1925-34 -0.066 12.824 -0.168 11.299 -0.214 9.460 -0.433 8.976 -0.303 9.216 -0.390 9.024 
1935-44 -0.107 11.419 -0.178 10.509 -0.245 8.547 -0.447 8.093 -0.341 8.128 -0.427 7.980 
1945-54 -0.099 9.825 -0.195 9.746 -0.227 8.195 -0.357 7.936 -0.345 7.469 -0.419 7.492 
1955-64 -0.085 9.313 -0.204 9.152 -0.197 8.375 -0.322 8.267 -0.332 7.007 -0.390 7.308 

Dutch men 

1908-24 -0.051 9.311 -0.078 12.107 -0.202 7.840 -0.297 7.854 -0.245 7.843 -0.328 7.438 
1925-34 -0.013 9.032 -0.055 11.286 -0.176 7.911 -0.257 7.932 -0.222 7.603 -0.307 7.337 
1935-44 -0.038 8.094 -0.070 10.018 -0.167 7.474 -0.215 7.686 -0.246 7.043 -0.304 6.806 
1945-54 -0.015 7.365 -0.055 9.098 -0.148 7.383 -0.153 7.782 -0.202 6.432 -0.239 6.489 
1955-64 -0.007 6.703 -0.061 8.833 -0.088 7.459 -0.169 7.899 -0.194 5.800 -0.240 6.079 
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TABLE 4. Logit coefficients, correlations coefficients and standard deviations of SEI by US 
cohorts, GSS data 1988-2010 

Birth cohort Logit coef. Correlation 
Standard deviations 

of SEI 
1930-1939 0.0424 0.3473 15.85 
1940-1949 0.0400 0.3615 17.59 
1950-1959 0.0368 0.3578 18.88 
1960-1969 0.0377 0.3768 19.58 

Note: Weight used (wtssall). 
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TABLE A1. Monte Carlo study of power of statistical test of the cross-sample difference 
between two correlations. Sample 1 is drawn from a population with a true correlation of 0.5. 
1,000 replications. Proportion of rejections of H0 reported.  

Scenario 
True corr. 
in sample 2 

N = 100 N = 500 N = 1,000 N = 5,000 

A 0.00 81% 100% 100% 100% 
B 0.10 66% 100% 100% 100% 
C 0.20 47% 98% 100% 100% 
D 0.30 26% 79% 98% 100% 
E 0.40 11% 33% 53% 100% 
F 0.45 8% 13% 21% 63% 
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FIGURES 
 
FIGURE 1. Ordered logit results 
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FIGURE 2. Partial correlation results 
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FIGURE 3. R-squared values by country and cohort 
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