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WHICH FINITE SIMPLE GROUPS ARE UNIT GROUPS?

CHRISTOPHER DAVIS AND TOMMY OCCHIPINTI

Abstract. We prove that if G is a finite simple group which is the unit group of a ring, then G is isomorphic
to either (a) a cyclic group of order 2; (b) a cyclic group of prime order 2k −1 for some k; or (c) a projective

special linear group PSLn(F2) for some n ≥ 3. Moreover, these groups do all occur as unit groups. We
deduce this classification from a more general result, which holds for groups G with no non-trivial normal

2-subgroup.

Throughout this paper, rings will be assumed to be unital, but not necessarily commutative, and ring
homomorphisms send 1 to 1. The finite groups G of odd order which occur as unit groups of rings were
determined in [3]. We will prove similar results for a more general class of groups; the description of this
class of groups uses the following.

Definition 1. For a finite group G, the p-core of G is the largest normal p-subgroup of G. We denote this
subgroup by Op(G). It is the intersection of all Sylow p-subgroups of G.

We now state the main result. The authors1 are most grateful to the anonymous referee for our earlier
paper [2], who recognized that one of the results proved in that paper could be strengthened into the following.

Theorem 2. Let G denote a finite group such that O2(G) = {1} and such that G is isomorphic to the unit
group of a ring R. Then

G ∼= GLn1
(F2k1 )× · · · ×GLnr

(F2kr ).

Before proving Theorem 2, we record the following corollary.

Corollary 3. The finite simple groups which occur as unit groups of rings are precisely the groups

(a) Z/2Z,
(b) Z/pZ for a Mersenne prime p = 2k − 1,
(c) PSLn(F2) for n ≥ 3.

Proof. If G is a finite simple group, then either O2(G) = {1} or O2(G) = G. If O2(G) = G, then G is a
2-group, and because we are assuming G is simple, we must have G ∼= Z/2Z, which for instance is isomorphic
to the unit group of Z.

Hence assume G is a finite simple group which is isomorphic to the unit group of a ring and further assume
O2(G) = {1}. By Theorem 2, we know

G ∼= GLn1
(F2k1 )× · · · ×GLnr

(F2kr ).

These groups all occur as unit groups of the corresponding products of matrix rings, so we are reduced to
determining which of them are simple; this forces

G ∼= GLn(F2k).

If n > 1 and k > 1, then the subgroup of invertible scalar matrices forms a nontrivial normal subgroup.
Hence two possibilities remain. If n = 1, then GL1(F2k) is cyclic of order 2k − 1; such a group is simple if
and only if its order is prime. If k = 1, then GLn(F2) = PSLn(F2). For the case k = 1, n = 2, we have
PSL2(F2) ∼= S3 (see for example [4, Section 3.3.1]); this group is not simple. For the cases k = 1, n ≥ 3, it is
well-known that PSLn(F2) is simple (see for example [4, Section 3.3.2]). This completes the proof. �
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1The authors also thank Colin Adams, John F. Dillon, Dennis Eichhorn, Noam Elkies, Kiran Kedlaya, Charles Toll, and

Ryan Vinroot for many useful discussions.
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Remark 4. The simple groups A8 and PSL2(F7) also occur as unit groups. This follows immediately from
the exceptional isomorphisms

A8
∼= PSL4(F2) and PSL2(F7) ∼= PSL3(F2).

See for instance [4, Section 3.12].

Having recorded the above consequences of the main result, we now gather the preliminary results used
in its proof. We begin with the following observation.

Lemma 5. Let G denote a finite group with O2(G) = {1}, and let R denote a ring with R× ∼= G. Then R
has characteristic 2.

Proof. The elements 1 and −1 are units in R and are in the center of R, hence are in the center of R×. By
the assumption O2(G) = {1}, the center of G cannot contain any elements of order 2. Hence 1 = −1. �

Lemma 6. Keep notation as in Lemma 5, and fix an isomorphism R× ∼= G. Because R has characteristic 2,
we have a natural map

ϕ : F2[G]→ R

extending the fixed embedding of G into R. The image of ϕ is a ring with unit group isomorphic to G.

Proof. Write S for the image of ϕ. On one hand, we have that S× ⊆ R× ∼= G. On the other hand, the
induced map ϕ : G→ S× → R× is surjective. This shows that the unit group of S is isomorphic to G. �

Lemma 7. Let R denote a finite ring of characteristic 2. If J ⊆ R is a two-sided ideal such that J2 = 0,
then 1 + J is a normal elementary abelian 2-subgroup of R×.

Proof. Note that for any j, k ∈ J and r ∈ R×, we have

• (1 + j)2 = 1 + j2 = 1;
• (1 + j)(1 + k) = 1 + j + k + jk = 1 + j + k = (1 + k)(1 + j);
• r(1 + j)r−1 = 1 + rjr−1 ∈ 1 + J .

The first of these calculations shows that 1 + J is a subset of R×, and the three calculations together show
that it is a normal elementary abelian 2-group. �

We now use these preliminary results to prove our main theorem.

Proof of Theorem 2. By Lemma 6, we may assume R is a finite ring (and is in particular artinian) and has
characteristic 2. Let J denote a two-sided ideal of R such that J2 = 0. By Lemma 7, the set 1 + J is a
normal 2-subgroup of R×, and so by the assumption O2(G) = {1}, we have J = {0}. Thus the ring R has
no non-zero two-sided ideals J with J2 = 0, and hence R has no non-zero two-sided nilpotent ideals. By [1,
Theorem 5.4.5], the artinian ring R is semisimple. By Wedderburn’s Theorem [1, Theorem 5.3.4], we have

R ∼= Mn1(D1)× · · · ×Mnr (Dr)

for some n1, . . . , nr ≥ 1 and some division algebras D1, . . . , Dr. Our ring R is finite and hence each Di is
finite. By another theorem of Wedderburn [1, Theorem 3.8.6], we have that each Di is a finite field. Finally,
because the ring R has characteristic 2, each field Di has characteristic 2. This completes the proof. �
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