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WHICH FINITE SIMPLE GROUPS ARE UNIT GROUPS?

CHRISTOPHER DAVIS AND TOMMY OCCHIPINTI

ABSTRACT. We prove that if G is a finite simple group which is the unit group of a ring, then G is isomorphic
to either (a) a cyclic group of order 2; (b) a cyclic group of prime order 2% — 1 for some k; or (c) a projective
special linear group PSLy, (F2) for some n > 3. Moreover, these groups do all occur as unit groups. We
deduce this classification from a more general result, which holds for groups G with no non-trivial normal
2-subgroup.

Throughout this paper, rings will be assumed to be unital, but not necessarily commutative, and ring
homomorphisms send 1 to 1. The finite groups G of odd order which occur as unit groups of rings were
determined in [3]. We will prove similar results for a more general class of groups; the description of this
class of groups uses the following.

Definition 1. For a finite group G, the p-core of G is the largest normal p-subgroup of G. We denote this
subgroup by O,(G). It is the intersection of all Sylow p-subgroups of G.

We now state the main result. The authorsﬂ are most grateful to the anonymous referee for our earlier
paper [2], who recognized that one of the results proved in that paper could be strengthened into the following.

Theorem 2. Let G denote a finite group such that O2(G) = {1} and such that G is isomorphic to the unit
group of a ring R. Then
G = GLnl (F2k1) X X GLnT (FQkT).

Before proving Theorem [2] we record the following corollary.

Corollary 3. The finite simple groups which occur as unit groups of rings are precisely the groups
(a) 2/2,
(b) Z./pZ for a Mersenne prime p = 2F — 1,
(¢) PSL,(F2) for n > 3.

Proof. If G is a finite simple group, then either O2(G) = {1} or O2(G) = G. If O2(G) = G, then G is a
2-group, and because we are assuming G is simple, we must have G = Z/2Z, which for instance is isomorphic
to the unit group of Z.

Hence assume G is a finite simple group which is isomorphic to the unit group of a ring and further assume

02(G@) = {1}. By Theorem [2| we know
G = GLy, (Fy) x -+ X GLy, (Fys, ).

These groups all occur as unit groups of the corresponding products of matrix rings, so we are reduced to
determining which of them are simple; this forces

G = GLn (FQlc).

If n > 1 and k£ > 1, then the subgroup of invertible scalar matrices forms a nontrivial normal subgroup.
Hence two possibilities remain. If n = 1, then GL;(Fax) is cyclic of order 2¥ — 1; such a group is simple if
and only if its order is prime. If kK = 1, then GL,,(Fy) = PSL,,(F2). For the case k = 1,n = 2, we have
PSLy(F2) = S5 (see for example [4, Section 3.3.1]); this group is not simple. For the cases k = 1,n > 3, it is
well-known that PSL,, (F3) is simple (see for example [4, Section 3.3.2]). This completes the proof. O
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Remark 4. The simple groups As and PSLo(F7) also occur as unit groups. This follows immediately from
the exceptional isomorphisms

Ag = PSL4(IF2) and PSLQ(F7) = PSLg(]FQ)
See for instance [4, Section 3.12].

Having recorded the above consequences of the main result, we now gather the preliminary results used
in its proof. We begin with the following observation.

Lemma 5. Let G denote a finite group with O2(G) = {1}, and let R denote a ring with R* =2 G. Then R
has characteristic 2.

Proof. The elements 1 and —1 are units in R and are in the center of R, hence are in the center of R*. By
the assumption Oy(G) = {1}, the center of G cannot contain any elements of order 2. Hence 1 = —1. O

Lemma 6. Keep notation as in Lemma@ and fiz an isomorphism R* = G. Because R has characteristic 2,
we have a natural map

v :F[G] = R
extending the fixred embedding of G into R. The image of ¢ is a ring with unit group isomorphic to G.

Proof. Write S for the image of ¢. On one hand, we have that S* C R* = G. On the other hand, the
induced map ¢ : G — S* — R* is surjective. This shows that the unit group of S is isomorphic to G. [

Lemma 7. Let R denote a finite ring of characteristic 2. If J C R is a two-sided ideal such that J? = 0,
then 1+ J is a normal elementary abelian 2-subgroup of R*.

Proof. Note that for any j,k € J and r € R*, we have

e 1+ =1+52=1

o 1+ 1+k)=1+j+k+jk=1+j+k=(1+k)(1+7);

e r(l+)rt=1+rjrtel+J.
The first of these calculations shows that 1 4 J is a subset of R*, and the three calculations together show
that it is a normal elementary abelian 2-group. O

We now use these preliminary results to prove our main theorem.

Proof of Theorem[3 By Lemma@ we may assume R is a finite ring (and is in particular artinian) and has
characteristic 2. Let J denote a two-sided ideal of R such that J?> = 0. By Lemma [7 the set 1+ J is a
normal 2-subgroup of R*, and so by the assumption O3(G) = {1}, we have J = {0}. Thus the ring R has
no non-zero two-sided ideals .J with J2 = 0, and hence R has no non-zero two-sided nilpotent ideals. By [I}
Theorem 5.4.5], the artinian ring R is semisimple. By Wedderburn’s Theorem [I, Theorem 5.3.4], we have

R2 M,, (D) x -~ x My, (D,)

for some nq,...,n, > 1 and some division algebras D1,...,D,. Our ring R is finite and hence each D; is
finite. By another theorem of Wedderburn [I, Theorem 3.8.6], we have that each D; is a finite field. Finally,
because the ring R has characteristic 2, each field D; has characteristic 2. This completes the proof. O
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