Which finite simple groups are unit groups?

Davis, Christopher James; Occhipinti, Tommy

Published in:
Journal of Pure and Applied Algebra

DOI:
10.1016/j.jpaa.2013.08.013

Publication date:
2014

Document version
Early version, also known as pre-print

Citation for published version (APA):
Davis, C. J., \& Occhipinti, T. (2014). Which finite simple groups are unit groups? Journal of Pure and Applied Algebra, 218(4), 743-744. https://doi.org/10.1016/j.jpaa.2013.08.013

WHICH FINITE SIMPLE GROUPS ARE UNIT GROUPS?

CHRISTOPHER DAVIS AND TOMMY OCCHIPINTI

Abstract

We prove that if G is a finite simple group which is the unit group of a ring, then G is isomorphic to either (a) a cyclic group of order 2 ; (b) a cyclic group of prime order $2^{k}-1$ for some k; or (c) a projective special linear group $\operatorname{PSL}_{n}\left(\mathbb{F}_{2}\right)$ for some $n \geq 3$. Moreover, these groups do all occur as unit groups. We deduce this classification from a more general result, which holds for groups G with no non-trivial normal 2 -subgroup.

Throughout this paper, rings will be assumed to be unital, but not necessarily commutative, and ring homomorphisms send 1 to 1 . The finite groups G of odd order which occur as unit groups of rings were determined in [3]. We will prove similar results for a more general class of groups; the description of this class of groups uses the following.

Definition 1. For a finite group G, the p-core of G is the largest normal p-subgroup of G. We denote this subgroup by $O_{p}(G)$. It is the intersection of all Sylow p-subgroups of G.

We now state the main result. The authors $\11 are most grateful to the anonymous referee for our earlier paper [2], who recognized that one of the results proved in that paper could be strengthened into the following.

Theorem 2. Let G denote a finite group such that $O_{2}(G)=\{1\}$ and such that G is isomorphic to the unit group of a ring R. Then

$$
G \cong \mathrm{GL}_{n_{1}}\left(\mathbb{F}_{2^{k_{1}}}\right) \times \cdots \times \mathrm{GL}_{n_{r}}\left(\mathbb{F}_{2^{k_{r}}}\right)
$$

Before proving Theorem 2 , we record the following corollary.
Corollary 3. The finite simple groups which occur as unit groups of rings are precisely the groups
(a) $\mathbb{Z} / 2 \mathbb{Z}$,
(b) $\mathbb{Z} / p \mathbb{Z}$ for a Mersenne prime $p=2^{k}-1$,
(c) $\mathrm{PSL}_{n}\left(\mathbb{F}_{2}\right)$ for $n \geq 3$.

Proof. If G is a finite simple group, then either $O_{2}(G)=\{1\}$ or $O_{2}(G)=G$. If $O_{2}(G)=G$, then G is a 2-group, and because we are assuming G is simple, we must have $G \cong \mathbb{Z} / 2 \mathbb{Z}$, which for instance is isomorphic to the unit group of \mathbb{Z}.

Hence assume G is a finite simple group which is isomorphic to the unit group of a ring and further assume $O_{2}(G)=\{1\}$. By Theorem 2 we know

$$
G \cong \mathrm{GL}_{n_{1}}\left(\mathbb{F}_{2^{k_{1}}}\right) \times \cdots \times \mathrm{GL}_{n_{r}}\left(\mathbb{F}_{2^{k_{r}}}\right)
$$

These groups all occur as unit groups of the corresponding products of matrix rings, so we are reduced to determining which of them are simple; this forces

$$
G \cong \mathrm{GL}_{n}\left(\mathbb{F}_{2^{k}}\right)
$$

If $n>1$ and $k>1$, then the subgroup of invertible scalar matrices forms a nontrivial normal subgroup. Hence two possibilities remain. If $n=1$, then $\mathrm{GL}_{1}\left(\mathbb{F}_{2^{k}}\right)$ is cyclic of order $2^{k}-1$; such a group is simple if and only if its order is prime. If $k=1$, then $\mathrm{GL}_{n}\left(\mathbb{F}_{2}\right)=\mathrm{PSL}_{n}\left(\mathbb{F}_{2}\right)$. For the case $k=1, n=2$, we have $\operatorname{PSL}_{2}\left(\mathbb{F}_{2}\right) \cong S_{3}$ (see for example [4, Section 3.3.1]); this group is not simple. For the cases $k=1, n \geq 3$, it is well-known that $\operatorname{PSL}_{n}\left(\mathbb{F}_{2}\right)$ is simple (see for example [4, Section 3.3.2]). This completes the proof.

[^0]Remark 4. The simple groups A_{8} and $\mathrm{PSL}_{2}\left(\mathbb{F}_{7}\right)$ also occur as unit groups. This follows immediately from the exceptional isomorphisms

$$
A_{8} \cong \operatorname{PSL}_{4}\left(\mathbb{F}_{2}\right) \text { and } \mathrm{PSL}_{2}\left(\mathbb{F}_{7}\right) \cong \mathrm{PSL}_{3}\left(\mathbb{F}_{2}\right)
$$

See for instance [4, Section 3.12].
Having recorded the above consequences of the main result, we now gather the preliminary results used in its proof. We begin with the following observation.

Lemma 5. Let G denote a finite group with $O_{2}(G)=\{1\}$, and let R denote a ring with $R^{\times} \cong G$. Then R has characteristic 2.

Proof. The elements 1 and -1 are units in R and are in the center of R, hence are in the center of R^{\times}. By the assumption $O_{2}(G)=\{1\}$, the center of G cannot contain any elements of order 2. Hence $1=-1$.

Lemma 6. Keep notation as in Lemma 5, and fix an isomorphism $R^{\times} \cong G$. Because R has characteristic 2, we have a natural map

$$
\varphi: \mathbb{F}_{2}[G] \rightarrow R
$$

extending the fixed embedding of G into R. The image of φ is a ring with unit group isomorphic to G.
Proof. Write S for the image of φ. On one hand, we have that $S^{\times} \subseteq R^{\times} \cong G$. On the other hand, the induced map $\varphi: G \rightarrow S^{\times} \rightarrow R^{\times}$is surjective. This shows that the unit group of S is isomorphic to G.

Lemma 7. Let R denote a finite ring of characteristic 2. If $J \subseteq R$ is a two-sided ideal such that $J^{2}=0$, then $1+J$ is a normal elementary abelian 2 -subgroup of R^{\times}.
Proof. Note that for any $j, k \in J$ and $r \in R^{\times}$, we have

- $(1+j)^{2}=1+j^{2}=1 ;$
- $(1+j)(1+k)=1+j+k+j k=1+j+k=(1+k)(1+j)$;
- $r(1+j) r^{-1}=1+r j r^{-1} \in 1+J$.

The first of these calculations shows that $1+J$ is a subset of R^{\times}, and the three calculations together show that it is a normal elementary abelian 2-group.

We now use these preliminary results to prove our main theorem.
Proof of Theorem 2. By Lemma 6, we may assume R is a finite ring (and is in particular artinian) and has characteristic 2. Let J denote a two-sided ideal of R such that $J^{2}=0$. By Lemma 7 , the set $1+J$ is a normal 2-subgroup of R^{\times}, and so by the assumption $O_{2}(G)=\{1\}$, we have $J=\{0\}$. Thus the ring R has no non-zero two-sided ideals J with $J^{2}=0$, and hence R has no non-zero two-sided nilpotent ideals. By [1, Theorem 5.4.5], the artinian ring R is semisimple. By Wedderburn's Theorem [1, Theorem 5.3.4], we have

$$
R \cong M_{n_{1}}\left(D_{1}\right) \times \cdots \times M_{n_{r}}\left(D_{r}\right)
$$

for some $n_{1}, \ldots, n_{r} \geq 1$ and some division algebras D_{1}, \ldots, D_{r}. Our ring R is finite and hence each D_{i} is finite. By another theorem of Wedderburn [1, Theorem 3.8.6], we have that each D_{i} is a finite field. Finally, because the ring R has characteristic 2 , each field D_{i} has characteristic 2 . This completes the proof.

References

[1] P. M. Cohn. Algebra. Vol. 2. John Wiley \& Sons Ltd., Chichester, second edition, 1989.
[2] Christopher Davis and Tommy Occhipinti. Which alternating and symmetric groups are unit groups? http://arxiv.org/abs/1304.0143.
[3] S. Z. Ditor. On the group of units of a ring. Amer. Math. Monthly, 78:522-523, 1971.
[4] R. Wilson. The Finite Simple Groups. Graduate Texts in Mathematics. Springer, 2009.
University of California, Irvine, Dept of Mathematics, Irvine, CA 92697
Current address: University of Copenhagen, Dept of Mathematical Sciences, Universitetsparken 5, 2100 København \varnothing, Denmark

E-mail address: davis@math.ku.dk
University of California, Irvine, Dept of Mathematics, Irvine, CA 92697
Current address: Carleton College, Dept of Mathematics, Northfield, MN 55057
E-mail address: tocchipinti@carleton.edu

[^0]: Date: August 6, 2013.
 ${ }^{1}$ The authors also thank Colin Adams, John F. Dillon, Dennis Eichhorn, Noam Elkies, Kiran Kedlaya, Charles Toll, and Ryan Vinroot for many useful discussions.

