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Over many decades assisted reproductive technologies, including artificial insemination, embryo transfer,
in vitro production (IVP) of embryos, cloning by somatic cell nuclear transfer (SCNT), and stem cell cul-
ture, have been developed with the aim of refining breeding strategies for improved production and
health in animal husbandry. More recently, biomedical applications of these technologies, in particular,
SCNT and stem cell culture, have been pursued in domestic mammals in order to create models for
human disease and therapy. The following review focuses on presenting important aspects of pre-
implantation development in cattle, pigs, horses, and dogs. Biological aspects and impact of assisted
reproductive technologies including IVP, SCNT, and culture of pluripotent stem cells are also addressed.

� 2013 Elsevier Ltd. All rights reserved.
Introduction

Over the past decade, the landscape for veterinary research in
embryo technology and stem cell biology has reshaped dramati-
cally. The initial focus of embryo technology in the domestic ani-
mals was to optimize breeding for improvement of production
and health. In some countries, such as Brazil and Argentina, em-
bryo technologies have found extended practical application, and
large numbers of bovine embryos are produced in vitro and trans-
ferred to recipients in these regions. In most parts of the world,
however, the breeding-related use of such technologies is quanti-
tatively limited. Investigations on pluripotent embryonic stem
cells (ESCs) were initiated more than two decades ago with the
aim of using the technology for the production of genetically-mod-
ified domestic animals. However, these initial efforts to establish
ESCs in the domestic species were soon abandoned, due to the dis-
couraging results and, more importantly, to the ground-breaking
discovery that cultured embryonic or even somatic cells could be
reprogrammed into totipotency by the egg cytoplasm, allowing
for generation of genetically-modified animals by nuclear transfer.

Recently, however, renewed focus on domestic animal embryo
technology and stem cell biology has emerged, due to the need
for improved biomedical models for human diseases. This develop-
ment has sparked in-depth research into fundamental aspects of
developmental and stem cell biology in the larger domestic mam-
mals, and thus, the understanding of molecular and cellular aspects
of initial embryology and phenomena such as pluripotency and cell
differentiation in these species is exponentially evolving.

The understanding of pre-implantation embryonic develop-
ment is a key to optimizing the use of domestic animals as models
for human disease, e.g. via refinement by genetic modification and
establishment of different stem cell tools, as well as for optimizing
the use of embryo technologies for breeding and production. The
present review is an attempt to analyse current knowledge of the
molecular aspects of pre-implantation development in pigs, cattle,
horses, and dogs as well as to discuss the significance of this
knowledge for the practical refinement and utilization of in vitro
production of embryos, cloning by somatic cell nuclear transfer,
and pluripotent stem cell culture.

The anatomy of pre-implantation embryonic development in
domestic mammals

Proper maturation of the oocyte to metaphase II is a prerequi-
site for fertilization and pre-implantation development. In the
sow, cow, and mare maturation occurs in the pre-ovulatory follicle
within approximately the last 42, 24, and 36 h before ovulation,
respectively. Interestingly, in the dog the oocyte is ovulated with
an intact germinal vesicle and completes maturation in the oviduct
over a 2–4 day period.

Upon fertilization, major embryonic genome activation, which
occurs at the 4-cell stage in pigs and around the 8-cell stage in cat-
logy in
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Fig. 1. Initial development of the bovine embryo. A: Zygote; B: 2-cell embryo; C: 4-cell embryo; D: Early morula; E: Compact morula; F: Blastocyst; G: Expanded blastocyst;
H: Blastocyst in the process of hatching from the zona pellucida; I: Ovoid blastocyst with embryonic disc; J: Elongated blastocyst; K: Embryonic disc in the process of
gastrulation. 1: Inner cell mass; 2: Trophoblast; 3: Epiblast; 4: Hypoblast; 5: Embryonic disc; 6: Amniotic folds; 7: Ectoderm; 8: Mesoderm; 9: Endoderm (from Hyttel et al.,
2009).
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Fig. 2. In vitro production (IVP) of embryos in cattle. Immature oocytes are
aspirated from live animals by ultrasound-guided ovum pick up (1) or from abattoir
ovaries (10). Immature oocytes at prophase I are submitted to in vitro maturation
(IVM, 2) resulting in progression of meiosis to metaphase II, in vitro fertilization
(IVF, 3) resulting in pronucleus formation and initial cleavages, and in vitro culture
(IVC, 4) to the morula or blastocyst stage, at which time they can be transferred to
recipients (from Hyttel et al., 2009).
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tle, horses, and dogs, paves the way for the first lineage segregation
into trophoblast and inner cell mass (ICM; Fig. 1). Around the time
of hatching from the zona pellucida, the next lineage segregation of
the ICM results in the formation of the pluripotent epiblast and the
hypoblast, which develops into a flat layer epithelium that gradu-
ally covers the inside of the epiblast and trophoblast. The hypo-
blast is referred to as the primitive endoderm in the mouse; a
structure which should not be confused with the definitive endo-
derm (see later). Along with this process, the trophoblast trans-
forms from being a flattened cell layer to a more cuboidal cell
architecture. Subsequently, the polar trophoblast, covering the epi-
blast, referred to as Rauber’s layer, becomes increasingly thin, and,
finally, the epiblast penetrates the trophoblast and establishes the
embryonic disc, which thus becomes part of the outer lining of the
conceptus exposed to the uterine environment.

The following process of gastrulation results in formation of the
mesoderm, endoderm (i.e. the definitive endoderm) and ectoderm
(Fig. 1): first, the primitive streak develops through cell migration,
and cells continuously entering the streak undergo epithelial–mes-
enchymal transition and ingress to form mesoderm that spreads
between the trophoblast/epiblast and hypoblast, and endoderm,
which becomes inserted into the sub-epiblast portion of the hypo-
blast (i.e. definitive endoderm which becomes inserted into prim-
itive endoderm). The fate of the ingressing cells depend on their
site of ingression: those ingressing through the anterior streak
and primitive node become prechordal plate mesoderm, notochord
and endoderm; cells ingressing through ‘mid’ streak become par-
axial mesoderm, and cells ingressing through the posterior streak
become extra-embryonic and lateral plate mesoderm (Mikawa
et al., 2004).

From the time when the trophoblast gradually becomes lined
by extra-embryonic mesoderm on the inside, and becomes contin-
uous with the ectoderm, through the transformation of the non-
ingressing epiblast into ectoderm, the term trophectoderm is ap-
plied to this cell compartment. The term trophoblast will, again,
be used for those cells of the trophectoderm, which engage in
forming the placenta. At the time of gastrulation, chorio-amniotic
folds consisting of trophectoderm with an inner lining of extra-
embryonic mesoderm develop into the amnion. A marked elonga-
tion of the conceptus occurs in pigs (to about a meter) and cattle at
the time of gastrulation, whereas this phenomenon is not observed
in horses and dogs.
Cattle (Bos primigenius taurus and Bos primigenius indicus)

Molecular regulation of pre-implantation development

In cattle the major activation of embryonic genome occurs at
the 8-cell stage (Fig. 2; Kues et al., 2008) accompanied by changes
in chromatin structure such as acetylation of core histones (Memili
and First, 1999). At the 32–64-cell stage compaction occurs fol-
lowed by blastulation at day 7–8, and hatching occurs at day 8–9
followed by elongation until implantation starts on day 20–21.

Around hatching, the ICM cells differentiate into an inner layer
facing the blastocyst cavity, the hypoblast, while the remaining
cells form the epiblast (Vejlsted et al., 2006). The polar trophoblast,
Rauber’s layer, soon degenerates and at the same time gene
expression changes of key pluripotency transcription factors
POU5F1, SOX2, and NANOG take place (Khan et al., 2012). Contrary
to the mouse, this core triad is not confined to the ICM in the early
blastocyst, but it is also expressed by the trophoblast together with
trophoblast-specific genes CDX2, HAND1, ETS2, and IFN-tau. After
formation of the epiblast and hypoblast, however, POU5F1, SOX2,
and NANOG expression becomes restricted to the epiblast (Degrelle
et al., 2005; Vejlsted et al., 2006).
Please cite this article in press as: Hall, V., et al. Early embryonic developmen
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In vitro production (IVP) of embryos

The birth of the first IVF calf derived from in vivo matured oo-
cytes in 1982 (Brackett et al., 1982) and the discovery of heparin
as capacitating agent for bull sperm 1986 (Parrish et al., 1986)
were the two key events that started an era of intense research ef-
forts for developing efficient bovine in vitro embryo production
(IVP) procedures including in vitro maturation (IVM) of the oocyte
to the metaphase II, in vitro fertilization (IVF), and subsequent
in vitro culture (IVC) of embryos to the blastocyst stage (Fig. 3).

The initial lack of knowledge on embryo requirements was by-
passed by temporary in vivo culture in the surrogate sheep oviduct
(Galli et al., 2003a, 2003b). At the same time co-culture with ovi-
duct cells, Vero cells, BRL cells, granulosa cells was developed fol-
lowed by cell-free methods based on synthetic oviductal fluid
formulations (SOF; Gardner et al., 1994). While over 30% blastocyst
formation could be achieved in most culture systems, it soon be-
came obvious that quantity did not always match quality (Loner-
gan et al., 2006) and that serum supplementation was
detrimental to embryo/fetal development as the main causal factor
of the so-called large offspring syndrome (LOS), characterised by
abnormally advanced embryonic and fetal growth, altered gene
expression patterns, and high perinatal losses (Young et al.,
1998; Lazzari et al., 2002). A large field study demonstrated that
the incidence of LOS was greatly reduced by in vitro culture in
cell-free and serum-free SOF media (van Wagtendonk-de Leeuw
et al., 2000). At present the application of IVP combined with ovum
pick up (OPU) from valuable donors is increasing due to developing
breeding strategies based on genomics selection using SNP (single
t, assisted reproductive technologies, and pluripotent stem cell biology in
.tvjl.2013.05.026
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Fig. 3. Bovine in vitro production of embryos. Bovine immature oocyte (A), 8-cell
embryo (B), and expanded blastocyst (C). 1: Cumulus cells; 2: Zona pellucida; 3:
Inner cell mass; 4: Blastocyst cavity. Scale bars: 50 lm (A, B, and C).
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nucleotide polymorphism) chips, whereby thousands of genetic
markers can be screened even on a small embryo biopsy before
embryo transfer, with enough precision to anticipate that the need
for progeny testing will be dramatically reduced.

Somatic cell nuclear transfer (SCNT)

In 1986, Willadsen obtained the first cloned sheep using nuclei
of embryonic blastomeres for nuclear transfer (Willadsen, 1986).
The following year this result was reproduced in cattle (Prather
et al., 1987). These achievements sparked a period of intense re-
search in farm animals, which culminated with the birth of ‘Dolly’
Please cite this article in press as: Hall, V., et al. Early embryonic developmen
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(Wilmut et al., 1997), the first mammal to be cloned from a nucleus
of a somatic cell. Following this event several reports on cattle
cloned by SCNT emerged (Vignon et al., 1998; Galli et al., 1999).
While cloning originally was applied for enhancement of breeding
efficiency, including the rescue of a bovine breed close to extinc-
tion (Wells et al., 1998), it soon became a tool for obtaining genet-
ically modified calves (Cibelli et al., 1998a).

The SCNT technology involves the enucleation of a mature oo-
cyte creating a chromosome-free cytoplast, which is typically elec-
trofused with a diploid somatic cell (Fig. 4). This reconstructed
embryo is subsequently activated and embarks on embryonic
development. The subsequent steps that constitute the technology
have been refined with the contribution of dozens of laboratories
worldwide over several years. Mostly, enucleated metaphase II oo-
cytes (Campbell et al., 1996; Oback and Wells, 2003) are used as
recipient ooplasm, but also enucleated zygotes have been proven
suitable to reprogram the transferred nucleus in a more physiolog-
ical manner as compared to chemical activation of MII cytoplasts
(Schurmann et al., 2006).

Quiescent G0 is the preferred cell cycle stage of the donor so-
matic cells, but also cycling cells (Cibelli et al., 1998a) and blood
leukocytes (Galli et al., 1999) have been used as nuclear donors.
Technical modifications such as the zona-free manipulation have
improved the efficiency of enucleation and fusion (Oback et al.,
2003) in several species beside cattle (Lagutina et al., 2007)
although development to term is equal to conventional zona-en-
closed methods. SCNT is characterised by high pregnancy losses
occurring throughout gestation. A comparative embryo transfer
study between IVP embryos and cloned embryos derived from
embryonic, fetal, and adult cells provided evidence that while the
initial pregnancy rate at 21 days is similar (from 55.6% to 62.7%),
significant differences are evident at 70 days (49% vs. 37.3% vs.
22.5% vs. 14.3% for IVP, embryos and embryonic, fetal, and adult
cell clones, respectively) and at calving (49% vs. 34.3% vs. 15% vs.
6.8%; Heyman et al., 2002a). For fetal and adult somatic cell cloning
the efficiency is also influenced, for yet unclarified mechanisms, by
the specific cell line used as source of nuclei (Powell et al., 2004).

Several studies have demonstrated that SCNT embryos present
an altered gene expression (Smith et al., 2005) and epigenetic sta-
tus (Dean et al., 2001), compared with IVP embryos, and the high
rate of pregnancy loss has been clinically associated with hydrops
and cotyledonary hyperplasia (Heyman et al., 2002b; Everts et al.,
2008). These problems are, however, not observed in the offspring
of clones, which are normal (Heyman et al., 2004). Because of their
poor survival to term, cloned cattle have been subjected to intense
studies to demonstrate that the composition of milk and meat from
these animals is not different from controls (Heyman et al., 2007)
and products from cloned animals or their progeny do not pose
any health risk to the consumer.

Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs)

ESCs were isolated for the first time from the murine ICM and
cultured and characterized by Evans and Kaufman (1981) and Mar-
tin (1981). Recent evidence suggests that there are distinct states
of pluripotency (naïve and primed) that differ both morphologi-
cally and functionally (De Los Angeles et al., 2012). Naïve murine
ESCs (Evans and Kaufman, 1981; Martin, 1981) are derived from
the ICM or early epiblast cells, proliferate in culture as packed
dome-like colonies, are maintained in the undifferentiated state
by LIF-JAK-STAT3 and BMP4 signalling, readily contribute to chi-
meric embryos, maintain two active X chromosomes (in female
cells) and are relatively resistant to differentiation into primordial
germ cells (PGCs) and extra-embryonic lineages (Kuijk et al., 2011).

In contrast, primed pluripotent stem cells have been derived
from epiblasts of post-hatching murine blastocysts, are termed
t, assisted reproductive technologies, and pluripotent stem cell biology in
.tvjl.2013.05.026
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Fig. 4. Cloning of sheep by somatic cell nuclear transfer (SCNT). Oocytes are collected from a donor, matured in vitro to metaphase II, and enucleated (usually by
micromanipulation) to remove the first polar body and the portion of the oocyte containing the metaphase plate. The resulting cytoplast is combined with a donor cell (e.g. a
cultured fibroblast cell) originating from the animal to be cloned. The cytoplast and donor cell are submitted to electrofusion resulting in production of reconstructed
embryos in which the oocyte cytoplasm is mixed with the donor cell cytoplasm and carries the donor cell nucleus. The reconstructed embryos are activated in order to initiate
embryonic development and, after culture for about 1 week to the blastocyst stage, can be transferred to recipients for development into cloned offspring (from Hyttel et al.,
2009).
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epiblast stem cells (EpiSCs), are molecularly and epigenetically dif-
ferent from murine ESCs (Brons et al., 2007; Tesar et al., 2007),
have a more flattened colony morphology, depend on basic fibro-
blast growth factor (bFGF) or transforming growth factor alpha
(TGFa)/activin signalling for self-renewal, exhibit a limited ability
to contribute to chimeras, have undergone X-chromosome inacti-
vation, and readily differentiate into PGC precursors in vitro (Brons
et al., 2007). The optimal passaging procedure (single cells trypsin-
isation vs. disaggregation in clumps) and growth kinetics (14–16 h
doubling time in murine ESCs vs. 36 h in murine EpiSCs) also differ.
Moreover, the expression of some pluripotency markers is differ-
ent: Pou5f1 (also known as Oct4), Nanog, and Sox2 are common,
but Klf4, Dppa3, and Zfp42 are specific for murine ESCs. Surpris-
ingly, ESCs derived from human blastocysts exhibit characteristics
more like those of murine EpiSCs than their murine ESC counter-
parts (Thomson et al., 1998).

Most of the published studies on attempting bovine ESC deriva-
tion have applied the original mouse protocols (Stice et al., 1996;
Cibelli et al., 1998b; Mitalipova et al., 2001; Saito et al., 2003; Kee-
fer et al., 2007) starting from 2-cell embryos (Mitalipova et al.,
2001) up to day-12 hatched blastocysts (Gjorret and Maddox-Hyt-
tel, 2005). Colony formation ranges from 14% to 70% in the differ-
ent studies. Some authors report the morula as the most suitable
stage (Stice et al., 1996) and others the day-8 blastocyst (Talbot
et al., 1995). There is some controversy with respect to expression
of pluripotency markers: according to Saito et al. (2003), presump-
tive bovine ESCs express alkaline phosphatase (AP), FUT4 (also
known as SSEA1), STAT-3, and POU5F1, but are negative for SSEA4,
whereas other authors report that they are AP positive and stain
for SSEA4, POU5F1, TRA-1-81, and TRA-1-60 (Wang et al., 2005;
Munoz et al., 2008) and yet others consider AP staining negative
while FUT4, SSEA3, and SSEA4 positive (Stice et al., 1996; Cibelli
et al., 1998a, 1998b; Mitalipova et al., 2001).
Please cite this article in press as: Hall, V., et al. Early embryonic developmen
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All reported ESC-like bovine cells do not proliferate long-term,
except for a few cases (Mitalipova et al., 2001), and are not capable
of contributing significantly to chimeras following morula aggrega-
tion (Iwasaki et al., 2000). A recent study (Maruotti et al., 2012) has
described the application of human ESC and mouse EpiSC culture
protocols, based on bFGF and activin-nodal signalling, to post-
hatching pre-implantation bovine blastocysts, but again undiffer-
entiated proliferation could not be maintained.

Induced pluripotent stem cells (iPSCs) were first produced in
the mouse in 2006, by inserting four transcription factors, includ-
ing Pou5f1, Sox2, Klf4, and c-Myc into embryonic and adult cells,
resulting in a reversion of these cells into a pluripotent state, sim-
ilar to that observed in the ICM (Takahashi and Yamanaka, 2006).
These pluripotent cells can now be created from a multitude of
different factors, cell backgrounds, and methods in many different
species (Hussein and Nagy, 2012). Derivation of bovine iPSCs was
attempted (Huang et al., 2011) using transfection with a polycis-
tronic plasmid containing the complete bovine cDNAs for POU5F1,
SOX2, KLF4, and c-MYC, into bovine fibroblasts that were then cul-
tured in presence of specific signalling inhibitors successfully used
for mouse and rat ESC culture (Buehr et al., 2008; Ying et al.,
2008). Reprogramming efficiency was 0.4% giving rise to non-
proliferative dome-shaped colonies expressing markers of
pluripotency, including endogenous iPSC factors, CDH1, DPPA3,
NANOG, SOCS3, ZFP42, telomerase, Tra-1-60/81, and SSEA-3/4,
but not SSEA-1.

In an another study a lentiviral expression vector (pLentilox 3.7)
for human POU5F1 and porcine SOX2, C-MYC, and KLF4 fused with
EGFP was transduced into fetal fibroblasts obtaining a reprogram-
ming efficiency of 0.0002–0.0007% in the presence of LIF and bFGF.
The derived colonies resembled human ESCs rather than mouse
ESCs, but the transgenes were only partially silenced, indicating
incomplete reprogramming (Cao et al., 2012).
t, assisted reproductive technologies, and pluripotent stem cell biology in
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Fig. 5. Porcine oocyte and embryos derived in vivo. Porcine mature oocyte (A), 8-
cell embryo (B), and blastocyst (C). 1: Zona pellucida; 2: First polar body; 3: Inner
cell mass; 4: Blastocyst cavity. Scale bars: 50 lm (A, B, and C).
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Pig (Sus scrofa domesticus)

Molecular regulation of pre-implantation development

The development of the porcine pre-implantation embryo is
dependent on a number of key cell signalling events. Initial embry-
onic cleavage is controlled primarily by innate maternal compo-
nents carried over from the oocyte in the form of RNA and
proteins. However, recent reports suggest that RNA may be intro-
duced via spermatozoa, which could contribute to initial develop-
ment. Early cleavage events may also be steered or enhanced by
external factors present in the oviduct such as oviduct-produced
proteins or luminal secreted factors (Buhi et al., 1997). A number
of key regulators have been found to act during the initial cleav-
ages including the cell cycle controlling phosphatase cdc25 family
(Kim et al., 1999; Anderson et al., 2001) and members of the Src
family kinase (SFK) family (Levi et al., 2010). The major embryonic
genome activation, which occurs at the 4-cell stage in the pig,
paves the way for more complex developmental progression
(Fig. 5; Jarrell et al., 1991).

This maternal to embryonic transition marks an important
event in development: largely, overcoming transcriptional silenc-
ing of the embryo. This event is partly attributable to chromatin
remodelling events. Chromatin remodelling genes, including Smar-
ca2, have been shown to be important in porcine embryonic cleav-
age (Magnani and Cabot, 2007). A number of histone
methyltransferases known to modulate H3K9 (which is associated
with transcriptional silencing and cleavage control) have been
found to be important in porcine embryonic cleavage (Park et al.,
2011). Low expression of the H3K27me3 methylase EZH2 and its
co-factors EED and SUZ12 at the 4-cell stage (Gao et al., 2010) sug-
gests a reversal of H3K27me3-dependent transcriptional silencing
occurs at this stage. Furthermore, histone H3K4me3 (implicated in
gene activation) is thought to play a particular role in the mater-
nal-to-embryonic transition in the pig (Gao et al., 2010).

The first differentiation event, occurring as the blastocyst forms,
appears to be also regulated by key genes. Similar to the mouse,
ELF5 is expressed primarily in the porcine trophoblast and plays
an important role in trophoblast specification (Gao et al., 2011b).
CDX2 is another key gene expressed in the porcine trophoblast
(Gao et al., 2011a). Interestingly, Eomes, which is another impor-
tant marker for lineage segregation in the mouse, is dependent
on expression of Cdx2 in the trophoblast (Ralston and Rossant,
2008), however, is only expressed in the porcine epiblast and not
in the trophoblast (Wu et al., 2010).

Another important gene for ICM specification is probably
POU5F1, which is expressed in these cells and becomes exclusively
localized in the epiblast during later development (Hall et al.,
2009; Gao et al., 2011b). It remains unclear whether the genes NA-
NOG and SOX2 play an important role in ICM specification in the
pig. These genes are expressed in the murine ICM, but are only ex-
pressed in the pig epiblast (Hall et al., 2009; Wolf et al., 2011). Data
on gene regulation during early development are more advanced in
the well-studied mouse, but there are some reports which show
that both similarities and differences exist between the mouse
and the pig.
In vitro production (IVP) of embryos

The pig has been a particularly difficult species in which to ob-
tain high rates of fertilization and subsequent blastocyst develop-
ment in vitro. Problems in oocyte cytoplasmic maturation
in vitro, high rates of polyspermy, and low embryonic development
rates are the major obstacles that still need to be overcome (Gil
et al., 2010). The rate of polyspermy has been reported to be over
Please cite this article in press as: Hall, V., et al. Early embryonic developmen
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50% in some laboratories (Mugnier et al., 2009). Despite these dif-
ficulties, IVP blastocyst development rates tend to vary from 30% to
50% from monospermically-fertilized oocytes in most laboratories
(Gil et al., 2010). Problems with mitochondria migration during
IVM have been postulated to be one potential reason for lack of
developmental competence (Sun et al., 2001).

The addition of particular components, such as porcine follicu-
lar fluid, into the IVM media has been shown to improve the qual-
t, assisted reproductive technologies, and pluripotent stem cell biology in
.tvjl.2013.05.026
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Fig. 6. Porcine induced pluripotent stem cell-like cells. Bright field image of a
colony reveals small compact cells containing a large nuclear-to-cytoplasmic ratio
with prominent single nucleoli (marked with arrow) and typical high lipid content
(refractive yellow portions of colony). Colonies also express alkaline phosphatase
(inset image). Colonies are at passage 4 and were grown on mitomycin C-treated
mouse embryonic fibroblasts. Cell culture conditions used were KnockOut-DMEM
containing 15% KnockOut Serum, 1� non-essential amino acids, 1� glutaMAX, 1�
beta-mercaptoethanol, 1� penicillin–streptomycin and supplemented with MEK
inhibitor PD0325901 and GSK3 inhibitor, CHIR99201. Scale bar: 100 lm.
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ity of porcine IVM (Algriany et al., 2004), as has hormones at par-
ticular stages of maturation and insulin–transferrin–selenium (Hu
et al., 2011). Due to a refinement of techniques, IVM rates now vary
from 75% to 85% (Gil et al., 2010). One reason for the high rate of
polyspermy seen in this species may relate to a delay in the zona
reaction, which under normal conditions establishes a prompt bar-
rier to the fertilization by supernumerary spermatozoa (Wang
et al., 1998). Reducing the time of exposure of oocytes to the sper-
matozoa has led to an increase in monospermic fertilization (Gil
et al., 2010). A synthetic attempt to harden the zona has also been
attempted using an amine-reactive cross linker, which resulted in a
5-fold increase in monospermic fertilization and an increase in fer-
tilization rate (Coy et al., 2008).

Embryo culture (IVC) has been developed extensively in the pig,
and two particularly successful media compositions are used widely
today, including NCSU23 and NCSU-37 (Petters and Wells, 1993).
Two independent studies have shown that removal of glucose dur-
ing the first 48–72 h can significantly improve blastocyst develop-
ment (Abeydeera, 2002; Kikuchi et al., 2002). A chemically defined
media has also been developed (PZM5) which appears to be very
successful for porcine embryo culture (Yoshioka et al., 2008).

The rate of live offspring resulting from IVP is generally rela-
tively low in the pig compared to the number of transferred IVP
embryos, and to date, successful generation of offspring depends
on transfer of large numbers of blastocysts or earlier embryos, to
produce sufficient litter sizes. A live offspring rate of 11% to 16%
has been reported from transferred blastocysts when using chem-
ically defined culture media (Kikuchi et al., 2002). The need to
transfer relatively large numbers of embryos to achieve even a
comparatively low litter size, as well as the lack of stable non-sur-
gical procedures for embryo transfer remain significant obstacles
towards the practical implementation of IVP. In contrast, artificial
insemination (AI) remains a mainstream method for ART in swine
and is used across Europe, the USA, and many other countries
worldwide (Day, 2000).

Somatic cell nuclear transfer (SCNT)

Over the past decade, the efficiency of SCNT has significantly
improved due to refinements and simplifications of the cloning
technology (Vajta and Callesen, 2012). Development of a zona-free
methodology, based on removal of the zona pellucida of the oocyte,
combined with the so-called hand-made-cloning, where the oocyte
is enucleated by simple hand-held bisectioning, are aspects that
have helped to improve blastocyst development of SCNT-produced
embryos in the pig (Lagutina et al., 2007; Vajta and Callesen, 2012).
Pre-treatment of porcine fibroblasts using Xenopus egg extract has
also led to improved in vitro SCNT embryo development (Liu et al.,
2011, 2012). As for IVP, vast numbers of SCNT embryos are trans-
ferred to produce pregnancies and even relatively-low litter sizes.

A recent report has shown that the average rate of offspring
from porcine SCNT embryos using two different pig breeds and
two different methods was approximately 7% of transferred em-
bryos (Schmidt et al., 2010). Perinatal mortality and malformations
are unfortunately still major issues that are reported in this species
(Schmidt et al., 2010). This is considered to be caused by errors in
epigenetic and genetic reprogramming, and has been overcome in
some studies by performing an additional re-cloning step
(Fujimura et al., 2008; Cao et al., 2012). Despite these considerable
setbacks, a staggering number of genetically-modified pigs, serving
as potential human disease models, have been produced using
SCNT, including animals carrying gene modifications potentially
resulting in skin inflammation related to psoriasis (Staunstrup
et al., 2012), Alzheimer’s disease (Kragh et al., 2009), cystic fibrosis
(Welsh et al., 2009; Klymiuk et al., 2012), and diabetes (Renner
et al., 2010). Transgenic pig models have also been developed that
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will aid cancer research and xenotransplantation, such as the re-
cently produced SCID pig (Suzuki et al., 2012). Thus the pig is fast
paving the way for an alternative biomedical animal model for
varying diseases.
Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs)

Production of bona fide porcine ESCs remains elusive, which is
likely due to inadequate culture conditions (Hall, 2013). Several re-
search groups have attempted to produce porcine ESCs, however
these cells only undergo a limited number of cell passages and dif-
ferentiate spontaneously in culture (Hall, 2008). One research
group has successfully been able to culture porcine ICM cells fol-
lowing transduction with the pluripotency genes POU5F1 and
KLF4 (Telugu et al., 2011), but transgene-free porcine ESCs remain
lacking.

In contrast, iPSCs have been produced in the pig by several dif-
ferent groups (Fig. 6; Ezashi et al., 2012; Kues et al., 2012). These
cell lines demonstrate pluripotency and have been shown to con-
tribute towards the formation of chimeras (West et al., 2010) and
may even be transmitted through the germline, although this type
of transmission was considered rare and combined with perinatal
death potentially due to epigenetic aberrations (West et al.,
2011). However, unlike their mouse and human counterparts,
these cell lines do not silence their inserted transgenes, either dur-
ing culture or during cell differentiation (Ezashi et al., 2012; Hall
et al., 2012). Furthermore, the cells are unable to maintain pluripo-
tency and self-renew when the transgenes are turned off (Wu et al.,
2009), indicating that the cells are neither stable in vitro, nor fully
reprogrammed.

Problems with both ESCs and iPSCs therefore remain and fur-
ther research is required in order to determine the exact underly-
ing causes for the continued problems of these cells in culture.
Transcriptional profiling of the naïve pluripotent ICM or epiblast
may provide some clues as to whether any differences exist in
these cells compared to ESCs and iPSCs from mouse and human.
Some initial studies have already shown that differences do exist,
such as the absence of NANOG and SOX2 in the porcine ICM (Hall
et al., 2009). Thus, in vitro cell tools have been developed in the pig,
t, assisted reproductive technologies, and pluripotent stem cell biology in
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however, further refinement of culture conditions is warranted in
order to stabilize iPSC cells and enhance their reprogramming.
Such advances may also allow for the development of porcine ESCs
in the future.
Horse (Equus ferus caballus)

Molecular regulation of pre-implantation development

The time of major embryonic genome activation in the horse
embryo appears to be around the 6-cell stage (Brinsko et al.,
1995; Grondahl and Hyttel, 1996). The equine blastocyst cavity
forms in a multicentric manner, resulting in a loose network of in-
ner cells (Bruyas et al., 1993; Tremoleda et al., 2003; Hinrichs et al.,
2007b). The segregation of these inner cells is strikingly different
from that of other species: Enders et al. (1993) reported that some
cells from this loose inner network form the ICM, and some mi-
grate directly to individually seed the inside of the trophoblast,
then spread to form a continuous endodermal layer, resulting in
a bilaminar blastocyst.

An acellular capsule forms inside the zona pellucida after entry
of the equine embryo into the uterus (Flood et al., 1982; Freeman
et al., 1991). The equine capsule is composed of mucin-like glyco-
proteins produced by the trophectoderm, containing a high pro-
portion of sialic acid (Oriol et al., 1993a, 1993b). Sialic acid
transporters and sialyltransferases are upregulated from days 8
to 14 (Klein and Troedsson, 2011).

Guest and Allen (2007) found that FUT4 (previously known as
SSEA1), SSEA3, and SSEA4 proteins were expressed in both ICM
and trophoblast in day-7 in vivo-recovered horse blastocysts,
whereas POU5F1, TRA-1-60, TRA-1-81, and AP activity were local-
ized to the ICM. The ICM cells of �Day 10 IVP/transferred embryos
expressed significantly higher levels of SOX2 and NANOG than did
trophoblast; interestingly, CDX2 expression was present in both
cell types (Choi et al., 2009a) and has been reported in the equine
embryo proper at days 21–25 (de Mestre et al., 2009). Klein and
Troedsson (2011) found that embryonic fibrinogen mRNA in-
creased from day 8 to day 14, and that fibrinogen was present in
the conceptus and environs.

Smits et al. (2011) found five genes upregulated in equine
in vivo-derived vs. IVP blastocysts: FABP3, HSP90AA1, ODC1 (previ-
ously known as ODC), MOB3 (previously known as MOBKL3), and
BEX2. Heat-shock protein HSPA1A mRNA was higher in IVP vs.
in vivo-derived embryos (Mortensen et al., 2010). Choi et al.
(2009a) found that production of POU5F1 began at the com-
pacted-morula stage in IVP embryos. POU5F1 protein was limited
to the ICM in in vivo-derived embryos but not in IVP embryos,
and transfer of IVP embryos to the uterus normalized expression.
Similarly, GATA6 protein was present only in hypoblast of day-
7.5 in vivo-derived embryos, but showed embryo-wide expression
in IVP embryos (Desmarais et al., 2011).

At about day 37, specialized equine embryonic trophectoderm
cells (chorionic girdle cells) invade into the maternal endome-
trium, form nests (endometrial cups), and secrete equine chorionic
gonadotropin (eCG). Expression of GCM1, a transcription factor
found in human syncytiotrophoblast cells, was upregulated in cho-
rionic girdle cells at day 34 (de Mestre et al., 2009). Chorionic girdle
cells also showed high expression of the immunoregulatory cyto-
kine, interleukin (IL) 22, which may modulate endometrial re-
sponse to invasion (Brosnahan et al., 2012).
2 See: www.ViaGen.com.
In vitro production (IVP) of embryos

Immature equine oocytes may be recovered post mortem, (Hin-
richs and Williams, 1997; Hinrichs et al., 2005) or from live mares
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via transvaginal oocyte aspiration (TVA; Brück et al., 1992; Colleoni
et al., 2007; Jacobson et al., 2010). Mature oocytes may be collected
by aspiration of the dominant pre-ovulatory follicle after gonado-
tropin stimulation, via TVA or puncture through the flank (Carne-
vale and Ginther, 1993; Hinrichs et al., 1998).

Immature oocytes may be held overnight in a modified M199 at
room temperature before maturation, with no effect on develop-
ment (Choi et al., 2006). Maturation is performed effectively in
M199 with fetal bovine serum and FSH (Hinrichs et al., 2005; Choi
et al., 2007; Ribeiro et al., 2008). The optimum duration of matura-
tion is 24–30 h and 30–36 h for oocytes initially having expanded
and compact cumuli, respectively. The maturation rate of compact
oocytes is lower than that for expanded oocytes (�20% vs. �65%),
but there is no difference in blastocyst development after intracy-
toplasmic sperm injection (ICSI; Hinrichs et al., 2005).

Standard IVF has not been reliably successful in the horse.
Treatment of sperm to induce hyperactivation has resulted in
>60% fertilization in two studies (McPartlin et al., 2009; Ambruosi
et al., 2013). Currently, fertilization in the horse is performed using
ICSI. Good blastocyst rates (20% to 40% of injected oocytes) are
achieved using the Piezo drill (Fig. 7; Hinrichs et al., 2005; Galli
et al., 2007; Ribeiro et al., 2008). No exogenous activation is
needed.

Low-glucose embryo culture media do not support equine blas-
tocyst formation. Good rates of blastocyst development have been
achieved using DMEM/F-12 with fetal bovine serum in a mixed gas
atmosphere (5% O2, 5% CO2, 90% N2), at 38.2 �C (Hinrichs et al.,
2005; Choi et al., 2007; Ribeiro et al., 2008). Equine embryos devel-
op to the blastocyst stage between days 7 and 10 after ICSI. Preg-
nancy rates after transfer of IVP blastocysts are 50–70% (Colleoni
et al., 2007; Choi et al., 2011). IVP is currently used clinically in
the horse, both in live mares (Colleoni et al., 2007) and post mor-
tem (Hinrichs et al., 2012).
Somatic cell nuclear transfer (SCNT)

Woods et al. (2003) reported the birth of the first cloned equid,
a mule. Viable foals from SCNT have been reported from the labo-
ratory of Dr. Cesare Galli, in Italy (2 foals; Galli et al., 2003a, 2003b;
Lagutina et al., 2005), from our laboratory at Texas A&M (13 foals;
Choi et al., 2009b; Choi et al., 2013; Hinrichs et al., 2006, 2007a),
and from the laboratory of Dr. Daniel Salamone, in Argentina (2
foals; Gambini et al., 2012). In addition, a company, ViaGen2 has
announced in the popular press the production of more than 160 via-
ble cloned foals.

The reported blastocyst rate per reconstructed equine oocyte is
typically less than 10%. Reconstruction was performed by fusion
with zona-free oocytes in Italy (Galli et al., 2003a, 2003b; Lagutina
et al., 2005), and this technique, accompanied by aggregation of
multiple reconstructed oocytes, was used in Argentina (Gambini
et al., 2012). Our laboratory in Texas synchronizes donor cells with
roscovitine, injects the cells into enucleated oocytes, and injects
sperm extract in addition to using chemical activation (Hinrichs
et al., 2006, 2007a; Choi et al., 2009b, 2013). Live foal production
per embryo transferred reaches 35% (Hinrichs et al., 2007a). We re-
ported on the health of cloned foals after birth (Johnson et al.,
2010). There was a 50% incidence of maladjustment, enlarged
umbilical remnant, and/or front leg contracture. Two of 14 live-
born foals in this series died within 2 weeks of birth; the other
12 were viable. One of three foals in Italy died within 2 days of
birth (Lagutina et al., 2005). The two foals born in Argentina were
healthy (Gambini et al., 2012). No reports on foal viability are
available from ViaGen.
t, assisted reproductive technologies, and pluripotent stem cell biology in
.tvjl.2013.05.026

http://www.ViaGen.com
http://dx.doi.org/10.1016/j.tvjl.2013.05.026


Fig. 7. Equine in vitro production of embryos. Equine in vitro matured oocyte (A), 8-
cell embryo derived from intracytoplasmic sperm injection (B), and expanded
blastocyst (C). Note the lack of a distinct inner cell mass in (C). 1: Cumulus cells; 2:
Zona pellucida; 3: First polar body. Scale bars: 50 lm (A, B, and C).
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Equine cloning presents an excellent tool for research on genet-
ics vs. environment in a host of equine diseases, but has not yet
been utilized for such studies. Commercial equine cloning is per-
formed to preserve valuable genetics, but clones and their offspring
are not eligible for registration in most breeds.
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Embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC)

Saito et al. (2002) first described the production of equine ESC-
like cells after microsurgical dissection of ICM from day-8 horse
blastocysts. The cells expressed FUT4, STAT3, and POU5F1 and
could be differentiated to neural precursor cells. Li et al. (2006)
established ESC-like cells after immunosurgical dissection of ICM
from day-7 to -8 blastocysts; cells proliferated for up to 28 pas-
sages were positive for AP activity, and for FUT4, TRA-1-60, TRA-
1-81, and POU5F1 protein and mRNA. The cells differentiated into
multiple lineages but did not form teratomas when injected into
SCID mice. The gene pattern differed from those for mouse and hu-
man ES cells, but reflected the pattern of equine ICM cells (Guest
and Allen, 2007). Desmarais et al. (2011) produced ESC-like cells
from enzymatically-isolated ICM cells of in vivo-derived, partheno-
genetic, and SCNT embryos. These authors concluded the cells
most likely represented trophoblast stem cells rather than true
ESCs.

Nagy et al. (2011) first reported the generation of equine iPSCs,
after introducing human POU5F1, SOX2, KLF4, and MYC (also known
as c-MYC) into equine fetal fibroblasts. The resulting iPSCs ex-
pressed AP activity, FUT4, SSEA4, TRA-1-60, TRA-1-81, and NANOG,
as well as equine-specific mRNA for POU5F1, NANOG, and KLF4, and
formed teratomas. Breton et al. (2013) and Khodadadi et al. (2012)
reported production of iPSCs from adult equine fibroblasts; the lat-
ter study without use of MYC. Hackett et al. (2012) compared DNA
methylation patterns of the NANOG and SOX2 promoter regions
and concurrent gene expression of NANOG, SOX2, and POU5F1 in
equine iPSCs (Nagy Lab) with those of mesenchymal progenitor
cells (commercially marketed as ‘stem cells’ for treatment of ortho-
paedic injury in horses). All three pluripotency genes were highly
expressed in iPSCs, whereas mesenchymal progenitor cells ex-
pressed SOX2 at differentiated levels and did not express NANOG
or POU5F1. ESCs and iPSCs have extensive clinical application in
the treatment of orthopedic injury in horses, which presents an
excellent model for their use in the human athlete; thus, this is
an active and relatively well-funded area of research.
Dog (Canis lupus familiaris)

Molecular regulation of pre-implantation development

Several characteristics of canine female reproductive physiol-
ogy and developmental biology, such as a pre-ovulatory follicular
luteinization, ovulation of immature germinal vesicle (GV) stage
oocytes, and prolonged pre-implantation development/transport
in the oviduct are distinctly different from those seen in other
mammalian species (Reynaud et al., 2006). These differences may
account for the very poor efficiency of IVM, IVF, and IVC in canines
(Chastant-Maillard et al., 2010). One unique feature of canine oo-
cytes, zygotes, and embryos is their abundant lipid content that
accumulates during follicle growth (Tesoriero, 1981). These lipids,
mainly made up of triglycerides and phospholipids, are clearly vis-
ible by microscopy and can still be observed in the ICM and troph-
ectoderm of canine blastocysts (Fig. 8) and may be indicative of a
unique metabolism that could contribute to their poor develop-
ment in current in vitro regimes (see below).

Because of these hurdles very limited studies have examined
the molecular regulation of canine pre-implantation development.
In day-10 flushed canine embryos (morulae and early blastocysts)
transcripts for key enzymes of prostaglandin synthesis (COX2), se-
lected growth factors (TGF-a, IGF-1, �2), cytokines (IL-1a, �6), im-
mune cell receptors (CD4) and matrix-metalloproteinases (MMP-2
and �9) are present (Schafer-Somi et al., 2008). We have detected
early lineage markers of the epiblast (POU5F1), trophectoderm
t, assisted reproductive technologies, and pluripotent stem cell biology in
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Fig. 8. Expanded canine blastocyst derived in vivo. At 11–15 days following
detection of an LH surge canine blastocysts were retrieved from flushed reproduc-
tive tracts of inseminated bitches. Note the dark lipid-rich inner cell mass (1). 2:
Zona pellucida; 3: Blastocyst cavity. Scale bar: 100 lm.
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(CDX2), and hypoblast (GATA6) in flushed canine blastocysts
(Wilcox et al., 2009). Like other domestic species (Kirchhof et al.,
2000), POU5F1 is expressed at diminished levels in the
trophectoderm (Wilcox et al., 2009). Clearly, further fundamental
research is still required to understand the molecular mechanisms
governing oocyte maturation and embryonic development in the
dog.
In vitro production (IVP) of embryos

Although conventional assisted reproductive technologies such
as AI and cryopreservation have been highly successful (Thomas-
sen and Farstad, 2009), other advanced technologies have been
exceptionally inadequate for obtaining high rates of in vitro em-
bryo development in the dog (Chastant-Maillard et al., 2010). For
starters, the IVM rates of canine oocytes are very low compared
to results obtained in other domestic species (Otoi et al., 2000; Gal-
li and Lazzari, 2008; Bukowska et al., 2012). Canine oocytes col-
lected from anoestrous ovaries exhibit very low frequencies (10–
20%) of maturation to the MII stage after 72–96 h of culture (Luv-
oni et al., 2005; Songsasen and Wildt, 2007), while the IVM rate of
oocytes from pre-ovulatory follicles only reaches about 30% (Yam-
ada et al., 1993).

Compounding this poor IVM is a reduced ability of canine sper-
matozoa to penetrate (10–50%) these oocytes in vitro, with only 4–
10% of all oocytes forming two pronuclei after IVF (Mahi and Yan-
agimachi, 1976; De los Reyes et al., 2009). The poor fertilization is
due, in part, to high rates of polyspermy (Saint-Dizier et al., 2001;
Hatoya et al., 2006a). ICSI has equally been poor and has not over-
come this dual problem of polyspermy and low fertilization ability
(Fulton et al., 1998). Although we observed decent in vitro devel-
opment of in vivo fertilized and flushed canine morulae to the blas-
tocyst stages in SOF medium cultured under 5% oxygen tensions
(Wilcox et al., 2009), a 4- to 8-cell block commonly occurs that
contributes to their exceptionally poor in vitro development (Yam-
ada et al., 1992; Otoi et al., 2000; Hori and Tsutsui, 2003; Hatoya
et al., 2006a).
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Somatic cell nuclear transfer (SCNT)

While poor rates of IVM and IVF have limited canine ART (Cha-
stant-Maillard et al., 2010), SCNT could be used to improve canine
reproduction and produce valuable disease models. Since the birth
of ‘Snuppy’, the first cloned dog (Lee et al., 2005), several breeds of
viable cloned puppies have now been produced by SCNT (Jang
et al., 2008; Hossein et al., 2009; Kim et al., 2012). Due to the dog’s
unique reproductive physiology, limitations of canine in vitro em-
bryo technologies (see above) and poor ovulation induction, dog
cloning has relied heavily on protocols to surgically collect
in vivo matured oocytes by oviduct flushing after predicted natural
ovulations (Johnston et al., 2001; Lee et al., 2005) and surgically
transfer cloned embryos immediately after reconstruction to spon-
taneously synchronized recipients (Lee et al., 2005). Nevertheless,
over 50 cloned dogs have been reported with an average pregnancy
rate of almost 18% and an average live birth rate of 1.42% from total
number of embryos transferred (Kim et al., 2012).

Cloning can propagate desired canine traits, restore the repro-
ductive ability of old or neutered dogs, and even ‘resurrect’ a dead
pet (Jang et al., 2008; Park et al., 2009). The concept of dog cloning
was fostered in 1998 with the multi-million dollar Missyplicity
project designed to clone a dog called ‘Missy’. Although initially
unsuccessful, Missy’s clone was born in 2007 as the World’s first
clone of a family dog. Currently, there are a few companies (e.g.
RNL Bio; Perpetuate) that commercially offer canine cloning ser-
vices and/or will cryobank cells for producing future dog clones
when the technology becomes more efficient and cheaper.

Although phenotypic differences have been observed between
clones due to stochastic epigenetic reprogramming events (Peat
and Reik, 2012), SCNT allows elite characteristics related to nuclear
genetic information to be passed on to the clones. Since re-cloned
dogs have been recently derived from cells of cloned canines (Hong
et al., 2011b; Oh et al., 2011), infinite propagation of these elite
abilities, such as the unique scent sniffing capabilities of detection
dogs (Park et al., 2009) or even transgenic dogs (Hong et al., 2009;
Kim et al., 2011) are theoretically possible. Interspecies SCNT has
even been used for preservation of endangered canine species.
The grey wolf (Canis lupus), which is considered a threatened spe-
cies in many countries, was successfully cloned using a wolf so-
matic cell and a dog oocyte and recipient (Kim et al., 2007; Oh
et al., 2008).

Owing to a shared environment and to similarities in physiol-
ogy, disease presentation, and clinical response at least half of ca-
nine diseases are known to have human equivalents making the
dog an ideal model for human disorders (Starkey et al., 2005).
Although controversial (Varner, 1999; Fiester, 2005), using SCNT
to generate genetically modified disease models in dogs looks
promising (Jeong et al., 2012; Oh et al., 2012). However, as with
other domestic animal clones (Wells, 2005), there have also been
some reports of abnormalities in cloned dogs that would currently
limit this use (Kim et al., 2009; Hong et al., 2011a). These reports
are contentious, however, since there are other published studies
showing no adverse effects (Hong et al., 2010; Park et al., 2010).
Nevertheless, the challenging reproductive physiological barriers
combined with poor ART, low SCNT efficiency, and the high costs
associated with these technologies are still limiting factors for
achieving translational success with dog cloning.

Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs)

One emerging research field that may contribute to a greater
understanding of pre-implantation embryonic development in
general and reveal the dog as a model system for developing ther-
apeutic treatments is canine pluripotent stem cells. We were
among five research groups to separately derive the first canine
t, assisted reproductive technologies, and pluripotent stem cell biology in
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Fig. 9. Naïve (A) and primed (B) canine embryonic stem cell colonies. Canine ESC
colonies appear in a primed (hESC-like) pluripotent state when cultured in media
contain LIF and bFGF, but morphological changes associated with a more naïve
(mESC-like) pluripotent state are observed upon propagation of explanted colonies
in media containing just LIF + 2i (glycogen synthase kinase 3b and mitogen-
activated protein kinase inhibitors). Scale bars: 100 lm (A and B).
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ESC lines (Hatoya et al., 2006b; Schneider et al., 2007; Hayes et al.,
2008; Vaags et al., 2009; Wilcox et al., 2009). All of our character-
ized lines exhibit prolonged propagation in the undifferentiated
state by the expression of established pluripotency markers (e.g.
POU5F1, SOX2, and SSEA3). Under culture conditions supporting
differentiation, canine ESCs form embryoid bodies that give rise
to ectodermal, mesodermal, and endodermal derivatives (Wilcox
et al., 2009). Importantly, we have recently established neural pro-
genitors and active neural cell types from our canine ESC lines
(Wilcox et al., 2011). Although chimera formation and germ line
contribution of canine ESCs have not yet been assessed, some
ESC lines have displayed small overt teratoma formation after
transplantation into immune compromised mice (Vaags et al.,
2009; Wilcox et al., 2009).

Different pluripotent states (naïve vs. primed) likely arise from
the species-specific developmental stage from which the cells are
derived (Nichols and Smith, 2009) and stabilized by the in vitro con-
ditions they are cultured in (Hanna et al., 2009). Although canine
ESCs and canine iPSCs have been derived in LIF-only medium (Hayes
et al., 2008; Whitworth et al., 2012), their long term propagation un-
der these conditions have not been demonstrated. Interestingly, it
appears that canine ESCs (Vaags et al., 2009; Wilcox et al., 2009)
and iPSCs (Luo et al., 2011) require dual-factor culture (LIF and bFGF)
to maintain proliferation in the undifferentiated state.
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Canine pluripotent stem cells may exist in a stably distinct plu-
ripotent state. However, preliminary studies in our laboratory have
shown that canine ESCs are responsive to LIF and 2i (inhibitors of
the Mek/Erk and GSK3 pathways) supplemented media with colo-
nies displaying domed-like morphology typical of naïve pluripo-
tency (Fig. 9). Further examination of these unique canine ESCs
and iPSCs will allow us to understand to a greater extent the origin
of different pluripotent states and will help define/optimize spe-
cific culture conditions for their unlimited self-renewal and differ-
entiation into therapeutically relevant cell types to create animal
models, stem cell transplantation treatments, and/or as drug
screening modalities for human/canine diseases.
Conclusions

Over the coming years, because of new technological advance-
ments and transcriptome- and proteome-based insight into cellu-
lar molecular signalling pathways, further progress in embryo
and stem cell culture conditions will be forthcoming. This im-
proved efficiency will increase the safety, efficacy and applicability
of assisted reproductive technologies in animal production. How-
ever, the greatest impact is expected to be in the area of biomedi-
cine. As with the human stem-cell field, advancements in domestic
animal stem cells, and, in particular in iPSCs, will create cellular
and animal models of disease that may also be used as drug-
screening tools to treat various livestock and companion-animal
ailments. In combination with newly-discovered genome editing
tools, possible cell-based therapies to regenerate, repair, or even
replace damaged or diseased tissue are envisioned in the near
future.
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