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ARTICLE INFO

Abstract: Over the recent years, the national databases of STR profiles have grown in size due to the
success of forensic DNA analysis in solving crimes. The accumulation of DNA profiles implies that the
probability of a random match or near match of two randomly selected DNA profiles in the database
increases.

We analysed 53,295 STR profiles from individuals investigated in relation to crime case investigations
at the Department of Forensic Medicine, Faculty of Health Sciences, University of Copenhagen, Denmark.
Incomplete STR profiles (437 circa 0.8% of the total), 48 redundant STR profiles from monozygotic twins
(0.09%), 6 redundant STR profiles of unknown cause and 1283 STR profiles from repeated testing of
individuals were removed leaving 51,517 complete 10 locus STR profiles for analysis. The number
corresponds to approximately 1% of the Danish population. We compared all STR profiles to each other,
i.e. 1.3 x 10° comparisons.

With these large number of comparisons, it is likely to observe DNA profiles that coincide on many
loci, which has concerned some commentators and raised questions about “overstating” the power of
DNA evidence. We used the method of Weir [11,12] and Curran et al. [3] to compare the observed and
expected number of matches and near matches in the data set. We extended the methods by computing
the covariance matrix of the summary statistic and used it for the estimation of the identical-by-descent
parameter, 0. The analysis demonstrated a number of close relatives in the Danish data set and
substructure. The main contribution to the substructure comes from close relatives. An overall 6-value of
1% compensated for the observed substructure, when close familial relationships were accounted for.

© 2011 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction near match of two randomly selected DNA profiles in the database
increases. If all pairs of profiles are compared to each other in the

The STR data accumulated by forensic laboratories are an

important source of information for verifying the population
genetic models used when reporting the evidential weight related
to DNA evidence. These models may be used to compute the
probability that a pair of STR profiles share a particular genotype or
only a given number of alleles. Hence, irrespective of the number of
coinciding alleles, the pairwise comparison of STR profiles contain
information about the validity of the population genetic models.

Over the recent years, the national databases of STR profiles
have grown in size due to the success of forensic DNA analysis in
solving crimes. With these vast numbers of profiles available, it is
possible to test the validity and applicability of population models
to forensic genetics [5,11,12]. Furthermore, the accumulation of
DNA profiles implies that the probability of a random match or
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2
isons in a database with n DNA profiles.

With these large number of comparisons, it is likely to observe
DNA profiles that coincide on many loci which has concerned some
commentators and raised questions about “overstating” the power
of DNA evidence. Hence, it is important to demonstrate that the
observed and expected number of matches are sufficiently close to
each other in order to retain the confidence in DNA typing in
general and the population genetic models used for evidential
calculations in particular.

The discriminatory power of a set of genetic markers is related
to the number of alleles that two STR profiles share. Hence, the
exercise of making all pairwise comparisons of STR profiles in the
data set gives a summary statistic, which can be compared to what
is expected under the population genetic model.

Weir [11,12] presented models for the expected number of
pairs of DNA profiles matching and partially-matching on a given
number of loci. Curran et al. [3] extended the work and discussed

database this corresponds to <n) =n(n — 1)/2 pairwise compar-
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how the deviation between the observed and expected counts can
be used to estimate model parameters.

In the present paper, we derive computationally efficient
formulae for the expected value and covariance matrix of the
summary statistic. Furthermore, these two quantities are used in
order to improve the parameter estimation procedure. We
demonstrate our methods using a Danish STR data set, which
constitute approximately 1% of the Danish population.

2. Materials and methods
2.1. Data

The Danish STR data set contains 53,295 STR profiles
accumulated from 1999 to 2009 typed at the 10 autosomal loci
and amelogenin included in the AmpF¢STR®™ SGM Plus kit (Applied
Biosystems, CA, USA). The results of amelogenin were discarded
after the preliminary analysis (cf. below) to avoid complications
from its differences to the autosomal STR markers.

In the preliminary analysis, 48 STR profiles (0.09%) were
removed since they originated from one of the twins in pairs of
monozygotic twins. A total of 1283 duplicated DNA profiles of
individuals typed twice or more were removed such that only a
single copy of their profile remained in the data set. A total of 437
STR profiles (0.8%) with incomplete genotypes (missing allelic
information at some STR loci) were discarded. Furthermore, 6
(0.01%) full STR profiles were excluded because it could not be
determined if six pairs of identical STR profiles came from the same
individual, identical twins, close relatives, etc. Hence, the STR data
set analysed in this paper included 51,517 DNA profiles, which
corresponds to about 1% of the Danish population.

The data set was subjected to a matching exercise where every
STR profile was compared to any other STR profile in the data set.
For each pairwise comparison, the number of matching (agree-
ment on both alleles), m, and partially-matching loci (sharing one
allele of two), p, were recorded. With n DNA profiles in the data set,
n
2
For the Danish STR data set (n=51,517), this results in
N=1,326,974,886 STR profile comparisons. We denote the
resulting matrix M = {Mm/P}m_p’ where entry My, , has the number

this corresponds to N = ( > =n(n—1)/2 pairwise comparisons.

of pairs with m matching and p partially matching loci,
respectively.

The result of analysing the Danish data set is summarised in
Table 1, where we find that, e.g. the number of profile pairs with 5
matching loci and 4 partially-matching loci out of ten autosomal
loci is Ms;4 =17,060. Fig. 1 shows the summary statistic for the
Danish data set in an informative way, where we have plotted the
observed counts on a log jo-scale. Superimposed are expected

Table 1

counts when substructure (8 = 0.0118) and close familial relation-
ships are accounted for (see Table 3).

Two of the authors (Tvedebrink and Curran) implemented
computationally efficient functions for constructing the M-table in
the statistical software R [7]. The dbCompare-function from the
DNAtools-package [10] used less than 5 min to perform all
1,326,974,886 pairwise comparisons on a 2.50GHz laptop
computer. Most of the methodology in this paper has been
implemented in the DNAtools-package together with specialised
plotting functions. The R-package is described in more detail in the
package’s vignette, which is obtained by running vignette (* ‘D-
NAtools’’ ) after installation in R.

2.2. Population genetic model

The model proposed by Weir [12] defines for each of L typed loci
three probabilities (Pojo, Poj1, P1j0), which are the probabilities for
two randomly selected profiles sharing none, one or both alleles at
a given locus (Weir denoted the probabilities Pg, Py, P>. The change
of subscript will hopefully be clear from Section 2.2.1). The
probabilities P, depend on the coancestry coefficient, 6, through
the match probability equations [6] that are derived using the
recursion formula:  P(A;x") = x'0+ (1 -6)p;]/[1+ (n—1)6],
where x" is the sufficient statistic [8], and P(A; | X") denotes the
probability of observing an i allele after having seen x!' alleles of
type i among n sampled alleles.

Furthermore, Weir [12] showed that for a specified family
relationship of a pair of profiles, Pp;, is updated using the
probabilities, k;, that the two individuals share I alleles identical-
by-descent (IBD):

Pojo = koPojo  Poj1 = ki(1—0)(1 —S;) + koPo/1 and
Bijo = ka + k1[0 + (1 — 6)S] + koP1 o,

where S; = Zﬁ; p? is the sum of squared allele probabilities at a
given locus with K different alleles, and P/, denotes the
probability that two individuals with the specified family
relationship will match as m/p at a given locus. From ﬁm/p, it is
clear that close relatives have an increased probability of sharing
alleles due to alleles being IBD.

In Table 2, we have listed the five types of relatedness
considered in this paper. The avuncular class covers half-sibling,
grandparent-grandchild and uncle-nephew (independent of
gender) since these have identical k-vectors and are indistinguish-
able using unlinked genetic markers.

2.2.1. Expected value and covariance matrix
Since the summary statistic is formed by adding identically
distributed elements, the expected count E[M] = NE[M(G;,,G;,)],

Summary matrix, M, for the Danish STR data set with 51,517 DNA profiles. My,,;,, is the number pairs of profiles with m matching (where m is the row number) and p partially-

matching (where p is the column number) loci.

Mupp O 1 2 3 4 6 7 8 9 10
0 906,881 8707969 37,632,872 96,157,037 160,570,778 182,820,115 143,627,613 76852119 26,786,782 5486572 501,671
1 1,100,493 9,484,061 36229766 80,292,877 113,733,413 106635954 66,164,365 26,183,818 5992415 604,900

2 595,135 4,531,792 14,996,133  28,165271 32,810,688 24271278  11,132519 2,887,555 325,493

3 188,146 1,237,733 3,467,281 5353738 4,913,791 2,683,854 805,798 103,305

4 38,094 212,192 487,484 592,929 401,832 143,202 21,490

5 5114 23,490 42,459 37,933 17,060 3100

6 470 1685 2272 1414 378

7 26 96 91 64

8 3 6 21

9 0 0

10 0
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Fig. 1. Plot of observed counts (marked by e) versus the number of matching and partially-matching loci (counts on log 1o-scale) for the Danish STR data set. The superimposed
points (x) represents the expected counts when substructure (6 = 0.01) and close familial relationships are accounted for. The vertical bars indicate an approximated 95%-

confidence interval.

Table 2
Probability of sharing I alleles IBD for the specified relationship [12, Table 4].

Relationship Full-siblings (FS) First-cousins (FC)

Parent-child (PC) Avuncular (AV) Unrelated (UN)

k=(kz, ki, ko) (0.25, 0.5, 0.25) (0, 0.25, 0.75)

(0,1,0) (0,05, 0.5) (0,0, 1)

n
2
comparisons, and G;, and G;, are any two DNA profiles from
different individuals in the data set. Let 7 = E[M(G;,,G;,)] be a
matrix of match/partially-match probabilities. That is, 7 =
{Tm/p}m, » is the matrix of probabilities for the match/partially-
match events (m, p), where m=0,...,Land p=0,...,L —m.

The elements of 7 may be computed using recursion over loci.
Let r° denote the probability based on ¢loci, i.e. using only a subset
of size ¢ of the L loci such that m=0, ..., ¢ and p=0, ..., { —m.
Furthermore, let P!, refer to the P, probabilities for the ¢ th
added locus, then the following equation denote how to compute

where N = < ) =n(n - 1)/2 is number of pairwise DNA profile

n‘r’;/]p by recursion for /=1, ..., L — 1:
nggnfn/p+ng}ng1,H +P§7(}nfnfl/p, m>0and p>0,
0/0Tmy0 T P10 Tm-1/0, p=0,
P6/6 70/00 m=0and p=0,
(1)

where the “sum” of the subscripts for each term on the right hand
side equals the subscript on the left hand side, e.g. the subscripts of
the last term in the first equation gives 1/0 + m — 1/p = m/p. The
initial step of the recursion has 7, =Pj,, 75, =P, and
rr(l,/o = P(l)/o. Eq. (1) is readily implemented in computer software
and efficiently computes the expected numbers for various 6-values.
For a pair of R-relatives (close relatives of type R), the expected
numbers of matching/partially-matching loci, 77, are calculated by
replacing Py, with Py in (1). The effect of relatedness on the
expected number of matching/partially-matching loci is plotted in
Fig. 2. Note that parent-child (marked by + in Fig. 2) must share at
least one allele per locus implying that 7pc = 0 when m +p # L.

Weir [12] focused in his survey paper primarily on comparison
between the observed counts and the expected number, N7z(0), for
different values of 6. However, as Curran et al. [3] discussed one
needs to consider normalisation of these differences for a proper
comparison between the observed and expected counts. One way of
normalising the difference between the observed and expected
counts is by the covariance matrix of the summary statistic. As for
the expected value, the covariance matrix can be computed using
recursion over loci. In the on-line supplementary material we give
the full details on computing the covariance matrix, 2(6).

The expected value and covariance matrix can be used to
construct confidence intervals for the cell counts. Inserting the
estimated parameter values in  and 3(6) gives the fitted expected
values and covariance matrix. Given these quantities, we compute

marginal 95%-confidence intervals by N7 = 24/diag{2.(6)} (super-

imposed in Fig. 1), where 7 is defined in (2). The construction of the
confidence intervals rely on an approximation to normality for the
cell counts. The performance of this approximation increases with
the cell counts, i.e. the smaller the counts, the less accurate is the
approximation.

2.3. Estimating model parameters

From Fig. 2, it is evident that close relatives in the data set may
induce more near-matching pairs of profiles than having a data set
of unrelated individuals. Hence, not considering close relatives
may erroneously increase the estimate of 6 to accommodate the
increased similarity of the DNA profiles.

The inclusion of related pairs of profiles was investigated by
Curran et al. [3] using Australian data with Caucasian and
Aborigine origin. Curran et al. [3] defined a as the proportion
of pairwise comparisons between R-relatives. Hence, the expected
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Fig. 2. Effect on 7 for the five types of relatedness (see Table 2) with 6= 0.03. The legend explains the plot characters.

number of matching/partially-matching loci can be written as:

N7t = N(apsTers + QpcTrc + ApcTpc + Qaviay + QuNT),  With

oaun=1- ZROlR,

where the abbreviations in the subscripts are defined in Table 2.
Note that Curran et al. [3] did not include the avuncular
relationship (AV) in their original formulation.

In order to fit the model to the data, Curran et al. [3] investigated
the object functions in (3) as a mean to compare the expected and
observed counts:

C1O) = | (Mmp — Nitm/p(0))?;
m,p
5~ (M — Nty p(6))* 3
C1(6) = mzp Nt »(0) (3)
Nﬁm/p(e)\.

_ Z |Mm/p -
e~ Nitmyp(0)

where summations are over the matrix entries indexed by m =0,

.Land p=0, ..., L—m. Curran et al. [3] argued that numerical
work indicated that Cs3(0) yielded good results since special
emphasis is placed on the upper tail of the distribution (large
number of matching loci).

An alternative approach for estimating the parameters in the
model would be to use the covariance matrix, >(6), in order to
compensate for the variance of the counts and the correlation
between cell counts:

_ (M *Nﬁm/p(e))z_
m.p 2m/ pm/p(@)

To(0) = {M — N#(0)} ' 3(0) {M — N7(6)},

T,(0
1(0) ()

where M and 7 are vector versions of the matrices M and 7,
respectively. T»(0) is a so-called Mahalanobis distance, which is an
often used measure of divergence between observed and expected
quantities. Note that we use the generalised inverse of 2(8) due to
the linear constraint that >, ,Mm, = N. Simulations of data sets
with and without relatives (see [9, Chapter 3]) indicate that T»(8) is

the most efficient estimator of & among the object functions
considered here.

3. Results

The Danish STR data set was analysed using the described
methods and gave the summary statistic presented in Table 1 and
Fig. 1. We used the object functions in (3) and (4) for comparing the
observed and expected cell counts for estimating 6 and ak. For
T>(0), the minimum was obtained with 6 =0.0118 and &R as
reported in Table 3. It is noteworthy that 8 = 0 for all of the Ci(6)-
methods, i =1, 2, 3. It seems rather unlikely that there is no effect of
subpopulation stratification after allowing for close relatives.
Simulation studies (see [9]) suggest that the & estimates are stable,
whereas the estimates of « are subject to variability.

Note that the estimated ags for T»(0) is about a factor 10 larger
than 2 x 10”7 which is the approximate value obtained if one
assumes that every individual of the Danish adult population has
exactly one full-sibling. However, it is likely that the frequency of
full-siblings is larger in the Danish STR data set than in the
population due to various factors, e.g. sampling criteria and social
factors.

3.1. Accounting for close relatives when evaluating the weight of
evidence

The argument for using the O-correction when assessing the
evidential weight of a given DNA profile, is to adjust for possible
subpopulation effects in the population from which the suspect

Table 3
Estimated values for the Danish STR data set using various object functions of (3)
and (4).

Method 0 Qs QEC apc Aay

C1(0) 0.0000 5.0E-07 2.0E-15 1.6E-09 7.8E—-09
Gy(0) 0.0000 2.6E-09 1.0E-09 2.1E-08 1.4E-14
G5(0) 0.0000 5.0E-06 7.9E-06 1.4E-19 5.0E-07
T,(0) 0.0137 1.3E-06 5.9E-09 2.5E-07 1.8E-17
T»(6) 0.0118 2.6E—-06 1.2E-08 5.1E-07 3.5E-17
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and profiles for estimating allele probabilities are drawn. A
structured population causes the probability of observing a
specific DNA profile to be heterogeneous, since the prevalence
of its constituting alleles may be higher in some subpopulation
relative to the entire population.

Close relatives is another violation of the most simple
population genetic models. However, the probability that a
specified pair of R-relatives shares a DNA profile can be computed
for heterozygous and homozygous loci, respectively, by [2, Table
45]:

ky20+(1—0)(py+p;) ., O +6(1—

)(pll+plj) (

magnitude. The dominating contribution to the sum of P(E | Hyg) is
that of full-siblings, P(E|H4,R = FS)&rs, which accounts for
approximately 99.5% of P(E|Hgg). In Fig. 2, this was also the
category with the largest 7719,0. Hence, for practical purposes the
only relevant type of close relatedness to include in the
calculations when reporting likelihood ratios on routine basis is
full-siblings, since the decrease in P(E | Hg, R) for the remaining
types of relatives is minimal relative to &g making their
contribution to P(E | Hyr) negligible.

9)2 DiiDij

P(El = A[_’iA[_’j‘Hd,R) = k2 -+ 7 150 kO

20+ (1 79)p“+k 66° +50(1-0)p; +

P(E; = AjjAj|Hg,R) = ko + k4

1 +29>(1+9)
(1-6)°p;

1+6 1+260)(1+

where R determines k = (ky, kq, ko) and E; is evidence from locus [
with p;; being the probability of allele i at that locus.

Since all individuals in a population may have close relatives, it
is important to consider the possibility that a close relative of the
suspect is the true perpetrator. Hence, when forming the likelihood
ratio, LR, the hypothesis in the denominator could be Hy: “A man
possibly related to the suspect is the true donor of the biological
stain” [1,4]. The probability ay represents the probability that two
randomly selected individuals are R-relatives. The probability that
the “random man” of the defence hypothesis is a R-relative of the
suspects can therefore be expressed by ag. The probability of the
evidence taking these close relationships into account can be
evaluated by summing over R yielding P(E | Hagr)=>_ r P(E|Ha,
R)ag, such that H, g explicitly takes close relatives into account.

In Fig. 3, P(E | Har) is plotted against P(E | Hy) for all 51,517 DNA
profiles of the Danish STR data set. The relationship is close to log-
log linear: log 1oP(E | Har) = Bo + B1log 10P(E | Hg). In Fig. 3, we have
superimposed the expected relationship (solid line) with the
uncertainty represented by the predictive interval (dashed lines).
The estimated mean and standard deviation of log 1oP(E | Har)/

P(E | Hy) are 3.22 and 0.95, respectively. Hence, an approximative
confidence interval for the ratio is given as 10322+2%095 ~ [10;10°]
with a mean of 1660, i.e. taking close relatives into account
increases the probability of the evidence with up to five orders of

+0)

4. Discussion

Itis evident from the analysis of the Danish STR data set that a 6-
correction close to 1% is sufficient to capture the effects from
substructure among the typed STR profiles. Furthermore, the
analysis demonstrated the presence of close relatives in the data
set. A fact that was suspected beforehand, but the number of close
relatives was unknown.

It is doubtful that the present STR data set is completely
representative of the distribution of STR profiles among people
living in Denmark. The STR data set investigated is also different
from the one in the Danish crime DNA database. It was impossible
to conclude the cause of identity of 6 pairs of STR profiles (12 STR
profiles, 0.02%). The STR data set included a significant number of
known, identical twins with identical STR profiles. Approximately
every 1in 250-300 births give rise to identical twins, so it was not
surprising that 96 twins (0.18%)=48 twin pairs (0.09%) were
observed. These facts may be of value for investigators who search
large crime DNA databases.

The investigations showed that there is substructuring in the
Danish STR data set. Close relatives seem to contribute to a
significant degree, although mechanisms like immigration may
contribute. The degree of substructure is, however limited, and an

1300
06| @ 1200
1077 ¢ 1100
1000
& 900
g | @800
10 T1e 700
& 600
& 500
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—~ —10 _| 300
= 10 200
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T 10107
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T T T
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Fig. 3. Relationship between P(E | Hy) and P(E | Hyg) with a predictive interval superimposed (solid line: mean, dashed lines: predictive limits). The shading colour of the

hexagons indicate bin counts, i.e. the number of cases with an (P(E | Hg), P(E | Hag))-

value in this region.
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overall 0 correction of 0.01 will compensate for the substructure
observed. The #-correction should be taken into consideration
when calculating the weight of the evidence, since it offers a better
estimate of the weight of the evidence than the often used LR
which compares the DNA evidence to a random, unrelated person.
However, it will still be necessary to address the problem with
identical twins and other close relatives in database searches and
evaluation of the evidence in case of matches, family matches, etc.

5. Conclusion

The main objective with the work presented in this paper was to
analyse a Danish STR data set of 51,517 different individuals. This
was to accommodate the fact that at some point two apparently
unrelated individuals will share DNA profiles for all ten autosomal
SGM Plus loci in the Danish population. If a specified relationship is
assumed it is straight forward to calculate the probability of
identical DNA profiles. However, one still needs to account for
remote coancestry for both related and unrelated pairs of STR
profiles.

Only modelling the expected value or calculating the mean is
never satisfactory in statistics. A measure of precision or variability
is needed in order to discuss the extremity of an observation
relative to the expectation under a given model. Hence, deriving
and computing the covariance matrix of M was essential.
Simulation studies showed that the object function T,(6), which
uses the covariance matrix, was the most efficient estimator of
among the object functions considered here.
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