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Abstract

Achromobacter xylosoxidans is an environmental opportunistic pathogen, which infects an increasing number of
immunocompromised patients. In this study we combined genomic analysis of a clinical isolated A. xylosoxidans
strain with phenotypic investigations of its important pathogenic features. We present a complete assembly of the
genome of A. xylosoxidans NH44784-1996, an isolate from a cystic fibrosis patient obtained in 1996. The genome of
A. xylosoxidans NH44784-1996 contains approximately 7 million base pairs with 6390 potential protein-coding
sequences. We identified several features that render it an opportunistic human pathogen, We found genes involved
in anaerobic growth and the pgaABCD operon encoding the biofilm adhesin poly-β-1,6-N-acetyl-D-glucosamin.
Furthermore, the genome contains a range of antibiotic resistance genes coding efflux pump systems and antibiotic
modifying enzymes. In vitro studies of A. xylosoxidans NH44784-1996 confirmed the genomic evidence for its ability
to form biofilms, anaerobic growth via denitrification, and resistance to a broad range of antibiotics. Our investigation
enables further studies of the functionality of important identified genes contributing to the pathogenicity of A.
xylosoxidans and thereby improves our understanding and ability to treat this emerging pathogen.
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Introduction

A. xylosoxidans formerly known as Alcaligenes xylosoxidans
is an environmental non-lactose fermenting aerobic motile
Gram-negative rod characterized in 1971 [1,2]. It is often found
in connection with nosocomial infections targeting
immunocompromised patients suffering from cancer, advanced
HIV, diabetes mellitus or chronic renal failure [3]. In 1985, the
first description of A. xylosoxidans in relation to the pulmonary
infection of cystic fibrosis (CF) patients was published [4]. CF is
the most common lethal autosomal, recessively inherited
disease in Caucasians characterized by development of

chronic pulmonary infections. Identification of the CF
microbiology by 16S rRNA gene sequences has shown
diversity in the identification of A. xylosoxidans [5] however,
two recent investigations have developed multilocus sequence
typing (MLST) schemes, which increase the accuracy of
identification and characterization of strains and species from
the genus Achromobacter [6,7]. It is increasingly detected in
CF clinics worldwide, with a general incidence of approximately
6-10% [2,8–11]. A retrospective case-control study by Hansen
et al. [10] at the Copenhagen CF Centre showed a general
increase in the number of CF patients chronically infected with
A. xylosoxidans from 1 patient in 1993 to 22 in 2005, which
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include approximately 8% of all CF patients connected to the
centre. The study indicated a greater decline in lung function
for patients chronically infected with A. xylosoxidans compared
to non-infected patients [10], whereas other studies have not
documented any significant decline in clinical status [2,9].
Generally, A. xylosoxidans is highly resistant to a broad range
of antibiotics including resistance to narrow-spectrum
penicillins, aminoglycosides and several cephalosporins
[12–16], making it difficult to treat. Like most of the other CF
pathogens, A. xylosoxidans can apparently be spread between
CF patients by cross-infection [8,9,17]. All together, these
features characterize A. xylosoxidans as one of the most
important emerging CF pathogens. It is therefore of great
importance to investigate the pathogenicity of A. xylosoxidans
not only to patients with CF but to all immunocompromised
patients suffering from recurring as well as chronic bacterial
infections.

The literature about A. xylosoxidans mostly consists of case
reports, whereas studies documenting important pathogenic
properties and resistance mechanisms are scarce. How A.
xylosoxidans survives and successfully colonize and
chronically infect the CF lung remains to be investigated.
Several factors like biofilm formation, anaerobic growth,
antibiotic resistance and production of exoenzymes and toxins
have been implicated as crucial for some of the more well-
studied CF pathogens such as P. aeruginosa and members of
the Burkholderia cepacia complex to infect and persist in the
lungs of CF patients.

Especially, biofilm formation seems to play an important role
in the persistence of bacteria in chronic CF infections. Biofilm
formation is a growth phenotype many bacteria use for survival
and proliferation in hostile environments, which also leads to
increased tolerance towards antibiotics and host defences
[18–20]. In biofilms, the bacteria aggregate in microcolonies
encased in a matrix consisting of polysaccharides, DNA and
proteins [21]. Biofilm formation in the lungs of chronically
infected CF patients makes treatment strategies very difficult if
not impossible. In the mucus of the CF lung, anaerobic
conditions exist [22,23], which are mainly due to oxygen
depletion by polymorphonuclear leukocytes (PMNs) [62] and
favor survival of bacteria capable of anaerobic respiration.
Some environmental Achromobacter strains have been
documented to reduce nitrite and nitrate to nitrogen gas under
anaerobic growth conditions, and a study of A. xylosoxidans
isolated primarily from ear discharges documented nitrate
reduction [24].

In this study, we sequenced and assembled the complete
genome of an A. xylosoxidans strain isolated from a CF patient
at the Copenhagen CF Centre. The ability of the strain to grow
in O2-depleted environments and to form biofilms was
established by in vitro investigations under different growth
conditions along with studies of the susceptibility of A.
xylosoxidans to a range of antibiotics.

Materials and Methods

Bacterial strains
The A. xylosoxidans strain (NH44784-1996) used for

sequencing was isolated from sputum from a CF patient (first
time for this patient) of the Copenhagen CF Centre during
routine microbiological assessment in 1996. The strain was
frozen at -80°C in glycerol for preservation. The species
specificity was ensured by both 16S rRNA gene sequence
analysis (Applied Biosystems, California, USA) MALDI-TOF
microseq (Bruker Daltonics, Billerica, USA) and multilocus
sequence analysis (MLSA). Eleven A. xylosoxidans isolates
were retrieved from the same CF patient over a period of 15
years from 1996 to 2011. The following strains were used as
reference in the different in vitro studies; three A. xylosoxidans
reference strains DSM2402, DSM6388 and DSM11852
isolated from an ear discharge, as a contaminant from a
Bacillus culture, and the soil, respectively (DSMZ,
Braunschweig, Germany). P. aeruginosa PAO1 wild-type
obtained from the Pseudomonas Genetic Stock Center
(www.pseudomonas.med.ecu.edu, PAO0001) and Escherichia
coli K-12 [25] were used as comparison in some of the in vitro
investigations.

Sequencing and assembly
A shotgun-sequencing library for titanium chemistry was built

according to the manufacturer’s guidelines (ROCHE) with
some modifications. First, 20 µg DNA was nebulized and
separated on a 0.8% agarose gel. Fragments ranging from 6–
800 bases were excised and used for the adaptor ligation step.
Test emulsion PCR’s were performed to obtain the best copies/
bead ratio. DNA containing beads were then sequenced using
the GS FLX Titanium Sequencing Kit XLR70 on a two region
Titanium Pico Titer Plate (PTP). Two regions were run using
the first Titanium emPCR kit (not including a GC structural
reliever called emPCR additive supplied with the next
generation of emPCR Kits). Additionally, one region was run
using the emPCR additive. To aid scaffold building, a 6 kb
paired-end library was built according to the 3 kb protocol
provided by the manufacturer. In brief, the following
modifications were used: Initially, DNA fragmentation to larger
fragments was performed using nebulization on 15 µg DNA
with the settings of 0.4 bar for 20s. For the circularization
adaptor ligation (step 3.3), only 40 µl of elution buffer EB was
used, which was suitable for the subsequent library span size
selection (step 3.4) that was made from a 1% agarose gel with
subsequent purification using the Qiax II gel extraction kit
(Qiagen). DNA circularization (step 3.6) was performed using
150 ng of filled-in DNA. Finally, for library amplification (step
3.10) 25 cycles were used for the amplification reaction as
compared to only 15 cycles recommended in the
manufacturers protocol. The paired end library was then
sequenced on one region as above, again using the emPCR
additive. The single-end sequencing yielded 549M bp without
emPCR additive, and 257M bp with emPCR additive in total
806M bp. The paired end sequencing yielded 172M bp and an
average insert size of 5,533 bp. The total sequence coverage
was x140.

Complete Genome Sequence of A. xylosoxidans
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Assembly was performed with Newbler 2.5p1 (ROCHE)
yielding a single 6,957,321 bp scaffold containing 153 gaps.
Gap closure was performed using PCR and Sanger
sequencing. Due to the high GC content of the DNA,
modifications to standard PCR protocols were implemented.
This included the addition of PCR additives DMSO (5%), 1.4 M
betaine and 5% glycerol (final reaction concentrations) to
relieve rigid DNA structures. Originally designed primers had a
minimum length of 22 bp and a Tm of 70-73°C, located at a
minimum distance of 30 bp upstream or downstream from
gaps. PCR was done using Phusion polymerase (Finnzymes),
with following program: 98°C for 1 min, then 30 cycles of 98°C
for 10s, 65°C for 20s, 72°C for 20s followed by a final extension
at 72°C for 10 min. In case of failed PCRs, new primers with
Tm’s between 81 and 83°C were designed, the annealing and
elongation times increased to 45 s, and the number of cycles
increased to 35. Sequencing of the obtained PCR products
was performed by Macrogen, Korea. Using this approach, 138
gaps were closed. The remaining 15 gaps were located in
regions with a GC content above 85% or with highly repetitive
sequences including multiple embedded repeats obstructing
sequencing.

The sequence was deposited in EMBL bank with the
accession number HE798385.

Gene annotation
The software Rapid Annotations using Subsystems

Technology (RAST) and SEED [26] were used for annotating
the genome of A. xylosoxidans NH44784-1996. The SEED
viewer is a framework to support comparative analysis and
annotation of genomes. It provides an overview of the basic
information such as taxonomy, size, number of contigs, coding
sequences, RNAs and non-hypothetical and hypothetical gene
annotations. Furthermore, it provides a categorization of the
genes in subsystems, which are manually curated and based
on functional roles [26,27]. For a more detailed description of
the basic technology see 26.

Comparative analysis
I: Comparison of open reading frames (ORFs) by the

sequence algorithm BLASTP of A. xylosoxidans
NH44784-1996 and the 11 most related bacterial strains. The
predicted coding regions were used as BLASTP queries into
the NR database with an E-value cutoff of 10-5. The top hits
were then sorted by the species they came from and tallied. In
cases where the top hit was from another strain of A.
xylosoxidans, the species name of the second-best hit was
used.

II: Subsystems Tally. The genomes of several relatives of A.
xylosoxidans were also annotated with RAST. The subsystems
under the 'Resistance to antibiotics and toxic compounds'
category were then classified according to the type of
resistance they conferred and tallied. The classification is listed
in the 'RAST Resistance to Antibiotics and Toxic compounds
Subsystems Classification' table.

Phylogenetic analysis
Multilocus sequence analysis (MLSA) was performed as

described previously [7]. Sequence chromatograms were
edited using ChromasPro (Technelysium Pty. Ltd.) Nucleotide
sequence alignments and cluster analyses were made with
MEGA5 [28]. Sequences were concatenated using the CLC
Main Workbench 6 (CLC Bio). Cluster analysis of concatenated
sequences was performed with a neighbour-joining algorithm
with 1,000 bootstrap replications. All positions containing gaps
and missing data were eliminated. Bordetella petrii DSM 12804
was used as the outgroup.

Phenotypic properties
Growth medium.  ABT minimal medium (B medium [29]

plus 2.5 mg thiamine l-1 and 10% A10 [29]) supplemented with
0.5% (wt/vol) glucose and 0.5% (wt/vol) Casamino acids were
used for growing the bacteria strains. All strains were incubated
with shaking (180 rpm) at 37°C except the three reference
strains, which were incubated at 30°C according to
recommendations by the provider.

Production of virulence factors
The bacterial strains were grown to an optical density (OD at

600 nm) of 2.0 for up to five days in six-well multi-dishes. Cells
were harvested by centrifugation (10.000 rpm for 5 min.) and
the supernatant was sterile filtered (pore size 0.22 µm) and
thereafter used for detection of virulence factors.

(I): Chitinase assay.  Sterile filtered supernatants were
mixed with Na-citrate buffer (0.1 M, pH 4.8) in a 2:1 ratio and
carboxylmethol-chitin-Remazol brilliant violet (Loewe
Iochemica GmbH) was added to a final concentration of 0.5
mg/ml. The mixture was incubated on a shaking table (200
rpm) overnight at 37°C, where after the catalyzing reaction was
stopped by adding 1M HCL and immediate cooling in ice for 10
min. The mixture was centrifuged at 10.000 rpm for 10 min and
the absorbance on a spectrophotometer (Shimadzu, UV-1800)
was measured at 550 nm. The values were subtracted from a
blank containing NaCl (0.9%) incubated without supernatant.

(II): Elastase assay.  Supernatants were mixed with
phosphate buffer (0.1 M, pH 6.3) in a 2:1 ratio and Elastin
congo Red (Sigma) was added to a final concentration of 2
mg/ml. The mixture were incubated at 37°C with shaken (200
rpm) for 1 week and subsequently centrifuged at 10.000 rpm
for 10 min. The absorbance was measured at 495 nm and the
values were subtracted from a blank containing NaCl (0.9%)
incubated without supernatant.

(III): Protease assay.  Supernatants were added to wells
made with the back end of a 200 µl pipehead in ABT agar plate
(2% agar) containing 5% sterilized skimmed milk. The plates
were incubated overnight at 37°C and clearing zones around
the wells were measured with a ruler.

(IV): Rhamnolipid.  Supernatants were mixed with venous
blood from a healthy individual in 25:1 ratio. Hemolysis was
visually evaluated as previously described [30] after 20 min and
again after 4 hours.

Complete Genome Sequence of A. xylosoxidans
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Motility assays
(I): Swarming.  5 µl of 10 x diluted over night culture of each

bacterial strain was added on top of an ABT agar plate
containing 0.6%, 0.9%, 1.2% or 1.5% bacto agar with 0.2%
glucose and casamino acid. The plates were incubated at room
temperature, 30°C and 37°C for 24 h.

(II): Swimming.  5 µl of 10 x diluted over night culture of
each bacterial strain was added on top of ABT agar plate
containing 0.3% agar and 0.2% glucose and casamino acid.
The plates were incubated at room temperature, 30°C and
37°C for 24 h.

(III): Twitching.  Cells were stab inoculated with a toothpick
through a 3 mm ABT agar plate (1.5% bacto agar) containing
0.2% glucose and casamino acid. The plates were incubated at
room temperature, 30°C and 37°C for 24 h and 48 h.

Biofilm formation in polystyrene plates
Static biofilm formation was investigated in 96 well

polystyrene microtiter plates (Sterilin® Ltd). Overnight cultures
were diluted to an OD450nm of 0.02 in fresh ABT minimal
medium supplemented with 0.5% (wt/vol) glucose and 0.5%
(wt/vol). Casamino acids were inoculated in 96 well polystyrene
microtiter plates and incubated at 37°C (NH44784-1996, PAO1
and E. coli K-12) and 30°C (DSM2402, DSM6388 and
DSM11852) for up to 96 hours. Media was removed and wells
washed with 0,9% NaCl to remove non-adherent cells.
Adherent cells were stained for 30 min. with 0.1% crystal violet
(CV) (Sigma) solution and washed twice with 0.9% NaCl to
remove non-bound CV. 96% EtOH were added to dissolve
bound CV and formation of biofilm were measured using a
microplate reader (Victor X, PerkinElmer) by determination of
OD590nm.

Biofilm formation in flow cells
Biofilms were grown at 37°C in continuous-culture once-

through flow chambers perfused with sterile ABtrace minimal
medium containing 0.3 mM glucose. The flow chamber system
was assembled and prepared as previously described [31]. The
development of biofilm was examined after 3 days by confocal
laser scanning microscopy (CLSM) (Leica TCS SP5, Leica
Microsystems, Germany) equipped with an Argon laser.
Images were obtained with a x 40 dry objective and x 100 oil
objective. The bacterial viability in the biofilms was assessed
by using SYTO 9 [32,33] (Molecular Probes Inc., Eugene,
Oreg.) and image scanning was carried out at 488 nm. SYTO 9
was diluted 1000 times in sterile 0.9% Nacl and injected 15
min. before examination by CLSM. To further examinate the
biofilms in 3D and for generating pictures the IMARIS software
package (Bitplane AG, Zurich, Switzerland) was used.

SEM visualization of biofilm formation in a suspension
To visualize the non-surface biofilm aggregating properties of

the strains [21] they were cultured under static conditions in
six-well multidishes (TPP, Techno Plastic Products AG) in 5 ml
LB media for 48 hours at 37°C. The biofilm material was
isolated from the supernatant by careful removal of the
supernatant by a syringe. The aggregates were harvested and

fixed in 2% glutaraldehyde, post-fixed in 1% OsO4, critical point
dried using CO2 and sputter coated with gold according to
standard procedures. Specimens for SEM were investigated
with a Philips XL Feg30 SEM microscope operated at 2-5 kV
accelerating tension as previously described by 34.

Measurement of nitrous oxide
A. xylosoxidans NH44784-1996 were inoculated from an LB

plate in LB media supplemented with either 1 mM or 10 mM
KNO3

- or NaNO3
- and grown for 24 and 48 hours in 37°C on a

shaking table (180 rpm). O2 was removed from the media by
bubbling with N2 until anaerobic conditions were established as
confirmed with a Multi-parameter Meter HQ40d (HACH
Company, Loveland, Co, US). After 24 and 48 hours the
concentration of nitrous oxide (N2O) was measured with an
amperometric microelectrode (Unisense A/S) connected to a
pA-meter (PA2000, Unisense A/S, Aarhus, Denmark). The
microsensor was linearly calibrated at experimental
temperature by measurements in N2O-free medium and
medium with known addition of aliquots of N2O saturated
medium. A measurement of N2O in LB media with no addition
of bacteria was subtracted from each of the samples.

Measurements of nitrate and nitrite
The concentration of nitrate and nitrite was measured in the

samples grown under anaerobic conditions (see above). The
samples were sterile filtered (0.2 µm, Millipore) and the nitrate/
nitrite colorimetric assay kit (Cayman Chemical, Michigan,
USA) was used according to the manufacturer.

Pulsed Field Gel Electrophoresis (PFGE)
Genomic profiling using PFGE was performed on the 11

clinical A. xylosoxidans isolates, including the strain used for
sequencing. The purified DNA from each strain was digested
by use of Spe1 restriction enzyme and the fragments were
separated by PFGE following the methods described
previously [35,36]. The gels were visually inspected on the Gel
DocTM XR (Bio-Rad) and PFGE patterns were compared by
criteria previously published [35–37]. By a difference in 3 or
more bands the studied isolates were considered to be
unrelated.

Antibiotic susceptibility testing
The minimal inhibitory concentration (MIC) of the clinical

isolates was determined for a range of antibiotics using the E-
test (Biodisk, Solna, Sweden) according to the instructions of
the manufacturer.

Detection of β-lactamase
The 11 clinical isolates and the three reference strains

(DSM2402, DSM6388 and DSM11852) were investigated for β-
lactamase production by the EDTA nitrocefin test as previously
described [38]. A color change to red was visually inspected
after 15 min. PAO1 was used as positive controls.

Complete Genome Sequence of A. xylosoxidans

PLOS ONE | www.plosone.org 4 July 2013 | Volume 8 | Issue 7 | e68484



Ethics statement
The Danish Ethics Committee approved the collection of

bacteria and informed written consent was obtained from all
patients.

Results

The sequenced strain used in this study was collected and
isolated from a CF patient at the Copenhagen CF Centre in
1996, during routine bacteriology examination. According to the
precipitin data it was the first collected sample after the patient
got chronically infected with A. xylosoxidans according to the
definition of chronically P. aeruginosa infections made by Høiby
et al. [39].

The complete genome sequence was determined by
pyrosequencing on the GS FLX Titanium platform and
assembled using the Newbler assembler software. The
following annotation analysis of genes is based on the RAST
server, an annotation program used for archaeal and bacterial

genomes [26]. By using this service it is possible to rapidly gain
assessments of gene functions and initial metabolic
reconstruction.

General genome features of A. xylosoxidans
The complete genome of A. xylosoxidans NH44784-1996 is

6.916.670 bp with 6390 ORFs and it has a relatively high GC
content on 67% (Figure 1), which is comparable to that of A.
xylosoxidans A8 [40]. About 47% of all genes were located in
the generated subsystems and 75% of the total amount of
genes was categorized as non-hypothetical. To gain
information about all the genes present in the genome, a
general search for interesting genes in the RAST software was
performed. All the basic features are summarized in Table 1.

Comparative genomic analysis
A. xylosoxidans is a member of the β-proteobacteria, and

classified as belonging to the order of Burkholderiales, which
among other families also includes that of the Burkholderia.

Figure 1.  A circular view of the genome of A. xylosoxidans NH44784-1996.  Including CDS and RNA features, GC content and
skew. The figure was prepared using CGView [97]. A genome-genome comparison with A. xylosoxidans A8 (CP002287 [40]) was
created using MegaBlast with default parameters.
doi: 10.1371/journal.pone.0068484.g001
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The family name of A. xylosoxidans is Alcaligenaceae, which is
also true for the Bordetella and Alcaligenes. The genus is
Achromobacter; species Achromobacter xylosoxidans;
subspecies xylosoxidans [41]. Besides A. xylosoxidans the
genus of Achromobacter currently counts the following six
species, Achromobacter denitrificans, Achromobacter insolitus,
Achromobacter marplatensis, Achromobacter piechaudii,
Achromobacter ruhlandii and Achromobacter spanius [http://
www.bacterio.cict.fr/].

A comparative analysis of the ORFs for A. xylosoxidans and
the 11 closest related bacterial genomes by the sequence-
alignment algorithm BLASTP revealed that only one organism
was the best hit for more than 5% of the ORFs. The
environmental Gram-negative Achromobacter piechaudii was
the source of proteins considered best hits for ~60% of the
ORFs (Figure 2). A. piechaudii is very rarely isolated from
human infections and only two reports have indicated that A.
piecheudii can act as an opportunistic pathogen [42,43].

A. xylosoxidans NH-44784-1996 were incorporated in the
MSLA dendrogram by Ridderberg et al. [7]. The analysis is
generated on the basis of 77 reference and clinical
Achromobacter strains (see 7 for description of the different
strains), which were divided in 5 clusters and the sequenced
strain were positioned in group 1 with the type strain of A.
xylosoxidans (Figure 3).

Annotation of A. xylosoxidans genes.  The outcome of the
distribution of genes in different subsystems generated by the
RAST software is showed for A. xylosoxidans NH44784-1996
in Figure 4. PAO1 and E. coli K-12 are included for
comparison. An important note is that only 47% (A.
xylosoxidans), 49% (PAO1) and 68% (E. coli K-12) of the total
amount of genes are included in subsystems. This means that
the number of genes presented in Figure 4 will change when all

Table 1. General features of the A. xylosoxidans genome.

Chromosome  
Genome size (bp) 6.916.670
G+C content  
Total genome 67.65%
Non-coding region 60.41%
RNAs 59.92%
Protein coding genes 6390
% coding regions 88.35%
Structural RNAs 58
Ribosomal RNAs  
16S 1
23S 1
5S 3
tRNA 53

RAST software  
Subsystems 480
Genes in a subsystem 2976 (47%)
Non hypothetical 2803
Hypothetical 173
Total nu. of non hypothetical 4810 (75%)
Total nu. of hypothetical 1580 (25%)

genes present in the genomes are incorporated in the
subsystems. Furthermore, the number of genes present in the
genome is not identical to the total number of genes
incorporated in the different categories of the subsystem. A
gene can be part of more than one subsystem and therefore be
counted more than one time.

The primary focus for this survey was genes involved in
either drug resistance or pathogenicity, such as virulence
factors and biofilm formation related genes. The presence of
genes found interesting in the A. xylosoxidans NH44784-1996
genome was compared to A. xylosoxidans A8 (isolated from
soil), P. aeruginosa PAO1, B. cenocepacia J2315 (isolated
from a CF patient) and E. coli K-12.

Pathogenic factors.  A. xylosoxidans NH44784-1996
harbors several genes involved in functional traits contributing
to its ability to colonize and infect humans. We have divided the
genes into the following three categories: protein secretion,
adhesion, and denitrification (Table 2). All three categories of
genes are regarded as being important and contributing to the
survival of A. xylosoxidans in hostile environments. Regarding
important pathogenic factors like exoenzymes and exotoxins
contributing to invasiveness, a gene encoding colicin V
production is present. Also the gene encoding the exoenzyme
regulatory protein AepA precursor is present according to the
RAST software. This gene is documented to affect levels of
protease and cellulase production [44] and is also present in
PAO1.

Figure 2.  The 11 most related bacterial strains to A.
xylosoxidans NH44784-1996 investigated by BLASTP
search.  The numbers are referring to open reading frames.
doi: 10.1371/journal.pone.0068484.g002
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Figure 3.  Phylogenetic tree.  Neighbor-joining dendrogram
showing the relationship of NH44784-1996 and 77
Achromobacter strains, using B. petrii DSM 12804 as an
outgroup. The comparison was based on the concatenated
sequences of MLSA genes atpD, icd, recA, rpoB and tyrB
(2,098 nt). MLSA clusters I–V are shown. Bootstrap support of
clusters is indicated to the left of the node. Scale bar, 0.01
substitutions per site.
doi: 10.1371/journal.pone.0068484.g003

Protein secretion
Bacteria use different specialized systems to mediate the

transport of molecules out of the cell and into a host cell or the
environment. These transport systems have been classified
into eight different groups from I to VIII [45] and genes
documented to be a part of the following four groups, II, III, VI
and VII are present in the A. xylosoxidans NH44784-1996
genome. The type II secretion systems (T2SSs) are typical
composed of 12 to 16 proteins termed Gsp (General secretion
pathway) and are widely conserved among γ-proteobacteria
[46]. The system is documented to be involved in the release of
extracellular toxins and proteases to the environment [46].
According to the RAST annotation software, 12 genes
encoding the T2SS are present in A. xylosoxidans
NH44784-1996. The same genes are present in A.
xylosoxidans A8 and B. cenocepacia J2315 and 11 of them are
present in PAO1 and E. coli K-12.

The type III and VI secretion systems (T3SSs and T6SSs)
mediate the transport by direct contact with the target cells [47].
The T3SS has much in common with the flagellar export
system and delivers virulence factors directly into the host cell
[48], which is why this mechanism is found in many pathogenic
strains. Thirteen genes encoding the T3SS are found to be
present in the A. xylosoxidans NH44784-1996 genome as well
as in PAO1. Components of the T6SSs are similar to phage tail
spike proteins [49]. Twelve genes encoding the T6SS are
present in A. xylosoxidans, which are also present in A.
xylosoxidans A8, PAO1 and B. cenocepacia J2315. E. coli
K-12 does not contain the T3SSs or the T6SSs. Three genes
encoding sigma-fimbriae proteins categorized to be a part of
the type VII secretion systems (T7SSs) by the RAST software,
are present in all of A. xylosoxidans NH44784-1996, A.
xylosoxidans A8, PAO1 and B. cenocepacia J2315. The
particular genes are not present in E. coli K-12, but according
to the RAST software the organism harbors other genes
encoding proteins involved in this secretion system.

Adhesion
The entire pgaABCD locus is present in A. xylosoxidans

NH44784-1996. This locus which is documented to encode the
synthesis of a polysaccharide poly-β-1,6-N-acetyl-D-
glucosamine (β-1,6-GlcNAc, PGA) in E. coli mediating cell-to-
cell and cell-to-surface adhesion for biofilm formation [50]. The
cytoplasmic membrane proteins (PgaC and PgaD) are
necessary for PGA synthesis and the outer membrane proteins
(PgaA and PgaB) are needed for PGA export. Staphylococcus
epidermidis and Staphylococcus aureus also produce β-1,6-
GlcNAc polysaccharides, which depends upon the icaABCD
locus [51,52]. BLAST analysis of the pga gene products has
revealed that several Gram-negative plant and mammalian
pathogens have complete homologues to the pgaABCD loci
among these are the CF pathogens, Burkholderia multivorans,
B. cenocepacia, B. cepacia, Stenotrophomonas maltophilia,
and P. fluorescens. The role of each of the pga genes has
been investigated by chromosomal deletions in E. coli and
showed that all the pga genes are required for optimal biofilm
formation [50]. None of the pga genes have been identified in
P. aeruginosa.
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Denitrification
Several genes documented to be present in the P.

aeruginosa denitrification system are present in the A.
xylosoxidans NH44784-1996 genome. The P. aeruginosa
dentrification system is organized in 4 operons, nar, nir, nor,
and nos encoding 4 reductases that are necessary for the
reduction of nitrate to dinitrogen gas [53]. Twelve genes
involved in denitrification are present in the A. xylososxidans
genome and A. xylososxidans A8 according to the RAST
software and 7 of those are present in the PAO1, whereas E.
coli K-12 or B. cenocepacia J2315 do not contain any of the
genes encoding denitrification according to RAST. However, E.
coli has been documented to use both nitrate and nitrite as
electron accepter under hypoxic conditions. Of the 12 genes
present, 7 are involved in nitrous oxide reductase, 3 are
involved in the presence or reduction of nitric oxide and 2 are

genes involved in nitrite reductase. The copper-containing
nitrite reductase has been shown to be present in A.
cycloclastes [54] and Alcaligenes xylosoxidans [55].

Antibiotic resistance.  One important factor for the survival
of infectious bacteria is their resistance to administered
antibiotics. Several different mechanisms such as enzymatic
degradation and efflux pump systems contribute to the
resistance patterns of pathogenic bacteria. Genes involved in
resistance mechanisms present in A. xylosoxidans
NH44784-1996 according to the annotation by the RAST
software are listed in Table 3.

β-lactamases and other antimicrobial modifying
enzymes

The resistance of A. xylosoxidans to β-lactam antibiotics is
primarily documented by in vitro MIC determinations to the

Figure 4.  Comparison of the amount of genes connected to subsystems.  Number of genes of A. xylosoxidans
NH44784-1996, E. coli K-12 and P. aeruginosa PAO1 connected to the different subsystems in The RAST software.
doi: 10.1371/journal.pone.0068484.g004
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different sub-classes. These investigations have generally
shown A. xylosoxidans to be resistant to narrow-spectrum

penicillins and to several cephalosporins, including cefotaxime,
whereas the susceptibility to ureidopenicillins and

Table 2. Identified genes in A. xylosoxidans NH44784-1996 involved in pathogenicity.

Product No. of genes Gene name/Abbrev. A8 PAO1 J2315 K-12
Protein secretion       

Type II       
General secretion pathway 20 Type C,D,E,F,G,H,I,J,K,L,M,N X X, except N X X, except N

Type III       
Outermembrane pore forming protein 1 YscC,MxiD,HrcC, InvG - X X -

Inner membrane protein 1 YscU,SpaS,EscU,HrcU,SsaU - X X -
Inner membrane protein 1 YscT,HrcT,SpaR,EscT,EpaR1 - X X -
Inner membrane protein 1 YscS - X X -
Inner membrane protein 1 YscR,SpaR,HrcR,EscR - X X -
Inner membrane protein 1 YscQ - X X -

Spans bacterial envelope protein 1 YscO - X - -
Cytoplasmic protein 1 YscL - X X -

Putative type III secretion protein 3 - - - - -
Bridge between inner and outermembrane lipoprotein 1 YscJ,HrcJ,EscJ, PscJ - X X -

Chaperone protein for YopD 1 SycD - X - -
Cytoplasmic LcrG inhibitor 1 LcrV - X - -

Inner membrane channel protein 1 LcrD,HrcV,EscV,SsaV - X X -
Type VI       

ClpB protein 1 ClpB X X X -
IcmF-related protein 1 IcmF X X X -
Protein ImpG/VasA 1 ImpG X X X -

Sigma-54 dependent transcriptional regulator 1 - X X - -
Uncharacterized protein ImpA 1 ImpA X X X -
Uncharacterized protein ImpB 1 ImpB X X X -
Uncharacterized protein ImpC 1 ImpC X X X -
Uncharacterized protein ImpD 1 ImpD X X - -
Uncharacterized protein ImpF 1 ImpF X X X -

Uncharacterized protein ImpH/VasB 1 ImpH X X X -
Uncharacterized protein ImpJ/VasE 1 ImpJ X X X -

VgrG protein 1 VgrG X X X -
Type VII       

Sigma-fimbriae chaperone protein 1 - X X X -
Sigma-fimbriae tip adhesin 1 - X X X -

Sigma-fimbriae usher protein 1 - X X X -

Adhesion       
PGA outer membrane secretin 1 PgaA X - X X

PGA synthesis deacetylase 1 PgaB X - X X
PGA synthesis N-glycosyltransferase 1 PgaC X - X X

PGA synthesis auxiliary protein 1 PgaD - - X X

Denitrification       
Nitrous oxide reductase maturation protein 3 NosD NosF NosR X X - -

Nitrous oxide reductase maturation protein, outer-membrane lipoprotein 1 NosL X X - -
Nitrous oxide reductase maturation transmembrane protein 1 NosY X X - -

Nitrous-oxide reductase (EC 1.7.99.6) 1 - X X - -
Protein involved in response to NO 1 NnrS X X - -

Copper-containing nitrite reductase (EC 1.7.2.1) 1 - X X - -
Nitric oxide -responding transcriptional regulator 1 NnrR (Crp/Fnr family) X X - -

Nitric-oxide reductase (EC 1.7.99.7), quinol-dependent 1 - X X - -
Nitrite reductase accessory protein 1 NirV X X - -

Nitrous oxide reductase maturation periplasmic protein 1 NosX X X - -

An X refers to the presence of the gene in A. xylosoxidans A8, P. aeruginosa PAO1, B. cenocepacia J2315 or E. coli K-12.
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carbapenems varies [12]. Twelve genes are recognized in A.
xylosoxidans to encode β-lactamases. One gene is of the class
D β-lactamases and at present class D β-lactamase OXA-114
is the only β-lactamase gene that has been biochemically
identified and characterized from A. xylosoxidans [56]. It was
found in five different A. xylosoxidans strains and was therefore
concluded to be naturally occurring among A. xylosoxidans. In
addition, it has been detected in 10 clinical isolates [57]. Six
sequences of OXA-114 from [57] deposited in GenBank shows
a 97% alignment with the class D β-lactamases gene identified
in NH44784-1996. This type of β-lactamase is shown in P.
aeruginosa to confer high-level resistance to amoxicillin,
ticarcillin, piperacillin, cefotaxime, ceftazidime and aztreonam
[58]. Two genes is a class C β-lactamases [59] and four genes
have no defined class. In addition, three genes belonging to the
metallo-β-lactamase family and two penicillin-binding proteins,
PBP-2 and PBP-1C has been identified. Acquired β-

lactamases belonging to VEB, and the carbapenemases IMP,
and VIM have been described [60–62] and furthermore, has a
study implicated hyperproduction of β-lactamases by
Alcaligenes denitrificans subsp. xylosoxidans [63]. Three genes
encoding aminoglycoside-modifying enzymes are present in A.
xylocoxidans NH44784-1996. Aminoglycoside 3'-
phosphotransferase (APH-VI), which mediates resistance to
kanamycin and several other related aminoglycosides [64].
One predicted aminoglycoside phosphotransferase and one
aminoglycoside N3-acetyltransferase, which has been shown
to modify a number of aminoglycosides antibiotics including
tobramycin and gentamycin [65]. In addition, has one
tetracycline efflux protein, TetA been identified. This inner-
membrane protein is an antiporter, which mediates active efflux
of tetracycline from the cell. Gram-negative bacteria share a
common genetic organization, with tetR, encoding a
tetracycline-responsive repressor located next to tetA in a

Table 3. Identified genes in A. xylosoxidans NH44784-1996 involved in antibiotic resistance.

Product No. of genesGene name/abbrev. A8 PAO1J2315K-12
β-lactamases       

Beta-lactamase class C and other penicillin binding proteins 2 - X X X -
Beta-lactamase 4 - X X X X

Beta-lactamase class D (OXA-114) 1 OXA-114 - - X -
Metallo-Beta-lactamase superfamily protein 1 - - X X -

Metallo-Beta-lactamase family protein, putative 1 - X X X -
Metallo-Beta-lactamase family protein, RNA-specific 1 - X X X -

Penicillin-binding protein 2 (PBP-2) 1 - X X X X
Penicillin-insensitive transglycosylase (EC 2.4.2.-) & transpeptidase PBP-1C 1 - X - - X

Aminoglycoside modifying enzyme       
Aminoglycoside N3-acetyltransferase 1 - - - - -

Predicted aminoglycoside phosphotransferase 1 - X - - -
Aminoglycoside 3'-phosphotransferase (Kanamycin kinase, type VI) (Neomycin-kanamycin phosphotransferase

type VI) (APH(3')VI)
1 - - - - -

Efflux pump       
Inner membrane component of tripartite multidrug resistance system 4 - X X X X
Membrane fusion component of tripartite multidrug resistance system 4 - X X X X
Outer membrane component of tripartite multidrug resistance system 6 - X X X X

Acriflavin resistance protein 1 - X X X X
Macrolide export ATP-binding/permease protein MacB (EC 3.6.3.-) 1 MacB X - X X

Macrolide-specific efflux protein MacA 1 MacA X - X X
Multidrug-efflux transporter, major facilitator superfamily (MFS) (TC 2.A.1) 1 - - - - X

Transcription repressor of multidrug efflux pump acrAB operon, TetR (AcrR) family 1 TetR X - - X
Type I secretion outer membrane protein, TolC precursor 1 TolC X X - X

Probable transcription regulator protein of MDR efflux pump cluster 1 - X - - -
RND multidrug efflux transporter; Acriflavin resistance protein 4 - X - - -
RND efflux system, outer membrane lipoprotein, NodT family 2 NodT X X X -

RND efflux system, membrane fusion protein CmeA 5 CmeA, AxyA X X X -
RND efflux system, inner membrane transporter CmeB 5 CmeB, AxyB X X X X
RND efflux system, outer membrane lipoprotein CmeC 7 CmeC, AxyM X X X -

Tetracycline efflux protein TetA 1 TetA X - - -

Transcriptional regulator       
TetR family 34 TetR X X X X

MAR locus       
Multiple antibiotic resistance protein MarC 1 MarC X X X X

An X refers to the presence of these genes in A. xylosoxidans A8, P. aeruginosa PAO1, B. cenocepacia J2315 or E. coli K-12
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divergent orientation [66], which is also the case with A.
xylocoxidans NH44784-1996. In total there are 34 genes
belonging to the transcriptional regulator, TetR family widely
distributed in A. xylocoxidans NH44784-1996.

Efflux pump
Several efflux pump systems are present in A. xylocoxidans

NH44784-1996 according to the RAST software program. The
CmeABC efflux pump system first described in Campylobacter
jejuni is one of them [67]. This system is a resistance-
nodulation-division (RND)-type efflux pump consisting of an
inner membrane transporter CmeB, a periplasmic membrane
fusion protein CmeA, and an outer membrane channel protein
CmeC [68]. A study by Bador et al. [69] characterized an RND-
type efflux pump in an A. xylosoxidans clinical isolate. They
identified an operon composed of three ORFs designated
AxyABM and a transcriptional regulator situated upstream in an
inverted orientation designated AxyR. They showed that the
AxyABM efflux system is involved in resistance to several
cephalosporins and aztreonam. AxyABM share 97 to 99%
similarity to NH44784-1996 and the genes are identified as
CmeABC in RAST. In addition, share AxyR 99% similarity to
NH44784-1996 and this gene is identified as transcriptional
regulator, LysR in RAST and is situated like AxyR. Genes
involved in the AcrB-TolC operon found in E. coli are present.
The acrA connected to the AcrAB-TolC is not present
according to the gene annotation by the RAST server.

Comparison of resistance mechanisms
A comparison of the amount of different drug resistance

systems as annotated by the RAST software between A.
xylosoxidans NH44784-1996 and 10 other pathogens is
depicted in Figure 5. The drug resistance systems are divided
into the following 3 groups: antibiotic resistance, heavy metal
resistance and other resistance. In addition to the genes
encoding antibiotic resistance described above, A.
xylosoxidans NH44784-1996 contains several genes encoding
resistance towards different metals divided into the following
systems; copper homeostasis, cobalt-zinc-cadmium resistance,
zinc resistance, mercuric resistance, arsenic resistance and
resistance to chromium compounds.

Phenotypic properties.  Much work has been done to
describe the chronic lung infection of P. aeruginosa, which is
the most common bacterium found in chronically infected CF
lungs. Most of these investigations conclude that P. aeruginosa
colonizes and persists in the CF lung due to, e.g. its biofilm
forming capacity [70], ability for anaerobic growth [22,71] and
production of several virulence factors including rhamnolipids
[30,72,73], exoproteases, siderophores, exotoxins and several
secondary metabolites. To compare the pathogenic properties
of A. xylosoxidans to P. aeruginosa we investigated A.
xylosoxidans NH44784-1996 for different pathogenic
phenotypic properties known from P. aeruginosa. The ability to
produce extracellular protease was studied by adding sterile
filtered supernatants to agar plates containing 5% skimmed
milk. A clearing zone is considered as proteolytic activity being
present. Chitinase were measured by degradation of chitin
azure and elastase activity was measured by degradation of

elastin congo red. The production of rhamnolipid was
visualized by adding sterile filtered supernatant to fresh blood
and incubate for 20 minutes. Lysis of the red blood cells
indicates the presence of rhamnolipid. By comparison to P.
aeruginosa it was clear that none of investigated virulence
factors were detectable under the conditions used in this study,
indicating that A. xylosoxidans does not rely on the same
virulence factors as P. aeruginosa (data not shown).

It has been shown that flagellar motility and type IV pili
twitching motility is necessary for the in vitro formation and
development of biofilm by E. coli and P. aeruginosa [74,75].
We tested the clinical A. xylosoxidans isolate for swarming,
swimming and twitching motility. It was not possible to
document any swarming or twitching motility, whereas the
organism is capable of flagellum-driven swimming motility (data
not shown), supporting findings in a previous study [76].

In vitro biofilm formation
It is believed that the capability of bacteria to persist in

chronic infections is due to their biofilm forming capacity, which
makes them extremely tolerant towards antimicrobial agents
and the host defense [77]. To elucidate whether A.
xylosoxidans is also able to use this strategy, we investigated
our clinical isolate for its biofilm forming capacity. Initially, we
investigated its ability to form a biofilm using polystyrene
microtiter wells and the crystal violet biofilm assay [78]. The
results of this method strongly depend on the capability of the
bacteria to adhere to the polymeric surface of the plates. When
comparing the results with PAO1, it is very clear that very little
A. xylosoxidans biofilm was attached to the surface during the
first 48 hours using this method, whereas there was an
increase in adhering cells after 48-96 hours of growth. The
adherence of A. xylosoxidans NH44784-1996 was very similar
to E. coli K-12, while the A. xylosoxidans reference strains and

Figure 5.  Drug resistance systems.  A comparison of drug
resistance systems as annotated by RAST between A.
xylosoxidans NH44784-1996 and 10 other pathogens. The
classification is divided in following groups: ‘antibiotic
resistance’, ‘metal resistance’ and ‘other resistance’ according
to RAST.
doi: 10.1371/journal.pone.0068484.g005
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in particular the strain isolated from the soil (DSM11852)
showed stronger adherence similar to PAO1 (data not shown).

To investigate biofilm formation under different conditions
and to study and characterize the architecture of a possible
biofilm in more detail, the clinical isolate was grown in flow
chambers with a continuous flow of media. Microscopic
inspection of flow cells after 3 days of incubation revealed that
A. xylosoxidans indeed forms biofilms under the experimental
conditions (Figure 6A). However, it appears that the A.
xylosoxidans biofilm is not formed from the surface with the
formation of the mushroom structures often seen in P.
aeruginosa biofilms [77]. The aggregated A. xylosoxidans cells
were apparently more suspended. To further study its ability to
form aggregates without attaching to a surface A. xylosoxidans
was grown for 48 hours in a static suspension [21]. This lead to
formation of large aggregates within this timeframe. To
investigate this aggregation, the aggregated cells were
retrieved and visualized by scanning electron microscopy
(SEM) (Figure 6B). Again it is very clear that A. xylosoxidans
forms aggregates with an extracellular matrix, i.e., it forms a
biofilm [21,79].

Anaerobic growth
The environment in the CF lung is very heterogeneous and it

has been shown that O2 levels in the CF mucus are very low or
even reach anoxia [22]. Furthermore, the negligible activity of
aerobic respiration in fresh sputum samples from infected CF
patients (62) suggests anaerobic life-style in the endobronchial
mucus, where infecting microbes grow for decades in spite of
antibiotic treatment (61). To investigate whether the studied
strain is capable of growing in O2-depleted environments, the
production of nitrous oxide (N2O), a key intermediate in the
denitrification pathway, was monitored under anaerobic growth
conditions. PAO1 and E. coli K-12 were included as a control
(data not shown). After 24 and 48 hours of growth, N2O was
present in all the cultures with added nitrate or nitrite.
Apparently, A. xylosoxidans NH44784-1996 is capable of using
dentrification as a respiratory process with both nitrate and
nitrite as electron acceptor. LB media contains both nitrate and
nitrite and the samples with plain LB media (no addition)

showed N2O accumulation after 24 and 48 hours. E. coli is a
non-denitrifying bacteria however, it has been shown to
produce nitrous oxide during nitrate respiration [80]. The
content of nitrate and nitrite was investigated in the cultures
after the growth periods. In the A. xylosoxidans cultures with
addition of 1 mM nitrate and nitrite there was no measurable
nitrate and nitrite left after 24 h. and in the cultures with
addition of 10 mM nitrate and nitrite approx. 2 mM were left
after 24 h. More nitrate and nitrite were measured in all the E.
coli cultures whereas, less nitrate and nitrite were measured in
the PAO1 cultures and after 48 h. No nitrate and nitrite were
left in the PAO1 cultures (data not shown).

Antibiotic resistance profile
To investigate the possible effect of residence periods on the

susceptibility of A. xylosoxidans to antibiotics, clinical isolates
were collected at different consecutive years from the same
patient as the A. xylosoxidans NH-44784-1996 isolate (Table
4). Eleven isolates collected at different years from 1996 to
2011 were tested for resistance by an E-test towards the
following antibiotics and combinations; tobramycin,
meropenem, ceftazidime, aztreonam, piperacillin, piperacillin
+tazobactam, colistin, ciprofloxazin, trimethoprim
+sulfamethoxazole, tetracycline, and chloramphenicol. A PFGE
analysis was done in order to evaluate, whether the strains
appeared to be of the same clonal origin (data not shown). All
strains analyzed from the same CF patient were considered to
be of the same clonal origin but of varying subtypes. It should
be kept in mind that mutations, inversions or rearrangements in
the restriction sites or those creating a restriction site for the
specific enzyme used (Spe1) give rise to new PFGE
patterns/new subtypes in this analysis. There is a maximum of
2 bands difference between the different isolates and according
to Tenover et al. [37] will a difference of 2 to 3 bands between
isolates be considered as closely related.

The clinical isolate NH44784-1996 is most susceptible to
meropenem, trimethoprim+sulfamethoxazole and the
combination of piperacillin and the β-lactamase inhibitor
tazobactam, whereas it is resistant as the rest of the isolates to
tobramycin, tetracycline, chloramphenicol and the β-lactam

Figure 6.  Biofilm formation of A. xylosoxidans NH44784-1996.  A: 3 day old biofilm grown in flow cell system and visualized by
scanning confocal laser microscopy. Syto 9 was injected 15 min. before examination to stain for the presence of living cells. B: 2
day old biofilm grown under static condition investigated with SEM.
doi: 10.1371/journal.pone.0068484.g006
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antibiotic aztreonam. It is previously documented that A.
xylosoxidans is innately resistant to aztreonam and
aminoglycosides, which corresponds with our data. There was
a general increase in resistance towards meropenem and
ciprofloxacin, and all the isolates were susceptible to
piperacillin+tazobactam. There was no clear trend for the
susceptibility towards the rest of the antibiotics between the
different isolates. The presence of β-lactamases was
investigated by EDTA nitrocefin test and all isolates and
reference strains gave reactions with nitrocefin indicating the
presence of β-lactamases (data not shown).

Two of the reference strains (DSM2402 and DSM6388)
showed similar resistance/susceptibility to the clinical isolates
towards the antibiotics, whereas DSM11852, which is isolated
from the soil showed a general higher susceptibility.

Discussion

Important infectious pathogens in relation to CF such as P.
aeruginosa have been profoundly studied over the last decade,
whereas several emerging pathogens still need to be
investigated in detail. New technologies for sequencing and
bioinformatics have made it possible to quickly gain a great
deal of information and a general overview of the contents of a
complete genome and this enables more detailed insights into
the genetic repertoire and pathogenicity factors of such
emerging pathogens. The size of the A. xylosoxidans genome
(6.9 Mbp) is larger than most other common CF pathogens
(PAO1, 6.3 Mbp [81]; Haemophilus influenza, 1.8 Mbp [82]; S.
aureus, 2.8 Mbp [83] and Stenotrophomonas maltophilia, 4.8
Mbp [84]) except some strains belonging to the Burkholderia
cepacia complex (Bcc) like, B. cenocepacia [85] and B.
multivorans which have genomes larger than 7 Mbp.

De Baets et al. (2007) reported that there was no excessive
lung damage or increased decline in lung function in CF
patients infected with A. xylosoxidans when compared to the
clinical status before acquiring A. xylosoxidans infection.

However, recent reports suggest that chronic colonization with
A. xylosoxidans had a measurable negative impact on the
clinical status and prognosis of CF patients [10,86]. The
bacterium has also been shown to rapidly obtain resistance
against the major classes of antibiotics, especially
aminoglycosides that are widely used in attempts to clear the
cystic fibrosis lung from bacterial infection. This emphasizes
the need to investigate the molecular pathology of A.
xylosoxidans both to find means to control the spread of the
increasing number of nosocomial infections, and to combat
chronic infections of this multiresistant emerging CF pathogen.
The increased prevalence of A. xylosoxidans in the lungs of CF
patients is believed to be related to several factors: The
prolonged life expectancy, which leads to an extended
evolutionary pressure on the existing microbiota of the CF
lungs in response to heavy and continued antibiotic treatment
is believed to be one of the underlying reasons that pathogens
such as A. xylosoxidans are emerging in connection with CF
lung infection [11,87,88]. Another factor is the increased
accuracy with which Achromobacter xylosoxidans and other
emerging Gram-negative pathogens of the CF lungs are
identified [2,89].

Detailed studies of infectious bacterial strains have specified
important pathogenic properties necessary for the bacteria to
survive and propagate, such as biofilm formation and
resistance mechanism towards antibiotics. Since the formal
definition of biofilm was first presented [90] the interest in this
particular form of bacterial growth has increased immensely. It
has become evident that biofilms are most likely the prevalent
mode of natural bacterial growth [90–92]. Accumulating
evidence that biofilm formation is also the predominant mode of
growth in various chronic bacterial infections [93–95] has only
added to the interest. P. aeruginosa and members of Bcc,
which are found to chronically infect lungs of CF patients are
known to form biofilms. The biofilm mode of growth in CF lungs
enables the bacteria to tolerate both antibiotics administered to
patients and attack from the host defense system. The fact that
bacteria organized in a biofilm are up to 1000 times more

Table 4. Susceptibility test towards different antibiotics of A. xylosoxidans NH44784-1996 and 10 clinical isolates taken from
the same patient in the years from 1996 to 2011 and three A. xylosoxidans reference strains DMS2402, DSM6388 and
DSM11852.

 Clinical isolates collected at consecutive years from 1996 Reference strains

Antibiotic 0 2 7 7 9 10 11 12 13 14 15 DSM 2402 DSM 6388 DSM 11852
Tobramycin 96 32 96 128 128 256 256 256 256 256 256 256 12 1
Meropenem 0.25 6 (32) 32 32 12 (32) 32 32 8 (32) 32 16 (32) 12 (32) 0.5 0.125 0.016
Ceftazidime 4 4 16 8 16 12 12 8 8 6 8 8 3 0.38
Aztreonam 256 256 256 256 256 256 256 256 256 256 256 256 192 12/256
Piperacillin 1 1.5(12) 3 2 1.5 0.75(3) 2 1.5 1.5 1.5 1.5 1 1 0.125
P+T 0.5 0.75(6) 1.5 1.5 0.75 0.5 (1.5) 2 1 0.75 0.75 0.75 0.5 0.5 0.064
Colistin 12 2 12 2 4 16 3 2 3 3 4 12 12 0.5
Ciprofloxacin 6 16 32 32 32 32 32 32 32 32 32 32 1.5 0.25
T+S 0.47 0.19(12) 3/(32) 10 (32) 3/(32) 3/32 2/(32) 1 (32) 0.38(32) 1 (32) 32 n.t. n.t. n.t.
Tetracycline 64 96 256 128 256 256 96 256 256 256 256 n.t. n.t. n.t.
Chloramphenicol 64 (256) 256 256 96 256 128 (256) 256 128 (256) 256 256 192 n.t. n.t. n.t.

P+T: Piperacillin+Tazobactam, T+S: Trimethoprim+Sulfamethoxacole. Numbers in brackets relate to subpopulations. n.t.: not tested.
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tolerant towards commonly used antibiotics than their
planktonic counterparts [19,94] has thus been an intriguing
discovery as well as a considerable driving force in the
research on the mechanisms and the regulation of biofilm
formation. Our in vitro studies by CLSM and SEM show that A.
xylosoxidans is capable of aggregating into biofilm like
structures. A. xylosoxidans biofilm structures have also been
detected in sputum samples from CF patients [86]. A.
xylosoxidans contains the pgaABCD operon, which is
documented to encode the polysaccharide β-1,6-GlcNAc that is
involved in both cell-cell adherence and cell-surface adherence
[50]. Our in vitro data supports the possibility of a functional
pgaABCD locus in relation to cell-cell adherence, whereas our
investigation does not find a strong capability for cell-surface
adherence. Different motility patterns have been documented
to be necessary for biofilm formation. A. xylosoxidans exhibits
swimming motility by peritrichous flagella [76], whereas it has
not been documented to move either by swarming or twitching
motility. This corresponds with our investigation where we
found 57 different genes on the A. xylosoxidans genome, which
are involved in flagellar motility.

Increased hospitalizations of patients with multiresistant
bacterial infections highlight the need to understand the precise
molecular mechanisms behind the acquisition of antibiotic
resistance. This will help limit the development of more
multiresistant strains. Several in vitro susceptibility tests of
clinical specimens conclude that A. xylosoxidans is
multiresistant [9,16]. A. xylosoxidans is commonly sensitive to
ceftazidime, imipenem, meropenem, piperacillin, carbenicillin,
chloramphenicol, and trimethoprim/sulfamethoxacole. On the
other hand A. xylosoxidans is found to be resistant to a number
of antibiotics, including 4-quinolones derivatives, many
expanded-spectrum beta-lactams, aztreonam and
aminoglycosides in general [8,9,12,76]. However, there is
some variation in susceptibility data between different studies
presumably due to different treatment methods. Some
combinations of antibiotics have shown to increase the
antimicrobial activity towards A. xylosoxidans including
chloramphenicol-minocycline, ciprofloxacin-imipenem, and
ciprofloxacin-meropenem [16]. The antibiotic susceptibility
observed in earlier studies corresponds very well to our
susceptibility tests of A. xylosoxidans NH44784-1996 showing
general resistance to β-lactams except the carbapenem and
meropenem. Three genes encoding class C and D β-
lactamases are present in the A. xylosoxidans genome, and
the presence of functional β-lactamase in all isolates was
further indicated by nitrocefin investigations. Except for
meropenem, and to some extent ciprofloxacin and
trimethoprim/sulfamethoxacole there was not a clear difference

in susceptibility between the clinical isolates. However, there
were a distinct difference between the reference strain isolated
from soil (DSM11852) and the rest of the isolates, which points
to an increase in antibiotic resistance after the organism
becomes infectious.

The increased amount of nutrient-rich mucus in a CF lung
generates a perfect growth environment for bacteria. Oxygen is
consumed rapidly in the mucus by the activated PMNs for the
respiratory burst (62) leading to the formation of O2

concentration gradients [22]. Such hypoxic or even anoxic
microenvironments allow facultative anaerobes such as P.
aeruginosa to persist. The presence of strict anaerobes within
the lungs of CF patients has also been demonstrated [96]. In
the present study we showed that the clinical A. xylosoxidans
strain was able to respire nitrate and nitrite under anaerobic
conditions as indicated by its production of N2O. We also
demonstrated the presence of denitrification genes in the A.
xylosoxidans genome, which are similar to those in P.
aeruginosa [53]. The capability of A. xylosoxidans to grow in
anaerobic conditions in the CF sputum can also explain the
inflammatory response that was found to characterize the
chronic infection that correlates to a rapid decline in lung
function [10,86].

In conclusion, we have sequenced and assembled the
genome of the emerging pathogen A. xylosoxidans, however
the sequence still contains 15 gaps, which cannot be
assembled at present. We have identified a series of genes
important for the organism to survive and proliferate in hostile
environments. The different phenotypic traits discussed above
are key factors allowing A. xylosoxidans to persist as a chronic
infection in the lungs of CF patients regardless of the host
defense, aggressive antibiotic treatments and the presence of
other bacterial species. Increasing knowledge about the
molecular details of pathogenic A. xylosoxidans strains will lead
to better understanding of the increase in numbers of infections
and thereby lead to improved treatment strategies.
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