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Abstract

Metabolic scaling theory (MST) is an attempt to link physiological processes of individual organisms with macroecology. It
predicts a power law relationship with an exponent of 24/3 between mean individual biomass and density during density-
dependent mortality (self-thinning). Empirical tests have produced variable results, and the validity of MST is intensely
debated. MST focuses on organisms’ internal physiological mechanisms but we hypothesize that ecological interactions can
be more important in determining plant mass-density relationships induced by density. We employ an individual-based
model of plant stand development that includes three elements: a model of individual plant growth based on MST, different
modes of local competition (size-symmetric vs. -asymmetric), and different resource levels. Our model is consistent with the
observed variation in the slopes of self-thinning trajectories. Slopes were significantly shallower than 24/3 if competition
was size-symmetric. We conclude that when the size of survivors is influenced by strong ecological interactions, these can
override predictions of MST, whereas when surviving plants are less affected by interactions, individual-level metabolic
processes can scale up to the population level. MST, like thermodynamics or biomechanics, sets limits within which
organisms can live and function, but there may be stronger limits determined by ecological interactions. In such cases MST
will not be predictive.
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Introduction

Metabolic Scaling Theory (MST) offers a quantitative frame-

work for linking physiological processes of individual organisms

with higher-level dynamics of populations and communities. It

predicts that an individual’s metabolic rate, B, scales with body

mass, m, as m3/4 [1]. For plants, it is assumed that B is proportional

to their rate of resource use, Q, and increases with body mass, m, as

B/Q/m3/4 [2]. When the rate of resource supply, R, per unit area

is held constant, the relationship between maximum population

density, N, and mean body mass is predicted to be m/N24/3.

Thus, if mass-density relationships during self-thinning reflect

MST, the relation between m and N is predicted to be a power law

with a mass–density scaling exponent of –4/3.

While broad interspecific patterns are sometimes consistent with

this prediction [2,3], the empirical observations from self-thinning

populations are more variable [4–7]. Data from arid regions or

areas with low resource levels often deviate from the predictions of

MST and show significantly shallower trajectories, i.e. less

negative exponents [4,7]. While some researchers assume that

the mass–density scaling exponent is universal but disagree about

the correct value, others argue that there is real biological

variation in the exponent, thus questioning the generality of MST

[4,8–10] or any other single model which purports to explain

many different types of biomass-density relationships.

A core assumption of MST is that processes internal to

individuals determine mass-density relationships. An alternative

view is that internal mechanism may play an important role and

set limits on mass-density relationships, but that ecological

interactions can be more important in determining the relation-

ships in the field. Thus, variation in the ecological conditions can

explain the observed variation in scaling exponents. Specifically, it

has been argued that competition among plants will change mass-

density relationships from those predicted by MST [7,9]. The

well-documented plasticity of plant form in response to compe-

tition [5,11] suggests that competitive interactions could affect

mass-density relationships.

Many empirical studies on plant mass-density relationships have

based on data where competition for light dominates [2,4,12], but

in areas where below-ground resources such as nutrients and water

are more limiting canopies can remain unclosed. In such areas

below-ground competition may affect growth and mortality much

more than above-ground competition [4,7,13].

Below- and above-ground competition are qualitatively differ-

ent. Above-ground, the limiting resource, light, is directional and

therefore ‘‘pre-emptable’’, i.e. taller plants will have a dispropor-

tionate advantage over smaller individuals when competing for

light, which has also been referred to as ‘‘size-asymmetric

competition’’, ‘‘dominance and suppression’’ or ‘‘one-sided

competition’’ [14–16]. In contrast, below-ground resources such
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as water and nutrients are not generally pre-emptable so that

competing plants tend to share below-ground resources in

proportion to their sizes. There is much evidence that above-

ground competition tends to be size-asymmetric, while below-

ground competition is more size-symmetric [14–16]. This could

influence mass-density relationships.

There is evidence to support this claim. For example, for the

desert shrub Larrea tridentata, the individuals’ allometric growth and

root-shoot biomass allocation patterns are consistent with MST,

but the log mass - log density relationship is shallower than

predicted by MST with a substantial variation [13]. This suggests

that below-ground competition, which is more size-symmetric,

may leads to shallower self-thinning trajectories. Results from an

individual-based zone-of-influence plant population model indi-

cate that the size-symmetry or asymmetry of competition will

affect self-thinning trajectories [15,17]. These studies used a

phenomenological model for individual plant growth [18] that

does not accommodate the physical and biological principles of

MST. And indeed, the range of slopes produced by Chu et al.’s

model [17], from 20.820 to 1.609, is larger than the range

observed in the field. For example, in 1266 plots within six biomes

and 17 forest types across China, the estimated log mass - log

density slopes ranged from 21.103 to 21.441 [19].

We hypothesize that MST may be compatible with the

observed variation in self-thinning trajectories if different modes

of competition and different resource availabilities are considered.

We investigate two hypotheses:

1. Size-symmetric competition (e.g. below-ground competition)

will lead to shallower self-thinning trajectories.

2. Individual-level metabolic processes can predict population-

level mass-density relationships if surviving plants are not

highly affected by local interactions.

To investigate our hypothesis, we modify a widely used

individual-based zone-of-influence model of individual growth

and competition, in which competition can be size-symmetric or -

asymmetric [18]. To make our model compatible with the

assumptions of MST, we use an individual growth model and

allometric relationships derived from MST [20].

Methods

The Model
The individual plant growth model used here is similar to that

described previously [20], which was based on an energy

conservation equation [12,21,22]. It takes into consideration three

basic processes that require energy: maintenance of biomass, ion

transport and biosynthesis [23]. Using empirical measurements

and theoretical assumptions, MST predicts quantitative relation-

ships among these processes [3,24], and we use these as the basis of

Figure 1. Self-thinning trajectories for different levels of resource limitation and modes of competition. RL indicates the level of
resource limitation (from 0 to 1 indicating no limitation to extreme limitation), p indicates the modes of competition (‘: completely asymmetric; 10:
highly size-asymmetric; 1: perfectly size-symmetric; 0: completely symmetric). For comparison, the solid lines have slopes equal to24/3.
doi:10.1371/journal.pone.0057612.g001
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our individual growth model for plants:

dm=dt~am3=4{bm~am3=4½1{(m=M0)1=4� ð1Þ

where m is the plant’s total biomass and a and b species-specific

constants (File S1). Our derivation of this model is similar to the

derivation of growth models for animals [21,22]. The value of

M0 = (a/b)4 is the asymptotic maximum body mass of plant

(calculated for dm/dt = 0), which depends on species-specific traits

and is determined by the systematic variation of the in vivo

metabolic rate within different taxa [21]. The gain term (am3/4) in

equation (1) dominates early in plant growth, and has some

empirical support [24,25]. Equation (1) is similar to the ‘‘von

Bertalanffy growth model’’, but its derivation here is based on

physical and biological principles of MST [21,22].

In our spatially explicit, individual-based model [17], plants are

modelled as circles growing in 2-dimensional space [18]. The area

of the circle, A, represents the resources available to the plant, and

this area is allometrically related to the plant’s body mass, m, as

m3/4 = c0A [12], where c0 is a normalization constant. Plants

compete for resources in areas in which they overlap, and the

mode of competition is reflected in the rules for dividing up the

overlapping areas. Resource competition is incorporated by using

a dimensionless competition index, fp, whose value is determined

by the overlap with neighbors, by reducing the resources available

in area A. With these assumptions, equation (1) becomes:

dm=dt~fp fr am3=4{bm

~fp fr cA½1{(m=M)1=4�
ð2Þ

where M = (fpfr)
4M0 represents maximum achievable biomass

under resource limitation and competition, and where c = ac0 is

the initial growth rates in units of mass per area and time interval.

We represent resource limitation with a dimensionless efficiency

factor, fr, as different levels of resource availability. For simplicity,

we use a linear form here, i.e. fr = 1– RL, where RL indicates the

level of resource limitation, and ranges from 0 (no resource

limitation) to 1 (maximum resource limitation; File S1).

The mode of resource-mediated competition among plants can

be defined anywhere along a continuum from completely size-

asymmetric competition (the largest plants obtain all the contested

resources) to completely symmetric competition (resources in areas

of overlap are divided equally among all overlapping individuals,

independent of their relative sizes) [14]. To represent the different

modes of competition explicitly, we define the effect of competi-

tion, fp, as

fp~ Anoz
Xno

k~1
Ao,k

m
p
iPnj

j~1 m
p
j

 !
=A ð3Þ

This index refers to the fraction of resources available in the

ZOI which the plant i could obtain after a loss of potential

resources due to areas overlapped by nj individuals of sizes mj [14].

Ano is the area not overlapping with any neighbors, and Ao,k

indicates the area overlapped by neighbors. Parameter p

determines the mode of competition, ranging from complete

symmetry (p = 0) to complete asymmetry (p = ‘).

In MST, individuals’ mortality rate is assumed to be propor-

tional to their mass-specific metabolism [25]. Based on this, we

assume that individuals die if their actual growth rate (realistic

metabolic rate) falls below a threshold fraction of their basal

metabolic rate (scaled by current biomass, i.e. 2% of m3/4).

Therefore, individual plants may die due to metabolic inactivation

driven by resource limitation, competition, senescence (when m

approaches M) or combinations thereof. A detailed model

description following the ODD protocol (Overview, Design

concepts, Details) for describing individual- and agent-based

models [26,27] is provided in the Supplementary Material (File

S1), as well as its implementation in NetLogo 3.1.4 [28] (File S2).

Simulations and Analysis
In our simulations, we investigated 4 resource limitation levels

(RL equal to 0, 0.1, 0.5 and 0.9), 4 modes of competition (p = ‘:

completely asymmetric; p = 10: highly size-asymmetric; p = 1:

perfectly size-symmetric; p = 0: completely symmetric) and one

initial density (8,100 individuals per total area). We also

investigated other initial densities and the results were very similar

to those presented below. Simulations for the resulting 16

Figure 2. Slopes and intercepts of self-thinning trajectories of
mean individual biomass versus survivor density under
different levels of resource limitation and modes of competi-
tion. RL indicates the level of resource limitation (from 0 to 1 indicating
no limitation to extreme limitation), p indicates the modes of
competition (‘: completely asymmetric; 10: highly size-asymmetric; 1:
perfectly size-symmetric; 0: completely symmetric). Bars indicate 95%
confidence intervals.
doi:10.1371/journal.pone.0057612.g002
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scenarios were repeated five times using different random

initializations.

We used the relative interaction index RII [29] to evaluate the

effects of local competition on shaping plant mass-density

relationship:

RII~(mx{mnc)=(mxzmnc) ð4Þ

where mx and mnc are the performance (mean biomass) of surviving

plants at the same resource level with and without local

competition (i.e., isolated plants), respectively. Values of RII from

21 to 1 indicate the intensity of interactions as competition (from

21 to 0), neutral interaction (equal to 0) and facilitation (from 0 to

1). To estimate mnc, we use the growth equation (2) without the

competitive factor fp.

For linear fits of the self-thinning trajectories obtained with our

model, we selected data points on the basis of mortality [30]: after

density-dependent mortality starts, data points with surviving

plants no less than 10% of the initial density (not less than 800

surviving plants here) and with the relative mortality larger than a

threshold (the mean value of relative mortality at each time step

through self-thinning process) were selected to fit the self-thinning

trajectories. The thinning trajectories (log-log transformed data of

mean biomass vs. density of survivors) were fitted by reduced

major axis (type II model) regression, which assumes error in both

variables and is widely used to investigate mass-density relation-

ships. All statistical analyses were conducted using R 2.11.1.

Results

Variation in the mode of competition, the level of resource

limitation and their interaction produced significant variation in

the self-thinning trajectory (Figure 1, Table S1). The mode of

competition had a greater effect on the slope of self-thinning

trajectories than did the level of resource limitation. For given

resource limitation, RL, symmetric competition made self-thinning

trajectories significantly shallower (ninety-five percent confidence

intervals for the four modes of competition did not overlap), but

within same mode of competition the level of resource limitation

did not change slopes much (Figure 2).

In scenarios with more symmetric competition, the relative

interaction index RII is close to 21 and thus the effect of

competition on surviving individuals is quite strong (Figure 3). In

contrast, in scenarios with more asymmetric competition, surviv-

ing plants are less affected by interactions with other plants (RII

close to 0). Both resource limitation and asymmetric competition

lowered the position of self-thinning trajectories: less biomass can

be accumulated at a given density under resource limitation or

with more asymmetric competition (Figure 1). Resource limitation

decreased intercepts within the same mode of competition

(Figure 2), which means that the maximum biomass of plants is

smaller in harsh conditions.

Figure 3. Relationship between relative interaction intensity (RII) and density of surviving plants at different levels of resource
limitation and modes of competition. RL indicates the level of resource limitation (from 0 to 1 indicating no limitation to extreme limitation), p
indicates the modes of competition (0: completely symmetric; 1: perfectly size-symmetric; 10: highly size-asymmetric; ‘: completely asymmetric).
Values of RII indicate the intensity of interactions as competition (from 21 to 0), neutral interaction (equal to 0) and facilitation (from 0 to 1).
doi:10.1371/journal.pone.0057612.g003
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Discussion

Our results and those of previous studies [15,17] are consistent

with our first hypothesis that symmetric competition can lead to

shallower self-thinning trajectories than asymmetric competition.

This suggests that deviations from the slope predicted by MST are

likely to occur when competition below ground is stronger than

above ground because the former is size-symmetric [14,31].

Indeed, several empirical studies show that slopes of self-thinning

trajectories are significantly flatter under severe water stress [4]

and low nutrient levels [7], conditions in which competition below

ground is thought to be more important than above-ground

[4,14,16]. Furthermore, boreal coniferous forests tend to have

steeper slopes than deciduous broadleaved forests because the

canopy of conifers is denser (with lower light transmittance)

suggesting that asymmetric competition for light is more intense

[15,19,30].

Why does symmetric competition lead to flatter trajectories in our

model even though it makes surviving plants larger on average at a

given density (Figure 1)? With symmetric competition, the growth of

all individuals is significantly reduced but the onset of mortality is

delayed [18]. Plants can survive and grow even at relatively high

densities, meaning that more biomass can be maintained at a given

density when competition is size-symmetric [15].

When competition is highly size-asymmetric, surviving plants

are less affected by their neighbors and thus individual-level

metabolic processes of MST predict plant mass-density relation-

ship at the population level: the slope of the self-thinning

trajectories is close to 24/3. This is consistent with our second

hypothesis that MST’s predictions of population-level mass-density

relationships are successful when surviving plants are not strongly

affected by local interactions. In stands of Nothofagus solandri

(mountain beech), taller trees are relatively unhindered by

competition for light and show the scaling of diameter growth

which is consist with prediction of MST, whereas small trees

affected by asymmetric competition do not follow the growth

trajectory of prediction [8,9]. In a tropical rainforest, trees under

high light conditions are not highly affected by neighboring trees.

Consistent with our second hypothesis, diameter growth of such

individuals was consistent with the predictions of MST [10].

In contrast to our findings, Coomes and coworkers concluded

that deviations from predictions of MST in forests are caused by

size-asymmetric competition [8,9]. On closer inspection, our

results are not inconsistent with those of Coomes and coworkers.

Coomes’s studies focused on diameter growth of individuals,

including small suppressed individuals that are experiencing size-

asymmetric competition for light, whereas we focus here on the

mass-density relationship of populations during self-thinning, i.e.

on plants surviving competition. When competition is highly size-

asymmetric, total biomass is primarily due to the largest

individuals, which are not highly affected by neighbors. If one

looks at smaller individuals suffering from asymmetric competition

before they die, however, they will be highly affected by their

larger neighbors, and this will be more important for their growth

and density than the internal relationships that form the basis for

MST. It would be worthwhile to analyze individual-level diameter

growth in our model to compare the patterns with those from

empirical studies [8–10] to see if the conclusions are consistent.

Nevertheless, we agree with Coomes and coworkers on the central

point: interactions among individuals can overrule the predictions

of MST.

Both size-asymmetric competition and resource limitation

lowered self-thinning trajectories (Figure 2). Resource limitation

reduces the growth of individual plants, leading to smaller

individuals. Size-asymmetric competition results in faster mortal-

ity. The reduction of biomass due to mortality is not immediately

compensated by the growth of survivors, so there is less total

biomass at a given density.

Using a similar model, Chu et al. [17] found the same effect of

the mode of competition (size symmetric vs. asymmetric) on the

slope of self-thinning trajectories. The most important difference

between Chu et al.’s model and ours is that we used an individual

growth model that is derived from MST, whereas they used the

phenomenological growth equation of Weiner et al. [18]. Chu et al.

[17] focused on the effects of mode of competition, resource levels,

and facilitation on self-thinning per se, so they do not refer to MST

or focus on their choice of their individual growth model. This

may be why the range of scaling exponent predicted with our

model (21.083 to 21.486) is closer to the observed range of

exponents (21.103 to 21.441 for 1266 plots of six biomes and 17

forest types across China) [19] than models using phenomenolog-

ical growth functions (20.8204 to 21.6095) [17]. This suggests

that the consideration of both neighborhood interactions and

constraints provided by MST are necessary to explain the

biomass-density relationships observed in the field.

Our results point to the scope and limits of MST at the

population and community level. MST applies to individual

organisms, not always and necessarily to populations or ecosys-

tems. In some cases, for example where resources are not limiting

and competition is highly size-asymmetric, the mass-density

scaling exponent predicted by MST matches observations quite

well. This is because individual acquisition of resources and

accumulation of biomass is driven primarily by what the individual

itself does rather than by interactions with other individuals

(Figure 3). On the other hand, when individual behavior is

determined more by interactions with their neighbors rather than

processes that are the bases of MST, the population-level behavior

will deviate from the predictions of MST, as has been shown for

Dynamic Energy Budget Theory [32–34].

Conclusions
MST, like energetics and biomechanics, sets limits on the

behavior of individuals and therefore of populations and

communities. In some ecological situations these limits will

dominate, and MST will predict higher-level behavior. In many

cases however, other constraints are stricter, and these, rather than

MST, will determine the patterns observed. Our most important

conclusion is that the behavior of populations and communities

may be dominated by internal physiological mechanisms ad-

dressed by MST or by ecological factors beyond the individual

level, such as the type of resource limitation and the mechanisms

of competition among individuals. In the latter cases MST will not

be predictive, although nor will it be violated. The claim that MST

provides a universal and mechanistic basis for quantitatively

linking the energetic metabolism of individuals to ecological

community dynamics is too strong. MST sets constraints within

which ecology operates, but these are not always the dominant

constraints. The observed variation in mass-density relationships

represents variation in the most restrictive of the potential

constraints in a given ecological context. Consideration of

competition is critical for understanding variation in observed

mass-density relationships.
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Table S1 Slope and intercept of self-thinning trajecto-
ries.

(DOCX)

Plant Interactions and Metabolic Scaling Theory

PLOS ONE | www.plosone.org 5 February 2013 | Volume 8 | Issue 2 | e57612



File S1 ODD model description of pi model.
(DOC)

File S2 NetLogo file of pi model v1.3.
(NLOGO)

Acknowledgments

We thank Sven Wagner, Angelika Otto, Christine Lemke, Cyril Piou,

Antje Karge, and Heinz Wolf for their kind help. James Brown and

Jianming Deng gave constructive comments on an earlier version of the

manuscript. We also thank two anonymous reviewers for their constructive

comments on the manuscript.

Author Contributions

Developed the model used in simulation: YL UB VG. Conceived and

designed the experiments: YL UB VG. Performed the experiments: YL UB

VG FH. Analyzed the data: YL. Wrote the paper: YL UB VG FH JW.

References

1. West GB, Brown JH, Enquist BJ (1999) The fourth dimension of life: fractal

geometry and allometric scaling of organisms. Science 284: 1677–1679.

2. Enquist BJ, Brown JH, West GB (1998) Allometric scaling of plant energetics
and population density. Nature 395: 163–165.

3. Enquist BJ (2002) Universal scaling in tree and vascular plant allometry: toward
a general quantitative theory linking plant form and function from cells to

ecosystems. Tree Physiol 22: 1045–1064.
4. Deng JM, Wang GX, Morris EC, Wei XP, Li D, et al. (2006) Plant mass–density

relationship along a moisture gradient in north-west China. J Ecol 94: 953–958.

5. Dai XF, Jia X, Zhang WP, Bai YY, Zhang J, et al. (2009) Plant height–crown
radius and canopy coverage–density relationships determine above-ground

biomass–density relationship in stressful environments. Biol Lett 5: 571–573.
6. Zhang WP, Jia X, Bai YY, Wang GX (2011) The difference between above- and

below-ground self-thinning lines in forest communities. Ecol Res 26: 819–825.

7. Morris EC (2003) How does fertility of the substrate affect intraspecific
competition? Evidence and synthesis from self-thinning. Ecol Res 18: 287–305.

8. Coomes DA, Allen RB (2007) Effects of size, competition and altitude on tree
growth. J Ecol 95: 1084–1097.

9. Coomes DA, Lines ER, Allen RB (2011) Moving on from Metabolic Scaling

Theory: hierarchical models of tree growth and asymmetric competition for
light. J Ecol 99: 748–756.
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