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FragIt: A Tool to Prepare Input Files for Fragment Based
Quantum Chemical Calculations
Casper Steinmann*, Mikael W. Ibsen, Anne S. Hansen, Jan H. Jensen

Department of Chemistry, University of Copenhagen, Copenhagen, Denmark

Abstract

Near linear scaling fragment based quantum chemical calculations are becoming increasingly popular for treating large
systems with high accuracy and is an active field of research. However, it remains difficult to set up these calculations
without expert knowledge. To facilitate the use of such methods, software tools need to be available to support these
methods and help to set up reasonable input files which will lower the barrier of entry for usage by non-experts. Previous
tools relies on specific annotations in structure files for automatic and successful fragmentation such as residues in PDB files.
We present a general fragmentation methodology and accompanying tools called FragIt to help setup these calculations.
FragIt uses the SMARTS language to locate chemically appropriate fragments in large structures and is applicable to
fragmentation of any molecular system given suitable SMARTS patterns. We present SMARTS patterns of fragmentation for
proteins, DNA and polysaccharides, specifically for D-galactopyranose for use in cyclodextrins. FragIt is used to prepare
input files for the Fragment Molecular Orbital method in the GAMESS program package, but can be extended to other
computational methods easily.
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Introduction

The need to compute molecular properties for larger and larger

systems with desirable accuracy has led to the development of

novel methods such as fragmentation methods [1]. In fragmen-

tation methods, a large system is divided into several smaller

subsystems called fragments. Each fragment is treated with some

ab initio level of theory and different methods [2–7] include the

surrounding environment in different ways.

In this work, we are interested in setting up Fragment Molecular

Orbital (FMO) [5,6] and Effective Fragment Molecular Orbital

(EFMO) [8,9] calculations, but our method is extensible to other

fragment based methods. In the FMO method, each fragment is

polarized by the presence of the Coulomb field of all other

fragments. The underlying equations allow for a systematic

improvement of the energy by considering pairs and optionally

triples of fragments [10], the latter often within milihartree

accuracy of the corresponding ab initio energy. FMO supports

correlated treatment of one or more fragments [11–13] as well the

possibility of obtain excitation energies with good accuracy. [14]

The FMO method in GAMESS [15] utilizes a novel paralleliza-

tion scheme [16] to allow computations to be carried out

efficiently on desktop computers as well as large scale super

computers. [17] Fragmentation can occur across covalent bonds

using either the Hybrid Orbital Projection (HOP) [18] or Adapted

Frozen Orbital (AFO) [19,20] method. The EFMO method, also

available in GAMESS, neglects the Coulomb bath from FMO and

replaces it with classical terms to improve the computational

speed. The input to EFMO and FMO are largely identical.

Often, the input files for the FMO method are more complex

than the regular ab initio input files. The reason for this complexity

is that complete knowledge about the individual fragments of

interest are required, i.e. the atom indices that make up the

fragment which might not be in any specific order in an input

coordinate file, the integer fragment charges and level of theory.

For a molecular cluster, each individual molecule can be

considered a single fragment, for polymers a sub-unit of that

polymer could make up a fragment whereas for proteins each

individual residue can be considered a fragment. Fragmentation

across covalent bonds adds more complexity: One must now also

consider chemically reasonable places of fragmentation (do not

break conjugation, etc.) which itself requires manual inspection of

the structure of interest. Different systems have different complex-

ities. For example, setting up a fragment calculation on a simple

system consisting of three water molecules is feasible to prepare

manually, but a protein with thousands of atoms is not. Consider

also the case of multiple layers which the FMO method supports

[21] in similar spirit to the ONIOM method [22,23] where one (or

several) lower level layer(s) are used for some chemically irrelevant

parts of a system but their effect on a higher level layer, which is

used for the chemically interesting part, is needed. The assignment

of fragments to individual layers usually based on the distance to

a point of interest, is also no minor task when you have hundreds

of fragments.

The need for automated tools which can setup calculations for

a variety of systems (proteins, molecular clusters, polysaccharides,

etc.) and automating the above tasks is thus of utmost importance
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if these methods are to become viable tools that computational

chemists use routinely in their research.

Software tools to prepare fragment method input files are

already present but they differ greatly in their applicability and

flexibility regarding different systems. The FMOutil [24] package

is supplied with the FMO method in GAMESS. It only supports

fragmenting proteins/peptides and is dependent on a standardized

PDB file format. It does include support for enabling multi-layered

FMO calculations and letting the user choose whether to include

solvation or not. Of more general applicability is the Facio [25,26]

tool which supports the generation of FMO input files. The user

can choose between fragmenting peptides, saccharides and

nucleotides along with more specific options regarding the

computational details such as level of theory and memory

requirement. The main strength of Facio, however, is that it is

a graphical user interface and one can define custom fragmenta-

tion bonds by using the mouse. While the FMOutil software is

released under an open source license and can be run on any

computer in a terminal, the Facio tool is closed source and

available for Windows only.

We present an open source fragmentation methodology, an

accompanying command line tool and a corresponding web

service called FragIt that enables one to easily fragment any

molecule or system of interest using predefined (or custom)

patterns to locate fragmentation points. As output, FragIt creates

an input file to the FMO method in GAMESS with reasonable

defaults so the calculation can be started directly. FragIt can be

extended to write input files for other (fragment) methods and new

patterns of fragmentation can be created and tested without

changing the source code. The only requirement for the input is

that the structure of interest is protonated correctly in advance

according to the problem of interest which can be achieved by

tools such as PDB2PQR [27,28].

We have tested FragIt on several artificial and naturally

occurring proteins with patterns of fragmentation to make

reasonable fragments both in terms of the involved chemistry

and size. We compare resulting fragmentation properties of FragIt

and FMOutil and highlight similarities and differences. We also

demonstrate that the fragmentation methodology is able to

fragment a string of DNA and a polysaccharide successfully given

Figure 1. Scheme of the FragIt Algorithm.
doi:10.1371/journal.pone.0044480.g001

Figure 2. Pattern matching on a peptide bond using SMARTS.
doi:10.1371/journal.pone.0044480.g002

Table 1. Patterns of Fragmentation.

Description Match LHS RHS

Protein fragmentation -Ca|-C9- [$(CN)] [$(C( = O)NCC( = O))]

NH2 protection -NH2 [$(NH2)] CC( = O)[$(NCC = O)]

NHz
3 protection -NHz

3
[$(NH3)] CC( = O)[$(NCC = O)]

Sugar fragmentation -C|-C- [$(C1C(CO)OC(O)C(O)C1(O))] [$(OC1C(O)C(O)CC(CO)O1)]

B-DNA fragmentation C|-C- [$(CCOP)][$(CC1OCCC1)]

Patterns used in FragIt for different types of chemical systems. The patterns for proteins include protection patterns to increase accuracy by eliminating very small
fragments and the default fragmentation pattern makes sure to keep the quasi-conjugated nature of the peptide bond intact. For polysaccharides a single pattern to
match a-D-galactopyranose units, the subunits of cyclodextrins, is included. We also include a pattern to fragment the backbone of DNA.
doi:10.1371/journal.pone.0044480.t001

FragIt: Preparing Fragmentation Method Inputfiles
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the appropriate patterns. When SMARTS patterns are not

possible, FragIt supports manual definition of fragmentation

points. As an example, we fragment the Leucoemeraldine state

of Polyaniline.

Design and Implementation

The FragIt algorithm was initially inspired by the RECAP [29]

algorithm. The fragmentation algorithm (outlined in Figure 1 and

discussed below) will take any file format supported by Open Babel

[30,31] and fragment it, i.e. assign individual atoms to fragments,

calculate the integer fragment charge from partial atomic charges

in a fragment, locate atoms which define the boundaries of

fragments and finally write an input file to the FMO method in

GAMESS. The details of the implementation of the fragmentation

algorithm is described below. The only required user input is

a properly protonated and chemically reasonable structure.

To search for chemically reasonable places to fragment in

molecules and to not rely on a single file format, we have based the

fragmentation method on the SMiles ARbitrary Target Specifi-

cation (SMARTS) [32] language which enables us to make

substructure searches in molecules. For our specific needs, we have

to find atomic species which are written in SMARTS as [M].

Here, M is an atomic primitive (an element such as a carbon

atom). We are interested in locating pairs of atoms connected by

a covalent bond through which we wish to define boundaries of

fragments. A pair of atomic primitives is written as [M][N] where

M and N are both atomic primitives. However, this is not nearly as

flexible as we want since the chemical environment for different

bonds vary, so to build atomic primitive environments we use the

$() operator to define such environments as [$(MLHS)][$(MRHS)].

Here, MLHS and MRHS are general SMARTS match patterns

for the left hand side and right hand side of a bond. The first atom

in MLHS is covalently bound to the first atom in MRHS. For

instance, to match atoms on each side of a peptide bond we might

use [$(CC)][$(NC)] which would match a Carbon connected to

another Carbon on one side to a Nitrogen connected to a Carbon

on the other side (see Figure 2).

Due to the general application of SMARTS patterns, one can

imagine protecting certain parts of a molecule from fragmentation

is useful, say for a ligand in a protease or a specific residue in

a protein. In FragIt, this protection is enforced via protection

patterns which are SMARTS patterns to match atomic primitives

as above.

FragIt is implemented in Python [33] and relies heavily on the

use of the Open Babel API and its ability to be accessed through

a SWIG [34] exposed Python interface [35].

The Fragmentation Algorithm
The fragmentation algorithm is outlined in Figure 1. Initially,

the structure of interest is loaded via Open Babel and the partial

charges of all atoms are obtained from the MMFF94 force-field via

the OBChargeModel class. The MMFF94 force-field is specifically

chosen in this work since it contains atom types aimed at systems

of biochemical interest. However, Open Babel does include other

force-fields which are probably more suited to inorganic systems.

After having obtained the charges, potential atoms which should

be protected by the appropriate SMARTS patterns (Table 1) are

located. Hereafter follows the fragmentation procedure which

fragments the system according to the fragmentation SMARTS

patterns or explicitly defined valid pairs of atoms. In all cases

SMARTS are handled by the OBSmartsPattern class from the

Open Babel API and we obtain atom indices of fragmentation

points directly because we base the search on atomic primitives.

To obtain the atoms that constitute a single fragment, we use the

atom indices of the fragmentation points found above and with the

FindChildren method of the OBMol class to extract all atoms

between the two.

The fragmentation algorithm supports grouping neighboring

fragments together. We have chosen an implementation which is

a combination of two or more adjacent fragments into one. This

combination of fragments has one benefit from a computational

point of view, and that is to increase the accuracy of the

computation.

Figure 3. Protein Backbone Fragmentation Example. An
example of how fragmentation and protection is carried out using
SMARTS patterns on a protein in FragIt. Illustration a) is the uncorrupted
protein backbone with side-chains R1 through R4, b) shows how
a protection pattern matches atoms very specifically. c) and d) shows
examples of fragmentation using the standard peptide pattern supplied
in this work. Finally, e) is the final fragmentation when all fragmentation
(4 fragments) and protection (1 fragment) is carried out, resulting in 3
fragments.
doi:10.1371/journal.pone.0044480.g003

FragIt: Preparing Fragmentation Method Inputfiles
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Once fragments are identified (and optionally grouped), we can

assign fragment charges by counting the partial atomic charges in

each fragment we obtained earlier.

Finally we write the input file for the FMO method in

GAMESS.

Writing the Input Files
When the fragmentation data has been obtained an input file is

written to disk for the FMO method in GAMESS. There are

several options available when writing the input file. First, multi-

layered input file generation is supported by selecting a fragment

which is the central fragment. From this fragment the assignment to

layers are calculated using the minimum distance RIJ from fragment

I , where I is the central fragment, to all other fragments J based

on a user defined distance that separates one layer from another.

In addition to the above, support for the FMO Frozen Density

(FMO/FD) [36] method is also included. In FMO/FD one has an

active region in which we wish to do a geometry optimization,

a buffer region to help relax the density of the active region and

a frozen region where the density is kept frozen after initial

convergence. One defines a central fragment as above and

a distance. Fragments which have atoms within this distance from

the central fragment should all be enabled for geometry

optimization. Around this active region, a buffer zone is

constructed similarly with a new distance within which atoms

(and fragments) are considered a buffer. The rest is frozen.

The input file can be run directly in GAMESS because we

provide sensible defaults which are not FMO specific (an energy

calculation using RHF with a 3–21G basis set, 1 GB of memory

per core, etc.). Specifically for FMO, only the AFO bonding

scheme is supported since the original HOP formulation requires

manual generation of molecular orbitals in the bonding region if

one chooses exotic places to fragment. The HOP scheme is also

dependent on an extra basis set input which is automatically done

with AFO. While the defaults are only meant to get novice EFMO

and FMO users started using fragment based methods we note

that manual changes to the input files for a production run is

needed.

Finally, the ability to write an extra PyMOL [37] and/or Jmol

[38] script to visually inspect the fragmentation (and optionally

layering) is included. The scripts are based on templates which

contains the markup needed to make the programs visually display

the fragmentation. The fragment information from FragIt is then

used to group atoms into fragments for visual display.

Figures in this paper were generated using the PyMOL

functionality. The web service uses the Jmol functionality.

Description of the Test Dataset
To illustrate the applicability of FragIt to different molecules

using different patterns, we show results for a molecular cluster

consisting of water and a solute, Chignolin (PDB: 1UAO),

Tryptophan-cage (PDB: 1L2Y), Human Parathyroid Hormone

(HPH) residues 1–34 (PDB: 1ET1A), Crambine (PDB: 1CRN),

GluR2 ligand binding core (PDB: 1FTJ) as well as several neutral

methyl-capped a-helix and b-sheet alanine structures from

Fedorov et al. [6] and finally a b-cyclodextrin (extracted from

PDB: 3CGT). The neutral methyl-capped a-helices and b-sheets

are good to show FragIt’s capability to fragment and group

fragments together. Chignolin, the Tryptophan-cage, Crambine

and Glur2 are real world proteins and have charged termini.

These will help show that FragIt can protect various parts of

a protein (in this case NH3+ groups) by grouping them with nearby

fragments to increase the computational accuracy. Crambine and

Glur2 also include Sulfur-bridges. The structure of B-DNA was

obtain from Georgia State University [39]. Leucoemeraldine was

built in Avogadro [40]. Lastly, the polysaccharide b-cyclodextrin is

included to illustrate that by simply including the appropriate

patterns of fragmentation these are fragmented as well.

The crystal structures of the proteins and b-cyclodextrin were

protonated using PDB2PQR [27,28] at pH~7.

Table 2. Default Fragmentation Results.

Protein NU Nfrag(1=2) Nmax
A (1=2) Q NS{S Comments

a-(ALA)10 10 10/5 18/28 0 0 capped with methylene

a-(ALA)20 20 20/10 18/28 0 0 capped with methylene

a-(ALA)40 40 40/20 18/28 0 0 capped with methylene

b-(ALA)10 10 10/5 18/28 0 0 capped with methylene

b-(ALA)20 20 20/10 18/28 0 0 capped with methylene

b-(ALA)40 40 40/20 18/28 0 0 capped with methylene

Chignolin 10 9/5 28/34 22 0

Tryptophan-cage 20 19/10 33/41 +1 0

HPH 34 33/17 26/46 +1 0

Crambine 46 42/23 28/43 0 3

Glur2 259 264/138 34/46 +4 1 7 waters included

b-cyclodextrin 7 7/4 21/42 0 0

B-DNA 24 26/14 33/64 0 0

Leucoemeraldine 8 8/4 13/25 0 0

Fragmentation results for some selected proteins, enzymes and sugar molecules. We show the number of units NU in the molecules of interest, i.e. residues for proteins
or sugars in the cyclodextrins, the number of resulting fragments Nfrag both without (1) and with (2) grouping with the neighbor, the maximum number of atoms in

a fragment both without (1) and with (2) grouping with the neighbor, the overall charge Q of the system at pH = 7 and the number of sulfur bridges NS{S which in
FragIt is automatically treated as one fragment.
doi:10.1371/journal.pone.0044480.t002

FragIt: Preparing Fragmentation Method Inputfiles
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Results

We now show four use cases of FragIt. First, we use it

extensively to fragment proteins where we show many combina-

tions of properties and compare with the FMOutil program. We

then show that FragIt fragments polysaccharides, strands of DNA

and other polymers as well. For an in-depth discussion of

fragmentation patterns we refer to the Design and Implementation

section. Groups of atoms not connected by a covalent bond are

automatically grouped into separate fragments. So for example,

any water molecules are treated as individual fragments.

Proteins
The fragmentation pattern used for peptide bonds is shown in

Table 1 and illustrated in Figure 3[c–e]. Earlier work has shown

[18,41] that fragmentation at the Ca-C9 bond leads to higher

accuracy energies for the FMO method compared to fragmenta-

tion at the semi-conjugated peptide bond. One has to also take

care that fragments will not be too small and cause unphysical

behavior. To facilitate this, we include several patterns of

protection in FragIt. A protection pattern locates parts of

a structure which must not be fragmented. The fragmentation

pattern will generate small fragments at the N-termini (Figure 3c)

but this fragment is chemically too small because of the positive

charge right next to a fragmentation point which will result in a too

large inter-fragment charge-transfer. Furthermore, because of the

way fragment boundaries are made using AFO uneven charges

arising from the N-termini are also taken care of using protection

patterns. The protection patterns (also listed in Table 1) will

protect both a charged and a neutral N terminus. Protection of the

C-terminus is implicitly built into the fragmentation pattern.

Shown in Table 2 are results for the several proteins. We list the

number of residues for each protein as well as the number of

fragments obtained after fragmentation. For the a-helices and b-

sheets which are capped with methyl groups, we obtain as many

fragments as residues. This is different from Chignolin, Trypto-

phan-cage and HPH where the protection patterns match the N-

termini and (for one residue per fragment) make one less fragment

than the number of residues. For GluR2, the results are similar,

but there are also seven water molecules as well as two chains

(which both get protected) yielding a total of 257 fragments in the

protein plus 7 water fragments totaling 264. The column Nmax
A in

Table 2 lists the maximum number of atoms in any fragment. For

Crambine, the number of residues is 46 and the resulting number

of fragments (for one residue per fragment) is 42 because one is

protected and the three disulfide bridges are combined into three

(rather than six) fragments. Disulfide bonds are not subject to

automatic fragmentation in FragIt unless a specific pattern is

Figure 4. Different fragmentation options illustrated for Chignolin. Here shown a) without protection and no grouping, b) with protection
and no grouping, c) without protection but in groups of two residues per fragment and d) with protection and using two residues per fragment. We
use a six color coloring scheme resulting in different fragments may have the same color.
doi:10.1371/journal.pone.0044480.g004

FragIt: Preparing Fragmentation Method Inputfiles
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supplied. This is an intentional side-effect of using fragment based

patterns because the S-S bond is comparatively very polarizable

and therefore a poor choice for a covalent link.

Larger fragments leads to more accurate FMO results (see for

example the work by Fedorov et. al. [42] for more information) and

FragIt allows grouping of fragments where two covalently bonded

fragments (such as two adjacent amino acids) can be grouped in to

one fragment. This is illustrated in Figure 4 where fragments are

colored to distinguish them. Because of using only 6 different

colors, some fragments (although different) will have the same

color. Here, a) shows Chignolin is fragmented without protection

patterns using one residue per fragment. This results in 10

fragments with fragment sizes between 7 and 24 atoms (see

Table 3) which is the same as the default behavior of FMOutil. b)

shows the use of a protection pattern to prevent the first peptide

bond from being cut. This is the default setting and gives 9

fragments with fragment sizes from 7 atoms to 28 atoms. We do

note that the default setting gives slightly more imbalanced

fragment sizes when thinking about parallelization strategy. To

further improve fragment size balance one can choose to merge all

Glycine residues with preceding fragments. This is a reasonable

strategy to improve accuracy without added computational cost

and is also possible in the FMOutil. With the default fragmen-

tation behavior of FragIt and merging of Glycine residues the

result is 6 fragments with fragment sizes ranging from 14 atoms to

28 atoms whereas not including protection patterns but merging

gives rise to 7 fragments with fragment sizes from 7 atoms to 34

atoms. Correspondingly, merging Glycine residues with FMOutil

yields 7 fragments with sizes 12 atoms to 34 atoms. The difference

between FragIt and FMOutil lies in the way they see Glycine.

FMOutil uses knowledge from residues to merge Glycine whereas

FragIt relies on a pattern to find it. After fragmentation, the

SMARTS pattern used does not recognize the N-terminal in

Chignolin as a Glycine which gives rise to the discrepancy.

Including grouping but neglecting the protection pattern and

merging gives rise to 5 fragments with a maximum of 37 atoms in

a fragment (with the smallest fragment having 21 atoms). This is

shown in Figure 4c) and the same fragment sizes that FMOutil

does (Table 3). Compare this to d) where the combination of

protection patterns and grouping leads to large size differences in

fragments (minimum fragment size is 10 atoms and the maximum

is 40 atoms). Different combinations of options can lead to very

different fragmentation possibilities and care should be taken to

fragment a system in the most sensible way in which the physics of

the individual fragments is properly described.

Polysaccharides
Table 1 lists the fragmentation pattern we have included to

fragment chains of D-galactopyranose. This pattern is specifically

aimed at fragmenting cyclodextrins which are common in the

design of artificial enzymes. The pattern explicitly matches the

CH2OH side chain. Figure 5[a] shows a trimer of D-galactopyr-

anose and Figures 5[b–d] shows how the trimer is fragmented.

The pattern takes an N-mer of sugar and converts it to N
fragments, see Table 2. This also works for the cyclodextrins

without any modifications. We did not observe any fragments

during our tests that were of such size that protection patterns

were necessary.

To fragment other sugars, one could modify the existing pattern

to suit ones needs.

Table 3. Fragmentation of Chignolin using various options
for FragIt and FMOutil.

FragIt

Nfrag Nmin
A Nmax

A comment

9 7 28 default

10 7 24 no protection

6 14 28 default+merge

7 7 34 no
protection+merge

5 10 40 group in pairs

5 21 34 group in pairs+no
protection

FMOutil

10 7 24 default

7 12 34 default+merge

5 21 34 group

doi:10.1371/journal.pone.0044480.t003

Figure 5. Sugar Fragmentation Example. An example of how
fragmentation is carried using SMARTS patterns on a polysaccharide
molecule in FragIt. Illustration a) is the polysaccharide molecule of
interest, in this case an D-galactopyranose trimer. b) and c) shows
examples of fragmentation using the polysaccharide fragmentation
pattern in this work. Finally, d) shows the final fragmentation of 3
fragments.
doi:10.1371/journal.pone.0044480.g005

FragIt: Preparing Fragmentation Method Inputfiles
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DNA
Although proteins has been the primary target of the majority of

the fragment based methods, another interesting system to

investigate is DNA. The nucleotides of DNA are connected to

the DNA backbone which is made from sugars and phosphate

groups connected by covalent bonds. We include a basic pattern

(see Table 1) to fragment the backbone of DNA which can be

observed in Figure 6. The 24 nucleotides were fragmented into 26

individual fragments and except from the two 9 atom fragments

which make up the termini of each backbone (and could be

protected by additional protection patterns) fragment sizes are 27

to 33 atoms depending on the type of nucleotide involved.

Other Polymers
Under some circumstances, a fragmentation pattern cannot be

supplied, for instance when looking at Polyaniline since the right

hand side and the left hand side of bond are the same which leads

to multiple unwanted matches and very small fragments. To

fragment such systems, it is possible to manually define pairs of

atoms between which there should be a fragmented bond (see

below). To show this feature, we have fragmented Leucoemer-

aldine, the fully reduced state of a chain of Alinine monomers

(shown in Figure 7). This makes it possible to fragment systems

even without having developed a fragmentation pattern before-

hand. This option can be combined with regular fragmentation

patterns allowing for very specialized fragmentation setups.

Another option which we might consider in the future is to

implement a minimum fragment size option which could allow for

these unwanted matches

Installation and Usage
The FragIt software is installed by downloading the source code

from the project homepage (see below). FragIt requires Python

v2.4 or later (not 3.X), Numpy [43] v1.5 (or later) and the Open

Babel framework compiled with Python bindings version 2.3 (or

later). Once these requirements are satisfied, FragIt can be

executed from the command line. Options which are described in

detail above is easily accessed through arguments to the command

line executable. The web version requires Java to run Jmol, but

otherwise no installation on a client computer.

To use FragIt invoke the executable and supply the structure

which we wish to fragment (here Chignolin)

fragit 1uao.pdb

to generate an input file using the default settings (illustrated in

Figure 4b). The default settings include fragmentation patterns for

peptide bonds and sugar bonds as well as the listed protection

patterns. To disable the use protection patterns use the –disable-

protection command line option. All available options can be

changed via command line options to the FragIt executable or via

configuration files. To generate a configuration file named

my.conf with the default fragmentation settings use the make-

config option on a molecule of interest

fragit –make-config = my.conf

The contents of this file has all modifiable options and can be

supplied to FragIt via the use-config option. To test new patterns

Figure 6. Fragmentation of DNA using FragIt. We use a six color
coloring scheme resulting in different fragments may have the same
color.
doi:10.1371/journal.pone.0044480.g006

Figure 7. Fragmentation of Leucoemeraldine (a Polyaniline) using FragIt. This particular example uses no fragmentation patterns but rather
explicitly defined points of fragmentation by the end user.
doi:10.1371/journal.pone.0044480.g007
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for instance, this is the preferred approach since no tinkering with

the FragIt source code is needed.

To invoke layered input files as described above, one must

specify a central fragment (–output-central-fragment) as well as

a distance (given by –output-boundaries) within which all

fragments will be promoted to a higher level layer. This is

accomplished by

fragit –output-central-fragment = 1 –output-boundaries = 3.0

1uao.pdb

which takes fragments within 3 Å of the first fragment and

promotes it to a higher level layer.

To activate active, buffer and frozen regions, one must again

specify both a central fragment and boundaries for higher level

layers which are allowed to move [36]. Moreover, another

distance within which atoms (and their fragments) are considered

active is specified by the –output-active-distance option. Lastly,

a buffer region of fragments between the active and the frozen is

defined by a final distance (–output-buffer-distance)

fragit –output-central-fragment = 1 –output-boundaries = 3.0 \ –

output-active-distance = 2.0 –output-buffer-distance = 3.0 1uao.pdb

which first will generate layers based on the boundary settings as

above, then find active fragments within 2.0 Å from the central

fragment, and finally create a buffer region around the active

Figure 8. Different active, inactive and frozen regions in Chignolin. Regions are color-coded according to their function: red is active, blue is
buffer and green is frozen. In a) fragment 1 is in the active region, fragments 2, 3, 6–9 are buffer region fragments and fragments 4 and 5 are in the
frozen region. In b), fragments 1,2,6 and 8 are active fragments while fragments 3,4,5,7 and 9 are buffer region fragments. There are is no frozen
region in b).
doi:10.1371/journal.pone.0044480.g008

Figure 9. Fragmentation of Chignolin using the web service.
doi:10.1371/journal.pone.0044480.g009
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fragments within 3.0 Å from any active fragment. In this final step,

some previously lower level layers may be promoted to higher level

ones. The result is shown in Figure 8b. By changing the –output-

active-distance option to 1.0, one obtains Figure 8a.

To group N consecutive fragments, one can use the –g N

option. Usually, N would be 2 but FragIt supports any positive

integer. To only merge Glycine the –merge-glycine option is

available.

Lastly, to manually specify points of fragmentation one has to

use configuration files and define the pairs string in explicit-

fragmentpairs group. The format is pairs = A,B;C,D; where A, B,

C and D are all atom indices and A,B is an atom pair between one

wishes that there is an explicit bond.

Availability and Future Directions

The web service [44] available at www.fragit.org enables users

to upload their structure, fragment it and download the resulting

input file to GAMESS. The user is able to visually inspect (see

Figure 9) the fragmentation using Jmol and make simple changes

such as using multiple residues per fragment or enable layered

input or optimization as discussed above. We are actively

implementing features from the command line executable to work

with the web service.

For greater flexibility, we strongly encourage the use of the

command line tool which can be downloaded from the above

URL or accessed from the development source at www.github.

com/FragIt/.

The FragIt source code is distributed under an open source

license (GPL, version 2 or later) and users of the FragIt code are

encouraged to submit changes and additions, especially for their

own (fragmentation) methods. It would also be possible to combine

FragIt with other open source graphical tools such as Avogadro or

even PyMOL, providing an alternative to the Facio software.

We plan on using and extending FragIt in the future with new

patterns of fragmentation and methods as our research heads in

new directions.
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