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Abstract. Inference of protein structure from experimental data is of crucial in-
terest in science, medicine and biotechnology. Low-resolution methods, such as
small angle X-ray scattering (SAXS), play a major role in investigating important
biological questions regarding the structure of proteins in solution.
To infer protein structure from SAXS data, it is necessary to calculate the ex-
pected experimental observations given a protein structure, by making use of
a so-called forward model. This calculation needs to be performed many times
during a conformational search. Therefore, computational efficiency directly de-
termines the complexity of the systems that can be explored.
We present an efficient implementation of the forward model for SAXS with full
hardware utilization of Graphics Processor Units (GPUs). The proposed algo-
rithm is orders of magnitude faster than an efficient CPU implementation, and
implements a caching procedure employed in the partial forward model evalua-
tions within a Markov chain Monte Carlo framework.

Keywords: SAXS, GPU, GPGPU, MCMC, PROTEIN STRUCTURE DETER-
MINATION, OPENCL

1 Introduction

Proteins play a crucial role in science, medicine and biotechnology: without them, cel-
lular activities such as catalysis, signaling and regulation would be next to impossible.
Protein function is determined by protein structure, which has been proven to be deter-
mined by the amino acid sequence [1].

Despite encouraging improvements, determining the ensemble of possible confor-
mations in solution is far from an accomplished goal. High resolution experimental
methods, notably X-ray crystallography and Nuclear Magnetic Resonance (NMR), can
only partially provide information on such ensembles, and encounter several limitations
in fully describing the flexibility of large systems in physiological conditions [2].

Low resolution methods, on the other hand, can more easily provide information
on such ensembles. In particular, Small Angle X-ray Scattering (SAXS) provides in-
formation on the excess electron density of the sample versus the surrounding envi-
ronment. Recently, with the advent of automated high-throughput SAXS analysis of
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biomolecules [3,4], high-throughput data acquisition is within reach. Since SAXS data
only describes the spherical averaging of the electron density of the average conforma-
tion of the ensemble, additional information is needed to assist structural interpretation.

Typical in silico protein structure determination methods, such as ones based on
Markov chain Monte Carlo (MCMC) simulations, propose plausible structural confor-
mations, and compute their associated simulated data by means of a forward model.
Then, the simulated and the experimental data are compared using an error model of
the experiment. For this procedure to be successful, an efficient method for both sam-
pling protein structures and calculating the simulated data is required.

One approach for the calculation of a SAXS curve from a given structure makes use
of the Debye formula [5], which is calculated from a set of spherical scatterers [6,7,8,9].
Another, more recent approach, is based on spherical harmonics expansions [10]. This
approach is faster, but becomes problematic for certain structures, such as those with
internal cavities [11]. Here, we present an efficient application of the Debye formula,
based on a simplified representation of protein structure and the computational power
provided by Graphics Processor Units (GPUs).

In recent publications, our group developed probabilistic models for the proposal
of protein-like conformations, in full atomic detail, for both backbone and side chains
[12,13]. These models were used for the inference of protein structure from NMR data
[14]. We also developed a forward model of the scattering profile evaluation, that in-
cludes the experimental error associated with SAXS data [15]. The forward model con-
sists of a coarse-grained computation based on the Debye formula. Our main aim is the
study of proteins consisting of multiple domains connected by flexible linkers. Such
proteins play a major role in the regulation of gene expression, cell growth, cell cycle,
metabolic pathways, signal transduction, protein folding and transport [16,17]. With
this aim, a computationally efficient forward model for the calculation of SAXS curves
is paramount.

We ported our original implementation of the Debye formula to General Purpose
computing on Graphics Processing Units (GPGPU). GPUs are parallel computing en-
gines that can offer great advantages in terms of cost-efficiency and low power con-
sumption [18]. One of the emerging standards of choice for their programming is the
Open Computing Language (OpenCL), an open standard that provides an abstraction
layer over multi- and many-core computational hardware [19]. The OpenCL Debye im-
plementation was utilized as a likelihood term in an MCMC simulation, providing the
basis for efficient protein structure determination from low-resolution SAXS data.

2 Methods

2.1 Forward SAXS Computation

The observed data in a SAXS experiment is a one-dimensional intensity curve, I (q),
measured at discretized scattering momenta q = 4πsin(θ)/λ, with λ the wavelength
of the incoming radiation and 2θ the scattering angle between the principal and the
probing beam rays. The calculation of a theoretical SAXS profile from a given atomic
structure is based on the well-known Debye formula [5]:
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I (q) =
M

∑
i=1

M

∑
j=1

Fi (q)Fj (q)
sin(q · ri j)

q · ri j
(1)

where Fi and Fj are the scattering form factors of the individual particles i and j, and ri j
is the Euclidean distance between them. The summations run over all the M scattering
particles.

2.2 Coarse-grained Protein Models

If some scatterers are fixed relative to each other, they can be approximated by a single
large scattering body (dummy body). This approximation, more precise at low q, fades
with the progression of the scattering angle up to a resolution equal to the scattering
diameter of the dummy body. We found that the amino acids constituent to the pro-
tein chain can be approximated by one or two large bodies (dummy atoms), and that
this approximation holds up to scattering angles normally not measured in the current
experimental standards [15].

In the two body model, the amino acids are individually represented by two dummy
atoms; one representing the backbone, and the other representing the side chain. Glycine
and alanine, lacking a side chain with conformational freedom, are represented by a sin-
gle dummy atom. The dummy atoms are placed at the respective centers of mass (see
Fig. 1). A total of 21 form factors need to be estimated for the two body model: one
for alanine, one for glycine, one for the generic backbone and 18 for the remaining side
chains.

For the one body model, the single dummy atom is placed at the center of mass
of the amino acid. Hence, 20 form factors need to be estimated; one for each amino
acid type. For a given protein, the one body model allows to represent the molecule
with roughly half the number of scattering bodies employed in the two body model.
If the experimental data is recorded at low resolutions only, the former is thus clearly
preferable for reasons of computational efficiency.

2.3 Form Factor Descriptors

Due to the lack of publicly available high-quality experimental data needed for the
estimation of the form factors, artificial data curves were generated for known high-
resolution protein structures using the state-of-the-art program CRYSOL [21]. This pro-
gram computes the theoretical scattering curve from a given full-atom structure using
spherical harmonics expansions, therefore limiting its applications at studying compact
quasi-globular proteins. We can however use this input to feed a learning protocol, and
make use of the Debye formula in eq. 1 to overcome structural assumptions.

Therefore, a large scale Monte Carlo simulation has been conducted to estimate the
values of the form factors of the dummy atoms [15]. The resulting profiles for these
descriptors are shown in Fig. 2.

In Fig. 3 we show a SAXS curve generated with our method, and the theoretical
scattering computed by CRYSOL as a reference.
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Fig. 1. Coarse-grained models of protein structure. Example of a protein backbone stretch
(dark gray) with side chain atoms (light gray). The placement of the dummy bodies for the center
of mass of the backbone atoms (dark spheres) and for the side chains (light spheres) are indicated.
Figure prepared with PyMOL [20], adapted from [15].

Fig. 2. Form factors. Mean (dark curve) and standard deviations (shaded areas) for the form
factors (Y -axis) as a function of q (X-axis). Left: backbone and side-chains. An asterisk indicates
that this form factor describes both the backbone and side chain atoms of the residue. Right: the
single body form factors. Figure adapted from [15].

2.4 OpenCL Programming Model

An OpenCL program contains a host program that executes on the CPU, and kernels that
execute on the abstracted parallel device. The device consists of one or more compute
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Fig. 3. SAXS profile reconstruction example. Comparison of the reference profiles I (q) com-
puted by CRYSOL from the all atom structure (light gray) and by the two body model (dark
line). Error shade indicates the simulated “experimental” error. PDB code 1JET (520 residues).
Cartoon made with PyMOL [20].

units, which are composed of one or more processing elements and, in some cases, local
memory.

The host program coordinates the execution of the kernels, and can be written in any
programming language. Kernels are written in a variant of the latest released C language
standard (C99) and are compiled at run time to device-specific instructions. A kernel
describes the operations of a single work-item, or thread, and is run simultaneously by
a set of work-items called a work-group.

The local memory of a compute unit, if present, is shared by all work-items in a
work-group and provides an efficient communication channel among them. It has very
low latency and is usually implemented with a full crossbar interface, but is limited in
size and does not retain its state between kernel executions.

Kernels execute most efficiently when the size of the work-group matches the size
of the compute unit on the OpenCL device and when all work-items in a work-group
follow the same execution path.

2.5 Efficient GPGPU Implementation

Parallel Page-Tile SAXS Algorithm. The computation of a SAXS profile is experi-
mentally discretized in a set of q points, and thus naturally provides the first level of
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parallelization, into pages. Each page represents the computation of the intensity curve
I (q) for a single value of q. A page can be visualized as a square problem matrix of side
equal to the number of scattering particles M, with each cell representing the contribu-
tion of a single term of the Debye formula for particular i and j.

For performance considerations and direct mapping to the hardware, pages are par-
titioned into square tiles of side k, where k is set to the specific compute unit size of the
OpenCL device. Since each problem matrix is symmetrical, only the tiles encompassing
the lower-left triangle and the diagonal are computed and their value is simply dupli-
cated for the mirror tiles in the upper-right triangle of the matrix. The domain decom-
position is illustrated in Fig. 4 for an example of 16 scattering particles and work-group
size of 4.

Fig. 4. Domain decomposition for the Page-Tile algorithm. Work-groups operate on square
tiles from the matrix. Only tiles in the lower-left part and the diagonal are evaluated.

GPUs suffer performance penalties when they have to work with data that is not
aligned to their native architecture. The algorithm therefore pads the data and aligns
it to the specified work-group size. The resultant dummy particles participate in the
Debye calculations, but they are assigned a form factor of 0, so their contribution to the
intensity I (q) is null.
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Algorithm 1 Page-Tile SAXS algorithm
Input: scattering momenta, form factors table, scattering particles
Output: intensity curves for the scattering momenta
/*Host program*/
Initialize the parallel algorithm
Transfer input data to GPU global memory and queue the kernels for initial profile calculation
/*Kernels executed on the GPU*/
Map form factors to scattering particles (Kernel 1)
Compute the Debye sum term for each tile (Kernel 2)
Perform vertical tile sum reduction for each page (Kernel 3)
Perform horizontal margin sum reduction for each page to get the intensity curve (Kernel 4)
/*Host program*/
Retrieve the results from GPU global memory

Algorithm 1 presents the pseudocode for the Page-Tile SAXS algorithm. The form
factors table, supplied as input, is packed and organized by scattering momentum and
particle type. The scattering particles, in addition to their position in three dimensions,
have a type in the form of an index into the form factor table. The initial intensity curve
calculation comprises four kernels.

In Kernel 1 the form factor table is mapped into a form suited for hardware-efficient
parallel access. The form factors are organized by scattering particle, which enables
the work-groups with streaming memory access for both center coordinates and form
factors.

The majority of execution time is spent in Kernel 2, where the Debye sum terms
for the individual tiles are computed. The Debye formula is used for each term, but i
and j are limited to the ranges defined by the boundaries of the tile within the global
index space. The kernel uses local memory to improve performance, by pre-loading
the particles and their form factors, and by performing an in-place parallel reduction
to produce the partial sum for the tile. During the Debye calculation, 4x loop unrolling
utilizes local registers to further optimize this stage.

Kernel 3 reduces the tile partial sums, which are stored in a global cache, to bottom
margin sums that are further reduced by Kernel 4 to yield the final intensity curve.

Tile Recalculation. Markov chain Monte Carlo simulations explore the conforma-
tional space of the protein structures by applying partial modifications to an accepted
proposal. The average SAXS computation is therefore a partial re-evaluation of a pre-
viously computed profile, where only a subset of the bodies changed their position.

It is therefore possible to identify the subset of tiles that needs to be updated. Since
the Page-Tile algorithm caches the partial contribution of each tile to the global sum-
mation, we can impose a partial recalculation of only the affected tiles (see Fig. 5). This
leads to a substantial reduction in the time necessary to derive an intensity curve after a
Monte Carlo transition (move).

Algorithm 2 illustrates the pseudocode for tile recalculation. The form factor table
from the initial calculation is reused, so execution starts directly with Kernel 5, which
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Fig. 5. Problem matrix after a move. Particles b8, b9, b10 and b11 have changed positions. Blocks
WG3, WG4, WG5 and WG8 will be recalculated.

identifies the affected tiles and invokes Kernel 2 for them. Kernel 3 and Kernel 4 per-
form the reductions as in the initial calculation.

Floating Point Precision. Floating point numbers can be stored and manipulated with
single precision (SP) or double precision (DP). Mathematical operations on floating
point numbers introduce errors, due to the finite precision available. Those errors tend
to accumulate when a large number of operations is performed, as is the case with the
double sum of the Debye formula. However, the Page-Tile algorithm significantly re-
duces this error growth, because its successive partitioning of the problem space results
in an execution pattern resembling pairwise summation [22]. The algorithm can be ex-
ecuted with SP or DP, paying a performance penalty of a factor of 2 to 4 with DP.

We measured the divergence between the SP and DP executions, and no signifi-
cant differences arise between the results. Therefore, the SP implementation is used by
default.
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Algorithm 2 Tile recalculation
Input: moved scattering particles
Output: updated intensity curve for the scattering momenta
/*Host program*/
Transfer input data to the GPU global memory and queue the kernels involved in the profile
recalculation
/*Kernels executed on the GPU*/
Compute the Debye sum term for the changed tiles (Kernel 5)
Perform the vertical tile sum reduction for each page (Kernel 3)
Perform horizontal margin sum reduction for each page to get the intensity curve (Kernel 4)
/*Host program*/
Retrieve the results from the GPU global memory

2.6 Monte Carlo Simulation

PHAISTOS is a software framework for protein structure prediction, inference and sim-
ulation based on Bayesian principles [23]. PHAISTOS samples protein structures X
given the experimental data Iexp from a Bayesian posterior distribution P(X |Iexp) using
an MCMC procedure, similar to [14]. The posterior is given by the formula:

P(X |Iexp) ∝ P(Iexp|X)P(X) (2)

and consists of a prior P(X) that includes probabilistic models of the main and side
chains in proteins [24,13], while the likelihood P(Iexp|X) brings in the SAXS data. The
likelihood essentially expresses the correspondence between the experimental data and
the data calculated from a given structure using the forward model.

For the calculation of the likelihood, we used the error model given in [15]. The
resulting likelihood is:

P(Iexp|X) = ∏
q

N (Iexp (q) |Icalc (q) ,σ(q)), (3)

where N (·) is the normal distribution with mean Icalc (q) and standard deviation σ(q),
controlled by scaling parameters α and β:

σ(q) = Iexp (q) · (q+α) ·β (4)

The prior P(X) is brought in indirectly by sampling from the proposal distribution
for protein conformations [14].

The majority of time dedicated to each simulation step is spent on computing the
energy function for the proposed structure. The GPGPU SAXS algorithm directly re-
duces this time. Furthermore, at each MCMC step, PHAISTOS performs local moves
on a portion of the protein, which allows the Page-Tile algorithm to use the fast tile
recalculation path.
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2.7 Performance Test Configuration

Performance was measured on a system with a Core i7-920 CPU (4 cores / 8 hardware
threads), 12GB of DDR3 RAM and a NVIDIA GeForce GTX 560 Ti GPU with 1GB
of GDDR5 RAM. The GTX 560 Ti has 8 compute units with 32 processing elements
each, comprising 384 processing elements, with 32KB 32-bit registers and 48KB of
local memory for each compute unit.

3 Results and Discussion

3.1 Computational Efficiency of the SAXS Modeling

The Debye formula (Equation 1) leads to a computational complexity of O(M2), with
M the number of scatterers in the structure under examination. Our coarse-grained ap-
proach reduces M by representing several atoms by one scattering body (a dummy
atom), thereby lowering the complexity to O

(
(M/k)2

)
, with k the number of scatterers

(atoms) described by a dummy body.
The precise value of k is dependent on the primary sequence of the protein. On

large datasets, the two dummy model leads to an average k of 4.24 (with a performance
increase of k2 ' 18). The single body model leads to k ' 7.8, allowing for a k2 ' 60
times faster execution.

3.2 GPGPU Implementation

The performance of the Page-Tile algorithm was measured against a test protein of over
a thousand amino acids, modeled with 1888 scattering bodies in the dual dummy atom
representation, and a discretization of the q space in 51 scattering momenta. Protein
moves were modeled by a random mutation of 40% of the particles, to approximate the
asymptotic move rate in a Monte Carlo simulation. The execution times for the model
test case are presented in Table 1.

Table 1. Execution times for SAXS curve calculation for a protein with 1888 bodies, 51 scattering
momenta and 21 form factors per momentum. Execution times from the top are for a single-
core CPU implementation, a parallel GPGPU full computation, and GPGPU partial computation,
respectively. Partial computations mimic the costs in a Monte Carlo simulation, where at each
step around 40% of the proposal structure is updated.

Algorithm Time (ms)
CPU SP Time 2408

GPGPU full calculation 9
GPGPU recalculation 6.484

The performance of the algorithm was also measured for protein sizes ranging from
64 to 8192 scattering particles. Each protein was moved 1000 times, in order to obtain
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an average of the recalculation steps. Figure 6 shows the speed increase, relative to the
CPU single precision implementation, calculated as tcpu/tgpu.

Figure 6 also illustrates the hardware utilization of the parallel Page-Tile algorithm.
The plot shows an asymptotic behavior around problem sizes of 2000 scattering bodies.
The GTX 560 Ti GPU employed in the tests is composed of 8 compute units operating
on 8 cascading work-groups, allowing for a theoretical peak of 64 active work-groups.
The work-group size is 32, therefore the card would reach theoretical peak process-
ing power at 2048 bodies. Our tests show saturation at the same level, thus indicating
optimal use of the hardware.

Fig. 6. Algorithm performance for problem sizes ranging from 64 to 8192 scattering bodies, in-
cluding the model test case of 1888, with error bars showing standard deviation. All SAXS com-
putations involve the summations over 51 scattering momenta. The asymptotic behavior indicates
hardware saturation at around 2000 bodies, which is the theoretical maximum for the GPU model
used in the tests.

OpenCL is thread-safe and allows access to the same device from multiple processes
and threads, so by creating multiple instances of the Page-Tile algorithm, more than one
calculation can be run at the same time. This is especially relevant in the case of problem
sizes that would not lead to a full GPU saturation, therefore allowing for multi-threaded
Monte Carlo simulations.

3.3 Monte Carlo Performance

The effect of the GPGPU SAXS curve calculation on the overall MCMC simulation
of the 1888-body test protein was measured in PHAISTOS, by gathering performance
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data for 1 million MCMC steps with varying number of concurrent CPU threads, with
and without GPU acceleration. The first 100,000 steps were discarded as burn-in and
the remaining 900,000 were used for analysis.

The best-performing CPU SAXS algorithm was used in the evaluation. It caches the
terms of the Debye formula and uses a lookup table for the sine function, resulting in a
five-fold speed increase, at the expense of numerical precision. The MCMC simulation
was executed with one to six threads, the maximum possible under the test configu-
ration, due to the significant memory footprint per thread. The lowest execution time
was achieved when using four threads, and was used as a basis for comparison with the
GPGPU version.

The MCMC simulation, using the GPGPU Page-Tile algorithm, was executed with
one to eight CPU threads. Execution time was compared to the multi-threaded CPU
version (Fig. 7).

Fig. 7. Relative speedup of PHAISTOS when using the GPGPU SAXS energy term vs. the best-
performing CPU configuration (four threads). Threads above four use hyper-threaded CPU cores,
so lower performance scaling is expected.

The GPU-accelerated MCMC simulation exhibits consistently better performance
compared to the best-performing multi-threaded CPU version. The speed increase scales
up with the number of CPU threads, due to two factors: 1) incomplete loading of the
GPU by each thread; and 2) concurrent MCMC calculations outside of the SAXS en-
ergy term.

When invoked from within a CPU thread, the GPU calculates the SAXS intensity
profile and is then idle, while the host thread processes the result and queues a new
structure for evaluation. Multiple CPU threads can take advantage of these idle GPU
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cycles by queueing additional SAXS curve calculations, thus leading to the performance
scaling observed.

While the GPU accelerates the calculation of the SAXS energy term, the CPU host
still has to propose a new structure in each MCMC step and to process the result from
the energy function calculation. The work done by the CPU limits the speed increase for
the overall step. Conversely, running multiple host threads parallelizes these operations,
further contributing to the performance scaling.

The theoretical possible speedup under PHAISTOS is 18.6×, and can be calculated
from the Page-Tile algorithm speedup (371 × from Fig. 6) adjusted for the number of
CPU threads (4) and the speedup from using a cache and a sine lookup table (5 ×). The
observed speed increase of 16.4 × approaches the theoretical maximum and is clearly
limited by the CPU-bound portions of the MCMC simulation.

4 Conclusions

We have presented an efficient implementation of the forward model for the computa-
tion of Small Angle X-ray Scattering profiles, utilizing Graphics Processing Units. The
application is multi-thread safe, and benchmarks show that the algorithm delivers the
full theoretical output of which the hardware is capable.

Parallelization is achieved on multiple levels by taking advantage of the structure of
the Debye formula. The first level divides the SAXS evaluation in multiple independent
computations according to the binning of the scattering momenta. A nested level then
makes full use of the work-groups in the hardware by splitting the inner summation
of the Debye formula into separate partial sums. The resulting program runs orders of
magnitude faster than an optimized single core CPU implementation.

A caching algorithm on the inner contributions allows for the efficient re-evaluation
of SAXS profiles from partially updated structures, delivering even greater performance
benefits.

The GPGPU algorithm was integrated into an energy term within the PHAISTOS
software framework for protein structure determination, inference and simulation. This
yielded a 16-fold speed increase of the Markov chain Monte Carlo simulation, com-
pared to the best multi-threaded CPU implementation, enabling its application to im-
portant biological targets. An open source implementation is now available.
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