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Abstract

We present new decomposition algorithms for training multi-class support vector
machines (SVMs), in particular the variants proposed by Lee, Lin, & Wahba (LLW)
and Weston & Watkins (WW). Although these two types of machines have desirable
theoretical properties, they have been rarely used in practice because efficient train-
ing algorithms have been missing. Training is accelerated by considering hypotheses
without bias, by second order working set selection, and by using working sets of
size two instead of applying sequential minimal optimization (SMO). We derive a
new bound for the generalization performance of multi-class SVMs. The bound de-
pends on the sum of target margin violations, which corresponds to the loss function
employed in the WW machine. The improved training scheme allows us to perform
a thorough empirical comparison of the Crammer & Singer (CS), the WW, and the
LLW machine. In our experiments, all machines gave better generalization results
than the baseline one-vs-all approach. The two-variable decomposition algorithm
outperformed SMO. The LLW SVM performed best in terms of accuracy, at the cost
of slower training. The WW SVM led to better generalizing hypotheses compared
to the CS machine and did not require longer training times. Thus, we see no reason
to prefer the CS variant over the WW SVM.
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1 Introduction

Long training times limit the applicability of multi-class support vector machines (SVMs).
In particular, the canonical extension of binary SVMs to multiple classes (referred to
as WW, [32, 6, 31]) as well as the SVM proposed by Lee, Lin, & Wahba (LLW, [19])
are rarely used. These approaches are theoretically sound and experiments indicate that
they lead to well-generalizing hypotheses, but efficient training algorithms are not avail-
able. Crammer & Singer (CS, [7]) proposed the arguably most popular modification
of the WW formulation, mainly to speed-up the training process. Still, the one-vs-all
method [31, 24] is most frequently used when SVMs are applied to multi-class problems.

Against this background, we consider batch training of multi-class SVMs with uni-
versal (i.e., non-linear) kernels and ask the questions: Can we increase the learning speed
of multi-class SVMs by using a more efficient quadratic programming method? Do the
convincing statistical properties of the LLW machine lead to better hypotheses in prac-
tice? Can we support our experience about the performance of these machines by an
instructive generalization bound? This study gives positive answers to these questions.
We provide efficient training algorithms for all machines. These make training of LLW
machines practical and allow to train WW SVMs as fast as CS’s variant. Extensive
experiments demonstrate the superior performance of the LLW machine in terms of gen-
eralization performance. We derive a new generalization bound for multi-class SVMs
that suggests that the loss function considered in the WW machine is a natural choice.

In the following, we first introduce multi-class SVMs and the corresponding opti-
mization problems with an emphasis on the LLW machine. We then show how to solve
these problems efficiently with decomposition algorithms. Then we prove our new gener-
alization bound for multi-class SVMs. An extensive empirical comparison of the different
training algorithms and SVM formulations closes this study.

2 Multi-Class SVMs

All multi-class SVMs considered in this study solve d-class classification problems by
constructing decision functions of the form

x 7→ arg max
c∈{1,...,d}

[
〈wc,φ(x)〉+ bc

]
(1)

given i.i.d. training data
(
(x1, y1), . . . , (x`, y`)

)
∈
(
X × {1, . . . , d}

)`
. Here, φ : X →

H, φ(x) = k(x, ·), is a feature map into a reproducing kernel Hilbert space H with
corresponding kernel k, and w1, . . . ,wd ∈ H are class-wise weight vectors. The CS
machine is usually only defined for hypotheses without bias term, that is, for bc = 0 (see
[14] for a formulation with bias parameters).

Two basic strategies to extend SVMs to multi-category classification can be distin-
guished. One approach is to combine separately trained binary SVM classifiers after
training as done in the prominent one-versus-all method (OVA). In the second family of
algorithms, a single optimization problem considering all classes is derived and solved
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at once. These all-in-one methods are usually computationally more demanding [14].
Still, there are several reasons to prefer all-in-one SVMs. First, from our perspective the
all-in-one approach is theoretically more sound, and the machines have better statistical
properties (see below). Second, although no significant differences in classification ac-
curacy between the two paradigms have been observed in some studies (perhaps due to
insufficient model selection because of slow learning algorithms), in other studies (e.g.,
[8]) and our own experience all-in-one approaches perform significantly better than OVA.
Third, it has been argued that approaches such as OVA are prohibitive and all-in-one
methods are required for the general problem of learning structured responses [4, 29].

One-vs-all (OVA). In the popular OVA approach, d standard binary SVMs are built.
The machine that learns the weight vector wc is trained to separate the training patterns
belonging to class c from all other training patterns. Even if all binary classifiers are
consistent, the resulting OVA classifier in general is not.1

Weston & Watkins (WW) SVM. In contrast, all-in-one methods directly ob-
tain all weight vectors wc from a single optimization problem taking all class rela-
tions into account at once. The most prominent example is the WW multi-class SVM
proposed in [32]. If we consider hypotheses without bias, this SVM is trained by solv-
ing the primal problem minwc

1
2

∑d
c=1 〈wc,wc〉 + C

∑`
n=1

∑d
c=1 ξn,c subject to the con-

straints ∀n ∈ {1, . . . , `}, ∀c ∈ {1, . . . , d} \ {yn} : 〈wyn −wc,φ(xn)〉 ≥ 2 − ξn,c and
∀n ∈ {1, . . . , `}, ∀c ∈ {1, . . . , d} : ξn,c ≥ 0. If the first set of inequality constraints is
replaced by 〈wyn −wc,φ(xn)〉 ≥ 1− ξn,c, this formulation equals the one suggested by
Vapnik [31], which is equivalent after rescaling wc and C. Bredensteiner & Bennett’s
multi-category SVM also coincides with the WW formulation [6]. This approach can
be regarded as the canonical extension of binary SVMs to multiple classes, because the
objective function is basically the sum of the objective functions of the binary SVMs.
The method is more sophisticated than OVA, because the constraints are adapted to
the decision scheme (1). The `×d slack variables ξn,c correspond to the hinge loss when
separating example xn from the decision boundary between classes yn and c.

Crammer & Singer (CS) SVM. Crammer & Singer [7] proposed an alternative
multi-class SVM. They also take all class relations into account at once and solve a
single optimization problem, however, with fewer slack variables. The main reason for
this modification of the WW primal problem was to speed-up the training, because the
WW approach turned out to be too slow for many applications. The CS classifier is
trained by solving the primal problem minwc

1
2

∑d
c=1 〈wc,wc〉 + C

∑`
n=1 ξn subject to

1As a minimal counterexample, consider a single-point input space X = {x0} and three classes. Let
the input belong to the three classes with probabilities 0.4, 0.3, and 0.3, respectively. In the limit of large
datasets, each class is less frequently sampled than it is not sampled. Then, according to Steinwart’s
analysis [26] we obtain 〈wc, φ(x0)〉 + bc = −1 (with wc = 0 and bc = −1) uniformly for all classes
c ∈ {1, . . . , d}. Thus, the probability of error is 2/3, which is worse than the Bayes risk of 0.6.
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∀n ∈ {1, . . . , `},∀c ∈ {1, . . . , d}\{yn} : 〈wyn −wc,φ(xn)〉 ≥ 1− ξn and ∀n ∈ {1, . . . , `} :
ξn ≥ 0.

For learning structured data, CS’s method is usually the SVM algorithm of choice.

Lee, Lin, & Wahba (LLW) SVM. Lee, Lin, & Wahba modified the standard
multi-class SVM formulation for theoretical reasons. In contrast to the other machines,
their SVM relies on a classification calibrated loss function, which implies Fisher con-
sistency [28, 20]. Further, it was shown in [3] that, roughly speaking, for any surrogate
loss function Φ used by a learning machine, no bound on the 0-1 loss excess risk (i.e.,
risk relative to the Bayes optimal value) in terms of the Φ excess risk is possible if Φ is
not classification calibrated. However, up to now no efficient solver for the LLW SVM
has been derived and implemented and thus empirical comparisons with other methods
are rare.

The primal problem of the LLW SMV can be stated as

min
wc

1

2

d∑
c=1

〈wc,wc〉+ C
∑̀
n=1

d∑
c=1

ξn,c

s.t. ∀n ∈ {1, . . . , `}, c ∈ {1, . . . , d} \ {yn} : 〈wc,φ(xn)〉+ bc ≤ −
1

d− 1
+ ξn,c

∀n ∈ {1, . . . , `}, c ∈ {1, . . . , d} : ξn,c ≥ 0

∀h ∈ H :
d∑
c=1

(〈wc,h〉+ bc) = 0 . (2)

If the feature map is injective then the sum-to-zero constraint (2) can be expressed as∑d
c=1wc = 0 and

∑d
c=1 bc = 0. The corresponding dual problem reads

max
α

1

d− 1
·
∑̀
n=1

d∑
c=1

αn,c −
1

2

∑̀
n,m=1

d∑
c,e=1

(δc,e − 1/d)αn,cαm,ek(xn, xm)

s.t. ∀n ∈ {1, . . . , `}, c ∈ {1, . . . , d} \ {yn} : 0 ≤ αn,c ≤ C
∀n ∈ {1, . . . , `} : αn,yn = 0

∀ c ∈ {1, . . . , d} :
∑̀
n=1

αn,c = D . (3)

The last constraint (3) ensures that all d sums
∑`

n=1 αn,c take the same value D ∈ R.
The value of D itself does not matter.

3 Dropping the Bias Parameters

The constraint (3) makes the quadratic program above difficult to solve for decomposi-
tion techniques ([5], see next section), because a feasible step requires the modification
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of at least d variables simultaneously. This problem concerns both the WW and the
LLW approach. However, such a constraint is not present in the standard CS machine,
because Crammer & Singer dropped the bias terms bc, which are of minor importance
when working with characteristic or universal kernels [23].

Instead of restricting this trick to the CS machine, we propose to apply it also to
the WW and LLW SVMs. If we do so, the constraint (3) simply vanishes from the dual,
while everything else remains the same.

This step of removing the bias terms is crucial, because it allows us for the first time
to solve the WW and the LLW machine with elaborated decomposition techniques as
discussed in the next section.

Dropping the bias terms in all machines is also a prerequisite for a fair empirical
comparison of the approaches. First, it makes fast training and therefore appropriate
model selection and evaluation on several benchmark problems feasible. Second, now
all machines consider the same hypothesis space. Instead we could have introduced the
bias term into the CS method, but then the resulting dual problem gets much more
complicated, because we end up with two sets of interfering equality constraints, see
also [14], which renders the solution technique presented in the next section intractable.

4 Solvers and Working Set Selection

In this section we present our specialized solvers for the quadratic programs arising from
training of non-linear multi-class SVMs. Fast solvers are needed to make SVM training
with large datasets and/or large collections of problems tractable. In addition, faster
training of single machines allows for more thorough model selection as discussed in
section 6.1.

First, we introduce standard decomposition techniques and the SMO algorithm as
a basis for the much less common technique of sequential two-dimensional optimization
(S2DO). This technique results in a considerable speed-up over conventional SMO for
problems without equality constraints such as WW and LLW SVMs.

For deriving our training algorithms, we consider quadratic programs of the canonical
form

max
α

f(α) = vTα− 1

2
αTQα (4)

s.t. ∀n ∈ {1, . . . ,m} : Ln ≤ αn ≤ Un

for α ∈ Rm. Here v ∈ Rm is some vector, Q ∈ Rm×m is a (symmetric) positive
definite matrix, and Ln ≤ Un are component-wise lower and upper bounds. The gradient
g = ∇f(α) of (4) has components gn = ∂f(α)

∂αn
= vn−

∑m
i=1 αiQin. The dual problems of

the WW and LLW machines without bias can directly be written in this canonical form.
The dual problem of the CS machine introduces a large number of additional equality
constraints, which will be ignored for the moment and will be discussed in section 4.4.

The most frequently used algorithms for solving quadratic programs of non-linear
SVMs are decomposition methods [21, 22, 9, 11, 5]. These methods iteratively decompose
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the quadratic program into subprograms, which are restricted to a subset B (working
set) of variables, and then solve these subprograms. A desirable property of state-of-the-
art decomposition algorithms is that iterations are fast in the sense that for any fixed
upper bound q ∈ N on the working set size each iteration requires only O(m) operations.
A general decomposition scheme for (4) is given in Algorithm 1.

Algorithm 1: Decomposition algorithm for problem (4).

Input: feasible initial point α(0), accuracy ε ≥ 0
compute the initial gradient g(0) ← ∇f(α(0)) = v −Qα(0)

t← 1
while stopping criterion not met do

select working indices B(t) ⊂ {1, . . . ,m}
solve subproblem restricted to B(t) and update α(t) ← α(t−1) + µ?(t)

update the gradient g(t) ← g(t−1) −Qµ?(t)
set t← t+ 1

For a vector α ∈ Rm and an index set I ⊂ {1, . . . ,m} let αI =
∑

i∈I αiei denote the
projection to the components indexed by I, where ei ∈ Rm is the unit vector in which the
i-th component is 1. If we assume that all variables except those in B = {b1, . . . , b|B|}
are fixed, the subproblem can be written as:

max
αB

f(αB) = f(αF +αB) = (vB −QαF )TαB −
1

2
αBQαB + const (5)

s.t. ∀n ∈ B : Ln ≤ αn ≤ Un

Here, the complement F = {1, . . . ,m}\B of B contains the indices of the fixed variables.
The convergence properties of the decomposition method are determined by the

heuristic for selecting the working indices. Given a feasible search point, the set of
possible working indices that indicate a violation of the KKT optimality condition by
the corresponding variable is called violating set [18]. We denote the set of violating
indices in a search point α by

B(α) =
{
n ∈ {1, . . . ,m}

∣∣ αn > Ln ∧ gn < 0 or αn < Un ∧ gn > 0
}
.

If the working set has minimum size for generating feasible solutions, this approach is
called sequential minimal optimization (SMO, [22]), which is the most frequently used
technique for SVM training. The minimum working set size depends on the number of
equality constraints. For problem (4) it is one. Next, we briefly discuss the trade-offs
influencing the choice of the number of elements in the working set. Then we describe
working set selection heuristics for solving (4).

4.1 Working Set Sizes for Decomposition Algorithms

The size of the working set B influences the overall performance of the decomposition
algorithm in a number of different ways. First, the complexity of solving subproblem (5)
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analytically grows combinatorially with |B|. This limits the working set size to few
variables unless we are willing to use a numerical solver as done in [16]. Second, the
larger |B|, the less well-founded is a heuristic for picking the actual working set from
the O(m|B|) candidates, because we regard such a heuristic as acceptable only if its time
complexity is O(m). At the same time large |B| allows to find working sets on which
large progress can be made. Third, the gradient update takes O(m · |B|) operations.
That is, small working sets result in fast iterations making few progress, while larger
working sets result in slower iterations making larger progress. For example, we may
roughly trade two iterations with |B| = 1 for one iteration with |B| = 2. The latter
can take into account correlations between the variables. However, in two subsequent
iteration the second iteration can profit from the gradient update of the first one, and
can therefore make a better decision for picking its active variable.

Thus, working set sizes should be small in order to avoid unacceptable computation
times for solving the subproblem. In addition, there is an inherent trade-off between
many cheap iterations profiting from frequent gradient updates on the one side and
fewer slow iterations, each with a larger choice of working sets, making larger progress
per iteration on the other side. In our point of view, none of the above arguments
enforces the working set size to be minimal (or irreducible) as in SMO.

Instead of always using the minimum working set, we propose to use working sets
of size two whenever possible. We refer to this strategy as sequential two-dimensional
optimization (S2DO). Considering two variables is a good compromise between (a) the
complexity of solving the subproblems analytically, (b) the availability of well-motivated
heuristics for working set selection, and (c) the computational cost per decomposition
iteration.

4.2 Second Order Working Variable Selection for SMO

We adopt the second order working set selection introduced by [9].2 Let us assume that
the optimization problem is restricted to the single variable αb, b ∈ B(α). The update
direction is thus eb. If we ignore the box constraints, the optimal step size is given by

the Newton step µ̂ = gb /Qbb yielding a gain of f(α+ µ̂ · eb)− f(α) = µ̂2 · Qbb
2 =

g2b
2Qbb

.

This definition of gain leads to the greedy heuristic b(t) = arg max
{

(g
(t−1)
n )2/Qnn

∣∣n ∈
B(α(t−1))

}
for choosing the working index, where we define g

(t−1)
n = ∂f

∂αn
(α(t−1)). To

obtain a feasible new search point, the Newton step must be clipped to the feasible
region by computing µ? = max

{
Lb−αb,min{Ub−αb, µ̂}

}
. The update of the variables

is simply given by α(t) = α(t−1) + µ?eb.
In each iteration the algorithm needs the b(t)-th column of the large kernel-based

matrix Q for the gradient update. In addition, the diagonal entries Qnn needed for

2Note that in the case of single-variable working sets first order and second order working set selection
coincide for the important special case ∀1 ≤ i, j ≤ m : Qii = Qjj , e.g., for normalized kernels (k(x, x) = 1
for all x ∈ X). The same holds for the SMO working set selection strategy for the CS machine described
in section 4.4.
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second order working set selection should be precomputed and stored. This requires
O(m) time and memory.

4.3 Second Order Working Pair Selection for S2DO

We now derive second order working set selection for (4) using |B| = 2. Our focus
is on multi-class SVMs, but the selection scheme is also valid for binary SVMs with-
out bias. We follow the common scheme proposed by [9]. This amounts to selecting
the first index according to the maximum absolute value of the gradient component,
i = arg maxk∈B(α) |gk|, and the second component by maximization of the gain (which
depends on the first variable).

In appendix A, we derive the gain and the update of the variables when using S2DO
in the absence of equality constraints. This is a generalization of [27]. Note that the
procedures differ considerably from the ones proposed in [9, 11, 5].

4.4 Solving the Crammer & Singer Multi-class SVM Using SMO

The dual problem of the CS machine has ` equality constraints. Still, the problem
can be solved by decomposition algorithms using workings sets of size two. The trick
is to ensure that in every iteration the two variables correspond to the same training
pattern. By doing so, the solver naturally respects all ` equality constraints. This was
also suggested in [4] for online learning using first-order working set selection. That is,
the algorithm presented in section 4.2 is not applicable and SMO and S2DO coincide.

5 Generalization Analysis

In [30], the empirical risk of multi-class SVMs is upper bounded in terms of the mean of
the slack variables. Based on this bound it is argued that the CS SVM has advantages
compared to the WW formulation because it leads to lower values in the bounds. We
think that this argument is not convincing for several reasons. First, one has to be careful
when drawing conclusions based on upper bounds on performance in general. Second, the
empirical error may only be a weak predictor of the generalization error (in particular for
large values of C). Apart from these general arguments, the statement is not supported
when looking at generalization bounds. These bounds are instructive, because they
indicate why it may be beneficial to sum-up all margin violation in the multi-class SVM
optimization problem. As an example, we extend a bound on the generalization error
of binary SVMs by Shawe-Taylor and Cristianini [25] to the multi-class case in order to
investigate the impact of the different loss functions on the generalization performance.

Let hc(x) = 〈wc,φ(x)〉. After dropping the bias term in the WW machine the
conceptual difference between the WW and the CS approach is the loss function used
to measure margin violations. For a given training example (xi, yi) the WW machine
penalizes the sum

∑
c6=yi [1 − hyi(xi) + hc(xi)]+ of margin violations,3 while the CS

3For simplicity we use the target margin γ = 1 proposed in [31] for the analysis. This makes the
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machine penalizes the maximum margin violation maxc 6=yi [1− hyi(xi) + hc(xi)]+. Here
we use the short notation [t]+ = max{0, t}.

The basic idea of our analysis is the following: There are d−1 mistakes one can make
per example xi, namely preferring class e over the true class yi (e ∈ {1, . . . , d}\yi). Each
of these possible mistakes corresponds to one binary problem (having a decision function
with normal wyi−we) indicating the specific mistake. One of these mistakes is sufficient
for wrong classification and no “binary” mistake at all implies correct classification. A
union bound over all mistakes gives the multi-class generalization result based on known
bounds for binary classifiers.

Let us first restate a fundamental result from [25] for binary classification problems
with labels {±1}. It bounds the risk under the 0-1 loss depending on the fat shattering
dimension (e.g., see [17, 1]) of the class of real-valed decision functions. We measure
the margin violation of training pattern (xi, yi) by zi = [γ − yih(xi)]+, collected in the
vector z = (z1, . . . , z`)

T ∈ R`. Then we have:

Theorem 1 (Corollary 6.14 from [25]). Let F be a sturdy class of functions h : F →
[a, b] ∈ R with fat shattering dimension fatF (γ). Fix a scaling of the output range η ∈ R.
Consider a fixed but unknown probability distribution on the input space X. Then with
probability 1− δ over randomly drawn training sets T of size ` for all 0 < γ < b− a the
risk of a function h ∈ F thresholded at zero is bounded by

εh =
2

`

([
fatF (γ/16) + 64D̃2

]
log2

(
65`(1 + D̃)3

)
· log2(9e`(1 + D̃)) + log2

(
64`1.5(b− a)

δη

))

with D̃ = 2(
√
‖z‖1 · (b− a)+η)/γ, provided ` ≥ 2/εh and there is no discrete probability

on misclassified training points.

Ignoring logarithmic terms we have εh ∈ Õ
(
(fat(γ/16) + ‖z‖1/γ2)/`

)
.

Now we use a union bound over the d(d − 1)/2 possible pairs of classes to transfer
this result to the multi-class case. For a more elaborate treatment of fat shattering in
the multi-class case we refer to the literature [17, 13].

We decompose the training set into subsets Tc = {(xi, yi) ∈ T | yi = c}, c ∈ {1, . . . , d}
according to the training labels and denote their sizes by `c = |Tc|. The natural extension
of the margin violations d to the loss functions used in the WW and CS machines is
zi,c = [γ−hyi(xi) +hc(xi)]+ for c 6= yi. We collect these values in vectors z(c,e) ∈ R`c+`e
with entries zi,e and zi,c for i ∈ Tc and i ∈ Te, respectively, for each fixed pair (c, e) of
different classes. We also define the vector z ∈ R`×(d−1) collecting all margin violations.

The risk of each binary classifier hc − he separating the problem restricted to the

target margins of the two machines directly comparable.
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classes c and e can be upper bounded by

ε
(c,e)
h =

2

`(c,e)

([
fatF (γ/16) + 64D̃2

]
log2

(
65`(c,e)(1 + D̃)3

)
· log2(9e`

(c,e)(1 + D̃)) + log2

(
128[`(c,e)]1.5(b− a)

δη

))
with probability 1− δ/2, where `(c,e) = `c + `e.

Now we estimate the probability that a pattern x belongs to either class c or e. This
can be done by considering the observed class frequencies and applying the Hoeffding
bound. We get

`(c,e)

`
+

1√
`

√
log(d(d− 1))− log δ

2

with a probability of 1 − δ′/2 with δ′ = 2δ/(d(d − 1)). That is, this bound holds
simultaneously for all d(d− 1)/2 pairs of classes with a probability of 1− δ/2.

We again apply the union bound and get the risk bound for the multi-class case

εh ≤
∑

1≤c<e≤d

(
`(c,e)

`
+

1√
`

√
log(d(d− 1))− log δ

2

)
· ε(c,e)h (6)

with a probability of 1 − δ, where we measure the complexity of the class of Rd-valued
functions f used for multi-class classification by the maximal fat shattering dimension
of the real-valued differences he − hc. Thus, ignoring logarithmic terms we have

εh ∈ Õ
(
d(d− 1)fatF (γ/16) + ‖z‖1/γ2

`

)
. (7)

The bounds (6) and (7) indicate that regularized minimization of ‖z‖1 is a natural
learning strategy. The primal problem of the WW machine can be written as

min
1

2

∑
c

‖wc‖2 + C ·
∑
i

∑
c

zi,c =
1

2

∑
c

‖wc‖2 + C · ‖z‖1

and the CS primal as

min
1

2

∑
c

‖wc‖2 + C ·
∑
i

max
c
zi,c .

Thus, the WW machine implements the strategy of minimizing ‖z‖1 straightly, while
the CS approach minimizes ‖z‖1 only indirectly. Given that the bounds are not tight
and the general warning above, this observation should not be over-interpreted.

6 Experiments and Results

The goal of our experiments was to rank the different machines in terms of generalization
performance and training speed. Further, we wanted to assess whether we can speed-up
training of multi-class SVMs by applying the S2DO algorithm instead of SMO.
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6.1 Experimental setup

We trained all machines on a number of standard benchmark problems from the UCI
repository [2]. We selected the SVM parameter C and the bandwidth parameter γ of the
radial Gaussian kernel k(x, x′) = exp(−γ‖x−x′‖2) by nested grid search on logarithmic
scale using 5-fold cross validation. We recorded the best parameter settings found (see
Table 1) for the different machines and computed the error on the test sets.

Table 1: Best hyperparameters found in the model selection procedure. The values of
C and γ are given in logarithmic units [log 2].

WW LLW CS OVA

γ C γ C γ C γ C

Abalone 0 -3 0 -6 0 -3 0 -9

Car -2 5 -2 5 -2 5 -2 5

Glass 1 -4 -3 1 -3 2 -3 2

Iris -9 9 -4 5 -6 6 -12 18

OptDigits -5 1 -6 10 -6 5 -5 10

Page Blocks -4 8 -7 16 -5 11 -9 20

Sat -1 2 -1 2 -1 2 -1 4

Segment -4 7 -4 15 -9 12 -5 10

SoyBean -6 1 -7 4 -6 3 -7 3

Vehicle -7 10 -7 11 -7 10 -8 12

It is well known that the generalization performance of SVMs depends crucially on
the choice of the kernel and the regularization parameter. Thus, reliable model selection
is important, in particular in a comparison study. The combination of grid search and K-
fold cross validation gives solid performance across a wide variety of problems. However,
it is a costly procedure that amounts to training K SVMs for each grid point, which
sums up to hundreds of calls to the quadratic program solver per problem. This high
computational cost is the price we pay for reliability – and a good reason for employing
fast solvers as those presented in the previous section.

For the WW and LLW machines (with dual problems without equality constraints)
we compared SMO and S2DO by measuring the number of decomposition iterations as
well as training time.

For a fair comparison of training times of different types of SVMs it is important
to choose comparable stopping criteria for the quadratic programming. Unfortunately,
this is hardly possible when the quadratic programs differ. However, as a minimal
requirement we made sure that all stopping conditions coincide for the case of binary
classification, where all machines reduce to the standard SVM without bias. We use
the standard technique to stop the solvers as soon as the KKT conditions for optimality
are satisfied up to an accuracy of ε = 10−3. To rule out that our results are just an
artifact of this choice, we repeated all CS experiments with ε = 10−5 (without observing
increased classification accuracy).

All our solvers use the same highly efficient caching and shrinking techniques, which
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have been specifically tailored to the structure of multi-class SVM dual problems. The
kernel cache operates on the level of training examples, not single variables, while shrink-
ing techniques work on both levels, that is, on single variables as well as on chunks of
variables corresponding to training examples. All experiments were implemented using
the Shark machine learning library [15].

All numbers reported in the results section are medians over 10 independent trials
with different splits of the datasets into training and test sets. We applied the statistical
testing procedure suggested in [10] with a significance level of p < 0.05 for all tests in
this study.

6.2 Results

Table 2: Generalization performance of the different multi-class SVMs measured by
accuracy on test sets.

WW LLW CS OVA

Abalone 0.2605 0.2682 0.2165 0.2672

Car 0.9807 0.9846 0.9807 0.9807

Glass 0.7231 0.7231 0.7077 0.6923

Iris 0.9556 0.9556 0.9556 0.9333

OptDigits 0.9761 0.9789 0.9750 0.9761

Page Blocks 0.9342 0.9330 0.9294 0.9312

Sat 0.9235 0.9230 0.9240 0.9135

Segment 0.9639 0.9683 0.9495 0.9625

SoyBean 0.9032 0.9247 0.9247 0.9247

Vehicle 0.8425 0.8425 0.8150 0.8346

The main results are summarized in Tables 2 and 3. In our experiments, S2DO was
statistically significantly faster than SMO with respect to training time and number of
iterations. The time taken by one S2DO iteration was roughly equivalent to two SMO
iterations.4

The LLW SVM was significantly the best machine in terms of accuracy. Albeit its
training times were acceptable when using our decomposition algorithms—in particular
when using S2DO—, it was the slowest.

Training the CS machines was slower than training WW SVMs in seven of the bench-
marks. For six of the datasets they needed more iterations. A statistical comparison
did not support a significant difference between CS and WW SVMs in terms of training
complexity. However, the accuracy of WW’s algorithm was statistically significantly
superior to the CS SVMs for both values of ε.

4The Iris data set is an exception from this rule of thumb. With 105 training examples and three
classes it is the smallest data set in our benchmark suite. The SMO algorithm performed several
fast shrinking and unshrinking operations, the S2DO none because it solved the problem so quickly.
Thus, each S2DO iteration considered the complete set of variables, most SMO iterations only subsets.
Therefore, a single SMO iteration took less time on average. However, SMO needed much more iterations.

12



The computational complexity of the OVA approach scales linearly with the number
of classes d while the all-in-one methods are in ω(d). Accordingly, OVA is considerably
faster than the other algorithms, but yielded hypotheses with a statistically significantly
worse accuracy.

7 Discussion and Conclusions

We presented a fast training algorithm for WW and LLW SVMs. By dropping the bias
term—as done in the CS approach—we get rid of the equality constraints in the dual
problems for both machines. This makes decomposition methods easily applicable. We
proposed a second order working set selection algorithm using working sets of size two
for these problems. Instead of choosing the smallest, irreducible working set size, we
in general propose to use a working set size of two whenever possible. This allows for
a still tractable analytic solution of the sub-problem and in our experience corresponds
to a significantly better trade-off between iteration complexity (as, e.g., determined by
the working set selection heuristic and the gradient update) and progress. That is, we
favor sequential two-dimensional optimization (S2DO) over the strict SMO heuristic.
This is also supported by the findings in [27] for binary SVMs. The S2DO heuristic is
not restricted to the SVMs considered in this study, but can be applied to any machine
involving quadratic programs without equality constraints.

In our experiments, the WW approach generated hypotheses with higher classifica-
tion accuracy compared to the CS machine. Both approaches outperformed the one-
versus-all method in this respect. Using S2DO, the original WW multi-class SVM now
becomes at least as fast as the CS method trained with tailored, state-of-the-art second
order working set selection. This indicates that the faster training times observed for the
CS SVM compared to the WW formulation were not achieved by reducing the number
of slack variables, but rather by dropping the bias term from the hypotheses (this is
in accordance with the findings in [14], where training times increased drastically when
adding bias parameters to the CS machine).

We derived a new generalization bound for multi-class SVMs based on performance
guarantees for binary machines. It builds on a bound in terms of the fat shattering
dimension. However, the proof technique can be transferred to other types of bounds
relying on different complexity measures. The bound suggests that minimizing the sum
of target margin violations is a proper learning strategy. As opposed to the CS algorithm,
the WW machine directly performs regularized minimization of this quantity.

Given our empirical and theoretical results, we see no reason anymore for a priori
preferring the CS SVM to the original method. We hope that our work makes the WW
method more popular among practitioners, because it offers improved accuracy without
additional costs in training time compared to CS.

From a theoretical point of view, the decisive property of the LLW multi-class SVM
is the classification calibration of its loss function [28]. Our efficient solver makes LLW
training practical and thereby allowed for the first extensive empirical comparison of
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LLW with alternative multi-class SVMs.5 The LLW method is the only classification
calibrated machine in our comparison [28] and showed the best generalization perfor-
mance. This improved accuracy required considerably more training time. However, if
training time does not matter, the LLW machine is the multi-class SVM of choice. This
experimental result corroborates the theoretical advantages of the LLW machine.

In this study, we considered batch learning of multi-class SVMs. For binary classifi-
cation, it has been shown that improved second-order working set selection derived for
batch learning is even more advantageous when applied to online learning in LASVM
[12]. Therefore, we are confident that the results in this study also carry over to the
popular LaRank online multi-class SVM [4].

References

[1] M. Anthony and P. L. Bartlett. Neural Network Learning: Theoretical F oundations.
Cambridge University Press, 1999.

[2] A. Asuncion and D. J. Newman. UCI machine learning repository, 2007.

[3] P. L. Bartlett, M. I. Jordan, and J. D. McAuliffe. Convexity, classification, and risk
bounds. Journal of the American Statistical Association, 101(473):138–156, 2006.

[4] A. Bordes, L. Bottou, P. Gallinari, and J. Weston. Solving multiclass support vector
machines with LaRank. In Z. Ghahramani, editor, Proceedings of the 24th Interna-
tional Machine Learning Conference (ICML), pages 89–96. OmniPress, 2007.

[5] L. Bottou and C. J. Lin. Support vector machine solvers. In L. Bottou et al.,
editors, Large Scale Kernel Machines, pages 1–28. MIT Press, 2007.

[6] E. J. Bredensteiner and K. P. Bennett. Multicategory classification by support
vector machines. Computational Optimization and Applications, 12(1):53–79, 1999.

[7] K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-
based vector machines. Journal of Machine Learning Research, 2:265–292, 2002.

[8] C. Demirkesen and H. Cherifi. A comparison of multiclass SVM methods for real
world natural scenes. In J. Blanc-Talon and other, editors, Advanced Concepts for
Intelligent Vision Systems (ACIVS 2008), volume 5259 of LNCS, pages 763–763.
Springer, 2008.

[9] R. E. Fan, P. Chen, and C. J. Lin. Working set selection using second order informa-
tion for training support vector machines. Journal of Machine Learning Research,
6:1889–1918, 2005.

5Source code implementing all machines and solvers will be made available if the manuscript is
accepted.

14
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A Analytic Solution of the S2DO Problem

Sections A.1 and A.2 show how to compute the gain and the update of the variables in
S2DO in the absence of equality constraints. Note that the procedures differ considerably
from the ones proposed in [9, 11, 5].

A.1 Gain Computation

Let the optimization problem be restricted to αB = (αa, αb)
T. Let the update of the

current point αB be µ?B = (µ?a, µ
?
b)
T .6 We ask for the unconstrained optimum α̂B =

(α̂a, α̂b)
T of (5) and the corresponding gain f(α̂B) − f(αB). We write the second

order Taylor expansion of (5) around α̂B using µB = α̂B − αB as f(αB) = f(α̂B) +
µT
B∇f(α̂B)− 1

2µ
T
BQBµB, where the matrix QB ∈ R2×2 is the restriction of Q to entries

corresponding to the working set indices. At the optimal point the first order term
vanishes and the gain is f(α̂B)− f(αB) = 1

2µ
T
BQBµB. The gradient ĝB = gB −QBµB

6In the binary case with bias, µ?
a must be equal to ±µ?

b due to the corresponding equality constraint
[5]. Without equality constraint this restriction can be dropped.
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at α̂B vanishes and a Newton step gives µB = QB
−1gB. However, this computation

assumes that the matrix QB can be inverted. If this is indeed true (det(QB) > 0),
combining our results directly gives the gain

g2aQbb − 2gagbQab + g2bQaa
2(QaaQbb −Q2

ab)
.

In the case of det(QB) = 0 the calculation of the gain is more complicated. For
QB = 0 we have two cases. For gB = 0 we have a constant objective function and
the gain is zero, and for gB 6= 0, we face a linear function with infinite gain. The
case that QB is a rank one matrix remains. Let qB be an eigenvector spanning the
null-eigenspace. For gB

TqB 6= 0 the gain is infinite and only if gB and qB are orthog-
onal the problem is reduced to a one dimensional quadratic equation. In this case the
(non-unique) optimum can be computed as follows: Let wB be a nonzero vector orthog-
onal to qB or in other words an eigenvector corresponding to the non-null eigenspace of
QB. Then the point α̂B = αB + (wT

BgB)/(wT
BQBwB) is optimal and the correspond-

ing gain is ((wT
BgB)2)/(2wT

BQBwB). The vectors gB and wB are aligned in this case
(gB = λwB for some λ ∈ R), such that gB can directly take the role of wB, resulting in
((g2a + g2b )

2)/(2(g2aQaa + 2gagbQab + g2bQbb)).
For normalized kernels we have Qaa = Qbb = 1 and so the case QB = 0 is impossible

and det(QB) = 0 amounts to the two cases Qab ∈ {±1}, resulting in qB = (−Qab, 1)T

and wB = (1, Qab)
T . For gTBqB = gb −Qabga = 0 the gain is given by (g2a +Qabgb)

2/8.

A.2 Parameter Update

In the case of S2DO, the update of the α vector is non-trivial and differs considerably
from the standard updates described in [9, 11, 5]. In the following, we present the solution
of the quadratic subproblem in the case of working sets of size |B| = 2. This derivation
was first provided by [27] for the special case of normalized kernels (i.e., Qii = 1 for all
i ∈ {1, . . . ,m}), and v = 1. Here, we outline the solution for the general case.

Let B = {i, j}. We consider the subproblem

max f(αB + µB) = gTBµB −
1

2
µTBQµB + const

s.t. αB + µB ∈ F = [Li, Ui]× [Lj , Uj ] .

Setting the partial derivatives w.r.t. µi and µj to zero gives gi = Qiiµi + Qijµj and
gj = Qijµi +Qjjµj .

In the sequel we will solve a number of one-dimensional sub-problems where one of
the variables µi or µj is fixed to one of its bounds. W.l.o.g. assume that αi + µ?i = Li.
Then the optimal solution is given by

µ?j = min

{
max

{
gj −Qijµ?i

Qjj
, Lj − αj

}
, Uj − αj

}
.
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We distinguish three different cases according to the rank of QB: For QB = 0 the
solution is found by following the gradient, i.e., µ?i = Ui−αi for gi > 0, µ?i = Li−αi for
gi < 0, and µ?i = 0 for gi = 0; with analogous rules for µ?j .

Now assume that QB has rank one. Then the objective function is linear on each line
segment Sp = {p + λ · (−Qij , Qii)T |λ ∈ R} ∩ F , p ∈ F , with derivative γ = ∂f/∂λ =
Qiigj −Qijgi in parameter direction. For γ ≥ 0 the optimum is obtained on one of the
line segments at the maximal parameter value. These points cover either one or two
adjacent edges of the parameter rectangle [Li, Ui] × [Lj , Uj ], depending on the signs of
Qii and Qij . We solve the one-dimensional sub-problem for each of the edges involved.
The best solution obtained from the one-dimensional sub-problems is the optimum µ?B.
The case γ < 0 is handled analogously with the opposite edge(s).

If QB has full rank then we compute the unconstrained optimum

µ̂B = Q−1B gB =
1

det(QB)
·
(
Qjjgi −Qijgj
Qiigj −Qijgi

)
.

If this solution is feasible we have µ?B = µ̂B. Otherwise first assume that only one of the
variables µ̂i and µ̂j is outside the bounds; w.l.o.g. assume αi+µ̂i > Ui. Then by convexity
we conclude that the optimum is found on the edge {Ui} × [Lj , Uj ], which amounts to
a one-dimensional problem. In case that both variables violate the constraints, w.l.o.g.
αi + µ̂i < Li and αj + µ̂j > Uj , the same convexity argument ensures that the optimum
is located on one of the adjacent edges {Li}× [Lj , Uj ] and [Li, Ui]×{Uj}. As above, the
better solution of the two one-dimensional problems constitutes the optimum.
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