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Large Deviation Tail Estimates and Related
Limit Laws for Stochastic Fixed Point Equations

Jeffrey F. Collamore and Anand N. Vidyashankar

Abstract We study the forward and backward recursions generated by a stochastic
fixed point equation (SFPE) of the form V d

= Amax{V,D}+B, where (A,B,D) ∈
(0,∞)×R2, for both the stationary and explosive cases. In the stationary case (when
E[log A]< 0), we present results concerning the precise tail asymptotics for the ran-
dom variable V satisfying this SFPE. In the explosive case (when E[log A]> 0), we
establish a central limit theorem for the forward recursion generated by the SFPE,
namely the process Vn = An max{Vn−1,Dn}+Bn, where {(An,Bn,Dn) : n ∈ Z+} is
an i.i.d. sequence of random variables. Next, we consider recursions where the driv-
ing sequence of vectors, {(An,Bn,Dn) : n∈Z+}, is modulated by a Markov chain in
general state space. We demonstrate an asymmetry between the forward and back-
ward recursions and develop techniques for estimating the exceedance probability.
In the process, we establish an interesting connection between the regularity proper-
ties of {Vn} and the recurrence properties of an associated ξ -shifted Markov chain.
We illustrate these ideas with several examples.

From Random Matrices and Iterated Random Functions (Alsmeyer, Löwe, eds.),
Springer, pp. 91-117.

1 Introduction

In this article, we consider stochastic fixed point equations (SFPE) of the form
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V d
= f (V ), (1)

where f is a known random function and V is an unknown random variable in R,
independent of f . Such equations arise in a variety of applications, ranging from
collective risk theory, queuing theory, financial time series modeling, and life in-
surance mathematics, to problems in branching processes and computer science. In
these applications, it is often of interest to describe the tail behavior of the random
variable V in (1).

Early work on this problem can be traced to the celebrated paper of Kesten [22],
who considered the linear recursion

V d
= AV +B, (A,B) ∈ R2, (2)

in a higher dimensional setting, and applied the results to describe the tail behavior
of certain martingale limits that arise in multi-type branching processes in random
environments. In this context, he showed that if E [log A] < 0 (hereafter referred to
as the stationary case) and appropriate regularity conditions are satisfied, then

P{V > u} ∼Cu−ξ as u→ ∞, (3)

where ξ is the nonzero solution to the equation E
[
Aξ
]
= 1. This result was later

extended in R1 to more general recursions by Goldie [18]; see Section 2.1 below.
Identifying and characterizing the constant C in (3) is much more of a delicate

affair compared to the problem of characterising ξ . While ξ only depends on the
multiplicative factor A of the given recursion, the value of the constant C depends
on the pair (A,B) in (2) or, more generally, on the function f in (1). For the linear
recursion (2), a nonrigorous approach—following earlier work by Yakin and Pollak
[34] on likelihood ratio testing and sequential change point problems in statistics—
was suggested in [32]. Quite recently, a rigorous solution was provided in [16] for
the linear recursion (2) and independent random variables A and B using a coupling
argument. A rigorous probabilistic solution—which holds for a general class that
subsumes the models considered in Goldie [18]—was recently developed by the
authors in [11].

In this article, we begin by giving a characterization of the constant C in the
stationary case for the SFPE V d

= Amax{V,D}+ B and its extension to random
maps. Next, we study the forward recursion Vn := An max{Vn−1,Dn}+Bn in the
explosive case; that is, when E [log A] > 0. We show that (Vn/Pn)→ W as n→ ∞

w.p. 1 for a certain random variable Pn and establish a central limit theorem for
Vn. Finally, we provide a nontrivial extension of the results in [11] to the Markov
case; that is, the case when {(An,Bn,Dn) : n = 1,2, . . .} is a Markov sequence and
Vn := An max{Vn−1,Dn}+Bn (or a related forward or backward recursion as de-
scribed in Sections 2.1 and 3.1 below). While Markovian extensions of Goldie’s
[18] result have been considered in [30] for the linear recursion (2) and in [8] for a
wider class of backward recursions, a unified treatment encompassing an estimate
for the pair (C,ξ ) has not been systematically given. Here we present a unified ap-
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proach, which builds upon work developed by the authors in [11] and earlier work of
one of the authors in [8]. A key idea that facilitates this unification is the observation
that, if the sequence {(An,Bn) : n = 1,2, . . .} possesses a regenerative structure, then
the process {Vn : n = 0,1, . . .} inherits this regenerative property and the original
forward recursion of the SFPE can be expressed as a forward recursion of another
SFPE (but belonging to the same class of SFPEs under investigation); i.e., a for-
ward recursion with a different driving sequence. A similar result also holds for the
case of backward sequences. Expectedly, the driving sequence will now involve the
regeneration times of the modulating Markov sequence.

We illustrate our results with a variety of examples drawn from insurance, finan-
cial mathematics, branching processes, and statistical inference.

2 Recursions driven by i.i.d. sequences

2.1 The stationary case

Our starting point is the SFPE

V d
= f (V )≡ FY (V ), (4)

where FY (V ) ≡ F(V,Y ) for some deterministic function F : R×Rd → R, assumed
throughout the article to be measurable and to be continuous in its first component.
In this representation, the random function f is determined by an environmental
random vector Y and independent of V . Moreover, we implicitly assume the shape
condition

FY (v) = Av+o(v) a.s. as v→ ∞, (5)

where A takes values on the positive real axis. In the following discussion, we will
assume without loss of generality that Y = (log A,Y ′) for some Y ′ ∈ Rd−1.

To assure that (4) has a stationary solution, we need the multiplicative factor A in
(5) to be contracting; that is, E [log A]< 0. Let λ (α) :=E[Aα ] and Λ(α) := logλ (α)
denote the moment generating function and the cumulant generating function of the
random variable (r.v.) log A, respectively, where α ∈ R. Also, let µA denote the
probability distribution of A. For any function g, let dom(g) denote the domain of g.
We assume

E
[
Aξ
]
= 1, for some ξ ∈ (0,∞)∩domΛ

′. (6)

To determine the tail behavior of V , one approach is to observe that the SFPE (4)
induces a renewal equation. Namely,

eξ vP{V > ev}= eξ v
{

P{V > ev}−P{AV > ev}
}
+ eξ v

∫
R

P
{

V > ev−x}
µA(dx).
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Hence, setting Z(v) = eξ vP{V > ev} and z(v) equal to the first term on the right-
hand side of the previous equation, we obtain that

Z(v) = z(v)+Z ∗µA,ξ (v), where µA,ξ (dx) = eξ x
µA(dx), (7)

which is closely related to the renewal equation. Thus, if we knew that the function
z were directly Riemann integrable, then the renewal theorem could be invoked to
obtain that Z(v)→C as v→ ∞ and, consequently, P{V > u} ∼Cu−ξ as u→ ∞.

Typically, it is impossible to verify that z is directly Riemann integrable. How-
ever, this assumption can be avoided by using a smoothing argument introduced in
[18]. This techniques yields the following very general theorem, proved by Goldie
([18], Theorem 2.3), building upon the previous work of Kesten [22].

Theorem 1 Assume that there exists a nonnegative random variable A which is
nonarithmetic and satisfies (6), and assume that

E
[∣∣∣( f (V )+

)ξ −
(
(AV )+

)ξ
∣∣∣]< ∞.

Then
lim
u→∞

uξ P{V > u}=C, (8)

where
C =

1
ξ λ ′(ξ )

E
[(

f (V )+
)ξ −

(
(AV )+

)ξ
]
. (9)

While this estimate is easily obtained from the renewal theorem under weak as-
sumptions, this approach has certain limitations. For instance, it is not possible to
establish the finiteness and positivity of the constant C without further assumptions.
Furthermore, the expression for C in (9) is defined in terms of V and, thus, is not
particularly fruitful in practical problems. A useful characterization in terms of the
forward process {Vn} in (10) below would, in particular, facilitate statistical infer-
ence and numerical procedures such as importance sampling.

To address the above difficulties associated with (9), an alternative approach was
recently developed in Collamore and Vidyashankar [11]. This approach is based on
the observation that the process Vn := FYn(Vn−1) (obtained via forward iterations of
the SFPE, see below) is Markovian and behaves like a multiplicative random walk
for large values of Vn−1. Thus, we may use nonlinear renewal theory to characterize
this process for “large” Vn−1, and then adapt methods from Markov chain theory to
quantify the discrepancy between these two processes.

To describe this approach, we first need to introduce the forward and backward
sequences generated by a given SFPE. Let {Yn : n = 1,2, . . .} be an i.i.d. sequence
having the same probability law as Y in (4). The forward sequence {Vn} is defined
by

Vn(v) = FYn ◦FYn−1 ◦ · · · ◦FY1(v), n = 1,2, . . . , V0 = v; (10)

while the backward sequence {Zn} is defined by

Zn(z) = FY1 ◦FY2 ◦ · · · ◦FYn(z), n = 1,2, . . . , Z0 = z. (11)
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The Furstenberg-Letac principle states that—although the sample paths of the
forward and backward sequences are manifestly different—the forward sequence
converges in distribution to a random variable V provided that the backward se-
quence converges a.s. to a random variable Z and is independent of the initial value;
furthermore, the distributions of V and Z are the same ([17], [23]). This leads to
the issue of determining which sequence—the forward or backward sequence—is
more amenable for analysis, and this, of course, is problem-dependent. In Collamore
and Vidyashankar [11], it is suggested that the forward sequence is preferable for
understanding the tail behavior of V described by Theorem 2.1, and this approach
also appears advantageous for the Monte Carlo simulation of these probabilities (cf.
[9]). Generally speaking, the advantage of the forward sequence is that this pro-
cess is a recurrent Markov chain and hence has useful ergodic properties (while
the backward sequence converges a.s., which is useful when analytic, rather than
probabilistic, methods are employed).

We now specialize to the quasi-linear recursion

V d
= FY (V ), FY (v) = Amax{v,D}+B, (12)

where Y ≡ (log A,B,D) ∈ R3. This SFPE is often called “Letac’s Model E” and,
as we will see in Section 2.3, has a wide applied relevance. This class of models is
roughly equivalent to the class considered by Goldie in [18].

First introduce the following regularity conditions.

Hypotheses:
(H0) The random variable A has an absolutely continuous component with re-

spect to Lebesgue measure with a nontrivial density in a neighborhood of R.
(H1) Λ(ξ ) = 0 for some ξ ∈ (0,∞)∩dom(Λ ′).
(H2) E

[
|B|ξ

]
< ∞ and E

[
(A|D|)ξ

]
< ∞.

(H3) P{A > 1,B > 0}> 0 or P{A > 1,B≥ 0,D > 0}> 0.

Let PV denote the transition kernel of {Vn}. Also, let B(Rd) denote the Borel sets
on Rd , d ≥ 1. Then under Hypotheses (H0), (H1), and (H2), the forward process
{Vn} is a Markov chain satisfying the minorization condition

δ1C (v)ν(E)≤ PV (v,E), v ∈ R, E ∈B(R), (M )

where δ is a positive constant, C a nontrivial set in R, and ν a probability measure;
see [11], Lemma 5.1. Hence by a classical result of Athreya and Ney [4] and Num-
melin [28], it follows that the forward process {Vn} admits a regeneration structure.
More precisely, we can find a sequence of independent times 0≤ T0 < T1 < · · · such
that:

(i) τi := Ti−Ti−1 is an i.i.d. sequence, i ∈ Z+;
(ii)
{

VTi−1 , . . . ,VTi−1
}

form independent blocks, i ∈ Z+;
(iii) VTi ∼ ν , independent of its past.
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Let τ denote a typical regeneration time, that is to say, the first regeneration time
assuming that regeneration has occurred at time zero. Then by [29], p. 75, it follows
as a consequence of the regeneration lemma that

P{V > u}= E [Nu]

E [τ]
, where Nu :=

τ−1

∑
n=0

1(u,∞)(Vn). (13)

In particular, Nu counts the number of exceedances of {Vn} occurring over a
single regeneration cycle, and this number tends to zero as u→ ∞. Thus {Nu > u}
is a rare event, and quantifying E [Nu] for large u is a large deviation problem. It
is natural to characterize this probability using a change of measure of the driving
sequence {Yn} in (12).

Let µ denote the probability law of Y ≡ (log A,B,D), and let ξ be given as in
(6), and define

µξ (E) =
∫

E
eξ xdµ(x,y,z), E ∈B(R3). (14)

Then µξ is itself a probability measure and, with respect to this measure, we easily
obtain that the process {Vn} is transient ([11], Lemma 5.2). Set Tu = inf{n : Yn > u},
and consider the dual change of measure:

L
(

log An,Bn,Dn
)
=

{
µξ for n = 1, . . . ,Tu,
µ for n > Tu.

(15)

Let ED[·] denote the expectation with respect to this dual measure and Eξ [·] denote
the expectation with respect to µξ .

To estimate ED[Nu], it is helpful to observe that this expectation splits into two
parts, one describing the “short term” behavior over a regeneration cycle, and the
other describing the “long term” behavior. By [11], Proposition 6.1, conditional on
V0 ∼ ν , we have that as u→ ∞,

E [Nu]∼ Eξ

[
W ξ 1{τ=∞}

]
·u−ξ ED

[
Nu

(
VTu

u

)−ξ
]
, (16)

where W := limn→∞ Vn/(A1 · · ·An). It is worth noting that in a wide variety of ex-
amples, including all of the examples in Section 2.3 below, the random variable W
reduces to the perpetuity sequence

W =V0 +
B1

A1
+

B2

A1A2
+ · · · ,

which, in (16), is killed upon regeneration of the transient process {Vn}.
Notice that under the shape condition (5), the process {Vn} resembles a multi-

plicative random walk when this process is far away from the origin. Moreover, the
exceedance probabilities for the multiplicative random walk are well-known from
classical risk theory (cf. [2]) and for perturbed random walks from nonlinear renewal
theory (cf. [33]). Trivially, in (16),
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(VTu/u)−ξ = exp{−ξ (logVTu − logu)} ,

where the exponent on the right-hand side describes the overjump of the perturbed
random walk {log(Vn∨1)} over a barrier at level logu. Consequently, using exten-
sions of results from [33], the second quantity on the right-hand side of (16) can be
identified, as u→ ∞, as u−ξ E[N∗u ], where N∗u denotes the number of exceedances
above level logu which occur for the random walk Sn = ∑

n
i=1 log Ai over its regen-

eration cycle, that is to say, over a cycle starting at the origin and continuing until
time τ∗ = inf{n : Sn ≤ 0}. Thus, the first term on the right of (16) describes the dis-
crepancy between the decay constant arising for the process {Vn} and that arising
for the corresponding multiplicative random walk.

To make these ideas rigorous, set A0 = 1 and B0 ∼ ν (where ν is given as in
(M )). Now define the perpetuity sequence associated with {Vn} by

Z(p)
n =

n

∑
i=0

Bi

A0 · · ·Ai
, n = 0,1, . . . , (17)

and define the conjugate sequence associated with {Vn} by

Z(c)
n = min

{
Z(p)

n ,0,
n∧

k=1

k−1

∑
i=0

Bi

A0 · · ·Ai
− Dk

A0 · · ·Ak−1

}
. (18)

It is easily seen that both of these quantities are backward sequences in the sense of
(11); specifically, (17), resp. (18) are generated by the recursions

F(p)
Y (v) =

v
A
+

B
A

and F(c)
Y =

1
A

min
{

Ď,v
}
+

B
A
,

where Ď0 :=−B0 and Ďi :=−AiDi−Bi for i = 1,2, . . . .
Our main result in this section is the following:

Theorem 2 Assume (12), and suppose that (H0), (H1), (H2), and (H3) are satisfied.
Then

lim
u→∞

uξ P{V > u}=C (19)

for a finite positive constant C. Moreover, C = limn→∞ Cn, where

Cn =
1

ξ λ ′(ξ )E[τ]
Eξ

[((
Z(p)

n −Z(c)
n

)+)ξ

1{τ>n}

]
, (20)

and Rn :=C−Cn = o(e−εn) as n→ ∞, for some ε > 0.

For the proof of Theorem 2, see [11]. In particular, nonnegativity of the constant
follows immediately from (H3) and the fact that zero is contained in the collection
minimized on the right-hand side of (18).

As demonstrated in [11], this method generalizes to a number of related prob-
lems. For example, it is shown that the method yields a useful upper bound, akin



8 Jeffrey F. Collamore and Anand N. Vidyashankar

to the Lundberg inequality from insurance mathematics. Moreover, the method pro-
vides a simple characterization for the extremal index of {Vn} (thus producing a
considerable simplification of that developed for the special case of the ARCH(1)
process in [19]). For details, see [11], Section 2.3.

Finally, the results can be generalized to a wider class of SFPEs. The main as-
sumptions needed are the presence of a cancellation condition, namely

Amax{v,D∗}+B∗ ≤ f (v)≤ Amax{v,D}+B,

together with the Lipschitz condition

sup
v 6=w

| f (v)− f (w)|
|v−w|

= L, E [logL]< 0,

where the approximating Letac models appearing in the cancellation condition are
assumed to satisfy (H0)-(H3). Then we obtain a complete analog of Theorem 2.2,
although the constant C is now expressed recursively and hence does not assume a
simple analytical form. For details, see [11], Section 2.4.

2.2 The explosive case

While the previous section was concerned with the stationary case, namely when
E [log A]< 0, in this section we present new results for the case E [log A]≥ 0. Note
by Jensen’s inequality that E [A] ≥ 1, and by the non-degeneracy of A it follows
that E [A] > 1. Our first result concerns the distributional behavior of logVn when
1 < E [A] < ∞. In the following, we denote the variance of a random variable A by
Var(A).

Theorem 3 Let {Vn} denote the forward process generated by Letac’s Model E, as
given in (10) and (12). Further assume that E[log(|B|/A)]< ∞, E [log |D|]< ∞, and
E [log A]> 0. Then:

(i) Vn diverges to infinity w.p. 1.
(ii) Setting µ = E [log A], σ2 = Var(log A), and Rn = n−

1
2 σ−1{log(Vn)− nµ},

then {Rn} converges in distribution to a standard normal distribution as
n→ ∞.

Proof. Using the forward recursion, we can express Vn as follows:

Vn = (A1 · · ·An)max{J1,n,J2,n} , (21)

where

J1,n =
n

∑
i=0

Bi

A1 · · ·Ai

and
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J2,n =
n∨

k=1

[
n

∑
i=k

Bi

A1 · · ·Ai
+

Dk

A1 · · ·Ak−1

]
≡

n∨
k=1

J2,n,k.

Now, by taking logarithms on both sides of (21), we get that

Rn =
∑

n
j=1 (log A j−µ)
√

nσ
+

logmax{J1,n,J2,n}√
nσ

. (22)

It is worthwhile to notice that the second term is well-defined since, by our assump-
tions, Vn > 0 and ∏

n
i=1 Ai > 0. To complete the proof, we need to show that the

second term converges to zero in probability.
To this end, we begin by noticing that

J1,n =
n

∑
i=0

Bi

Ai
· 1

A1 · · ·Ai−1
. (23)

Under our assumptions, J1,n is a perpetuity generated by the driving sequence
(B/A,1/A). Also E [log(1/A)] < 0. Hence J1,n converges to J1,∞ with probability
one, by Theorem 1.3 of [1]. Furthermore, the random variable J1,∞ does not have an
atom at zero. Next consider the term J2,n. To this end, notice that

J2,n,k ≤ J+2,n,k ≡
n

∑
i=k

|Bi|
A1 · · ·Ai

+
|Dk|

A1 · · ·Ak−1

≤
∞

∑
i=1

|Bi|
A1 · · ·Ai

+
∞

∑
k=1

|Dk|
A1 · · ·Ak−1

≡ J,

where J < ∞ w.p. 1 by another application of Theorem 1.3 in [1]. Then

sup
n∈Z+

J2,n ≤ J. (24)

One can strengthen this bound to a convergence result for J2,n by utilizing

max
1≤k≤n

{
J2,n,k− J2,∞,k

}
→ 0 w.p.1. (25)

That is, using standard arguments, one can show that J2,n converges to J2,∞ w.p. 1,
where J2,∞ = maxk J2,k and J2,∞ does not have an atom at 0. Thus it follows that

lim
n→∞

logmax{J1,n,J2,n}√
n

= 0 (26)

in probability, which completes the proof of the theorem. ut
From the proof of the above theorem, we can extract the path properties of {Vn}.

We state this as a theorem.

Theorem 4 Let {Vn} denote the forward process generated by Letac’s Model E, as
given in (10) and (12). Further assume that E[log(|B|/A)]< ∞, E [log |D|]< ∞, and
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E [log A]> 0. Then

lim
n→∞

Vn

A1 · · ·An
=V∞ w.p. 1, (27)

where the limit V∞ is nondegenerate.

The above theorem studies the asymptotic behavior of {Vn} under a random nor-
malization instead of a deterministic normalization. Under further strong assump-
tions, [20] studies the path properties of {Vn} under a deterministic normalization.
(Consult [20] and references therein for further central limit theorems related to the
explosive case.) Extensions of this idea for Letac’s Model E are currently being
investigated by the authors.

2.3 Examples and applications

We now turn to a few examples.

Example 1 The simplest example is the reflected random walk,

Wn = (Xn +Wn−1)
+, n = 1,2, . . . , W0 = 0, (28)

where {Xi} is an i.i.d. sequence of random variables, which is equivalent to the
multiplicative process Vn = An max{Vn−1,1}, where An = exp Xn and Vn = exp Wn.

Extremes of these processes play a prominant role in queuing theory (cf. [21])
and in collective risk theory. In the classical ruin problem of Lundberg [24] and
Cramér [12], one lets u denote the initial capital of the company, c the constant rate
of premiums income, and {ζi} the i.i.d. claims losses, which are assumed to arise
according to a Poisson process, {Nt}. Then the total capital of the company at time
t is given by

Yt = u+ ct−
Nt

∑
i=1

ζi. (29)

Now consider the probability of ruin, namely Ψ(u) := P{Yt < 0, for some t ≥ 0}.
Using Sparre-Andersen’s random walk representation of the risk process together
with classical duality, this probability may be equated to P{W > u}, where W :=
limn→∞ Wn and Xi := ζi− cτi in (28). For details, see [2].

Example 2 Consider a modification of the previous example, where the insurance
company invests its excess capital, earning i.i.d. returns {Rn} on these investments.
The total capital of the company is then the solution to the recursive sequence of
equations

Ỹn = RnỸn−1−Ln, n = 1,2, . . . , Ỹ0 = u, (30)

where Ln := −(Yn−Yn−1) are the discrete-time losses of the insurance business,
governed by the Cramér-Lundberg process described in (29). Next, define the dis-
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counted loss process at time n to be the perpetuity sequence

Ln :=
L1

R1
+

L2

R1R2
+ · · ·+ Ln

R1 · · ·Rn
. (31)

Then by a simple argument, the probability of ruin is equivalent to Ψ̃(u) :=
P{Ln > u, for some n}. The process {Ln} is illustrated in Figure 1 and is a back-
ward recursion generated by the function FY (v) = v/R+L/R. In contrast with the

Fig. 1 A sample path of the cumulative loss process. Ruin occurs when this negative-drift process
reaches a positive barrier at u, where u is the initial capital. This contrasts with the backward
process in Example 2.1, which is a multiplicative random walk process.

previous example—whose backward recursion can be shown to be a random walk—
the backward process appearing here has dependent increments and is evidently not
Markovian.

To determine the probability of ruin, we need to solve for the tail of the r.v.
L ≡ supn∈Z+

Ln. To this end, observe that R−1
2 L2+ · · ·+(R2 · · ·Rn+1)

−1Ln+1
d
=Ln,

and hence by (31),

Ln
d
= B+ALn−1, where A =

1
R1

and B =
L1

R1
. (32)

Now setting L̃ =
(
supn∈Z+

Ln
)
∨0 yields the SFPE

L̃
d
=
(
AL̃ +B

)+
. (33)

(Alternatively, by a slight variation of this argument, one can also show that L sat-
isfies the SFPE L

d
= Amax{L ,0}+B. However, the tail behavior of L is identical

to that of L̃ .)
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As with the previous example, there exists an interesting duality in the sense of
Siegmund [31] or Asmussen and Sigman [3]. Namely the process {Ỹn} is dual to
the forward process generated by the SFPE (33); cf. [3], p. 12. While the forward
process is Markovian, the process {Ỹn} is actually studied via the complicated back-
ward process {Ln}. As the forward process is simpler than this backward process,
it is convenient to first convert the backward process, via its SFPE, into a forward
process.

Example 3 Consider a single-type branching process in a random environment.
Then the population size at time n is given by

Zn =

(
Zn−1

∑
i=1

ηn,i

)
+Qn,

where {ηn,i : i = 1, . . . ,Zn−1} represents the number of children in the nth genera-
tion, and Qn represents the number of immigrants in the nth generation. Assume
that the probability laws of these quantities are random, modulated by an i.i.d. en-
vironmental sequence {ζn}. Thus ηn,i ∼ p(ζ ) for all i, and Qn ∼ q(ζ ) independent
of {ηn,i : i≥ 1,n≥ 1}. Let Fn denote the σ -field generated by {ζ0, . . . ,ζn}, and let
F∞ denote the σ -field generated by {ζ0,ζ1, . . .}, and consider Vn := E [Zn|F∞]. It is
easily seen using the branching property that

Vn = E [ηn,i|F∞]Vn−1 +E [Qn|F∞] .

Assuming that E [logE [ηn,1|Fn]] < 0 and letting n→ ∞ in the above equation, one
obtains the linear recursion

V d
= AV +B, (34)

where V := limn→∞ Vn. A multidimensional extension of this model was the focus
of the well-known paper of Kesten [22].

The recursion (34) also appears in many other settings, including the ARCH(1)
and GARCH(1,1) processes used for financial time series modeling (cf. [15], [5]), or
the perpetuity sequences used for modeling the future liabilities of a life insurance
company. For details, see [8], Section 3.

It is worth noting that in all of the above examples, it can be shown that the
conjugate sequence in Theorem 2.2 may be taken to be zero, and thus the constant
C is determined solely by a perpetuity sequence which is killed in the event that
{Vn} returns, in the ξ -shifted measure, to its regeneration set; cf. [11], Corollary
2.1.

We conclude this section by remarking that in several real applications in the
stationary case, simulation methods are typically used to obtain the tail probabilities,
and this can be computationally expensive. Thus, a precise description of the tails
of V facilitates inference concerning the extreme percentiles of the distribution of
V . Such estimates are of considerable interest in risk management. Estimation of ξ

has received much attention in the literature in risk theory, and detailed information
concerning the Edgeworth expansion is available (see for instance [6]). However,
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inference concerning C and the pair (C,ξ ) are not addressed in the literature. In
an ongoing work, we use the change of measure arguments developed in [11] to
describe a method-of-moments approach to the joint estimation of (C,ξ ). It turns
out that in finite samples, the correlation between estimates of C and ξ is negative,
and a detailed mathematical description is currently being carried out in [10].

3 Recursions driven by Markov-dependent sequences

Characterizing the constant C in the Markov case is much more challenging than
the i.i.d. case. As explained in Section 1, the values of the constant C depend on the
entire driving sequence {(log An,Bn,Dn) : n = 1,2, . . .} and their inherent depen-
dence structure. In the i.i.d. case, the recursions simplify, but in the Markov case, an
important asymmetry is introduced between the forward and backward sequences,
which we explain below in Section 3.1.

In spite of this complication, it is possible to adopt some of the principles from
the i.i.d. case by utilizing the the regeneration technique of Athreya-Ney-Nummelin
([4], [28]), which states that the process contains independent blocks of random
length which are i.i.d. Using this observation, we may derive appropriate SFPEs
for Markov recursions and apply the results of the previous section. This is possi-
ble since, somewhat unexpectedly, the k-step composition of a recursion driven by
Letac’s Model E retains the general form of Letac’s Model E, but with a new driv-
ing sequence (which here will be indexed by the regeneration times of the Markov
chain {Xn}).

While the form of this constant will necessarily be complicated, we note in Re-
mark 1 below that this constant reduces to the same general form as in the i.i.d. case
in some important examples.

3.1 Forward and backward Markov sequences

Consider the forward and backward sequences associated with the SFPE FY (v) =
Amax{v,D}+B, where Y ≡ (log A,B,D). By (10), the forward sequence is given
by

Vn = An max{Vn−1,Dn}+Bn, n = 1,2, . . . , V0 = v, (35)

while by (11), the backward sequence is given by

Zn = A1 max
{

Z(1)
n−1,D1

}
+B1, n = 1,2, . . . , Z0 = z, (36)

where Z(1)
n−1 is defined as Zn−1, but with {Y1, . . . ,Yn−1} replaced with {Y2, . . . ,Yn},

i.e., the driving sequence is shifted forward by one unit of time. In contrast to the
previous sections, we now assume that this driving sequence is Markov-dependent,
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that is, Yn = g(Xn), where {Xn} is a Markov chain taking values in a state space
(S,S ) and g : S→ R3. We will assume throughout this discussion that {Xn} is
aperiodic, irreducible (with respect to its maximal irreducibility measure ϕ), and
countably generated. Thus, we adopt the basic set-up described in [29] or [25].

Markov-dependent forward and backward sequences arise widely in applica-
tions. Natural examples in the forward case include the GARCH(1,1) or ARCH(1)
processes or branching processes with Markov-dependent innovations. While such
examples are easily motivated in the case of the forward sequence (35), the utility
of the backward sequence (36) is less transparent but can be motivated by a couple
of elementary examples.

To this end, we return to the ruin problem with investments described in Example
2.2. In that example, we observed that the probability of ruin is P{L > u}, where
L ≡ supn∈Z+

Ln and Ln denotes the discounted losses of the company which ac-
cumulate by time n. Now by iterating the sequence {Ln}, we obtain after an ele-
mentary argument that

Ln = Amax
{
L

(1)
n−1,0

}
+AL,

where L
(1)

n−1 denotes that the driving sequence has been shifted forward by one unit
in time; cf. the discussion following (33). Now if we set the initial state z = 0 and
(B,D) = (AL,0), then this last equation assumes the same form as (36), and our
objective is to determine the maximum of the backward sequence {Ln}.

A second example is the classical ruin problem mentioned in Example 2.1. In
that example, the corresponding backward process is the multiplicative random walk
Wn := A1 · · ·An (where Ai = exp Xi is defined as in Example 2.1), and ruin can be
shown to occur when L̃ > eu, where

L̃ := sup
n∈Z+

L̃n and L̃n := max{W1, . . . ,Wn}.

By repeating the above argument, we obtain that

L̃n = Amax
{
L̃

(1)
n−1,1

}
,

which has the same form as (36) after setting z = 1 and (B,D) = (0,1).
In the above examples we see, rather generally, that forward sequences often

arise in problems involving the steady-state limit of a given recursion, while back-
ward sequences typically arise in problems involving maxima. Heuristically, these
can be viewed as dual problems in the sense of Siegmund [31] or Asmussen and
Sigman [3].

To analyze the processes (35) and (36), we again utilize the regeneration tech-
nique of Athreya-Ney-Nummelin, applied to the Markov chain {Xn} (rather than to
{Vn}), to derive an SFPE having the same form as (12); thus, in particular, Theorem
2 can be applied to describe the stationary limiting behavior, also in the Markov-
modulated case.
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Let P denote the transition kernel of {Xn}, and introduce the minorization condi-
tion

h(x)η(E)≤ P(x,E), x ∈ S, E ∈S , (M0)

where h(x) = δ01C0(x) for some nontrivial set C0 and positive constant δ0, where η

is a probability measure on (S,S ).
The regeneration lemma ([4], [28]) yields the existence of a sequence of stopping

times K0,K1, . . . such that

(i) κi := Ki−Ki−1 is an i.i.d. sequence, i≥ 1;
(ii)
{
(XKi−1 ,YKi−1), . . . ,(XKi−1,YKi−1)

}
form independent blocks, i≥ 1.

(iii) XKi ∼ η , independent of the past.

A standard calculation shows that both the recursions (35) and (36) have a nice
compositional property, namely, if we calculate the k-step evolution of the process,
then it can be viewed as a recursion involving the function FY (v) = Amax{v,D}+B,
but with Yn ≡ (log An,Bn,Dn) replaced with a new driving sequence. Specifically,
after a tedius computation, we obtain that the k-step evolution satisfies

Vk = max
{ ˆA V0,D̂

}
+ B̂, k ∈ Z+, (37)

where

ˆA := A1 · · ·Ak,

B̂ :=
k

∑
i=1

Bi(Ai+1 · · ·Ak),

D̂ :=
k∨

j=1

[
D j(A j · · ·Ak)−

j−1

∑
i=1

Bi(Ai+1 · · ·Ak)

]

(where A1 · · ·A j−1 = 1 when j = 1). Next observe that (37) has the same general
form as (35), but with (A,B,AD) replaced with ( ˆA ,B̂,D̂). A similar expression is
also obtained for the backward recursion.

This compositional property now carries over to the stopping times Ki−1. Thus,
in the case of the forward recursion, we obtain for Vi :=VKi−1 that

Vi = max{AiVi−1,Di}+Bi, i = 1,2, . . . . (38)

In this recursion, the driving sequence Yi := (logAi,Bi,Di) is defined as Ŷ :=
(log ˆA ,B̂,D̂) in (37), except that the deterministic interval [1,k] in (37) must be
replaced with the random interval [Ki−1,Ki− 1] in (38). (When i = 0, Ki−1 ≡ 1 in
these definitions.) Thus,
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Ai := AKi−1 · · ·AKi−1,

Bi :=
Ki−1

∑
j=Ki−1

B j(A j+1 · · ·AKi−1),

Di :=
Ki−1∨

j=Ki−1

[
D j(A j · · ·AKi−1)−

j−1

∑
k=Ki−1

Bk(Ak+1 · · ·AKi−1)

]
. (39)

From (38), we obtain that V := limi→∞ Vi satisfies the SFPE

V
d
= max{AV ,D}+B, (40)

where (A ,B,D)
d
=(Ai,Bi,Di), and, as we will observe more formally below, {Vi}

has the same steady-state limit as the original process {Vn} and, thus, this steady-
state limit is characterized as the solution to (40).

In the case of the backward sequence, the regeneration technique works similarly.
It is just a matter of writing down the iterates, but now backward in time, to obtain
for Zi := max{Zn : 0≤ n≤ Ki−1} that

Zi = max
{
A1Z

(1)
i−1 ,D1

}
+B1, i = 1,2, . . . , (41)

where, following our usual convention, Z
(1)

i−1 has the same distribution as Zi−1 but
with the relevant driving sequence shifted forward by one unit in time, and for each
positive integer i,

Ai := AKi−1 · · ·AKi−1,

Bi :=
Ki−1

∑
j=Ki−1

(AKi−1 · · ·A j−1)B j,

Di :=
Ki−1∨

j=Ki−1

[
(AKi−1 · · ·A j)D j−

Ki−1

∑
k= j+1

(AKi−1 · · ·Ak−1)Bk

]
. (42)

(Once again, when i = 0, Ki−1 ≡ 1 in these definitions.)
Setting Z = supi Zi in (41), we obtain the SFPE

Z
d
= max{A Z ,D}+B, (43)

where (A ,B,D)
d
= (Ai,Bi,Di).

It is important to observe that we obtain different distributions for (B,D) in the
forward and backward cases, even though we have started with the same recursion,
FY (v) = Amax{v,D}+B, to generate the sequences (35) and (36). Thus, there is
an asymmetry between the forward and backward sequences, although the multi-
plicative term A —which determines the polynomial rate of decay—remains the
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same. (We note that this feature appears even in the polynomial models with i.i.d.
recursions, as described in [11], Example 3.5.)

We may now apply Theorems 2.2 and 2.3 directly to the SFPEs (38) and (43),
but before doing so we will need to verify that the required moment conditions are
satisfied. Since our random variables are formed over regeneration cycles, this issue
is somewhat subtle and we address it in the next section.

3.2 Characterizing moments over regeneration cycles

3.2.1 Moment properties of A

Let gA(Xn) = log An, and for each α ∈ R define

P̂α(x,E) :=
∫

E
eαgA(x)P(x,dy) and P̂k

α = P̂α ◦ P̂k−1
α , k > 1.

Let (λ (α))−1 denote the convergence parameter of the kernel P̂α (for the definition,
see [29], p. 27), and let Λ(α) = logλ (α). Set Sn = ∑

n
i=1 log Ai, and define

Γ (α) = limsup
n→∞

1
n

logE
[
eαSn

]
, α ∈ R.

Roughly, the convergence parameter measures the growth rate of P̂k
α(x,E) as k→

∞, where E is a “small set” satisfying (M0), while the “Gärtner-Ellis” limit Γ (α)
measures the growth rate of this quantity when E = S. It is well known that Λ(α)≤
Γ (α) for all α ([27], [8]). Now assume that

Γ (ξ ) = 0, for some ξ ∈ (0,∞)∩domΛ
′. (44)

Then it follows after a short argument that Λ(ξ ) = 0; see [8], p. 1426. Then by [27],
we have under appropriate conditions that 1 = E

[
(AKi−1 · · ·AKi−1)

ξ
]

:= E
[
A ξ
]
.

(See, in particular, Lemma 4.1 of [27] and its proof.) Thus, the solution ξ to (44)
yields the polynomial decay rate in Theorem 2.2, provided that appropriate moment
conditions are satisfied.

Consequently, we obtain an explicit characterization of the decay constant in the
Markov case, which is now the solution to the equation Λ(ξ ) = 0, but where the
cumulant generating function is replaced with the function Λ now derived from the
convergence parameter or, alternatively, with the Gärtner-Ellis limit (as would be
expected from the large deviation theory for Markov chains).
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3.2.2 Moment properties of (B,D): preliminary considerations

For notational convenience, assume that regeneration occurs at time zero, and let
κ denote the subsequent regeneration time. Then, using the above expressions for
(B,D) we see that in the forward case, the required moment conditions (H2) will
be satisfied provided that E

[
Bξ

f

]
< ∞, where

B f :=
κ−1

∑
i=0

B̃i(Ai+1 · · ·Aκ−1), B̃i := |Bi|+ |AiDi| (45)

and in this expression, we take (A0,B0,D0) to have the distribution of this triplet
upon regeneration. Similarly, in the backward case, it is sufficient to verify that
E
[
Bξ

b

]
< ∞, where

Bb :=
κ−1

∑
i=0

(A0 · · ·Ai−1)B̃i, B̃i = |Bi|+ |AiDi|. (46)

These last two equations are manifestations of nearly the same mathematical
quantity, as can be seen by constructing the time-reversed Markov process (whose
existence is assured by [26]). Thus we extend {Vn : n ∈ N} to a doubly-infinite
sequence {Vn : n ∈ Z}, where these two sequences are identical for n ∈ N. Then, by
comparing (45) to this same quantity but over its prior regeneration cycle—that is,
a cycle commencing at time κ̃ < 0 and terminating at time 0—we obtain that

B f
d
=
−κ̃

∑
i=1

B̃i(Ai+1 · · ·A1). (47)

As with Bb, this quantity may be viewed as a perpetuity sequence, but now com-
puted backward in time (and shifted by one time unit compared with (46)). Con-
sequently, the mathematical analysis is similar for the forward and backward se-
quences and, to avoid repetition, we will focus on verifying moment conditions for
backward sequences in the sequel.

3.2.3 The moments of Bb under some simplifying assumptions

Our next objective is to relate the moments of Bb to the moments of the regeneration
times of the ξ -shifted Markov chain, whose finiteness would then be assured if the
Markov chain were (λ (α))−1-geometrically recurrent with α = ξ . In the interest of
simplicity, we will first develop this correspondence under a number of simplifying
assumptions and later indicate how these assumptions can be removed.

Assume, for the moment, that Di ≡ 0 for all i and that {Bi} is an i.i.d. sequence
which is independent of the Markov-dependent sequence {Ai}. Next, introduce the
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strong minorization condition

aη(E)≤ P(x,E), x ∈ S, E ∈S , (M1)

where a > 0 and η is a probability measure.
If the kernel P̂α is (λ (α))−1-recurrent, then there exists a right invariant function

rα satisfying the equation P̂α rα = λ (α)rα . Otherwise, P̂α is (λ (α))−1-transient and
there exists a right subinvariant function rα ([29], Section 5.1). For any α ∈ dom(λ ),
introduce the α-shifted transition kernel

Qα(x,E) =
∫

E

eαgA(x)rα(y)
λ (α)rα(x)

P(x,dy), x ∈ S, E ∈S .

Then Qα is a probability kernel when P̂α is (λ (α))−1-recurrent (and a subproba-
bility kernel in the transient case). Let Eα [·] denote expectation with respect to this
shifted measure.

Observe that the minorization (M0) (or the stronger condition (M1)) induces a
minorization for Qα ; in particular, using the definition of Qα together with (M0),
we obtain

hα(x)ηα(E)≤ Qα(x,E), x ∈C, E ∈S , (Mα )

where, for some normalizing constant L,

hα(x) =
Lh(x)

λ (α)rα(x)
eαgA(x)∧1 and ηα(dy) =

1
L

rα(y)η(dy).

Here L is a normalizing constant, chosen such that ηα is a probability measure.
(We may assume that η has been selected in a suitable way so that L < ∞.) Thus, a
minorization exists, and hence a regeneration structure for the ξ -shifted chain. Also
set ĥα(x) = h(x)eαgA(x)/λ (α).

Lemma 1 Assume {Bi} is i.i.d. and independent of {Ai} with E
[
Bξ

i

]
< ∞, and as-

sume that Di ≡ 0 for all i and (M1) is satisfied. Then

Eξ [κ]< ∞ =⇒ E
[
Bξ

b

]
< ∞.

Proof. For the proof, introduce the notation h⊗η(x,dy) := h(x)η(dy).
Using the series representation for a regeneration cycle (as in [28], p. 313 or

Lemma 4.1 of [27]), we obtain
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Eξ [κ−1|X0 = x] = Eξ

[
∞

∑
n=1

1{κ>n}

∣∣∣X0 = x

]

=
∞

∑
n=1

∫
S

(
Qξ −hξ ⊗ηξ

)n
(x,dy)

≥ 1
rξ (x)

∞

∑
n=1

(
P̂ξ − ĥξ ⊗η

)n
rξ (x)

=
1

rξ (x)

∞

∑
n=1

E
[

eξ S′n−11{κ>n}rξ (Xn)
∣∣∣X0 = x

]
, (48)

where S′n :=∑
n
i=0 log Ai. In the previous display, the inequality follows directly from

the definitions of hξ , ĥξ , ηξ , P̂ξ , and Qξ (and we obtain an inequality here due to
the additional term “∧1” appearing in the definition of hξ ).

Next observe that under the strong minorization (M1), the function rξ is bounded
below by a constant ([7], Remark 2.3). It follows that

E

[
∞

∑
n=1

(A0 · · ·An−1)
ξ 1{κ>n}

∣∣∣∣X0 = x

]
≤Mrξ (x), for some M < ∞.

Using independence and the moment assumption on {Bi}, we conclude that this
expression also holds with (A0 · · ·An−1Bn) in place of (A0 · · ·An−1) and M replaced
with some finite constant M′. (Since {Bi} is i.i.d. and independent of {Ai}, the B-
sequence is independent of the regeneration times.) Consequently,

E
[
Bξ

b

]
≤M′

∫
rξ (x)η(dx).

In the minorization (M1), we may assume that the measure η has been chosen such
that the integral on the right-hand side of the last expression is finite. Thus we obtain
E
[
Bξ

b

]
< ∞, as required. ut

3.2.4 The moments of Bb in the general case

The previous argument can be modified to incorporate a nontrivial sequence {Di}
and Markov dependence in the entire driving sequence {(log Ai,Bi,Di)}. Following
Collamore ([8], Section 6.1), one approach is to replace the kernel P̂ξ in the above
argument with R̂ξ , where for any α ,

R̂α(x,E) :=
∫

E
eαF(x,y)P(x,dy), x ∈ S, E ∈S ,

for ( fA(Xn), fB(Xn)) =
(
log An, log(B̃n +1)

)
and
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F(x,y) = fA(x)+( fB(y)− fB(x)) .

If the minorization has been chosen so that B̃0 is deterministically bounded from
above by a constant, then the previous lemma can be repeated to obtain the same
result as before, although the Q-shifted measure is formed with respect to the kernel
R̂ξ rather than P̂ξ . That is to say, we now define

Q̃α(x,E) =
∫

E

eαF(x,y)r̃α(y)
λ̃ (α)r̃α(x)

P(x,dy), x ∈ S, E ∈S ,

where r̃α and λ̃ (α) are the eigenvectors and eigenvalues corresponding to the kernel
R̂α . Let Ẽα [·] denote expectation with respect to this measure. In addition, assume
that Γ (ξ ) = Γ̃ (ξ ) = 0, where

Γ̃ (α) := limsup
n→∞

1
n

logE
[
eαSn(B̃n +1)α

]
.

Then we obtain:

Lemma 2 Assume (M1). Then

Ẽξ [κ]< ∞ =⇒ E
[
Bξ

b

]
< ∞.

Finally, we observe that (M1) may be weakened to (M0) by first introducing the
“augmented kernel”

Pa(x,E) := P(x,E)+aη(E),

and then computing the ξ -shifted measure using this kernel in place of P; cf. [7],
[8]. Under this construction, the right invariant function rξ ,a is uniformly positive,
as required in the proofs of Lemmas 3.1 and 3.2, and the eigenvalue λa(ξ ) ↓ 1 as
a ↓ 0.

3.2.5 Toward a complete result in the Markov case

The moment assumptions in Lemmas 3.1 and 3.2, expressed in terms of the ξ -
shifted measures, are not particularly natural to verify in practice, where it would be
preferable to express these conditions in terms of the transition kernel of the original
process. Moreover, there is also a need to verify the further moment assumption on
A , equivalent to the assumption that E

[
A ξ (logA )

]
< ∞. Now under appropriate

conditions, it is known ([27], pp. 581-2) that

E
[
A ξ (logA )

]
= Eξ [logA ] = Eξ [κ]Eξ [log A|X ∼ π],

where π denotes the stationary measure of {Xn}.
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Roughly speaking, a sufficient condition for the above results to hold is the geo-
metric ξ -recurrence of the kernels P̂ξ and R̂ξ (cf. [29], Proposition 5.25). Thus, it is
of some theoretical and applied interest to understand how geometric ξ -recurrence
relates to the underlying properties of the given Markov chain.

An effort to draw this connection has been given in [8]. Let h : S→ [0,∞), and
define:

Lah = {x ∈ S : h(x)≤ a}, a≥ 0;

S̃n = {log A1 + · · ·+ log An−1}+ log(B̃n +1), n = 1,2, . . . ;

Shn = h(X1)+ · · ·+h(Xn), n = 1,2, . . . ;

Γh(α,β ) = limsup
n→∞

1
n

logE
[
eα S̃n+βShn

]
, (α,β ) ∈ R2.

Assume the existence of a nonnegative h-function such that the following condition
holds.

Minorization:
(M) For any a > 0 sufficiently large, there exist a constant δa > 0 and a proba-

bility measure ηa on (S,S ) with ηa(Lah)> 0 such that

δa1Lah(x)ηa(E)≤ P(x,E), x ∈ S, E ∈S .

Also impose the following additional assumptions on the process.

Hypotheses:
(H1) For the function h given in (M), there exist points α > r and β > 0 such

that Γh(α,β )< ∞.
(H2) For any a > 0, there exist nontrivial sets E1, . . . ,El ⊂ S, possibly dependent

on a, and a finite constant Ja such that

P(x,E)≤ Ja inf

{
l

∑
i=1

P(xi,E) : xi ∈ Ei, 1≤ i≤ l

}
, x ∈Lah, E ∈S .

We also need to assume the usual regularity assumptions, now with respect the
the random variables formed over a regeneration cycle. We collect these assump-
tions as an additional hypothesis:

(H3) Hypotheses (H0) and (H3) hold with respect to (A ,B,D).

In Collamore [8], it is shown that if (M), (H1), and (H2) hold, then

E [A α ]< ∞ and E [Bα
b ]< ∞, for some α > ξ .

Moreover, E
[
Bα

f

]
<∞, provided that these conditions hold with respect to the time-

reversed Markov chain (which we implicitly assume in the following development
when the forward recursion is considered).
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Note that the property described in (M) always holds for Harris chains when P
is replaced by Pka ; see [25]. Also, we note that a regeneration structure we need
would still exist if (M0) were weakened to a condition on Pk rather than P, that
is, to Harris recurrence; see [29], p. 134. Finally, it seems plausible that condition
(H2) could possibly be removed, since this is mainly used in [8] to assure that the
relevant eigenvectors are bounded from above by a constant.

Combining the results of [11] and [8], we obtain an extension of Theorem 2.2.
First let {Z (p)

n } and {Z (c)
n } denote the perpetuity and conjugate sequences, de-

fined as in (17) and (18), but with (Ai,Bi,Di) replaced with (Ai,Bi,Di). Then set
Z (p) = limn→∞ Z

(p)
n and Z (c) = limn→∞ Z

(c)
n . Also, let {Ṽn} denote the forward

process generated by the sequence {Ai,Bi,Di} according to Letac’s Model E, and
set τ = inf{i : Ṽi ∈ C }, that is, the first passage time of this Markov chain into its
C -set. (Ṽi ≡ Vi if it is a forward process we study, but not if it is a backward pro-
cess.) Finally, recall that λ (α) denotes the convergence parameter associated with
the kernel P̂(α), as defined in Section 3.2.1.

Theorem 5 Assume that (44) holds and that (M), (H1), (H2), and (H3) are sat-
isfied. Then

lim
u→∞

uξ P{W > u}=C (49)

for a finite positive constant C, where W := limn→∞ Vn in the forward case and
W := supn Zn in the backward case. Moreover, the constant C may be identified as

C =
1

ξ λ ′(ξ )E[τ]
Eξ

[
(Z (p)−Z (c))ξ 1{τ=∞}

]
. (50)

Remark 1 In specific examples, the constant C can be identified more explicitly
and put into the same general form as in the i.i.d. case studied in Theorem 2.2. In
particular, if {Vn} is obtained from the forward recursion Vn = AnVn−1 +Bn and the
sequence {Bn} is supported on [0,∞), then the conjugate term in (50) is zero (since
all nonzero terms in (18) would then be positive), and so it follows from (50) and
(39) that

Z (p) =V0 +
B1

A1
+

B2

A1A2
+ · · · , (51)

where, as in Theorem 2.2, the initial distribution (corresponding to the distribution
of the random variable V0) is obtained from the regeneration measure of the Markov
chain {VKi : i = 0,1, . . .}. We remind the reader that the sequence {Ki} represents
the regeneration times of the Markov chain {Xn}, and that (An,Bn) is modulated by
this chain {Xn}, that is, (An,Bn) = g(Xn).

Moreover, the stopping time τ can also be viewed—as in Theorem 2.2—as a first
passage time. Specifically, in Nummelin’s split-chain construction ([28], [29]), re-
generation of the Markov chain {Xn} occurs when Yn := (Xn,γn) ∈ C0×{1}, where
{γn} is an i.i.d. Bernoulli sequence with P{γn = 1}= δ0 and (C0,δ0) appear in the
minorization (M0) of the Markov chain {Xn}. Now, {τ = ∞} corresponds to the
event that {VKi} never returns to its C -set (namely, the interval C = [−M,M]); that
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is to say, {Vn} never returns to C at a regeneration time of {Xn}. But this is the same
as the condition that {(Vn,Yn) : n = 0,1, . . .} never returns to the set C ×C0×{1}.

Now if {Vn} is a perpetuity sequence (thus obtained from backward recursion of
the SFPE f (v) = Av+B rather than forward recursion of this SFPE), then (42) must
be employed in place of (39), which does not simplify in the same way as (51). How-
ever, in this case, it is plausible to employ [26] to obtain the time-reversed process of
{(Vn,An,Bn) : n = 0,1, . . .}, and to observe that this time-reversed process assumes
the form of the forward sequence Vn = ÃnVn−1 + B̃n, where (Ãn, B̃n) = (A−n,B−n)
for the extended process {(An,Bn) : n ∈ Z}. Since the limiting distribution of this
forward process agrees with the limiting distribution of the original perpetuity se-
quence, we expect an expression of the form (51), also for the case of perpetuities.

Remark 2 In [8], Section 3, the conditions of Theorem 3.1 are verified for a variety
of problems which are of applied interest. One application considered in [8] is the
ruin problem with investments (described above in Example 2.2), but where the
investment returns are Markov-dependent, governed by any one of the following:

(i) A discrete-time Black-Scholes model under Markov regime switching, where
the regime switching is determined by an underlying finite-state or uniformly recur-
rent Markov chain.

(ii) The logarithmic returns {− log Ai} are modeled as an AR(p) process or, with
slight modifications of the assumptions, an ARMA(p,q) process.

(iii) The insurance company invests a fixed fraction of its surplus capital in a
stock and a fixed fraction in a bank account, where the returns on the bank in-
vestment are at a deterministic rate r > 1, while the returns on the stock investment
follow the stochastic volatility model suggested in [13], [14]. Specifically, the invest-
ment returns are modeled as Rn = σnζn, where {ζn} is an i.i.d. Gaussian sequence
and {logσn} is modeled, say, as an ARMA(p,q) process.

Another application considered in [8] is a GARCH(1,1) process with regime
switching, where the regime shifts are (as in (i)) modulated by an underlying finite-
state Markov chain.

The proof of Theorem 3.1 is a direct consequence of Theorem 2.1 of [11] and
Theorem 4.1 of [8]. In the forward case, it also needs to be observed that the limit
over regeneration cycles agrees with the steady-state limit of the original sequence.
But this equivalence is obtained along the lines of [8], p. 1428.
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