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Abstract

The current knowledge of bacterial ecology and population dynamics in the wild is minimal

compared to the amount of information gathered about gene regulation in bacteria on a single

cell basis. In this thesis, we formulate several di�erent simple models in order to address some

of the questions regarding bacterial ecology and population dynamics, which are still largely

unanswered.

We start with the question of how bacteria manage to coexist with virulent phage, a seemingly

over-e�cient bacterial predator. We explore several known phage behavioral mechanisms via

an individual-based, stochastic, spatial ecosystem model and try to assess whether or not these

mechanisms enhance coexistence. We �nd that mechanisms which increase the heterogeneity

of spatial distribution of the phage and bacteria, also seem to allow coexistence for a broader

range of model parameters. A particularly interesting phenomenon is found when we allow

phage to mutate their latent time - the time between infection and the moment where o�spring

burst out of the bacterial host. Here, we see that the phage which have the highest �tness

over long time spans, have a di�erent latent time than those which compete best for new hosts

locally. This is due to the fact that the phage which are very e�cient at acquiring new hosts

tend to wipe out their resources locally and then die out. Consequently there exists a negative

selection mechanisms against very e�cient killers, which ensures that more mediocre killers

prevail in the long run in a spatial system.

We also experiment with di�erent ways of implementing bacterial refuges in which conditions

are harsher for the phage in the ecosystem model. When refuges are both �xed in space, and

when they form dynamically due to a density dependent mechanism, we �nd that the presence

of refuges greatly expands the range of parameters which allows for coexistence. The condition

for facilitating phage and bacterial coexistence on the edges of the refuges are those parameters

which inside the refuge make phage so ine�cient that they cannot sustain themselves, while in

regions of low bacterial density (i.e. on the edge of bacteria colonies or in empty space); phage

parameters should be such that phage here are so over-e�cient that they would not be able to

coexist with the bacteria alone. We �nd that coexistence on the edges of bacterial refuges in our

model share many characteristics with real ecosystems: (i) highly e�cient virulent phage with

relatively long lifetimes, high infection rates, and large burst sizes (ii) large, stable, and high

xi



xii ABSTRACT

density populations of phage and bacteria (iii) a fast turnover of both phage and bacteria (iv)

stability over evolutionary timescales despite imbalances in the rates of phage versus bacterial

evolution.

Next, we address questions regarding factors that could in�uence the behavior of bacteria

cooperating by producing and excreting common goods. It was been found that common

good production is often conditioned by so-called quorum sensing (QS) signals among bacterial

cells in a population, but exactly why and when this type communication is bene�cial is still

unclear. Using a simple 1D model, we analytically determine how the functional form of the

bene�t gained by having di�erent amounts of common good in the environment, in�uences

the need, or lack thereof, for QS regulation. We �nd that when bene�ts initially accelerate,

in other words, when the functional form of the bene�t versus common good concentration is

convex, there exists a critical population number CC below which common good production

will not be advantageous, and a critical di�usion constant DC above which common good

production will not be advantageous. We also �nd that having a production strategy which

di�ers from the optimal one comes at a great cost when bene�t initially accelerate, which

suggests that QS regulation of a common good might be more crucial in this case. We then

test the prediction of the 1D model using a stochastic 2D spatial model of quorum sensing

cells which can excrete common goods. This model con�rms that QS regulation of common

good is especially advantageous when the functional form of the bene�t versus common good

concentration is convex and further shows that the presence of a �cheat�, who does not produce

common good but nonetheless enjoys the bene�ts, makes QS regulation crucial for the �tness

of the cooperator.

Lastly, we explore a speci�c scenario of bacterial common good production and communication

in which two enemy bacterial species produce QS regulated antibiotics in order to gain a

competitive advantage over each other. There exists experimental evidence that some bacterial

species condition common good production, not just on their own QS signal, but also on that

of the enemy species, a phenomenon which has been termed �eavesdropping�. Laboratory

experiments with our model system consisting of two species of quorum sensing antibiotic

producers, one of which eavesdrops on the other, suggest that a bacterial species may get a

competitive advantage by eavesdropping. We construct several simple mathematical models

and use these to map out the regions in parameter space where eavesdropping is advantageous

and where it is not, and discuss the implications of our model results for the evolution of

eavesdropping mutants.

Given that empirical data on bacterial ecology and population dynamics is incomplete, our work

not only strengthen existing hypotheses, but also enables us to posit new theories which we

hope will in-turn inspire new experiments to test our predictions.



Dansk resumé

Den nuværende viden om bakterielle økosystemer og deres populationsdynamik i naturlige

miljøer er relativ lille i forhold til den store mængde informationer som er opsamlet om bakteriel

genregulering på enkelt celle-niveau. Vi har i denne afhandling formuleret en række forskellige

simple modeller for at besvare spørgsmål, der vedrører bakterielle økosystemer og populations-

dynamik og som stadig er ubesvarede.

Vi starter med spørgsmålet om, hvordan en bakterie formår at sameksistere med en virulent

phag - et tilsyneladende overe�ektivt rovdyr for bakterien. Vi udforsker �ere kendte phag

adfærdsmekanismer via en individ-baseret stokastisk og todimensional økosystem model, og

forsøger at vurdere, hvorvidt disse mekanismer forbedrer evnen til sameksistens. Vi observerede,

at mekanismer som forøger heterogeniteten af den rumlige phag- og bakteriefordeling synes at

tillade sameksistens for en bredere vifte af parametre. Vi fandt et særligt interessant fænomen,

da vi tillod phagerne at mutere med hensyn til deres latens tid - tidsrummet mellem infektionens

start og det tidspunkt hvor phagafkommet bryder ud af den bakterielle vært. De phager, der har

optimale overlevelsesevner på langt sigt, har en anden latens tid, end de phager, som er mest

konkurrencedygtige når det gælder hurtig udnyttelse af nye lokale bakterielle værter. Dette

skyldes, at en phagtype, som meget e�ektivt erhverver sig nye værter, også har en tendens til

at udslette ressourcer lokalt og derefter dø ud. Denne negative selektionse�ekt, der virker på

de meget e�ektive bakteriedræbere sikrer, at mere middelmådige dræbere sejrer i det lange løb,

når de lever i et rumligt system.

Vi har eksperimenteret med at indføre forskellige arter af bakterielle til�ugtssteder i vores model,

hvori betingelserne er hårdere for phagerne. Både når til�ugtsstederne er fastsat i modellens

rum, og når de dannes dynamisk grundet en bakteriel densitetafhængig mekanisme, �nder vi,

at tilstedeværelsen af til�ugtssteder i høj grad udvider spændevidden af parametre, som tillader

sameksistens. Betingelsen for at få bakterier og phager til at sameksistere på kanterne af til-

�ugtsstederne er blot at parametrene inde i til�ugtsstederne gør phagerne så ine�ektive, at de

ikke kan overleve. Mens regionerne, hvor bakterietætheden er lav (dvs. på kanten af bakterie

kolonierne eller udenfor dem) er sådan at phagerne er for e�ektive til at kunne sameksistere

med bakterier alene. Vi observerede at sameksistensen mellem phager og bakterier på kanten

af bakterielle til�ugtssteder deler karakteristika med rigtige økosystemer på følgende punkter:

xiii
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(i) høje�ektive phager med forholdsvis lange levetider, høje infektions rater og store mængder

afkom (ii) store, stabile populationer med høj densitet af både phager og bakterier (iii) en hurtig

omsætningrate for både phager og bakterier (iv) stabilitet over evolutionære tidskalaer trods

ubalance mellem hastighederne af h.h.v. phagens og bakteriens evolutions-rater.

Vi tager dernæst fat på spørgsmål vedrørende faktorer, som påvirker adfærden hos bakterier,

der samarbejder ved at udskille molekyler, der udgør et fælles gode. Det er blevet observeret

eksperimentelt, at en bakteriel �fælles gode� produktion ofte er betinget af såkaldte quorum

sensing (QS)-signaler der sendes mellem de bakterielle celler i en population, men præcist hvor-

for og hvornår denne type kommunikation er gavnlig, er stadig uklart. Ved hjælp af en simpel

endimensionel model, bestemmer vi analytisk, hvordan den funktionelle form af de opnåede

fordele ved at have forskellige mængder af fælles gode i miljøet påvirker behovet for, eller

mangel på samme, for QS-regulering. Vi �nder, at når fordelene accelererer, som funktion af

koncentrationen af det fælles gode (altså når den funktionelle form af fordele versus koncen-

trationen af fælles gode er konveks) �ndes der et kritisk populationsantal, CC under hvilken

fælles gode produktion ikke længere er fordelagtigt, og at der �ndes en kritisk di�usionskonstant

DC over hvilken fælles gode produktion ikke længere er fordelagtigt. Vi observerer også, at

bakterietyper som har en fælles gode produktionsstrategi der adskiller sig fra den optimale, har

store omkostninger, når den funktionelle form af fordele versus koncentration af fælles gode er

konveks; et faktum, der antyder at QS-regulering af et fælles gode, kunne være meget afgørende

i netop denne situation. Vi tester derefter forudsigelserne fra vores endimensionelle model med

en todimensionel stokastisk model af celler, der udsender QS-signaler og som kan udskille fælles

gode molekyler. Denne model bekræfter, at QS-regulering af det fælles gode er fordelagtig,

særligt når den funktionelle form af fordele versus koncentrationen af fælles gode er konveks.

Modellen viser yderligere at tilstedeværelsen af en �snyder�, en bakterietype som ikke producerer

det fælles gode men ikke desto mindre nyder fordelene, bevirker at QS-regulering bliver endnu

mere afgørende.

Endelig har vi udforsket et bestemt scenarie med bakteriel kommunikation og fælles gode pro-

duktion. Scenariet forekommer, når forskellige bakteriearter producerer QS reguleret antibiotika

for at opnå en konkurrencemæssig fordel i forhold til hinanden. Der er blevet observeret eksper-

imentelt, at nogle bakteriearter ikke bare lader antibiotika produktion afhænge af deres eget

QS-signal, men også af fjendtlige arters signaler - et fænomen kaldet "a�ytning". Laborato-

rieforsøg med vores model, der består af to arter af QS-signalerende antibiotika producenter,

hvoraf den ene a�ytter den anden, antyder, at en bakterieart kan opnå en konkurrencemæssig

fordel ved hjælp af a�ytning. Vi konstruerer dernæst �ere matematiske modeller og benytter

disse til at kortlægge de regioner i parameterrummet, hvor a�ytning giver en fordel, og hvor

det giver en ulempe. Til slut diskuterer vi konsekvenserne af vores resultater for udviklingen af
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a�yttende mutanter.

Modellerne i denne afhandling har gjort det muligt at formulere en række hypoteser omkring

bakterielle økosystemer og populations dynamik; et område hvor eksperimentel data er util-

strækkelig og sporadisk. Vi håber at disse ideer vil inspirere eksperimenter der kan be- eller

afkræfte deres validitet i nær fremtid.
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Introductory remarks

The complex lives of bacteria and why we care

Bacteria are found everywhere on earth in staggering numbers, volume, and diversity2. Some

of them form an integrated indispensable symbiotic part of the human body3, while others can

cause illness or death. Some are employed in our food and medicinal industries and a majority

of the rest are busy in the oceans photosynthesizing, utilizing CO2 to produce oxygen.

A few select bacterial species have been studied extensively in laboratories during the past

century and have helped mankind reach great insights into the molecular basis of life. Much is

now known about the inner genetic workings of these species, but still very little is known about

general bacterial behavior and population dynamics in the wild. Only recently have we acquired

the technology, such as high resolution imaging techniques, high throughput gene sequencing

and methods for sorting and imaging single cells, which may begin to help us gain a better

understanding of bacterial wildlife. The study of bacterial ecology and population dynamics

is thus at a very interesting stage, where we may use knowledge about speci�c mechanisms

working inside the cells and start formulating questions about how these mechanism a�ect a

species on a population level in a natural setting. This is a stage where I think simple models

could be highly instrumental in leading the way to help us think about these unexplored systems

in new ways and perhaps inspire us to design experiments that we would not have thought of

otherwise.

2A rough estimate of: the total number of bacteria on the planet is 1030 [143], the total weight of carbon

stored in bacterial cells is 350− 550 · 109tonne [143] and the number of bacterial species is 105 − 107 [36],
3If a human body was a democracy, (and not the neuron-ruled oligarchy that seems to be the case), bacteria

would have the majority vote. (Paraphrased from a speaker I sadly forgot the name of).

xvii



xviii INTRODUCTORY REMARKS

A map of this thesis

Part I

Part I of the thesis deals with questions regarding coexistence between bacteria and their

virulent phages. In Chapter 1, we explore di�erent phage behavioral mechanisms which enhance

coexistence by facilitating heterogeneity in an otherwise homogeneous spatial environment. In

Chapter 2, we further explore spatial heterogeneity by modeling phage-bacteria dynamics in the

presence of bacterial refuges; we model refuges both as �xed in space and forming dynamically

through a density dependent mechanism. Finally, we explore the nature of the co-evolutionary

arms race that can develop in the presence of self-organized bacterial refuges.

Part II

Part II deals with questions regarding bacterial production of common goods and bacterial com-

munication mechanisms. In Chapter 3, we analytically explore important factors which could

in�uence the behaviour of bacteria producing and excreting public goods. We also attempt

to assess the circumstances under which a microbe may bene�t from making common good

production conditional on communicative cues from other common good producers in the en-

vironment. In Chapter 4, we build on the �ndings from Chapter 3 using a spatial model of

common good producing and communicating bacteria; we also introduce a �cheat�, a bacterial

species which does not incur the cost of common good production but enjoys the bene�ts,

and investigate how the presence of a cheat in�uences optimal cooperative and communicative

behaviour. In Chapter 5, we explore a speci�c system where the bacterial common goods are

antibiotics which are used to combat other bacterial species living in the same habitat. We are

interested in probing the phenomenon of bacterial �eavesdropping� - the fact that some bacte-

ria species make antibiotic production depend not just on communicative cues passed between

themselves, but also on cues picked up from communication between enemy bacteria.

Biological background information for the models in this thesis will be embedded in the text

where appropriate, often mainly in the separate introductory parts of each chapter.
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Coexistence
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Chapter 1

Coexistence of bacteria and virulent phage

1.1 Introduction

1.1.1 A puzzlingly e�ective and omnipresent predator

Phage-bacteria ecosystems are found almost everywhere on the planet: in oceans, in soil, on

plants and even inside the human body. Phage, together with bacteria, constitute an amount

of biomass comparable to that of all plant matter on the planet. Even though phage are easily

the most abundant and genetically diverse organism on the planet [12], a remarkable number

of questions about how phage and bacteria interact in the wild remain unanswered.

The replication strategies of phages fall into two major categories, virulent and temperate. A

temperate phage has the ability to integrate its DNA into the host chromosome, where it is

then copied along with the bacterial DNA during cell division. This strategy allows the phage

to slow down, or completely stop killing the bacteria, thus reducing the risk of driving its host

to extinction. Virulent phage, however, lack this ability. Instead they use the strategy of rapidly

replicating within the bacterial cell, lysing it and releasing a large burst of o�spring. The

time between infection and lysis is known as the latent time of the phage, and the number of

o�spring released is correlated to this duration. Typically, the latent time is around one bacterial

generation [65], during which on the order of a hundred o�spring are produced, thereby giving

virulent phage an extremely high predator-prey conversion factor compared to most macroscopic

ecosystems. Thus, they seem to be remarkably e�cient, perhaps even over-e�cient, predators.

The puzzle of virulence. Questions related to phage bacteria coexistence, population dy-

namics, and evolution have been extensively studied both theoretically and experimentally: e.g.

in [21; 127; 53; 16; 59; 141; 142], yet it remains a puzzle exactly how virulent phage avoid

driving their bacterial prey to extinction [17; 104]. Consider, for example, the highly e�ective

T4 phage. For the sake of argument let us assume a burst size of 100 o�spring upon lysis.

3
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On average, not more than a single phage out of each burst of 100 should survive to infect

another bacterium, or else the phage would rapidly outgrow the bacteria and drive them to

extinction. The half-life (t1/2) of a free T4 phage particle has been measured to be approxi-

mately 10 days in LB1 at 37◦C ([28]). Therefore, on average, at least t1/2 = log2(100) ≈ 2

months should pass between infections to prevent runaway phage growth - a time span that

seems highly unreasonable for many of the environments where phage and bacteria interact

at high densities, such as soil or bio�lm. Even a more considered calculation, inserting the

above half-life measurement into more realistic Lotka-Volterra-like predator-prey models, does

not change the conclusion that T4 and other virulent phages appear to be far too e�ective

predators for coexistence to be feasible [46]. It is, however, an undisputed fact that virulent

phages and bacteria have coexisted for eons and still do so everywhere around us and inside us.

It is estimated that virulent phage constitute approximately half of the existing phage types on

the planet, and they appear to be the dominant type in marine ecosystems [124].

1.1.2 The Red queen e�ect

Perhaps the most prominent explanation for how virulent phage manage to coexist with their

bacterial hosts is that they are continuously engaged in a �nely balanced co-evolutionary arms

race where bacteria constantly avoid extinction by evolving resistance to existing phage and the

phage then counter evolve to attack resistant bacteria. This hypothesis, �rst formulated by Van

Valen ref. [130], is known as the �Red Queen� e�ect. The name is taken from the scene in Lewis

Carroll's novel �Through the Looking-Glass, and What Alice Found There� (1871) where Alice is

participating in the �Red Queen's race� and running as fast as she can but remaining in the same

place. It is a metaphor for an evolutionary arms race where competing species are constantly

improving speci�c �tness while still not improving overall survivability over time in general due

to the fact that every speci�c �tness increase in the prey is counteracted by a similar speci�c

�tness increase in the predator. The Red Queen e�ect as an explanation for bacteria coexisting

with virulent phage has, however, been criticized on the grounds that the rates of evolution of

phage and bacteria are not necessarily symmetric [97; 66; 72]. Recent measurements appear

support this argument. In soil, for instance, phage appear to be �ahead of the bacteria in the

co-evolutionary arms race� [134]. For the Red Queen argument to work, it is necessary that at

every stage the phage and bacteria must coexist, without either becoming extinct in order to

allow resistant bacteria to evolve. In our view, therefore, although co-evolution is responsible for

very long term coexistence between virulent phage and bacteria, (see e.g. [16; 141]) it is also

1LB: Lysogeny broth, a nutritionally rich medium used for growth of bacteria.
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important to explore non-evolutionary mechanisms that can stabilize predator-prey populations

on a shorter time scale.

1.1.3 Spatial models

In order to explore mechanisms which enhance coexistence of virulent phage and their bacterial

hosts, we have formulated various version of an individual-based stochastic spatial ecosystem

model. While we do examine models where the phage and bacteria are repeatedly mixed

(mimicking serial cultures or a well-mixed broth), for most of the simulations we use models

where the phage and bacteria exist in a two-dimensional space.

Historically, phage-bacterial ecosystem models have often ignored the issue of space, utilizing

zero-dimensional approaches such as ordinary di�erential equations (e.g., see references [7; 18;

69; 68; 78; 121]). However, many real phage-bacterial ecosystems are found in environments

with a complex spatial structure, such as soil, bio�lms, or wounds in animal and plant tissue.

Schrag and Mittler [109] showed that coexistence between virulent phage and bacteria is feasible

in a chemostat but not in serial cultures, due to bio�lm refuge formation on the walls of the

chemostat. Further, experiments done by Brockhurst et al. [12] indicate that reduced phage

dispersal can prolong coexistence for virulent phage and bacteria in spatial environments by

creating ephemeral refuges for the bacteria. Kerr et al. [59] introduced a simple cellular

automaton to model fragmented populations of phage and bacteria in which coexistence was

more easily achieved when migration was spatially restricted. Thus it seems introducing spatial

dimensions, which allow a degree of heterogeneity in the environment, is an important extension

to the often used zero-dimensional predator-prey framework.

1.1.4 A map of this chapter

First, in section 1.2, we introduce two models of an ecosystem consisting of one bacterial species

and one virulent phage species. In one model the ecosystem is in a two dimensional space, while

in the other it is in a well-mixed space. In section 1.3.2, we investigate the e�ect on coexistence

of con�ning the phage and bacteria to a 2D geometry vs. having a more well-mixed situation,

by comparing the behavior of the two models.

Then in sections 1.3.3 and 1.3.5 we explore a series of mechanisms that phage could incorpo-

rate into their behavior to enhance coexistence. These can broadly be classi�ed as �hardwired�

(where every phage follows the same deterministic strategy) versus �adaptive� (where each

phage potentially behaves di�erently, thus allowing the population to explore di�erent options).

We have chosen to look at three speci�c mechanisms as examples of these categories: (i) phage

e�ectiveness would be reduced if they were unable to register whether they were infecting live
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or dead bacteria (a hardwired behavior); (ii) phage could prolong their latent time depending

on certain information from the environment (also a hardwired behavior, but a more �active�

sort; T4 is known to use such a lysis inhibition strategy), and (iii) phage o�spring could have

altered latent times due to particular mutations (an adaptive behavior). These mechanisms are

described in more detail in sections 1.3.3 and 1.3.5, where we compare their e�ects in both the

spatial and the well-mixed model.

These sections reinforce the well known fact that the latent time of virulent phage is a key

parameter that a�ects their dynamics. In section 1.3.4 we show that for a virulent phage with

an inexhaustible supply of host bacteria there is an optimal value for the latent time and burst

size. In section 1.3.5 we then show how this optimal value changes when the bacteria are not

an inexhaustible resource but have their own population dynamics which both regulates and is

regulated by the dynamics of the phage population.

1.2 Models

1.2.1 Basic model

In the basic model, virulent phage and bacteria interact on an L× L grid of sites with periodic

boundary conditions. Each site in the grid can either be empty or occupied by a single bacterium

(each grid site thus has a carrying capacity of one bacterium). The bacterium may be healthy,

infected by a phage, or dead. In addition, there can be any number of free phage particles at

the site. Time proceeds in discrete steps, ∆t. Precise timers control bacterial cell division and

the lysis of an infected bacterium, which releases a burst, β, of free phage. Other processes are

random, e.g., death and di�usion of phage, and are modeled as Poisson processes, (see details

in Appendix 1 section 5.6.1).

In each time step, the following can happen.

1. Bacterial replication. A bacterium with at least one empty adjacent site will attempt

to divide in every time step after the current time has become greater than the value

of its replication timer. The probability of replication is set to be proportional to the

number of empty neighbor sites. Once a bacterium divides, one daughter cell remains

in the original site, and the other is placed randomly in one of the adjacent empty sites.

The replication timers of both cells are reset to the current time plus replication time T ,

a parameter which thus sets the growth rate of the bacteria.

2. Bacterial infection. A healthy bacterium that shares its site with some free phage may

be infected with a probability pα, which depends on the number of phage at the site, the
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infection rate per phage per bacterium α and the decay rate of the phage δ. (Note that

this means that superinfection � infection by another phage of an already infected cell �

is not allowed in the Basic model). The number of free phage at that site is then reduced

by one, and the lysis timer of the newly infected bacterium is set to τ (the latent time of

the infecting phage) and starts counting down from that value.

3. Bacterial lysis. An infected bacterium will die when its lysis timer has counted down to

zero. The number of phage at that site increases, upon lysis, by the burst size β.

4. Phage decay. Free phage die with a probability pδ per phage, which depends on the

phage decay rate δ.

5. Phage di�usion. Each free phage may jump to a neighboring site with a probability pλ

which sets the phage di�usion constant.

The burst size increases with latent time: β = γ (τ − ε). This formula models the constant

rate of replication (γ) of phage, after a minimum preparatory time (ε) usually referred to as

the eclipse time [52]. The values of the parameters and the size of the basic time step depend

on the choice of phage and bacterial species. With Escherichia coli, a reasonable choice is a

time step of 10min, a replication time T of 300 min (i.e., 30 time steps), and an area of 1µm2

per grid site.

1.2.2 Basic model with phage infecting dead and already infected bacteria

This variant is completely similar to the basic model, except that we do not immediately remove

bacteria that die to to lysis. The dead bacteria stick around after lysis but decay exponentially

with the rate δB . They do not block the growth of healthy bacteria, i.e. a replicating bac-

terium treats a site with a dead bacterium as an empty site. In this model, phage are allowed

to �infect� dead bacteria as well as previously infected bacteria. When this happens, this phage

disappears from the system � the dead or infected bacterium is left unchanged. The value

of δB = 0.01∆t−1 used in the simulations, results in dead bacteria staying in the system for

roughly three bacterial generations before decaying, unless they are overrun by newly replicated

bacteria. These choices are explained further in section 1.3.3.

1.2.3 Basic model with lysis inhibition

In this version of the model, there are no dead bacteria but phage are allowed to infect previously

infected bacteria. Phage can detect such multiple infections. Every time a phage infects an
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already infected cell, lysis of this cell is postponed by 8 time steps. We set an upper limit of

200 time steps beyond which lysis cannot be postponed, which gives a maximum burst size of

1330 phage. These choices are explained in more detail in section 1.3.3.

1.2.4 Basic model with phage latent time evolution

In this version of the model, the latent times of the phage is allowed to mutate. In each burst

of new phage a small fraction (0.5%) have a di�erent latent time from that of the parent phage

(and therefore also a di�erent burst size). These new latent times are chosen randomly and

uniformly from the range 0 to 50 time steps. The other 99.5% inherit the same latent time as

the parent phage. Additionally, 0.5% of bursts are comprised entirely of latent time mutants.

(This is done to mimic the fact that occasionally a latent time mutation happens at an early

stage of in phage production � this is explained in more detail in section 1.3.5). Burst size for

each new phage is calculated from the same formula used in the Basic model, β = γ(τ − ε),
unless the latent time τ is less than the eclipse time ε, in which case the burst size is zero.

1.2.5 Well-mixed model

The well-mixed model is similar to the Basic model, except that (i) upon bacterial cell division,

newborn bacteria are placed in a randomly chosen empty grid site, rather than an adjacent empty

site, (ii) the probability of a healthy bacterium replicating after T time steps is proportional to

the number of empty neighbours averaged over all healthy bacteria, rather than the number of

empty sites adjacent to that bacterium, and (iii) newborn phages, released when an infected

bacterium is lysed, are randomly placed all over the grid. This results in continuous mixing of

the phage and bacteria populations while at the same time ensuring that the two models are as

similar as possible to allow for straightforward comparison. We also looked at versions of the

Well-mixed model with all of the above phage behavioral mechanisms implemented, i.e. phage

infecting dead and already infected bacteria, lysis inhibition and latent time evolution.
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1.3 Results

1.3.1 Coexistence region

The color map in �g. 1.1 shows the average steady-state uninfected bacterial density per grid

site B (i.e. fraction of sites occupied by uninfected bacteria), for simulations of the Basic model

with various combinations of δ (degradation rate of phage) and α (infection rate per phage per

bacterium). In the deep-red region in �g. 1.1, the phage are so ine�cient2 that they die out

and the bacteria subsequently grow to carrying capacity. In the deep-blue region, the phage

are so e�cient that they drive the bacteria to extinction and then die out themselves. In the

middle region, where 0 < B < 1, coexistence of bacteria and phage is stable. The size of this

region in the δ-α parameter plane is a way of quantifying how easily coexistence is achieved

in the models we examine, since δ and α are the main parameters which determine the overall

e�ectiveness of the phage.

It is interesting to note that coexistence in the Basic model requires much higher values of δ

(0.1 to 0.4min−1 for, say T4) than has been measured in laboratory conditions. This suggests

that the e�ective death rate for phage may be much higher in real ecosystems than in the

laboratory. The typical dynamics of the Basic model involve one or more bacterial colonies that

grow at a rate determined by their replication time. These colonies are invaded by phage that

move in traveling infection fronts that sweep through the colonies. The speed of the infection

front depends on the e�ectiveness of the phage, i.e., on δ and α. If the phage die too quickly

or infect very ine�ciently, they go extinct. Conversely, if the phage live a long time or infect

quickly, then the infection front may propagate even faster than the bacterial growth front.

Ecosystem dynamics. Within the coexistence region, there is considerable variation in the

dynamics of the ecosystem, as shown in the four snapshots in �gure 1.2. At point A, right

at the edge of the coexistence region, the phage infection front in fact travels faster than the

bacterial growth front. Nevertheless, there is coexistence because the infection fronts leave

behind healthy bacteria often enough to keep the bacterial population from going extinct.

However, at point A there is considerable variation in bacterial density with time because the

bacteria typically form a small number of big colonies which are then decimated by the fast

moving infection fronts. Increasing δ or decreasing α from point A moves the system deeper

into the coexistence region to points B and C, respectively, where there is a higher average

bacterial density. Point B, in stark contrast to point A, is characterized by many small intermixed

2Henceforth we use the term `phage e�ciency' to mean the phage growth rate in an environment where the

bacterial density is kept constant. Parameters that in�uence phage e�ciency are, for example, the infection

rate α, the burst size β, the phage degradation rate δ, and the phage di�usion constant.



10 CHAPTER 1. COEXISTENCE OF BACTERIA AND VIRULENT PHAGE

C

A B

D

Figure 1.1: Coexistence region in the α-δ parameter plane. Left: δ is the degradation rate of

the phage, and α is the infection rate for a phage that occupies the same lattice site as a bacterium

(see Appendix 1 section 5.6.1 for details on model implementation). The color map shows the average

steady-state bacterial density, B, per grid site for simulations with various combinations of α and δ.

In the dark-red region to the right, the phage are so ine�cient that they die out and the bacteria

subsequently grow to carrying capacity. In the dark-blue region on the left, the phage are so e�cient

that they drive the bacteria to extinction and then die out themselves. In the middle region, where

0 < B < 1, coexistence of bacteria and phage is stable. The jaggedness of the boundaries, in this

and subsequent plots, arises because only a single simulation was done for each α-δ pair. Doing more

simulations does not signi�cantly alter the position and shape of the coexistence region.
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Healthy bacteria

Dead bacteria
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Figure 1.2: Moving around in the α-δ parameter plane. Snapshots of simulations at the points

marked on the left side plot. At point A the phage infection front travels faster than the bacterial

growth front. Nevertheless, there is coexistence because the infection fronts leave behind healthy

bacteria often enough to keep the bacterial population from going extinct, but there is considerable

variation in bacterial density with time. Point B is characterized by many small intermixed domains of

bacteria and phage and their total populations are quite stable with relatively small �uctuations. At

point C bacteria survive a passing infection front more often than at point A (because of the lower

infection rate) and, therefore, the bacterial domains are smaller and more dispersed. The dynamics at

point D are very similar to the dynamics at point C because they lie on the same isocolor line (lines

of constant bacterial density). Grid size used in simulations was 100× 100. Initial conditions consisted

of 5% of the grid sites occupied by healthy bacteria and 0.5% of sites occupied by infected bacteria,

randomly chosen.
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domains of bacteria and phage, and their total populations are quite stable with relatively small

�uctuations. At point C, bacteria survive a passing infection front more often than at point

A (because of the lower infection rate) and, therefore, the bacterial domains are smaller and

more dispersed than at point A. Qualitatively similar patterns and dynamics are observed as

one moves along isocolor lines (i.e., lines of constant bacterial density) to lower δ and α values.

Thus, the dynamics at point D are very similar to the dynamics at point C. At very small δ

values (δ ≤ 10−4), however, the system starts behaving like a well-mixed system because the

phage are able to di�use across the entire grid before either dying or infecting.

1.3.2 Coexistence is more easily achieved in the Basic model than in the Well mixed

model

Figure 1.3 compares the coexistence regions for the Basic and Well mixed models, keeping

all parameters other than δ and α �xed at their default values. The coexistence region is

approximately 20% smaller for the Well mixed model than for the Basic model. The right

boundary of the coexistence region coincides for both models and is situated where the time

between infections is so long that on average only one phage per burst survives (see Appendix

1 section 5.7 for derivation of an analytical expression for the right side boundary). The left

boundary, however, is situated further to the left for the Basic model than for the Well mixed

model, meaning that in a 2D geometry the bacteria can coexist with far more e�ective phage

than in the Well mixed model. In fact, in the Well mixed model the left boundary corresponds

to the onset of high-amplitude oscillations in the populations. These oscillations cause the

bacterial numbers to periodically fall to extremely low levels. Each time this happens there is

a �nite probability that all the remaining bacteria will be infected before they divide so, sooner

or later, high amplitude oscillations like these cause the bacteria go extinct. For the same

parameter values, the Basic model shows damped or low-amplitude oscillations and therefore

coexistence.

1.3.3 Hardwired phage behavioral mechanisms which enhance coexistence

Figure 1.4 shows the coexistence regions when two hardwired mechanisms are implemented in

the Basic model (see section 1.2). Both impede phage infection and dispersal, but in di�erent

ways.

Phage infecting dead and previously infected bacteria. First, the left panel in Fig. 1.4

shows what happens if phage simply cannot distinguish between healthy and infected/dead

bacteria - they infect whatever they come into contact with and when that is a dead or previously

infected bacterium, the phage e�ectively dies. Traditionally, phage-bacterial models ignore the
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Figure 1.3: Space enhances coexistence. Top: Outline of coexistence regions for the Basic (2D

space) and Well mixed models plotted on top of each other. In the white region, there is coexistence

only in the Basic model. In the gray region, there is coexistence in both models. The area of the gray

region is around 20% smaller than the area of the white region signifying that coexistence is more easily

achieved in a 2D geometry than in a well mixed system. Bottom: The green curves show the total

number of free phage in the Basic and Well mixed models as a function of time, for the parameters

corresponding to the point marked E in the top panel. In the Basic model the population quickly settles

to a stable level, with some �uctuations. In contrast, the Well mixed model exhibits oscillations with

increasing amplitude that eventually drive the bacterial population, and subsequently the phage, to

extinction.
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Figure 1.4: E�ects of two hardwired phage strategies on the coexistence region. In both plots,

the white region corresponds to parameters where there is coexistence in the Basic model both with

and without the two phage strategies, while the gray region shows where there is coexistence only when

the corresponding phage behavior is implemented. Left: Phage infect live, dead, and infected bacteria

alike (see section 1.2.2). Right: Multiple infections of the same bacterial cell result in delayed lysis

(see section 1.2.3).
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interaction of phage with dead and infected bacteria [89; 69; 121; 18]. It has, however, been

proposed that the build up of bacterial debris could hinder phage di�usion, protect live bacteria,

and enhance coexistence [7; 97]. This is indeed the e�ect we see in the left panel in �g. 1.4

at the left boundary of the coexistence region. In contrast, the right boundary is una�ected

because here the phage population is relatively low, on the verge of extinction, while the

bacterial population is very close to the carrying capacity so infection of previously infected or

dead bacteria is rare.

Lysis inhibition. The right panel in �gure 1.4 shows the e�ect of a more �active� strategy,

where the phage can detect multiple infections and delay lysis. T4 is known to use such lysis

inhibition [11; 33]. Through a mechanism involving the anti-holin protein rI, T4 delays lysis by

5 to 10 min whenever the cell becomes super infected with an additional T4 phage (Ryland

Young, Texas A&M University, personal communication). We implement this e�ect in the

Basic model by allowing phage to infect already infected cells. Whenever this happens, lysis is

postponed by 8 time steps. However, we set an upper limit of 200 time steps beyond which lysis

cannot be postponed. This gives a maximum burst size of 1, 330 phage, which approximately

corresponds to the maximum phage production possible using the resources available in a single

bacterium [33]. This mechanism also boosts coexistence, as shown in the right panel in �g. 1.4.

Again, the right boundary is una�ected because super infections are rare here. The possibility

of infecting dead and infected bacteria e�ectively increases δ for the phage, whereas delaying

lysis upon super infection e�ectively decreases α (by reducing burst size per phage). Either way,

the result is shifting the left boundary of the coexistence region further to the left compared to

the Basic model.

Hardwired phage behavioral mechanisms in the Well mixed model. We also tried imple-

menting these two behavioral strategies in the Well mixed model. However, with the degradation

rate of dead bacteria �xed at δB = 0.01, we saw no signi�cant e�ect of letting the dead and

infected bacteria act as sinks for phage. δB would have to be much lower, i.e. the dead bacteria

would have to remain in the system for much longer, for any e�ect to be visible. This result

emphasizes how the same mechanism can produce di�erent outcomes when implemented in a

spatial and a non-spatial model.

1.3.4 Optimal latent time

The latent time τ is the duration between infection and lysis. It has been shown experimentally

that the phage proteins which cause lysis, called holins, control the timing of lysis with very

high precision (±1min) and that point mutations within the holin gene can signi�cantly alter
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Figure 1.5: Optimal latent time as a function of bacteria density, when host density is constant.

A: Optimal latent time, τopt , as a function of the constant bacterial density in a well mixed environment

(equation 1.3), for di�erent values of the phage degradation rate, δ ∈ [0.001, 0.01, 0.1, 0.5] (with

α = 1.0 kept �xed). For low bacterial density, phage with long latent times (and thus large burst sizes)

have highest �tness, while at high bacterial densities phage with low latent times and small burst sizes

do well. When the phage degradation rate is increased τopt tends to shift towards higher values. B:

Optimal latent time as a function of bacterial density when a phage infection front propagates through

a bacterial lawn of �xed density. Each point corresponds to the position of the tallest maximum of a

distribution like the one shown in �g. 1.6 and �g. 1.8B when averaged over 40 simulations done for

each value of B. Parameters used for these simulations were α = 1.0 and δ = 0.001.

the lysis time without changing this precision [137]. Experimental studies have also shown that

phage kept at a high constant bacterial density will very quickly evolve to have a shorter latent

time [47]. The fact that the latent time of a phage is a highly malleable genetic trait [149]

makes it an interesting choice for evolutionary change in a model study. A short time span

after infection the production of phage progeny starts inside the cell at a constant rate γ; the

time span between infection and the onset of phage production is termed the eclipse time ε.

Because phage are produced at a constant rate, the burst size β is a linear function of the

latent time [65]:

β = γ(τ − ε) (1.1)

The generation time TP of the phage is the sum of the latent time τ and the duration of

the di�usive extracellular search for a new host. Both burst size β and generation time TP

are thus a function of the latent time τ . Maximizing phage growth is therefore a question of
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simultaneously minimizing generation time and maximizing burst size. This presents a tradeo�

since reducing latent time decreases generation time while increasing latent time increases burst

size. In a well mixed system with a constant bacterial density, B , the average time for a new

phage to �nd and infect a bacterium is (αB)−1, therefore phage growth can approximately be

described by:

P(t, τ) = P0

(
β exp

(−δ
αB

))t/TP

(1.2)

= P0

(
(τ − ε)γ exp

(−δ
αB

))t/(τ+ 1
αB

)

(1.3)

Where P(t, τ) is the phage population size and P0 ≡ P(t = 0).

By solving3 limt→∞
[
∂
∂τ

(
∂P
∂t

)]
= 0, we can determine the latent time, τopt , which maximizes4

the phage growth rate, ∂P
∂t .This optimum satis�es:

1

αB

(
1 + τoptαB

τopt − ε
+ δ

)
= log [γ (τopt − ε)] (1.4)

and is plotted in �g. 1.5A. We see that for low bacterial density, phage with long latent times

(and thus large burst sizes) have highest �tness, while at high bacterial densities, phage with

short latent times and small burst sizes do best, consistent with the experimental observations

in [47; 30; 112; 2].

Selection pressure. When f (τ) ≡ ∂P
∂t

∣∣
t=t′

(for any �xed t ′ � τopt) is plotted as a function

of τ , it will peak very close to τ = τopt . The sharper the maximum, the higher is the selection

pressure acting at those parameters, because a sharp peak means that a small change in latent

time τ makes a large change to the phage growth rate. The sharpness of the peak at τ = τopt

can be quanti�ed by S =
∣∣ ( ∂2f

∂τ2

)
τ=τopt

∣∣ and we see in �g. 1.7 that S(B) increases with

increasing B , consistent with the observations and conclusions in [47]5.

Phage infection front propagating through a bacteria lawn of constant density. In

real life phage probably rarely encounter environments with perfectly constant bacterial den-

3For t →∞, τopt does not depend on t.
4Several other studies have outlined a procedure for determining τopt (see e.g. [1]), however the actual

derivation done here (which includes the e�ect of phage degradation) has not to our knowledge been published

anywhere.
5In ref. [47] they perform experiments where they let phage T7 evolve towards the optimal latent time in

both high and low host density environments. They �nd that T7 evolve quickly to a value near the optimal

latent time in the case of high host density, but fail to detect any noticeable phenotypic evolution for the phages

at low host density. They too comment on the fact that the strength of selection is greater for high density

than for low, and that this may be the reason why they do not see any signi�cant change towards the optimal

latent time during the limited time span of the experiment.
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Figure 1.6: Determining optimal latent time for a phage infection front propagating through a

lawn of bacteria of constant density. Left: The three plots show the phage distribution at di�erent

points in time. Note that the peak of the distribution at higher latent times is tallest early in the race,

whereas later the local maximum at lower latent time catches up and then takes the lead. A: Initial

condition used for the spatial simulations where an infection front was allowed to spread down through

a bacterial lawn of constant density. The upper line of infected bacteria contains equal numbers of

infected bacteria with latent times taking integer values in the range 11 to 50 time steps, randomly

arranged along the line. Throughout the simulation 0.5% of each new batch of phage had a new

mutant latent time di�erent from the parent phage, drawn randomly and uniformly from the range

τ ∈ [0, 50]. Light red signi�es bacteria infected with short latent time phage and darker red signi�es

bacteria infected with long latent time phage. B: Snapshot of the moving infection front. Di�using

free phages are depicted by shades of green, with darker greens corresponding to higher phage numbers

at that site. Initial bacterial density in the lawn for these plots was B = 0.043.
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sity, partly because of external environmental factors and partly because the phage themselves

strongly in�uence bacterial density. One could however imagine that phage would encounter

situations where an infection front propagates through a region of near constant density of bac-

teria, similar to a phage infection front spreading through a lawn of bacteria on an agar plate.

In order to assess what the optimal latent time is in this situation we did simulations where an

initial straight line of infected bacteria were allowed to burst and spread phage down through

an area of constant bacterial density (see 1.6A). The initial line contained equal numbers of

infected bacteria with latent times taking integer values in the range 11 (one more than the

eclipse time which is �xed at 10) and 50 time steps, randomly arranged along the line. A small

fraction of each new burst of phage were then mutated to have a di�erent latent time (and

therefore also a di�erent burst size) from the parent phage. (The latent times of 0.5% of the

phage from each burst are chosen randomly and uniformly from the range 0 to 50 time steps.

The other 99.5% inherit the same latent time as the parent phage. Additionally, 0.5% of the

bursts are comprised entirely of latent time mutants). The optimal latent time was determined

at the end simply by counting which phage type managed to produce most o�spring during the

course of a simulation (the �nal data shown in �g. 1.5B is an average over 40 simulations done

for each value of B).

Bimodal phage distribution. In these simulations the phage which burst right at the edge

of the front will e�ectively feel a density of one half that of the actual density of the lawn. The

bacteria infected with phages which have longer latent time however will not burst right at the

edge of the moving front but always some distance behind since the pace of the front is set

by the phage with low latent times. This means that these long latent time phage e�ectively

feel a lower density of bacteria. The phage with very long latent times are well equipped to

deal with a low density of host because of their large burst sizes. Phage with medium latent

time on the other hand succumb since they can not keep up with the fastest phage and cannot

compete with the high latent time phage in the low host density left behind the propagating

front. Thus, the e�ect the moving front race has on the distribution of phages is that it makes

it bimodal, one peak at low latent times and one at high, see �g. 1.6. This e�ect is especially

pronounced for relatively low bacterial densities of 0.01 < B < 0.1. Over longer time spans,

the peak at low latent times always becomes the tallest and the curve for optimal τopt (now

de�ned as the position of the highest peak) versus density turns out to be qualitatively very

similar to the analytical result shown in �g. 1.5.
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Figure 1.7: Selection pressure increases with host density. Selection pressure S =
∣∣ ( ∂2f

∂τ 2

)
τ=τopt

∣∣
(where f (τ) ≡ ∂P

∂t

∣∣
t=t′

and t ′ � τopt , see equation 1.3 and 1.4), plotted as a function of the bacterial

density, B, for di�erent values of the phage infection rate α ∈ [0.1, 0.5, 0.9]. Parameters used for plot:

t ′ = 1000, ε = 10, P0 = 1, γ = 7, δ = 0.001.

1.3.5 An adaptive phage behavioral mechanism which surprisingly can enhance co-

existence

The above analytical calculation and simple spatial simulation gives a �rst simple idea about

the trade o� and associated optimal phage latent time in the speci�c situation of a constant

bacterial density environment. We wished to go further and asses what constitutes optimal

phage latent time behavior in the more complex setting of the dynamic Basic model where

bacterial density is not constant but continuously �uctuating and strongly in�uenced by the

phage density.

Implementing phage latent time mutability. We modi�ed the Basic model to, once again,

allow a small fraction of the phage progeny of each burst to mutate to have a di�erent latent

times (and therefore also a di�erent burst size) from the parent phage. (The latent times of

0.5% of the phage from each burst are chosen randomly and uniformly from the range 0 to 50
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Figure 1.8: Optimality depends on the context. A: The cumulative distribution of phage o�spring

as a function of latent time for simulations of the Basic model, with latent time mutability, over

50, 000 time steps (counted after the dynamics had reached steady state). (The distribution has been

corrected for the constant level of production that all phage types experience because of the level of

random mutation - this means that the column of phages with τ = 11 is only comprised of the phages

with τ = 11 that have infected once and produced o�spring, not including the random number of

phages in each burst that just happened to get τ = 11). The average bacterial density for a steady

state in these simulations was B = 0.15± 0.025, but the average bacterial density experienced by the

phage is probably much higher due to the fact that the bacteria form colonies and that phage are usually

released on the edge or close to the edge of a colony. B: The cumulative distribution of phage o�spring

as a function of latent time for simulations, with latent time mutability, where a phage infection front

has propagated through a bacterial lawn of maximal density (i.e. B = 1.0). The maximum of the

distribution corresponds to the optimal latent time for that particular bacterial density. For relatively

high bacterial densities (B > 0.1) the bimodality of the distribution is not very pronounced - as seen here

where the second maximum at higher latent times is not visible (compare with �g. 1.6, at t = 1000).

Parameters used in both plots were α = 1.0 and δ = 1.5 (corresponding to point C in �g. 1.1).
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time steps. The other 99.5% inherit the same latent time as the parent phage. Additionally,

0.5% of the bursts are comprised entirely of latent time mutants. See section 1.2.4).

Latent time mutability enhances coexistence in the Basic spatial model. The left panel

in Fig. 1.9 shows that implementing this adaptive mechanism actually enhances coexistence

in the spatial model. It is not intuitively obvious why this strategy helps. When the bacterial

density is kept �xed, we saw earlier that the phage will, in general, evolve towards an �opti-

mal� latent time which maximizes the rate with which they spread in that density, thus also

maximizing the rate at which they kill bacteria. For lower bacterial densities 0.01 < B < 0.1

we saw that the �tness distribution became bimodal (albeit with the tallest peak still at short

latent time).

Optimal latent time on short and long time scales. However, in this variant of the Basic

model, the phage who perform best in the long run turn out to be the ones with long latent

times and large burst sizes (see �g. 1.8A). Initially one could be tempted to conclude that the

e�ective bacterial density seen by a phage in the Basic model must then be relatively low since

we saw before that low bacterial density tends to select for long latent times. It is hard to

asses exactly what bacterial density the phage on average experience in the Basic model but

just from looking at the simulations (see e.g. insert in �g. 1.8 on the left) we can conclude

that it has be a relatively high density, because phage are usually released right at or close to

the edge of a colony which has a density close to B = 1. The phage distribution for runs with

an infection front spreading over a lawn with this kind of high density has a very clear peak

at a short latent time (τopt ≈ 23, see �g. 1.8B) and the bimodality of the distribution is not

prominent. Thus, this cannot explain why long latent time phage do best in this variant of the

Basic model � phage with a τ around this optimum (τopt ∼ 23) should form infection fronts

which move faster than the growth front of a bacterial colony. One then also wonders why the

host population is not wiped out by the appearance of these optimal �e�cient killers,� resulting

in an overall reduction of coexistence compared to the Basic model with a single, constant

latent time. The reason this does not happen and why the long latent time phage do best in

the long run is, it seems, that when an �optimal� phage mutant arises in a colony it quickly

wipes it out and subsequently goes extinct if it cannot quickly �nd another colony nearby to

infect.

A negative selection e�ect against e�cient killers. Thus, when the bacterial population

is split into many small colonies, there is e�ectively selection against very e�cient phage, even

though they outperform the long latent time phage locally when looking at one isolated colony.

In turn, the very existence of phage with di�erent latent times makes the system self-organize
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Figure 1.9: E�ect of an adaptive phage strategy where latent times are allowed to mutate.

Left: The white region corresponds to parameters where there is coexistence in the Basic model both

with and without latent time mutability, while the gray region shows where there is coexistence only

when latent time mutability is implemented. Right: The gray region corresponds to parameters where

there is coexistence in the Well-mixed model both with and without latent time mutability, while the

white region shows where there is coexistence only when latent time mutability is not implemented.

to have a larger number of small bacterial colonies compared to the Basic model, as shown in

Fig. 1.10D, without which there would be no negative selection against these �optimal� phage

mutants.

Latent time mutability decrease coexistence in the Well mixed model. In contrast, in

the Well-mixed model, the optimal phage mutants that arise have access to the entire bacterial

population so there is no negative selection to restrain them. This, along with the increased

oscillations we observe when implementing the adaptive strategy of latent time mutability in

the Well-mixed model, makes coexistence harder to achieve in this version of the model than

in the absence of this mechanism (Fig. 1.9 right panel).
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1.4 Discussion

1.4.1 Space and heterogeneity boosts coexistence

The comparison between the di�erent versions of the Basic and Well mixed models shows that

space boosts coexistence - even uniform two-dimensional space, without any built-in hetero-

geneity such as permanent bacterial refuges. Spatial heterogeneity arises spontaneously as a

result of the dynamic interaction between the bacterial growth fronts and the propagating phage

infection fronts and is crucial for enhancing coexistence. In the Well-mixed model, which lacks

this heterogeneity, the infection and burst events are more prone to happen in synchrony for

the whole system, often resulting in large-amplitude oscillations that destroy coexistence. In

the Basic model, each small bacterial colony might experience oscillations or big population

�uctuations, but on a larger spatial scale these average out because the life cycles of the phage

attacking separate colonies quickly become desynchronized and uncorrelated. When looking at

�gure 1.1 and 1.2, we see that moving from point A deeper into the coexistence region to point

B (by increasing δ) or point C (by decreasing α) results in more heterogeneity (as shown by

the snapshots in the �gure).

Phage infecting dead and previously infected bacteria. When phage can infect dead

or previously infected bacteria, their δ is e�ectively increased. Thus, one would expect this

behavioral mechanism to increase heterogeneity compared to the Basic model. This is exactly

what we see in Fig. 1.10, which shows snapshots of the ecosystem for the Basic model and the

di�erent strategies, for the same parameter values. That shielding by dead bacteria enhances

coexistence has been observed before in models that lack space [7; 97]. However, in these

models, to see a signi�cant e�ect, the dead bacteria must remain in the system for quite long

times. In our Basic model, the enhancement of coexistence is much more dramatic. Even

when the degradation rate of the dead bacteria is such that we cannot see any enhancement

of coexistence in the Well mixed model (see �g. 5.15 Appendix 1), we still see a distinct

enhancement in the Basic model. This is because the free phage and dead bacteria are typically

co-localized in the Basic model, because both are �created� by the same events.

Lysis inhibition. The mechanism of lysis inhibition also works in slightly di�erent ways in the

Basic and Well mixed models. It has been previously argued that this mechanism could enhance

coexistence in the following way: the original infecting phage interpret super infection as a sign

that phage outnumber host cells in the external environment [99], whereupon delaying lysis

gives the few bacteria left alive out there an additional chance to reproduce, thereby reducing

the risk of driving them to extinction [122]. This reasoning breaks down in the well mixed case
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because lysis inhibition also creates ticking �time bombs� � multiply super infected bacteria

that release a huge number of phage when they eventually burst, which counteracts the e�ect

of allowing bacteria more time to replicate. In the Basic model, however, these time bombs

are typically left behind by the moving infection front so when they do lyse and release a huge

number of phage, these phage are generally relatively far from susceptible bacteria. (We did

observe some enhancement of coexistence in the Well mixed model also when lysis inhibition

is implemented (see �g. 5.15 Appendix 1), but here it occurs because the strategy of delaying

lysis desynchronizes burst events and therefore dampens oscillations).

Optimal latent time in a constant bacterial density. From simple analytical arguments

about phage growth in a well mixed environment with constant bacterial density, it is seen

that phage face a tradeo� when �choosing� a latent time, because short latent times decrease

generation time while long latent times increase burst size. If the host density is high and

the time taken by di�usive search for new hosts is short, the phage can achieve exponential

growth, instead of linear growth inside one cell, by bursting early and infecting neighbouring

cells. On the other hand, if host density is low the phage is better o� using the resources

inside each bacterium to the fullest; basically the burst size needs to be large enough to ensure

that the di�usive search is successful and at least one new host is infected per burst. Several

experimental studies have dealt with phage �tness and its dependence on the density of host

[47; 30; 112; 1] and our observations are in line with their experimental observations and their

general conclusions about the trade o� associated with an optimal latent time.

Optimality in the setting of a propagating infection front. In the simple spatial simula-

tions where an infection front was allowed to propagate through a lawn of bacteria of constant

density, we saw the same general trend as the well mixed analytical argument predicts. How-

ever, for relatively low bacterial densities (0.01 < B < 0.1) there was an interesting twist: the

�tness distribution had more than one local maximum. The �rst peak at short latent times

appears to be at a value close to what would maximize the front speed. The second peak at

longer latent times is harder to understand, but the following speculative argument may hint

at the explanation:

The pace of the infection front is set by phage with short latent times and bacteria infected

with longer latent time phages will burst at di�erent distances x = f (τ) from the infection

front, where f (τ) is an increasing function of τ . Let B̃(τ) denote the bacterial density at which

phage with latent time τ are optimal in a well-mixed system, which can be calculated from

equation 1.4 (B̃(τ) is a decreasing function of τ). Let B(x), a decreasing function of x , denote

the bacterial density left behind a passing infection front at a distance x from the position of
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Figure 1.10: Heterogeneity and enhanced coexistence go hand in hand. Close-up views of ecosys-

tem snapshots of the Basic model for parameters corresponding to point A in �g. 1.1. A: Basic model

(phage latent time is �xed at 30 time steps). B: Phage infect live, dead, and infected bacteria alike

(phage latent time is �xed at 30 time steps). C: Basic model with delayed lysis upon super infection

(phage latent time is 30 time steps but increases by 8 time steps upon each super infection). D: Basic

model with latent time mutability (phage latent time can mutate to any value in the range 0 to 50

time steps). Light red/orange cells are bacteria infected by phage with shorter latent times, while dark

red/brown cells are bacteria infected by phage with long latent times. Free phage are not shown.
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the front (we assume this is not a function of time, which may not always be accurate). Then

there will be at most one value of τ = τ∗, such that 2B [f (τ∗)] = B̃ (τ∗), unless 2B[f (τ)]

and B̃(τ) are the exact same function. We speculate that these curves do intersect and this is

the value of the second peak, but have not yet con�rmed this by measuring the function B(x)

from the simulations.

This second peak is especially pronounced for relatively low bacterial densities of 0.01 < B <

0.1. For higher densities the e�ect is probably still there but the �tness di�erence between the

�rst e�ective fast phage at the tallest peak and the slower phage at the second peak is so big

that the bimodality of the distribution no longer is visible in data from our simulations. This is

due to the fact that the strength of the selection pressure (quanti�ed by S =
∣∣ ( ∂2f

∂τ2

)
τ=τopt

∣∣,
where f (τ) ≡ ∂P

∂t

∣∣
t=t′

, for a t ′ � τopt , see equation 1.4 and �g. 1.7) is much greater for

high densities, which is also mentioned in the experimental study, ref. [47]. For relatively low

bacterial densities we do, however, see clear selection for both low and high latent times while

phages with medium latent times do poorly, something which to our knowledge has not previ-

ously been observed by others. Clearly, in some spatial environments it would then pay o� to

have a combination of low and high latent times; an observation which could have implications

for which combinations of di�erent phages would be most e�cient at killing bacteria in a spatial

environment like human tissue, and therefore perhaps relevant for the phage therapy research

area. Also, the situation of the simple spatial simulation is very similar to a phage infection

front spreading through a lawn of bacteria on an agar plate, and since countless experimental

procedures rely on the counting and measuring of plaques formed by phage infection fronts,

our way of calculating the selection pressure phages experiences during such a population race

could prove useful.

Survival of the mediocre killers. An interesting aspect of implementing the adaptive strat-

egy of latent time mutability in a spatial setting is that it exhibits selection against the most

e�cient killers in the system. In the dynamic setting of the Basic model, whenever phage

that have the highest �tness in a constant high bacterial density environment appear through

mutations, they will deplete resources locally and subsequently die out. More �prudent� long

latent time phages, on the other hand, will do better on average because they do not wipe out

the bacteria in their vicinity but only kill at a slow enough pace which allows the bacteria time

to reproduce or merge with another colony. This is despite the fact that the high latent time

phage are no match for the more e�ective low latent time killers whenever, by chance, they end

up side by side in the same colony.

This part of the study thus emphasizes that one must be careful in assessing what is �optimal�

behavior for a phage. Calculations that try to determine optimal latent times, for instance, of-
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ten take the short-term view of maximizing the phage population growth rate [134; 149], which

is what we did in the derivation of 1.4 and in the interpretation of the data from the simple

spatial simulations (data shown in e.g 1.8B). Recognizing the risks of making such assumptions

has led others to suggest extending the notion of �tness to include �environmental inheritance�

[40]. The data from the simulations of the Basic model with latent time mutability implemented

supports this point of view: for long-term survival in a spatial environment, virulent phage must

ensure that their o�spring inherit an environment with su�cient resources.

1.5 Take home messages

Latent time optimality and selection pressure for phage at constant host density:

• There exists an optimal phage latent time that depends on host density and phage e�-

ciency.

• High host density (or high phage infection rate) selects for phages with low latent times,

but small changes in host density do not shift the optimum latent time much.

• Low host density (or low phage infection rate) selects for phage with long latent times

and small changes in host density will shift the optimum latent signi�cantly.

• The selection pressure acting on phage to drive them towards the optimal latent time is

much greater at high host density than at low.

• The selection pressure acting on phage in an infection front, moving through a 2D lawn of

bacteria at relatively low density, will select for both phage with low and high latent times

but not phage with intermediate latent times, i.e. the latent time distribution becomes

bimodal.

The e�ect of phage behavioral mechanisms on coexistence

• When phage are allowed to �infect� previously infected and dead bacteria, coexistence

is enhanced. This e�ect is more pronounced for a spatial setting that for a well-mixed

system.

• Lysis inhibition enhances coexistence in both well-mixed and spatial systems.

• Phage latent time mutability enhances coexistence in a spatial system but reduce it in a

well-mixed system.
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• Survival of the mediocre killers: phage which are the most e�cient killers/competitors

locally, in a spatial system, are not the ones which do best over long time spans. In the

long run more prudent phage prevail because they do not drive their hosts to extinction

locally.
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Chapter 2

Life on the edge: Coexistence of phage and bacteria

on the boundary of self-organized refuges

2.1 Introduction

2.1.1 The importance of refuges

In the previous chapter, we saw that coexistence of a virulent phage and its host is possible, but

only in a relatively narrow range of the phage degradation rate δ and infection rate α values

(see �gure 2.1). We explored mechanisms which broadened the coexistence region and thus

boosted coexistence, but even with these e�ects implemented, the overall narrowness of the

region still indicates that coexistence in the di�erent versions of the Basic model is relatively

�ne tuned and may therefore be sensitive to larger evolutionary or environmental changes which

perturb the parameter values a�ecting phage e�ciency. Coexistence of phage and bacteria in

the wild has been observed to have the following properties: (i) highly e�cient virulent phage

with relatively long lifetimes [28], high infection rates and large burst sizes [65], (ii) large, stable

and high density populations of both phage and bacteria [6; 123] , (iii) a fast turnover of both

phage and bacteria [123], and (iv) stability over evolutionary timescales despite imbalances in

the rates of phage vs. bacterial evolution [97; 66; 72; 134]. The coexistence which we observe

in the Basic model and its' variants, however, does not satisfy all these properties together. In

particular, we need to make at least one phage e�ciency parameter quite di�erent from what

is observed; either the infection rate or burst size must be very low, or the degradation rate

very high. Even then, we cannot achieve high densities of phage and bacteria together with

a high turnover of their populations. Thus, the main question of how a virulent phage with a

long lifetime, a large burst size, and high infection rate manages not to wipe out its grounds

of existence still stands largely unanswered.

31
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Spatial heterogeneity and bacterial refuges. The fact that we have seen that spatial het-

erogeneity clearly has a positive e�ect on coexistence of virulent phage and their bacterial hosts,

led us to the idea of exploring the e�ect of bacterial refuges on coexistence. As mentioned

earlier, many real phage-bacterial ecosystems are found in environments with a complex spatial

structure, such as in soil, or wounds in animal and plant tissue. Furthermore, many bacterial

species are capable of creating spatial structure themselves as Schrag and Mittler found when

they observed that coexistence between virulent phage and bacteria is not possible in serial

cultures, but is possible in a chemostat, due to bio�lm refuge formation on the walls of the

chemostat, [109]. Substantial evidence exists in the literature that conditions for phage can be

more di�cult inside a dense bacterial colony or bio�lm - infection rates, burst sizes and di�usion

are often lower, while degradation rates and latent times are higher. Reduced infection rates

for cells that have reached stationary phase have been proposed in other model studies [142].

Reduction of the infection rate could arise, for example, because nutrient depletion and limita-

tion e�ectively change the physiological condition of the cells. Also, bacterial cells tend to have

fewer receptors for phage adsorption in a medium with low nutrients [20; 29]. Furthermore,

murein, which forms the cell wall, becomes hyper-crosslinked and richer in covalently bound

lipoprotein as cells approach stationary phase [93], which may alter the kinetics of phage infec-

tion. Reduced burst size and prolonged latent times have also been observed for cells with low

growth rates or metabolic activity, as well as cells in stationary phase [115; 98; 8; 78; 90; 81].

Di�usivity inside a bio�lm is signi�cantly reduced locally due to the high density of exopolymers

produced by bacteria [24]. Inside a bio�lm, tight cell-to-cell binding, which may directly block

phage receptors [102], could also reduce the phage infection rate. In addition bio�lms often

contain proteolytic enzymes as well as endoglycanases which can lead to phage inactivation [8].

Refuges and edges in macro ecology. Existing literature in macro ecology, argues that

prey refuges may theoretically help stabilize predator-prey interactions [56; 22]. The formation

of a spatial refuge invariably leads to the formation of a boundary zone or edge between two

di�erent environments and studies of natural macro-ecosystems have shown that there is an

increased biodiversity on edges between di�erent types of habitats (see, e.g., [51]). Refuges

might thus be an important factor for coexistence of virulent phage and their bacterial hosts.

2.1.2 A map of this chapter

In this chapter we explore a more �bacteriocentric� way of enhancing coexistence than in the

previous chapter where we focused on di�erent phage strategies. Here we will explore the e�ect

of having bacterial refuges on co-existence. In section 2.2 we describe two variants of the Basic

model which have bacterial refuges � one where certain �xed grid sites are assigned di�erent
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phage e�ciency parameter values, and the other where the phage parameters themselves dy-

namically change depending on the changing bacterial density. We also describe a model which

adds an evolutionary timescale to the second variant over which parameters can evolve due to

mutations in new phage and bacteria. In section 2.3.1 we discuss how having �xed refuges

enhances coexistence, and in section 2.3.2 we show that bacterial density dependent mecha-

nisms can cause such refuges to arise in a self-organized manner. Section 2.3.3 explores the

robustness of this conclusion to changes in parameters as well as for many di�erent variations

of the model rules. Section 2.3.4 then explores the nature of the co-evolutionary arms race

that can develop between one virulent phage species and one bacterial species in the presence

of self-organized bacterial refuges. Sections 2.4 and 2.5 summarize our conclusions and discuss

future directions for exploration.

2.2 Models

2.2.1 Fixed bacterial refuge model

The �xed bacterial refuge model is similar to the Basic model except here the grid is divided into

two halves. Grid points in one half are assigned one set of δ, α, γ, D values (D is the di�usion

constant of the phage), which make this half phage hostile � this is the bacterial refuge. We will

call these values δin, αin, γin, Din, where the subscript �in� refers to being in-side the bacterial

refuge. The other half is given another set of parameter values, δout , αout , γout , Dout , which

make it phage friendly (the subscript �out� refers to being out-side the bacterial refuge). This

division is in contrast to the Basic model where δ, α, γ, D values are the same all over the

grid. Phage hostile and phage friendly parts of the plane can be created in many ways. The

simplest is where only a single phage parameter is changed. For example δin could be high and

δout could be low. Alternatively, some subset of the parameters could be chosen to be di�erent

in the two halves, while the rest remain the same in both halves. Bacterial parameters, such as

their growth rate, are given the same value throughout the system.

2.2.2 Self-organized bacterial refuge model

In the self-organized bacterial refuge model we again allow α, δ,β and D to have di�erent

values for di�erent grid points. However, unlike the Fixed refuge model, these values are not

pre-assigned to each point. Instead they are determined dynamically during the course of

simulation in a manner dependent on the density of bacteria. The rules which govern this were

chosen to loosely mimic the formation of a bio�lm within which phage e�ciency is reduced.

Each bacterium has a �density counter�, which is an integer number that increments every time

step that the bacterium spends with three neighbours or more, and decrements each time step
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it spends with two neighbors or less (the counter stops increasing at a certain maximum value

(100), and never goes below zero). New bacteria always start with a density counter of zero.

These counters thus keep track of how long a bacterium has spent recently in high cell density,

which we assume is correlated to its being within the bio�lm protection. We explore di�erent

ways of making phage parameters at a site depend on the bio�lm protection, i.e. on the value

of the density counter of the bacteria that occupies that site: 1) we let one or more phage

parameters, like for example δ, be a step function of the density counter value, with end values,

δout (for low density counter values) and δin (for high density counter values), and 2) by letting

one or more phage parameters depend as a sigmoidal fashion on the density counter value, with

hill factor 4 and end values δout (for density counter equal to zero) and δin (for density counter

equal to its maximal value). In this model, δin and δout (and similarly for other parameters) are

constants that are the same at all grid points and do not change with time in each simulation.

2.2.3 Self-organized bacterial refuge model with evolution

This model is very similar to the Self-organized refuge model except that the end-values, δin, δout

and αin,αout , of the functions which determine how δ and α depend on the density counter, are

no longer the same over the entire grid. Instead, each individual phage has its own (δout ,αout)

and each individual bacterium has its own value of (δin, αin). Whenever a bacterium divides,

the o�spring get new values of (δin, αin) drawn from a normal distribution1 centered around

the parent value and with the variance µbacteria. Similarly, new phage o�spring from a burst get

new values of (δout ,αout) drawn from a normal distribution with a mean equal to the parent

value and the variance µphage . We also implemented a variant where mutants take values from

a lognormal distribution whose peak is at the parent value.

1The normal distribution is of course truncated at zero so that no mutant can get negative values for any

parameter.
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2.3 Results

2.3.1 Fixed bacterial refuges enhance coexistence

In order to explore the in�uence of bacterial refuges on phage-bacteria coexistence, we �rst

introduce a �xed spatial refuge into the Basic model. This is done in a very simple fashion: we

divide the plane in two halves and allow phage e�ciency to take on di�erent values in the two

halves (see details in section 2.3.1). As expected we �nd that when parameter values in either

one of the half planes are chosen from within the coexistence region in �gure 2.1 of the Basic

model we get coexistence here too, whereas if parameters of both half-planes lie in the same

non-coexistence region then we do not observe coexistence. A more interesting phenomenon

is seen whenever parameters for one half are chosen from the right non-coexistence region of

�g. 2.1 (where phage are too ine�cient to survive in the Basic model), while parameters in the

other half are chosen from the left non-coexistence region (where phage are so e�cient that

they drive bacteria, and then themselves, to extinction). In this case, we observe coexistence

of phage and bacteria, which is stable for at least 1000 bacterial generations.

Dynamics on the edge of a �xed bacteria refuge. In the �xed bacteria refuge model the

phage exist only in a zone around the edge between the two halves. The dynamics and width of

this zone varies considerably, as seen in �gure 2.2, which shows snapshots from three di�erent

simulations of the Fixed bacterial refuge model where only, δ, the phage degradation rate, di�ers

between the two half-planes. The same is observed when the phage infection rate, α, is varied

between the two half-planes, keeping all other parameters �xed, or when combinations of α, δ,

γ (intracellular phage production rate) and the phage di�usion constant are varied between the

half-planes. It is interesting that it is thus possible to obtain long lived coexistence when the

parameters in each half-plane in isolation would lead to extinction of phage or bacteria. The

only condition required for coexistence in this case, is that one half-plane must be a bacterial

refuge (i.e., the parameter values there make phage too ine�cient to survive), while the other

is phage-friendly. Thus, this stabilization of coexistence occurs for parameter values spanning

many orders of magnitude; a vast set compared to the narrow band of parameters that allows

coexistence in the Basic model.

2.3.2 Self-organized bacterial refuges also enhance coexistence

We also explored whether enhancement of coexistence is possible if bacterial refuges are not

put in by hand, as in the Fixed refuge model, but instead form dynamically. In particular, we

examined whether mechanisms that create phage unfriendly conditions in areas of high bacterial

density are su�cient to produce robust coexistence. The version of the Basic model that we
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Figure 2.1: Narrow coexistence region for the Basic model. Colors shows average bacterial density

for simulations after 1000 bacterial generations have passed as a function of phage infection rate α

and degradation rate δ, in units of 1/∆t. Dark red is the maximal bacterial density of one, dark blue

is zero � colors in between signify that bacteria and phage coexist. For each value of α there exists

an interval [δmin, δmax ] outside which there will be no coexistence. Here these points are marked for

α = 10−1min−1 = 1/∆t. Points A and B mark the parameters used for the simulation shown in �g

2.4. Grid size used in simulations was 100 × 100. Initial conditions consisted of 5% randomly chosen

sites being occupied by healthy bacteria and 0.5% by infected bacteria.
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Figure 2.2: Snapshots of �xed bacterial refuge simulations. Yellow: healthy bacteria. Red:

infected bacteria. Green: di�using phage. Gray: empty space. The plane is divided into two halves.

The upper part is a bacterial refuge where phage cannot sustain themselves for long because of a

high phage degradation rate. The three snapshots show simulations with three di�erent δout values

in the lower part of the system. The δin value in the upper part of the system (the bacterial refuge)

is kept constant at δin = 0.45min−1. Grid size: 150 × 150 (the whole grid is not shown). Initial

conditions: upper plane was �lled with healthy bacteria and one line of infected bacteria was placed on

the boundary between the two halves. Top: δout = 10−4min−1. This very low phage degradation rate

allows phage to di�use long distances before they die. As a consequence of the high density of phages

close to the boundary, almost all new bacteria get infected and bacteria cannot penetrate into the

phage friendly half. Middle: δout = 10−2min−1. At this higher phage degradation rate, phage attack

becomes more localized which in turn allows for some bacterial excursions into the lower half plane.

Bottom: δout = 10−1min−1. The region where both bacteria and phage are found together further

broadens as δout becomes so large that bacteria and phage can nearly coexist in the lower half-plane.

One observes �plumes� of bacteria which migrate substantially deep into the lower half plane before

they are eventually killed by phages.
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constructed in order to test this e�ect is termed the Self-organized bacterial refuge model.

Here parameters such as the infection rate and phage degradation rate can be di�erent at

di�erent spatial locations. However, unlike in the Fixed bacterial refuge model, the values are

not pre-speci�ed at each point in space. Instead they depend on local bacterial density as it

develops dynamically during the course of the simulation (see Self organized refuge model in

section 2.2.2). We implemented the density dependent e�ect by assigning to each bacterium

a �density counter�. Each counter is an integer number that is incremented every time step

that the bacterium spends with three or more neighbors and decremented otherwise. The value

of these counters thus correlate with how long a bacterium has spent recently in high density.

We then let the parameters of a speci�c site in the 2D grid depend on the density counter

of the bacterium which occupies that site2, such that when the bacteria are young or alone,

and thus have a low density counter value, they are more susceptible to phage. Figure 2.3

shows schematically how this can be done by making the phage degradation rate an increasing

function of the density counter value. Similarly phage infection rate or burst size or di�usion,

or combinations of all of these, can be made a decreasing function of the density counter. As

indicated by the dashed lines in �gure 2.3 we tried out functions with di�erent shapes. In all

cases we found that bacterial refuges self-organized and the system developed an almost static

pattern of bacterial islands, with phage proliferating on new bacteria produced on the edges of

the islands, see �g. 2.4.

2.3.3 Self-organizing �life on the edge� is robust

The phenomenon of long-lasting coexistence on the edge of self-organized density-dependent

refuges occurs for a huge range of parameter values and is also stable against many changes

in the model rules. Figure 2.6 shows the duration of coexistence as a function of δout and δin,

for simulations where the only parameter that depends on the density counter is δ (recall that

δout and δin are the phage degradation values used at sites with minimal and maximal density

counter values respectively, see �g. 2.3). In the region where δin > δmax and δout < δmin,

we �nd that coexistence times rise steeply compared to the values outside this region. Thus,

whenever δin is chosen from the dark red �phage too ine�cient� region (δin > δmax) of �gure

2.1 and δout from the dark blue �phage too e�cient� region (δout < δmin), phage coexist with

bacteria on the edges of the bacterial colonies for several hundreds or thousands of generations.

2It would perhaps be simpler to make the phage parameters depend directly on the bacterial density in some

small region around each site, instead of on a density counter. However, we wanted to include the slight time

delay that the density counter allows, with the idea that bio�lm material would take some time to be produced

when bacterial density is increasing, and would take some time to disappear in case bacterial density decreases

su�ciently after having been high for some time.
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Figure 2.3: Phage degradation rate dependence on bacterial density counter. One way of imple-

menting the Self organized bacterial refuge model is by making phage degradation rate an increasing

function of the bacterial density counter. Thereby, bacteria that are young or alone occupy sites where

the phage degradation rate is low, whereas bacteria that have spent some time at high density are at

sites with high phage degradation rates. The plot above shows schematically how this may be done. The

degradation rate at zero and maximal density counter values are denoted �out� and �in�, respectively.

Also shown schematically is the region between δmin and δmax where phage and bacteria would coexist

in the Basic model. δout and δin can be chosen without restriction, but phage-bacteria coexistence is

enhanced when they are chosen, as shown, with δout < δmin and δin > δmax . The dotted lines signify

that we have also tried smoother, sigmoidal, functions and this gives similar results.



40 CHAPTER 2. LIFE ON THE EDGE

1 2 3

4 5 6

Figure 2.4: Snapshots of simulations of the Self organized bacterial refuge model. Yellow: healthy

bacteria (bacteria with low density counters are light yellow and bacteria with increasingly higher density

counters are colored darker shades of yellow). Red: infected bacteria. Green: di�using phage. Gray:

empty space. The initial condition consisted of randomly distributed bacteria with density counter equal

to zero and a few infected with phage on a grid of size 200 × 200. After some time bacteria in the

center of colonies reach the maximal density counter value and grid spots inside colonies become phage

unfriendly. At the same time, new bacteria with density counter equal to zero are produced at the

colony edges. Parameters were (δout ; αout) = (0.05 · 10−1min−1; 1.0 · 10−1min−1) and (δin; αin) =

(5.0 · 10−1min−1; 0.01 · 10−1min−1) marked by A and B respectively in Fig. 2.1. (1) snapshot taken 4

bacterial generations after t = 0. (2) after 8 bacterial generations. (3) after 70 bacterial generations.

(4) after 500 bacterial generations. (5) after 1000 bacterial generations. (6) after 2000 bacterial

generations.
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In simulations done to produce the data shown in �gure 2.6, the dependence on the density

counter was a step function, but we �nd that long-lasting coexistence does not depend on the

precise shape of the function (see �g. 2.7). If the increase in δ is a smoother, e.g. sigmoidal,

function of the counter value we get a similar result as in �g. 2.6. Also, the precise threshold

density counter value at which δ increases from δout to δin does not matter for the qualitative

behavior, nor does the precise rate of change of the counters as a function of time or as a

function of the number of neighbors. Further, if di�erent, but �xed, values of other parameters

such as α are chosen then, as expected, the values of δmin and δmax change but the above

condition (δin > δmax and δout < δmin) for long-lasting coexistence still holds. The same is

true if instead of varying δ, α is made a decreasing function of the density counter while δ kept

�xed. In this case, as shown �g. 5.16 in Appendix 2, the requirement for self organized refuge

formation is that αin < αmin and αout > αmax (where αmax and αmin are the upper and lower

boundaries of the coexistence region in �gure 2.1 for a �xed value of δ). What is required for

coexistence on the edge of bacterial refuges is thus merely that the bacteria in the center of the

colony are so resilient that phage cannot sustain themselves in there, while newborn bacteria

on the edge of the colonies are (possibly very) susceptible to phage infection.

Making phage e�ciency depend on the bacterial density counter. In the Self organized

refuge model we can thus make phage e�ciency depend on the bacterial density counter in

many di�erent ways, but it is easiest both to implement and visualize the results when just one

parameter (e.g. δ) is varied at a time, which is why we have chosen to do this for many of

the �gures in this chapter. When we only vary one parameter we of course need to go to more

extreme end values within that speci�c parameter range in order to get to opposite sides of the

coexistence region in the Basic model, i.e. δmin and δmax will have to be relatively far apart for

us to get coexistence, when only δ varies with the density counter. However as soon as we vary

not just one parameter but several, e.g. infection rate α, intracellular phage production rate,

γ, phage di�usion constant, etc., the relative di�erences for �in� and �out� values required for

coexistence become much smaller and more reasonable biologically (see �g. 2.5).

Ecosystem dynamics in the selforganized refuge model. Fig. 2.4 shows an example of

how the dynamics of the model looks when the phage degradation rate is made an increasing

function of the density counter, and the phage infection rate is made a decreasing function of

the density counter while all other parameters are kept �xed everywhere in the system (using a

combination of δ and α allows us to get coexistence with smaller di�erences between the values

of these parameters at low and high density counter values). The system develops a static

pattern of islands of self-constructed bacterial refuges, with phage proliferating on new bacteria
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Figure 2.5: Tweaking phage e�ciency parameters in many dimensions. Schematic �gure showing

possible coordinates for in-refuge (point B and B∗) and out-of-refuge parameter values (point A and

A∗) which would provide self organized refuge formation and thus long lived coexistence. For points

A and B only δ is varied and thus the di�erence between δin and δout needs to be relatively large to

get coexistence. For points A∗ and B∗ two other parameters in�uencing phage e�ciency are varied

(here exempli�ed by infection rate and intracellular phage production rate). This allows δ∗in and δ∗out

to have the same value although points A∗and B∗are as far from the coexistence region of the Basic

model as points A and B. This illustrates that when phage e�ciency parameters are tweaked in a high

dimensional space the relative di�erence between �in� and �out� values for one speci�c parameter need

not be very large.
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produced on the edges of the islands. The spreading infection fronts become almost stationary

after around 10 bacterial generations, see �g. 2.9 and �g. 5.17 Appendix 2. On a longer

timescale they tend to straighten from an initial rough interface into smoother boundaries,

although this tendency is stronger for some parameters than for others (see �g. 2.8). The

boundaries thus seem to act almost like there is an e�ective surface tension; the perimeters of

the bacterial colonies decrease over time because sections with high curvature see a higher local

density of phage, see �gure 2.9. There also appears to be an e�ective nucleation threshold: very

small colonies tend to die out in the beginning of the simulation while larger colonies stabilize

and persist (see �g. 2.9).

2.3.4 Stabilization of bacterial refuges via evolution

The Self organized refuge model can be extended to allow both bacteria and phage to evolve the

ability to form refuges and the ability to penetrate refuges, respectively. By doing this we can

test whether phage and bacteria evolution contribute to the stability of the refuge formation we

observed in the Self organized refuge model or whether it destabilizes it. We tried implementing

evolution in a few di�erent ways (see section 2.2.3). Figure 2.12 shows the results of one such

implementation, where δin is a property that bacteria pass on to their o�spring, and δout a

property inherited by phage o�spring from their parents, and both were allowed to mutate.

The colored trajectories in �gure 2.12 starting at di�erent initial conditions each show, as time

progresses, the changing values of δin and δout , averaged over all phage and bacteria at that

time. We see how the average parameters of the system are all pushed deeper into the blue

shaded region, towards more long lived coexistence, by bacteria evolving to increase δin and

phage evolving to decrease δout . Notice that we chose the initial values of δin and δout in these

simulations to be outside the coexistence region. Thus, in the absence of evolution, coexistence

would have lasted a very brief time. A similar pattern is seen when we allow the infection rates,

αin and αout , to mutate instead (see �g. 5.19 in Appendix 2). Interestingly, this pattern is

also maintained when the mean mutation step size of the phage is very di�erent from that of

the bacteria, i.e. there is asymmetry between the evolutionary rates of change of phage and

bacteria. For example, we observe that evolution of δin and δout , from the initial condition of

δin = δout = 10−1min−1, is able to bring the system into the blue region of �gure 2.12 both

when µphage/µbacteria = 0.1 and when µphage/µbacteria = 5.0.

Asymmetric mutation rates. Irrespective of the particular values chosen for the mutation

rates, the self-organized refuges result in an asymmetry in the evolutionary rates of phage and

bacteria. Bacterial mutations occur more often at the edges of colonies because that is where

new bacteria are formed, but these mutations are often quickly eliminated by phage infections.
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Figure 2.6: Long lived coexistence for a broad range of δin and δout . Duration of coexistence as a

function of δin and δout (αin = αout = 10−1min−1 = 1/∆t ). Red lines mark δmin and δmax for α = 1/∆t

in the Basic model. If time reached 1000 bacterial generations while there was still coexistence (i.e.

both phage and bacteria were present) then the simulation is stopped. Only parameter sets where

δout ≤ δin were considered. Within the region where δin > δmax and δout < δmin the phage and bacteria

coexisted for durations much longer than the bacterial generation time. In this region of parameter

space, the average infection front speeds were also relatively low (see Appendix 5). When δin > δmax

and δout > δmin, the phage live only for a short time on the edge of the expanding bacterial colony before

dying out. When δin < δmax and δout < δmin the phage infection fronts rapidly eat into the colonies

and eventually wipe out the bacteria. In the small region where both δin and δout are within the narrow

range of [δmin,δmax ], there is stable coexistence but the infection fronts are far from stationary. Grid

size: 100 × 100. Initial conditions: upper half plane �lled with healthy bacteria and a single line of

infected bacteria on the boundary between the upper part and the empty lower half plane.
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Step function Sigmoidal function

Figure 2.7: Bimodal density counter value distribution for both step function and sigmoidal

dependence of δ and α on the bacteria density counter. The average distribution of density

counter values found in a simulation of the Self organized bacterial refuge model with parameters:

δout = 0.05 · 10−1min−1 , δin = 5.0 · 10−1min−1, αout = 1.0 · 10−1min−1 , αin = 0.01 · 10−1min−1

(same as the parameters in �g. 2.4). The average is over time starting after the system has reached

close to a static pattern of bacterial colonies (see inserts). The overall appearance of the refuges look

di�erent for the step function and the sigmoidal function, but we see that the distribution of density

counter values among the cells is very similar. The plots also show that, in both cases, the probability

of �nding a bacterium with either very low or very high density counter is much higher than �nding a

bacterium with an intermediate density counter value. For both plots we have grid size: 200 × 200.

Initial conditions consisted, as usual, randomly scattered bacteria and bacteria infected with phage. A:

The dependence of δ and α on the density counter is a step function. B: The dependence of δ and α

on the density counter is a sigmoidal function with Hill factor 4.
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Figure 2.8: Boundaries of refuges become smoother over time. Left: The blue curve shows the

number of bacterial cells on the edges of refuges as a function of time, and the red curve shows the total

number of bacteria as a function of time. Right: The blue curve shows a crude measure of the roughness

of the bacterial colony edges � the ratio of the square of the sum of edge lengths to the sum of areas

of bacterial refuges in the system squared � as a function of time. Inserts show a simulation snapshot

at an early and a late time point. Parameters used (δout ; αout) = (0.05 · 10−1min−1; 1.0 · 10−1min−1)

and (δin; αin) = (5.0 · 10−1min−1; 0.01 · 10−1min−1) marked by A and B respectively in Fig. 2.1,

(same as for �g. 2.4). The phenomenon of refuge boundary smoothening is more pronounced for some

parameters than for others. In general the e�ect is more pronounced when the parameter points lie

deeper within the coexistence region (shown in �g. 2.10) and when more than just one parameter is

tweaked (i.e. when in and out values di�er for both, δ and α etc.).
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Figure 2.9: Refuge front speed depends on local curvature. Refuge edges are in general slow

moving but not entirely stationary for parameters inside the coexistence region of the Self organized

refuge model. The speed of a front depends on di�erent factors, one being the curvature of the front.

This is illustrated here by plotting the rate of change of the number of bacteria in a given colony

divided by the perimeter length of the colony, for circular colonies initialized with di�erent radii. We see

that higher curvature (smaller radius) means colony shrinks slowly, while lower curvature (larger radius)

results in a slowly growing colony. This is because phage density on the edge of colony increases on

average as the the radius of the colony decreases. This dependence on radius also shows that there is

an e�ective nucleation threshold: for this set of parameters colonies with a radius smaller than≈ 15µm

tend to shrink and disappear Parameters were: (δin;αin) = (10.0 · 10−1min−1; 1.0 · 10−1min−1) and

(δout ;αout) = (0.01 ·10−1min−1;0.01 ·10−1min−1). Red points: average front speeds for three di�erent

simulations for each value of initial colony radius (r = 5µm, r = 20µm, r = 40µm and r = 60µm).

Blue: mean of the three simulations with error bars showing one standard deviation from the mean.
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Figure 2.10: Comparison between coexistence region in Fixed refuge model and Self organized

refuge model. Schematic �gure showing the rough outline of the coexistence regions for the Fixed

refuge model (light blue) and for the self organized refuge model (dark blue) in the parameter space

of δin and δout . Coexistence is de�ned as having both phage and bacteria present in the system for at

least 1000 bacterial generations. A, B and C mark the parameter sets used for the simulation screen

shots shown in �g. 2.11.
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Figure 2.11: Figure caption on following page.
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Figure 2.11: Refuge formation in di�erent parts of the δin−δout plane. Snapshots from simulations

with parameters sets marked by points A, B and C in �g. 2.10. For all three simulations we have:αout =

αin = 10−1min−1 and grid size 200× 200. Initial conditions, as usual, consisted of randomly scattered

healthy and infected bacteria. For all three simulations, the phage and bacteria manage to coexist for

at least 3333 bacterial generations. A: (1) snapshot taken 4 generations after t = 0. (2) 8 generations

after. (3) 33 generations after. (4) 66 generations after. (5) 533 generations after. (6) 1666 generations

after. δin = 3.3 · 10−1min−1 and δout = 0.8 · 10−1min−1. Notice that the relative di�erence between

the inside and outside degradation rates is just a factor 4; the δin and δout values lie very close to, but

just above and below, δmax and δmin respectively. B: (1) snapshot taken 4 generations after t = 0. (2)

12 generations after. (3) 100 generations after. (4) 500 generations after. (5) 1666 generations after.

(6) 3333 generations after. Here δin = 10 · 10−1min−1 and δout = 0.05 · 10−1min−1. Note how little

change there is between (5) and (6) between which 1666 bacteria generations go by. C: (1) snapshot

taken 4 generations after t = 0. (2) 8 generations after. (3) 133 generations after. (4) 400 generations

after. (5) 800 generations after. (6) 1666 generations after.

On the other hand, phage mutations (which also occur mainly at the edges) can persist and

spread through the population. This likely explains the shape of the evolutionary trajectories

shown in �g. 2.12: changes in bacterial parameters typically occur early on when the refuges

are still stabilizing, whereas later the trajectory moves mainly in the direction of changing phage

parameters.
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2.4 Discussion

In this chapter we explored bacterial refuges and their formation by density dependent mech-

anisms as a mechanism for enhancing phage-bacteria coexistence. We �nd that coexistence

between a virulent phage and its bacterial host is remarkably stable and robust on boundaries

between habitats within each of which coexistence is not possible � provided one habitat is a

bacterial refuge where conditions are hostile to phage, while the other is phage friendly. We

show that this enhancement of coexistence also stabilizes the long term co-evolution between

phage and bacteria. Phage bacteria coexistence as an edge phenomenon is not as restrictive

as it might sound. Even the smallest grain of sand can provide hugely varying conditions, for

example associated to wetting with thin layers of water.

Observations of phage and bacteria. Spatial heterogeneity is a prominent feature of many

real phage-bacteria ecosystems. This is re�ected in the fact that soil or bio�lms, and even ocean

data, show high variability of the phage and bacteria density over small length scales [124]. In

oceans, heterogeneity could be self-organized by cyanobacteria making colonies in the form of

sheets and mats [117]. But perhaps even more important is the fact that bacteria at high

density can create a heterogeneous and somewhat phage hostile environment by themselves.

One such density dependent mechanism is the use of quorum sensing systems to trigger bio�lm

formation. Bio�lm is not invincible to phage attack [24] but many factors contribute to make

phage existence in bio�lm harsher, as discussed earlier in 2.1.1. Costerton et al. [25] report

that E. coli persist in the intestinal tract by adhering to tissue surfaces and food particles,

where they live in encapsulated micro colonies akin to bio�lms. Sternberg et al. [119] report

that within bio�lms cells typically form clusters (micro colonies) with the most metabolically

active cells located on the periphery of each micro colony; a scenario which resembles the

self organized bacterial clusters formed in our simulations. Corbin et al. [24] observe ongoing

phage proliferation and sustained coexistence of bacteria and phage populations of T4 in E.

coli glucose limited bio�lm. They propose that such bio�lms may act as natural reservoirs

for virulent bacteriophage, which they also suggest multiply only in the part of the E. coli

bio�lm population where bacteria are not in stationary phase, much like in our simulations.

Other studies have also reported that phage may alter bio�lm morphology but that bacteria

and virulent phage are able to coexist stably inside bio�lm [8; 126].

2.4.1 Characteristics of phage-bacteria coexistence on edges of refuges

In our simulations, we found that density dependent, or quorum sensing, mechanisms are a

robust way of forming self-organized bacterial refuges, and that having stable refuges is, in
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Figure 2.12: Evolution pushes the self organized bacterial refuge system deeper into parameter

region with long lived coexistence. Trajectories show how the values of δin and δout averaged

over all bacteria and phage, respectively, change with time during �ve di�erent simulations of the Self

organized bacterial refuge model when bacteria and phage are permitted to evolve (here µphage = 0.07,

µbacteria = 0.1, see section 2.2.3 for details on implementation). Each simulation is for 3000 time steps.

For these simulations the value of δ for each new phage and bacterium is drawn from a lognormal

distribution whose peak is at the parent value. Note that when evolution takes logarithmic steps like

this, the mean of any parameter value tends to increase if there is no selection pressure to go towards

lower values. This explains why the red, yellow and purple curves in some parts (where susceptible

bacteria happen to be plentiful and there is therefore not much selection pressure on the phage) have a

slight tendency to drift towards higher δout values. However, once the selection pressure kicks in it tends

to push δin (the parameter inherited by bacteria) to higher values and δout (the parameter inherited by

phage) towards lower values. This drives the system deeper into the parameter region where δin > δmax

and δout < δmin (the light blue region) where the phage and bacteria coexist for much longer than the

bacterial generation time.

A: Purple start point: (δin; δout) = (10−1min−1; 0.1 · 10−1min−1). B: Yellow start

point: (δin; δout) = (10−1min−1; 0.3 · 10−1min−1). C: Red start point: (δin; δout) =

(10−1min−1; 10−1min−1). D: Green start point: (δin; δout) = (5.0 · 10−1min−1; 2.0 ·
10−1min−1). E: Blue start point: (δin; δout) = (20.0 · 10−1min−1; 2.0 · 10−1min−1).
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Figure 2.13: Stable populations and large turn over rates for a long time span. A: Bacteria

and phage numbers as a function of time (in simulation time steps). B: Number of phage bursts per

time step as a function of time (in simulation time steps). In this simulation we see that both phage

and bacteria numbers eventually slowly decrease over time (note that for the �rst 300 generations the

bacterial population grows slowly). If we assume that the bacteria numbers are decreasing linearly

we would predict extinction of bacteria would happen after roughly 8000 bacterial generations. Note

that since the front speed depends on the curvature of the front (see �g. 2.9) it would also be

possible to have a simulation with the same parameters as the one shown here where bacteria numbers

would steadily increase over time. Parameters are the same as the ones used in �g 2.4: (δin,αin) =

(5.0 · 10−1min−1, 0.01 · 10−1min−1) and (δout ,αout) = (0.05 · 10−1min−1, 1.0 · 10−1min−1). Grid size:

500× 500. Initial conditions consisted of randomly scattered healthy and infected bacteria.
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Figure 2.14: High ratio of phage to bacteria in coexistence region of the Self organized refuge

model. Color map shows the average ratio of phage to bacteria after 20 bacterial generations

as a function of δin and δout in simulations of the Self organized refuge model. Initial density of

healthy bacteria was 0.08 and initial density of infected bacteria was 0.004, giving an initial ratio of

≈ 0.004×100
0.08 = 5 (because the burst size is 100). For the points with no color (white) either phage or

bacteria had died out before 20 bacterial generations passed. Grid size: 200× 200.
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turn, a robust way to enhance phage bacteria coexistence. We found that coexistence, in

these simulations, has the following characteristics: (i) phage and bacterial densities are quite

high with phage being concentrated on the edges of dense bacterial colonies, (ii) phage can

outnumber bacteria easily by an order of magnitude without destabilizing the system, (iii) there

is a high turnover of the phage population, and also of the bacterial population at the edge of

colonies (see �g. 2.13,2.14 and �g 5.21 in Appendix 2). And all this despite the phage being

intrinsically very e�cient predators, with a large burst size, long lifetimes and high infection

rates outside the bacterial refuge. As discussed earlier in section 2.1.1 we could not achieve

coexistence with all these characteristics in the Basic model without refuges. Data from soil

[6] and marine [123] phage-bacteria ecosystems seem to match the characteristics of the refuge

model better; the population densities of both phage and bacteria are observed to be relatively

high and the phage:bacteria ratio is around 10:1. Moreover, stable population numbers and a

high turnover rate of phage and bacteria are also observed: virulent phage are estimated to kill

∼ 20− 40% of the bacteria in the oceans on a daily basis [123].

Parameters to measure. Our results suggest that it would be particularly interesting to

measure parameters that a�ect phage e�ciency, such as phage lifetime, infection rate and

di�usion constant, in natural ecosystems where such phage have been observed to coexist with

bacteria. The half life of nine di�erent virulent phage were measured in laboratory conditions

with bacteria growing on LB3, and found to be of the order of 10 days on average [28], but

the corresponding numbers are not known in natural ecosystems in soil or oceans. If measured

parameters are found to lie outside the coexistence region of the Basic model, that would

strongly suggest that there must be additional mechanisms which allow coexistence. The

speci�c mechanism of coexistence along the edge of refuges also predicts that the variance of

these parameters should be large, even over very short length scales. It would, for example, be

interesting to measure the variance of burst sizes in a bio�lm instead of just the mean burst

size which is the norm.

It is encouraging that the model behavior is robust to many alterations in the dynamical rules.

In addition to the variants described above, we have also found qualitatively similar refuge

formation and enhancement of coexistence in a three dimensional version of the Self organized

refuge model (see �g. 2.15) and in a version with bacterial di�usion, and with hydrodynamic

�ow which make bacteria and phage drift in a speci�c direction (see �g. 2.16).

3LB: Lysogeny broth, a nutritionally rich medium used for growth of bacteria.
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Figure 2.15: 3D model has dynamics similar to 2D model. Yellow dots show sites occupied by

healthy bacteria. For clarity, sites with infected bacteria and di�using phage are not shown. Param-

eters were (δout ,αout) = (0.05 · 10−1min−1, 1.0 · 10−1min−1) and (δin,αin) = (5.0 · 10−1min−1, 0.01 ·
10−1min−1) (same as parameters of �g. 2.4). (1) snapshot taken 4 bacterial generations after t = 0.

(2) after 6 bacterial generations. (3) after 70 bacterial generations. (4) after 140 bacterial generations.

Grid size: 40×40×40. Initial conditions consisted of randomly scattered healthy and infected bacteria.

2.4.2 Bacterial refuges and the co-evolutionary arms race

The bacterial refuges found in the Self organized refuge model alone may not be su�cient

to ensure very long-term coexistence of virulent phage and bacteria. In real ecosystems, very

long-term coexistence certainly involves bacteria evolving to become resistant to phage, and

phage counter-evolving strategies to infect resistant bacteria. However, such a co-evolutionary

arms race cannot be stable if at any time conditions arise where either the phage or bacteria

could rapidly die out. Any non-evolutionary mechanisms which enhance coexistence could play

a crucial role in allowing su�cient time for evolution to occur. Self-organized bacterial refuges

are one of several such possible mechanisms. We have shown that, for a very broad region of

parameter space, such refuges can slow down the rate of extinction immensely, while maintaining

a high density of both phage and bacteria for time spans of at least a thousand times longer

than the bacterial generation time. The evolutionary simulations we have done complete the

second part of this argument. We found that even when the system starts with parameter values

that do not allow coexistence for very long, evolution of the phage and bacteria pushes these

parameter values into regions which do allow coexistence. Interestingly, this is true both when

the phage mutated faster than the bacteria, and vice versa. In these evolutionary simulations

the puzzling properties of real ecosystems, described earlier, are all maintained: highly e�cient
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phage living on the edge of almost static refuges, with a high turnover of both phage and

bacterial populations, and there is continuous evolution of phage which are more e�cient, and

bacteria that create better refuges. Ironically, the defense mechanisms of bacteria, such as

bio�lm formation, may thus be crucial not only for the survival of the bacteria but also for the

long term survival of their most vicious predators.

2.5 Future work

The models in this and the previous chapter clarify how spatial heterogeneity can play a major

role in enhancing coexistence between virulent phage and bacteria. However, it is important

to note that these are just the �rst steps towards understanding exactly how phage-bacteria

ecosystems self-organize and co-evolve, because our models are highly simpli�ed versions of

real ecosystems. There are two broad aspects of real ecosystems that strike us as important to

study in more realistic models:

1. The environment and geometry of the space in which real phage bacteria ecosystems exist

is much more complex than a simple 2D plane. Not only can there be geographical barriers

to growth, there will also often be hydrodynamic �ows which add to the di�usion and drift of

phage and bacteria.

2. Even more importantly, ecosystems outside laboratories are unlikely to consist of just a single

bacterial species and a single phage species.

Versions of the Self-organized refuge with non-stationary bacteria. We have brie�y ex-

perimented with versions of the Self-organized refuge model where the bacteria are themselves

motile and di�use around and can drift, along with phage, in speci�c directions due to hydrody-

namic �ow (see �g. 2.16). Interestingly, cell motility/di�usion and hydrodynamic �ows seems

to make coexistence more stable than in the version of the model where bacteria are stationary

because it allows bacteria to, once in a while, escape an established refuge and start a new one

in an empty part of the plane, thus eliminating the problem of slowly shrinking refuges. More

cases need to be investigated to understand the limits of this e�ect.

Multiple phage and bacteria species. We have not investigated any models with multiple

phage or bacteria species, but the �rst step in such a direction might be to study the network

that determines which phage species can infect which bacteria, or which bacteria are immune to

which phage. Bacterial defence mechanisms, other than bio�lm production, could in�uence the

structure of these immunity/infection networks. For example, CRISPR4 defences against phage

have been modeled mathematically in [41], and it would be interesting to examine how such

4Clustered Regularly Interspaced Short Palindromic Repeats
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A

Direction
of drift

B

Figure 2.16: High cell di�usion or drift does not stop refuges from forming. A: Simulation of

a version of the Self organizing refuge model where both bacteria and phage di�use (each snapshot

is numbered with the number of time steps that have passed). Phage di�usion constant was set to

its default value as used in all earlier simulations. Bacterial di�usion constant was set to half of the

phage di�usion constant. Di�using bacteria were allowed to exchange places with neighbouring cells

so there are no crowding e�ects preventing, for example, an infected cell from di�using into a dense

colony. Parameters: δin = 5 · 10−1min−1, δout = 0.1 · 10−1min−1, αin = 0.001 · 10−1min−1 and αout =

1 · 10−1min−1. Grid size was 200× 200. B: Adding a constant drift, mimicking laminar hydrodynamic

�ow, does not stop refuge formation. Parameters: δin = 5 · 10−1min−1, δout = 0.1 · 10−1min−1,

αin = 0.001 · 10−1min−1 and αout = 1 · 10−1min−1. Here the bacterial di�usion constant was set to

1/10 of the phage di�usion constant and both phage and bacteria experienced a drift in the upward

direction (such that both bacteria and phage where 50% more likely to move upwards than in the other

three directions). Grid size: 200× 200.
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defence mechanisms would spread and evolve in variants of our models. Another interesting

question to ask is whether one can construct a model where virulent phage and temperate phage

can both coexist together with bacteria. A well-mixed model of an ecosystem involving multiple

bacterial species as well as multiple virulent and temperate phage species was studied in [104].

That model included a complex and evolving network of infection and immunity interactions

between the species and the authors found that it was very hard to obtain coexistence between

bacteria and both virulent and temperate phage; typically at least one of the categories went

extinct. A suitable combination of the Rosvall model and our models could thus be constructed

to investigate whether spatial heterogeneity and refuges plays a similar role in enhancing coex-

istence when there are multiple interacting species of bacteria and phage.

2.6 Take home messages

• In a system with bacterial refuges, i.e. regions where phage are rendered ine�cient, there

will be coexistence of phage and bacteria along the edge of the refuge especially if the

phage are intrinsically so e�cient that they would drive the bacteria to extinction outside

the refuge.

• Such bacterial refuges can arise in a self-organized manner due to the action of bacterial

density dependent mechanisms, such as biol�m production.

• The long term co-evolution of the phage and bacteria further stabilize the self-organized

bacterial refuges, and in turn, the refuges stabilize the arms race by preventing sudden

extinction events when phage e�ciency improves or new bacterial defences arise due to

mutations.

• Coexistence on the edges of bacterial refuges in our model share many characteristics

with real ecosystem. They exhibit (i) highly e�cient virulent phage with relatively long

lifetimes, high infection rates and large burst sizes, (ii) large, stable and high density

populations of phage and bacteria, (iii) a fast turnover of both phage and bacteria, and

(iv) stability over evolutionary timescales despite imbalances in the rates of phage vs.

bacterial evolution.
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Chapter 3

Microbial strategies for dealing with common goods

3.1 Introduction

3.1.1 A map of this chapter

In this chapter, we will look at some of the important factors that could in�uence the behaviour

of a microbe producing and excreting public or common goods, which are molecules which may

improve its own �tness as well as those of its immediate neighbours. The phenomenon of a

population of microbes producing and excreting a common good, is typically referred to as

cooperation. Common good production is often regulated by quorum sensing (QS) systems,

and this in turn is usually interpreted as bacterial communication. A common good producing,

quorum sensing microbial community might thus constitute the simplest possible model system

which can be used when asking questions of how an organism, capable of a cooperative behavior,

can gain from making the behavior conditional. We will begin, in sections 3.1.2, 3.1.3 and 3.1.4,

by providing some background on studies of cooperation, quorum sensing and common good

production in bacteria. Then in section 3.2.1 we focus on exactly how the bene�t gained

from having a common good in the environment depends on the concentration of the common

good, hereafter referred to as the bene�t function. In section 3.2.3 we show analytically that

the optimal bacterial strategy for turning on or o� production of the common good depends

crucially on qualitative features of the shape of the bene�t function. In section 3.2.4 we further

argue that the shape of the bene�t function in�uences the need for quorum sensing regulation

of that common good. Sections 3.2.5 and 3.2.6 then probe mechanisms that could in�uence

the shape of the bene�t function. One scenario we examine in more detail is that of an excreted

exoenzyme that degrades polymers into more easily digestible pieces. Possible experiments that

could be done to check these results will be presented in the next chapter, along with a study

of how bacteria can deal with cheats that gain the bene�t of the common good without paying

the costs.

63
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3.1.2 Cooperation

Understanding cooperative behavior is regarded as one of the greatest challenges in the �eld of

evolutionary biology and ecology. In famous games like �Prisoner's dilemma� and the �Snow-

drift game�1 [10], which serve as allegories for real world cooperative scenarios, the optimal

strategy is defection. �Defection2� is usually de�ned as a strategy which beats a cooperative

strategy when played against such, but gets a lower payo� when played against another defector

than that gained by two cooperators playing each other. Ever since games like the Prisoner's

dilemma and the Snowdrift game were formulated, people have tried to explain in various ways

why there are seemingly so many examples of cooperation all around, among us and inside us

[10]. Hamilton [43], for example, introduced the notion of �inclusive �tness� of an individual,

de�ned roughly as the sum of the number of its genes which are passed down to the next gen-

eration via its own o�spring (the conventional �non-inclusive� �tness), and the number of its

genes which it would propagate to the next generation by supporting relatives. He suggested

that individuals are designed to maximize their inclusive, rather than their individual �tness

and this indirect �tness favors cooperation. He also argued that robust cooperation within

a population of cooperators and defectors/cheaters can be achieved when the public good is

somewhat privatized either due to a �Green beard� mechanism, cooperators recognize other

cooperators and preferentially distribute common good to them, [43], or due to mechanisms

which provides spatial segregation of cheats and cooperators (e.g. [58; 136]). Cooperation has

1Prisoner's dilemma: Two criminals have been caught and are being kept in isolation cells. They each have

two options/strategies: 1) cooperation (keep quiet), or 2) defection (rat on the other guy). If both prisoners

keep quiet they each get a very short time in prison due to lack of evidence. If one defects and the other

cooperates, the defector is set free as a reward for giving information to the police while the prisoner who kept

quiet is given a harsh sentence. If both prisoners defect, both are given a harsh sentence. The strategy that

gives the highest minimal payo� when all strategies are played against each other is defection and this strategy

is thus always the logical choice for a single player who has no information about what the other prisoner will

choose (even though the two prisoners as a group are obviously better o� when both cooperate). Snowdrift

game: (also known as �chicken� or �Hawk/dove�). Two drivers are stuck on a road due to a pile of snow. Each

has a shovel in the back and the only way to get home is to get out of the car and remove the snow pile. The

two possible strategies are again to 1) cooperate, i.e., get out of the warm car and shovel, or 2) stay inside and

hope the other driver will get to work. If both cooperate the collective payo� for the group is highest like in

the Prisoner's dilemma, because the snow is cleared faster. If both defect no one gets home, the worst case

scenario. If one cooperates and the other defects both get a positive payo� (both get to go home) but the

cooperator's payo� is smaller than the defector's because he payed the price of shoveling. Again, the strategy

with the highest minimal payo� when all pairs are considered is defection. Note that the situation where a

microbe is producing a common goods is more like the Snowdrift game than Prisoner's dilemma, because a

cooperator cell will feel the bene�t from the produced common good along with a neigbouring defector cell,

just as the shoveling cooperator will get to go home after his hard work.
2We will use the terms �defector� or �cheater� interchangeably for an individual using the defection strategy.
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been studied extensively (as summarized in [94]) and is widely documented in the macroscopic

world, but only relatively recently has attention turned to social behavior in microbial systems.

Cooperation in general becomes harder to explain when one deals with simple non-conscious

organisms. Many animals can plan ahead, communicate and negotiate, and can therefore come

up with more complex strategies that combine cooperation and defection based on what the

opponent's strategy appears to be. For example tit-for-tat strategies (which try to cooperate

but punish a defecting opponent by defecting themselves; de�ned more precisely in [39]) have

been observed in sticklebacks [79] and humans [113]. But what strategies can a single celled

organism like a bacterium employ?

3.1.3 Bacterial common goods and Quorum sensing: the mechanism and the debate

The simplest examples of phenomena in the biological world which could be termed cooperation

is found among microbes. Here common goods are often di�usible molecules produced and

excreted by single cells. These molecules act in the environment to improve conditions, and

thereby �tness, for the cell which excreted them but also potentially for its neighbours. Microbes

which produce extracellular molecules that can be thought of as common goods are ubiquitous.

Examples of such products are:

• extracellular enzymes (often used for degrading large molecules into smaller bits which

can then be transported over the cell membrane); examples of this are known in the plant

pathogen Erwinia carotovora [92] and in Pseudomonas aeruginosa [105].

• exopolysaccharides (these are used in bio�lms [135], and have a variety of other uses also,

reviewed in [140]).

• surfactants aiding motility (reviewed in [57]; a neat experiment involving these is described

in [147]).

• antibiotics for �ghting other microbes [5; 75; 82; 83].

• virulence factors for �ghting a host organism's immune system, or for exploitation of host

resources (examples are discussed in [105; 61; 150])

• siderophores (reviewed in [87]; an experimental demonstration can be found in [44]; a

neat experiment and a model involving these are described in [63]).
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Many excreted bacterial common goods have been found to be under quorum sensing regula-

tion3. In for example Pseudomonas aeruginosa the most represented functional class in the list

of quorum sensing regulated gene products are excreted compounds, like toxins and extracellular

enzymes [110]; a fact which is usually explained by a relatively loose verbal argument about how

cooperative activities are only bene�cial if the population is above a certain critical density (e.g.

[31; 139]). Quorum sensing (QS) is a bacterial behaviour ubiquitously present in the microbial

world and most bacteria possess at least one quorum-sensing system, [80; 37; 107]. This term

covers all types of behaviour where bacteria produce, excrete, and subsequently respond to

di�usible signal molecules. Typically, the signal molecules are small and relatively cheap to

produce; often a peptide, a boron derivative of ribose, or an acyl homoserine lactone [37].

The how and why of quorum sensing. QS has been a well known phenomenon and has

been investigated scienti�cally for almost half a century. By now a lot is known about the

�how� of QS: the di�erent mechanisms, molecules, genes, receptors, feedback loops and regu-

lation involved (see, e.g., [88; 71]). In comparison very little is known about the �why� of QS.

Although the term �quorum sensing� comes from the initial interpretation that the mechanism

exists to sense population density, precisely what the mechanism is for is still debated in the

scienti�c QS community. One faction (by far the most prominent one) claims that QS is about

sensing the density/number of the colony (e.g. [139; 80]) while another smaller faction claims

that the population sensing of QS is merely a side e�ect of what is really di�usion sensing: one

cell gauging the di�usive properties of the outside environment, e.g. [101; 114]. Recently, a

third alternative position arose, which reconciles the two camps by claiming that QS should be

renamed �e�ciency sensing� [48] because the function is both about sensing some combination

of the density, the population number and the di�usive properties of the environment together.

This position received support from a recent computational study [77] where, using a 2D model,

they argue that cells cannot distinguish between changes in di�usion constant and population

size using one QS mechanism. Sam Brown (University of Edinburgh) recently proposed that the

di�erent QS systems of Pseudomonas aeruginosa (which have signal molecules with di�erent

decay rates and di�usion constants) might each be for probing either the social or di�usive prop-

erties of the environment (presented at a conference in Nov. 2011, but not published, see [120]).

3Most genes which are QS regulated are believed to also be in�uenced by other factors than the concentration

of the QS signal, such as the metabolic state of the cell, [110]
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3.1.4 Factors in�uencing production and excretion of a common good

It is worthwhile to examine the exact conditions under which a bacterial population will bene�t

from producing a common good and thereby establish when this production would bene�t from

being under QS regulation. The factors which one can imagine may in�uence whether excreting

molecules is advantageous for a single cell, or a cell population, are:

• The bene�t gained (positive contribution to �tness) by having a certain concentration of

the common good in the outside environment.

• The rate of production per cell and the associated cost (negative contribution to �tness)

[13; 63].

• The cell density, inhomogeneity of the distribution of cells in space and the geometry

of the environment (a nifty experiment dealing with these issues is described in [23]; a

relevant modeling study is [77]).

• The total number, as opposed to the density, of common good producing cells present in

the system (see the experiments in [23]).

• The molecular durability of the common good (i.e., the extent to which it can be reused

multiple times), which is in�uenced by the rate at which the excreted common good is

removed from the environment by degradation, di�usion and/or advection [63; 15].

• The presence of cheats/defectors which may get a �tness advantage compared to coop-

erators because they avoid the costs of production (cheats have been studied in models

in e.g. [77; 86; 85; 26; 146], and experimentally in e.g. [105; 147; 31; 64]).

Others have (see references above) studied, experimentally and theoretically, how a quorum

sensing mechanism may condition the expression of a public good to several of the environmental

and other factors, listed above. However, to our knowledge no-one has investigated how the

functional form of the bene�t gained by having di�erent amounts of common good in the

environment in�uences the need (or lack of same) for QS regulation.
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3.2 Results and Discussion

3.2.1 Bene�t function for a common good

Typically the net �tness associated with production of a common good is quanti�ed as the net

increase in growth rate 4 of the community consisting of common good producers5. There will

usually be both a negative contribution (cost) and a positive contribution (bene�t) to the net

�tness associated with the production of a common good. The change in growth rate, ∆g ,

due to common good production will thus be given by:

∆g = bene�t− cost (3.1)

= B(E )− σEpcost (3.2)

Of course, ∆g can be a function of time, as well as various other variables and parameters such

as the number of cells, their density, the di�usion constant and lifetime of the common good,

etc. We make the assumption that the negative contribution from common good production,

the cost, is linearly proportional to the rate of production σE of the common good with the

proportionality constant denoted pcost . We further assume that the bene�t is some function

B(E ) of the outside concentration, E , of the excreted common good6 � all dependence on time,

number of cells, di�usion constant etc. will be through the dependence of E on these factors.

Henceforth, we will refer to B(E ) as the bene�t function. The exact shape of the bene�t

function potentially depends on many details of the speci�c situation and of the nature of the

common good at hand, however, we can assume some reasonable constraints, such as continuity

of the function. At zero concentration there must, of course, be no bene�t, B(0) = 0, and when

approaching in�nitely high concentration we expect the bene�t function to saturate to some

�nite value. As the concentration E increases from zero, we can imagine three general cases:

1) the bene�t immediately decelerates with increasing concentration of common good forming

4Alternative ways of quantifying bacteria �tness by e.g. the ability to form bio�lm, survival in water and

resistance to drying are described in ref. [95].
5If the number of cells in a population is denoted N(t), then the growth rate g(t) describes how the cell

number changes with time: dN(t)/dt = g(t)N(t). When common good production starts, let the growth rate

change to g ′(t). Then the cell number will grow following dN ′/dt = g ′(t)N ′(t). The change in growth rate

due to common good production, ∆g(t) ≡ g ′(t) − g(t), then describes the change in the ratio, R ≡ N ′/N,

of the number of cells in the common good producing population to the number of cells in a non-producing

population: dR(t)/dt = ∆g(t).R(t). Even if we are not in a well-mixed situation, similar equations will hold,

with growth rate and cell number being functions of position as well as time, and with additional terms that

account for di�usion or motion of cells in space.
6Note that we will use E to refer both to the common good molecule and the concentration of the common

good - hopefully it will be obvious from the context which is meant where. This is stylistic choice done in order

to avoid the more cumbersome notation of [E ] for the concentration.
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Figure 3.1: Bene�t functions: Blue curves show the bene�t described by eq. 3.3 in units of min−1,

for three di�erent values of the bene�t function Hill-factor h ∈ [0.5, 1.0, 2.0]. Black dashed line marks

Bmax . Parameters used were: Bmax = 0.077min−1, K = 200 (arbitrary units).

a convex curve, 2) the bene�t initially accelerates forming a concave curve before decelerating

later to reach the saturation value, and 3) the bene�t is initially exactly proportional to the

concentration of common good forming a straight line before decelerating later to saturate (see

�g. 3.1). These characteristics can be captured by a bene�t function of the general form:

B(E ) = Bmax
Eh

Eh + Kh
(3.3)

Here the Hill-factor h determines whether the initial response to small doses of common good,

E , in the environment is concave (h < 1), convex (h > 1) or linear (h = 1) (later when

the function approaches saturation all three curves of course become concave). Bmax is the

level of bene�t at which the function saturates for very high concentrations of common good

and K is the concentration of common good where the bene�t is half its maximum value:

B(K ) = 1
2Bmax . Assuming that the bene�t function has Hill-factor 1 (see, e.g. [55]) is a

decent �rst order assumption, but there are cases where this is not true (more on this later).
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The interesting question is now whether the initial concavity/convexity of the bene�t function

in�uences when it is prudent for a cell to produce the common good.

3.2.2 Modeling the dynamics of the common good concentration

We begin by formulating some simple models that determine the concentration of the common

good when there are one or more cells producing it. Consider �rst a single cell excreting

a common good molecule E at a constant rate σE . The change of E in time at a point

r = (x , y , z) at the time t can be described by the partial di�erential equation:

∂E

∂t
= D

∂2E

∂r2
− γEE (r, t) + δ(r − r0)σE (3.4)

The �rst term on the right hand side models di�usion of E with a di�usion constant D. The

second term represents the degradation of E , with γE being the degradation rate. The third

term models a point source of E at position r0 where the single cell is located. In most cases

we can reasonably assume that the time scales of cell division and cell movement are far slower

than that of di�usion and degradation of the common good molecules. This means that, for

now, �nding the steady state solution, Ess(x), will su�ce. 7 We can thus set ∂E
∂t = 0 and solve

the ordinary di�erential equation:

D
d2Ess

dx2
= γEEss(x)− δ(x − x0)σE (3.5)

The solution of eq. 5.36, with boundary conditions E (x)→ 0, for x → ±∞, (see derivation in

Appendix 6):

Ess(x) =
σE

2
√
DγE

exp

(
−
√
γE

D
|x − x0|

)
(3.6)

is shown in �gure 3.2. We now wish to know the concentration of common good felt by a cell,

in the steady state, when other (identical) producing cells are placed at distances ±ka from it

(where k takes values over a �nite range of positive integers). We can obtain this from eq.

5.45 by calculating the sum Emiddle =
∑

x0
Ess(0) where x0 runs over the positions of the cells.

For a line of C cells, where C is an odd number, the middle cell will feel a concentration given

by:

Emiddle(C ,D) =


σE

2
√

DγE
for C = 1

σE

2
√

DγE

(
1 + 2

∑C−1
2

k=1 exp
(
−
√

γE
D ka

))
for C ≥ 3

(3.7)

=
σE

2
√
DγE

1 + 2

1− exp
(
−
√

γE
D

a
2 (C − 1)

)
exp

(√
γE
D a
)
− 1

 , for C ≥ 1 (3.8)

7For simplicity, we will �nd the solution for the 1 dimensional case. For 2 dimensions the solution is a Bessel

function and thus not so easy to manipulate analytically later on.
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Figure 3.2: Steady state concentration of common good with a single point source. The steady

state concentration eq. 5.45 of common good concentration around a single cell at x0 = 0 (marked

by the blue ellipse) continuously producing the good at the rate σE . Distance from the producing cell,

x , is shown in units of
√

D
γE
, which is roughly the mean length a common good molecule will di�use

before decaying. Concentration of the common good is shown in units of σE

2
√

DγE
.
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Similarly, a cell on the edge of the colony will feel:

Eedge(C ,D) = σE

2
√

DγE

1 +

1−exp

(
−
√
γE
D

a
2

(C−1)

)
exp

(√
γE
D

a

)
−1

, exactly the same expression as eq. 3.8

but without the factor 2 inside the parentheses8. Of course, Emiddle is a function of σE , γE , a

also, but we have emphasized its dependence on C and D because this dependence is what we

will investigate further (recall that the debate in the QS community was whether QS systems

measure quorum or di�usion.) In �g. 3.3 A and B we have plotted eq. 3.8 as a function of C and

D respectively. When the average length a common good molecules di�uses before decaying,√
γE/D, is much longer than size of the system

(√
γE
D Ca� 1

)
, we see that Emiddle(C ,D)

(and similarly Eedge) is approximately linear in C :

Emiddle(C ,D) ≈ σE

2
√
DγE

C (3.9)

Note that this maps exactly onto the solution for a well-mixed/non-spatial system. For the

well-mixed case, we would have the di�erential equation:

dE

dt
= σ̃EC − γEE ⇒ (3.10)

Ess(C ) =
σ̃E

γE
C (3.11)

so we will refer to the limit where
√

γE
D Ca � 1 as the �well-mixed� case. Note that in both

the general 1D case, and the well-mixed limit, the steady-state concentration of the common

good is linearly proportional to the production rate σE . We will use this fact in the next section.

3.2.3 The optimal production rate for the common good

We now investigate whether there exists an optimal production rate (which may be a function

of time) that maximizes the growth rate of this 1 dimensional colony of cells. If such an

optimal strategy exists it would be interesting to determine how it is in�uenced by the initial

convexity/concavity of the bene�t function. To do this we must make some assumptions about

how the 1D colony grows. We will assume: (i) cells divide on a time scale much slower than the

production, di�usion and degradation of the common good, so the common good concentration

is in steady-state at all times: E (x , t) = Ess(x); (ii) new cells expand the total length of the

colony but at all times the cells arrange themselves to occupy positions x = ka, where k ranges

from 1 to (C − 1)/2 when C is odd, and 1/2 to (C − 1)/2 when C is even; (iii) the growth

8When C is an even number, we still get the same answer as long as Emiddle refers to the concentration

exactly at the middle of the line, between the middle two cells. Therefore, from now on, we will not restrict C

to odd numbers.
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Figure 3.3: Concentration of common good felt by middle cell as a function of the total

number of cells and the di�usion constant. A: Blue points show eq. 3.8, the steady state

concentration of common good felt by the middle cell in a line of cells, as a function of the to-

tal number of cells C . Black dashed line shows eq. 3.9, red dashed line shows the maximum

value of common good concentration σE

(
1
γE a + 1

2
√

DγE

)
(derived in Appendix 3, section 5.8.3). In-

sert shows that eq. 3.9 is a good approximation to eq. 3.8, for relatively small C . Other pa-

rameters were: D = 100 (unit length)2/(unit time), γE = 0.1 (unit time)−1, σE = 1 (unit time)−1,

a = 0.1 (unit length). B: Blue curve shows eq. 3.8, the steady state concentration of common good

felt by the middle cell in a line of cells, as a function of the di�usion constant, D, of the common good.

Other parameters were: γE = 8 (unit time)−1;σE = 1 (unit time)−1; a = 0.001 (unit length),C = 10.
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rate of the cells is �xed by the net bene�t that would go to a cell in the middle9 of the line,

i.e. dC/dt = ∆g (Emiddle)C . As mentioned earlier we take the net change in the growth rate,

∆g , due to common good production at the rate σE , to be:

∆g(C ,D,σE ) = bene�t− cost (3.12)

= B(E )− σEpcost (3.13)

= Bmax
Eh

Eh + Kh
− σEpcost (3.14)

= Bmax
(σE f (C ,D))h

(σE f (C ,D))h + Kh
− σEpcost (3.15)

In the last line we have taken advantage of the fact that the steady-state concentration, Emiddle ,

scales linearly with the production rate per cell so that we may simply express it as σE mul-

tiplied by a function, f (C ,D), of the number of cells in the system, the di�usion constant,

and other parameters which we hide for clarity, because we will hold all other parameters �xed.

We now want to determine whether there exists an �optimal strategy� of common good pro-

duction at di�erent times, σopt
E (t), which would maximize the size of the colony at any given

time. Evidently, a strategy that maximized ∆g , for each possible value of C and D, would be

unbeatable. That is, we need to �nd a function σE = σopt
E (C ,D) that, for all values of C and

D, maximizes ∆g(C ,D,σE ) (the separation of timescales � cells divide at a rate much slower

than the dynamics of E � allows this simpli�cation of the calculation). Local maxima of ∆g

must satisfy:

∂∆g(C ,D,σE )

∂σE

∣∣∣∣∣
σE =σopt

E

= 0, (3.16)

and
∂2∆g(C ,D,σE )

∂σ2
E

∣∣∣∣∣
σE =σopt

E

< 0 (3.17)

It turns out that, for the sigmoidal functional forms we use for the bene�t function (see eq.

3.3) and the forms of f (C ,D) we get from eq. 3.8 or 3.9, there is at most one local maximum.

However, for some values of C and D it can happen that this local maximum has a negative

value for ∆g . In that case, and in the case where there is no local maximum, the real maximum

9This choice was made just for convenience. Perhaps a more realistic assumption would be to use the edge

bene�t with the idea that new cells arise only at the edges, or to use some sort of weighted sum of bene�ts

all along the line. However, the results would be identical in all important respects because the functional

dependence of the bene�t function on the production rate σE is very similar at the middle, the edges and at

any point on the line. In fact, our main results from this 1D calculation, concerning the in�uence of the bene�t

function Hill-factor on the optimal production strategy, also hold for the 2D case as will be evident in the next

chapter which examines simulations of a 2D model of common good producing bacterial colonies.
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is at σopt
E (C ,D) = 0 because that gives ∆g = 0. Thus, the optimal strategy is to attempt to

satisfy equations 3.16 and 3.17, as well as:

∆g(C ,D,σopt
E ) > 0. (3.18)

If for some C and D values these three conditions cannot be satis�ed then, for those values,

σopt
E (C ,D) = 0. We can expand out the three conditions above by using equation 3.15 and

then substituting for f (C ,D) from equations 3.9 or 3.8 depending on whether we are interested

in the well-mixed case or the more general spatial case. This is done in Appendix 3, section

5.8.2.

Optimal production rate of the common good in the case where the bene�t function

hill factor is one. When the bene�t function hill factor is equal to one, h = 1, we can actually

put everything in closed form:

∂∆g(C ,D,σE )

∂σE

∣∣∣∣
σE =σopt

E

= 0⇒ (3.19)(
BmaxK

pcost

)
σopt

E f (C ,D)(
σopt

E f (C ,D) + K
)2

= σopt
E ⇒ (3.20)

(σopt
E )2f (C ,D) + 2Kσopt

E +
K 2

f (C ,D)
−
(
BmaxK

pcost

)
= 0⇒ (3.21)

σopt
E ,h=1(C ,D) =

√
BmaxK

f (C ,D)pcost
− K

f (C ,D)
(3.22)

In the well mixed limit (where f ≡ fwm(C ,D) = 1
2
√

DγE
C ), the optimal production rate for

h = 1 is thus:

σopt
E ,h=1(C ,D) =

√
2
√
DγEBmaxK

pcostC
− 2

K

C

√
DγE (3.23)

We note that eq. 3.23 approaches 0 for large C , and small D. In the general case (henceforth

referred to as the �spatial case�) corresponding to equation 3.8 f ≡ fsp(C ,D) where:

fsp(C ,D) =
1

2
√
DγE

1 + 2

1− exp
(√

γE
D

a
2 (1− C )

)
exp

(√
γE
D a
)
− 1

 , for C ≥ 1, (3.24)

σopt
E ,h=1 approaches a constant for large C and small D (see appendix 3, section 5.8.4 for

derivation of these limits). Keeping D constant, we see that σopt,h=1
E = 0 for C less than a

critical population size Cc,h=1, and above this critical value σopt,h=1
E > 0. That is, for h = 1,

there exists a critical population size at which common good production should be initiated.
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This critical value can be calculated as follows:

σopt
E ,h=1 = 0⇒ (3.25)√

1

q(C )

√
BmaxK

pcost
=

K

q(C )
⇒ (3.26)

Cc,h=1 = q−1

(
Kpcost

Bmax

)
(3.27)

where q(C ) ≡ f (C ,D). Thus, in the well mixed limit, we would substitute q−1 with:

q−1
wm(x) = 2x

√
DγE (3.28)

and in the general spatial case with:

q−1
sp (x) = 1− 2

a

√
D

γE
log

[
1− 1

2

(
exp

(√
γE

D
a

)
− 1

)(
2x
√

DγE − 1
)]

(3.29)

In the well mixed limit we thus have,

Cc,h=1 = 2

√
DγEKpcost

Bmax
(3.30)

We see from this expression that, as expected, a higher cost, pcost , will result in a later optimal

turn on point and a higher maximal bene�t, Bmax , will result in an earlier turn on point.

Furthermore, high di�usion or degradation, corresponding to a higher loss rate of the excreted

common good, will result in a later turn on point. In the general spatial case:

Cc,h=1 = 1− 2

a

√
D

γE
log

[
1− 1

2

(
exp

(√
γE

D
a

)
− 1

)(
2

√
DγEKpcost

Bmax
− 1

)]
(3.31)and

1

2
√
DγE

<
Kpcost

Bmax
<

 1

exp
(√

γE
D a
)
− 1

+ 1

 1√
DγE

 (3.32)

we see that a smaller distance between the cells, a, will result in a earlier turn on. (For
1

2
√

DγE
> Kpcost

Bmax
we have Cc,h=1 < 1 which means that here it is bene�cial to turn on common

good production even for a single cell. For Kpcost

Bmax
>

(
1

exp

(√
γE
D

a

)
−1

+ 1

)
1√

DγE
, there exists

no production rate which will make turn on bene�cial at any population number). In the same

manner we can �nd an expression for the critical di�usion rate Dc,h=1 above which common

good production is no longer bene�cial in the well mixed limit:

Dc,h=1 =

(
BmaxC

2Kpcost
√
γE

)2

(3.33)
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Figure 3.4: Optimal production curves, as a function of C , for bene�t functions with h < 1,

h = 1 and h > 1. Blue solid curves: the solution σopt
E (C ) to equations 3.16, 3.17 and 3.18 when f ≡

fwm(C ) = 1
2
√

DγE
C , plotted for h = 1

2 , h = 1 and h = 2. Red dashed curves: the solution to equations

3.16, 3.17 and 3.18 when f ≡ fsp(C ) = 1
2
√

DγE

(
1 + 2

(
1−exp

(√
γE
D

a
2 (1−C)

)
exp

(√
γE
D a

)
−1

))
, (for C ≥ 1), plotted

for h = 1
2 , h = 1 and h = 2. The thin black line marks the constant (eq. in Appendix 3, section 5.8.4

which σopt
E (C ) approaches for large C , when h = 1. Left side: Parameters used were such that

√
D
γE

=

100 (unit length) and
√
DγE = 0.01 (unit length)/(unit time), (D = 10 (unit length)2/(unit time), a =

0.01 (unit length), γE = 0.001(unit time)−1, Bmax = 0.077, pcost = 1.0 and K = 300). Right side:

Parameters used were:
√

D
γE

= 10 (unit length) and
√
DγE = 0.01 (unit length)/(unit time), (D =

1 (unit length)2/(unit time), a = 0.01 (unit length), γE = 0.01(unit time)−1, Bmax = 0.077, pcost = 1.0

and K = 300).

Here we see (again as expected) that a higher production cost, pcost , and degradation rate, γE ,

will result in a lower di�usion constant turn o� point while increasingly higher Bmax and larger

population sizes, C , will make common good production bene�cial in environments with higher

di�usion constants. A similar calculation can be done for the general spatial case but it is not

possible to write out Dc,h=1 in closed form because D cannot be isolated from fsp(C ,D).

Comparing optimal production rates for di�erent shapes of the bene�t function. When

h 6= 1, σopt
E has to be determined from equations 3.16, 3.17 and 3.18 numerically. In �g. 3.4

and 3.5 we have plotted σopt
E (C ,D) as a function of C and D, respectively, for three di�erent

values of the bene�t function Hill factor, h, corresponding to bene�t functions that are (for low

E ) concave, linear and convex. Looking at these �gures it becomes apparent that for h ≥ 1
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Figure 3.5: Optimal production curves, as a function of D, for bene�t functions with h < 1,

h = 1 and h > 1. Optimal production rate σopt
E as a function of the Di�usion constant, D, for three

di�erent values of the bene�t function hill factor h ∈ [0.5, 1, 2] in the well mixed limit. Note that

these optimal curves are mirror images of the curves in �g. 3.4. This is no coincidence. Because

fwm(C ,D) = 1
2
√

DγE
C , if we plot σopt

E as a function of 1√
D

we will get the exact same curve as when

it is plotted as a function of C . Parameters used: C = 10, γE = 0.01(unit time)−1, Bmax = 0.077,

pcost = 1.0 and K = 300.

optimal common good production requires that you only produce when the population number is

larger than a critical value Cc (which depends on D and other parameters) or when the di�usion

constant is smaller than a critical value Dc (which depends on C and other parameters). We

also note that for h > 1 (convex bene�t functions) the optimal production curve becomes

discontinuous at Cc and Dc (for h = 1 only the �rst derivative becomes discontinuous).

The main di�erence between the well-mixed and the general spatial cases seems to be that

in the spatial case the optimal production rate does not approach zero for high C or low D

(as expected, when
√
γE/DCa � 1, i.e. low C or high D, the well-mixed limit and general

spatial cases are identical.) The fact that σopt
E (C ,D), in the well mixed limit, goes to zero for

high C and low D is due to the fact that all common good produced in the system will be

felt by all cells. Therefore, for example, larger and larger colonies require less and less common

good to be produced per cell to reach a level that provides a substantial bene�t. Real systems
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Figure 3.6: Critical population size where common good production should start. Cc , as

a function of bene�t function Hill-factor h, for the well mixed limit. Filled blue circle shows

Cc,h=1 = K
√

DγE pcost

Bmax
. For h → ∞, Cc approaches the same value K

√
DγE pcost

Bmax
Parameters used were:

D = 1 (unit length)2/(unit time), γE = 0.01(unit time)−1, Bmax = 0.077, pcost = 1.0 and K = 300

(same as in �g. 3.4 left side).

are much more likely to be like the spatial case where there is a characteristic length scale the

common good molecule can travel in its lifetime and, therefore, the well-mixed assumption,

that common goods produced at one end of the system can be felt by the cells at the other

end, becomes increasingly bad.

3.2.4 Producing the common good at rates other than the optimal is detrimental

when bene�t functions is convex

Now that we know how the optimal common good production rate looks as a function of

population size and the di�usion constant, it is interesting to investigate how much deviations

from this optimum a�ect growth rates for di�erent h. In �gure 3.7 and 3.8 we see the change

in growth rate, ∆g , plotted for a colony following the optimal strategy and producing common

good at exactly the rate σopt
E (C ), but also the ∆g of colonies deviating from the optimal by

producing either consistently too little or too much enzyme compared to the optimum level.
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Figure 3.7: Cost of not producing at the optimal rate decreases with population size for a well

mixed system but not for a spatial system. Solid lines: maximum possible increase in growth rate

∆g , as a function of population size C , when enzyme production is exactly σopt
E (C ) (blue: h = 1/2,

green: h = 1, red: h = 2). Dashed lines: change in growth rate when enzyme production is lower than

optimal (0.5σopt
E (C )). Dotted lines: change in growth rate when enzyme production is higher than

optimal (2.0hopt
E (C )). Parameters used were: D = 1 (unit length)2/(unit time), a = .01(unit length)2,

γE = 0.01(unit time)−1, Bmax = 0.077, pcost = 1.0 and K = 300 (same as in �g. 3.4 left side).

It is clearly seen that producing less or more than the optimal rate comes at a higher cost for

higher values of h. Note, in particular, how being away, in either direction, from the optimal

growth rate for h > 1 can even lead to a net reduction in the growth rate, i.e. ∆g can become

negative. For some parameter values this is also possible for h ≤ 1, but never when you produce

at less than the optimal rate.

Elaborating on this point, we examine how well an enzyme production strategy does compared

to the optimal strategy, when there is a non-zero basal growth rate, gbasal , even when no

common good is being produced. Then the actual growth rate of a colony is g = gbasal + ∆g ,

and ν(σE ) ≡ (gbasal + ∆g(σE (C ,D)))/(gbasal + ∆g(σopt
E (C ,D))) is a measure of how well

the strategy σE does compared to the optimal strategy σopt
E (the lower the value of ν, the

worse it is doing). In �gure 3.9 and 3.10 we plot ν
(
ησopt

E

)
, for η = 1/2 and η = 2, as a

function of population size, C and di�usion rate, D. Note how deviating from the optimal

strategy comes at a great cost right at the point where common good production should be

initiated/terminated (at Cc and Dc), particularly for h > 1. For all values of h we see that the
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cost of deviating from optimality decreases for increasing C in the well mixed limit, but not in

the spatial case.

Suboptimal production is not detrimental when bene�t function is concave. Note

that when the bene�t function is concave (h ≤ 1), ∆g can only become negative when the

production rate is higher than the optimal rate (i.e., η > 1). Suboptimal production is thus not

too detrimental when the bene�t function is concave (h ≤ 1), while when the bene�t function is

convex (h > 1), both sub and super optimal production rates can potentially result in negative

∆g , (precisely at Cc or Dc , ∆g will be negative for η 6= 1 and h > 1). With a concave bene�t

function (h ≤ 1) one could thus �play it safe�, produce a little less than the optimal rate and

still get a net growth increase compared to when not producing. Whereas with a convex bene�t

function (h > 1), both producing too little and too much can be worse than not producing

the common good at all. We also see that ∆g rises/falls more steeply around Cc or Dc for

h > 1 than for h ≤ 1, which means that the potential loss from not producing at the optimal

rate is also higher here. All in all, these results show that di�erences in population number

and di�usion rate have a far greater impact on growth rate when a common good bene�t

function has Hill-factor h > 1, which suggests that having a system that carefully regulates

the production rate of a common good could be very important for a convex bene�t function,

and not as important for a concave bene�t function. This regulatory mechanism would at least

need to be able to detect when some combination of C , D and γE crosses a critical threshold10.

Perhaps that is the role of QS regulation of common good production. We will pursue this

thought in the next chapter.

3.2.5 What does a typical common good bene�t function look like?

From the results above, we can conclude that the initial convexity/concavity of the bene�t

function of the common good can have a huge in�uence on the optimal production strategy.

But what is the Hill-factor of a typical bene�t function?

Virulence factors. It has been proposed that when virulent bacteria delay production of a

virulence factor, via QS regulation, it is because a low concentration of the virulence factor

would alert the host immune system, while at the same time not do much harm to the host.

Instead, delaying production of the virulence factor until a su�ciently high bacterial density had

been reached could lead to more positive outcomes (from the bacterial point of view): either

10In the limit
√
γE/DCa � 1, the optimal production rate becomes non-zero only when the combination

C/
√
DγE crosses a threshold value (because in this limit the steady-state value of E only depends on this

combination; see equations 3.9 and 3.23). For the more general spatial case it may be a more complex

combination that cannot be easily written in a closed form.
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Figure 3.8: Solid lines: maximum possible increase in growth rate ∆g as a function of the di�usion

constant D, when enzyme production is exactly σopt
E (C ) (blue: h = 1/2, green: h = 1, red: h = 2).

Dashed lines: change in growth rate when enzyme production is lower than optimal (0.5σopt
E (C )).

Dotted lines: change in growth rate when enzyme production is higher than optimal (2.0hopt
E (C )).

Parameters used were: C = 10, γE = 0.01(unit time)−1, Bmax = 0.077, pcost = 1.0 and K = 300

(same as in �g. 3.5). ∆g can go negative for η < 1 when h > 1, but not for h ≤ 1 (because of the

discontinuity of the σopt
E curve). This makes the deviating from the optimal strategy potentially more

harmful for h > 1 than for h ≤ 1, especially around DC .
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Figure 3.9: Not producing the common good at the optimal rate comes at a more severe

cost for h > 1 around Cc . Fractional deviation from optimal growth,
∆g(ησopt

E (C))+gbasal

∆g(σopt
E (C))+gbasal

, for η = 0.5

and 2.0, as a function of population number C . (Blue: h = 1/2, green: h = 1, red: h = 2 ),

when we assume that cells which are not producing the common good are growing at the basal rate

gbasal = 0.01 (unit time)−1. (This basal rate is chosen to be relatively low for this plot, i.e., of the same

order of magnitude as ∆g , so that not producing at the optimal rate has a big impact. If gbasal � ∆g

then, of course, not producing at the optimum rate becomes much less important, but in that case

there is anyway not much bene�t to be gained from the common good even if cells are producing it

at the optimal rate). Parameters used were: D = 1 (unit length)2/(unit time), a = .01(unit length),

γE = 0.01(unit time)−1, Bmax = 0.077, pcost = 1.0 and K = 300 (same as in �g. 3.4 left side).
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Figure 3.10: Not producing the common good at the optimal rate comes at a more severe

cost for h > 1 around Dc . Fractional deviation from optimal growth,
∆g(ησopt

E (C))+gbasal

∆g(σopt
E (C))+gbasal

, for η = 0.5

and 2.0, as a function of di�usion constant D. (Blue: h = 1/2, green: h = 1, red: h = 2 ),

when we assume that cells which are not producing the common good are growing at the basal rate

gbasal = 0.01 (unit time)−1. (This basal rate is chosen to be relatively low for this plot, i.e., of the same

order of magnitude as ∆g , so that not producing at the optimal rate has a big impact. If gbasal � ∆g

then, of course, not producing at the optimum rate becomes much less important, but in that case

there is anyway not much bene�t to be gained from the common good even if cells are producing it at

the optimal rate). Parameters used were: C = 10, γE = 0.01 (unit time)−1, Bmax = 0.077, pcost = 1.0

and K = 300 (same as in �g. 3.5).
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1) death of the host organism on a faster time scale than the immune system could detect and

launch a counter attack, or 2) enough time for the bacteria to produce means of protection (e.g.

bio�lm) from the immune system before producing virulence factors. This idea is sometimes

refereed to as the �sneak attack� hypothesis (e.g. in [145]) for obvious reasons. If this theory

it is right, it is a good example of a situation where the bene�t function of a common good

(the virulence factor) would be highly convex. Note that in this scenario, as small amounts

of virulence factor would provoke an attack from an otherwise indi�erent immune system, the

bene�t could actually be negative for small concentrations of virulence factor.

Antimicrobials. Another typical common good is an antibiotic produced to kill or harm other

species of bacteria living in the same habitat as the common good producer. Its has been shown

experimentally that the �killing curve� - the rate of death of the bacteria which is sensitive to

the antibiotics vs. the concentration of the antibiotics � is often sigmoidal with a hill factor of

2−4, [84; 70]. This thus constitutes another example of a situation where the bene�t function

is convex. The source of the convexity of the killing-curve is not well-established. For toxins

which damage parts of the target cell which are monitored by speci�c repair mechanisms, the

convexity could be related to the time scale over which the cell-repair mechanisms act. Small

doses of toxin may allow time for the repair mechanisms to �keep up� and continuously repair

the damage done by the toxin between each new damage event, while at higher concentrations

of toxin the damage would start to accumulate and become fatal. Another factor, acting on

an evolutionary time scale, is that small sub-lethal doses of antibiotics would allow an enemy-

bacteria to slowly adapt and become resistant to the toxin over time.

On a more hypothetical note we can mention that an excreted common good molecule which

acted in a cooperative manner outside the cell (as is the case for many proteins acting inside

the cell), would also result in a convex bene�t function, although we do not currently know of

any common goods where this has been demonstrated.

Siderophores. An example of a common good which might have a bene�t function with

Hill-factor 1 is siderophores: small molecules which di�use from the cell and bind to speci�c

metals (like e.g. iron) which the cell's survival depends on, but which are not sources of

metabolic energy; without siderophores the cells are unable to transport the metals across the

cell membrane, but the siderophore-metal complexes can be imported into the cells and the

metals extracted from them [87; 44]. This could probably even be a scenario where the Hill

factor would be lower than 1 (decelerating bene�ts) since the small amount of, e.g., iron a cell

could get from having just a few siderophores in the environment would give a comparatively
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Figure 3.11: Steady state polymer length distribution. Example of the steady state distribution of

polymer of di�erent lengths (determined numerically) when parameters are: Ni (t = 0) = 0, E = 0.8,

n = 10, p = δ = 1 (time unit)−1. (At time t = 200 the distribution is stationary for these parameters).

large bene�t relative to the iron molecules gained later at higher siderophore concentrations

when siderophore-iron complexes where plentiful and thus not as precious/valuable to the cell.

Extracellular enzymes. One last large group of typical common goods are extracellular en-

zymes which degrade large molecules, e.g. long organic polymers, in the environment thus

providing metabolizable nutrients to nearby cells. A well studied example is Pseudomonas

aeruginosa which can excrete multiple proteases11 capable of degrading, e.g., casein[14] into

casamino acids by breaking the polymer peptide bonds [60; 128; 49]. In this situation, it is not

intuitively obvious what the shape of the bene�t function would be. In the next section, we

formulate a simple model for the action of such an exoenzyme to try and assess the shape of

the bene�t function.

11LasAB and AprA, the major secreted proteases by Pseudomonas aeruginosa, [128; 49]. LasA preferentially

cleaves peptide bonds subsequent to Gly-Gly pairs [60].
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3.2.6 A simple model for polymers degraded by an excreted enzyme

Consider the example of Pseudomonas aeruginosa excreting enzymes that can cut long polymers,

like casein, into digestible bits. Let us assume that the speci�c sites where the enzymes can

break the polymers are distributed randomly along the length of the polymer12. We will assume

that the �tness increase is proportional to the number of pieces of polymer present which are

small enough for transport over the cell membrane. Thus, what we need to determine is the

steady state distribution of polymers of di�erent lengths, and speci�cally the concentration of

polymers of the �edible length�, as a function of the concentration of excreted enzyme. We set

this �edible length� (the maximal length that still allows transport over the cell membrane), to

one, we assume a constant external source of polymers of length n, and a constant degradation

rate δ which is the same for polymers of all lengths. Finally, we model all this in a well-mixed

setting.

The concentration of a polymer of length i is denoted Ni . The longest polymers are the ones

supplied by an external source, i.e. the ones with length n, which produces these polymers at a

rate p. Concentration of enzyme (common good) is denoted E . The equations describing the

change in concentration of polymers of each possible length are, thus, as follows:

dNn

dt
= p − Nn(E + δ) (3.34)

...

dNi

dt
= 2E

n−1∑
j=i

Nj+1

j
− Ni (E + δ) (3.35)

...

dN1

dt
= 2E

n−1∑
j=1

Nj+1

j
− N1δ (3.36)

where i = 1, 2, ... , n

Note that the rate of cleavage of polymers per enzyme molecule is set to 1. This can always

be done by choosing the units of E appropriately. The �rst term on the right hand side of the

equations for Ni (i < n) come from counting the number of ways one can get a polymer of

length i by randomly cutting a larger polymer. The terms have the form 2ENj+1/j basically

because a j+1 size polymer can be cut in j places, and two out of j ways will produce a polymer

of size Ni . In the speci�c case of j + 1 = 2i then there is one place to cut which will result

12The proteases LasB and AprA secreted by Pseudomonas aeruginosa are "endoproteases", which means they

cut the protein next to speci�c residues. Endoenzymes are generally more common among QS-regulated secreted

enzymes than enzymes which cleave molecules from the one or both ends (Brook Peterson, U. Washington,

personal communication).
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in two polymers of length Ni , so the form of the term remains the same. The steady state

concentrations, N∗n , ... ,N∗i , ... ,N∗1 can be found by setting Ṅn = · · · = Ṅi = · · · = Ṅ1 = 0.

See �g. 3.11 for an example of how the distribution looks for a certain choice of E and n. The

main quantity of interest is N1, the concentration of digestible polymers. For n = 2, the steady

state concentration of N1 will be:

N∗1,n=2 = 2
Ep

δ(δ + E )
(3.37)

and for n > 2, the steady state concentration of N1 is given by:

N∗1,n>2 =
2

n − 1

Ep

δ(δ + E )

1 +

 2

n − 2
+

n−2∑
k=2

1

k − 1

n−2∏
j=k

(
1 +

2

j

E

δ + E

) E

δ + E

 (3.38)

(see section 5.8.5 in Appendix 3 for derivation). Eq. 3.37 and 3.38 are plotted in �gure 3.12.

In �g. 3.13 we plot a measure for the convexity of eq. 3.38, as a function of the length of the

longest polymers in the system. We see that it is only for a system with a maximal polymer

length of n = 2 that the bene�t function is not convex. (The second derivative of eq. 3.37 is

negative while the second derivatives of eq. 3.38 are increasingly more positive for increasing n).

This means that, in general, bene�ts will accelerate with increasing concentration of enzyme if

the polymers provided by the external source have a length of more than two edible units.

3.3 Future work: Non-linear cost of producing a common good

Above we focused on �nding the optimal common good production rate when the cost of

producing the common good was proportional to the production rate, while the bene�t was

a non-linear function. However if the cost vs. production rate did have an initial concav-

ity/convexity, e.g., if:

∆g = bene�t− cost (3.39)

= Bmax
(f (C ,D)σE )h

(f (C ,D)σE )h + Kh
− pcostσ

H
E (3.40)

and H 6= 1, then things, of course, depend on the exponent H of the cost curve as well as on

the bene�t function Hill factor, h. A convex cost curve (H > 1) could arise, for example, if

there is a start up cost associated with the production of a certain common good. Due to time

constraints, we have not yet examined how non-linearity of the cost curves in�uence the results

obtained above, but we plan to pursue this in the near future and expect to �nd similar results

where concavity of the cost curve (H < 1) would favor QS regulation.
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Figure 3.13: 'Convexity' as a function of increasing n (maximum polymer length). For each value

of n the N1 vs E curve was �tted to a sigmoid (even though this is actually not a sigmoidal function)

and the 'convexity' on the y-axis is simply the Hill-factor of this �t. The convexity, de�ned in this way,

forms an almost perfect straight line in a semi log coordinate system indicating that the functional form

is probably convexity = c1 log(c2n). Note that it is only for n = 2 that the Hill factor of the bene�t

function is equal to one. For n > 2 , the Hill-factor is greater than one and the bene�t function thus

convex.
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3.4 Take home messages

• The Hill-factor h of the bene�t function of a bacterial common good in�uences the nature

of the optimal production strategy.

• For h ≥ 1 there exists a critical population number CC below which common good

production will not be advantageous, and a critical di�usion constant DC above which

common good production will not be advantageous.

• When the bene�t function of a common good is convex (h > 1), having a production

strategy which di�ers from the optimal one comes at a greater cost than when it is

concave (h ≤ 1). This suggests that QS regulation of a common good might be more

crucial when the bene�t function is convex than when it is concave.

• An excreted enzyme which acts in the environment by degrading polymers into smaller

�edible� pieces will have a convex bene�t function if the polymers provided by the envi-

ronment are at least twice the edible size.
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Chapter 4

Spatial model of quorum sensing cooperators

4.1 Introduction

In the previous chapter, we found that microbes producing common goods with a convex bene�t

function can potentially gain a lot from producing the good, but that doing so at the wrong

time and at the wrong rate could be quite detrimental (see section 3.2.4). The optimal times

and rates of production depend on the population number and the di�usive properties of the

common good, and the medium that the bacteria inhabit. All of these are factors which could

change rapidly in the wild, even over time scales on the order of a bacterial generation. This

implies that relying on mutation and adaptation to slowly change a population's cooperative

strategy as the environment changes is probably not very e�cient. Ideally, each cell would use

continuous information about the social and di�usive properties of its environment in order to

take an informed decision about whether or not to commit to common good production. This

is presumably exactly the type of information which could be gained from quorum sensing (QS)

systems, and indeed many bacterial common goods are under QS regulation, as discussed in

section 3.1.3.

A 2D model of quorum sensing cooperators. In this chapter, we want to investigate

whether a quorum sensing mechanism, for di�erent bene�t function shapes, is in fact a prudent

way to regulate the expression of a common good in a more complex setting, and consequently

verify whether the results we obtained are valid beyond the 1D model of the previous chapter.

To do this we developed a simple individual-based stochastic 2D model of quorum sensing cells

capable of excreting a common good. This spatial model has the additional advantage that it

allows us to investigate how the presence of a non-producer, a cheat, in�uences the optimal

behavior.

93
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Di�erent types of cooperators. In addition, the model allows us to compare di�erent types

of cooperators, for example, �constitutive cooperators� (which produce common goods regard-

less of what the external situation is like) vs. �conditional cooperators� (which produce common

goods only when they receive a large QS signal from other cooperators). Two interesting pa-

rameters to study here, besides the bene�t function hill factor, are the common good production

rate, σE , and QS signal threshold that triggers common good production, tE . Moving around

the σE and tE parameter space we get more or less cooperative types, and more or less condi-

tional or communicative types. For example, tE = 0 describes a bacterium that produces the

common good as soon as it senses any non-zero amount of QS signal, i.e. it will e�ectively

be a �constitutive cooperator�. In contrast, a bacterium with a higher threshold would be a

�conditional cooperator�, that is, it only cooperates when it receives a su�ciently high QS signal

from other cooperators.

4.1.1 A map of this chapter

In section 4.2 we introduce the model, brie�y describe the simulations done and de�ne measures

for the �tness of the cooperators in the various simulation types.

In section 4.3.1, 4.3.2, 4.3.3 and 4.3.4 we examine exactly how the QS mechanism in the model

allows common good production to be conditioned by the number of cooperators and discuss

some of the problems which may be associated with obtaining information from a QS system.

In section 4.3.5 we describe the dynamics we observe when cooperators and cheats compete

on a growing front for di�erent parameter choices. In section 4.3.6 we assess the optimal

(tE ,σE )-strategy for situations with convex and concave bene�t functions, with and without

cheats. The optima found show that QS regulation is advantageous when the bene�t function

is convex but not necessarily that important when it is concave and thus agrees nicely with

the results obtained in chapter 3. In section 4.3.7 we discuss how the fact that QS regulation

can ensure cooperation turn o�, when cheats are threatening to take over, may be bene�cial

in di�erent contexts.

In sections 4.4.1, 4.4.2, 4.4.3 and 4.4.4 we propose ideas for future developments of this model

and in section 4.4.5 we outline experiments which we plan to conduct in order to test some of

the hypotheses generated by the models presented in chapters 3 and 4.
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4.2 Methods

4.2.1 Model

In our model, bacteria inhabit a 2D square lattice (most simulations were done with a grid

size of 200 × 200). Each site in the grid can be either empty or harboring a micro-colony of

104 cells. We assume the area of such a colony is roughly 100µm2, making the lattice step

size ∆x = 10−4m2. Time is incremented in discrete steps of constant size (∆t = 1min),

and in each time step these micro-colonies have a chance to expand into one of the four

nearest neighbors sites (the von Neumann neighborhood), with a growth rate of g (meaning

that the probability that a micro-colony will expand into an empty site in one time step is:
#empty neighbor sites

4 exp(−g∆t).) Even though the numbers used in the simulation (di�usion

constants, growth rates etc.) are based on the assumption that each site holds 104 identical

cells and not one - it is simpler to explain as if it were a model where there is just one cell per

site, so from here on we will refer to the micro colonies of 104 cells in each �lled site in the

grid as simply the �cells� of the model1.

Inducer and common good production. Each cell/microcolony in the system has certain

traits: it can produce a common good (henceforth referred to as the �enzyme�, E ) as well as a

signal molecule used by the QS system (henceforth referred to interchangeably as the �signal� or

�inducer�, I ). Both can di�use to other micro-colonies, with di�usion constants DE = 0.01 ∆x2

∆t

and DI = 0.1 ∆x2

∆t (i.e., inducer di�uses faster than enzyme), respectively, and both decay at a

rate γI = γE = 0.001 1
∆t . There exists a threshold tE such that when the inducer level is below

tE , the common good is not produced, and when the inducer level is above it, the common

good is produced at the �xed rate σE (see �g. 4.1). We also implement auto-induction of the

QS signal molecule a feature which has been observed in all QS systems that have been studied

[107]. Auto-induction works as follows in our model: when inducer level is below a threshold

value tI , the inducer is produced at a low basal rate σI ,basal ; when inducer level is above tI ,

the production rate is min [σI ,basal + α(I − tI ),σI ,max ], i.e. it grows linearly with I until it hits

a maximum value of σI ,max (see �g. 4.1; see section 4.3.2 for an explanation of this choice).

We add the additional rule that production rate of both inducer and enzyme are set to zero for

any cell that has no empty neighbouring sites, based on the assumption that cells which are

1The reason for choosing the parameters such that each site holds 10,000 cells was that we wished to have

have a total system size which would be visible on a macroscopic scale (here total system size is 1cm × 1cm

for a grid size of 100 × 100), so that it would later be easier to design agar plate experiments to test the

predictions of the model. However, doing simulations of a 10000 × 10000 cell grid was not feasible timewise.

Thus, we constructed this coarse-grained model, where each microcolony of 10,000 cells can be considered a

little well-mixed unit of the system.
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fully surrounded have zero nutrients and are thus deep into stationary phase where they do not

produce enzyme or inducer (Brook Peterson, U. Washington, personal communication).

All the above thresholds and other parameters are the same for all cells in the system.

Growth rate. In the absence of common goods, the cells replicate at a growth rate of gbasal =

0.0077∆t−1. With the chosen time-step size, this gives a generation time of ∼ 1h assuming

exponential growth. When the common good concentration E at a given lattice site is larger

than zero, the growth rate g of a cell at that site is given by

g = gbasal − pcostPE (I )− pI ,costPI (I ) + B(E ) (4.1)

where I is the inducer concentration at that site, PE (I ) is the inducer-dependent production

rate of the enzyme (a step function that jumps from 0 to σE at I = tI ; see �g. 4.1), pcostPE (I )

is the cost of common good production, PI (I ) is the auto-induced inducer production rate

(the piecewise linear function described earlier and in �g. 4.1), pI ,costPI is the cost of inducer

production, and B(E ) is the bene�t function. We will assume that the cost of signal molecule

production is negligible compared to the cost of common good production and thus set

pI ,cost = 0, (Brook Peterson, personal communication). Thus:

g = gbasal − pcostPE (I ) + B(E ) (4.2)

= gbasal − pcostPE (I ) + Bmax
[E ]h

[E ]h + Kh
(4.3)

(whenever g becomes negative when calculated from eq. 4.3, it is set to zero.) Only cells on

the edge of a growing colony have empty neighbouring sites to grow into, so e�ectively all cells

which are fully surrounded have a growth rate of zero. Space in this model is thus equivalent

to a resource, and the carrying capacity of one site is one cell.

4.2.2 Simulations

Growing alone. Initial conditions for simulation of cooperators growing alone was one single

cell placed in the middle of a grid of size 200 × 200 and with I = 0 and E = 0 everywhere.

Simulations where terminated at time Tend = 13000∆t (this was chosen to provide enough

time for cooperators in most simulations to turn on, i.e. start producing the common good,

and subsequently grow for a while in the presence of the common good). One simulation was

done for each combination of tE ∈ [100, 102.5] and σE ∈ [10−2, 102] with h = 0.5, and each

combination of tE ∈ [100, 102.5] and σE ∈ [10−3, 101] with h = 2.0. For all simulations, tI is

chosen to be max [0, tE − 50σI ,basal ∆t]. We made this somewhat arbitrary choice in order to

reduce the number of independent parameters.
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Growing with a cheat. In these simulations the �cheats� are identical to cooperators in all

aspects except they do not ever produce the common good or the QS signal molecule. The

initial condition in the simulations with cheats present was a single line of cells stretching across

the grid, with a repeating pattern of 5 cheats adjacent to 1 cooperator, and with I = 0 and

E = 0 everywhere. The grid size used was 100 × 100. This choice was made in order to test

whether cooperation with a given (σE , tE ) strategy was advantageous even for low starting

density and when surrounded by cheats. (We did runs with more random initial conditions but

the outcomes of such simulations vary greatly, so a completely ordered initial condition was

chosen to lessen the noise on the outcome). Simulations with cheats were run for the same

parameters as used in the simulations with only cooperators, but for each set of parameters the

results were averaged over 6 independent runs.

4.2.3 A measure for the �tness of a cooperator alone and with a cheat present

We wish to make statements about which (σE , tE )-strategy is optimal in our simulations. In

order to do this we need to de�ne a �tness of the cooperators so that we can compare simulations

with di�ering values of (σE , tE ), where all other parameters and conditions are constant. For the

simulations with cooperators growing alone, a good measure for �tness is simply the number of

cooperators present at Tend , because this number is e�ectively like integrating over the growth

rate from t = 0 to Tend .

Fitness when growing together with a cheat. For the simulations where cooperators are

growing in the presence of cheats, this is not su�cient because another important factor is the

number of cooperators present on the growing front at Tend since only these cells can give rise

to future progeny. We therefore decided to measure �tness of a cooperator in the presence

of a cheat by a weighted sum of the total number of cooperators and the number present on

the growing front at Tend (giving the total number of cooperators double weighage). This

way, both the integrated growth rate during t = 0 to t = Tend , as well as the future growth

prospects are considered.

Fitness depends on length of simulations. For both growth alone and with a cheat we

chose to evaluate �tness at Tend . This speci�c choice of simulation length was made since we

wanted all cooperator types with tI < tmax to turn on in the course of one simulation, and

grow for a decent while after turn on. In �g. 4.7 with h = 0.5 and growth alone we see �tness

go down slightly with increasing tE . This is due to the fact that a bene�t is to be had by

turning on even at one cell, so optimal turn on threshold is tE = 0, however the longer the

simulation the less the initial growth period, with the low rate of g = gbasal before turn on,
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Figure 4.1: QS signal and common good production curves. Production rate of QS signal (black)

and common good (red) by a cell as a function of the QS signal concentration at that grid site. Blue

curve is the best sigmoidal �t to the black curve, and has a Hill factor of h = 1.288. This is consistent

with real inducer expression data from experiments done with the two di�erent QS systems of P.

aeruginosa, which when �tted to sigmoidal functions, gave Hill-factors of ≈ 1.2 and ≈ 1.3, respectively

(see �g. 5.23 Appendix 4). tI is the threshold at which the QS signal starts positive feedback on itself

(auto-induction), and tE is the threshold where common good production is initiated at the constant

rate σE . We use di�erent values of tE and σE in di�erent simulations, but the di�erence between tE

and tI is kept constant, (tE − tI = 50σI ,basal ∆t). See section 4.2.1 for details of other parameter values.
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matters, because much more time is spend in the phase with high growth rate after turn on,

making the short time before turn almost negligible for our choice of Tend . The �tness of a

(σE , tE ) strategy when compared with others thus depends on the choice of Tend ; if we had

chosen a much smaller time span we would see a larger di�erence in �tness between tE high

and low, but also have that types with high thresholds would not have turned on at all during

our simulations.
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Figure 4.2: Average QS signal felt on growing edge saturates with increasing colony size.

Average signal concentration at the edge of a growing colony as a function of colony diameter, when

cells on the edge produce signal at the basal rate σI ,basal (i.e., there is no auto-induction). The four

di�erent red lines are from four di�erent runs. Inducer concentration saturates soon after the diameter

has reached the length l I∞ = 2
√

DI

γI
= 2

√
0.1 ∆x2

∆t

0.001∆t−1 = 20∆x , marked with a black arrow. See section

4.2.1 for parameter values used.

4.3 Results and Discussion

4.3.1 Quorum sensing can ensure turn on at a speci�c colony size

As a circular colony grows while excreting inducer molecules at a constant rate, the concen-

tration of inducer that a cell on the growing edge feels increases with time. When the size of

the colony is such that the length of the diameter is much longer than the average distance an

inducer molecule before decaying, l I∞ = 2
√

DI
γI
, then for an edge cell the growing front is e�ec-

tively like an in�nitely long line and the inducer concentration stops growing with the colony

size (see �g. 4.2). For the parameters we use l I∞ = 20∆x . This saturating level of inducer

of course depends on the production rate of the inducer. We denote by tmax the saturating

level of inducer achieved when the inducer production rate is σI ,basal . Clearly, if the threshold
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tI for auto-inducer feedback (the point where inducer production rate starts to increase linearly

with inducer concentration) is above this level, tmax , then the system will never auto-induce

and never start enzyme production, because tE > tI . All cooperator types with σE = 0 and/or

induction threshold tI > tmax will thus have the same �tness as cheats.

Enzyme production turn on. If the threshold value tI is lower than tmax , then at some

colony size the edge cells will auto-induce (the QS signal positive feedback will start) and the

inducer concentration will start rising beyond tI . For the parameter values we examine, the

inducer concentration typically crosses tE very soon after the auto-induction starts. Thus, any

threshold tE roughly corresponds to a speci�c colony size (or more accurately an approximate

colony edge length � assuming that the edge is relatively smooth) at which common good

production will commence. In practice, the exact population number at which turn on, i.e. the

start of common good production, happens can vary since the roughness of the growing front

does matter for the concentration which the edge cells feel, but usually once the auto-induction

starts in one spot on the edge it quickly spreads and insures that all cells in the vicinity turn

on at roughly the same time (this is to be expected when positive feedback is combined with

di�usion of the inducer).

4.3.2 Hysteresis due to the positive feedback in quorum sensing

When the size of a colony is reduced the cells will turn o�, i.e. stop producing the common

good, at some speci�c size (unless tE is very low) but this size/length will be smaller than the

size/length for turn on, for the parameters we examine. This hysteretic e�ect is also due to

the positive feedback of the QS signal on itself; the steeper the inducer production curve (see

�g. 4.1), the more the hysteresis ([45] also speak about QS hysteretic response to population

size). A very shallow slope will, on the other hand, make the cells turn on in a much less

collective manner, which in some situations could be perceived as disadvantageous because it

would allow mutants with a slightly higher turn on threshold to transiently cheat on earlier

starters. Assuming that neither strong hysteresis with respect to changes in colony size nor

very non-collective turn on behavior is desirable, we have a trade o� situation that makes an

intermediate slope of the production curve optimal. The Hill factor of real production curves are

usually around one [67; 129; 151]. We chose to follow the experiments by Brook Peterson, U.

Washington, shown in Appendix 4, which yielded a sigmoidal production curve with Hill factors

of 1.2 and 1.3. For simplicity, we approximated such a sigmoid with a piecewise linear function

(see �g. 4.1). The slope of the linear increase of inducer production, above the threshold tI ,

of this function falls nicely between the extremes of strong hysteresis and a non-collective turn

on behavior.
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Figure 4.3: Screen shots of common good producer growing alone. Yellow indicates sites with

cooperating bacteria. Red indicate sites with cheats. Shades of green signify concentration of inducer

in empty grid sites with darker shades corresponding to higher concentration. Blue shows bacteria that

have turned on, i.e. are producing the common good. White shows grid sites that contain bacteria and

where the concentration of the common good is above K (the concentration where the bene�t function

is half of its maximum). 1: Colony is growing with the basal rate, gbasal ; QS signal is being produced at

the basal rate, σI ,basal , and is slowly building up. 2: Shortly after auto-induction has commenced; most

edge cells have started common good production, but the level of the common good in the environment

is still relatively low. 3: Colony is growing at highest possible rate; all edge cells are committed to

producing the common good and its concentration at the edge has reached a high level.
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4.3.3 Signal molecule properties and sensitivity range

As explained earlier, the inducer concentration vs. colony size will be a saturating function

(both with or without auto-induction). Above a certain colony size, therefore, the inducer

concentration will change very little, i.e., the cells will no longer be sensitive to changes in

colony size. The range over which the QS mechanism is sensitive to changes in colony size

is thus dependent on characteristic length of inducer di�usion l I∞ = 2
√

DI
γI
. Smaller DI , or

larger γI , results in a smaller sensitive range. It has been suggested that one reason for inducer

excretion is �testing the waters�: assessing the concentration of an excreted product using cheap

expendable molecules, before deciding to produce the, presumably more expensive, common

good [101]. If the sole purpose of the inducer was to serve as a dummy for a speci�c common

good molecule, then it seems the most appropriate choice would be an inducer with roughly the

same di�usion constant and degradation rate as that molecule (although it might be argued that

it would be hard to produce something as large as the average extracellular enzyme cheaply). A

quorum sensing mechanism is however usually regulating hundreds of di�erent genes, all with

di�erent products, many of which have di�erent sizes and di�erent turn-on thresholds (which

is the case for e.g. Pseudomonas aeruginosa see [111]). Assuming that these genes need to be

turned on over a wide range of di�erent population densities, it would make most sense to have

an inducer with high di�usion constant and low degradation rate in order to have a mechanism

which was sensitive over a wide range of colony sizes. This, it turns out, is exactly what we see

for most QS systems: small inducer molecules with long lifetimes.

4.3.4 Di�culties getting information with a system that has positive feedback

It seems that if a bacterium is using the inducer molecule to assess the cell density/colony size,

the correspondence between the inducer concentration and the colony size should be relatively

independent of other factors, like for example the growth rate of the bacteria. However, when

we run simulations where bacteria grow with a constant rate, and there is no common good

production, but the inducer is produced with auto-induction possible, then we �nd that the

inducer concentration vs. colony size function depends a lot on the value of the growth rate

of the cells (see �g. 4.4). These di�erences for di�erent growth rates are due to the fact

that the inducer concentration will not reach (quasi-)equilibrium at intermediate colony sizes

if the timescales of di�usion and decay of the inducer are not much faster than the growth

rate (at a very low growth rate the system would reach equilibrium after each new cell was

added). Speci�cally, the di�erences for di�erent growth rates are greatest in the parts of

the curve where the system feels positive feedback. In this feedback regime, it is therefore

di�cult for a cell to extract reliable information about the colony size just from the inducer
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Figure 4.4: Inducer concentration as a function of colony diameter varies with growth rate.

Average inducer concentration felt by a cell on the growing edge of a colony for three di�erent constant

growth rates g ′ ∈ [0.5gbasal , gbasal , 2.0gbasal ]. Autoinduction threshold tI is marked by a full black line.

We see that before autoinduction starts a certain colony diameter corresponds roughly to a certain

inducer conc. even for di�erent growth rates while after the autoinduction start a certain colony

diameter corresponds to quite di�erent inducer concentrations for the three di�erent growth rates.
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Figure 4.5: Figure caption on following page.
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Figure 4.5: Examples of cooperator and cheat dynamics on a growing front. Yellow indicates

sites with bacteria. Red indicate sites with cheats. Shades of green signify concentration of inducer in

empty grid sites with darker shades corresponding to higher concentration. Blue shows bacteria that

have turned on, i.e. are producing the common good. White shows grid sites that contain bacteria and

where the concentration of the common good above K (the concentration where the bene�t function

is half of its maximum). Parameters: (σE = 3.0, tE = 80, h = 0.5). This simulation started with a

vertical line of cooperators and cheats (as described in section 4.2.1) on the left edge of the grid, and

all other sites empty. As time progresses the growing cell fronts move mainly from left to right, and

the snapshot shown is at a late time when the fronts have almost reached the right edge of the grid.

A: Example of two cooperator segments joining and cutting of a segment of cheats (this happened

before common good production had been initiated and was thus a random event; see section 4.3.5).

B: Two cooperator segments join cutting o� a cheat segment. The top segment had already reached

critical segment length and started common good production - the lower segment joins in and starts

production (see section 4.3.5). C: Cheats are feeling the bene�t from the common good and are

growing slightly faster than the cooperators, thus reducing the cooperator segment length. Around the

marked line the cooperators stop common good production because they have reached a su�ciently

low segment length that the QS signal level falls below the threshold, tE (see section 4.3.5). D: After

C: competition between the cooperators and the surrounding cheats is completely neutral. Random

movement of the points where cooperator and cheat segments meet bring the cooperators above the

critical length where common good production starts again. When common good production starts it

is at �rst only in the middle of the cooperator segment and thus the cheats will not initially feel any

bene�t and the cooperator segment starts to �bulge out� and grow sideways with respect to the general

direction of growth thus cutting o� cheats and causing the cooperator segment to increase in size (see

section 4.3.5). E: After a while the cheats start to feel the bene�t from the common good and they

once, more, start to reduce the cooperator segment length (see section 4.3.5). F: Here a cooperator

segment was cut o� before common good production was initiated due to the random movement of

the points where cooperator and cheat segments meet.
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concentration. It is thus a bit of a puzzle why real QS systems, whose purpose is supposedly

to gauge information about colony size/density, contain such positive feedback loops. This

suggests that QS systems provide reliable information about colony sizes only during the initial

buildup of inducer concentration due to the near constant basal production rate of inducer

(variations in growth rate at this stage do not a�ect the inducer concentration vs. colony size

function as drastically), while the feedback loop that sets in at higher concentrations is just

there to �nalize the decision and force all other cells to synchronize the timing of their turning

on, avoiding situations where cells with slightly higher thresholds can transiently cheat on cells

with slightly lower thresholds.

4.3.5 Cooperators and cheats competing on a growing front

When cooperators and cheats (which produce neither the QS signal nor the common good) are

growing next to each other on a 2D plane the actual competition takes place at the domain

boundaries on a one dimensional expanding front (see �g. 4.5). Here, stochastic events

can have dramatic e�ects because a sequence of random events that result in one cell type

outgrowing and blocking just a few cells of the other type at an early stage will keep the latter

from ever producing progeny. This process repeated many times produces segregated domains

each containing only one type of cells (this kind of front growth dynamics has been studied

in depth for cell types that have equal �tness in [42]). When the segments of a growth front

containing cooperators reaches su�cient length for auto induction to set in and common good

production to start, the cooperators can gain a growth advantage and their segments of the

front will advance faster and start to �pucker out�. However, after a little while, the common

good will start to spill over and aid the growth of defectors in the neighboring sector. Defectors

on the very edge of a cooperator segment can potentially get full bene�t from the common

good while paying no cost, which gives them an even higher growth rate than the cooperators.

The victor of this race is decided by subtle factors like exactly how much common good spills

over the edge to the defector (decided by the di�usion constant of the common good and the

production rate σE ) and the cost of common good production compared to the bene�t.

A high quorum sensing threshold can ensure increased privatization of the common

good. The turn-on threshold matters for how accessible the common good is to the cheat; for

a very high threshold often only cells in the middle of the cooperator segment turn on, meaning

that where the cooperator segment meets the cheat segment, not much common good will be

present. This shows that a high threshold can ensure a higher degree of privatization of the

common good by facilitating production only at central regions of the cooperator front that are

away from cheats (see �g. 4.6).
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Figure 4.6: A high QS threshold can ensure privatization of the common good by facilitating

production only at central cells on a cooperator front segment. Yellow indicates sites with

bacteria. Red indicate sites with cheats. Shades of green signify concentration of inducer in empty grid

sites with darker shades corresponding to higher concentration. Blue shows bacteria that have turned

on, i.e. are producing the common good. White shows grid sites that contain bacteria and where the

concentration of the common good above K (the concentration where the bene�t function is half of

its maximum). A: Parameters used: h = 2.0, tE = 90, σE = 5.0. The high threshold ensures that

common good is not produced where cooperator segments meets cheat segments. B: Parameters used:

h = 2.0, tE = 50, σE = 5.0. For this lower threshold, common good production extends all the way

to the end of the cooperator segment and as a result nearby cheats get a share of the bene�t. (See

section 4.3.5).
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Figure 4.7: Performance of (σE , tE )-strategies for convex and concave bene�t functions, with

and without cheats present: Fitness as a function of the production rate of common good σE and the

induction threshold tE , for bene�t functions with hill factor h = 0.5 and h = 2.0, and for growth alone

and in the presence of a cheat. In each plot �tness has been normalized with respect to the average

performance of a cooperator from simulations that are completely identical to these simulations, except

that the cooperator growth rate is �xed to gbasal , i.e. a �non-producer�. Note that the y-axis of the

h = 0.5 plots show the range σE ∈ [10−3, 101] while the y-axis of the h = 2.0 plots shows the range

σE ∈ [10−2, 102]. For both Hill factor h = 0.5 and h = 2.0 the potential for performing better than

neutral (normalized �tness > 1) is greater in the presence of a cheat. The optimal production rate,

σopt
E , is much greater for h = 2.0 than for h = 0.5 both with and without the cheat. Both for h = 2.0

and h = 0.5 the optimal production rate, σopt
E , appears to be a little lower when a cheat is present than

when alone. For h = 2.0, having too low an induction threshold can come at a great cost, while for

h = 0.5 the �tness appears to be almost independent of the threshold. For h = 0.5 producing common

good at very low rates still gives a better performance than neutral, while for h = 2.0 there is a range

of low production rates which will make performance worse than neutral. These observations are all

consistent with the analytical results found in section 3.2.3.
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Figure 4.8: Dealing with a cheat when the bene�t function is concave (h < 1) does not require

QS regulation of common good. Yellow indicates sites with bacteria. Red indicate sites with cheats.

Shades of green signify concentration of inducer in empty grid sites with darker shades corresponding to

higher concentration. Blue shows bacteria that have turned on, i.e. are producing the common good.

White shows grid sites that contain bacteria and where the concentration of the common good above

K (the concentration where the bene�t function is half of its maximum). Color map shows the �tness

at t = Tend , as a function of tE and σE . Initial conditions were a single line of cells on the left edge of

the grid, arranged in a repeating pattern of 5 cheats, 1 cooperator, as described in section 4.2.1. A - G:

Screen shots from simulations with di�erent (σE , tE ) parameters (these are typical outcomes but note

that individual simulation can vary a great deal), taken at t = 15000∆t. Because very small thresholds

tE give the same �tness bene�t to cooperators as large thresholds, QS regulation is not really required

in this case to deal with cheats.
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Figure 4.9: Dealing with a cheat when the bene�t function is convex (h > 1) does require QS

regulation of common good: Yellow indicates sites with bacteria. Red indicate sites with cheats.

Shades of green signify concentration of inducer in empty grid sites with darker shades corresponding to

higher concentration. Blue shows bacteria that have turned on, i.e. are producing the common good.

White shows grid sites that contain bacteria and where the concentration of the common good above

K (the concentration where the bene�t function is half of its maximum). Color map shows the �tness

at t = Tend , as a function of tE and σE . Initial conditions were a single line of cells on the left edge

of the grid, arranged in a repeating pattern of 5 cheats, 1 cooperator, as described in section 4.2.1. A

- G: Screen shots from simulations with di�erent (σE , tE ) parameters (these are typical outcomes but

note that individual simulation can vary a great deal), taken at t = 15000∆t. In this case, a range of

high tE values (along with a speci�c range of σE values) does provide a much bigger �tness bene�t to

cooperators than having a low threshold tE . Thus, compared to the case of the concave bene�t function

in the previous �gure, here QS regulation can play an important role in competition with cheats.
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4.3.6 The optimal strategy for common good production depends crucially on the

shape of the bene�t function

Perhaps the most dramatic feature that hits the eye when looking at �gure 4.7 is how radically

di�erent the various (σE , tE ) strategies perform when all things are kept equal except the bene�t

function Hill-factor. Turn-on at low thresholds comes with an advantage when h = 0.5 and

at a great disadvantage when h = 2.0, and the optimal rate of production is much higher for

h = 2.0 than for h = 0.5. We also note that when h = 0.5, producing at less than the optimal

rate comes with an advantage compared to not producing at all, whereas when h = 2.0 it can

be worse to produce a little less than at the optimal rate than to not produce the common

good at all. These observations are consistent with the analytical results derived in the last

chapter from the simple 1D model.

The region in the σE −tE space where cooperators have the highest �tness extends all they way

down to vanishing low thresholds (actually the �tness is highest for tE = 0; this is true both for

simulations with and without cheats). Thus, there seems to be no reason in this situation to

have a relatively costly QS mechanism regulating the expression of the common good. Perhaps

it is not even �tting to call this type of common good excretion cooperation because it clearly

bene�ts even single cells to produce the common good even when surrounded by cheats. For

h = 2.0, on the other hand, having a QS system seems to be extremely advantageous, because

here it seems the �ne tuning of the optimal production rate and the exact timing of turn-on

matters profoundly, both with and without cheats present.

4.3.7 Coexistence of cooperators and cheats: Quorum sensing as an emergency brake

In real ecosystems, coexistence of cooperators and cheats is often observed [144; 105] and it

is debated in the ecology literature [32] what mechanism allows such coexistence to happen.

It is even argued in some instances that the presence of a (closely related) cheat could be an

advantage to a cooperator [73]. Figure 4.13 shows that, in our model with for h = 0.5, there

is only a small region of parameter space (approximately at tE ∈ [30, 80] and σE ∈ [2, 3])

where both cheats and cooperators are present at the growing front at time Tend , and the total

number of cooperators plus cheats summed over the entire grid is relatively high.

Emergency brake. In this region, the cooperators are producing common good at a rate

higher than the optimal rate for growth alone (σopt
E ,alone = 0.7± 0.04), which makes them grow

faster than the cheats but not as fast as is possible for them at lower production rates. At the

same time, because the cooperators are producing at a relatively high rate, enough common

good reaches the cheats by di�usion to signi�cantly boost their growth rate. This causes the
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Figure 4.10: Optimal common good production rate when cheats are present and when growing

alone for h = 0.5. Full curves show average �tness (normalized with respect to the maximum), as a

function of σE , for growth alone (blue) and growth together with a cheat (red), for simulations with

bene�t function having hill factor h = 0.5. The curves are averages of cross sections (faded curves

in the background) of the surfaces shown in �g.4.7 between induction threshold, tE , 1 and 10. This

interval was chosen because between these values the �tness seems to be more or less independent of the

induction threshold for both growth with and without a cheat. Dashed blue and red lines show �tness

of a non-producer for reference. We see that the pro�le of the normalized �tness as a function of the

production rate is very di�erent for the two situations. E.g. the optimal production rate when growing

among cheats (σopt
E ,cheats = 0.20 ± 0.1) is more than three times smaller than the optimal production

rate when growing alone (σopt
E ,alone = 0.75±0.04), and the peak of the distribution is much broader with

cheats present than without. We also see that the �tness peak is roughly �ve times higher than the

neutral level for the simulations with cheats compared to simulations with cooperators growing alone,

for which the peak is only roughly three times larger than the neutral level.
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Figure 4.11: Optimal common good production rate when cheats are present and when growing

alone for h = 2.0. Full curves show average �tness (normalized with respect to the maximum), as a

function of σE , for growth alone (blue) and growth together with a cheat (red) for simulations with

bene�t function having hill factor h = 2.0. The curves are averages of cross sections (faded curves in

the background) of the surfaces shown in �g. 4.7 between induction threshold, tE , 10 and 80 for growth

alone, and, 30 and 80 for growth with a cheat. These intervals were chosen because between these

values the �tness seems to be more or less independent of the induction threshold. Dashed blue and

red lines show �tness of a non-producer for reference. In this case, the optimal production rate when

growing among cheats (σopt
E ,cheats = 3.30 ± 0.82) is slightly smaller than the optimal production rate

when growing alone (σopt
E ,alone = 5.30 ± 0.66), and the peak of the distribution is only slightly broader

for growth alone than with cheats present. We also see that the �tness peak is roughly three times

higher than the neutral level for the simulations with cheats, and only roughly two times larger than

the neutral level for simulations with cooperators growing alone.
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cheats to grow even faster than the cooperators at the parts of the front where cooperator and

cheat segments meet, making them �bulge out� which then cuts o� the cooperators and reduces

the length of their segment on the front. When that segment length becomes smaller than

a critical value, the cooperators will shut o� common good production thereby neutralizing

the competition with the cheats. For the cooperators to have a good chance of avoiding

extinction, this critical segment length needs to be relatively large, i.e. the threshold tE needs

to be relatively high � in our simulations larger than around 30σI ,basal ∆t. Here, the QS

system plays the role of an �emergency brake�2 which stops common good production when

the cooperator population on the growth front is reducing 3. At su�ciently high production

rates (σE > 3σI ,basal ∆t) even this emergency brake is not enough to save the cooperators

from extinction because there is so much common good still present and reaching the cheats

at the point of turn-o� that they grow too fast and usually manage to completely cut o� the

cooperators.

Stability of cooperator and cheat coexistence. While in our model there thus do exist

parameter values where cheats and cooperators can coexist, if one is looking over evolutionary

timescales our model with h = 0.5 does not provide any reason for the system to remain with the

set of parameters that allow coexistence. As our model provides no incentive for the cooperator

to keep the cheat around, nothing stops a cooperator from evolving to a lower production rate

for the common good or eliminating QS regulation of common good production, because with

h = 0.5 production of common good right from the very start (i.e. tE = 0) is the best strategy

for the cooperators (see section 4.3.6 and �g. 4.7). However, when h = 2.0, the parameter

sets which allow coexistence of cheats and cooperators may be evolutionarily stable, because

lowering tE or σE too much will drastically reduce the �tness of the cooperator (see section

4.3.6 and �g. 4.7).

2Ref. [77] shows that such an emergency brake mechanism can work in a well-mixed system also.
3Note that once the emergency brake kicks in and common good production stops, cooperators and cheats

have equal growth rates. Therefore, whether the cooperator segment then shrinks further or starts growing

instead is random which is possibly why very di�erent outcomes are seen in the insert of �g. 4.13. The chance

of avoiding extinction of the cooperators is evidently higher the larger the critical segment length at which the

emergency brake kicks in, which means it would be better for a cooperator to have higher tE . However, at

su�ciently large tE cooperators never turn on, so we are back to the case where cooperators and cheats have

equal �tness and the growth dynamics is random. In that case, in the long run for a �nite system one or the

other cell type will eventually go extinct [42].
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Figure 4.12: Growth with a cheat when h = 0.5. Large plot is the same as in �g. 4.7, bottom

right panel. The zoom-in shows the range: tE ∈ [0, 120] and σE ∈ [1, 9], on linear axes. The plot

shows that there is a slight tendency for the cooperators to do better for relatively higher production

rates when the threshold is higher. This is due to the fact that at these thresholds a cooperator will

turn o� common good production when its segment on the growing front is reduced below a critical

length. Once common good is turned o�, competition with the advancing cheat becomes completely

neutral and the cooperators then have a chance of randomly reaching a larger segment length again.

In contrast, if they had kept on producing they would have faced a high risk of extinction.

4.4 Future work

4.4.1 2D model with a constant number of cells

Our analytical results suggest that cells should turn-on at a critical di�usion constant, Dc ,

particularly when h > 1. We would like to test this in 2D simulations. For this, we would need

to modify the simulation to allow us to keep cell number constant while varying the di�usion

constant. This could be done by letting the cells grow but at the same time removing cells

from the system at the same rate as they appear.
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Figure 4.13: Cooperators and cheats coexisting while at the same time reaching high numbers

requires a turn-o� threshold and non-privatization of the common good. In this plot colors

depict the value of a quantity, A, averaged over six simulations for each choice of (σE , tE ). Here

A is determined by �rst calculating (1/3)(fraction of simulations where both cooperators and cheats

are still present at the growing front at Tend)+(2/3)(total number of cheats + cooperators at Tend ,

normalized by its maximum value), and then normalizing by the value obtained by the same calculation

for simulations where cooperators grow at a �xed rate of gbasal (i.e. they are non-producers). The plot

shows that only when σE and tE are su�ciently high (the parameter region shown in the zoomed-in

inset) can the value of A become relatively large, i.e dark red. That is, only for these parameters

can you get coexistence of cheats and cooperators on the front along with a relatively large total (i.e.,

summing over the entire grid) population of cells. In section 4.3.7 we explain that the high tE is required

so that the cooperators turn-o� common good production before their numbers on the growth front

get too small, and the high σE is required to allow cheats to get the bene�t of the common good

at least some of the time. The somewhat arbitrary looking weighted sum in the calculation of A was

chosen simply to obtain a quantity that clearly distinguishes the zoomed-in region, where cheats and

cooperators coexist with a large total population, from the region with a low common good production

rate (σE ∈ [10−3, 10−2]) where cheats and cooperators coexist but the total cell population is quite

low at Tend .
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4.4.2 Cooperator vs. cooperators

Here we have concentrated on investigating how di�erent (σE , tE ) strategies did, alone and in

the presence of cheats (i.e. a cell type that produces neither common good nor QS signal). It

would be interesting to examine how two di�erent (σE , tE ) strategies would perform in each

other's presence. If we assumed that both types produced and responded to the same type

of QS signal, we would get a situation where one type with a high threshold could entice

another low threshold type to produce common good even when at too low a density. It has

been proposed that the strong feedback which the inducer has on its own production serves

exactly to avoid exploitation of this kind. The argument is that, once the feedback sets in,

the concentration of inducer will rise so fast in the system that the exact threshold value will

not matter much for the timing of common good production initiation. If this holds, one QS

type will only be able to cheat another, by delaying production, if their respective thresholds

are very di�erent. An important parameter would thus be the slope of the inducer production

curve as a function of inducer concentration (see �g. 4.1). A lower slope would make this kind

of �slightly higher threshold cheating� more e�ective.

4.4.3 Other kinds of cheats

The only kind of cheat we have studied so far is one which produces neither the common good

nor the QS signal. It is possible to construct a mutant bacterium which produces and responds

to the QS signal, but does not produce one of the common goods under QS regulation (for

example by mutating the promoter of that speci�c gene). Such a �lying cheat� could potentially

fool cooperators into turning on common good production earlier than they would in the absence

of the cheat. Another type of cheat can be created by knocking out the QS signal receptors.

Such �signal blind� cheats, as well as the above �lying cheats�, do occur in real microbial

systems [105]. Interestingly, �signal blind� cheats appear to do better than other cheats in

pairwise competition with cooperators (based on the experiments of Sarah Hammerlund with

P. aeruginosa, Ben Kerr lab, U. Washington; personal communication). In the case of the

�lying cheat�, this is probably because it turns on many other potentially costly QS regulated

genes, whereas the �signal blind� mutant will not turn on any of the QS regulated genes (in

P. aeruginosa 6% of the entire genome is QS regulated [54; 105]). Our model can easily be

extended to include these and other varieties of cheats.

4.4.4 Varying initial ratio of cooperators to cheats

We have only looked at one �xed initial ratio of cheats to cooperators but obviously it would be

interesting to determine optimal (σE , tE )-strategies when averaged over simulations with dif-
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ferent starting ratios. It is possible that we would �nd an e�ect like Simpson's paradox [116; 4]

when averaging over di�erent initial ratios. That is, it could be that even when cooperator num-

bers decrease because they are outcompeted by cheats present in the same colony/simulation

as them, the total number of cooperators averaged over a large ensemble of systems (with dif-

ferent initial cooperator/cheat ratios) could still go up globally and outperform cheats, provided

cooperator+cheat colonies perform better on average than cheat-alone colonies.

4.4.5 Experiments

Quorum sensing regulated common good production in Pseudomonas aeruginosa. An

experimental collaborator, Brook Peterson (Matthew Parsek's lab at U. Washington), has en-

gineered a set of Pseudomonas aeruginosa strains and mutants which will be used to test the

results we obtained above.

Pseudomonas aeruginosa are found in diverse terrestrial and aquatic environments, but has

the ability to transition from its environmental habitats and become an opportunistic pathogen

in humans. It causes severe infections by forming thick bio�lms in the lungs of in immuno-

compromised individuals and patients with cystic �brosis. About 6% of P. aeruginosa genes

are QS regulated [54; 105] and among these are genes which code for virulence factors such

as extracellular enzymes (e.g. the protease LasB , see �g. 4.14 for a schematic �gure of one

of the two QS systems in P. aeruginosa) that provide nutrients for the bacteria by degrading

host lung tissue [106]. Due to the QS regulation, virulence factor production is �turned on�

only when the bacteria have reached a su�ciently high density to successfully overcome the

patient's immune system [106]. Wild type P. aeruginosa is thus an example of a QS regulated

cooperator, or what we called a �conditional cooperator� in section 4.1. Mutations which knock

out production of either QS receptor molecules or common goods will transform a wild type

conditional cooperator into a cheat. Di�erent kinds of cheats who bene�t from the common

goods (e.g. LasB) without incurring the cost of production have been observed to arise in

natural systems, for example in isolates from the lungs of cystic �brosis patients. A higher fre-

quency of cheats has been shown to result in a less severe infection for the patient [105; 106].

These properties, and the fact that knowledge of cooperator/cheat dynamics of this bacteria

might be medically relevant, make P. aeruginosa an ideal and interesting organism for studying

cooperation and communication in microbes.

P. aeruginosa mutants. Brook Peterson has enginered mutants which in an experimental

setting could play the roles of a signal-blind cheat and constitutive cooperator, respectively, see

�g. 4.15. The signal blind cheat has a mutation in both signal-receptor genes (∆lasRrhlR),

and the constitutive cooperator is a ∆lasBaprA knock-out with an additional gene lasB put
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lasIlasR

lasB

p(LasR) p(LasI)

p(LasB)

LasI

LasR

LasB

Casein

Figure 4.14: Schematic of one of then two quorum sensing system in wild type P. aeruginosa

Signal molecules (green triangles) are encoded by the lasI gene, and receptor molecules (red `pac-man'

shapes) by the lasR gene. The signal-receptor complex, dimerized, acts as a transcription factor that

promotes expression of the lasB gene, which encodes for a protease (blue �ower shapes). The proteases

break down polymers (yellow) which can be imported and metabolized by the cell when su�ciently

degraded.
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ΔlasBaprA 
+ pBAD::
lasB +
arabinose

ΔlasBaprA 
+ pBAD::
lasB 

PAO1, (wild type) ΔlasRrhlR, (QS⁻)

Constitutive cooperator

Cooperator Cheat

lasB
p(BAD)

araC

A

B

C

Figure 4.15: P. aeruginosa mutants. A: Photo of the cooperator (P. aeruginosa wild type) (left) and

signal-blind cheat (∆lasRrhlR QS mutant) (right) plated on skim milk agar. The wild type produces

protease that dissolves the milk protein (giving a large halo around the X-shaped colony), while the

cheater lacks production of QS-dependent proteases (the small halo is due to low baseline protease

production). B: Constitutive cooperator: a P. aeruginosa ∆lasBaprA knock-out with an additional

lasB gene put under regulation of the arabinose-inducible araBAD promoter (see C). Picture shows

the constitutive cooperator plated on skim milk agar with (right) and without (left) arabinose added.

When arabinose is present the constitutive cooperator expresses lasB regardless of whether QS signal

is high or low. C: In the constitutive cooperator, lasB is placed under regulation of the arabinose-

inducible araBAD promoter p(BAD). Photos and P. aeruginosa mutants engineered by Brook Peterson

at Matthew Parsek's lab, U. Washington, Seattle.
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under regulation of an arabinose-inducible araBAD promoter. The latter strain thus produces

the common good LasB at a constant rate independent of QS signals, and we can control

that rate by controlling the arabinose level. Other types of cheats were also constructed but

experiments done by my collaborator Sarah Hammerlund (Ben Kerr's lab at U. Washington)

showed that the mutant lacking function of both signal-receptor (∆lasRrhlR) genes was the

most e�cient cheat, therefore initial experiments will focus on this signal-blind cheat.

Measuring the shape of the bene�t function. The bene�t function for LasB can be

quanti�ed by measuring the growth rates of signal-blind cheats (the ∆lasRrhlR mutants) in a

chemostat, as a function of the concentration of externally added LasB .

It would be interesting to automate this type of measurement so that it could be done for a wide

range of di�erent molecules from di�erent bacteria species, which are thought to be common

goods. The shape/convexity of the measured bene�t functions could then be compared with

already known information about whether the molecules are QS regulated or not, to determine

whether convex bene�t functions are typical for QS regulated common goods.

Manipulating the shape of the bene�t function. The way LasB works provides a way for

us to manipulate the convexity of its bene�t function. When provided solely with a diet of casein

polymers, P. aeruginosa growth depends on the production of LasB (and similar proteases) that

degrade the casein polymers into smaller �edible� bits, which can be transported over the cell

membrane and metabolized. This is what inspired our calculation, in section 3.2.6, which

showed that the bene�t function becomes convex if the maximum length of the polymers in

the environment is greater than 2 �edible units�4. That calculation suggests that one way

of experimentally tweaking the bene�t function would thus be to pre-digest casein polymers

to varying degrees before providing them to P. aeruginosa. We will implement this, �rst to

test our prediction from section 3.2.6 that, even if the exact shape of the bene�t function is

not sigmoidal, media with undigested casein would result in a more convex bene�t function

than media with pre-digested casein. If that is true, then mutants grown along with wild-type

P. aeruginosa in these media will be used to test our results in sections 4.3.6 regarding the

importance of the convexity of the bene�t function for QS regulation.

4One �edible unit� is de�ned as the maximum polymer length which can be transported over the cell mem-

brane.
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Figure 4.16: Results of a competition between cooperator and cheat in an unstructured envi-

ronment. Here, the cooperator was PAO1 (P. aeruginosa wild type) and the cheat was the ∆lasRrhlR

�signal blind� QS mutant. In the experiment, the cheat started out at a lower population size than

the cooperator, but after 24 hours it ended up with a higher population. The average �tness of the

cheat relative to the cooperator (i.e., the ratio of growth rates) was 1.28. Other kinds of cheats can

be engineered, e.g. by knocking out genes of either lasRrhlR (receptor genes), lasIrhlI (inducer genes)

or lasBaprA (protease genes), but experiments by Sarah Hammerlund (Ben Kerr lab, U. Washington)

showed that the mutant lacking both signal-receptor (∆lasRrhlR) genes was the strongest cheat.
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4.4.6 Experimental plan

The �rst experiments we plan are:

• Grow signal-blind cheat in chemostat with undigested casein as the only food source, and

di�erent amounts of externally added LasB , in order to measure the bene�t function.

• Repeat the same experiment with casein polymers predigested to di�erent levels, in order

to measure the change in convexity of the bene�t function.

• Grow wild type P. aeruginosa in well-mixed �asks and petri dishes with varying agar

concentrations, to compare with our results for (conditional) cooperators growing alone.

The varying agar concentration e�ectively varies the degree of spatial structure present

because it will, for example, a�ect the di�usion constant of the common good LasB .

• Repeat the same experiment with the constitutive cooperator mutant, with di�erent levels

of arabinose, in order to set a baseline for normalization of measurements, and to compare

with our results for non-producers growing alone.

• Repeat the above experiments with the signal-blind cheat grown in competition with

wild-type conditional cooperators, to compare with our results on cooperator+cheat pop-

ulations. We will try to generate initial conditions similar to those used in the simulations

by inoculating the bacteria on a line using a razor edge (as in [42]), but we can also

easily redo our simulations using whatever other initial conditions we �nd easy to set up

experimentally.

Further in the future, we think it would be neat to engineer �uorescent versions of the three

types of P. aeruginosa mentioned above and visually monitor competition and growing front

dynamics with an experimental setup like the one used in [42], in order to determine if it

resembles the dynamics observed in the simulations.

Main predictions. Fig. 4.17 show the expected outcomes of di�erent experiments where

spatial structure, bene�t function convexity, QS properties and the presence/absence of a

cheat is being varied. The most important prediction is that the wild-type cooperator will

do better than the constitutive cooperator when grown on undigested casein (both with and

without cheat), while a constitutive cooperator will do just as well or better than a conditional

cooperator when grown alone on predigested casein. Another important prediction is that a

more spatially structured environment (i.e., less di�usion due to higher agar concentration) will

make it harder to cheat on a constitutive or wild-type cooperator.
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Figure 4.17: Predictions of experimental outcomes based on results from analytical calculations

and simulations of the 2D model. X denotes the �tness of the conditional cooperator (PAO1, wild

type P. aeruginosa) growing alone in media with undigested casein. The > and < signs denote whether

the �tness of a type growing alone in a certain experimental setup is predicted to be more or less than

X . ∆X denotes the relative �tness of the conditional cooperator (PAO1, wild type P. aeruginosa) with

respect to the other type present (constitutive cooperator or cheat) in media with undigested casein.

A positive ∆X > 0 means that the conditional cooperator ended up with the highest population of the

two types present. The > and < signs denote whether the relative �tness of the cooperator (conditional

or constitutive) is predicted to be more or less than ∆X , for other competition assays. Two important

predictions are that the conditional cooperator should do better than the constitutive cooperator when

grown on undigested casein, both with and without a cheat, and that a structured environment will

make it harder to cheat on a constitutive or conditional cooperator. (In all experimental setups with

a constitutive cooperator, we assume that arabinose is present and therefore the protease is produced

constitutively).
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4.5 Take home messages

• When bene�t function is concave, constitutive cooperators with relatively low production

rates of common good have highest �tness both when grown alone and together with a

cheat. Producing less than at the optimal rate is, in this case, always better than not

producing.

• When bene�t function is convex, conditional cooperators with relatively high production

rates of common good have highest �tness both when grown alone and together with

a cheat. Producing less than at the optimal rate can in this case be worse than not

producing. When a cheat is present the parameter values, which ensure an advantage

compared to not producing common good, are con�ned to a very small region of parameter

space.

• When the bene�t function is convex, a QS mechanism can ensure that cooperation com-

mences only after the population has reached a su�cient size to make bene�ts outweigh

costs.

• QS can facilitate privatization of common goods in a spatial setting by con�ning coop-

eration cells that are not near the edge, where cheats might reside.

• QS can act as an emergency brake for cooperation and lower the risk of cooperators

getting driven to extinction when cheat numbers are rising. This e�ect can help ensure

coexistence of cooperators and cheats at a relatively high yield.



Chapter 5

Quorum sensing and common goods in bacterial

warfare

5.1 Introduction

Antimicrobials are a very typical example of compounds produced and excreted by bacteria

which could be perceived as common goods. In particular, bacteria found in soil often produce

molecules which either kill or inhibit the growth of other bacterial species found in the same

environment. Although it has been proposed that the antimicrobial activity of these compounds

is merely a side e�ect and that the primary function is signaling [27; 148], another likely

possibility is that these compounds are toxins and that they are primarily means to gain a

competitive advantage in a multi-species environment [82; 83; 75].

A convex killing curve. The killing rate of many toxins produced by bacteria, as a function

of the concentration of the toxin, has been found, experimentally, to be non-linear, often best

described using a sigmoidal curve with a Hill-factor of 2-4 [70; 84]. The cause of the convexity

of the killing-curve is not well established, but could perhaps be related to the time scales on

which cell-repair mechanisms act. While small doses of toxin may allow enough time for cell

repair mechanisms to keep pace and continuously repair the damage between each new damage

event, the damage could start to accumulate and become fatal at higher concentrations of

toxin. There is another important factor that acts on an evolutionary time scale, which could

make production of small doses of toxin detrimental; small sub lethal doses of antibiotics could

allow an enemy bacteria to slowly adapt and become resistant over time.

The sigmoidal killing-curves make antimicrobials a prime example of a common good which has

a highly convex bene�t function, because the bene�t felt from the presence of common good

in the environment here comes from a reduction of the competitive pressure from an enemy

127
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species. Based on the conclusions drawn in the previous chapter, it seems that it could be

important to gauge population density before committing to antimicrobial production.

Eavesdropping. This �ts well with the observation that most antimicrobials produced by

bacteria living in soil are under QS regulation [76; 9; 62; 38; 100; 34]. Another factor which

one would think is important for whether or not toxin production is worth the e�ort or not, is

of course the density of the enemy species. If the antagonizing species happens also to produce

QS signals, then information about enemy density is literally �oating around in the environment.

Many bacteria living in soil have been found to respond to not only to their own QS signal but

also to those of other species, due to promiscuous signal receptors [3; 35; 50; 91; 103; 118; 131].

It has been proposed that such signal receptor promiscuity is akin to �eavesdropping�, in that

it allows a species to �listen in� on enemy communication and make their toxin production

depend not only on their own density, but also on that of their enemy. It has, however, not yet

been shown experimentally or via modeling whether having a promiscuous signal receptor can

provide any advantage compared to having a more signal speci�c receptor.

5.1.1 A map of this chapter

We begin, in section 5.2, by summarizing the experimental �ndings from a model experimental

system constructed in order to study the role of eavesdropping in bacterial warfare. In section

5.3, we introduce a coupled di�erential equation model inspired by the experimental system.

In sections 5.4.1, 5.4.2 and 5.4.3 we examine the dynamics of the model and determine the

parameter ranges for which eavesdropping provides an advantage and the ranges for which

it does not. Then in section 5.4.4, we introduce a simpler model, similar to the full model

but without eavesdropping which can be solved analytically, and �nd that in this system there

exists an optimal QS induction threshold which cannot be beaten. In section 5.4.4, we explore

how this optimal threshold depends on di�erent parameters of the model. Finally, in section

5.5 we speculate about how this work could be extended to include situations where di�erent

eavesdropping strategies are played against each other.
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5.2 Experimental model system

QS has been experimentally investigated very thoroughly in the context of bacteria producing

virulence factors (e.g. P. aeruginosa [105] and Vibrio cholerae [150]), but only a few studies

have addressed its importance for inter-species toxin warfare [5; 75; 82; 83], and so far no one

has investigated the e�ects of having a promiscuous QS signal receptor. To remedy this, my

experimental collaborators Josephine Chandler and Pete Greenberg (University of Washington,

Seattle) constructed and experimented with a model system consisting of the two species

Burkholderia thailandensis and Chromobacterium violaceum. Both species are found in the

soil of rice �elds and both species have been found to produce QS-controlled broad spectrum

antimicrobials during stationary phase [76; 34]. Furthermore, C. violaceum's signal receptor

(CviR) has been shown to be promiscuous and respond to not just the acylated homoserine

lactone (AHL) produced by C. violaceum itself (C6-HSL) but also to a number of other AHL

signals [76; 125]. In a nutshell, experiments done with this model system by Chandler and

Greenberg [19] demonstrate that:

• Both B. thailandensis and C. violaceum produce QS sensing regulated antimicrobials that

inhibit growth of or kill the other species.

• Both species can get a �tness advantage, in the presence of the other species, by producing

their respective antimicrobial compound.

• When grown in co-culture, the model system exhibits bistable dynamics (where one or

the other species ends up dominating the other, depending on the initial populations size

of the two species).

• Even though the QS signals used by the two species are di�erent, C. violaceum will

respond not just to its own signal (C6-HSL) but also one (or more) of B. thailanden-

sis's signals (C8-HSL, 3OHC8-HSL and 3OHC10-HSL), see �g. 5.1. In contrast, B.

thailandensis responds only to its own signals.

• C. violaceum's ability to �eavesdrop� on B. thailandensis's signal can provide it with a

�tness advantage in co-culture, see �g. 5.2.
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AHL⁻
+ B.t. AHLs

AHL⁻C.v. strain: Wild type

II
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AHL⁻

+ B.t. AHLs

Figure 5.1: C. violaceum quorum sensing is activated by B. thailandensis AHLs. Quorum sensing

activation can be monitored in C. violaceum due to the quorum sensing-dependent production of a purple

pigment, violacein. I: Left: C. violaceum wild-type growing alone. Middle: C. violaceum AHL− mutant

growing alone. Right: C. violaceum AHL− mutant growing alone with with �uid added from a stationary

phase culture of B. thailandensis BD20 (a bactobolin mutant, which does not produce toxin) which

contains the AHLs. II: Left: Co-culture of C. violaceum AHL− mutant and B. thailandensis AHL−,

bactobolin− double mutant. Middle Left: Co-culture of C. violaceum AHL− mutant and B. thailandensis

bactobolin− mutant. Right: Co-culture of C. violaceum AHL− mutant and B. thailandensis AHL−,

bactobolin− double mutant plus added AHLs extracted from the stationary phase culture �uid of B.

thailandensis BD20.
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Figure 5.2: Eavesdropping promotes C. violaceum competitiveness in co-culture. After 24 h

of co-culture growth, the ratio of B. thailandensis to C. violaceum was determined. The dashed line

indicates the initial ratio of B. thailandensis to C. violaceum. Co-cultures were grown in 20 ml volumes;

each black dot represents the result of one experiment. Solid black lines are the mean of each set of

experiments. Added AHLs were extracted from the stationary-phase culture �uid of B. thailandensis

BD20 (a bactobolin mutant, which does not produce toxin). The �nal experiment which would have to

be done in order to prove that eavesdropping provides C. violaceum with a �tness advantage, would of

course be to compare a non-eavesdropping mutant version of C. violaceum with the wild type. However,

at this point it is not obvious how to construct such a mutant. For now, therefore, the best we can

do is show the evidence in this �gure: a mutant version of C. violaceum which has lost the ability to

produce its own signal (an AHL− mutant) performs better against an enemy that produces signal, than

against one that does not produce signal.
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5.3 Mathematical model of two competing bacterial species with eaves-

dropping

Chandler and Greenberg's experimental setup inspired the construction of a coupled di�erential

equation model of two quorum sensing bacterial species each producing antimicrobials to target

the other, opponent, species. Using this model we wished to address the question of whether

a bacterial species having a promiscuous signal receptor could gain a competitive advantage

when up against another species exactly alike in all aspects except for having a strictly speci�c

signal receptor.

When experimenting with di�erent ways of modeling the system we found that toxin concen-

tration in all relevant cases1 was very close to being proportional to inducer2 concentration for

both species, so in the �nal model we chose to use the QS signal for a species as a proxy for

the toxin concentration of that species. This allowed us to model the system using just four

equations instead of six, and did not make a di�erence for the results shown further below.

Equations. In the equations below, B denotes concentration of B. thailandensis, C denotes

concentration of C. violaceum, IX is concentration of inducer/toxin of species X :

dB

dt
= B

(
1− r

(
I h
B

I h
B + Kh

))
(1− B − C )− k

(
IH
C

IH
C + KH

T

)
B (5.1)

dC

dt
= C

(
1− r

(
(IC + εIB)h

(IC + εIB)h + Kh

))
(1− B − C )− k

(
IH
B

IH
B + KH

T

)
C (5.2)

dIB
dt

= αB

(
I h
B

I h
B + Kh

)
+ βB − δIB (5.3)

dIC
dt

= αC

(
(IC + εIB)h

(IC + εIB)h + Kh

)
+ βC − δIC (5.4)

The �rst terms on the right hand side of equations 5.1 and 5.2 model the logistic growth [132]

of the bacterial species, reduced by the cost of toxin production. The cost is assumed to be

proportional to the production rate of the toxin and r sets the maximal reduction of growth

1The main di�erence between the equations for toxin and inducer production is that the basal rate of inducer

production is non-zero, though small, while the basal rate of toxin production is zero. Thus, (only) at very low

inducer concentrations is it a bad approximation to assume that toxin concentration is proportional to inducer

concentration; here the toxin concentration should really be zero since QS has not yet been turned on and

thus no toxin is being produced. However, we always choose the threshold concentration, at which toxin starts

signi�cantly killing opponent cells, to be much larger than the maximal inducer level when it is only produced at

the basal rate. Therefore, in this parameter regime, assuming that the toxin level is is proportional to the inducer

level, rather than zero, is not of much consequence because at this low level it will not a�ect the dynamics of

the cell density much. See caption of �g. 5.5 for more discussion of this point.
2We interchangeably use the terms "inducer" and "signal" for the quorum sensing signal molecules.
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Figure 5.3: Toxin cost curves, inducer production curves and toxin potency curves. A: E�ective

intrinsic growth rate 1− r
(

I h
B

I h
B +K h

)
= 1− rθ as a function of QS promoter occupancy θ ≡

(
I h
B

I h
B +K h

)
, for

three di�erent cost parameters r (note that we thus assume that cost is linearly proportional to produc-

tion rate). B: Inducer/toxin production per capita α
(

I h
B

I h
B +K h

)
+ β as a function of inducer/toxin con-

centration IB for three di�erent values of K . The black dashed line marks the maximum inducer/toxin

concentration possible for either species at steady state, (α + β)/δ ≈ 5. C: Toxin kill rate k
(

I H
B

I H
B +K H

T

)
as a function of toxin/inducer concentration IB , for two di�erent �kill thresholds� KT . The black dashed

line marks the maximum inducer/toxin concentration either species can reach at steady state.

rate due to the toxin production (see �g. 5.3A). For B , which only senses its own signal the

toxin production rate is a function only of its own signal level, whereas for C which senses

both signals the toxin production rate is a function of the weighted sum of the two signals.

The parameter, ε is thus the "eavesdropping sensitivity", i.e., how much weight C gives to

the opponent's signal compared to its own. The second (negative) terms on the right hand

side of equations 5.1 and 5.2 model the death of bacteria due to the toxin produced by the

opponent species, at a rate that is given by a Michaelis-Menten like sigmoidal term, where H is

the steepness of the sigmoid and KT is the "threshold" toxin concentration (at which the death

rate is half its maximum value, k ; see �g. 5.3C). The next two equations model the dynamics

of the concentrations of inducer/toxin for both species. The negative terms correspond to the

degradation of the inducer/toxin that is proportional to its concentration. The production rate

is the sum of a basal rate of production by each cell β and an auto-induced rate of production

α. The latter is modeled as a Michaelis-Menten like sigmoidal term, where h is the steepness of

the sigmoid and K is the "threshold" inducer/toxin concentration (at which the auto-induced

production rate is half its maximum value; see �g. 5.3B). Again, because C senses both its

own and Bs signal, the auto-induced production rate of C s inducer/toxin is proportional to the

weighted sum of the two inducer/toxin concentrations. In order to eliminate two parameters,

the units for concentration and time have been chosen such that the carrying capacity of the
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system is set to one (i.e. B + C cannot grow larger than 1), and basal growth rate of both

species is set to 1. That is why the growth rates of the bacteria have the mathematical form

B(1− B − C )(1− cost). In the experiments, the carrying capacity was Nmax = 109cells/ml ,

and the doubling time of both species was close to 1 hour, so the unit of time is 1/g ≈ 1.4h.

Table 5.1 lists all the parameters and the value assigned to them, or the range of values we

have explored.

∆g - a relative �tness measure. The way to determine which species wins in this model

with eavesdropping, for a given set of parameters and initial conditions, is by determining the

relative �tness at a given time point Tend (well after stationary phase had been reached):

∆g(Tend ) ≡ gC (Tend )− gB(Tend ) (5.5)

where:

gC (Tend ) ≡
log
(

C(Tend )
C0

)
Tend

(5.6)

and

gB(Tend ) ≡
log
(

B(Tend )
B0

)
Tend

(5.7)

are the average growth rates of C and B respectively during the time span between t = 0 and

t = Tend . Whenever C wins (has highest concentration at end time Tend) then ∆g > 0, else

∆g ≤ 0. Thus the sign of ∆g tells us whether C or B wins and the absolute value measures

how big the victory/loss was.
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Table 5.1: List of parameters of the model and the (range of) values assigned to them.

Parameter: Explanation: Value or range used in di-

mensionless model

Value or range used in

real units

Nmax Carrying capacity set to 1 109cells ·ml−1 (from ex-

periment)

B0 Initial density of B 10−3 106cells ·ml−1 (from ex-

periment)

C0 Initial density of C [0.9− 1.1] · 10−3 [0.9−1.1]·106cells ·ml−1

(from experiment)

g Intrinsic growth rate of B

and C

set to 1 ≈ 0.7h−1 (based on dou-

bling time 1h from exper-

iment)

k Maximum kill rate for

both species

5 3.4655h−1

α Maximum inducer pro-

duction rate for both

species

7.20 · 10−2 0.0500h−1

β Basal inducer production

rate for both species

1.44 · 10−4 6.9310 · 10−4h−1 (set to

be 1/500 times α)

δ Degradation rate of in-

ducer for both species

1.44 · 10−2 0.0100h−1 [108; 138]

K Inducer conc. where B

and C s QS promoter ac-

tivity is 50% of max

[10, 3.898, 3] · 10−3 [10, 3.898, 3] · 106ml−1

KT Toxin conc. where killing

rate is 50% of max.

[0.3, 3] [0.3, 3] · 109ml−1

h Hill factor of inducer ac-

tivation of QS genes for

both B and C

1.3 1.3 (unitless) [67; 129;

151]

H Hill factor of toxin po-

tency increase for both B

and C

2 2 (unitless) ([70], [84])

r Max. cost of QS gene ex-

pression.

[0.05, 0.25, 0.5] (unit less, unknown)

ε Eavesdropping sensitivity. 0− 10 (unit less, unknown)

Tend End time for determining

relative �tness

100 ∼ 6days (144.27hours)
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5.4 Results

5.4.1 Eavesdropping model exhibits bistability

The model with eavesdropping has bistable dynamics just like the experimental model system

constructed by Chandler and Greenberg. In the long run either B or C takes over completely

(even though for some parameters the take over of one species over the other happens so slowly

that the �tness di�erence between the two species at time Tend is negligible) and which one

wins depends on the initial condition (see �g. 5.4).

5.4.2 Eavesdropping can be advantageous

For high K , neither species will induce (this is shown in �g. 5.5 for the case where B0/C0 = 1,

though it is true for other initial ratios also), unless ε is enormously high which is biologically

unreasonable, and therefore competition is neutral. For high KT > (α + β)/δ, neither species

can reach a toxin concentration su�ciently high to have a major impact on the opponent

species, so here too competition becomes neutral (this is shown in �g. 5.5 for the case where

B0/C0 = 1, though it is true for other initial ratios also). We see in �g. 5.4 that there are

parameters for which eavesdropping (having a non zero ε) will provide C with a substantial

advantage when the starting ratio is B0/C0 = 1, and from �g. 5.6 it becomes apparent that

this advantage can enable C to beat B even when starting out at a slightly lower density.

5.4.3 Eavesdropping can also be disadvantageous

However we also note from �g. 5.4 that for all the di�erent choices of parameters KT and r ,

there exists a value of K = K ′ (marked with a white dashed line) below which eavesdropping is

downright disadvantageous at almost any non zero sensitivity level (ε 6= 0). It seems that the

e�ect of eavesdropping in this model is that it e�ectively lowers the QS threshold of C , and that

when K < K ′, it is no longer advantageous for C to be induced early due to eavesdropping.

5.4.4 Simple model without eavesdropping

Equations of the simple model. The model with eavesdropping is nonlinear and thus hard

to deal with analytically. It turns out to be instructive to study a much simpler model which

shares some of its main characteristics. In the full model it seemed that the advantage provided

by eavesdropping was related to earlier QS induction and thus in this simpli�ed model we will

ignore eavesdropping and just allow B and C di�erent induction thresholds KB and KC . In

addition, we model both the quorum sensing induced toxin production curve and the toxin

e�ciency curve as step functions instead of sigmoids, and ignore degradation or decay of the
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Figure 5.4: The success of an eavesdropping strategy ε depends on K, KT and r: Plots show

relative �tness ∆g as a function of the eavesdropping sensitivity of C , ε, and K for four di�erent sets of

(r ,KT )-values: r ∈ [0.05, 0.5], K ∈ [0.3, 3.0]. In all cases, initial conditions were C (0) = B(0) = 0.001

and IB (0) = IC (0) = 0. We see that for each set of (r ,KT )-values there exists a tongue shaped region

in the ε − K space where eavesdropping provides an advantage for C . However, also note that for

each plot there is a value of K = K ′ (marked by a white dashed line) below which eavesdropping is

never bene�cial. This value, K ′, appears to increase with increasing r and decrease with decreasing

KT . We also see that the region where eavesdropping can provide an advantage becomes bigger for

decreasing KT (decreasing KT increases the toxin potency for both species at low toxin concentrations)

and decreasing r (lower r means lower cost of toxin production for both species).
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Figure 5.5: For high KT and high K, competition becomes neutral. Relative �tness, ∆g(T ), from

simulations starting with B0 = C0 = 0.001, as a function of KT and K , for eavesdropping sensitivity

ε = 1 and toxin production cost of r = 0.25. The eavesdropping ability e�ectively gives C a slightly

lower QS threshold than that of B. (Note that for ε = 0 , ∆g(Tend ) = 0 everywhere, because here

B and C are exactly alike). For values of KT higher than the maximum inducer/toxin concentration

possible for either species at steady state, (α+ β)/δ ≈ 5, competition becomes neutral (∆g(T ) ≈ 0).

For high K (above K ≈ 0.5) neither B nor C induces and toxin is never produced at a high rate. We

do not plot ∆g for very low KT since for KT . β
δ = 10−2, the assumption of toxin concentration

being proportional to inducer concentration causes problems: If the steady state level of toxin/inducer

is already at a level where the toxin is potent when the bacteria are only producing at the low basal rate

β, then there is no need to turn on QS and incur the cost of further toxin production. This means that

our simpli�ed model wrongly predicts that for very low KT < β
δ early QS turn on due to eavesdropping

is not advantageous, while a more detailed model with separate equations for the toxin concentration

(in particular, equations that account for the zero basal production rate of toxin) would show that for

low KT , early turn on does give an advantage. Because very low KT is not biologically realistic and

would e�ectively constitute a situation where the bene�t function of the common good is not convex,

we are anyway not interested in this parameter range and thus deemed it acceptable that the model is

not valid here.
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Figure 5.6: Eavesdropping can either provide an advantage or a disadvantage depending on

K and KT. Plots show relative �tness ∆g as a function of the initial ratio (C (0)/B(0)) and the

eavesdropping sensitivity ε of C , for di�erent values of K and KT . (KT = 3.0 for A, B and C and

KT = 0.3 for D). A: The QS activation threshold for production of the antibiotic is relatively high

for both species, (K = 0.01). B: The QS activation threshold is lower (K = 0.003898). This value

corresponds to the optimal threshold value K ′ that is the best value of K for each species to have when

there is no eavesdropping (see section 5.4.4). C: Both species have an activation threshold (K = 0.003)

lower than the optimal threshold. D: The same parameters were used as in C, except that KT was

reduced tenfold. This changes the optimal activation threshold to K ′ = 0.001113, which is below the

activation threshold value used (K = 0.003).
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inducer/toxin. Finally, in order to make the growth rates linear functions of the cell densities,

we no longer impose a carrying capacity on the system. The equations of the simple model are

thus:

dB

dt
=


B if IB < KB

B(1− r) if KB < IB < KT

B(1− r − k) if IB > KB and IC > KT

(5.8)

dC

dt
=


C if IC < KC

C (1− r) if KC < IC < KT

C (1− r − k) if IC > KB and IB > KT

(5.9)

dIX
dt

=

 X (t)β if IX < KX

X (t)α if IX > KX

, where X is an index C or B , and β � α (5.10)

Behaviour of the simple model and comparison with the full model. In this model the

only property that makes B di�erent from C is the induction threshold (apart from this, because

there is no eavesdropping, the equations are exactly symmetric in B and C ). Thus, B and C

can be in one of four states:

1. Growing exponentially at the rate 1. In this state the bacteria are not a�ected by the

presence of the other species at all.

2. Growing exponentially at the rate 1− r , where 0 < r < 1. In this state the bacteria are

producing toxin and thus paying a cost for toxin production, but the enemy's toxin is not

high enough to a�ect the growth rate.

3. Growing exponentially at the rate 1− r − k . The bacteria are producing toxin and thus

paying a cost, and the enemy's toxin has crossed the critical concentration KT so the

bacteria are also dying at a rate k .

4. Growing/decaying exponentially at the rate 1 − k . The bacteria have not yet started

toxin production but the enemy's toxin has crossed the critical concentration KT .
3

3This last option is not listed in eq. 5.8 and 5.9 because it requires KB and KC to be very di�erent and/or

roughly the same magnitude as KT . We are only interested in the case where they are relatively close to each

other and much smaller than KT . Since IX plays the role of both the signal and the toxin in this model, it is

biologically unrealistic to put the �kill threshold� KT at the same level as the thresholds for quorum sensing

induction.
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Figure 5.7: Competition outcome of simple and full models, without eavesdropping, as a func-

tion of the QS inductions thresholds KB and KC. Although quantitatively the two models have

very di�erent outcomes we see that the overall qualitative behavior is very similar. For both models we

see that whenever KB is at a certain value (K ′ - marked by white dashed lines) it cannot be beat by

any other threshold. Below K ′, KB can only be beaten by a threshold higher than itself, and above this

value it can only be beaten by a lower threshold than itself (and vice versa when we look at things from

C 's perspective). It is this value K ′ below which eavesdropping gives no advantage in the full model

for K ≡ KB = KC . I: Full model with no eavesdropping (ε = 0), and with di�erent QS thresholds (KB ,

KC ) for B and C . In red regions C wins and in blue regions B wins at time Tend . On the boundaries

between red and blue regions, B and C do equally well. Parameters and initial conditions used were:

C0 = B0 = 0.001, r = 0.25,KT = 3 (other parameters were as in Table 5.1). II: Simple model without

eavesdropping. In red regions C wins and in blue regions B wins at time Tend . On the boundaries

between red and blue regions, B and C do equally well. Parameters and initial conditions used where:

C0 = B0 = 1,α = 1,β = (1/100), r = 0.5, k = 0.7,KT = 5.
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In �g. 5.7 the competitive outcomes of the simple model without eavesdropping and the full

model with (ε = 0) and with di�erent QS thresholds (KC ,KB) are plotted side by side for

comparison. We see here that although quantitatively the two models are di�erent, the overall

qualitative behavior is very similar. For both models, whenever KB or KC is below a value (K ′)

it can only be beat by a threshold higher than itself. Consistent with this, is the fact that in

the full model where K ≡ KB = KC , when K < K ′, eavesdropping gives no advantage (see

�g. 5.6).

An optimal quorum sensing threshold. We can thus conclude that for a system with two

quorum sensing toxin producing bacteria where there is no eavesdropping going on, there exists

an optimal threshold (equal to K ′) which cannot be beaten by any other threshold higher or

lower. The existence of such an optimum comes from the fact that in both models, the toxin

only becomes e�cient above a certain concentration and that production of toxin comes at a

cost. Thus, a species with KC < K
′
up against a species with KB = K

′
will lose because it

is paying the costs of producing toxin but, because the kill threshold KT is much larger, not

producing enough toxin to gain the bene�t of killing its competitor. Conversely, bacteria with

a threshold KC > K
′
up against a species with KB = K

′
will lose because it does not start

toxin production early enough. K = K
′
is the best compromise between not paying a cost too

early and not starting toxin production too late. In a �game� where two players (B and C ) each

have to pick a QS induction threshold, K ′ would thus be the evolutionary stable strategy, and

therefore also the Nash equilibrium [74], because at this threshold, no other competing species

with a threshold higher or lower can beat it.
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Analytical solution of the simple model. We solve the simple model analytically in the

limit where KB ,KC � KT and KB and KC are not too di�erent. This allows us to investigate

deeper how the optimum, K ′ depends on other parameters of the model, like KT , r and k .

The solutions to the system in eq. 5.8, 5.9 and 5.10 when the initial conditions are C (0) = C0,

B(0) = B0 are:

C (t) =


C0 exp (t) for 0 < t < tC

1

C0 exp
(
tC
1 r
)

exp ((1− r)t) for tC
1 < t < tB

2

C0 exp
(
tC
1 r + ktB

2

)
exp ((1− r − k)t) for tB

2 < t

(5.11)

B(t) =


B0 exp (t) for 0 < t < tB

1

B0 exp
(
tB
1 r
)

exp ((1− r)t) for tB
1 < t < tC

2

B0 exp
(
tB
1 r + ktC

2

)
exp ((1− r − k)t) for tC

2 < t

(5.12)

IX (t) =



βx0 (exp(t)− 1) for 0 < t < tX
1

KX + α
1−r X0µX

[
exp((1− r)t)µ

−(1−r)
X − 1

]
for tX

1 < t < tY
2

KX + α
1−r X0µX

[(
KT−KY
α

1−r
Y0µY

+ 1
)(

µY
µX

)1−r
− 1

]
+ ...

... + α
1−r−k

(
X0µ

r
X

(
KT−KY
α

1−r
Y0µY

+ 1
)
µ1−r

Y

)
...

...×

[
exp ((1− r − k)t)

(((
KT−KY
α

1−r
Y0µY

+ 1
)
µ1−r

Y

)−(1−r−k)
1−r

)
− 1

] for tY
2 < t

(5.13)

where X is an index that goes over the values "B" and "C", and Y takes the "opposite"

value meaning that when X = B then Y = C , and vice versa. µX ≡ 1 + KX
βX0

. tX
1 is the

time where then concentration of the signal/toxin of bacteria type X reaches the induction

threshold KX (here the toxin/signal production rate jumps from β to the much higher α, and

the growth rate drops from 1 to 1 − r). tX
2 is the time where signal/toxin of bacteria type X

reaches the critical concentration KT where it is potent enough to kill the enemy type. When

KB ' KC and KB ,KC � KT the order of events is always such that tB
1 , tC

1 < tB
2 , tC

2 , (see �g.

5.8). Depending on parameters, either tB
2 < tC

2 or vice versa � we will denote whichever is the

smaller of the two times as tY
2,first and the larger of the two as tX

2,last .

Determining the optimal induction threshold. The time point at which it becomes appar-

ent which species will dominate in the simple model is the moment where the toxin concentration

of the second bacteria species reaches KT ; the species which has the largest population at this

point is the winner. The battle between the two before this point is all about reaching the

critical toxin concentration KT fast while at the same time having a large population size when

the opponent's toxin concentration reaches KT . Waiting a long time before induction (having
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Figure 5.8: Population dynamics in simple model without eavesdropping. Schematic �gure show-

ing an example of how populations of B and C can develop over time in the simple model without

eavesdropping. tC
1 is the time where inducer/toxin of C reaches a concentration of KC , (IC (tC

1 ) = KC ).

tB
1 is the time where inducer/toxin of B reaches a concentration of KB , (IB (tB

1 ) = KB ). tC
2 is the

time where inducer/toxin of C reaches a concentration of KT , (IC (tC
2 ) = KT ). tB

2 is the time where

inducer/toxin of B reaches a concentration of KB , (IB (tB
2 ) = KT ). In this plot KC < KB (C induces

�rst), and C is also the �rst to reach a toxin concentration of KT . Even though B heads the race for a

while after tC
1 , C manages to catch up by tB

2 and ultimately wins. The plot also indicates the rate of

exponential growth/decay of the species at di�erent times.
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a high induction threshold KX ) gives a long time span with exponential growth at the highest

possible rate, 1, and thus allows for quick population growth, while early induction (having a

low induction threshold KX ) results in earlier toxin production at the high rate α and thus al-

lows for quicker toxin build up. There thus exists a trade o� between getting a high population

and producing toxins fast and the optimal induction threshold, K ′, puts the turn-on time at an

optimal point somewhere between early and late turn on. In order to determine the optimal

threshold value we need to know the time at which the toxin of the second species will reach

the concentration KT . We can use the fact that (by de�nition) IX (tX
1 ) = KX and IX (tX

2 ) = KT

to �nd expressions for tX
1 , tY

2,first and tX
2,last :

IX (tX
1 ) = KX ⇒ (5.14)

tX
1 = log (µX ) (5.15)

(recall that µX ≡ 1 + KX
βX0

).

In the case where species X reaches KT before species Y , tY
1 < tX

1 (and 1− r 6= k), we have:

IY (tY
2,first) = KT ⇒ (5.16)

tY
2,first =

1

1− r
log

[(
KT − KY
α

1−r Y0µY
+ 1

)
µ1−r

Y

]
(5.17)

and

IX (tX
2,last) = KT ⇒ (5.18)

tX
2,last = tY

2,first +
1

1− r − k
log

[
1− r − k

αX0µr
X

(
KT−KY

α
1−r

Y0

(
1+ Y

βY0

) + 1

)
µ1−r

Y

× ...

...

(
KT −

(
KX +

α

1− r
X0µX

[(
KT − KY
α

1−r Y0µY
+ 1

)(
µY

µX

)1−r

− 1

]))
+ 1

]
(5.19)

Note that expression (5.19) is only valid when species Y is �rst to induce (KY < KX ) and

species X reaches KT last (that is we have tY
1 < tX

1 < tY
2 < tX

2 ). When species X is �rst

to induce but reaches KT last ( tX
1 < tY

1 < tY
2 < tX

2 ), Y always wins, so we know that if

KX < KY and tY
2,first < tX

2,last then Y has already won. For the cases where tY
1 < tX

1 < tY
2 < tX

2

(and either species could win) we can determine the winner by �nding the ratio f ≡ X (tX
2,last )

Y (tX
2,last )

(i.e., f > 1 whenever species X is the winner). When KB = KC and thus tB
1 = tC

1 , and

tB
2 = tC

2 , f is of course 1. However, it turns out there is also another way of getting f = 1

while having KB 6= KC . When we express KC = KB + ∆, and plot the ratio f as a function

of KC and ∆ we see that there are in general two solutions ∆0 = 0 and ∆1 to the equations

f = 1, for a given KC (see �g. 5.9). The value of KC where these two solutions intersect,

∆0 = ∆1(KC ) = 0, is the optimal induction threshold K ′.
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Figure 5.9: Determining the optimal QS threshold K′. Schematic �gure showing f =
C(tX

2,last )

B(tX
2,last )

,

(where X is an index that takes values "C" or "B") plotted as a function of KC and ∆ = KC − KB .

The equation f = 1 has two solutions: one trivial, ∆0 = 0, and one nontrivial, ∆1(KC ). The optimal

turn on threshold K ′ is found where the two solutions intersect.
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Figure 5.10: Optimal QS threshold as a function of KT. Blue lines: Value of K ′, as a function of

KT , found numerically by determining the intersection of ∆0 and ∆1(KC ) for di�erent r and k values.

Parameters used were: C0 = B0 = 1,α = 1,β = (1/100).

Dependence of the optimal induction threshold on various parameters. In �g. 5.10

we have plotted the value of K ′ (found numerically by determining the intersection of ∆0 and

∆1(KC ) ) as a function of KT for di�erent values of the toxin cost parameter, r , and the

toxin potency, k (which are the same for both species). We see that the optimal QS induction

threshold K ′ is proportional to KT and that a high cost of toxin raises the threshold while a

high toxin potency lowers the threshold. For very low values of KT (when the common good

bene�t function is e�ectively no longer convex) the optimal threshold goes to zero, and thus

here there would be no need for QS regulation of the toxin production. In �g. 5.11 we see K ′

plotted as a function of r and k (for �xed KT ). We see that when toxin potency, k , becomes

very low then the optimal threshold diverges, i.e. when toxin is not very e�cient compared

to the cost of production it is best not to turn on production at all. Similarly when cost of

production becomes very large compared to the basal growth rate (g = 1), we see K ′ become

very large. For deceasing costs we see that K ′ will go to zero rapidly at a non-zero value of r .

Increasing toxin potency will also cause K ′ to decrease but in this case more and more slowly

for higher values of k ,4, this means that even though the toxin might be in�nitely potent once

KT is reached, this still does not mean that constitutive toxin production is a good idea. Only

4In �g. 5.11 left, k only goes to 1, but we checked much much higher values of k and observed that K ′ still

does not go fully to zero.
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Figure 5.11: Optimal QS threshold as a function of k and r. Blue lines: Values of K ′ found

numerically by determining the intersection of ∆0 and ∆1(KC ) for di�erent r and k values. Parameters

used were: C0 = B0 = 1,α = 1,β = (1/100),KT = 10.0.

when cost, r , is very low and KT is also very low will the optimal induction threshold truly

approach zero.
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5.5 Discussion and future work

5.5.1 Eavesdropper versus eavesdropper

The biological system that inspired the modeling above consisted of two species out of which

only one used the eavesdropping strategy. However, once this scenario has been considered one

invariably ends up wondering: How would an eavesdropper do when competing with another

eavesdropper? What is the Nash equilibrium, if any, in the game where both players are toxin

producers with independent induction thresholds K and eavesdropping sensitivities ε? When two

eavesdroppers are up against each other things get a bit complicated: Crudely speaking, from

the behaviour of the full model described above, we would expect that a certain (KC , εC )-pair

will result in a speci�c turn on behavior which will resemble that of a �pure� non-eavesdropping

strategy (KC ,eff , 0), and that this e�ective threshold KC ,eff will depend on KC , εC , on the

enemy (KB , εB)-strategy, and also on the starting ratio (B0/C0).

Di�culties determining the optimal (K , ε)-strategy. We have tried determining the op-

timal (K , ε)-strategy when the initial ratio is B0/C0 = 1, using the minimax algorithm [133]:

we �rst choose a (KB , εB) strategy, play this against a large number of (KC , εC ) strategies and

determine which of these maximizes the �tness (or "payo�" in the language of game theory) for

C . We then repeat this for a large number of (KB , εB) choices. Figure 5.12 shows the resulting

maximum payo� for C as a function of (KB , εB) as well as the (KC , εC ) strategies that yield

this maximum payo�, obtained by solving the di�erential equations in section 5.3 using a 5th

order Runge-Kutta scheme [96]. The strategy (or strategies) that minimizes this maximum

payo� is the optimal strategy, and may also be a Nash equilibrium. The exact result in this

particular case however turns out unfortunately to depend in a highly sensitive manner on, for

example, the choice of ODE solver. It seems that because the the system is bistable and both

species grow exponentially, the simulations are highly sensitive to small numerical errors, which

tend to amplify and then cause di�erent ODE solvers to reach di�erent "solutions". So, while

the overall qualitative trends seen in �g. 5.12 are consistent across ODE solvers and therefore

trustworthy, the quantitative details should be approached with caution. Another source of

quantitative error is that so far we have sampled the (K , ε)-strategy space at a set of points

lying on a regular lattice. Even here we �nd that small shifts in the KB or εB values can result

in large changes in the (KC , εC ) strategy that maximizes payo� for C . Thus, by sampling on a

regular grid we might miss the real optimal strategies which lie o�-grid. An alternative approach

would be to use a minimization/maximization algorithm like for example Steepest descent [96],

but this will unfortunately have to be left to future work due to time constraints.
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A line of strategies which are hard to beat. From the simulations done so far we can only

conclude that for B0/C0 = 1 there appears to be a line in (KB , εB)-space where the maximal

payo� is lowest, and very close to zero. This line has its end point at (KB = K ′, ε = 0) as

expected (see the discussion of optimal thresholds when there is no eavesdropping in section

5.4.4), and has increasingly higher K for higher values of ε (see �g. 5.12I). The (KC , εC )-

strategies which appear to be beating, by a nose hair, the strategies on this nearly unbeatable

line, are strategies which themselves are also somewhere on the line (see �g. 5.13). Also, it

looks like in the close vicinity of this �hard to beat�-line very small changes in KB or εB will

radically change the strategy of (KC , εC ) which is best at beating that B strategy. For example,

we see in �g. 5.12III that the C strategies, which beat B best, abruptly shift from having low

to high εs when moving from just left of the "hard to beat" line to just right of it. All in all,

with the knowledge we have from the simulations so far, we cannot yet distinguish between the

following scenarios:

1. There is more than one Nash equilibrium, i.e. the entire line of �hard to beat�-strategies

in (K , ε)-space (or portions of it) consist of Nash equilibria.

2. There is just one Nash equilibrium somewhere on the �hard-to-beat�-line for a �nite ε.

3. The true �Nash equilibrium� is at ε → ∞, (in which case there e�ectively is no Nash

equilibrium, but here evolution would tend to push values of ε higher and higher).

4. There is no Nash equilibrium and there exists rock-paper-scissor like cycles of di�erent

(K , ε)-strategies on the �hard-to-beat�-line which can cyclically beat each other.

Even though we do not yet know the true nature of the strategies on the �hard to beat�-line in

(K , ε)-space, we do know that in any real world scenario the starting ratio will of course never

be exactly one, and that there would be plenty of environmental sources of noise in�uencing

the population levels of both species. Therefore, biologically speaking, it might not matter

much whether the line really consists of true Nash equilibria or not, because no real world

scenario could ever be precise enough to hit the exact values needed. Our best bet so far is

that all strategies along the line are e�ectively equal in any realistic scenario with noise. This

conclusion would imply that there is not any strong reason to pick an eavesdropping strategy

from somewhere on the line over the non-eavesdropping strategy of (K ′, ε = 0), when the

starting ratio is B0/C0 = 1 or close to it.
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(KC, εC) when initial ratio is B0/C0 = 1. I: Maximum payo� (∆g) which C can achieve as a function

of the enemy threshold, KB , and the enemy eavesdropping sensitivity εB which C is playing against.

We see that there is a line of strategies (marked by a white line) which have payo�s very close to zero,

and that this line starts at (KB = K ′, εB = 0). II: The threshold value, KC , used by C to beat the

(KB , εB)-strategy and get the payo� shown in I. III: The eavesdropping sensitivity, εC , used by C to

beat the (KB , εB)-strategy and get the payo� shown in I.
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5.5.2 Varying the initial ratio of population densities

So far we have focused on determining the optimal strategy in the situation where initial ratio

(B0/C0) of the populations of the two potentially eavesdropping enemies was 1. When the

starting ratio is not one, we see that the line of lowest maximal payo�s for C in (KB , εB)-space

is slightly di�erent than the line obtained for B0/C0 = 1 (see �g. 5.14).

For future work, it would be interesting to look more at which (K , ε)-strategy is optimal when

averaging over a range of di�erent starting ratios. Consider for instance a situation where one

non-eavesdropping species (let's say B) has a far higher starting density than the other. Here it

could be that the the optimal threshold for B would be higher than for a starting ratio of one.

Being at a far higher starting density than the enemy starts to resemble the situation where

you are growing alone with no enemy present and in this situation it is optimal to postpone the

costly toxin production as long as possible because it is not needed. For the opposite situation

- starting at a lower density than the enemy - it is not intuitively very clear what will happen

to the optimal (K , ε) strategy. The results seen in �g. 5.6A and D suggest that when the one

species starts out with a higher density, then its enemy can gain from starting toxin production

slightly earlier to compensate for low numbers, and that this early induction can be implemented

either by simply lowering K or by eavesdropping on the enemy signal (i.e. having non-zero ε).

On the other hand, one could imagine that having a very large ε, when starting out at a lower

density than the enemy, would result in induction at a lower density than desired. In �g. 5.14

right panel, where B is at a disadvantage initially, it looks like optimal strategies in general lie

at higher K values when ε is high, whereas the optimal strategies at low ε values do not shift.

This �ts the interpretation that high ε makes you vulnerable to being forcibly induced when

enemy density is high.

It seems that the optimal (K , ε)-strategy depends very sensitively on many factors including the

starting ratio (B0/C0). Because real world scenarios would probably entail a range of di�erent

situations where a species is either alone or together with enemies at various di�erent densities,

it seems that a truly optimal (K , ε)-strategy should optimize performance averaged over a range

of di�erent situations. How the terms in this average should be weighted is completely unknown,

but one starting assumption could be to set B0 + C0 ≡ X , and B0 = fX and C0 = (1− f )X ,

and iterate through f ∈ [0, 1], (see �g. 5.14 for the results of two sample simulations where

the maximum payo� for C is plotted for f = 0.6 and f = 0.4).
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Eavesdropping - providing a di�erentiated response for di�erent environments? If we

imagine a species which often experiences growth both alone and in the presence of enemies,

then this would correspond to a situation where when we determine the optimal strategy we

should average over di�erent starting density ratios (some of which should have no enemy

present at all). When growing alone, it is undoubtedly best to delay induction inde�nitely, i.e.,

it is best to have a very high K , whereas when growing with an enemy, the optimal induction

threshold, K , should have an intermediate value. Because eavesdropping provides a way of

e�ectively lowering the induction threshold only when enemies are around, it could be argued

that eavesdropping could provide the necessary di�erentiated response for a species often faced

with the two di�erent situations:

1. growth with an enemy

2. growth alone

Eavesdropping could thus perhaps be an adaptive response to existence in varying environments.

Having a high ε would results in very di�erent e�ective thresholds in situation 1 and 2, and

thus a very di�erentiated response. Having a low ε on the other hand would mean being

less sensitive to varying conditions � enemy or no enemy present, turn on would happen at

roughly the same cell density. However, having a very high ε could also mean that you risk

being sometimes forcibly induced by enemy signal in situations where toxin production is not

bene�cial. Choosing an optimal ε for existence in changing environments would depend, it

seems, on when costs are greatest and which types of situations you encounter more often.

If, for example, the Hill-factor of the toxin potency-curve H is high and you often encounter

situations where enemy density is higher than your own, then it could be disadvantageous to

have a very high ε. Put simply, in that scenario it would be more important to �listen� to your

own signal than to the signal of the enemy. If, on the other hand, the cost of toxin production is

high (high r), but toxin is also very potent even at low concentration (low H and low KT ) then

having a very di�erentiated response could become more important and the risk of induction

at too low a density from listening to enemy signal would be negligible; in the most extreme

case it seems that the optimal strategy would be to only induce due to enemy signal, and not

respond to one's own signal at all � this would result in a very di�erentiated response pattern

for di�erent environments.
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5.5.3 Eavesdropping mutant invading a non-eavesdropping population

It is worth thinking about how a mutant eavesdropper would be able to arise and invade a

non eavesdropping population. When two similar species grow together, mutant E and recent

ancestor C , which both produce the same toxin (and thus will not harm each other, but only

compete through the carrying capacity), then it is the one which induces �rst (let's say it is E )

and thus pays the greatest cost who will lose (E will have a lower �tness than C ). When a third

enemy species (B) is present, this is still the case. Because E and C produce the same toxin

and both are sensitive to the toxin of B , both will feel equal bene�t from the toxin produced

regardless of where it came from, i.e. the one with the higher threshold (C ) will thus e�ectively

act as a cheat. If a mutant (E ) thus only evolves to get a receptor with relaxed speci�city (i.e.

ε > 0), but still has the same K as the wild type (C ) then this mutant would not be able to

invade, because the eavesdropping would e�ectively lower the QS threshold whenever enemy B

was around. Only if the mutant �rst evolved to get a higher threshold and then a more relaxed

receptor speci�city, would it be able to invade. The two types of alterations, higher QS threshold

and relaxed receptor speci�city might however often come hand in hand, possibly via the same

mutation: A receptor that mutates to become capable of binding other types of AHLs might

very well also bind the original inducer molecule less e�ciently, and thus e�ectively give the

mutant a higher K . Thus, evolution from a �pure� non-eavesdropping strategy (K = K ′, ε = 0)

towards strategies with (K > K ′, ε 6= 0) could perhaps be partly driven by this phenomenon

of �cheating your ancestor� which would happen when the mutant threshold was raised. The

acquisition of a relaxed receptor and thus the ability to eavesdrop on enemy signals would then

be merely a byproduct of this cheating strategy, which might later give an advantage when

dealing with a toxin producing enemy B .

5.6 Take home messages

• Our experimental model system shows that C. violaceum's ability to �eavesdrop� on B.

thailandensis's signal can provide it with a �tness advantage when grown in co-culture.

• A simple mathematical model without eavesdropping shows that there exists one optimal

QS threshold K ′ which cannot be beaten. This optimum arises because of a tradeo�

between having a high growth rate and suppressing the growth rate of the enemy.

• When both species have the same QS threshold it is always an advantage to eavesdrop

when that threshold is above the optimal value K ′, but it is a disadvantage when the

threshold is below K ′.
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• When two eavesdroppers are up against each other, we �nd that there exist many strate-

gies that are hard to beat, with a range of di�erent eavesdropping sensitivities.

• The optimal strategies, i.e. optimal induction thresholds, are di�erent when bacteria

grow alone and when the grow in the presence of an enemy. Eavesdropping provides a

mechanism for e�ectively lowering the induction threshold only when enemies are around

and thus it could be hypothesized that eavesdropping is an adaptive response to existence

in varying environments.
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Concluding remarks

Thoughts on modeling

A simple model is a tool for generating and exploring ideas about a system. It can, for exam-

ple, take the form of a short list of well de�ned interaction rules between agents, or a set of

simple equations. When thinking about a model gets confusing or when equations turn out be

analytically intractable, a computer is helpful.

A good simple model is one with just the appropriate amount of information necessary to

capture the dynamics in which we are interested. The level of detail included in the model

needs to be in the �Goldilocks zone�5 � not too much and not too little. If we put in too little

we are unable to capture the features of the real system in which we are interested. If, on the

other hand, we include too much, then we risk ending up with another complex system that

we also do not understand.

In the model construction phase, theoreticians and experimentalists need to work very closely

together and good interdisciplinary communications skills are crucial. A theory person needs

to listen acutely and attentively to the vast stream of knowledge/information about a target

organism that the collaborating microbiologists possesses and try and negotiate which details

matter for the speci�c problem at hand, and weed out those that do not.

Simple qualitative models have the advantage that they often allow us to capture general

dynamics common to many di�erent species, ecologies, and settings. Throughout this thesis,

my models are usually constructed with one particular organism in mind, but I have tried to

keep them in such general terms that they may apply to many other species that could have

similar interaction patterns as the original organism(s).

5"This porridge is too hot," Goldilocks exclaimed. So she tasted the porridge from the second bowl. "This

porridge is too cold." So she tasted the last bowl of porridge. "Ahhh, this porridge is just right!" she said

happily. And she ate it all up. - Children story by Robert Southey, 1837.

159
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Above, I have outlined my ideals for modeling, but I am still learning, and the models I have

constructed in this thesis are far from perfect. Often after a project is more or less �nished and

the article submitted, I get a strong suspicion that it would probably be a good idea to start

all over and construct a new and improved model from scratch. Simple models are tools that

we often design when we are still fumbling in the dark and they therefore often end up having

�aws and peculiarity when looked at in hind sight. There is of course also a time and place

for highly detailed modeling: for example when recreating experimental �ndings quantitatively

down to every decimal number, for designing large scale integrated circuits and predicting the

weather. But I personally prefer fumbling in the dark with a simple bacteria model anytime.
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Appendix 1: Supplementary information for Chapter

1

5.6.1 Rates and probabilities

In the simulations time is incremented in constant steps of size ∆t ≡ 1. In each time step

all the sites in the grid have their state updated synchronously. Because of the constant time

step used in the simulations, the constant rates for the Poissonian processes of phage infection,

phage decay and phage di�usion, (α, δ and λ), have to be reinterpreted in terms of probabilities

that an event will happen in each time step ∆t. The probability for one phage to decay during

an in�nitesimal time step dt is: δdt. The macroscopic time step used in the simulations can

be written as ∆t ≡ Mdt. Thus the probability for a phage not to decay during a time span

∆t is:

1− pδ = (1− δdt)M =

(
1− δ∆t

M

)M

. (5.20)

In the limit of M →∞, i.e. dt → 0, this becomes:

1− pδ = lim
M→∞

[(
1− δ∆t

M

)M
]

= e−δ∆t . (5.21)

which means that the probability to decay within the a time step ∆t is:

pδ = 1− e−δ∆t . (5.22)

Using the same argumentation as above, the probability for one phage to jump to a neighbor

lattice site during a time step, can be expressed as:

pλ = 1− e−λ∆t . (5.23)

Note that this expression just gives the probability that a phage will jump at least once during

a time step ∆t. For large ∆t and large λ it quickly becomes very probable that a phage jumps

more than once in one time step. In the simulations, however, we do not allow phages to jump

twice within one time step. Since the ∆t used is relatively large this is a crude approximation
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but e�ectively it just results in a slightly smaller phage di�usion constant. The e�ective di�usion

constant becomes D ' 0.23µm2

min instead of D = 1
4
µm2

min which λ = 1 would have given had the

simulation time steps been in�nitesimal (see [46]). Since phage can both decay and infect

during a time step, ∆t, the probability for a bacterium to get infected, pα, within a time step

depends both on the number of phages, N0, present in the site with the bacterium at the start

of the time step, the infection rate per phage per bacterium, α, and the degradation rate,

δ. Large numbers of phage and high infection rate increases the infection probability, while a

high decay rate lowers it, since phages then have a high risk of decaying before they get to

infect. We assume that the e�ect of phages who di�use to neighboring sites during one time

step and thereby miss the chance of infecting is negligible; the loss of phages in one time step

due to di�usion will be somewhat balanced by �ow in from neighboring sites. We consider the

situation where one bacterium spends a time span of ∆t with a number of phage that infect

with the rate α, and decay with the rate δ. The number of phage present at the beginning of

the time step is N0. The probability 1 − pα that no infection will happen in M time steps of

size dt = ∆t
M is approximately:

1− pα = (1− αdt)N0e−δdt
(1− αdt)N0e−2δdt × · · · × (1− αdt)N0e−Mδdt

. (5.24)

The exponents of the form N0e
−nδdt stem from the fact that as time passes there are fewer

and fewer phages left due to phage decay. The expression eq. 5.24 can be rewritten:

(
1− α∆t

M

)N0e−δ
∆t
M (

1− α∆t

M

)N0e−2δ∆t
M × · · · ×

(
1− α∆t

M

)N0e−Mδ∆t
M

=
(
1− α∆t

M

)N0
∑M

i=0 e−iδ∆t

(5.25)

=
(
1− α∆t

M

)N0
1−exp

(
−
(

M+1
M

)
δ∆t

)
1−exp(−δ∆t/M) . (5.26)

When M is large, the exponent of eq. 5.26 can be approximated by:

N0
1− exp

(
−
(

M+1
M

)
δ∆t

)
1− exp (−δ∆t/M)

' N0M
1− exp (−δ∆t)

δ∆t
(5.27)

(here we use the Taylor expansion of (1 − ex ) ' x for x � 1, and the fact that M+1
M ' 1

for large M). When M → ∞ a good approximation for the probability that an infection will

happen in a time period ∆t is:

pα ' 1−
(

1− α∆t

M

)MN0
1−exp(−δ∆t)

δ∆t

(5.28)

' 1− exp

(
−N0α

(
1− exp(−δ∆t)

δ

))
. (5.29)

Here we use
(
(1− x

n )k
)n ' (1 − k x

n )n for small x
n and limn→∞

(
(1− k x

n )n
)

= exp(−kx). It

is expression eq. 5.29 which is used in the program to determine whether or not a bacterium
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will become infected in one time step of size ∆t when there are N0 phages in the same site

as the bacterium at the beginning of the time step, and the phages decay with rate δ and

infect with rate α. In each time step of the simulation, the phages, at a site where there is

also a bacterium, are �rst given the chance to infect with probability pα. If the bacterium gets

infected, one phage is removed from the site and then the remaining phages risk decaying with

probability pδ.

5.7 Right boundary of the co-existence region in the δ-α plane

An analytical expression for the right boundary of the co-existence region in the α�δ plane can

be derived. Since the phages are very ine�ective on the right boundary we can assume that

the bacterial density is high (B ' 1) and that a bursting bacterium, on average, will have four

healthy bacteria as nearest neighbors. The number of phages, originating from a burst, that

will reach and infect one of the surrounding healthy bacteria in a single time step ∆t is, in this

situation, given by:

βe−δ∆t(1− e−λ∆t)(1− e−αeff ∆t), (5.30)

where e−δ∆t , (1−e−λ∆t) and (1−e−αeff ∆t) are the respective probabilities to not decay, jump

to a neighbor site, and infect a bacterium. The e�ective infection rate αeff = α( 1−exp(−δ∆t)
δ )

comes from the expression eq. 5.29 and accounts for the fact that the phage also need to

survive for a while, after they have jumped to a neighbor site with a susceptible bacterium,

before infecting it. To sustain the population, at the very least one phage needs to succeed in

reaching and infecting a neighboring bacterium. That is, if a burst in a bacterial population

of density B ' 1 will not result in at least one new infection on average, then the phage will

die out. The right boundary, between co-existence and phage-extinction, for the Spatial model

should thus lie at:

β
(

1− e−λ∆t
)
e−δ∆t

(
1− e−αeff ∆t

)
= 1 (5.31)

⇒ α = −
(

δ

1− exp(−δ∆t)

)
log

(
1− 1

β(1− exp(−λ∆t)) exp(−δ∆t)

)
. (5.32)

In eq. 5.32 we assume that all phages either decay, or infect within the �rst two time steps

after the burst. This is a fair approximation, as B ' 1 and ∆t(α + δ) ≥ 1. The expression in

eq. 5.32 goes to in�nity when

β(1− exp(−λ∆t)) exp(−δ∆t) = 1, (5.33)

since − log(x) → ∞ for x → 0. This means that there exists a maximal value for the

degradation rate above which there can be no co-existence:

δmax = log (β (1− exp (−λ∆t)))
1

∆t
. (5.34)
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Figure 5.15: Left panel: The coexistence region of the Well-mixed model with and without the e�ect

of lysis inhibition. Right panel: The coexistence region of the Well-mixed model with and without the

e�ect of having dead and infected bacteria act as sinks for phage.

5.8 E�ect of shielding and lysis inhibition in the Well-mixed model

We observe enhancement of coexistence in the Well-mixed model when lysis inhibition is imple-

mented (see �gure 5.15 left panel). The enhancement in this case occurs because the strategy

of delaying lysis desynchronizes burst events and therefore dampens population oscillations. As

seen in �gure 5.15 right panel, there is no signi�cant e�ect of letting the dead and infected act

as sinks for phage in the Well-mixed model for the degradation rate of dead bacteria, δB = 0.01,

used in our simulation. The δB would have to be much lower, i.e. the dead bacteria would

have to remain in the system for much longer, for any e�ect to be visible.
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Figure 5.16: Long lived coexistence for a broad rage of αin and αout . Surface shows length of

coexistence for di�erent sets of αin and αout , if coexistence lasted longer than an upper cut o� value of

a 1000 bacteria generations the simulation was stopped. Note that the α-axis runs in opposite direction

of the δ-axis in �g. 2.6 in chapter 2. Grid size: 100×100 Initial conditions for simulations where phage

infected bacteria placed on a straight colony edge of healthy bacteria, were bacteria had max density

counter value from t = 0.
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Figure 5.17: Infection front speed slow down over time. Blue dots show dB/dt as a function of

time (in units of simulation time steps) for six di�erent simulations with same parameters as in �g. 2.4

in chapter 2, (δout ; αout) = (0.05 ·10−1min−1; 1.0 ·10−1min−1) and (δin; αin) = (5.0 ·10−1min−1; 0.01 ·
10−1min−1), red line show average value. Grid size: 200 × 200. Initial condition was phage placed

on the edge of a straight colony edge. The bacteria in the colony had all density counters set to zero

at t = 0. In the beginning before bacteria reach a high density counter values phage infection front

eat rapidly through the colony. After roughly 2 bacteria generations the bacteria have reached higher

density counter numbers and the advancing infection fronts slow down and become almost stationary.
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Figure 5.18: Degradation rate evolution with normal steps. αin = αout = 1.0 · 10−1min−1 at all

times. O�spring values for these parameters was allowed to take normal distributed steps away from the

parent value with mean µphage = 0.05 for δout and αout and µbacteria = 0.5 for δin and αin respectively,

(but not to go below zero). A: Initial condition (δin, δout) = (1.0 · 10−1min−1, 0.1 · 10−1min−1). B:

Initial condition (δin, δout) = (1.0 · 10−1min−1, 0.3 · 10−1min−1). C: Initial condition (δin, δout) =

(1.0 ·10−1min−1, 1.0 ·10−1min−1). D: Initial condition (δin, δout) = (5.0 ·10−1min−1, 3.0 ·10−1min−1).

E: Initial condition (δin, δout) = (20.0 · 10−1min−1, 2.0 · 10−1min−1). Trajectories show how the system

averages of δin and δout change during a simulation which lasts 3000 time steps. Grid size: 80×80.
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Figure 5.19: Infection rate evolution with normal steps. δin = δout = 0.1 · 10−1min−1 at all times.

O�spring values for these parameters was allowed to take normal distributed steps away from the parent

value with mean µphage = 0.025 for δout and αout and µbacteria = 0.025 for δin and αin respectively, but

not to go below zero. A (purple): initial values αin = 0.0002 · 10−1min−1,αout = 0.004 · 10−1min−1. B

(light blue): initial values αin = 0.001 · 10−1min−1,αout = 0.004 · 10−1min−1. C (green): initial values

αin = 0.01 · 10−1min−1,αout = 0.1 · 10−1min−1. D (red): initial values αin = 0.01 · 10−1min−1,αout =

0.01·10−1min−1. Trajectories show how the system averages of αin and αout change during a simulation

which lasts 3000 time steps. Note that in the beginning of each simulation selection pressure on αin

is low since there are few phage and bacteria and they are relatively far apart in the random initial

condition. Since we do not allow αin to take on negative values the average tend to drift up when there

is no strong selection, which is the reason why all trajectories initially go to higher αin values, before

moving in to the blue region. Grid size 40×40 grid. Random Initial conditions.
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Figure 5.20: Evolution pushes selforganizing bacteria refuge system into parameter region with

stable coexistence. A: System averages of δin, δout , αin and αout as a function of time, for simulation

where both δin, δout , αin and αout was allowed to evolve. At t = 0, δin = δout = αin = δout = 1.

O�spring values for these parameters was allowed to take normal distributed steps away from the

parent value with mean µphage = 0.05 for δout and αout and µbacteria = 0.5 for δin and αin respectively,

(but not to go below zero). (Since grid size was small we used large evolutionary steps in order to

ensure a reasonable short simulation time). B: Yellow show sites occupied by healthy bacteria, red sites

with infected bacteria and green sites with di�using phage. Grid size: 40 × 40. Initial conditions was

randomly scattered bacteria and bacteria infected with phage.
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Figure 5.21: Phage are co-localized with colony edges. Average number of phage per site as

a function of the fraction of sites occupied by bacteria in the local neighborhood of the site. The

probability of �nding phage at sites with both empty and occupied sites in the vicinity is higher than

the probability of �nding phage in sites where all sites in the vicinity are either completely occupied

or completely empty. This signi�es that phage are most abundant at the colony edges. Grid size:

200 × 200. Initial conditions was randomly scattered bacteria and bacteria infected with phage. A:

αout = αin = 1 · 10−1min−1 and δin = 100 · 10−1min−1 and δout = 0.04 · 10−1min−1. B: αout = αin =

1 · 10−1min−1 and δin = 10 · 10−1min−1 and δout = 0.05 · 10−1min−1. C: αout = αin = 1 · 10−1min−1

and δin = 3.3 · 10−1min−1 and δout = 0.8 · 10−1min−1.
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5.8.1 Finding the steady state distribution around a point source of molecules which

di�use and decay uniformly

For a single cell excreting a common good molecule E at a constant rate σE , the change of

E in time at a point r = (x , y , z) at the time t can be described by the partial di�erential

equation:

∂E

∂t
= D

∂2E

∂r2
− γEE (r, t) + δ(r − r0)σE (5.35)

where the di�usion rate of the molecule is D and degradation rate γE . In most cases we

can assume that the time scales of cell division and cell movement is far slower than that

of di�usion and degradation of the common good molecules. We set ∂E
∂t = 0 and solve the

ordinary di�erential equation:

D
d2Ess

dx2
= γEEss(x)− δ(x − x0)σE (5.36)

If we Fourier transform both sides of eq. 5.36 we get:

D(iω)2Ẽss(ω) = γE Ẽss(ω)− σE√
2π

exp (−ix0ω) (5.37)

Ẽss(ω) =
σE√
2π

1

Dω2 + γE
exp (−ix0ω) (5.38)

Ess(x) can thus be found by taking the inverse Fourier transform of eq. 5.38:

Ess(x) =
1√
2π

∞∫
−∞

Ẽss(ω) exp (ixω) dω (5.39)

=
σE

2π

∞∫
−∞

1

Dω2 + γE
exp (i(x − x0)ω) dω (5.40)
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Figure 5.22: The closed path C used in eq. 5.41

the integral eq. 5.40 is equal to the real part of the path integral over the complex valued

function Ẽss(z) = σE
2π

1
Dz2+γE

exp (i(x − x0)z):

∫
C1

Ẽss(z)dz =

∮
C
Ẽss(z)dz −

∫
C2

Ẽss(z)dz (5.41)

when R → ∞. (where z = ω + iy and C is de�ned in �g. 5.22). Since
∫

C2
Ẽss(z)dz → 0 for

R →∞ (because 1
Dz2+γE

= 1
DR2+γE

→ 0 for R →∞), we have:

Ess(r) =

∮
C
Ẽss(z)dz (5.42)

=
σE

2π

∮
C

1

Dz2 + γE
exp (i(x − x0)z) dz (5.43)

=
σE

2π
2πi

 1
D exp (i(x − x0)z)

z + i
√

γE
D


z=i

√
γE
D

(5.44)

=
σE

2
√
DγE

exp

(
−
√
γE

D
|x − x0|

)
(5.45)

(Where, in the third line, we use Cauchy's integral formula which states that:∮
C

f (z)
z−z0

dz = 2πif (z0)).
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5.8.2 Conditions satis�ed by global maxima of ∆g

The σopt
E (C ,D) which maximizes ∆g(C ,D) for all population sizes, C , and di�usion constants

D must satisfy ∂∆g(C ,D,σE )
∂σE

∣∣∣∣
σE =σopt

E

= 0 ,
∂2∆g(C ,D,σopt

E )

∂σ2
E

∣∣∣∣
σE =σopt

E

< 0, and ∆g(C ,D,σopt
E ) > 0.

∂∆g(C ,D)

∂σE

∣∣∣∣
σE =σopt

E

= 0⇒ (5.46)(
BmaxhK

h

σopt
E

) (
σopt

E f (C ,D)
)h((

σopt
E f (C ,D)

)h
+ Kh

)2
−pcost = 0⇒ (5.47)

(
BmaxhK

h

pcost

) (
σopt

E f (C ,D)
)h((

σopt
E f (C ,D)

)h
+ Kh

)2
= σopt

E (5.48)

from ∂2∆g(C ,D)
∂σ2

E

∣∣∣∣
σE =σopt

E

< 0 , we get:

∂2∆g(C ,D)

∂σ2
E

∣∣∣∣
σE =σopt

E

< 0⇒ (5.49)

BmaxhK
h
(
σopt

E f (C ,D)
)h
(

(h − 1)Kh − (h + 1)
(
σopt

E f (C ,D)
)h
)

(
σopt

E

)2
(
Kh + (σE f (C ,D))h

)3
< 0⇒ (5.50)

(h − 1)Kh − (h + 1)
(
σopt

E f (C ,D)
)h

< 0⇒ (5.51)

K

f (C ,D)
h

√
h − 1

h + 1
< σopt,∗

E (5.52)

We note that 5.52 is only de�ned for h ≥ 1. For the sigmoidal bene�t functions we use in

chapter 3 it turns out that the production rate σopt,∗
E which satis�es K

f (C ,D)
h

√
h−1
h+1 = σopt,∗

E

(eq. 5.52) always gives ∆g(C ,D,σopt,∗
E ) ≤ 0 so it is the conditions ∆g(C ,D,σopt

E ) > 0 and

∂∆g(C ,D,σE )
∂σE

∣∣∣∣
σE =σopt

E

= 0 alone that determine the critical turn on points, CC and DC .

5.8.3 Limit of Emiddle(C ,D) for C →∞

For C →∞,

Emiddle(C ,D) =
σE

2
√
DγE

1 + 2

1− exp
(
−
√

γE
D

a
2 (C − 1)

)
exp

(√
γE
D a
)
− 1

 (5.53)

approaches a constant:

lim
C→∞

(Emiddle(C ,D)) =
σE

2
√
DγE

1 + 2

 1

exp
(√

γE
D a
)
− 1

 (5.54)
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which for
√

γE
D a� 1 is:

lim
C→∞

(Emiddle(C ,D)) ' σE

2
√
DγE

1 + 2

 1

1 +
√

γE
D a− 1

 (5.55)

= σE

(
1

γEa
+

1

2
√
DγE

)
(5.56)

' σE

γEa
(5.57)

(since
√

γE
D a � 1 ⇔ 1

γE a �
1√

DγE
). Note that the constant in this limit does not depend

on the di�usion constant. This is expected; eq. 5.57, gives what a cell in the middle of an

e�ectively in�nite colony feels at steady state, and thus di�usion in and out of the cells local

neighborhood should exactly cancel and only production and degradation rates and the density

of cells matter.

5.8.4 Limit of σopt
E ,h=1 for D → 0 and C →∞ in the spatial case

Dealing with D → 0 is a bit tricky. We �rst have to go back and take a look at the partial

di�erential equation which gave us the sst. distribution of common good, E , around a single

point source (one cell).

∂E

∂t
= D

∂2E

∂r2
− γEE (r, t) + δ(r − r0)σE (5.58)

for D = 0 and ∂E
∂t = 0 this gives us:

E (r) = δ(r − r0)
σE

γE
(5.59)

It seem most sensible in this situation to rede�ne bene�t not as a function of E in the exact

position of the cell (r = r0) but as a function of the integral
∫ ε
−ε E (r)dr = σE

γE
(where 1 �

ε > 0), which we can think of as the concentration of common good in and around the close

vicinity of the cell. (There is no reason to include other cells since with no di�usion they wont

feel each others presence anyway...). Since:

σopt
E ,h=1 =

√
1

f (C ,D)

√
BmaxK

pcost
− K

f (C ,D)
(5.60)

(5.61)

this gives us:

lim
(
σopt

E ,h=1

)
D→0

=
√
γE

√
BmaxK

pcost
− KγE (5.62)
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This means that for in�nitely low di�usion, the optimal production rate of common good

approaches a constant low value set by: γE , K , and Bmax
pcost

. The optimal production rate for

C →∞ is:

lim
C→∞

(
σopt

E ,h=1(C )
)

=

√
1

limC→∞ (f (C ))

√
BmaxK

pcost
− K

limC→∞ (f (C ))
(5.63)

=
√
γEa

√
BmaxK

pcost
− KγEa (5.64)

since limC→∞ (f (C )) = 1
γE a , (see derivation above).

5.8.5 A simple model for polymers degraded by an excreted enzyme

We assume that bene�t is directly proportional with the concentration of polymers that has

the length which allows transport over the cell membrane, and denote this length 1. We also

assume some constant source of polymers of max length n, and constant equal degradation of

polymers of all lengths. Concentration of a polymer of length i is denoted Ni . Longest polymer

in system has length n. Concentration of enzyme (common good) is denoted E . Production

rate of polymers of maximal length n, is p. Degradation rate of all lengths of polymers is δ.

Equations describing the change in concentration of polymers for a given level of enzyme E of

all lengths are thus as follows:

dNn

dt
= p − Nn(E + δ) (5.65)

... (5.66)

dNi

dt
= 2E

n−1∑
j=i

Nj+1

j
− Ni (E + δ) (5.67)

... (5.68)

dN1

dt
= 2E

n−1∑
j=1

Nj+1

j
− N1δ (5.69)

where i = 1, 2, ... , n (5.70)

The steady state concentrations, N∗n , ... ,N∗i , ... ,N∗1 can be found by setting Ṅn = · · · = Ṅi =

· · · = Ṅ1 = 0. For n = 2, the steady state concentration of N1 is:

N∗1 = 2
Ep

δ(δ + E )
(5.71)

For n = 3, the steady state concentration of N1 is:

N∗1 =
Ep

δ (δ + E )

(
1 + 2

E

δ + E

)
(5.72)
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For n = 4, the steady state concentration of N1 is:

N∗1 =
2

3

Ep

δ (δ + E )

(
1 + 3

E

δ + E
+ 2

E 2

(δ + E )2

)
(5.73)

For n > 2 the steady state concentration of N1 is given by:

N∗1 =
2

n − 1

Ep

δ(δ + E )

1 +

 2

n − 2
+

n−2∑
k=2

1

k − 1

n−2∏
j=k

(
1 +

2

j

E

δ + E

) E

δ + E

 (5.74)

This expression comes from combining the knowledge that:

N∗1 = 2
E

δ

[
n∑

k=2

1

k − 1
N∗k

]
, for n > 2 (5.75)

and

N∗i = N∗i+1

(
1 +

2

i

E

δ + E

)
, for 1 < i < n − 1 ⇒ (5.76)

N∗k = N∗n−1

n−2∏
j=k

(
1 +

2

j

E

δ + E

)
, for k > 1 (5.77)

and

N∗n =
p

δ + E
(5.78)

N∗n−1 =
2

n − 1

E

δ + E
N∗n , for n > 2 (5.79)

which follows from setting Ṅn = · · · = Ṅi = · · · = Ṅ1 = 0, solving for N∗n , ... ,N∗i , ... ,N∗1 .
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A)

B)

Figure 5.23: Inducer production curves. A: Expression level of lasB in response to the concentration

of inducer (3OxoC12) in the medium. At higher signal concentrations (not shown) expression level

saturates. The expression level of lasI (the gene coding for the inducer molecule) is expected to have

a similar shape. Fit to a sigmoidal function gives a hill factor of approx. 1.2. B: Expression level of

rhlAB in response to the concentration of inducer (C4) in the medium. At higher signal concentrations

(not shown) expression level saturates. The expression level of rhlI (the gene coding for the inducer

molecule) is expected to have a similar shape. Fit to a sigmoidal function gives a hill factor of approx.

1.3. (Data curtesy of Brooks Peterson UW).
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Virulent phages and their bacterial hosts represent an unusual sort of predator-prey system where each time
a prey is eaten, hundreds of new predators are born. It is puzzling how, despite the apparent effectiveness of
the phage predators, they manage to avoid driving their bacterial prey to extinction. Here we consider a
phage-bacterial ecosystem on a two-dimensional (2-d) surface and show that homogeneous space in itself
enhances coexistence. We analyze different behavioral mechanisms that can facilitate coexistence in a spatial
environment. For example, we find that when the latent times of the phage are allowed to evolve, selection
favors “mediocre killers,” since voracious phage rapidly deplete local resources and go extinct. Our model
system thus emphasizes the differences between short-term proliferation and long-term ecosystem
sustainability.

The replication strategies of phages fall into two major cat-
egories: virulent and temperate. A temperate phage has the
ability to integrate its DNA into the host chromosome, where
it is then replicated along with the bacterial DNA during cell
division. This strategy allows the phage to slow down or com-
pletely stop exploitation of the bacteria, thus reducing the risk
of driving its host to extinction. A virulent phage lacks this
ability, and it is not fully understood how they manage to
coexist with their bacterial prey (4, 19). Consider, for example,
the highly effective T4 phage. For the sake of argument, let us
assume a burst size of 100 offspring upon lysis. On average, not
more than a single phage out of each burst of 100 should
survive to infect another bacterium, or else the phage would
rapidly outgrow the bacteria and drive them to extinction. The
half-life (t1/2) of a free T4 phage particle has been measured to
be approximately 10 days in LB at 37°C (6). Therefore, on
average, at least t1/2 � log2(100) � 2 months should pass
between infections to prevent runaway phage growth—a time
span that seems highly unreasonable for many of the environ-
ments where phage and bacteria interact, such as soil or bio-
film. Even a more considered calculation, inserting the above
half-life measurement into more realistic Lotka-Volterra-like
predator-prey models (9) does not change the conclusion that
T4 and other virulent phages appear to be far too effective
predators for coexistence to be feasible. It is, however, an
undisputed fact that virulent phages and bacteria have coex-
isted for eons and do so still, everywhere around us and inside
us. One possible explanation for this puzzle is that bacteria
constantly evolve resistance to existing phages and that the
phages evolve to attack resistant bacteria in a continuous arms
race. This “Red Queen” argument (23) has, however, been
criticized on the grounds that the rates of evolution of phages
and bacteria are not symmetric (17, 12). Recent measurements

support this: in soil, phages appear to be “ahead of the bacteria
in the coevolutionary arms race” (24). We therefore wish to
explore mechanisms other than bacterial resistance that may
promote coexistence between virulent phages and bacteria.

Historically, phage-bacterial ecosystem models have ignored
the issue of space, utilizing zero-dimensional approaches, such
as ordinary differential equations (e.g., see references 1, 5, 13,
14, 15, and 21). However, many real phage-bacterial ecosys-
tems are found in environments with a complex spatial struc-
ture, such as soil, biofilms, or wounds in animal and plant
tissue. Schrag and Mittler (20) showed that coexistence be-
tween virulent phage and bacteria is feasible in a chemostat but
not in serial cultures, due to the heterogeneous nature of the
environment in the chemostat. Further, experiments done by
Brockhurst et al. (3) indicate that reduced phage dispersal can
prolong coexistence for virulent phage and bacteria in spatial
environments by creating ephemeral refuges for the bacteria.
Kerr et al. (10) introduced a simple cellular automaton to
model fragmented populations of phage and bacteria in which
coexistence was more easily achieved when migration was spa-
tially restricted. Thus, the main extension to the simple pred-
ator-prey framework that we examine will be to add a spatial
dimension.

We construct and compare two phage-bacterial ecosystem
models: one model where the phage and bacteria exist in a
two-dimensional space, such as the surface of an agar gel
(referred to as the “spatial model”), and the other model
where the phage and bacteria are repeatedly mixed, mimicking
serial cultures or a well-mixed broth (referred to as the “well-
mixed model”). We show that space does indeed enhance
coexistence. We then move on to explore other mechanisms
that phage could incorporate into their behavior to further
enhance coexistence. These can broadly be classified as “hard-
wired” (where every phage follows the same deterministic
strategy) versus “adaptive” (where each phage potentially be-
haves differently, thus allowing the population to explore dif-
ferent options).

We have chosen to look at three specific mechanisms as
examples of these categories: (i) phage effectiveness would be
reduced if they were unable to register whether they were
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Blegdamsvej 17, Copenhagen, Denmark. Phone: 45 353 25273. Fax: 45
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infecting live, infected, or dead bacteria (a hardwired behav-
ior); (ii) phage could prolong their latent time, concurrently
increasing burst size, depending on the number of multiple
infections (also a hardwired behavior, but a more “active” sort,
where each phage senses and responds to information from the
environment; T4 is known to use such a lysis inhibition strat-
egy), and (iii) phage offspring could have altered latent times
due to mutations in the holin genes (an adaptive behavior). We
will compare each of these mechanisms in the spatial and
well-mixed models to investigate whether the heterogeneity
possible in a spatial environment affects the outcome.

METHODS

Rules of the spatial model. In the spatial model, virulent phage and bacteria
interact on an L � L grid of locations, or “sites.” Each site in the grid can either
be empty or occupied by a single bacterium (each grid site thus has a carrying
capacity of one bacterium). The bacterium may be healthy or infected. In addi-
tion, there can be any number of free phage particles at that site. Time proceeds
in discrete steps. Precise timers control bacterial cell division and the lysis of an
infected bacterium, which releases a burst of free phage. Other processes are
random, e.g., death and diffusion of phage, and are modeled as Poisson pro-
cesses.

In each time step, the following can happen.
(i) Bacterial replication. A bacterium with at least one empty adjacent site will

attempt to divide in every time step after the current time has become greater
than the value of its replication timer. The probability of replication is set to be
proportional to the number of empty neighbor sites. Once a bacterium divides,
one daughter cell remains in the original site, and the other is placed randomly
in one of the adjacent empty sites. The replication timers of both cells are reset
to the current time plus replication time (T), a parameter which thus sets the
growth rate of the bacteria.

(ii) Bacterial infection. A healthy bacterium that shares its site with some free
phage may be infected with a probability p�, that depends on the number of
phage at the site, the infection rate per phage per bacterium (�), and the decay
rate of the phage (�). The number of free phage at that site is then reduced by
one, and the lysis timer of the newly infected bacterium is set to � (the latent time
of the infecting phage) and starts counting down from that value.

(iii) Bacterial lysis. An infected bacterium will die when its lysis timer has
counted down to zero. The number of phage at that site increases, upon lysis, by
the burst size (�).

(iv) Phage decay. Free phage die with a probability p� per phage, which
depends on the phage decay rate (�).

(v) Phage diffusion. Each free phage may jump to a neighboring site with a
probability p�, which sets the phage diffusion constant.

The burst size increases with latent time: � � 	(� 
 ε). This formula models
the constant rate of replication (	) of phage, after a minimum preparatory time
(ε), usually referred to as the eclipse time. The values of the parameters and the
size of the basic time step depend on the choice of phage and bacterial species.
With Escherichia coli, a reasonable choice is a time step of 1 min, a replication
time (�) of 30 min (i.e., 30 time steps), and an area of 1 �m2 per grid site.

W chose p� so as to keep the phage diffusion constant (D) fixed at D � 1/4 (site
area)/(time step), meaning it would take on average 104 time steps for a phage
to move across the grid size of L � 100 that we use (too large a diffusion constant
would make the system well mixed, negating the purpose of our study). With T4
in mind, we will fix ε at 10 time steps and 	 at 7 (time step)
1, resulting in
(nonzero) burst sizes ranging from 7 (at � � 11 time steps) to 280 phage (at � �
50 time steps). However, for the basic spatial model, � is fixed at 30 time steps.
For the phage infection rate, �, we will explore a range of values, between 0.0001
and 5 (site area)/(time step). For T4, for example, an infection rate of � � 5 �m2

min
1 means that a phage closer than 1 �m to an E. coli bacterium would infect,
on average, within 12 s, which is fast but not unrealistic. With this range of �
values, we need � to be up to 5 (time step)
1 to see coexistence, as explained in
the Results section below. p� and p� are calculated from the values of � and � by
assuming the processes to be Poissonian random processes (see the supplemental
material for further details of model rules for bacterial replication, infection, and
lysis and for derivation of the probabilities p�, p�, and p�).

Rules of the well-mixed model. The well-mixed model is very similar to the
spatial model, except that (i) upon bacterial cell division, newborn bacteria are
placed at random empty grid sites, and (ii) newborn phages, released when an
infected bacterium is lysed, are randomly placed all over the grid. This results in

continuous mixing of the phage and bacteria populations while at the same time
ensuring that the two models are as similar as possible to allow for straightfor-
ward comparison.

RESULTS

Quantifying coexistence. The color map in Fig. 1 shows the
average steady-state bacterial density per grid site, B, for sim-
ulations of the spatial model with various combinations of �
(degradation rate of phage) and � (infection rate per phage
per bacterium). In the deep-red region to the right in Fig. 1,
the phage are so inefficient that they die out and the bacteria
subsequently grow to carrying capacity. In the deep-blue re-
gion on the left, the phage are so efficient that they drive the
bacteria to extinction and then die out themselves. In the
middle region, where 0  B  1, the bacteria and phage coexist
stably. The size of this region in the �-� parameter plane
quantifies how easily coexistence is achieved in the models we
examine, since � and � are the parameters that determine the
overall predatory effectiveness of the phage. It is interesting to
note that coexistence requires much higher values of � (1 to 4
min
1 for, say T4) than has been measured in laboratory con-
ditions. This suggests that the effective death rate for phage
may be much higher in real ecosystems than in the laboratory.

The typical dynamics of the spatial model involve one or
more bacterial colonies that grow at a rate determined by their
replication time. These colonies are invaded by phage that
move in traveling infection fronts that sweep through the col-
onies. The speed of the infection front depends on the effec-
tiveness of the phage, i.e., � and �. If the phage die too quickly
or infect very inefficiently, they die out. Conversely, if the
phage live a long time or infect quickly, then the infection front
may propagate even faster than the bacterial growth front.
Within the coexistence region, there is considerable variation
in the dynamics of the ecosystem, as shown in the four snap-
shots in Fig. 1. At point A, right at the edge of the coexistence
region, the phage infection front in fact travels faster than the
bacterial growth front. Nevertheless, there is coexistence be-
cause the infection fronts leave behind healthy bacteria often
enough to keep the bacterial population from going extinct.
However, at point A, there is considerable variation in bacte-
rial density with time, as the bacteria typically form a small
number of big colonies which are then decimated by the fast-
moving infection fronts. Increasing � or decreasing � from
point A moves the system deeper into the coexistence region to
points B and C, respectively, where there is a higher average
bacterial density. Point B, in stark contrast to point A, is
characterized by many small intermixed domains of bacteria
and phage, and their populations are quite stable with rela-
tively small fluctuations. At point C, bacteria survive a passing
infection front more often than at point A (because of the
lower infection rate �), and therefore, the bacterial domains
are smaller and more dispersed than at point A. Qualitatively
similar patterns and dynamics are observed as one moves along
isocolor lines (i.e., lines of constant bacterial density) to lower
� and � values. Thus, the dynamics at point D are very similar
to the dynamics at point C. At very small � values (� � 10
4),
however, the system starts behaving like a well-mixed ecosys-
tem because the phage are able to diffuse across the entire grid
before either dying or infecting.
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Space helps coexistence. Figure 2 compares the coexistence
regions for the spatial and well-mixed models, keeping all
parameters other than � and � fixed at their default values. The
coexistence region is approximately 20% smaller for the well-
mixed model than for the spatial model. The right boundary of
the coexistence region coincides for both models and is situ-
ated where the time between infections is so long that on
average only one phage per burst survives. The left boundary,
however, is situated further to the left for the spatial model
than for the well-mixed model, meaning that when there is
space, the bacteria can coexist with far more effective phage
than in the well-mixed model. In the well-mixed model, the left
boundary corresponds, in fact, to the onset of high-amplitude
oscillations in the populations. These oscillations cause the

FIG. 1. (Top) Coexistence region in the �-� plane. � is the degra-
dation rate of the phage, and � is the infection rate for a phage that
occupies the same lattice site as a bacterium (see Methods). The color
map shows the average bacterial density in steady state. There is
coexistence only in the zone in the middle, where phage are neither too
effective nor too ineffective. The white dashed line shows a theoretical
estimate for the threshold at which exactly one phage per burst sur-
vives long enough to find and infect a bacterium (see the supplemental
material). The jaggedness of the boundaries, in this and subsequent
plots, arises because only a single simulation was done for each �-�

pair. Doing more simulations does not significantly alter the position
and shape of the coexistence region. (Bottom) Snapshots of the eco-
system at the points marked A to D in the top panel. Healthy bacteria,
infected bacteria, and dead bacteria are shown. Phage are not shown.

FIG. 2. Space helps coexistence. (Top) Coexistence regions for the
spatial and well-mixed models plotted on top of each other. In the
white region, there is coexistence only in the spatial model. In the gray
region, there is coexistence in both models. The area of the gray region
is around 20% smaller than the area of the white region. 2D space,
two-dimensional space. (Bottom) The green bars and curves show the
total number of free phage in the spatial and well-mixed models as a
function of time for the parameters corresponding to the point marked
E in the top panel. The population quickly settles at a stable level, with
some fluctuations, for the spatial model. In contrast, the well-mixed
model exhibits oscillations with increasing amplitude that eventually
drive the bacterial population, and subsequently the phage, to
extinction.
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bacterial numbers to periodically fall to extremely low levels.
When this happens, the few bacteria left have a finite proba-
bility of all of the bacteria becoming infected before they di-
vide, so that, sooner or later, the bacteria go extinct. For the
same parameter values, the spatial model shows damped or
low-amplitude oscillations and therefore coexistence.

Behavioral mechanism that enhances coexistence. (i) Hard-
wired phage behavior. Figure 3 shows the coexistence regions
when two hardwired mechanisms are implemented in the spa-
tial model. Both impede phage infection and dispersal, but in
different ways. First, the top panel in Fig. 3 shows what hap-
pens if phage simply cannot distinguish between healthy and
infected/dead bacteria—they infect whatever they come into
contact with, and when that is a dead or previously infected
bacterium, the phage dies. (We extended the spatial model to

keep dead bacteria around for a certain characteristic time,
before the site holding them becomes empty [see the supple-
mental material].) Traditionally, phage-bacterial models ig-
nore the interaction of phage with dead and infected bacteria
(16, 13, 21, 5). It has, however, been proposed that the build up
of bacterial debris could hinder phage diffusion, protect live
bacteria, and enhance coexistence (1, 17). This is indeed the
effect we see in the top panel in Fig. 3 at the left boundary of
the coexistence region. In contrast, the right boundary is un-
affected because here the phage population is relatively low, on
the verge of extinction, while the bacterial population is very
close to the carrying capacity so infection of previously infected
or dead bacteria is rare.

The bottom panel in Figure 3 shows the effect of a more
“active” strategy, where the phage can detect multiple infec-
tions and delay lysis. T4 is known to use such lysis inhibition (2,
7). Through a mechanism involving the anti-holin rI, T4 delays
lysis by 5 to 10 min whenever the cell becomes superinfected
with other T4 phage (Ryland Young, personal communica-
tion). (We implement this in the spatial model by allowing
phage to infect already infected cells. Whenever this happens,
lysis is postponed by 8 time steps. However, we set an upper
limit of 200 time steps beyond which lysis cannot be postponed.
This gives a maximum burst size of 1,330 phage, which approx-
imately corresponds to the phage production allowed by the
resources available in a single bacterium [7].) This mechanism
also boosts coexistence, as shown in the bottom panel in Fig. 3.
Again, the right boundary is unaffected because superinfec-
tions are rare here.

The behavior of infecting dead and infected bacteria effec-
tively increases � for the phage, whereas delaying lysis upon
superinfection effectively decreases � (by reducing burst size
per phage). Either way, the result is to shift the boundary of the
coexistence region to the left compared to the basic spatial
model.

(ii) Adaptive phage behavior. Another strategy we explored
was to allow the latent times of the phage to mutate. The phage
proteins that cause lysis, holins, control the time of lysis with
very high precision (� 1 min), and point mutations within the
holin gene can significantly alter the lysis time without chang-
ing the precision (26). We allowed a small fraction of phage
progeny to mutate to have a different latent time (and there-
fore also a different burst size) from the parent phage. (The
latent times of 0.5% of the phage from each burst are chosen
randomly and uniformly from the range 0 to 50 time steps. The
other 99.5% inherit the same latent time as the parent phage.
Additionally, 0.5% of the bursts are comprised entirely of
latent time mutants [see the supplemental material for the
biological reasoning behind these rules].) The top panel in Fig.
4 shows that implementing this adaptive mechanism enhances
coexistence in the spatial model.

It is not intuitively obvious why this strategy helps. Consider
that if the bacterial density is kept fixed, the phage will evolve
to all have the same “optimal” latent time that maximizes the
rate with which they spread in that density (see the supple-
mental material, where we show how the optimal latent time
depends on the bacterial density; also see reference 9). At the
maximum bacterial density of one per site, which is what an
infection front typically encounters in the spatial model, the

FIG. 3. Effects of two hardwired phage strategies on the coexist-
ence region. (Top) Phage infect live, dead, and infected bacteria alike.
(Bottom) Multiple infections of the same bacterial cell result in de-
layed lysis. In both plots, the white region corresponds to parameters
where there is coexistence in the spatial model both with and without
the phage strategies, while the gray region shows where there is coex-
istence only when the corresponding phage strategy is implemented.
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infection front of the optimal phage actually moves faster than
the growth front of the bacterial colony.

One then wonders why the host population is not wiped out
by the appearance of these optimal “efficient killers,” resulting
in an overall reduction of coexistence compared to the stan-
dard spatial model.

The reason this does not happen is that when an “optimal”
phage mutant arises in a colony, it quickly wipes it out and
subsequently goes extinct if it cannot quickly find another col-
ony nearby to infect. Thus, when the bacterial population is
split into many small colonies, there is effective selection
against very efficient phage. In turn, the very existence of phage
with different latent times makes the system self-organize to
have a larger number of small bacterial colonies compared to
the basic spatial model, as shown in Fig. 5d.

In contrast, in the well-mixed model, overefficient phage that
arise have access to the entire bacterial population, so there is
no negative selection to restrain them. This, along with the
increased oscillations we observe when implementing the

FIG. 5. Close-up views of ecosystem snapshots of the spatial model
for parameters corresponding to point A in Fig. 1. (a) Basic spatial
model (phage latent time is fixed at � � 30). (b) Phage infect live, dead,
and infected bacteria alike (phage latent time is fixed at � � 30). (c)
Basic spatial model with delayed lysis upon superinfection (phage
latent time is � � 30 but increases with 8 time steps upon each super
infection). (d) Basic spatial model with latent time mutability (phage
latent time � can mutate to any value in the range 11 to 50 time steps).
Light red/orange cells are bacteria infected by phage with shorter
latent times, while dark red/brown cells are bacteria infected by phage
with long latent times. Free phage are not shown.

FIG. 4. Effect of an adaptive phage strategy where latent times are
allowed to mutate. (Top) The white region corresponds to parameters
where there is coexistence in the spatial model both with and without
latent time mutability, while the gray region shows where there is
coexistence only when latent time mutability is implemented. (Bottom)
The gray region corresponds to parameters where there is coexistence
in the well-mixed model both with and without latent time mutability,
while the white region shows where there is coexistence only when
latent time mutability is not implemented.

3020 HEILMANN ET AL. J. VIROL.

 by on F
ebruary 19, 2010 

jvi.asm
.org

D
ow

nloaded from
 



adaptive strategy in the well-mixed model, makes coexistence
harder to achieve than in the absence of latent time mutability
(Fig. 4, bottom panel).

DISCUSSION

Spatial heterogeneity boosts coexistence. The comparison
between the spatial and well-mixed models shows that space
boosts coexistence—even uniform two-dimensional space,
without any built-in heterogeneities, such as permanent bacte-
rial refuges. Spatial heterogeneity arises spontaneously as a
result of the dynamic interaction between the bacterial growth
front and the propagating phage infection front and is crucial
for enhancing coexistence. In the well-mixed model, which
lacks this heterogeneity, the infection and burst events are
more prone to happen in sync for the whole system, often
resulting in large-amplitude oscillations that destroy coexist-
ence. In the spatial model, each small bacterial colony might
experience oscillations or big population fluctuations, but on a
larger spatial scale, these average out because the life cycles of
the phage attacking separate colonies quickly become desyn-
chronized and uncorrelated.

Looking at Fig. 1, moving from point A deeper into the
coexistence region, to point B (by increasing �) or point C (by
decreasing �), results in more heterogeneity in a snapshot of
the system. When phage infect dead or previously infected
bacteria, their � is effectively increased, and when phage delay
lysis upon superinfection, their � is effectively decreased. Thus,
one would expect both behavioral mechanisms to increase het-
erogeneity compared to the basic spatial model. This is exactly
what we see in Fig. 5, which shows snapshots of the ecosystem
for the basic spatial model and the different strategies, for the
same parameter values.

That shielding by dead bacteria enhances coexistence has
been observed before in models that lack space (1, 17). How-
ever, in these models, to see a significant effect, the dead
bacteria must remain in the system for quite long times. In our
spatial model, the enhancement of coexistence is much more
dramatic. Even when the degradation rate of the dead bacteria
is such that we cannot see any enhancement of coexistence in
the well-mixed model (see the supplemental material), we still
see a distinct enhancement in the spatial model. This is be-
cause the free phage and dead bacteria are typically colocal-
ized here—both are “created” by the same events.

The mechanism of lysis inhibition also works in slightly dif-
ferent ways in the spatial and well-mixed models. It has been
previously argued that this mechanism could enhance coexist-
ence in the following way: the original infecting phage inter-
pret superinfection as a sign that phage outnumber host cells in
the external environment (18), whereupon delaying lysis gives
the few bacteria left alive out there an additional chance to
reproduce, thereby reducing the risk of driving them to extinc-
tion (22). This reasoning breaks down in the well-mixed case
because lysis inhibition also creates ticking “time bombs”; mul-
tiply superinfected bacteria that release a huge number of
phage when they eventually burst, which counteract the effect
of allowing bacteria more time to replicate. In the spatial
model, however, these time bombs are typically left behind by
the moving infection front, so when they do lyse and release a
huge number of phage, these phage are generally relatively far

from susceptible bacteria. (We observe some enhancement of
coexistence in the well-mixed model also when lysis inhibition
is implemented [see the supplemental material], which occurs
because the strategy of delaying lysis desynchronizes burst
events and therefore dampens oscillations.)

Survival of the mediocre killers. One of the most interesting
aspects of the adaptive strategy in a spatial setting is that it
exhibits selection against the most efficient killers since these
deplete resources locally and subsequently die out. This part of
our study thus emphasizes that one must be careful in assessing
what is “optimal” behavior for a phage. Calculations that try to
determine optimal latent times, for instance, often take the
short-term view of maximizing the phage population growth
rate (25, 27). Recognizing the risks of making assumptions of
this kind has led others to suggest extending the notion of
fitness to include “environmental inheritance” (8). Our study
supports this point of view: for long-term survival in a spatial
environment, virulent phage must ensure that their offspring
inherit an environment with sufficient resources. Space pro-
motes survival of mediocre killers.
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Bacteriophage are voracious predators of bacteria and a major
determinant in shaping bacterial life strategies. Many phage
species are virulent, meaning that infection leads to certain death
of the host and immediate release of a large batch of phage
progeny. Despite this apparent voraciousness, bacteria have stably
coexisted with virulent phages for eons. Here, using individual-
based stochastic spatial models, we study the conditions for
achieving coexistence on the edge between two habitats, one
of which is a bacterial refuge with conditions hostile to phage
whereas the other is phage friendly. We show how bacterial
density-dependent, or quorum-sensing, mechanisms such as the
formation of biofilm can produce such refuges and edges in a
self-organized manner. Coexistence on these edges exhibits the
following properties, all of which are observed in real phage–
bacteria ecosystems but difficult to achieve together in nonspatial
ecosystem models: (i) highly efficient virulent phage with rela-
tively long lifetimes, high infection rates and large burst sizes;
(ii ) large, stable, and high-density populations of phage and
bacteria; (iii ) a fast turnover of both phage and bacteria; and
(iv) stability over evolutionary timescales despite imbalances in
the rates of phage vs. bacterial evolution.

prey | heterogeneityQ:7

Virulent phage are remarkably efficient predators. For every
bacterial infection, they produce on the order of 100 copies

of themselves, in just a time span of around one bacterial gen-
eration (1). Such a high predator–prey conversion factor is un-
heard of for most macroscopic ecosystems. Questions related
to phage bacteria coexistence, population dynamics, and evo-
lution have been studied extensively both theoretically and
experimentally, e.g., in refs. 2–8. However, it remains a puzzle
exactly how virulent phage avoid driving their bacterial prey to
extinction (9–11).
Perhaps the most prominent explanation for how virulent

phage manage to coexist with their bacterial hosts is that they
are continuously engaged in a balanced coevolutionary arms race
where bacteria constantly avoid disaster by evolving resistance
to existing phage and the phage then counterevolve to attack
resistant bacteria. This “Red Queen” argument (12) has, how-
ever, been criticized by some on the grounds that the rates of
evolution of phage and bacteria are not necessarily symmetric
(13, 14). Recent measurements support this: In soil, phage ap-
pear to be “ahead of the bacteria in the coevolutionary arms
race” (ref. 15, p. ▪▪▪Q:11 ). For the Red Queen argument to work
it is necessary that at every stage the phage and bacteria must
coexist, without one or the other becoming extinct, for long enough
to allow resistant bacteria to evolve. In our view, therefore, al-
though coevolution is responsible for very long-term coexistence
between virulent phage and bacteria (e.g., refs. 5 and 7), it is im-
portant to explore nonevolutionary mechanisms that can stabilize
predator–prey populations. In this paper we focus on spatial het-
erogeneity as one such mechanism and show how enhanced co-
existence in the short term ties in to stability of the longer-term
coevolutionary arms race.

The degree of spatial heterogeneity is high in many typical
phage bacteria environments, for example in soil and biofilm,
and it has been suggested that spatial bacteria refuges aid co-
existence to some degree in these milieus: Schrag and Mittler
(16) showed that coexistence between virulent phage and bac-
teria is feasible in a chemostat but not in serial cultures, due to
biofilm refuge formation. Experiments done by Brockhurst et al.
(17) indicate that reduced phage dispersal can prolong co-
existence for virulent phage and bacteria in spatial environments
by creating ephemeral refuges for the bacteria. The impact of
spatial heterogeneity on phage–bacteria coexistence has been
explored computationally by Kerr et al. (6). Using a simple cel-
lular automaton, modeling fragmented populations of phage and
bacteria, they showed that coexistence was more easily achieved
when the phage migration pattern induced spatial heterogeneity.
In macroecology, it has been argued theoretically that prey ref-
uges may help stabilize predator–prey interactions (18, 19). The
formation of a spatial refuge invariably leads to the formation
of a boundary zone or edge between two different environments
and studies of natural macroecosystems have shown that there
is an increased biodiversity on edges between different types of
habitats (e.g., ref. 20).
Here we use an individual-based stochastic spatial model to

explore the effect of bacterial refuges on coexistence of virulent
phage and their bacterial hosts. We further explore density-
dependent mechanisms, such as quorum-sensing–triggered biofilm
formation, that allow bacteria to create refuges in a self-organized
manner. Both for spatially fixed refuges and for self-organized
ones, we find that the phage and bacteria can coexist along the
edges of the refuges and that this coexistence is remarkably ro-
bust to changes of parameters that affect phage efficiency and
to alterations in the details of the model rules. (Henceforth we
use the term “phage efficiency” to mean the phage growth rate
in an environment where the bacterial density is kept constant.
Parameters that influence phage efficiency are, for example, the
infection rate α, the burst size β, the phage degradation rate δ,
and the phage diffusion constant.
Finally, we explore evolutionary models where phage efficiency

can evolve and find that the possibility of creating spatial refuges
pushes the system toward more stable coexistence.

Results
Coexistence in the Basic Model Occurs only for a Narrow Range of
Parameters. In a previous study (11), we established which pa-
rameter ranges allow stable coexistence in a 2D phage–bacteria
ecosystem model (the basic model described in Materials and
Methods). Fig. 1 shows that coexistence is possible only in a narrow
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range of the phage degradation rate (δ) and infection rate (α)
values. (We define coexistence to mean that neither phage nor
bacteria go extinct for up to 1,000 bacterial generations. The
number 1,000 was chosen for practical reasons only—so simu-
lations are completed in a reasonable time with the computa-
tional resources at our disposal—but is also long enough for our
overall aim of testing mechanisms to determine whether they can
stabilize the populations for long enough to allow bacteria to
evolve resistance.)
On either side of this region, phage and bacteria cannot

coexist for two different reasons. On the right side (red region),
phage are too inefficient and die out even at high bacterial
density. On the left side (blue region), phage are too efficient;
they drive the bacteria to extinction and subsequently die out
themselves. In the narrow region in the middle, coexistence is
possible because the degradation rate is high enough and/or the
search times for new bacterial hosts are long enough to ensure
that most phage offspring die before they can find and success-
fully infect a new host. Hence, for these parameters, the phage
and bacteria can coexist despite the large phage burst size.
However, the narrowness of the region indicates that coexistence
in this basic model is fine-tuned and may not be robust to evo-
lutionary or environmental changes that perturb the parameter
values affecting phage efficiency.

Bacterial Refuges Enhance Coexistence. To test whether bacterial
refuges can stabilize phage–bacteria coexistence, we begin by
introducing a spatial refuge in the basic model. We divide the
plane in two halves and allow phage efficiency to take on dif-
ferent values in the two halves (see Materials and Methods for
details). As expected, when parameter values in either one of
the half-planes are chosen from within the coexistence region in
Fig. 1 of the basic model, we get coexistence here too, whereas
if parameters of both half-planes lie in the same noncoexistence
region, then we do not observe coexistence.
Whenever parameters for one half are chosen from the right

non-coexistence region of Fig. 1 (where phage are too inefficient
to coexist in the basic model), whereas parameters in the other
half are chosen from the left non-coexistence region (where

phage are too efficient to coexist in the basic model), a more
interesting phenomenon is seen. In this case, we observe co-
existence of phage and bacteria, which is stable for at least 1,000
bacterial generations. The phage exist only in a zone around the
edge between the two halves. The dynamics and width of this
zone vary considerably, as seen in Fig. 2, which shows snapshots
from three different simulations of the fixed bacterial refuge
model where only δ, the phage degradation rate, differs between
the two half-planes. The same is observed when the phage in-
fection rate α is varied between the two half-planes, keeping all
other parameters fixed, or when combinations of δ, α, β (burst
size), and the phage diffusion constant are varied between the
half-planes. It is interesting that it is thus possible to obtain long
coexistence when the parameters in each half-plane in isolation
would lead to fast extinction of phage or bacteria. The only con-
dition required for long coexistence is that one half-plane must
be a bacterial refuge (i.e., the parameter values there make
phage too inefficient to survive), whereas the other is phage
friendly. Thus, this stabilization of coexistence occurs for param-
eter values spanning many orders of magnitude: a vast set com-
pared with the narrow band of parameters that allows coexistence
in the basic model.

Density-Dependent Mechanisms Can Create Self-Organized Bacterial
Refuges. In the above model, the bacterial refuge is determined
before the simulation and occupies a fixed position in space. We
wanted to test whether the same enhancement of coexistence is
possible if bacterial refuges instead form dynamically. In particu-
lar, we examined whether mechanisms that create phage un-
friendly conditions in areas of high bacterial density are sufficient
to produce robust coexistence.
Substantial evidence exists in the literature that conditions

for phage can be more difficult inside a dense bacterial colony.
Nutrient depletion and limitation change the physiological con-
dition for the cells and make them down-regulate receptors for
phage adsorption (21, 22). Further, murein, which forms the cell
wall, becomes hypercross-linked and richer in covalently bound

Fig. 1. Narrow coexistence region for basic model. Colors shows average
bacterial density for simulations after 1,000 bacterial generations have
passed as a function of phage infection rate (α) and degradation rate (δ).
Dark red is the maximal bacterial density of one, and dark blue is zero; colors
in between signify that bacteria and phage coexist. For each value of α there
exists an interval ½δmin, δmax�, outside of which there will be no coexistence.
Here these points are marked for α= 1 · 10−1 min−1. Points A and B show
the parameters used for the simulation shown in Fig. 4. The grid size used
in these simulations was 100 × 100, and initial conditions were randomly
scattered uninfected bacteria (at density 0.05) and bacteria infected with
phage (at density 0.005).

Fig. 2. Snapshots of fixed bacterial refuge simulations. The plane is divided
into two halves. The upper part is a bacterial refuge where phage cannot
sustain themselves for long because of a high phage degradation rate.
The three snapshots show simulations with three different δout values in the
lower part of the system. The δin value in the upper part of the system (the
bacterial refuge) is kept constant at δin = 0:45 min−1. Grid size: 150 × 150.
Initial conditions: upper plane was filled with uninfected bacteria and
one line of infected bacteria was placed on the boundary between the
two halves. (Top) δout = 10−4 min−1. (Middle) δout = 10−2 min−1. (Bottom)
δout = 10−1 min−1.
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lipoprotein (23), which may alter the kinetics of phage infection.
Reduced infection rates, for cells in stationary phase, have for
this reason also been used in other model studies (8). Reduced
burst size and prolonged latent times have also been observed for
cells with low growth rate/low metabolic activity, as well as for
cells in stationary phase, in several studies (24–29). Another
challenge for phage in high cell density is that bacterial quorum-
sensing systems may trigger production of biofilm. Diffusibility
inside a biofilm is locally significantly reduced due to high density
of exopolymers produced by bacteria (30). Inside a biofilm, tight
cell–cell binding may directly block phage receptors (31) and thisQ:12

action could also reduce phage infection. Also biofilms often
contain proteolytic enzymes as well as endoglycanases that can
lead to phage inactivation (26).

Self-Organized Bacterial Refuges also Enhance Coexistence. To test
the effect of density-dependent formation of bacterial refuges,
we constructed another version of the basic model where pa-
rameters such as the infection rate α and phage degradation rate
δ can be different at different spatial locations. However, unlike
the fixed bacterial refuge model, the values are not prespecified
at each point in space. Instead they depend on local bacterial
density as it develops dynamically during the course of the
simulation (Materials and Methods). We implement the density-
dependent effect by assigning to each bacterium a “density
counter.” Each counter is an integer number that is incremented
every time step that the bacterium spends with three or more
neighbors and decremented otherwise. The value of these
counters thus correlates with how long a bacterium has spent
recently in high density. We then let the parameters of a specific
site in the grid depend on the density counter of the bacterium
that occupies that site, such that when the bacteria are young or
alone, and thus have a low density-counter value, they are more
susceptible to phage. Fig. 3 shows schematically how this methodQ:13

can be done by making the phage degradation rate δ an in-
creasing function of the density-counter value. Similarly phage
infection rate or burst size or diffusion ðα; β; λÞ, or combinations
of all of these, can be made a decreasing function of the density
counter. In this model we observe long-lived coexistence: Bac-
terial refuges self-organized and the system developed an almost
static pattern of bacterial islands, with phage proliferating on

new bacteria produced on the edges of the islands (Fig. 4). This
phenomenon occurs for a huge range of parameter values and is
stable against many changes in the model rules (see Q:14SI Appendix
for details on this process Q:15). Fig. 5 shows the duration of co-
existence as a function of δout and δin, for simulations where only
δ depends on the density counter (δout and δin are the values of δ
for sites with minimal and maximal density-counter values, re-
spectively) (Fig. 3). In the region where δin > δmax and δout < δmin,
we find that coexistence times rise steeply compared with the
values outside this region (Fig. 3 shows Q:16simulations that last at
most 1,000 bacterial generations, but on the basis of a few longer
simulations we suspect that coexistence times are much larger
for parameter values deeper within this region). What is required
for long-lived coexistence on the edge of bacterial refuges is merely
that the bacteria in the center of the colony are so resilient that
phage cannot sustain themselves in there, whereas recently divided
bacteria on the edge of the colonies are (possibly very) susceptible
to phage infection.

Evolution of Bacterial Refuges.We next extended the self-organized
refuge model to allow both bacteria and phage to evolve. Fig. 6
shows the results of one such implementation, where δin was
a property that bacteria pass on to their offspring and δout
a property inherited by phage offspring from their parents,
and both were allowed to mutate (Materials and Methods and
SI Appendix, Figs. S15–S18). The colored trajectories in Fig. 6
starting at different initial conditions each show, as time progresses,
the changing values of δin and δout, averaged over all phage and
bacteria at that time. We see how the average parameters of the
system are all pushed deeper into the blue-shaded region, toward
more long-lived coexistence, by bacteria evolving to increase δin
and phage evolving to decrease δout. Note that we chose the
initial values of δin and δout in these simulations to be outside
the coexistence region. Thus, in the absence of evolution, co-
existence would not have lasted very long. A similar pattern is
seen when we allow the infection rates, αin and αout, to mutate
instead (SI Appendix, Fig. S18). Interestingly, this pattern was
also maintained when the mean mutation step sizes of phage
and bacteria were very different. For example, we observed
that evolution of δin and δout from the initial condition of
δin = δout = 1:0 · 10−1min−1 was able to bring the system into the

Fig. 3. Phage degradation rate dependence on bacterial density counter.
One way of implementing the self-organized bacterial refuge model is by
making phage degradation rate an increasing function of the bacterial
density counter. Thereby, bacteria that are young or alone occupy sites
where the phage degradation rate is low, whereas bacteria that have spent
some time at high density are at sites with high phage degradation rates.
The plot shows schematically how this method may be done. The degrada-
tion rate at zero and maximal density counter values are denoted δout and
δin, respectively. Also shown schematically is the region between δmin and
δmax, where phage and bacteria would coexist in the basic model. δout and δin
can be chosen without restriction, but phage–bacteria coexistence is en-
hanced when they are chosen as shown, with δout < δmin and δin > δmax. The
dotted lines signify that we have also tried smoother, sigmoidal,Q:34 functions
and this method gives similar results.Q:35

Fig. 4. Snapshots of simulations of the self-organized bacterial refuge
model. After awhile bacteria in the center of colonies reach the maximal
density-counter value and grid sites inside colonies become phage unfriendly
(bacteria with low density counters are light yellow and bacteria with in-
creasingly higher density counters are colored darker shades of yellow).
New bacteria with density counter equal to zero are produced at the colony
edges. Parameters were ðδout;αoutÞ= ð0:05 ·10−1 min−1;  1:0 ·10−1 min−1Þ
and ðδin; αinÞ= ð5:0 ·10−1 min−1;  0:01 ·10−1 min−1Þ marked by A and B in Fig.
1. The initial condition was randomly distributed bacteria with density
counter equal to zero and a few infected with phage. Grid size: 200 × 200.
1, snapshot taken 4 bacterial generations (bac. gen.) after t = 0; 2, after
8 bac. gen.; 3, after 70 bac. gen.; 4, after 500 bac. gen.; 5, after 1,000 bac.
gen.; and 6, after 2,000 bac. gen.
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blue region of Fig. 6 both when μphage=μbacteria = 0:1 and when
μphage=μbacteria = 5.

Discussion
In this paper we explore bacterial refuges and their formation by
density-dependent mechanisms as a mechanism for enhancing
phage–bacteria coexistence. We find that coexistence between
a virulent phage and its bacterial host is remarkably stable and
robust on boundaries between habitats within each of which
coexistence is not possible—provided one habitat is a bacterial
refuge where conditions are hostile to phage, whereas the other
is phage friendly. We further show that this enhancement of
coexistence also stabilizes the long-term coevolution between
phage and bacteria.
Spatial heterogeneity is a prominent feature of many real

phage–bacteria ecosystems. ThisQ:17 heterogeneity is reflected in the
fact that soil or biofilms, and even ocean data, show high vari-
ability of phage and bacteria density over small length scales
(32). In oceans, heterogeneity could be self-organized by cya-
nobacteria making colonies in the form of sheets and mats (33).
Many bacteria can at high density create a heterogenous and

somewhat phage-hostile environment by themselves. One such
density-dependent mechanism is the use of quorum-sensing sys-
tems to trigger biofilm formation. Biofilm is not invincible to
phage attack (30) but many factors contribute to make phage
existence in biofilm harsher as discussed earlier. Costerton
et al. (34) report that Escherichia coli persist in the intestinal
tract by adhering to tissue surfaces and food particles, where
they live in encapsulated microcolonies akin to biofilms. Stern-
berg et al. (35) report that within biofilms, cells typically form
clusters (microcolonies) with the most metabolically active cells
located on the periphery of each microcolony. ThisQ:18 formation
resembles the self-organized bacterial clusters formed in our
simulations. Corbin et al. (30) observe ongoing phage proliferation
and sustained coexistence of bacteria and phage populations of
T4 in E. coli glucose-limited biofilm. They suggest that virulent

phage multiply only in the part of the E. coli biofilm population
where bacteria are not in stationary phase. Other studies have
also reported that phage may alter biofilm morphology but that
bacteria and virulent phage are able to coexist stably inside
biofilm (26, 36).

Characteristics of Phage–Bacteria Coexistence on Edges of Refuges.
In our simulations, we found that density-dependent, or quorum-
sensing, mechanisms are a robust way of forming self-organized
bacterial refuges. And having stable refuges is in turn a robust
way to enhance phage–bacteria coexistence. We found that co-
existence, in these simulations, has the following characteristics:
(i) Phage and bacterial densities are quite high with phage being
concentrated on the edges of dense bacterial colonies, (ii) phage
can outnumber bacteria by easily an order of magnitude without
destabilizing the system, and (iii) there is a high turnover of the
phage population and also of the bacterial population at the
edge of colonies (SI Appendix, Figs. S11–S13). And all this co-
existence Q:19happens despite the phage being intrinsically very ef-
ficient predators, with a large burst size, long lifetimes, and high
infection rates outside the bacterial refuge. In the absence of
refuges, coexistence between phage and bacteria is difficult to
obtain and has very different characteristics because a higher
phage efficiency is incompatible with stable and high bacterial
density and high turnover of both phage and bacteria populations.
The only way to get coexistence with an efficient phage in the
absence of refuges is to have a sufficiently low bacterial density
so that it takes so long to find new host bacteria that on average
only a single phage from a burst survives long enough to in-
fect a new bacterium (11). Data from soil (37) and marine (38)

Fig. 5. Long-lived coexistence for a broad range of δin and δout. Shown is du-
ration of coexistence as a function of δin and δout (αin = αout = 1:0 · 10−1 min−1).
Red lines mark δmin and δmax for α= 11:0 ·10−1 min−1 in the basic model.
If time reached 1,000 bacterial generations while there was still coexistence
(i.e., both phage and bacteria were present), then the simulation was
stopped. Only parameter sets where δout ≤ δin were considered. Within the
region where δin > δmax and δout < δmin the phage and bacteria coexisted
for durations much longer than the bacterial generation time. In this region,
the average infection front speeds were also relatively low (SI Appendix).
When δin > δmax and δout > δmin, the phage live for a short time on the edge
of the expanding bacterial colony before dying out. When δin < δmax and
δout < δmin, the phage infection fronts rapidly eat into the colonies and
eventually wipe out the bacteria. In the small region where both δin and δout
are within the narrow range of ½δmin; δmax�, there is stable coexistence.
Grid size: 100 × 100. Initial conditions: upper half-plane filled by uninfected
bacteria and a single line of infected bacteria on the boundary between
the upper part and the empty lower half-plane.

Fig. 6. Evolution pushes the self-organized bacterial refuge system deeper
into the parameter region with long-lived coexistence. Trajectories show
how the system averages of δin and δout change during five different simu-
lations (each lasting 3,000 time steps) in the self-organized bacterial refuge
model when bacteria and phage are permitted to evolve (δin was an in-
heritable characteristic of the bacteria whereas δout was an inheritable
characteristic of the phage, both passed on vertically to offspring with
the chance of small changes; new offspring values were picked from a nor-
mal distribution with a mean equal to the parent value and a variance of
μbacteria = 0:07 and μphage =0:1; respectively). We see that selection tends
to push δin to higher values and δout toward lower values. This process
drives the system deeper into the parameter region where δin > δmax and
δout < δmin (the light blue region), where the phage and bacteria coexist
for much longer than the bacteria generation time. Grid size: 150 × 150.
Initial conditions: randomly scattered uninfected bacteria and a few
infected. Purple start point: ðδin; δoutÞ= ð1:0 ·10−1 min−1; 0:1 ·10−1 min−1Þ.
Yellow start point: ðδin; δoutÞ= ð1:0 ·10−1 min−1;0:3 · 10−1 min−1Þ. Red start
point: ðδin; δoutÞ= ð1:0 ·10−1 min−1; 1:0 ·10−1 min−1Þ. Green start point:
ðδin; δoutÞ= ð5:0 ·10− 1 min−1;2:0 · 10−1 min−1Þ. Blue start point: ðδin; δoutÞ=
ð20:0 ·10−1 min−1; 2:0 ·10−1 min−1Þ. Q:36
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phage–bacteria ecosystems seem to match the characteristics
of the refuge model better; the population densities of both
phage and bacteria are observed to be relatively high and the
phage:bacteria ratio is around 10:1. Moreover, stable popula-
tions numbers and a high turnover rate of phage and bacteria are
also observed: Virulent phage are estimated to kill ≈ 20− 40%
of the bacteria in the oceans on a daily basis (38).
Our results suggest that it would be particularly interesting to

measure parameters that affect phage efficiency, such as phage
lifetime, infection rate, and diffusion constant, in natural eco-
systems where such phage have been observed to coexist with
bacteria. The lifetimes of nine different virulent phage were
measured in laboratory conditions with bacteria growing on LB
and found to be of the order of 10 d on average (39). However,
the corresponding numbers are not known in natural ecosystems
in soil or oceans. If measured parameters are found to lie outside
the coexistence region of the basic model, thatQ:20 result would
strongly suggest that there must be additional mechanisms that
allow coexistence. The specific mechanism of coexistence along
the edge of refuges also predicts that the variance of these
parameters should be large, even over very short length scales.
It would, for example, be interesting to know the variance of
burst sizes in a biofilm instead of just the mean burst size. This
is a qualitative prediction at the moment, but as more accurate
measurements of parameters are made the more quantitative
such predictions of our models will become.
The jump from our simple models to real phage–bacteria

ecosystems is a substantial one, and any predictions should be
treated with caution and first confirmed in simpler laboratory
experiments with isogenic phage and bacteria. However, it is
encouraging that the model behavior is robust to many alter-
ations in the dynamical rules. In addition to the variants de-
scribed above, we have also found qualitatively similar refuge
formation and enhancement of coexistence when we added
a third dimension, density-dependent bacterial growth, bacterial
diffusion, and hydrodynamic flows that make bacteria and phage
drift in a specific direction (SI Appendix, Figs. S14, S19, and S20).

Bacterial Refuges and the Coevolutionary Arms Race. Bacterial ref-
uges alone are not necessarily sufficient to ensure very long-term
coexistence of phage and bacteria. In real ecosystems, very long-
term coexistence certainly involves bacteria evolving to become
resistant to phage and phage counter-evolving strategies to in-
fect resistant bacteria. However, such a coevolutionary arms race
cannot be stable if at any time conditions arise where either the
phage or the bacteria rapidly die out. For example, if a particu-
larly efficient phage arises, it could rapidly wipe out the whole
system before bacteria have time to evolve resistance. Therefore,
any nonevolutionary mechanisms that enhance coexistence could
play a crucial role in allowing sufficient time for evolution to
occur. Self-organized bacterial refuges are one of several such
possible mechanisms. We have shown that, for a very broad re-
gion of parameter space, such refuges can slow down the rate of
extinction immensely, while maintaining a high density of both
phage and bacteria, for time spans of at least 1,000 times longer
than the bacterial generation time. The evolutionary simulations
we have done complete the second part of this argument. We
found that even when the system starts with parameter values
that do not allow coexistence for very long, evolution of the
phage and bacteria pushes these parameter values into regions
that do allow coexistence. Interestingly, thisQ:21 outcome was true
both when the phage mutated faster than the bacteria and vice
versa. As one of the referees pointed out, irrespective of the par-
ticular values chosen for the mutation rates, the self-organized
refuges result in an asymmetry in the evolutionary rates of phage
and bacteria. Bacterial mutations occur more often at the edges
of colonies because that is where new bacteria are formed, but
these mutations are often quickly eliminated by phage infections.

On the other hand, phage mutations (which also occur mainly
at the edges) can persist and spread through the population. This
process Q:22likely explains the shape of the evolutionary trajectories
shown in Fig. ▪▪▪ Q:23and in SI Appendix: Changes in bacterial
parameters typically occur early on when the refuges are still
stabilizing, whereas later the trajectory moves mainly in the di-
rection of changing phage parameters. In these evolutionary
simulations, the properties of the ecosystem described above are
maintained—highly efficient phage living on the edge of almost
static refuges, with a high turnover of both phage and bacterial
populations—and there is continuous evolution of phage that are
more efficient and bacteria that create better refuges. A very
interesting direction to take these models in the future would be
to include multiple phage and bacteria species with a complex
network of infection and immunity interactions between them.
To summarize, we have shown that self-organized bacterial

refuge formation might be a mechanism that can help facilitate
coexistence and perhaps resolve several apparently paradoxical
features of the phage–bacteria coexistence observed in the real
world. We have shown that self-organized bacterial refuges can
produce coexistence with features similar to those observed in
real-world ecosystems by concentrating phage–bacteria inter-
action to the edges of the refuges and have argued that selection
pressures will push the system toward more robust coexistence.

Materials and Methods
Basic Model.We use the simple virulent phage and bacteria ecosystem model
introduced in ref. 11. Phage and bacteria interact on a 2D L× L grid of
“sites”. Each site in the grid can be either occupied or unoccupied by a single
bacterium. The bacterium may be uninfected or infected. In addition, there
can be any number of free phage at that site. Time proceeds in discrete
steps. Precise timers control bacterial cell division and the lysis of an infected
bacterium, which releases a burst of free phage. Other processes are ran-
dom, e.g., death and diffusion of phage, and are modeled as Poisson pro-
cesses. In each time step the following can happen:

i) Bacterial replication: A bacterium with at least one empty adjacent
site will attempt to divide in every time step after the current time has
become greater than the value of its replication timer. The probability
of replication is set proportional to the number of empty neighbor sites.
Once a bacterium divides, one daughter cell remains in the original site
and the other is placed randomly in one of the adjacent empty sites.
The replication timers of both cells are reset to the current time plus T,
a parameter that thus sets the growth rate of the bacteria.

ii) Bacterial infection: An uninfected bacterium at the same site as free
phage may be infected with a probability that is set by the infection
rate per phage per bacterium, α. When an infection occurs, then the
number of free phage at that site is reduced by one, and the lysis timer
of the newly infected bacterium is set to τ (the latent time of the infect-
ing phage) time steps ahead. (Note that we disallow superinfection—
phage can infect only uninfected bacteria in all of the models used in
this paper.)

iii) Bacterial lysis: An infected bacterium dies when its lysis time is reached.
The number of phage at that site then increases by the burst size, β.

iv) Phage degradation: Free phage die with a probability determined by the
phage degradation rate δ.

v) Phage diffusion: Each free phage may jump to a neighboring site with
a probability set by the phage jump rate λ (which thus sets the phage
diffusion constant).

The values of the parameters and the size of the time step depend on the
choice of phage and bacteria species (see SI Appendix, Table S1 for expla-
nation of symbols and parameters). For E. coli with a replication time of
300 min, a reasonable choice of time step would be 10 min, and each grid
site would have an area of ∼1 μm2. We choose λ to keep the phage diffusion
constant fixed at D ≃ 1/4 (site area)/(time step), meaning that a phage on
average will use 104 time steps to move across a grid size of L= 100. (For
the choice of E. coli this Q:24number would correspond to at phage diffusion
constant of 2:510−2 μm2=min; which is relatively low.) See SI Appendix
and ref. 11 for further details of model rules for bacterial replication, phage
diffusion, infection, and lysis.
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Fixed Bacterial Refuge Model. We extend the basic model to include a bac-
terial refuge by dividing the L× L grid into two halves. Grid points in one
half are assigned one set of α; δ; β, and λ values that make this half phage
hostile—this is the bacterial refuge part of the grid. The other half is given
another set of parameter values that make it phage friendly. This division is
in contrast to the basic model where parameters are the same all over the
grid. Phage-hostile and phage-friendly parts of the plane can be created in
many ways. The simplest is where only a single phage parameter is changed.
For example, δ could be high in the phage-hostile half and low in the phage-
friendly half. Bacterial growth rate is the same throughout the system.

Self-Organized Bacterial Refuge Model. In the self-organized bacterial refuge
model we again allow α; δ; β, and λ to have different values for different
grid points. However, unlike those in the fixed-refuge model, these values
are not preassigned to each point. Instead they are determined dynamically
during the course of simulation in a manner dependent on the density of
bacteria. The rules that govern thisQ:25 determination mimic the formation of
a biofilm within which phage efficiency is reduced. Each bacterium has
a densityQ:26 counter, which is an integer number that goes up every time step
that the bacterium spends with three neighbors or more and down each
time step it spends with two neighbors or less (the counter stops increasing
at a certain maximum value and never goes below zero). These counters
thus keep track of how long a bacterium has spent recently in high cell
density, which we assume is correlated to its being within the biofilm pro-
tection. We explore different ways, described in the main text, of making

phage parameters depend on the biofilm protection, i.e., on the value of the
density counter of the bacterium that occupies a site.

Evolutionary Version of Self-Organized Refuge Model. In this variant, the pa-
rameter values at each grid point are again determined by the value of the
density counter there, but additionally the function of the density counter
from which the value is computed varies across grid points (unlike the self-
organized refugemodel where this function was the same for all grid points).
The function used is determined by the bacteria and phage that occupy that
grid point. The value chosen when the density counter is maximal is an in-
heritable property of the bacterium, whereas the value chosen when the
density counter is zero is an inheritable property of each phage. When
bacteria or phage replicate, the offspring properties are normally distributed
around the parent properties with variance μbacteria and μphage, respectively.
We have implemented several variants of this Q:27method, and an algorithmic
description of the different models can be found in SI Appendix. A Java
applet implementing the self-organized refuge model is available from S.H.
The applet Q:28is interactive and allows the user to modify phage degradation
and infection rates.
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Acyl-homoserine lactone-dependent eavesdropping
promotes competition in a laboratory co-culture
model
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Many Proteobacteria use acyl-homoserine lactone (AHL)-mediated quorum sensing to activate the
production of antibiotics at high cell density. Extracellular factors like antibiotics can be considered
public goods shared by individuals within a group. Quorum-sensing control of antibiotic production
may be important for protecting a niche or competing for limited resources in mixed bacterial
communities. To begin to investigate the role of quorum sensing in interspecies competition, we
developed a dual-species co-culture model using the soil saprophytes Burkholderia thailandensis
(Bt) and Chromobacterium violaceum (Cv). These bacteria require quorum sensing to activate the
production of antimicrobial factors that inhibit growth of the other species. We demonstrate that
quorum-sensing-dependent antimicrobials can provide a competitive advantage to either Bt or Cv
by inhibiting growth of the other species in co-culture. Although the quorum-sensing signals differ
for each species, we show that the promiscuous signal receptor encoded by Cv can sense signals
produced by Bt, and that this ability to eavesdrop on Bt can provide Cv an advantage
in certain situations. We use an in silico approach to investigate the effect of eavesdropping in
competition, and show conditions where early activation of antibiotic production resulting from
eavesdropping can promote competitiveness. Our work supports the idea that quorum sensing is
important for interspecies competition and that promiscuous signal receptors allow eavesdropping
on competitors in mixed microbial habitats.
The ISME Journal (2012) 0, 000–000. doi:10.1038/ismej.2012.69
Subject Category: microbe–microbe and microbe–host interactions
Keywords: Burkholderia; Chromobacterium; cell–cell communication; microbial competition; quorum
sensing; eavesdropping; evolution

Introduction

Quorum sensing affords bacteria the ability to
control the expression of specific genes in a cell
density-dependent manner (Fuqua et al., 1994,
2001; Bassler, 2002; Waters and Bassler, 2005).
Many species of Proteobacteria use small molecules,
acylated homoserine lactones (AHLs), as quorum-
sensing signals. AHLs are produced by LuxI family
synthases, and specifically interact with cytoplas-
mic LuxR family transcription factors to influence
gene expression. AHL specificity is defined by the
nature of the acyl side group. AHLs can diffuse
through lipid bilayers and thus can move out of and
into cells by diffusion. Because of the signal diffu-
sibility, AHLs must reach a critical environmental

concentration before they cause changes in gene
expression. It is common that the AHL synthase
gene is among the genes activated, creating a
positive feedback loop that results in increased
production of signal (Engebrecht et al., 1983; Seed
et al., 1995; Latifi et al., 1996; Duerkop et al., 2009;
Stauff and Bassler, 2011). Thus, AHL signaling
can coordinate population-wide changes in a cell-
density-dependent manner.

Quorum-sensing-regulated genes are predomi-
nated by those required for the production of
shared ‘public goods’, such as secreted or excreted
factors. One commonly occurring example is anti-
microbials. Quorum-controlled antimicrobials have
been described in many saprophytic Proteobacteria
including Erwinia carotovora (Bainton et al., 1992),
Pseudomonas aeruginosa (Kownatzki et al., 1987;
Bainton et al., 1992; Gallagher and Manoil, 2001;
Ran et al., 2003; Schuster and Greenberg, 2006),
Burkholderia thailandensis (Bt) (Duerkop et al.,
2009) and Chromobacterium violaceum (Cv) (Latifi
et al., 1995; McClean et al., 1997). Although some
groups have proposed that antimicrobial activity of
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secondary metabolites is a side effect and the
primary function of these compounds is as signals
(Davies et al., 2006; Yim et al., 2007), the classic
view is that they are used for competition with other
strains or species in multi-species environments.
This classic view suggests that quorum sensing may
be important for interspecies competition. Quorum
sensing is best understood in the context of
virulence, and few studies have addressed its
importance in competition (Mazzola et al., 1992;
Moons et al., 2005, 2006; An et al., 2006). The
advantage of using quorum sensing to control the
production of antimicrobials is unknown, but it may
allow a population to coordinate delivery of a
sudden killing dose that deprives competitors of
the ability to adapt during exposure to subinhibitory
antimicrobial concentrations (Hibbing et al., 2010,
D An and M Parsek, unpublished). Quorum sensing
may also defer production of an antimicrobial to
minimize the metabolic cost of production.

We are interested in the connection between
quorum sensing and production of antibiotics, and
specifically whether quorum-sensing-controlled
antibiotics are important for interspecies competi-
tion. Thus, we developed a dual-bacterial species
model with two soil saprophytes, Bt and Cv.
Although it is not unlikely that these species coexist
in nature, we selected this pair of bacteria because
we have a base of knowledge about their quorum-
sensing systems, about quorum-sensing control of
antibiotic synthesis and because these species
exhibit similar laboratory growth characteristics.
The Bt genome encodes three LuxR–LuxI pairs.
The BtaI1–R1 pair produces and responds to
octanoyl-HSL (C8-HSL). Little is known about the
genes controlled by this system, but it facilitates
clumping under some conditions (Chandler et al.,
2009). BtaI3 is a 3-hydroxy-octanoyl-HSL synthase,
but little is known about BtaI3–R3 (Chandler et al.,
2009). Finally, BtaR2–I2 senses and produces
3-hydroxy-octanoyl-HSL and 3-hydroxy-decanoyl-
HSL (Duerkop et al., 2009). The BtaR2–I2 system
activates btaI2 and a set of genes responsible for the
production of a family of hydrophilic antibiotics,
the bactobolins, that have activity against a broad
range of bacterial species (Duerkop et al., 2009;
Seyedsayamdost et al., 2010; Carr et al., 2011)
including Cv (see below). The most potent of these
is bactobolin A (Carr et al., 2011).

Cv has a single AHL circuit, the CviR–CviI
quorum-sensing system. This circuit activates genes
required for the production of a purple pigment
called violacein and related compounds that have
broad-spectrum antimicrobial activity (McClean
et al., 1997). We found that Bt is resistant to
purified violacein, but shows sensitivity to other
quorum-sensing-dependent factors produced by Cv.
The CviI-produced AHL signal is hexanoyl-HSL
(C6-HSL), and although CviR is a C6-HSL-respon-
sive transcription factor, it is promiscuous and also
responds to a number of different AHL signals

(McClean et al., 1997; Swem et al., 2009). This
promiscuity may allow Cv to eavesdrop on other
AHL-producing species. There are now a number of
examples of Proteobacteria with promiscuous LuxR
homologs (Pierson et al., 1998; Riedel et al., 2001;
Steidle et al., 2001; Venturi et al., 2004; Dulla and
Lindow, 2009; Ahlgren et al., 2011; Hosni et al.,
2011). It is not known if AHL receptor promiscuity
provides any advantage over more signal-specific
receptors.

We report here that quorum-sensing-dependent
production of antimicrobials can provide a compe-
titive advantage to either Bt or Cv by inhibiting
growth of the other species in co-culture. We also
present evidence that although Bt and Cv produce
different AHLs, the promiscuous signal receptor
of Cv can sense Bt signals, and that this ability to
eavesdrop on Bt can provide a competitive advan-
tage to Cv. We describe a mathematical model of our
dual species system and use this model to show that
eavesdropping can promote fitness during competi-
tion as long as the population can produce sufficient
antibiotic to kill the competitor. Our results support
the idea that quorum sensing is important for
interspecies competition and that promiscuous
signal receptors promote fitness in some situations
by enabling eavesdropping on AHLs produced by
competitors.

Materials and methods

Bacterial strains and growth
Strains and plasmids are described in the
Supplementary Text and Supplementary Table S1.
All bacteria were grown in Luria–Bertani (LB) broth
containing morpholinepropanesulfonic acid (50 mM;
pH 7). Bactobolin A was generously supplied by Jon
Clardy (Seyedsayamdost et al., 2010) and dissolved
in filter-sterilized water. Synthetic C6-HSL
and purified violacein were purchased from
Sigma-Aldrich (St Louis, MO, USA) and dissolved
in acidified ethyl acetate (0.1 ml l�1 glacial acetic
acid) or in dimethylformamide, respectively. AHLs
were prepared from the Bt bactobolin� strain BD20
by extracting stationary-phase (OD600 8–10) culture
fluid with two equal volumes of acidified ethyl
acetate and drying to completion under a stream of
nitrogen gas. The dried extracts were dissolved in
volumes of media equivalent to the volumes from
which they were extracted. The extracts did not
affect growth of Bt or Cv. Extracts similarly prepared
from cultures of an AHL� , bactobolin� double
mutant had no effect on the outcome of co-culture
experiments. Co-cultures and cultures for AHL
preparation were grown at 30 1C. All other growth
was at 30 1C for Cv and 37 1C for Bt. Pure cultures
and co-cultures containing visibly aggregated cells
of Cv were dispersed by homogenization or water-
bath sonication before plating for viable counts.
Gentamicin was used at 10mg ml� 1 (Cv and
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Escherichia coli) or 100 mg ml�1 (Bt) and trimetho-
prim was used at 100 mg ml�1. For selection of
Bt and Cv transconjugants, gentamicin was at
10 mg ml� 1 and trimethoprim was at 100 mg ml� 1.

Antimicrobial susceptibility testing
We determined the minimum inhibitory concentra-
tion of bactobolin or violacein using a protocol
modified from the 2003 guidelines of the Clinical
and Laboratory Standards Institute (CLSI, formerly
NCCLS). Inocula were prepared from logarithmic-
phase cultures and suspended to 5� 106 cells
in 1 ml morpholinepropanesulfonic acid-buffered
LB containing dilutions of antibiotic compounds.
The minimum inhibitory concentration was defined
as the lowest concentration (mg ml�1) that pre-
vented visible growth of bacteria after 24 h. To
assess susceptibility to cell culture fluid, bacteria
were similarly suspended in a broth with 10% (Bt)
or 75% (Cv) (vol vol� 1) filtered fluid from stationary-
phase cultures grown for 24 or 16 h, respectively.
Culture fluid was filtered through a 0.22-mm pore-
size membrane and tested immediately. Fluid from
cultures of Cv was diluted into 4� concentrated LB
to a 1� final LB concentration. Cv and Bt were
treated for 24 and 10 h, respectively, before plating
for viability. All antimicrobial susceptibility testing
was at 30 1C with shaking.

Co-culture experiments
To inoculate co-cultures, pure cultures were grown
to mid-logarithmic phase, subcultured to fresh
medium at an optical density at 600 nm (OD600)
0.05 and grown an additional 3 h before combining
at the appropriate ratios in 10 ml (Figures 1 and 2) or
20 ml (Figures 3 and 4) of medium in 125-ml culture
flasks. The initial OD600 of the co-culture was 0.05
(2–4� 107 cells per ml) for Bt and 0.005 (2–4� 106

cells per ml) for Cv. Co-cultures were incubated with
shaking at 250 r.p.m. Colony-forming units (CFUs) of
each species were determined by using differential
antibiotic selection on LB agar plates. Bt was
selected with gentamicin and Cv was selected with
trimethoprim.

Results

Antibiotic sensitivities
As a first step in developing our binary culture
model, we needed to test the sensitivity of Cv to
bactobolin and the sensitivity of Bt to violacein.
Thus, we used purified antibiotics to determine the
minimum inhibitory concentrations. The minimum
inhibitory concentration of bactobolin A for Cv was
8mg ml� 1, and at concentrations exceeding
8mg ml� 1, Cv was killed during treatment (data
not shown). This bactobolin was estimated to
be at 5.3 mg ml� 1 in pure Bt culture fluid in growth
conditions similar to those we use (Seyedsayamdost

et al., 2010). Bt produces at least seven other bacto-
bolin compounds (Seyedsayamdost et al., 2010;
Carr et al., 2011). To test if Bt-produced bactobolins
in cell culture fluid are sufficient to kill Cv,
we assessed Cv viability after treatment with filtered
fluid from a stationary-phase (OD600 8–10)
Bt culture. After treatment with 10% (vol vol� 1)
culture fluid from a wild-type Bt culture diluted into
fresh broth, we were unable to recover viable Cv.
After similar treatment with 10% (vol vol� 1) culture
fluid from a Bt bactobolin-defective mutant (btaK� )
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Figure 1 B. thailandensis–C. violaceum competition. Initial cell
densities were 2–4�107 B. thailandensis (Bt) cells per ml and
2–4� 106 C. violaceum (Cv) cells per ml. The initial and final cell
densities of Bt and Cv were determined for each independent
experiment by selective plating and colony counts. Each data
point represents the log-transformed average of the ratios of the
two species from duplicate measurements of an independent co-
culture experiment. The lines represent the mean of all of the
experiments in each set.
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Figure 2 Competition in co-cultures of wild-type C. violaceum
(Cv) and wild-type or mutant B. thailandensis (Bt) strains. The
dashed line indicates the starting 10:1 ratio of Bt to Cv. The ratio
of Bt to Cv after 24 h was determined by selective plating and
colony counts. The co-culture results with wild-type Bt are also
shown in Figure 1 and the final average CFU of each species is
also partially represented in Table 2. Bt AHLs were extracted from
culture fluid of a Bt bactobolin mutant (see Materials and
methods) and added to culture medium. The solid lines represent
means for each group. The vertical bars show the standard error of
the mean for each group.
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or in broth alone, Cv grew to 2–3� 109 CFU per ml
(Table 1). Our results show that stationary-phase Bt
cultures produce sufficient bactobolins to kill Cv.

Bt was resistant to violacein at the highest
concentration tested, 125 mg ml� 1 (data not shown),
which is in excess of amounts produced by Cv
(Tobie, 1935; Strong, 1944). Cv codes for other
putative antimicrobial factors, including phenazines
and hydrogen cyanide (Brazilian National Genome
Project Consortium, 2003)Q1 . To test whether Cv
produces quorum-sensing-dependent antimicrobials
with activity against Bt, we incubated Bt with
filtered fluid from Cv wild-type or mutant station-
ary-phase cultures (OD600 4–5). After 10 h, Bt grew
modestly to 3� 108 in the presence of wild-type Cv
culture fluid, but grew to 2� 109 in the presence of
fluid from the AHL synthesis mutant (Table 2). This
indicates that Cv quorum sensing regulates produc-
tion of extracellular factors that inhibit growth of Bt,
and that this inhibition is not due to violacein alone.

The Bt–Cv co-culture model
In pure culture, the doubling times of all Bt strains
were 60 min±5% and Cv strains were 48 min±5%
(see Supplementary Table S2), and both species
reached densities of about 3� 109 cells per ml
in early stationary phase. Because of the modest
growth-rate discrepancy, we used an inoculum of
2–4� 107 Bt per ml and 2–4� 106 Cv per ml in our
co-culture experiments. Wild-type Bt outcompetes
wild-type Cv, increasing in relative abundance
by about 100-fold in 24 h (Figure 1). To study the
competition further, we enumerated bacteria during
logarithmic, early stationary and late stationary
growth phases. In logarithmic and early stationary
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Figure 3 Co-cultures of the C. violaceum (Cv) wild-type Cv017
or the AHL mutant Cv026 and the B. thailandensis (Bt)
competition-impaired AHL� , bactobolinQ5 double mutant JBT125.
The dashed line shows the initial ratio of Bt to Cv. After 24 h, the
ratio of Bt to Cv was determined by colony counts on selective
agar. Co-cultures were grown in 20 ml medium. C6-HSL was
added before inoculation where indicated (250 nM final concen-
tration). The solid lines represent the means of each group.
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Figure 4 Cv quorum sensing is activated by Bt AHLs. Quorum-
sensing activation is indicated by the Cv quorum-sensing-
dependent purple pigment, violacein, in stationary-phase
cultures. (a) Cv wild-type (Cv017) and the AHL mutant (Cv026)
with or without added Bt AHLs. (b) Co-cultures of the Cv AHL
mutant and Bt strains as indicated (AHL mutant JBT112; AHL,
bactobolin double mutant JBT125). AHLs were extracted from
stationary-phase cultures of Bt BD20, a bactobolin mutant.

Table 1 Sensitivity of C. violaceum (Cv) strains to
B. thailandensis (Bt) culture fluid

Bt culture fluid testeda Cv (CFU per ml)b

Wild type AHL�

Wild type o100 o100
AHL� 3� 109 2�109

Bactobolin� 2� 109 2�109

No added culture fluid 2� 109 1�109

aSensitivity was assessed by growing Cv in the presence of filtered
culture fluid from stationary-phase (24 h) Bt cultures as described in
the Materials and methods. The Bt AHL� (btaI1, I2, I3) mutant JBT125
and the bactobolin� (btaK) mutant BD20 were used. The Cv AHL�

(cviI) mutant Cv026 was used. Experiments were carried out in
duplicate and in all cases the ranges did not exceed 10%.
bBt cell culture fluid was added to a final concentration of 10%
(vol vol�1) in 90% (vol vol� 1) in 1 ml Luria–Bertani-
morpholinepropanesulfonic acid broth.
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phase, both species reached densities in co-culture
that were identical to the densities in pure culture
(2–5� 109 cells per ml). However, the final densities
of both species in late stationary phase (24 h) was
lower in co-culture than in pure culture (Table 3).
The final cell density of Cv decreased over three logs
from 5� 109 cells per ml in early stationary phase to
1� 106 cells per ml at 24 h. There was no significant
decrease in Cv density in pure culture (Table 3). The
final density of Bt was 10-fold lower in co-culture
than in pure culture (Table 2). Our results are
consistent with the hypothesis that both species
produce quorum-sensing-controlled antimicrobials
during stationary phase that inhibit growth of or kill
the other species.

Quorum-sensing-controlled bactobolin synthesis
promotes Bt competitiveness in binary culture
To test the hypothesis that quorum sensing promotes
Bt competitiveness in co-culture, we assessed
competition with a Bt AHL mutant and wild-type
Cv. We also assessed the competitiveness of a Bt
bactobolin mutant. In co-culture conditions where
wild-type Bt had a robust competitive advantage,
either the Bt AHL or bactobolin mutant were
outcompeted by Cv (Figure 2). We could rescue
competitiveness of the AHL mutant by supple-
menting our co-cultures with Bt AHLs that were
obtained by ethyl acetate extraction of culture fluid
from a stationary-phase (OD600 8–10) Bt bactobolin
mutant (Materials and methods). These results
demonstrate that quorum sensing and quorum-
sensing-dependent bactobolin production are
critical for the competitive success of Bt in our
co-culture model.

Bactobolin production is controlled by the
BtaI2–R2 quorum-sensing system (Duerkop et al.,
2009). Next, we assessed the importance of BtaI2–R2
and each of the other two Bt quorum-sensing
systems, BtaI1–R1 and BtaI3–R3, to the competi-
tiveness of Bt in our co-culture model. For this, we
used Bt strains harboring individual deletions in

each of the AHL receptor genes btaR1, btaR2 or
btaR3 (Figure 2). Not surprisingly, the btaR2 mutant
competed poorly with Cv. Results were similar to
those with the bactobolin mutant and the AHL
synthesis mutant. The outcome with the btaR3
mutant was identical to wild type, indicating that
BtaR3 is not important for competition in our model.
The btaR1 mutant showed an intermediate ability to
compete with Cv, suggesting that this regulator may
be important for the production of bactobolin or
production of other factors that enhance competi-
tion or bactobolin activity. In support of the former,
we found that expression of a bactobolin btaK-lacZ
transcriptional fusion is delayed in a btaR1 mutant
(data not shown), suggesting that BtaR1 may
advance the production of bactobolin. We also
tested the competitiveness of strains with individual
mutations in each of the AHL synthase genes. All
three individual AHL synthase mutants outcom-
peted Cv with results similar to competitions with
wild-type Bt (data not shown). These findings
suggest that the AHL synthases have overlapping
abilities to induce expression of bactobolin. This is
supported by our previous finding that BtaR2 can
respond to both 3-hydroxy-octanoyl-HSL and
3-hydroxy-decanoyl-HSL, which are produced by
the BtaI3 and BtaI2 synthases, respectively (Duerkop
et al., 2009).

Quorum sensing can promote competitiveness of Cv
Our results indicate that Cv also produces quorum-
sensing-dependent antimicrobial factors that inhibit
growth of Bt (Table 1). Thus, we hypothesized that
quorum sensing promotes competitiveness of Cv as
it does for Bt. To address this, we compared the
competitiveness of the Cv wild-type and AHL
mutant strains in co-culture with Bt. We modified

Table 2 Sensitivity of B. thailandensis (Bt) strains to
C. violaceum (Cv) culture fluid

Cv culture fluid testeda Bt (CFU per ml)b

Wild type AHL� Bactobolin�

Wild type 3� 108 2�108 3� 108

AHL� 2� 109 2�109 1� 109

No added culture fluid 7� 109 8�109 8� 109

aSensitivity was assessed by growing Bt in the presence of filtered
culture fluid from stationary-phase (16 h) Cv cultures as described
in the Materials and methods. The Bt AHL� (btaI1, I2, I3) mutant
JBT125 and the bactobolin� (btaK) mutant BD20 were used. The
Cv AHL� (cviI) mutant Cv026 was used. Experiments were carried
out in duplicate and in all cases the ranges did not exceed 10%.
bCv cell culture fluid was added to a final concentration of 75%
(vol vol� 1) in 25% (vol vol�1) concentrated Luria–Bertani-
morpholinepropanesulfonic acid broth in 1 ml.

Table 3 Final yields of B. thailandensis (Bt) and C. violaceum
(Cv) in pure culture and co-culture

Strain(s) Final growth yield (CFU per ml)a,b

Bt Cv

Pure culture
Bt wild type 1.4 (±0.7)� 1010

Bt AHL� 1.0 (±0.9)� 1010

Cv wild type 9.9 (±8.4)�108

Co-culture (with wild-type Cv)c

Bt wild type 1.3 (±0.8)� 109 1.4 (±2.0)�106

Bt AHL� 2.3 (±2.6)� 108 2.1 (±1.2)�109

Bt bactobolin� 1.0 (±1.5)� 108 2.7 (±0.5)�109

aThe values are the means of at least three independent experiments
with ranges indicated within parantheses. The Bt signal synthase
(btaI1, I2, I3) mutant JBT125 and the bactobolin (btaK) mutant BD20
were used.
bThe growth yield in early stationary phase (9 h) of Bt and Cv in pure
and co-culture was 1–3�109.
cCo-culture data from individual experiments are also represented
in Figure 1.
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our experiment to give wild-type Cv, a competitive
advantage by using a competition-defective Bt AHL,
bactobolin double mutant, and we increased the co-
culture volume to 20 ml because we observed that
this further improves Cv competitiveness for reasons
that are unknown (data not shown). In these
conditions, wild-type Cv strongly outcompeted the
Bt mutant, whereas the Cv AHL mutant barely
outcompeted the Bt mutant (Figure 3). Competitive-
ness could be restored to the Cv AHL mutant by the
addition of C6-HSL (the AHL produced by Cv)
(Figure 3). These results show that quorum sensing
can promote the competitiveness of Cv. Because
violacein does not have any antimicrobial activity
against Bt, we note that this is not due to violacein,
but must be caused by as-yet undefined quorum-
sensing-dependent factors.

Cv can sense and respond to Bt AHLs
The Cv AHL receptor CviR can be activated by a
range of AHLs including at least one of the AHLs
produced by Bt, C8-HSL (McClean et al., 1997;
Swem et al., 2009). We hypothesized that Bt AHLs
can activate the Cv quorum-sensing receptor CviR
and that this promotes competitiveness of Cv in
co-culture with Bt. We first tested whether a pure
culture of Cv can sense and respond to Bt AHLs;
these AHLs were ethyl acetate extracted and
concentrated from stationary-phase (OD600 8–10)
culture fluid and added to Cv cultures to match
concentrations in the culture from which they were
extracted. As a read-out for quorum-sensing activa-
tion, we followed the purple pigment violacein. The
Cv AHL mutant is not pigmented, but pigmentation
can be restored by supplementing the culture
medium with Bt AHL extracts (Figure 4a). This
result shows that Cv can sense and respond to
physiological levels of Bt AHLs.

Next, we tested whether the Cv AHL mutant can
respond to Bt AHLs during co-culture growth.
Because Cv is killed by Bt-produced bactobolin in
co-culture (Table 1), we used the Bt bactobolin
mutant BD20 for these experiments (Figure 4b).
When in co-culture with a Bt AHL, bactobolin
double mutant, the Cv AHL mutant did not
turn purple. However, in co-culture with the
AHL-producing Bt bactobolin mutant BD20, or with
exogenously supplied Bt AHLs, the co-culture
turned purple. This finding indicates that the Cv
CviR responds to Bt AHLs. We conclude that Bt
AHLs are cues that alter the behavior of Cv, although
they did not evolve for that purpose (Keller and
Surette, 2006Q2 ). In our experiment, the Cv AHL
synthase mutant can eavesdrop on Bt.

Eavesdropping promotes competitiveness of Cv
To determine whether eavesdropping can influence
competitiveness of Cv, we enumerated Bt and Cv in
co-cultures (Figure 5). As in our previous

experiments, we grew the Cv AHL mutant with the
Bt bactobolin mutant or an AHL, bactobolin double
mutant. The Cv AHL mutant was more competitive
with the Bt bactobolin mutant than it was with the
double mutant. As a control, we added Bt AHLs
to the co-culture with the Bt double mutant
and observed that this improved the competitive-
ness of Cv. These results suggest that eavesdropping
on Bt AHLs promotes Cv competitiveness. As an
additional control, we tested whether the Cv AHL
receptor CviR is required for eavesdropping. To
address this, we constructed a Cv AHL synthase,
receptor double mutant. We found that CviR is
required for the competitive advantage provided
to Cv by eavesdropping on Bt AHLs (Figure 5).

An in silico eavesdropping model
Our experimental approach has limitations and with
the conditions we used, we could not observe
an affect of eavesdropping with wild-type strains
(data not shown). However, we suspect there may be
conditions where eavesdropping provides an advan-
tage to wild-type Cv. This may be as the population
nears the critical density required for quorum-
sensing activation. At this density, AHLs produced
by a nearby competitor may cause early activation of
quorum-sensing-dependent antibiotics and would
improve competitiveness of the eavesdropping
microbe.

To explore this hypothesis further, we developed a
mathematical model of our binary culture system
(see Supplementary Text and Supplementary Table
S3). The model accounts for two wild-type species
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Figure 5 Eavesdropping promotes competitiveness of Cv in
co-cultures with a B. Bt bactobolin mutant. After 24 h of
co-culture, the ratio of Bt to Cv was determined. Co-cultures of
the Cv AHL mutant (Cv026), or the Cv AHL synthase, receptor
double mutant (Cv026R) and the Bt strains as indicated and
described in Figure 4 legend. Co-cultures were grown in 20 ml
volumes. The dashed line indicates the initial ratio of Bt to Cv.
The solid lines represent the means for each group. AHLs were
obtained as described for Figure 4.
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that produce antibiotics in response to AHL signals
in a well-mixed environment, similar to species
Bt and Cv in our experimental system. In silico, the
antibiotic produced by each species has equal
killing efficiency towards the competing species,
but no influence on the producing species. The two
species in our in silico model also have identical
growth rates, rates of antibiotic and AHL produc-
tion, and antibiotic-production costs. However, as
we observed experimentally, in some conditions
one species (which we refer to here as species C) can
eavesdrop on the other (species B). In the in silico
model, we assume that antibiotic production accel-
erates once the inducer reaches a critical threshold
concentration. However, antibiotic-production rates
eventually level off as AHL concentrations exceed
the quorum-sensing threshold. We use several
different activation thresholds in our analysis.

Our in silico model has a bistable dynamic where
one species completely dominates under most
conditions. In the absence of eavesdropping, the
outcome favors the species that is numerically
dominant at the beginning (Figure 6). When we
vary the activation thresholds for antibiotic produc-
tion (by varying KB and KC of B and C, respectively,
see Supplementary Text and Supplementary Table
S3), there is an optimal value (Koptimal) where one
species can dominate the other; if we fix KB at this
value, B can dominate C at any value of KC (other
than when KC was equal to Koptimal), and the same is
true for C if KC is set at Koptimal (see Supplementary
Figure S1). For every set of parameter values we
explored, we find that Koptimal is greater than zero.
Thus, waiting until a population reaches a quorum
provides a fitness benefit for antibiotic-producing
bacteria.

We then investigated eavesdropping in our in
silico model when species B and C had identical
thresholds above (high), equal to (optimal) and
below (low) the optimal threshold. At a relatively
high threshold, eavesdropping provided a distinct
advantage to C by allowing it to invade B from
lower starting frequencies (Figure 6a), supporting
our initial hypothesis. However, with an optimal or
low threshold, eavesdropping was disadvantageous
(Figures 6b and c). We posit that in the latter
two cases, the eavesdropping population activates
production of antibiotic too early to accumulate a
sufficient killing dose and antibiotic production is
an ineffective metabolic burden. To test this hypoth-
esis, we kept the same conditions as in Figure 6c
and increased the toxicity of the antibiotic of
both species. In these conditions, eavesdropping
provides an advantage (Figure 6d), supporting our
hypothesis. Furthermore, eavesdropping is also
advantageous if the antibiotic cost is decreased
(Supplementary Figures S2 and S3). However, these
changes in toxicity and cost alter the optimal
threshold (Supplementary Figure S1B and data
not shown), effectively resetting the system so that
antibiotic production is induced after the optimal

threshold is achieved. Thus, eavesdropping-depen-
dent early production of antibiotics promotes com-
petition in a population that has already reached
a sufficient density to produce a killing dose.

Discussion

We have developed a dual-species competition
model with two soil saprophytes, Bt and Cv, which
both use quorum sensing to control production of
antimicrobial factors. We show that both of these
species can gain a competitive advantage over the
other with success dependent on quorum sensing.
The advantage of quorum-sensing control of anti-
microbials has also been shown in other laboratory
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Figure 6 In silico modeling. Our model accounts for two species
with quorum-sensing-controlled antibiotics, similar to our experi-
mental model of Bt and Cv. As in our experimental model, our
in silico model accounts for two species (B and C) that produce
antibiotics in a density-dependent manner. In our model, species
C can eavesdrop on species B (see Supplementary Text). We show
relative fitness of each species as a function of the initial ratio
(C/B) and the eavesdropping sensitivity (e) of C. The fitness
of C relative to B was measured using the log relative fitness
measure given in Wu et al. (2006) and is indicated by the color
spectrum on the far right. (a) The inducer concentration required
for production of antibiotic (activation threshold, KB and KC) is
relatively high for both species (0.01, see text). (b) The activation
threshold is lower (0.003898) and corresponds to an optimal
threshold for each species that gives it an advantage over the other
species regardless of the other species’ threshold. (c) Both species
have an activation threshold lower than the optimal threshold
(0.003). (d) The same parameters were used as in (c); however, the
antibiotic toxicity is raised 10-fold. This changes the optimal
activation threshold to 0.001113, which is below the activation
threshold value used (0.003) (see Supplementary Figure S1).
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co-culture models (Moons et al., 2005, 2006; An
et al., 2006). The previous reports, together
with the results reported here, support the idea
that quorum-sensing regulation is important in
multi-species competition. Our results indicate that
competitiveness of Bt relies on the btaI2-R2-con-
trolled antibiotic bactobolin and Cv uses as-yet
unidentified quorum-sensing-dependent factors for
competition. The bactobolin biosynthetic genes and
btaI2-R2 are encoded within a large (120-kb) DNA
element that is absent from a close relative, the host-
adapted pathogen Burkholderia mallei. That this
element is retained in Bt supports the view that
btaI2-R2 and bactobolin are important for competi-
tion during saprophytic growth.

Why do bacteria use quorum sensing to regulate
antibiotic production? Our in silico model provides
some possible clues. The results indicate that when
antibiotic production is costly, early production
slows population growth without effectively killing
the competitor. Thus, quorum sensing defers the
cost of antibiotic production until a sufficient killing
dose can be delivered. We do not include in our
model the additional possibility that sublethal
concentrations of antibiotics may induce in the
competitor an adaptation to higher concentrations of
antibiotic. Both of these possibilities can be further
explored with our experimental co-culture model.
An alternative hypothesis is that deferred produc-
tion may also protect the producing population
against the emergence of non-producing cheaters.
Cheaters can exploit public goods producers by
utilizing the available goods without incurring the
cost of their production. In a recent study by Xavier
et al. (2011), delayed production of an exploitable
public good, surfactant, protected the producing
population against the emergence of cheaters. This
strategy maximized growth of the producing popu-
lation, thereby increasing its ability to compete with
cheaters. Quorum-sensing regulation may similarly
promote competitiveness with non-producing
cheaters.

Our experimental model also showed that cross-
species AHL activation of the Cv broad-specificity
AHL receptor can promote the competitiveness
of Cv (Figure 5). In addition to Cv, there are
several other species with broad-specificity AHL
receptors and these are also saprophytes: E. caroto-
vora (ExpR2)(Sjoblom et al., 2006); P. aeruginosa
(QscR)(Lee et al., 2006); and receptors encoded by
two species of Bradyrhizobium (BraR and BjaR)
(Ahlgren et al., 2011; Lindemann et al., 2011).
ExpR2 and QscR are both orphan receptors without
a cognate AHL synthase gene (Cui et al., 2006;
Fuqua, 2006; Sjoblom et al., 2006). The potential
role of each of these receptors in competition has not
been determined. AHL receptor specificity can be
easily altered by single amino-acid changes (Collins
et al., 2005; Hawkins et al., 2007; Chen et al., 2011;
Lintz et al., 2011), suggesting that AHL recognition
may be very adaptable in nature. In contrast to these

broad-specificity AHL receptors, the receptor of the
squid symbiont Vibrio fischeri is quite specific for
its cognate AHL (Visick and Ruby, 1999) Q3. V. fischeri
activates quorum-sensing-dependent functions
when it is at high cell densities in its squid host;
in this environment it rarely encounters other
bacterial species (Visick and McFall-Ngai, 2000).
Thus, AHL receptors may evolve broad signal
specificity in specific environments where eaves-
dropping might be of use, although the role of these
receptors in inter-species competition and eaves-
dropping requires further study.

In the conditions of our experimental model,
eavesdropping did not provide an observable fitness
advantage to wild-type strains during competition.
However in another study, AHLs produced by
epiphytic bacteria on plant leaves altered the
quorum-sensing-regulated virulence phenotype of
a wild-type Pseudomonas syringae strain (Dulla and
Lindow, 2009), suggesting that wild-type strains can
be responsive to AHLs from other species in natural
environments. Our co-culture model may provide a
limited view of the possible interactions between
species in nature, for example, Dulla et al. (2010) Q4

identified several epiphytic species that produce
10-fold more AHL than their laboratory P. syringae
strain. High-level signal producers may play a
significant role in cross-species induction.

Our mathematical model allowed a simple assess-
ment of the costs and benefits of eavesdropping
between competing wild-type strains. For the
model, we made the basic assumption that detection
of exogenous AHLs can cause early quorum-sensing-
dependent activation of antibiotic genes. We have
observed this experimentally in Bt with a transcrip-
tional fusion to the bactobolin biosynthetic gene
btaK (data not shown), but it is more difficult to
address with Cv because we do not yet know what
quorum-controlled genes are involved in competi-
tion, and during early logarithmic phase the activity
of the antimicrobials is too low for our methods of
detection. The in silico model indicates that eaves-
dropping can promote competition in certain con-
ditions where production of antibiotic occurs
relatively late during growth. However, eavesdrop-
ping can also be detrimental if the activation
threshold is relatively low. We observed similar
results in other variations of this model (data not
shown). Our results suggest that receptors would
evolve broad specificity only in particular circum-
stances where eavesdropping is beneficial. Our bias
is that specificity is the more evolved trait and that
highly specific receptors likely arose from receptors
with less specificity.
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