
u n i ve r s i t y o f co pe n h ag e n

Towards Parallel Execution of Sequential Scientific Applications

Kristensen, Mads Ruben Burgdorff

Publication date:
2012

Document version
Early version, also known as pre-print

Citation for published version (APA):
Kristensen, M. R. B. (2012). Towards Parallel Execution of Sequential Scientific Applications. (Københavns
Universitet, Niels Bohr Institute ed.) University of Copenhagen, Niels Bohr Institute, Denmark.

Download date: 08. apr.. 2020

https://curis.ku.dk/portal/da/publications/towards-parallel-execution-of-sequential-scientific-applications(75e593e8-cd71-4cb9-a263-830b005dc0b6).html

��

�

�

�

�

�

�

�

�

� �� ��� � � � � � 	 �
 � �� � �

��
 � � 	
 � � � � � � � � � �� � �� �� �

� � � � � � � � � � �
 � � � � � � � � �

� � � � � � �

�����������

���������	�
��������������	��	�

�

�����������������������	����

�����	���������	���������������	��

�����������������
���	� �	����

�����������!�	��"#�$%"$�

Acknowledgments

Firstly, I would like to thank all my coworkers at the eScience Center and my fellow
PhD-students who made my PhD study a very nice experience. Especially, I would like
to thank my supervisor Professor Brian Vinter for whom this thesis would not have been
possible. Thanks for this educational and rewarding experience and the opportunity to
attend several international conferences and Ph.D. summer schools.

I would like to thank Hans H. Happe for his supervising when I started the PhD
study. It was a great help to have a mentor, in addition to Brian, in the initial phase of
my study.

During the first year of my PhD, I had the privilege to work with the GPAW team
at Technical University of Denmark – special thanks to Jens. J. Mortensen for great
collaboration and hospitality.

In the spring of 2011, I moved to Berkeley to visit Professor Katherine Yelick and
her research group at Lawrence Berkeley National Laboratory for five months. I would
like to thank Katherine Yelick for the warm welcome and the opportunity to work with
her group. Additionally, I would like to thank Yili Zheng for his interest in my work
and for co-authoring one of the published papers.

I would like to thank Simon A. F. Lund and Troels Blum for great collaboration in
the cphVB project. I hope that we can continue our work together to make the cphVB
project even better.

Finally, I would like to thank my family and girlfriend, Mette, who all have been
very understanding and supportive.

This research is supported by the Danish Strategic Research Council, grant #09-
063770.

2

Abstract

Rapid prototyping of numerically expressed problems is essential for a broad range of re-
search areas. Finding the solution for computational scientific and engineering problems
often requires experimenting with various algorithms and different parameters using the
feedback from several iterations. Therefore, being able to quickly prototype the solution
is critical for a timely and successful scientific discovery.

High-productivity languages such as Matlab and Python are popular languages in
the scientific community because of the need for rapid prototyping. However, they
are generally accepted as being much slower than compiled languages, such as C or
FORTRAN. More importantly, since they are inherently sequential which makes them
unsuitable for prototyping on large data sets.

In this thesis, I have explored the possibility of seamlessly executing sequential scien-
tific applications in parallel. Essential for my work is the vector-oriented programming
model as a high-productivity programming approach to develop applications that targets
a broad range of parallel hardware architectures. The idea is to introduce implicit data
parallelism in order to provide a high-productivity and high-performance framework.

I introduce two new projects, DistNumPy and cphVB, that strives to provide a
high-performance back-end for Numerical Python (NumPy) without reducing the high-
productivity of Python/NumPy. The DistNumPy project targets distributed memory
architectures and utilize automatic communication-latency hiding.

The cphVB project generalizes the design of DistNumPy to support a broad range
of languages and hardware architectures. The implementation of cphVB consists of a
language frontend that translates language specific array operations into cphVB vector
operations. The frontend will send these vector operations to a Vector Engine that
performs the actual execution of the operations. The design of cphVB support a broad
range of Vector Engines that are optimized to specific hardware architectures, such as
multi-core CPUs, GPGPUs and clusters of said architectures. For all languages that have
a cphVB frontend, cphVB provides a high-productivity, high-performance framework
that seamlessly parallelizes legacy applications without changing a single line of code.

I present several performance studies that demonstrate good scalable performance
on a variety of architectures: from a small Ethernet Linux cluster with 32 CPU-cores to
the Cray XE-6 supercomputer Hopper with 1536 CPU-cores.

3

Resumé

Computerberegninger er blevet en essentiel del af naturvidenskaben og computerprogram-
mering er nu ogs̊a et vigtigt værktøj for forsker uden en datalogisk baggrund. Forskere
vil ofte programmere prototype programmer som en metode til at udvikle og evaluere
forskellige algoritmer. Netop derfor er programmeringssprog der fokusere p̊a høj pro-
duktivitet, som fx Matlab og Python, yders populære i naturvidenskaben. De er dog
generelt accepteret som værende langsommere end kompileret programmeringssprog som
fx C eller FORTRAN. Ydermere er de som udgangspunkt sekventielle og supportere ikke
parallel programmering hvilket besværliggør beregning med store data sæts der kræver
flere maskiner.

I denne afhandling undersøges muligheden for at eksekvere sekventielt program par-
allelt helt automatisk. Den vektororientere programmeringsmodel bliver ofte brugt i
naturvidenskaben da programkoden i høj grad ligner de tilsvarende matematiske udtryk.
Det udnyttes ved at introducere implicit data parallelitet og optimere eksekvering til en
lang række forskellige computerarkitekturer.

I denne afhandling præsenterer jeg to projekter, DistNumPy og cphVB, hvis hov-
edform̊al er at levere høj programmeringsproduktivitet og høj beregningsydelse. Dist-
NumPy er en backend til the numeriske Python bibliotek NumPy der introducere implicit
parallelitet uden at reducere NumPy’s programmeringsproduktivitet. DistNumPy kan
køre p̊a distribueret hukommelse maskiner og udføre automatisk communication-latency
hiding. I cphVB projektet generaliseres DistNumPy designet s̊a det ogs̊a understøtter
andre programmeringssprog og computer arkitekturer.

Jeg præsenterer ydelsesevalueringer som demonstrerer god skalerbar ydelse p̊a flere
forskellige maskiner: fra en lille Ethernet Linux klynge med 32 CPU-kerner til Cray’s
Supercomputer Hopper hvor 1536 CPU-kerner udnyttes.

i

Contents

1 Introduction 1
1.1 Scientific Expressions . 2
1.2 Contributions . 2
1.3 Publications . 4
1.4 Thesis Outline . 4

2 Parallel programming 6
2.1 Shared Memory Programming . 6

2.1.1 Open Multi-Processing . 7
2.1.2 Numerical Libraries . 9

2.2 Distributed Memory Programming . 10
2.2.1 Message Passing . 11
2.2.2 Remote Memory Access . 14
2.2.3 Libraries and Languages . 15
2.2.4 Partitioned Global Address Space Languages 18
2.2.5 High Productivity Computing Systems 19
2.2.6 Incorporate Parallelism into Existing Languages 21

2.3 Combining Distributed and Shared Memory 21
2.4 Vector Oriented Programming . 22

2.4.1 High Performance Fortran . 22
2.4.2 Z-level Programming Language . 23

3 Target Architectures 24
3.1 Network . 24
3.2 Roadrunner . 25

3.2.1 The node design . 26
3.2.2 Network . 26

3.3 Blue Gene/P . 26
3.3.1 The node design . 29
3.3.2 Network . 30
3.3.3 Application Development . 30
3.3.4 Argonne National Laboratory . 31

ii

4 Scientific Application: GPAW 33
4.1 Introduction . 33
4.2 GPAW . 34

4.2.1 Stencil Operation . 34
4.3 The implementation . 35

4.3.1 Distributed Stencil Operation . 35
4.4 Optimizations . 36

4.4.1 Multiple real-space grids . 37
4.5 Programming approaches . 38
4.6 Results . 39

4.6.1 Communication and Computation Profile 39
4.6.2 Multiple real-space grids . 40

4.7 Summary . 43

5 Productivity 44
5.1 Parallelization . 44

5.1.1 OpenMP . 48
5.1.2 MPI . 48
5.1.3 MPI and OpenMP . 48

5.2 Summary . 50

6 Numerical Python 52
6.1 Universal Functions . 52

6.1.1 Function broadcasting . 52
6.2 Array Syntax and Views . 53
6.3 Interfaces . 53

7 Distributed Numerical Python 55
7.1 Introduction . 55

7.1.1 Target architectures . 56
7.1.2 Motivated by Related Work . 56

7.2 The Basic Implementation . 57
7.2.1 Interfaces . 57
7.2.2 Data layout . 57
7.2.3 Operation dispatching . 58
7.2.4 Views . 59
7.2.5 Non-Aligned Array Operations . 59
7.2.6 Parallel BLAS . 60
7.2.7 Universal function . 60
7.2.8 Examples . 61
7.2.9 Experiments . 63
7.2.10 Conclusion . 66

7.3 Full Array View Support . 66
7.3.1 Introduction . 66

iii

7.3.2 Managing Non-Aligned Array Operations 67
7.3.3 3-Point Stencil Application . 69
7.3.4 Latency-Hiding . 70
7.3.5 Experiments . 71
7.3.6 Conclusion . 75

7.4 Communication Latency Hiding . 75
7.4.1 Introduction . 75
7.4.2 Latency-Hiding . 78
7.4.3 Experiments . 85
7.4.4 Conclusion . 92

7.5 PGAS-style Programming . 93
7.5.1 Introduction . 93
7.5.2 Programming model . 94
7.5.3 Implementation . 96
7.5.4 Benchmarks . 97
7.5.5 Performance . 101
7.5.6 Conclusion . 105

7.6 Summary . 106

8 cphVB 107
8.1 Introduction . 107

8.1.1 Related Work . 108
8.2 Target Programming Model . 110
8.3 Design of cphVB . 110

8.3.1 Configuration . 112
8.3.2 Byte Code . 112
8.3.3 Interface . 113
8.3.4 Bridge . 113
8.3.5 Vector Engine Manager . 113
8.3.6 Vector Engine . 114

8.4 Implementation of cphVB . 115
8.4.1 Bridge . 115
8.4.2 Vector Engine Manager . 116
8.4.3 Vector Engine . 116

8.5 Performance Study . 117
8.5.1 Discussion . 117

8.6 Summary . 118

9 Future Work 120

10 Conclusion 122

iv

A Publications 132
A.1 GPAW Optimized for Blue Gene/P using Hybrid Programming 132
A.2 Hybrid Parallel Programming for Blue Gene/P 139
A.3 Numerical Python for scalable architectures 152
A.4 Managing Overlapping Data Structures for Data-Parallel Applications on

Distributed Memory Architectures . 162
A.5 Managing Communication Latency-Hiding at Runtime for Parallel Pro-

gramming Languages and Libraries . 170
A.6 PGAS for Distributed Numerical Python Targeting Multi-core Clusters . 181
A.7 cphVB: A Scalable Virtual Machine for Vectorized Applications 193

v

Chapter 1

Introduction

As computers have evolved, computer simulations have become an important part of
natural sciences. Computer simulations make it possible to conduct experiments that
would otherwise be impractical, e.g. simulating an earthquake or a nuclear detonation.
A computer simulation may become such an extensive computational task that a number
of processors is needed for the simulation to finish in reasonable time. Typically, it is
also the case that the memory requirement alone makes it mandatory to distribute the
computation between multiple processors. The development of such simulations requires
high expertise in the relevant scientific area thus the development and implementation
is often done by non-computer experts. The Holy Grail for many scientific frameworks
is therefore to ease the programming, increase the productivity and support efficient
parallelization.

The development of numerical simulations often consists of two implementations: a
prototype and a final version. The algorithm is developed and implemented in a proto-
type by which the correctness of the algorithm can be verified. Typical many iterations of
development are required to obtain a correct prototype, thus for this purpose a high pro-
ductivity language is used, such as MATLAB[52]. However, when the correct algorithm
is finished the performance of the implementation becomes essential for achieving results.

Prototype Months Final
versionIdea Days

Too slow

Did not work

(a)

Final
versionIdea Days

Did not work or too slow

(b)

Figure 1.1: Development workflow. (a) is a typical workflow that involves two languages:
one for the prototype and one for the final version. In (b) only one language is used in
the workflow.

1

This performance requirement presents a problem for the researcher since highly opti-
mized code requires a fairly low-level programming language such as C/C++ or Fortran.
The final version will therefore typically be a reimplementation of the prototype, which
involves both changing the programming language and parallelizing the implementation
(Figure 1.1a).

The overall target of this work is to provide a high productivity tool that meets
both the need for a high productivity tool that allows researcher to move from idea
to prototype in a short time, and the need for a high performance solution that will
eliminate the need for a costly and risky reimplementation (Figure 1.1b). It should
be possible to develop and implement an algorithm using a simple notebook and then
effortlessly execute the implementation on a cluster of computers while utilizing all
available CPUs.

My approach to achieve this goal has been twofold. First obtain experience in op-
timizing a concrete scientific simulation for a massive parallel architecture and then
develop are framework that easy the process of implementing such scientific simulations.

1.1 Scientific Expressions

The primary work when implementing scientific applications is the discipline of program-
ming mathematical expressions. Thus, it is essential that the programming language sup-
port high-level numerical structures such as vector and matrices. Furthermore, high-level
operations performed directly on vector and matrices come as a natural requirement.

As an example, consider the expression of a Jacobi Iteration. When A is a symmetric
matrix with n2 elements we can express one Jacobi Iteration as follows 1.

Ax,y =
Ax,y +Ax−1,y +Ax+1,y +Ax,y−1 +Ax,y+1

5
, {x ∈ N0, x < n, y ∈ N0, y < n}

In order to be productive, the user needs a programming language where such a
mathematical expression is easy to implement without the need for loop constructions
or complex index or pointer arithmetic.

1.2 Contributions

The central contribution of this thesis is the introduction of Distributed Numerical
Python (DistNumPy) and its generalization Copenhagen Vector Bytecode (cphVB) in
addition to the optimization of a concrete scientific application, GPAW, for a massive
parallel architecture.

GPAW In order to gain first-hand experience with the optimization of scientific appli-
cations, my initial work was to optimize GPAW – a simulation software that simulates

1Note that the expression assume that there exist meaningful boundary conditions to handle negative
indices

2

many-body systems at the sub-atomic level – for the Blue Gene/P supercomputer. A
team at the Technical University of Denmark drives the development of GPAW.

The focus of the work is to optimize a distributed stencil operation, which make up
a substantial part of the overall execution time, using hybrid programming. Through
a performance study, I evaluate four parallel programming models – two models that
use hybrid programming and two that uses a flat programming model. Additionally, I
evaluate the performance of my implementation of communication latency-hiding and
communication batching.

The work has resulted in two published papers: GPAW Optimized for Blue Gene/P
using Hybrid Programming and Hybrid Parallel Programming for Blue Gene/P where
the latter paper is an extended version of the first paper.

DistNumPy In order to provide a high-productivity high-performance framework for
scientific applications we introduce DistNumPy – a library for doing numerical compu-
tations in Python that targets scalable distributed memory architectures. DistNumPy
is a new version of NumPy that enables the user to write sequential Python/NumPy ap-
plications that seamlessly utilize distributed memory architectures. DistNumPy imple-
ments data parallelism seamlessly by exploiting the vector-oriented programming model
in NumPy. It uses a new backend for NumPy arrays that distribute data amongst the
nodes in a distributed memory multi-processor. All operations on this new array will
seek to utilize all available processors. The array itself is distributed between multiple
processors in order to support larger arrays than a single node can hold in memory.

The work has resulted in four published papers: Numerical Python for Scalable Ar-
chitectures, Managing Overlapping Data Structures for Data-Parallel Applications on
Distributed Memory Architectures, Managing Communication Latency-Hiding at Run-
time for Parallel Programming Languages and Libraries, and PGAS for Distributed Nu-
merical Python Targeting Multi-core Clusters.

cphVB Contrary to DistNumPy, cphVB targets a broad range of programming lan-
guages and hardware architectures. In order to support multiple targets we generalize
the design of DistNumPy. cphVB still uses the vector-oriented programming model to
close the gap between high-level languages and hardware optimized low-level implemen-
tations. By translating high-level vector operations into an intermediate vector byte
code, cphVB enables specialized vector engines to efficiently execute the vector opera-
tions.

The development of cphVB is in close collaboration with Troels Blum, who wrote
his master thesis on the topic [17], and Simon A. F. Lund. No cphVB papers has been
published yet but I have submitted one paper cphVB: A Scalable Virtual Machine for
Vectorized Applications.

3

1.3 Publications

Mads Ruben Burgdorff Kristensen, Hans Henrik Happe, and Brian Vinter.
GPAW Optimized for Blue Gene/P using Hybrid Programming
In Proceedings of the 2009 IEEE International Symposium on Parallel and Distributed
Processing (IPDPS ’09). IEEE Computer Society, Washington, DC, USA, 1-6.

M. Kristensen, H. Happe, and B. Vinter, Hybrid Parallel Programming for
Blue Gene/P
Scalable Computing: Practice and Experience, vol. 12, no. 2, 2011. ISSN 1895-1767.

Mads Ruben Burgdorff Kristensen and Brian Vinter. Numerical Python for
Scalable Architectures
In Proceedings of the Fourth Conference on Partitioned Global Address Space Program-
ming Model (PGAS ’10). ACM, New York, NY, USA

Mads Ruben Burgdorff Kristensen and Brian Vinter. Managing Overlap-
ping Data Structures for Data-Parallel Applications on Distributed Memory
Architectures
GSTF International Journal on Computing (JoC), vol. 1, no. 2, pp. 145-151, 2012.
ISSN: 2010-2283.

Mads Ruben Burgdorff Kristensen and Brian Vinter. Managing Communi-
cation Latency-Hiding at Runtime for Parallel Programming Languages and
Libraries
In Proceedings of the 2012 IEEE International Conference on High Performance Com-
puting and Communications (HPCC’12). IEEE.

Mads Ruben Burgdorff Kristensen, Yili Zheng, and Brian Vinter. PGAS for
Distributed Numerical Python Targeting Multi-core Clusters
In Proceedings of the 2012 IEEE International Symposium on Parallel and Distributed
Processing (IPDPS’12). IEEE.

M. Kristensen, S. Lund, T. Blum, and B. Vinter. cphVB: A Scalable Virtual
Machine for Vectorized Applications
Submitted to the International Conference on Parallel Processing (ICPP’12). Pitts-
burgh, PA, 2012.

1.4 Thesis Outline

This thesis is organized as follows: Chapter 2 and 3 provides background, Chapter
4 describe the GPAW project, Chapter 5 discuss programming productivity, Chapter 6
provides NumPy details, Chapter 7 and 8 presents the two key contributions DistNumPy

4

and cphVB, Chapter 9 contains the future work, and finally the conclusion is presented
in Chapter 10. The papers that constitute the primary contribution of this thesis are
included in Appendix A.

5

Chapter 2

Parallel programming

Parallel programming is the discipline of programming applications that makes use of
multiple compute resources. There exist many levels of parallelism – from low-level
parallelism where a single processor execute instructions in parallel to parallelism where
multiple threads or processes executes the same or different instructions on the same or
different data.

The process of parallelizing computer simulations in natural sciences often demands
parallelism on many levels because of the huge amount of speedup required by scientists.
In this work, we will focus on parallelism that uses multiple CPU-cores in a shared
and/or distributed memory setup. We will only indirectly utilize lower-level parallelism
within a single CPU-core, such as Streaming SIMD Extensions (SSE), through numerical
libraries, e.g. LAPACK[71] and BLAS[7].

In this chapter, we will describe four essential parallel programming approaches:
shared memory programming, distributed memory programming, hybrid programming
and vector oriented programming.

2.1 Shared Memory Programming

The primary focus regarding shared memory programming is architectures that make use
of symmetric multiprocessing (SMP) with cache coherency[48, 33]. It is a very common
architecture and has become more popular with the trend of increasing the number of
CPU-cores rather than the CPU-frequency. SMP is used in a long range of different
architectures from the widespread x86 to the specialized Blue Gene architecture.

The main concept in the shared memory programming paradigm is the sharing of
the main memory between different threads (or processes). It makes it possible for
threads to independently work on common data structures and communicate through
shared variables. Most operation systems support threads and provide constructs for
controlling the flow of threads, such as mutex.

Most programming languages also support threading in some capacity. C and C++
do not provide direct support for threading on their own, but provide access to the
native threading API provided by the operating system. Higher level programming

6

Figure 2.1: The Fork/Join parallel paradigm. The master thread forks off a number of
threads which execute blocks of code in parallel.

languages, such as Java and Python, expose threading to the developer while abstracting
the platform specific differences in the thread implementation.

A number of other programming languages and language extensions also try to ab-
stract the concept of threading, and in some cases even parallelism, from the developer
altogether.

2.1.1 Open Multi-Processing

Open Multi-Processing (OpenMP)[34, 84] is a multi-platform shared-memory parallel
programming extension for C/C++ and Fortran. OpenMP makes the parallelization
of an application easier by handling the tedious work involved in multi-threading pro-
gramming, such as creating, joining and destroying threads. Additionally, OpenMP
provide parallelization strategies for implementing common code structures, such as au-
tomatically parallelizing for-loops that have no dependent iterations. A broad range of
compilers and platforms supports OpenMP.

OpenMP uses the Fork/Join parallel paradigm (Figure 2.1). An OpenMP program
begins execution as a single process, called the master thread of execution. The fun-
damental directive for expressing parallelism is the parallel directive. It defines a
parallel section of the program that is executed by multiple threads. When the master
threads enters a parallel section, it forks a team of threads (one of them being the mas-
ter thread), and work is continued in parallel among these threads. Upon exiting the
parallel construct, the threads in the team synchronize (join the master), and only the
master continues execution. The statements in the parallel section, including functions
called from within the enclosed statements, are executed in parallel by each thread in
the team. The user is required to keep this in mind when using OpenMP because all
variables used in a parallel section must be classified as either shared or private. It
should therefore be noted that OpenMP does not hide the parallelization from the user,

7

1 // Parameters

2 int I; // Number of iterations

3 double *A; //Input & Output Matrix

4 double *T; // Temporary array

5 int SIZE; // Symmetric Matrix Size

6

7 // Computation

8 int gsize = SIZE +2; //Size + borders.

9 for(n=0; n<I; n++)

10 {

11 memcpy(T, A, gsize*gsize*sizeof(double));

12 #pragma omp parallel for shared(A,T)

13 for(i=0; i<SIZE; ++i)

14 {

15 int a = i * gsize;

16 double *up = &A[a+1];

17 double *left = &A[a+gsize];

18 double *right = &A[a+gsize +2];

19 double *down = &A[a+1+ gsize *2];

20 double *center = &T[a+gsize +1];

21 for(j=0; j<SIZE; ++j)

22 *center ++ = (* center + *up++ + *left++ + *right ++ + *down ++) \

23 / 5.0;

24 }

25 memcpy(A, T, gsize*gsize*sizeof(double));

26 }

Figure 2.2: Parallel version of Jacobi Iterations using OpenMP.

but provides convenient language constructs to handle parallelisms. Using OpenMP still
requires knowledge in parallel programming and experience in the Fork/Join parallel
paradigm.

Figure 2.2 shows an application written in C that implements the Jacobi Iteration
from Section 1.1 and uses OpenMP for parallelization.

Performance OpenMP is a standard and it is therefore difficult to do any general rea-
soning about the performance aspects of OpenMP. However, work done in [43] demon-
strates the scalability of seven applications executed on the Sun Fire 15K multiprocessor
system. The applications are parallelized using OpenMP and the results show that five
of the seven applications scale very well. Furthermore, it is shown that the overhead
associated with OpenMP is kept at an acceptable level.

On the other hand very poor scalability is demonstrated in [59] where computation
loops in Fire Dynamics Simulator is evaluated. The loops only scale to around two
CPU-cores (Figure 2.3). The problem is the memory bound computation done inside
the loops. OpenMP does not address this problem and it is therefore up to the developer
and the processor architecture to handle.

8

 0

 50

 100

 150

 200

 250

 1 2 3 4 5 6 7 8

R
u

n
ti
m

e
 (

s
e

c
.)

No. of CPUs

Figure 2.3: Runtime of computation loops parallelized using OpenMP on an eight core
machine. The computation loops are part of a Computational Fluid Dynamics software
called Fire Dynamics Simulator (From [59]).

2.1.2 Numerical Libraries

A great diversity of libraries supports some level of shared memory parallelism; some
focusing on very specific problems and others on very general problems. The focus in this
work is the two numerical libraries BLAS and LAPACK, which both support parallel
execution for some implementations. They are both the de facto standard in the field
of Computational Linear Algebra.

BLAS

Basic Linear Algebra Subprograms[71] is a very popular API standard for doing basic
linear algebra operations such as vector and matrix multiplication. BLAS is heavily
used in high performance computing and highly optimized implementations of the BLAS
interface have been developed by hardware vendors such as Intel and IBM, as well as
by other authors, e.g. Goto BLAS[?] and ATLAS[?]. Many of those implementations
supports shared memory parallel execution. [36] demonstrates descent speedup of LU
Factorization when parallelized by the use of parallel BLAS operations, but conclude
that there is an unexploited potential of parallelism at the level above BLAS.

LAPACK

Linear Algebra Package[7] is a popular library for numerical linear algebra that provides
routines for solving systems of linear equations, eigenvalue problems, and singular value
decomposition. It also includes routines to implement the associated matrix factoriza-
tions such as LU, QR and Cholesky decomposition. LAPACK makes use of BLAS in
order to effectively exploit the underlying hardware and possibly multiple CPU-cores.

The parallelization of a central operation in LAPACK, LU factorization, is demon-
strated in [22] to yield better performance than a BLAS based parallel implementation.

9

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

10

20

30

40

50

60

70

LU −− quad−socket, dual−core Opteron

problem size

G
fl
o
p
/s

DGEMM

PLASMA & ACML BLAS

ACML LU

MKL LU

LAPACK & ACML BLAS

Figure 2.4: Performance of LU factorization executed on an AMD Opteron machine
with a total of sixteen cores. ACML and MKL are the numerical libraries from AMD
and Intel, respectively. PLASMA is the implementation developed in [22]. (From [22]).

P0 P1 P2 … PN

M0 M1 M2 … MN

Interconnect Network

Figure 2.5: Distributed Memory.

The result is compared with a parallel implementation that only parallelizes the BLAS
operations, and a numerical library from Intel and one from AMD (Figure 2.4).

2.2 Distributed Memory Programming

Distributed memory programming is used when implementing software for multiple pro-
cessor systems in which each processor has its own private memory (Figure 2.5). Com-
putational tasks can only operate on local data, and if remote data is required, the
computational task must communicate with one or more remote processors. In this sec-
tion, we will focus on some of the libraries that help developers to implement efficient
distributed memory programming.

The very basic communication mechanism is the use of network sockets in which
the data communication and manipulation is performed explicitly by the user. Com-
munication through sockets is limited to either reading or writing a stream of bytes.
All meta-data associated with the byte stream must be communicated explicitly, which
means that basic tasks, such as determining whenever a whole message is received, needs
to be handled by the user. Only the transport protocol is abstracted from the user.

10

Two communication paradigms that address inter-process communication are Mes-
sage Passing and Remote Memory Access. In this context Remote Memory Access
refers to the explicit use of operations that access remote memory, which is also known
as one-sided communication. The fundamental difference between the two paradigms
are whenever one or multiple processes are involved in the communication. In Message
Passing at least two processes will initiate the communication with matching arguments.
In Remote Memory Access only one part will initiate the communication with arguments
for both the sending and receiving process.

2.2.1 Message Passing

Message Passing is often used with the SPMD (Single Process, Multiple Data) program-
ming model because of the symmetry in the communication. That is, a process that
send a message will normally also receive a similar message.

In my study I have investigated two popular message passing standards: PVM[94]
and MPI[50]. The focus of PVM is networks of heterogeneous computers; whereas the
focus of MPI is networks of homogeneous computers. Additionally, MPI applications
uses the SPMD programming model almost exclusively; whereas PVM applications often
use a more asynchronies communication model where processes have different roles, such
as consumer or producer.

PVM

Parallel Virtual Machine[94] is a software system that enables a collection of heteroge-
neous computers to be used as one Distributed Memory Machine. PVM is built around
the concept of a virtual machine which is a dynamic collection of (potentially hetero-
geneous) computational resources managed as a single parallel computer. One aspect
of the virtual machine is how parallel tasks exchange data. This is accomplished using
simple message passing constructs. The virtual machine transparently handles message
routing and data conversion for incompatible architectures. However, when a message is
send the user has to pack the message in a buffer, and likewise when receiving a message
the user has to unpack it.

PVM supports a dynamic resource management. Computing resources can be added
or deleted at will, either from a system console or even from within the user’s application.
Allowing applications to interact with and manipulate their computing environment
provides a powerful paradigm for load balancing, task migration, and fault tolerance.
The virtual machine provides a framework for determining which tasks are running and
supports naming services so that independently spawned tasks can find each other and
cooperate.

PVM supports a basic fault notification scheme. Under the control of the user, tasks
can register with PVM to be notified when the status of the virtual machine changes
or when task fails. A task can post a notify for any of the tasks from which it expects
to receive a message. In this scenario, if a task dies, the receiving task will get a

11

Copy Network Copy

Process A Process B

Figure 2.6: Illustration of the required message copies in MPI without user-defined data
types. Process A send a matrix-column to process B, which interprets the message as a
matrix-row. Note that if the matrix layout in this example happen to be column-major
then A would not have to use a buffer and similar if the matrix layout is row-major the
B would not have to use a buffer.

notify message in place of any expected message. The notify message allows the task an
opportunity to respond to the fault without hanging or failing.

Similarly, if a specific host such as an I/O server is critical to the application, then the
application tasks can post notifications for that host. The tasks will then be informed
if that server exits the virtual machine, and they can allocate a new I/O server.

MPI

In contrast to PVM, Message Parsing Interface (MPI)[50] emphasize a more tightly
bound communication paradigm in which a cluster of homogeneous nodes are preferred,
though the possibility of using different architectures still exists..

To minimize the number of needed memory copies in a message passing the MPI
standard supports user-defined data types, which makes it possible to send and receive
non-contiguous data blocks. A typical scenario is one process who wants to send a column
of a matrix to another process, and the other process wants to receive the column as
a row in its own matrix (Figure 2.6). Without user-defined data types both processes
must copy the matrix elements to and from a buffer. User-defined data types make it
possible to avoid the use of buffers, but it should be noted that a MPI implementation
is allowed to do copying anyway.

MPI does not provide mechanisms for dealing with failures in the communication
system. If the MPI implementation is built on an unreliable underlying mechanism,
then it is the job of the implementer of the MPI subsystem to insulate the user from this
unreliability, or to reflect unrecoverable errors as failures. Similarly, MPI itself provides
no mechanisms for handling processor failures.

Figure 2.7 shows an application written in C that implements the Jacobi Iteration
from Section 1.1 and uses MPI for parallelization.

12

1 // Parameters

2 I; // Number of iterations

3 A; //Input & Output Matrix (local)

4 T; // Temporary array (local)

5 SIZE; // Symmetric Matrix Size (local)

6

7 // Computation

8 int gsize = SIZE +2; //Size + borders.

9 MPI_Comm_rank(MPI_COMM_WORLD , &myrank);

10 MPI_Comm_size(MPI_COMM_WORLD , &worldsize);

11 MPI_Comm comm;

12 int periods [] = {0};

13 MPI_Cart_create(MPI_COMM_WORLD , 1, &worldsize ,

14 periods , 1, &comm);

15 int l_size = SIZE / worldsize;

16 if(myrank == worldsize -1)

17 l_size += SIZE % worldsize;

18 int l_gsize = l_size + 2;//Size + borders.

19 for(n=0; n<I; n++)

20 {

21 int p_src , p_dest;

22 //Send/receive - neighbor above

23 MPI_Cart_shift(comm ,0,1,&p_src ,& p_dest);

24 MPI_Sendrecv(A+gsize ,gsize ,MPI_DOUBLE ,

25 p_dest ,1,A,gsize , MPI_DOUBLE ,

26 p_src ,1,comm ,MPI_STATUS_IGNORE);

27 //Send/receive - neighbor below

28 MPI_Cart_shift(comm ,0,-1,&p_src ,& p_dest);

29 MPI_Sendrecv(A+(l_gsize -2)*gsize ,

30 gsize ,MPI_DOUBLE ,

31 p_dest ,1,A+(l_gsize -1)*gsize ,

32 gsize ,MPI_DOUBLE ,

33 p_src ,1,comm ,MPI_STATUS_IGNORE);

34 memcpy(T, A, l_gsize*gsize*sizeof(double));

35 double *a = A;

36 double *t = T;

37 for(i=0; i<SIZE; ++i)

38 {

39 int a = i * gsize;

40 double *up = &A[a+1];

41 double *left = &A[a+gsize];

42 double *right = &A[a+gsize +2];

43 double *down = &A[a+1+ gsize *2];

44 double *center = &T[a+gsize +1];

45 for(j=0; j<SIZE; ++j)

46 *center ++ = (* center + *up++ + *left++ + *right ++ + *down ++) \

47 / 5.0;

48 }

49 MPI_Barrier(MPI_COMM_WORLD);

50 }

Figure 2.7: Parallel version of Jacobi Iterations using MPI.

13

2.2.2 Remote Memory Access

Remote memory access (RMA) constitute an intermediate programming paradigm be-
tween message passing and shared memory. This model combines some advantages of
shared memory, such as direct access to shared/global data, and some advantages of
message-passing model, such as the knowledge of data locality. In some cases, remote
memory operations can be used as a high performance alternative to message passing
when RMA is directly supported by the hardware. The SPMD model is often used
with RMA, but since symmetry in the communication is not enforced by RMA, other
programming models are also used.

MPI

As previously mentioned (Section 2.2.1), MPI version 2.1 supports one-sided communi-
cation and thereby RMA. However, the RMA paradigm used in MPI are more restrictive
than other dedicated RMA libraries. MPI operates with active target and passive target
communication.

Active target is similar to message passing, in which both communicating processes
are explicitly involved in the communication. Except that all the data transfer argu-
ments are provided by one process, and the second process only participates in the
synchronization.

Passive target is more like normal RMA libraries, in which only one processes provide
the data transfer arguments and the synchronization. Both active and passive target
support asynchronously communication, but it is not possible to initiate multiple trans-
fers and then wait for one specific transfer to complete. Instead you have to wait for all
active transfers to finish. Also it is not possible to lock a subpart of a remote memory
window – the entire window must be locked.

These restrictions in MPI are not natural to the RMA paradigm and are not in
vendor-specific interfaces such as the Cray SHMEM[9] and IBM LAPI[88]. However, it
may help reduce the opportunities for writing erroneous application since synchroniza-
tion is enforced by some of the restrictions.

ARMCI

Aggregate Remote Memory Copy Interface[78] is a remote memory access communi-
cation interface that is designed to be used in libraries rather than directly in user
applications. ARMCI leaves the library developer in charge of managing protection and
consistency of data accessed by RMA communication and does not support heteroge-
neous environments. The focus is to deliver performance while providing a widespread
portability for homogeneous hardware platforms.

Good performance is demonstrated in [78] where ARMCI is compared with network
supported raw Get/Put communication and MPI two-sided communication on Infini-
Band Cluster (Figure 2.8). The overhead associated with ARMCI is low and the per-
formance is almost identical with raw communication. ARMCI outperform MPI when

14

Figure 2.8: Bandwidth in ARMCI Put/Get in comparison to raw Get/Put and MPI
Send/Recv (two-sided) on Infiniband Cluster. (From [78]).

transferring relative small messages, but the performance is very similar when transfer-
ring large messages.

However, the performance difference may not be that significant when using MPI
one-sided communication. [60] demonstrates that it is possible to archive better per-
formance with MPI one-sided communication instead of two-sided communication on
Infiniband Cluster. This is accomplished be utilizing InfiniBand RDMA1 operations,
which completely eliminates the involvement of the passive process in one-sided commu-
nication.

2.2.3 Libraries and Languages

Libraries and programming languages that support parallelization on distributed mem-
ory architectures is a well known concept. The existing tools either seek to provide
optimal performance in parallel applications or seek to ease the task of writing parallel
applications.

The development of applications that utilize distributed memory architectures often
involves distributed operations on distributed data structures. It is therefore the goal
for many libraries to directly support such distributed operations and some libraries go
even further by seamlessly maintaining the distributed data structures.

In the following, we explore some of the libraries and programming languages that
focus on distributed operations and data structures.

15

PBLAS

BLACS

Message Passing

(MPI, PVM, etc.)

BLAS

LAPACK

ScaLAPACK

Global operations

Local operations

Figure 2.9: ScaLAPACK Software Hierarchy.

ScaLAPACK

The library ScaLAPACK[15] is a parallel library based on LAPACK that targets dis-
tributed memory architectures. ScaLAPACK support a subset of the operations available
in LAPACK, but instead of working on local vectors and matrices ScaLAPACK works
on distributed vectors and matrices.

ScaLAPACK is used together with the SPMD model and users are required to make
use of Message Passing Programming to utilize ScaLAPACK. The software hierarchy
is quite complex and make use of both distributed and shared memory linear algebra
libraries (Figure 2.9).

Parallel BLAS (PBLAS) is a library developed as part of ScaLAPACK and it is
used for all distributed BLAS operations. PBLAS makes use of BLAS locally in a pro-
cess and the communication library Basic Linear Algebra Communication Subprograms
(BLACS)[38] is used for all inter-processes communication.

ScaLAPACK and PBLAS makes use of the Two-Dimensional Block Cyclic Distribu-
tion scheme, which has a good load balance in numerical problems that have a diagonal
computation workflow e.g. Gaussian elimination. The distribution scheme is demon-
strated in High Performance Fortran[73]. It works by arranging all processes in a two
dimensional grid and then distributing data-blocks in a round-robin fashion either along
one or both grid dimensions (Figure 2.10); the result is a well-balanced distribution.

Global Arrays

Global Arrays[79] is a library that provides an efficient and portable shared memory
programming interface for distributed memory computers. Global Arrays support both
distributed and shared memory architectures but make most sense in a distributed en-
vironment.

1Remote Direct Memory Access

16

(0,1) (0,2)

(1,0)

(2,0)

(3,0)

(0,4) (0,5)(0,3)(0,0)

(2,3)

Blocks owned by the processors [0,0]

(0,0)

Grid of Processors

0 1 2

0

1

Global view of matrix

(2,0)

(1,0)

(3,0)

(0,3) (0,1) (0,4) (0,2) (0,5)

(2,3)

(1,3)

(3,3)

(2,1)

(1,1)

(3,1)

(2,4)

(1,4)

(3,4)

(2,2)

(1,2)

(3,2)

(2,5)

(1,5)

(3,5)

Figure 2.10: The Two-Dimensional Block Cyclic Distribution of a matrix on a 2 x 3 grid
of processors.

Global Arrays have been designed to complement rather than substitute for the
message passing paradigm. The user can use both the shared memory paradigm and
the message passing paradigm in the same program. MPI is therefore often used in
combination with Global Arrays.

Central in Global Arrays is a distributed data object, a global array, which makes the
data distribution transparent to the user. Two categories of operations are support for
global arrays. First category is numerical operations that involve whole global arrays,
such as Gaussian elimination and matrix multiplication. The operations are used similar
to collective operations in MPI, which require the involvement of all MPI processes,
except that no process specific arguments is required. Second category is accessing the
global arrays from a process. This is much like shared memory programming – a process
download a subpart of a global array to a local buffer, manipulate the data locally and
then upload the data back to the global array. Global Arrays supports, like most shared
memory environments, both shared and exclusive locking of subparts of the global array.
When a global array is distributed on multiple cluster nodes, it will have a non-uniform
memory access characteristic. Some parts of the global array are local and some parts are
remote from a nodes point of view. Global Array exposes this to the user by providing
functions that returns coordinates for the local and remote part. However, even when a
process only access a local part of a global array that part still needs to be copied to a
local buffer. This is one of the main drawbacks with Global Arrays.

In relation to the work with GPAW2 I have investigated whenever Global Arrays
is a better performing alternate than a MPI only implementation. Two finite different
implementations – one using Global Arrays and one using MPI – are executed on a Blue
Gene/P supercomputer. The result shows that in my test case the MPI implementation
performs better than the Global Arrays implementation (Figure 2.11). The main reason

2The GPAW project is discussed in section 4

17

 1

 4

 8

 16

 32

 64

 1 4 8 16 32 64

S
p

e
e

d
u

p

No. of CPU−cores

Global Arrays
MPI

Figure 2.11: Speedup of a finite different computation on a Blue Gene/P supercomputer.
Two implementations are compared – one using MPI and one using Global Arrays.

for this performance penalty is the required copying of local data.

IPython

IPython[85] is an interactive shell for the Python programming language that, among
other features, support distribute and parallel executing. IPython supports both the
Fork/Join and the Message Passing parallel paradigm, but since the focus of IPython is
interactive programming the Fork/Join paradigm is most often used. IPython does not
seamlessly parallelize applications but instead provides a broad range of useful parallel
functions and language directives. Message Passing in IPython is build on MPI and
requires MPI binding for Python. The programming model is very similar to ScaLA-
PACK and support parallel operations on distributed data structures while it is the
responsibility of the programmer to ensure the data distribution.

2.2.4 Partitioned Global Address Space Languages

Partitioned Global Address Space (PGAS) [?, ?], also known as distributed shared mem-
ory, is a group of languages that are designed around a memory model in which a global
address space partitioned such that a portion of it is local to each processor. PGAS
languages offer programming abstractions similar to shared memory, but with control
over data layout that is critical to high performance and scalability. The abstraction
is therefore higher than one-sided and two-sided message passing libraries, but users
still program with the SPMD model in mind, writing code with the understanding that
multiple instances of it will be executing cooperatively.

18

Co-array Fortran

Co-Array Fortran[80] is a small extension of Fortran-95 for parallel processing on Dis-
tributed Memory Machines. Co-Array Fortran introduces new type of array dimension
called a co-array. By declaring a variable with a co-array dimension, the user specifies
that each process will allocate a copy of the variable. Each process can then access
remote instances of the variable by indexing into the co-array dimensions. Co-arrays are
expressed using square brackets which make them stand out syntactically from tradi-
tional Fortran arrays and array references. Synchronization routines are also provided
to coordinate between the cooperating processes.

Unified Parallel C

Unified Parallel C (UPC)[25] is similar to Co-array Fortran in that it extends C to
support PGAS-style computation and also introduces a new distributed array. Declaring
an array variable with the shared keyword causes the array elements to be distributed
between the program processes (or threads) in a cyclic or block-cyclic manner. UPC
uses the one-sided communication library GASNet[19], which has many similarities with
the ARMCI library previously described.

Titanium

Titanium[102] is a language that was developed at Berkeley as an SPMD dialect of
Java. Titanium provides a global memory space abstraction whereby all data has a
user-controllable processor affinity, but parallel processes may directly reference each
other’s memory to read and write values. Titanium is essentially a superset of Java
1.4 and inherits all the expressiveness, usability and safety properties of that language.
However, the Titanium compiler uses a source-to-source model, translating the Java-
dialect into the C programming languages. The communication is than translated into
either MPI or GASNet function calls and it is thereby possible to use Titanium on most
platforms.

2.2.5 High Productivity Computing Systems

In 2002 an interesting research program were launched by the Defense Advanced Re-
search Projects Agency, which is a U.S Department of Defense institute. The program
is called High Productivity Computing Systems (HPCS) and offers funding for industry
and academia to research the development of computing systems that focus on high
productivity along with high performance. Part of this program concentrates on the
specification of novel languages for the HPC community. In Phase 2 of the program
(July 2003 – July 2006) the three remaining partners that were awarded funding were
Cray, IBM and SUN. SUN were eventually dropped from the program at the start of
Phase 3. SGI and HP were part of Phase 1, but did not receive the funding to continue
their research.

19

Three new programming languages was developed through the HPCS program –
X10[30] by IBM, Chapel[28] by Cray, and Fortress[5] by SUN. All three languages are
PGAS oriented, like Co-array Fortran, UPC, and Titanium, but they do not use the
SPMD programming model. Instead they make use of a global programming view in
which, from the perspective of the user, only one instance of the application is executed.
Still, the user needs to handle parallel programming aspects, such as whenever a variable
should be shared between processes or not.

X10

X10 is a type-safe, parallel, distributed object-oriented language intended to be very
easily accessible to Java programmers, i.e. the syntax is very similar to Java. X10
targets non-uniform memory hierarchies, which both include single processors, like the
Cell Broadband Engine[62], and multiple-processor computer systems.

A computation is divided among a set of places, each of which holds some data and
hosts one or more activities that operate on those data. The places are managed by the
user and it is op to the user to distributed the workload between them. X10 introduces
a distributed array that spans over multiple places. New arrays can be created by
combining multiple arrays, performing element-by-element operations on arrays (with
the same distribution), and by using collective operations, e.g. scan, that are executed
in parallel on existing arrays to create new arrays.

To prevent deadlocks X10 uses the concept of parent and child relationships for
activities. An activity may spawn one or more child activities, which may themselves
have children. Children cannot wait for a parent to finish, but a parent can wait for a
child using the finish command.

Chapel

Chapel is a object-oriented programming language that strives to vastly improve the
programmability of large-scale parallel computer. Chapel supports both task and data
parallelism – task parallelism uses a multi-threaded execution model in which the user
assigns different tasks to different threads. Data parallelism, on the other hand, uses
a more global view in which the user operates directly on distributed arrays through
global iterators.

Chapel is designed around a multi-resolution philosophy, permitting users to initially
write very abstract code and then incrementally add more detail until they are as close
to the machine as their needs require.

Fortress

Fortress is a general-purpose, statically typed, programming language that uses a com-
pletely different approach than the other languages discussed. The main idea is that it
should be possible to use standard mathematical notation directly in the source code.

20

P0 P1 P2 P3 … PN-1 PN

M0 M1 … M2

Interconnect Network

Figure 2.12: Hybrid Memory.

For this purpose, Fortress makes use of Unicode to support a great diversity of mathe-
matical notations. Furthermore, concepts that are important for scientific computation,
such as vectors, matrices, and physical units (meters, seconds, etc) are supported.

Unlike most parallel languages, Fortress is implicitly parallel wherever possible and
provides constructs and annotations to serialize execution when necessary. As a result,
a compiler or virtual execution environment need not concern itself with determining
whether executing a program in parallel is permissible, only whether doing so is ad-
vantageous. To avoid typical race conditions, Fortress supports transactional memory
through the use of atomic expressions.

2.2.6 Incorporate Parallelism into Existing Languages

Instead of designing new parallel languages or libraries, some projects incorporate par-
allelism into existing sequential languages. This is typically done by translating the
sequential source code into a parallel program or by replacing the data backend with a
distributed data structure.

In [45] the authors have developed a framework that makes it possible to utilize GPUs
in Python+NumPy applications. The application is compiled into C++, and NumPy
vector operations and annotated functions are translated into GPU kernels. The GPU
utilization is almost completely transparent, still the user is required to specify which
Python/NumPy functions that should make use of the GPU. Furthermore, the user has
to annotate the variable types used in the Python application.

Another approach is used in the parallel MATLAB framework MATLAB*P[32],
which replace the standard array backend with a new distributed array backend. All
MATLAB operations that include this new array will seamlessly execute in parallel. The
approach is therefore very non-intrusive to the existing sequential code and only minor
work is required by user to utilize distributed memory architectures.

2.3 Combining Distributed and Shared Memory

The combination of Distributed and Shared Memory programming is called Hybrid pro-
gramming and is becoming more relevant with the increase in popularity of SMP archi-
tectures. Because a strong trend in HPC hardware is towards systems of shared-memory

21

computation nodes, users will have to deal with parallelism both on the SMP level and
on the inter-node level. Thus the Hybrid programming approach may have an advantage
over strictly Distributed or Shared Memory programming.

The idea is to exploit the memory locality on the SMP nodes and thereby avoid
communication between CPU-cores on the same node. Unfortunately, it is not trivial to
obtain good performance when combining shared memory programming with distributed
memory programming. Even though some internal communication is avoided, it is often
the case that the sole use of distributed memory programming outperforms a combination
of threads and Message Parsing when computing on clusters of SMP nodes[54]. In [56]
the authors demonstrate that it is possible to obtain identical performance with MPI
and OpenMP compared with pure MPI implementation.

The authors in [24] put forth some observations about the hardware and software
that influence the performance of hybrid programming. One observation is that on a
well balanced system, a loop level parallelization approach is unfavorably compared to
a strictly MPI implementation. Another observation is that a system of SMP nodes
performs better with a pure MPI approach for latency sensitive programs and worse
for bandwidth sensitive programs. Thus under the right circumstance it is possible to
obtain good performance with hybrid programming.

2.4 Vector Oriented Programming

Vector-oriented programming introduces an abstraction level that hides the parallelism
altogether. The idea in vector-oriented programming (also known as array program-
ming) is to express algorithms using high-level array operations, e.g. by expressing the
addition of two arrays using one high-level function instead of computing each element
individually.

The programming model uses a single thread execution model that only uses paral-
lelization implicitly. It is well suited for expressing data-centric parallelism and avoids
many nasty parallel programming bugs, such as deadlocks and data races.

2.4.1 High Performance Fortran

High Performance Fortran (HPF) [73] is a extension of the Fortran-90[3] programming
language, which consist of new directives to specify data dependencies and data distribu-
tion schemes. It is up to the HPF compiler to parallelize the application and distribute
the used data objects – no explicit communication is required. However, in order to
obtain good performance HPF dependence on the vector-oriented programming model
where the user align arrays together to reduce communication.

HPF supports vector-oriented programming by the exploitation of the array opera-
tions introduced in Fortran-90. For instance the statement A = B + C, where all three
variables are arrays, means add B and C together element-wise and store the result in
A.

22

2.4.2 Z-level Programming Language

Z-level Programming Language (ZPL) [29] uses an array abstraction to implement the
vector-oriented programming model. ZPL has no parallel directives or other forms of
explicit parallelism instead ZPL uses data parallelism to execute array operation in
parallel. Rather than machine code, the ZPL compiler translates ZPL code into ANSI
C code that makes use of the MPI library for communication. Therefore, ZPL is fairly
portable – in order to support a platform only an ANSI C compiler and a MPI library
must be available.

23

Chapter 3

Target Architectures

In order to obtain good scalable performance, it is crucial to optimize the utilization
of the underlying hardware. In this work, the main architectural focus is Distributed
Memory Machines, which is a collection of interconnected computer nodes (Figure 2.5).
Each node has its own private memory but a node may consist of multiple CPU-cores
that share the memory. The configurations of such installations are endless – from
clusters of personal computers, Beowulf Clusters, to specialized supercomputers – yet
the machine must be considered as one installation.

In this section I will describe two of the fastest supercomputers in the world – one
of which I got the chance to gain firsthand experience in working with. But first a brief
description of the heart in any Distributed Memory Machine: the network.

3.1 Network

There is a great diversity in the networks that are being used in Distributed Memory
Machines. As of 2010, the three most popular networks on the Top500 list[75] are
Gigabit Ethernet, Infiniband[89], and Myrinet[18] with a share of 51.8%, 36.2%, and
1.4%, respectively. Common for all three networks is that they are fairly generic and

Figure 3.1: Fat-Tree Network Topology: a very popular topology used in Distributed
Memory Machines, in which the links become fatter as one moves up the tree towards
the root [72].

24

can be used in most Distributed Memory Machine designs. Typically, the network is
connected using a number of switches in a tree-structured topology (Figure 3.1). This
is opposed to networks that are more non-generic, in which switches and the network
topology are incorporated directly into the machine architecture.

Gigabit Ethernet is the most popular network technology, probably because it is the
cheapest. But with communication latencies in the order of 25 µs [?] the applicability
of Gigabit Ethernet is too restricted to be the ideal network. For tightly coupled paral-
lelism both Infiniband and Myrinet are superior with communication latencies around
1-3 µs [?]. 10 Gigabit Ethernet is closing the gab to Infiniband and Myrinet with com-
munication latencies around 2-4 µs [?].

The Top500 list is based on the LINPACK Benchmark[37] which again is based on
tightly coupled parallelism. This is evident when examining the relationship between
the peak performance and the sustained performance of machines on the Top500 list
(2010). Machines that uses Gigabit Ethernet only utilize 50% of the peak performance
whereas machines that uses Infiniband and Myrinet utilize 77% and 72%, respectively.

3.2 Roadrunner

Roadrunner[10] is a hybrid-architecture supercomputer developed by Los Alamos Na-
tional Laboratory and IBM. It contains 12,240 IBM PowerXCell 8i processors and 6,480
AMD Opteron cores in 3,060 compute nodes. The Roadrunner is one of the fastest su-
percomputer in the world with a sustained maximum performance of 1.026 PFlops. It
was the first machine to exceed the 1 PFlops barrier, which happened in May 2008.

Roadrunner exposes a diverse computational environment given its heterogeneity. It
can be utilized in one of three main programming paradigms depending on the suitability
of each application. An application can run unmodified using only the Opteron proces-
sors without acceleration by the PowerXCell 8i processors. Or the application can use
both processor types, accelerating key performance hotspots of the code on the PowerX-
Cell 8i without porting all of the code. Or the application can run on the PowerXCell
8i processors for all computational tasks and employ the Opterons only as support for
internode communication, I/O, and visualization.

Approximately 95% of the peak performance of Roadrunner results from the Pow-
erXCell 8i processors, which are used as accelerators for the AMD Opteron processors.
PowerXCell 8i is an improved version of the Cell Broadband Engine (Cell BE)[62], which
was design for the Sony PlayStation3. A single Cell BE has a peak performance of 217.6
GFlops from its nine processor-cores. However, this speed is limited to single-precision
operations and drops to 21.0 GFlops for double-precision. A further limitation is the use
of a low-performance PowerPC processor core, which typically achieves a quarter of the
performance of a typical AMD Opteron core. Finally, the memory controller supports
only Rambus XDR memory, limiting memory capacity to 2GB.

To overcome these limitations, IBM implemented a new Cell processor, the PowerX-
Cell 8i, for use in Roadrunner. The PowerXCell 8i has a peak performance of 108.8
Gflops/s on double-precision operations, and supports DDR2 memory at 800MHz, al-

25

lowing up to 32GB memory. The remaining shortcoming, the low-performance PowerPC
processor core, is overcome by the incorporation of dual-core AMD Opteron 2210 HE
processors with one Opteron core for each PowerXCell 8i processor. In effect this pro-
vides an accelerator to each Opteron core.

3.2.1 The node design

A Roadrunner compute node is built using a triblade configuration (Figure 3.2). One
blade, an IBM LS21, contains two dual-core Opteron processors, and the remaining two
blades, IBM QS22s, each contain two PowerXCell 8i processors. Each Opteron core and
PowerXCell 8i within the triblade has 4 GB of DDR2 memory. The Opteron processors
are clocked at 1.8 GHz, with a peak performance of peak of 14.4 GFlop per LS21 blade.
Each core has a 64 KB L1 data cache, a 64 KB L1 instruction cache, and a 2 MB L2
cache.

The PowerXCell 8i processors are clocked at 3.2 GHz, and contain one Power Pro-
cessing Element (PPE), and eight Synergistic Processing Elements (SPEs). The PPE
has a traditional cache-based memory hierarchy consisting of a 32 KB L1 data cache, a
32KB L1 instruction cache, and a 512 KB L2 cache. A key characteristic of the SPE is
that it can directly address only 256 KB of memory; this high-speed memory, known as
local store, takes the place of a conventional cache architecture. Main memory, shared
with the PPE, can be accessed only via explicit direct memory access (DMA) transfers
to or from local store.

3.2.2 Network

From the perspective of the user, Roadrunner is seen as a network of dual-core Opteron
processors, in which each Opteron core has a Cell processor with eight SPEs attached
(Figure 3.3). The Opteron network is utilized like conventional Distributed Memory
Machines, e.g. by using MPI, and the SPEs are seen as local accelerators. Roadrunner
uses an InfiniBand network to interconnect all 3,060 compute nodes (triblades). The
topology is a Fat-Tree (Figure 3.1) with at most seven hops between two nodes and an
average of 5.38 hops.

The latency between two Opteron processors on different nodes is approximately 2.16
µs, which is similar to other modern InfiniBand networks. However, the latency between
two SPEs on different nodes is a much higher 8.78 µs. The performance bottleneck is
the internal PCI Express channel between the SPE and the Opteron processor, which
has a communication latency of 3.19µs (Figure 3.4). In spite of this, both [65] and
[10] demonstrates good system-wide speedup. A full system execution of the LINPACK
benchmark results in a 74.6% utilization of the peak performance (Figure 3.5).

3.3 Blue Gene/P

The Blue Gene/P (BGP)[95, 91] is a supercomputer developed by IBM and is the suc-
cessor to the Blue Gene/L. The full 72 racks BGP installation at JUGENE is, as of 2010,

26

4
x
 D

D
R

 I
n

fi
n

ib
a

n
d

QS22 Blade

PowerXCell 8i

HT x16

6.4GB/s

PCIe x8

2+2GB/s

PowerXcell 8i

SPEs (x8)

102.4Gf/s (DP)

PPU (x1)

6.4Gf/s (DP)

25.6GB/s

4GB

25.6GB/s

PowerXcell 8i

SPEs (x8)

102.4Gf/s (DP)

PPU (x1)

6.4Gf/s (DP)

25.6GB/s

4GB

PCIe x8

2+2GB/s

PCIe x8

2+2GB/s

PowerXcell 8i

SPEs (x8)

102.4Gf/s (DP)

PPU (x1)

6.4Gf/s (DP)

25.6GB/s

4GB

25.6GB/s

PowerXcell 8i

SPEs (x8)

102.4Gf/s (DP)

PPU (x1)

6.4Gf/s (DP)

25.6GB/s

4GB

PCIe x8

2+2GB/s

HT2100 HT2100
IB 4x

DDR

PCIe x8

2+2GB/s

AMD Opteron

Dual-core

7.2Gf/s (DP)

14.4Gf/s (SP)

10.7GB/s

4GB

AMD Opteron

Dual-core

7.2Gf/s (DP)

14.4Gf/s (SP)

10.7GB/s

4GB

HT x16

6.4GB/s

HT x16

6.4GB/s

LS21 Blade

(Opteron)

QS22 Blade

PowerXCell 8i

Figure 3.2: A Roadrunner Triblade (From [10]).

27

• • •

(100’s of such
cluster nodes)

Add Cells to
each

individual
node

Multi-socket
multi-core
Opteron

cluster nodes

Cell-accelerated
compute node

I/O
gateway
nodes

“Scalable Unit” Cluster Interconnect Switch/Fabric

Figure 3.3: Roadrunner network seen from the perspective of the user.

μ

L
o
ca
l

L
o
ca
l

3.19 s 3.19 s2.16 s0.12 s 0.12 s

8.78 s

μ μ μ

μ

μ

Opteron to Cell
(via PCI Express)

Opteron to
Opteron

(via InfiniBand)

Cell to Opteron
(via PCI Express)

Figure 3.4: Breakdown of the latency of a zero-byte message as it travels from a Cell to
another Cell located in a different node (From [10]).

Performance Scaling by CU

600

800

1000

1200

T
F

L
O

P
S

0

200

400

0 2 4 6 8 10 12 14 16 18

Number of CUs

Figure 3.5: Speedup of the LINPARCK benchmark – going from 180 to 3,060 compute
nodes. CU is a node group that consist of 180 nodes (From [65]).

28

M
u
ltip

le
x
in

g
 s

w
itc

h
M

u
ltip

le
x
in

g
 s

w
itc

h

PPC 450

FPU
L1

Prefetching

L2
4MB

eDRAM

L3

DDR-2
Controller

PPC 450

FPU
L1

Prefetching

L2

PPC 450

FPU
L1

Prefetching

L2
4MB

eDRAM

L3

DDR-2

Controller

PPC 450

FPU
L1

Prefetching

L2

Torus Collective BarrierJTAG
10Gb

Ethernet

DMA

BlueGene/P node

Internal bus

6 directions *

4bits/cycle,

bidirectional

3 ports * 8

bits/cycle,

bidirectional

4 ports,

bidirectional
Control

Network

2*16B bus @

½ proc speed
To 10Gb

physical layer

16B/cycle read (each), 16B/cycle write (each)

Data read @ 8 B/cycle

Data write @ 8 B/cycle

Instruction @ 8 B/cycle

16B/cycle

DDR2 DRAM

bus

4 symmetric ports for

Tree, torus and global

barriers

DMA module allows

Remote direct

“put” & “get”

M
u
ltip

le
x
in

g
 s

w
itc

h
M

u
ltip

le
x
in

g
 s

w
itc

h

PPC 450

FPU
L1

Prefetching

L2
4MB

eDRAM

L3

DDR-2

Controller

PPC 450

FPU
L1

Prefetching

L2

PPC 450

FPU
L1

Prefetching

L2
4MB

eDRAM

L3

DDR-2

Controller

PPC 450

FPU
L1

Prefetching

L2

Torus Collective BarrierJTAG
10Gb

Ethernet

DMA

Internal bus

6 directions *

4bits/cycle,

bidirectional

3 ports * 8

bits/cycle,

bidirectional

4 ports,

bidirectional
Control

Network

2*16B bus @

½ proc speed
To 10Gb

physical layer

16B/cycle read (each), 16B/cycle write (each)

Data read @ 8 B/cycle

Data write @ 8 B/cycle

Instruction @ 8 B/cycle

16B/cycle

DDR2 DRAM

bus

4 symmetric ports for

Tree, torus and global

barriers

DMA module allows

Remote direct

“put” & “get”

Figure 3.6: A Blue Gene/P Node (From [91]).

the fourth fastest supercomputer in the world with a sustained maximum performance
of 807 TFlops.

The design philosophy behind the BGP is based on the observation that the von Neu-
mann bottleneck associated with main memory and network is the greatest challenge
when scaling to the extreme. To sustain good scalability it is important that the ratio
between the speed of memory, communication and processor are balanced. BGP accom-
plish this balance by combining a relatively low clocked CPU with a modest performing
main memory and an extremely efficient communication system.

3.3.1 The node design

A Blue Gene/P node contains four 850MHz PowerPC 450 processors with 2 GB of shared
SDRAM-DDR2 and three levels of cache – A private level one and two cache, and a 8
MB shared level three cache (Figure 3.6). The main memory bandwidth is 16 GB/s and
peak performance of a node is 13.6 Gflops.

A node is implemented as a system-on-a-chip and consumes only 33 watts, which
makes it possible to have 1024 nodes in one rack.

29

3.3.2 Network

Blue Gene/P consists of no less than five independent networks: a 3D torus network,
a collective tree structured network, a global barrier network, a dedicated 10 gigabit
Ethernet network for I/O, and a 1 gigabit Ethernet network for administration. In short,
the performance of the network is quite impressive – the following is a brief description
of the three networks that are explicitly used by the user.

Three-dimensional torus The torus network is used for general-purpose, point-to-
point message passing. The topology is a three-dimensional torus constructed
with point-to-point, serial links between routers embedded within the BGP nodes.
Therefore, each node has six nearest-neighbor connections. The target hardware
bandwidth for each torus link is 425 MB/s in each direction of the link for a total
of 5.1 GB/s bidirectional bandwidth. Hardware latency for the nearest neighbor
is an impressive 100 ns (32-byte packet) and 800 ns (256-byte packet). To offload
torus communication from the CPUs a node is equipped with a direct memory
access (DMA) engine.

Global collective The global collective network is a high-bandwidth, one-to-all net-
work used for collective communication operations, such as broadcast and reduc-
tions. Each node has three links to the global collective network at 850 MB/s per
direction for a total of 5.1 GB/s bidirectional bandwidth per node. Latency on the
global collective network is less than 2 µs from the bottom to top of the collective,
with an additional 2 µs latency to broadcast to all.

Global barriers The global interrupt network enables fast signaling of global barriers.
Round-trip latency to perform a global barrier over this network for a full 73728
node partition is approximately 1.3 microseconds.

To investigate the overhead associated with the software layer and how much the
message size influence point-to-point bandwidth, I have performed an experiment in
which one MPI message is send between two neighboring BGP nodes (Figure 3.7). The
result of the experiment clearly shows that in order to maximize the bandwidth, a
message size greater than 105 bytes is needed, while half the asymptotic bandwidth is
achieved at approximate 103 bytes.

3.3.3 Application Development

The Blue Gene/P supports shared memory programming with pthread or OpenMP, but
with the limitation that BGP only supports one thread per CPU-core. However, it is
also possible to utilize the four cores on a node by use of the virtual partition mode,
which is a virtual partition of node supported by BGP. From the programmers point of
view the four CPU-cores would then look like four individual nodes with each 512MB of
main memory. This virtual partitioning is called virtual mode.

BGP also implements the MPICH2[49] library which comply with the MPI-2 speci-
fication. MPI-2 specifies different levels of threaded communication. BGP supports the

30

 0

 50

 100

 150

 200

 250

 300

 350

 400

10^0 10^1 10^2 10^3 10^4 10^5 10^6 10^7

B
a

n
d

w
id

th
 i
n

 M
B

/s
e

c

Message size in bytes

Figure 3.7: A bandwidth graph showing how the message size influence the bandwidth.
In this experiment, one MPI message is send between two neighboring BGP nodes.

fully thread-safe mode called MULTIPLE, which allows any thread to call the MPI library
at any time. Since there is an overhead associated with MULTIPLE (e.g. locks), it is also
possible to use the more restricted SINGLE mode, which do not allow concurrent calls to
MPI.

The MPICH2 implementation is tailored to utilize the BGP’s DMA engine, which
means that non-blocking MPI communication is handled asynchronously with minimum
CPU involvement.

BGP supports the MPI Cart create function which tells BGP to reorder the MPI
ranks in order to match the torus network.

3.3.4 Argonne National Laboratory

In my involvement with GPAW (Section 4) I was granted access to the Blue Gene/P
installation at Argonne National Laboratory (ANL) in Chicago. The installation con-
sists of 40 racks and is one of the fastest supercomputer in the world with a sustained
maximum performance of 448 TFlops. However, only four racks, which translates to
16384 CPU-cores, was accessible for the GPAW project.

Error in the communication layer

In my intense work with the MPICH implementation on the Blue Gene/P, I encountered
a strange runtime error. The error message was this:

mpid_rma_common.c:1520:

recv_sm_cb: Assertion ‘(win)->_dev.epoch_rma_ok

&& !((win)->_dev.epoch_assert & 4096)’ failed.

Abort(1) on node 2 (rank 2 in comm 1140850688): Fatal error in

MPI_Win_unlock: Wrong synchronization of RMA calls , error stack:

MPI_Win_unlock(116).: MPI_Win_unlock(rank=3, win=0xa0000000) failed

31

MPID_Win_unlock(861): Wrong synchronization of RMA calls

At first I thought that the error should be found in my implementation, but after a lot of
debugging I came up with a valid piece of one-sided MPI communication that sometimes
fails:

rank = (myrank+1)%worldsize

MPI_Win_lock(MPI_LOCK_EXCLUSIVE, rank...)

MPI_Put(..., rank...)

MPI_Win_unlock(rank...)

I filed a bug report, which was first handled by the Blue Gene team at ANL, then by
the MPICH team also at ANL, and ended at the IBM’s Blue Gene/P team. The result
was two official patches to the Blue Gene/P software stack:

patch0 (Douglas Miller, IBM): fixes the perfromance issue for

one-sided MPI_Put/MPI_Get.

patch1 (Douglas Miller, IBM): fixes the race condition in MPI_Win_unlock.

This story goes to show that HPC pushes the envelope for the possibilities of hardware
architectures and is for experts.

32

Chapter 4

Scientific Application: GPAW

As part of this thesis, I got the opportunity to gain firsthand knowledge in the process
of parallelizing a scientific application for a supercomputer. The idea was that through
the involvement I would gain insights into common parallel constructs used in scientific
applications and how to improve the scalability of such constructs.

The application, Grid Based Projector Augmented Wave (GPAW)[76], is a simula-
tion software, which simulates many-body systems at the sub-atomic level. GPAW is
primarily used by physicists and chemists to investigate the electronic structure, princi-
pally the ground state, of many-body systems.

GPAW is mainly developed by a team at the Technical University of Denmark and
I had the privilege to work with them on optimizing GPAW for the Blue Gene/P ar-
chitecture. The focus of my work was to optimize a distributed stencil operation that
makeup a substantial part of the overall execution time.

4.1 Introduction

The current trend in HPC hardware is towards systems of shared-memory computation
nodes. The Blue Gene/P also follows this trend and consists of four CPU-cores per node.
Furthermore, it is quite possible that future versions of the Blue Gene architecture will
consists of even more CPU-cores per node.

To exploit the memory locality in the nodes of the Blue Gene/P a paradigm, which
combines shared and distributed memory programming may be of interest. We evalu-
ate two different hybrid programming approaches. One approach in which inter-node
communication is handled individually by every thread and another approach in which
one thread handles the inter-node communication on behalf of all the other threads in a
node. The work shows that, on the Blue Gene/P, the first approach is clearly superior
the latter. In [24] the authors concludes that, on a well balanced system, a loop level
parallelization approach, corresponding to our second hybrid approach, is unfavorably
compared to a strictly MPI implementation. Our first hybrid approach was developed
on the basis of that conclusion.

33

Figure 4.1: A stencil operation on a 2D grid.

4.2 GPAW

GPAW is a real-space grid implementation of the projector augmented wave method[16].
It uses uniform real-space grids and the finite-difference approximation for the density
functional theory calculations.

A central part of density functional theory and a very time consuming task in GPAW,
is to solve Poisson and Kohn-Sham equations [?, ?]. Both equations rely on stencil op-
erations when solved by GPAW. When solving the Poisson equation, a stencil is applied
to the electrostatic potential of the system. When solving the Kohn-Sham equation, a
stencil is applied to all wave-functions in the system. Both the electron density and the
wave-functions are represented by real-space grids. A system typically consists of one
electron density and thousands of wave-functions. The number of wave-functions in a
system depends on the number of valence electrons in the system. For every valence
electron there may be up to two wave-functions.

The computational magnitude of a GPAW simulation depends mainly on three fac-
tors: The world size, simulation system resolution and the number of valence electrons.
The world size and resolution determine the dimensions of the real-space grids and the
number of valence electrons determines the number of real-space grids.

A user is typically more interested in adding valence electrons to the simulation than
to increase the size or resolution of the world. The real-space grid size will ordinary be
between 1003 to 2003 where as the total number of real-space grids will be greater than
one thousand.

4.2.1 Stencil Operation

A stencil operation updates a point in a grid based on the surrounding points. A typical
2D example is illustrated in Figure 4.1 where points are updated based on the two nearest
points in all four directions.

Stencil operations on the real-space grids (3D arrays) are used for the finite-difference
approximation in GPAW. The stencil operation used is a linear combination of a point’s
two nearest neighbors in all six directions and itself. The stencil operations do normally
use periodic boundary conditions but that is not always the case.

If we look at the real-space grid A and a predefined list of constants C, a point Ax,y,z

34

The same MPI process

Grids

Figure 4.2: Four 2D grids distributed over nine processes.

is computed like this:

A′x,y,z = C1Ax,y,z + C2Ax−1,y,z + C3Ax+1,y,z+

C4Ax−2,y,z + C5Ax+2,y,z + C6Ax,y−1,z+
C7Ax,y+1,z + C8Ax,y−2,z + C9Ax,y+2,z+
C10Ax,y,z−1 + C11Ax,y,z+1+
C12Ax,y,z−2 + C13Ax,y,z+2

4.3 The implementation

GPAW is implemented using C and Python. The intention is that the users of GPAW
should write the model description in Python and then call C and Fortran functions
from within Python. It is in this context a user would apply the C implemented stencil
operation on one or more real-space grids.

The parallel version of GPAW uses MPI in a flat programming model and the par-
allelization is done by simple domain decomposition of every real-space grid in the sim-
ulation. That is, every MPI process gets the same subset of every real-space grid in the
simulation. This is important because some part of the GPAW computation, like the
orthogonalization of wave-functions, requires the same subset of every real-space grid in
the simulation. This is illustrated in Figure 4.2 with 2D real-space grids instead of 3D
grids.

The grids are simply divided into a number of quadrilaterals matching the number
of available MPI processes. If no user-defined domain decomposition is present, GPAW
will try to minimize the aggregated surface of the quadrilaterals. A real-space grid is
represented as a three dimensional array where every point in the grid can be a real or
complex number (8 or 16 bytes)

4.3.1 Distributed Stencil Operation

Generally, it should be easy to obtain good scalability for a distributed stencil operation
since computation grows faster than communication. If we look at a 3D grid of size
n×n×n the aggregated computation is O

(
n3

)
where as the aggregated communication

35

Figure 4.3: 2D grid distributed over nine processes. A process needs some of its neigh-
bor’s surface points, to compute its own surface points.

is only O
(
n2

)
. The operation should scale very well when n grows at the same rate as

the number of CPUs.
In GPAW, however, scalability is very hard to obtain since the grid size will ordinarily

not exceed 2003. Furthermore, since GPAW requires that every MPI process gets the
same subset of every grid, it is hard to take advantage of the fact that the number of
grids grows at the same pace as the CPUs.

One feature in GPAW, which makes it easier to parallelize, is the fact that the input
grid and the output grid used in the stencil operation is always two separate grids. We
need therefore not consider the order in which the grid-points are computed.

Applying a stencil operation on a grid involves all MPI processes. It is possible for
an MPI process to compute most of the points in the sub-grid assigned to it. However,
points near the surface of the sub-grid, surface points, are dependent on remote points
located in neighboring MPI processes. This dependency is illustrated in Figure 4.3.

The straightforward approach, and the one used in GPAW, for making remote points
available, is to exchange the surface points between neighboring MPI processes before
applying the stencil operation. The serialized communication pattern looks like this:

1. Exchange surface points in the first dimension.

2. Exchange surface points in the second dimension.

3. Exchange surface points in the third dimension.

4. Apply the stencil operation.

4.4 Optimizations

In order to make GPAW run faster on the Blue Gene/P, we have explored different op-
timizations. Optimizations, which have been beneficial, will be discussed in this section.

The most obvious optimization is to exchange surface elements simultaneously in all
three dimensions by using the following non-blocking communication pattern:

1. Initiate the exchange of surface points in all three dimensions.

2. Wait for all exchanges to finish.

36

Comm

n++

n++

Last iteration

start
n+1

Comm
start

n

Comm
wait

n

Comp
Stencil

n

Figure 4.4: Flow diagram illustrating double buffering. The n’th iteration is expressed
with a n and Comm and Comp stands for communication and computation, respectively.
n++ is an iteration to n’s successor.

3. Apply the stencil operation.

The idea is to fully utilize the torus network in all six directions simultaneously.
Another important performance aspect is how to map the distributed real-space

grids onto the physical network topology. The 3D torus network is used for point-to-
point communication in MPI. Therefore, we will map the distributed real-space grids
onto the 3D torus network. Since the grids have the same number of dimensions as the
torus network, and since the stencil operation may use periodic boundary condition, a
torus topology is a perfect match to our problem. However, the Blue Gene/P requires a
partition with 512 or more nodes to form a torus topology. A partition of less than 512
nodes can only form a mesh topology.

4.4.1 Multiple real-space grids

Double buffering and communication batching are two techniques that can improve the
performance of the stencil operation. Both techniques require multiple real-space grids
but the stencil operation is typically applied on thousands of real-space grids.

Double buffering

Double buffering is a common technique that makes it possible to overlap communication
and computation. The following communication pattern illustrates how (Figure 4.4):

1. Initiate the exchange of surface points in all three dimensions for the first grid.

2. Initiate the exchange of surface points in all three dimensions for the second grid.

3. Wait for all exchanges of the first grid to finish.

4. Apply the stencil operation on the first grid.

5. Initiate the exchange of surface points in all three dimensions for the third grid.

6. Wait for all exchanges of the second grid to finish.

37

Figure 4.5: A illustrates of the connection between four programming approaches.

The performance gain is dependent on the ability of the MPI library and the underlying
hardware to process non-blocking send and receive calls. On the Blue Gene/P, progress in
non-blocking send and receive calls will be maintained by the DMA engine and increased
performance is therefore expected.

Batching

A method for ensuring critical packet size is to pack real-space grids into batches; inspired
by the message size experiment (Figure 3.7).

Continuously dividing the grids between more and more MPI processes reduces the
number of surface points in a single sub-grid. That is, at some point the amount of
data send by a single MPI call will be reduced to a size in which the MPI overhead
and network latency will dominate the communication overhead. The idea is to send a
batch of surface points in each MPI call, instead of sending surface points, individually.
This will reduce the communication overhead considerably, as the size of the sub-grids
decreases. The number of grids packed together in this way, we call batch-size.

When using double buffering, it is important to allow the CPUs to start computing
as soon as possible. Combining a large batch-size with double buffering will therefore
introduce a penalty as the initial surface points exchange cannot be hidden. One ap-
proach to minimize this penalty, is to increase the batch-size continuously in the initial
stage. For instance a batch-size of 128 could be reduced to 64 in the initial exchange.

4.5 Programming approaches

Different approaches exist when combining threads and MPI. To preserve control we
have chosen to handle the threading manually in pthread.

The following is a description of different programming approaches that we have
investigated. Every programming approach except the Flat original uses the optimiza-
tions described in section 4.4.

• Flat original is the approach originally used in GPAW. It uses the virtual mode
in Blue Gene/P, in which the four CPU-cores are treated as individual nodes, to
utilize all four CPU-cores and it is therefore not necessary to modify anything to
support the Blue Gene/P architecture.

38

• Flat optimized is an optimized version of the original approach and just like the
Flat original it uses the virtual mode.

• Hybrid multiple does not use the virtual mode. Instead, one hardware thread
per CPU-core is spawned. Every thread handles its own inter-node communication.
The node will distribute the real-space grids between its four CPU-cores, not by
dividing the grids into smaller pieces but by assigning different grids to every CPU-
core. Because of this no synchronization is needed until all grids are computed and
the synchronization penalty is therefore constant. This way of exploiting multiple
grids is the main advantage of this approach.

• Hybrid master-only also spawns one thread per CPU-core, but only one thread,
the master thread, handles inter-node communication. Since we have to synchro-
nize between every grid-computation, each grid-computation will be divided be-
tween the four CPU-cores. The synchronization penalty thus become proportional
to the number of grids. On the other hand, this approach does work in SINGLE

MPI-mode and the overhead associated with MULTIPLE is therefore avoided.

Figure 4.5 illustrates the connection between the four programming approaches –
from the original approach, in which pure MPI programming is used and the wave-
functions are partitioned inside the nodes, to the hybrid approach where hybrid pro-
gramming is used and the wave-functions are shared inside the nodes.

4.6 Results

A benchmark of each implementation has been executed on the Blue Gene/P. 16384
CPU-cores or 4096 nodes or 4 racks were made available to us. Every benchmark graph
compares the different programming approaches of the stencil operation in GPAW and
a periodic boundary condition is used in all cases.

Figure 4.6 is a classic speedup graph comparing every implemented approach with a
sequential execution. It is a relatively small job containing only 32 real-space grids. But
because of the memory demand, it is not possible to have more than 32 grids running
on a single CPU-core.

The result clearly show that the best scaling and running time is obtained with Flat
optimized and Hybrid multiple both using a batch-size of 8 grids. Since the job only
consists of 32 grids a batch-size of 8 is the maximum if all four CPU-cores should be
used. Another interesting observation is that the advantage of batching is greater in
Hybrid multiple than in Flat optimized. This indicates that if a job consist of more
grids, the Hybrid multiple approach may become faster than Flat optimized.

4.6.1 Communication and Computation Profile

The communication and computation profile becomes very important when scaling to a
massive number of processes. As the number of MPI processes increases the communica-
tion time has a tendency to increase due to network congestion. It is therefore essential

39

 0

 500

 1000

 1500

 2000

 2500

 1 512 1024 2048 4096

S
p

e
e

d
u

p

No. of CPU-cores

Flat optimized
Hybrid multiple

Hybrid master-only
Flat original

 0

 500

 1000

 1500

 2000

 2500

 1 512 1024 2048 4096

S
p

e
e

d
u

p

No. of CPU-cores

Flat optimized
Hybrid multiple

Hybrid master-only

Figure 4.6: Speedup of the stencil operation. The job consist of only 32 real-space grids
all with a size of 1443. In the left graph batching is disabled and in the right graph
batching is enabled using a batch-size of 8.

that all communication is spread evenly between the CPU-core and that the diversity
of the communication and computation time is minimized.

Figure 4.7 is a profile of the Hybrid multiple approach executing on 1024 CPU-
cores. It shows a distinct pattern in which the communication and the computation phase
are aligned throughout the execution. From that it is evident that Hybrid multiple
actually do execute in a fairly synchronized manner and no ripple effect of waiting
processes is observed.

4.6.2 Multiple real-space grids

As the number of grids grow there is a corresponding linear growth in the computation
required in the stencil operation. It is therefore possible to create a Gustafson graph by
increasing the number of grids in the same rate as the number of CPU-cores (Figure 4.8).
It is important to note that the required communication per node increases faster than
the needed computation. This is due to the increased surface size associated with the
additional partitioning of the grids. To illustrate this communication increase, the right
graph in Figure 4.8 shows the needed communication per node for Flat optimized and
Hybrid multiple respectively.

If we, for example, look at a computation of a grid with a size of 1923 using 1024
nodes, the grid will either be divided between 1024 MPI processes when using Hybrid
multiple or 4096 MPI process when using Flat optimized. Flat optimized needs to
communicate approximately 140KB more data per node than Hybrid multiple. Note
that this is only for a single real-space grid, the difference will grow linearly with the
number of grids in the computation.

40

Time

M
P
I-
p
r
o
c
e
s
s
e
s

Communication

CPU idle (MPI_Wait)

Computation

Figure 4.7: Profile of the communication and computation pattern when computing 1024
real-space grids on 1024 CPU-cores and the Hybrid multiple approach is used. A line
represents a MPI-process and the length of the line represents the progress of time.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1 2048 4096 8192 16384

R
u
n
n
in

g
 t
im

e
 i
n
 s

e
c
o
n
d
s

No. of CPU-cores and real-space grids

Flat optimized
Hybrid multiple

Hybrid master-only
Flat original

 0

 100

 200

 300

 400

 500

 600

 700

 800

 1 2048 4096 8192 16384

C
o
m

m
u
n
ic

a
ti
o
n
 p

e
r

n
o
d
e
 i
n
 M

B

No. of CPU-cores and real-space grids

Flat programming
Hybrid programming.

Figure 4.8: Gustafson graphs showing the running time of the stencil operation and the
needed inter-node communication when the number of real-space grids is increasing in
the same rate as the number of CPU-cores – one grid per CPU-core. The left graph shows
the running time and the right graph shows the needed inter-node communication. The
grid size are 1923 and the best batch-size has been found for every number of CPU-cores.

41

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

1k 2k 4k 8k 16k

R
u
n
n
in

g
 t
im

e
 i
n
 s

e
c
o
n
d
s

No. of CPUs

Flat optimized
Hybrid multiple

Hybrid master-only
Flat original

 0

 2

 4

 6

 8

 10

 12

 14

1k 2k 4k 8k 16k

S
p
e
e
d
u
p

No. of CPUs

Flat optimized
Hybrid multiple

Hybrid master-only
Flat original

Figure 4.9: A scalability graph starting at 1024 CPU-cores running the stencil operation.
In the left graph the running time of every approach is shown and in the right graph
every approach is compared to the fastest approach on 1024 CPU-cores namely the
Hybrid multiple. All jobs consists of 2816 real-space grids all size of 1923, and the
best batch-size has been found for every number of CPU-cores.

At 512 CPU-cores Hybrid multiple is faster than Flat optimized. The main
reason is the difference in the needed communication. Flat optimized divides the grids
four times more than the Hybrid multiple. We did not see this effect in the speedup
graph, Figure 4.6, because of the small number of grids. Furthermore, Hybrid multiple
is better to exploit an increase in grids because of the thread synchronization overhead.
The overhead is small and constant, but since the total running time is very small for 32
grids (9 milliseconds with 2048 CPU-cores), the impact of the synchronization overhead
is drastically reduced when the number of grids, and thereby the total running time, is
increased.

To investigate the scalability of a large job with many real-space grids, we have made
a scalability graph beginning at 1k CPU-cores, which allows for a 2816 grid job (Figure
4.9). Again Hybrid multiple has the best performance – going from 1k to 16k CPU-
cores gives a speedup of approximately 12.5 where 16 would be linear but unobtainable
due to the increase in the needed communication. If we compare the running time of
Hybrid multiple with Flat original, we see a 94% performance gain at 16384 CPU-
cores.

To further investigate the performance difference between Hybrid multiple and
Flat optimized, we have made a small experiment. We modified Flat optimized to
statically divide the real-space grids into four sub-groups. It is now possible for all four
CPU-cores to work on its own sub-group and the real-space grids will be divided into
the same level as in Hybrid multiple. The only difference between the two approaches

42

is that Flat optimized uses the virtual mode in Blue Gene/P and Hybrid multiple
uses threads. It should be noted, however, that in a real GPAW computation this
modification does not work, since GPAW requires that every MPI process gets the same
subset of every real-space grid, see section 4.3. The experiment is not included in any
of the graphs since its performance is identical with the Hybrid multiple. Because of
the identical performance, we find it reasonable to conclude that the level of real-space
partitioning is the sole reason for the performance difference between Hybrid multiple
and the non-modified Flat optimized.

4.7 Summary

In collaboration with the GPAW team at Technical University of Denmark we have
managed to improve the performance of a domain specific stencil code when scaling to
a very high degree of parallelism. The primary improvements are obtained through the
introduction of asynchronous communication which, even in a well balanced system such
as the Blue Gene, efficiently improves processor utilization. Furthermore, two hybrid
programming approaches have been explored: the hybrid multiple and the master-only
approach.

The hybrid programming approach, in which inter-node communication is handled
individually by every thread, has shown a positive impact on the performance. By
allowing every thread to handle its own inter-node communication, the overhead for
thread synchronization remains constant and the application becomes faster than the
non-hybrid version.

On the other hand, the alternative hybrid programming approach, in which one
thread handles the inter-node communication on behalf of all threads in the process,
cannot compete with the non-hybrid version. That is explained by the overhead that is
introduced by thread synchronization which grows proportional to the number of grids
in the computation.

When comparing our fastest implementation compared to the original implementa-
tion, the hybrid programming approach combined with the latency-hiding techniques
is 94% faster at 16384 CPU-cores. Translated into utilization this means that CPU
utilization grows from 36% to 70%. While latency-hiding is the primary factor for the
improvement we observe, the hybrid implementation is still 10% faster than the non-
hybrid approach.

We conclude that it is possible to obtain very good performance of the scientific
application GPAW but it requires expertise in both distributed and shared memory
programming in addition to a lot of work.

43

Chapter 5

Productivity

High-productivity is the key selling point for a broad range of programming languages
and libraries. Some features obviously enhance the productivity – such as interactive
execution, interpretation instead of compilation, rich set of standard libraries etc. –
but generally, it is difficult to compare the productivity. Nevertheless, we will try by
comparing multiple implementations of the stencil computation in GPAW (Chapter 4).
For simplicity, we use a 5-point stencil instead of a 9-point stencil and use a fixed number
of iterations. The result is a simple application that applies the Jacobi method in a
fixed number of iterations. The application is vectorizable, which makes it possible to
compare the vector-oriented programming approach with more traditional programming
approaches.

Figure 5.1, 5.2, 5.3 and 5.4 is the Jacobi application written in Python/NumPy,
MATLAB, ZPL and C, respectively. The Python/NumPy, MATLAB and ZPL imple-
mentation uses vectorized operations and express the 5-point stencil with five array
subsets that are shifted one element in each direction. As opposed to the C implemen-
tation that uses a computation loop with pointer arithmetic explicitly. The similarity
of the Python/NumPy and MATLAB version is not a coincidence. Python/NumPy is
heavily influenced by MATLAB and strives to provide an open source alternative to
MATLAB with similar emphases on high-productivity.

When comparing the mathematical expression of the Jacobi iteration (Section 1.1)
with the four implementations it is clear that the Python/NumPy and the MATLAB
implementation resemble the mathematical expression the most. Thus, a non-computer
expert will find it easier and more productive to use Python/NumPy or the MATLAB.
Particularly, the C implementation is not very intuitive for a non-computer expert.

5.1 Parallelization

It is often necessary to introduce parallelization in order to support a large numerical
problem because of computation time and data set constrains. The vector-oriented pro-
gramming model enables the runtime system to handle this parallelization automatically
through implicit data parallelism.

44

1 #Parameters

2 I #Number of iterations

3 A #Input & Output Matrix

4 T #Temporary array

5 SIZE #Symmetric Matrix Size

6

7 #Computation

8 for i in xrange(I):

9 T[:] = (A[1:-1,1:-1] + A[1:-1,:-2] + A[1: -1 ,2:] + A[:-2,1:-1] \

10 + A[2: ,1: -1]) / 5.0

11 A[1:-1, 1:-1] = T

Figure 5.1: Python / NumPy version of Jacobi Iterations.

1 #Parameters

2 I %Number of iterations

3 A %Input & Output Matrix

4 T %Temporary array

5 SIZE %Symmetric Matrix Size

6

7 #Computation

8 i = 2:SIZE +1;%Center slice vertical

9 j = 2:SIZE +1;%Center slice horizontal

10 for n=1:I,

11 T(:) = (A(i,j) + A(i+1,j) + A(i-1,j) + A(i,j+1) ...

12 + A(i,j-1)) / 5.0;

13 A(i,j) = T;

14 end

Figure 5.2: MATLAB version of Jacobi Iterations.

45

1 procedure jacobi ();

2 region

3 R = [1..n, 1..n]; -- problem region

4 BigR = [0..n+1, 0..n+1]; -- with borders

5

6 direction

7 north = [-1, 0]; -- cardinal directions

8 east = [0, 1];

9 south = [1, 0];

10 west = [0, -1];

11

12 -- Parameters

13 var

14 I -- Number of iterations

15 A -- Input & Output Matrix

16 SIZE -- Symmetric Matrix Size

17 T : [BigR] float -- Temporary array

18 [R] begin

19

20 -- Computation

21 for it := 1 to I do

22 Temp := (A + A@north + A@east + A@south + A@west) / 5.0;

23 A := Temp;

24 end;

25 end;

Figure 5.3: ZPL version of Jacobi Iterations.

46

1 // Parameters

2 int I; // Number of iterations

3 double *A; //Input & Output Matrix

4 double *T; // Temporary array

5 int SIZE; // Symmetric Matrix Size

6

7 // Computation

8 int gsize = SIZE +2; //Size + borders.

9 for(n=0; n<I; n++)

10 {

11 memcpy(T, A, gsize*gsize*sizeof(double));

12 double *a = A;

13 double *t = T;

14 for(i=0; i<SIZE; ++i)

15 {

16 double *up = a+1;

17 double *left = a+gsize;

18 double *right = a+gsize +2;

19 double *down = a+1+ gsize *2;

20 double *center = t+gsize +1;

21 for(j=0; j<SIZE; ++j)

22 *center ++ = (* center + *up++ + *left++ + *right ++ + *down ++) \

23 / 5.0;

24 a += gsize;

25 t += gsize;

26 }

27 memcpy(A, T, gsize*gsize*sizeof(double));

28 }

Figure 5.4: Sequential version of the Jacobi Iterations in C.

47

ZPL[29] facilitates implicit data parallelism natively without the need to rewrite any
code. In C, on the other hand, the programmer has to express parallelization explicitly
when programming. There exist libraries and languages extensions that try to make
parallelization easier though. In this chapter, we will explore two industrial standards
for parallel programming in C: one for shared memory, OpenMP, and one for distributed
shared memory, MPI. Common for both approaches is that the programmer needs to
implement a parallelization strategy for the domain decomposition, local / global variable
access, communication etc.

MATLAB do not facilitate implicit data parallelism natively. However, some exten-
sions exist that seamlessly introduce data parallelism[97, 31, 32, 57]. In Chapter 7, we
will introduce implicit data parallelism to the Python/NumPy programming language.

5.1.1 OpenMP

Often shared memory programming uses some kind of threading in order to utilize
multi CPU-cores. OpenMP is very popular for doing shared memory programming in
C. Figure 2.2 from Section 2.1.1 shows a C implementation of the Jacobi application
that uses OpenMP to parallelize the computation loop. The code is almost identical
with the sequential version (Figure 5.4) thus, in this case, OpenMP does not introduce
much complexity because the strategy for dividing the workload between the threads is
straightforward. However, it was necessary to make the loop iterations non-dependent.

5.1.2 MPI

Distributed memory programming is typically more complex than shared memory pro-
gramming because distributed memory programming requires differentiation between
local and remote memory. Message passing is a technique for efficiently coordinating
and communicating local data structures and MPI is the industrial standard for SPMD
parallel programming. Figure 5.5 shows a version of the Jacobi application that uses
MPI to parallelize the computation loop. Even though the implementation uses data
parallelism with a very simple domain decomposition, the implementation is a lot more
complex than the sequential and the OpenMP version.

5.1.3 MPI and OpenMP

In order to introduce even further parallelism we could use hybrid programming. Ad-
ditionally, communication latency-hiding is essential to optimize the Jacobi application
implementation fully.

Figure 5.6 shows an optimized version of the Jacobi application that utilizes both hy-
brid programming and communication latency-hiding. In order to overlap communuca-
tion with computation, it uses the double buffering technique. It starts by initiating the
communication using non-blocking MPI functions; then it computes all elements that
do not depend on remotely located data. Finally, it waits for the communication to
finish and compute the rest of the elements. The code is clearly more complex than

48

1 // Parameters

2 int I; // Number of iterations

3 double *A; //Input & Output Matrix (local)

4 double *T; // Temporary array (local)

5 int SIZE; // Symmetric Matrix Size (local)

6

7 // Computation

8 int gsize = SIZE +2; //Size + borders.

9 MPI_Comm_rank(MPI_COMM_WORLD , &myrank);

10 MPI_Comm_size(MPI_COMM_WORLD , &worldsize);

11 MPI_Comm comm;

12 int periods [] = {0};

13 MPI_Cart_create(MPI_COMM_WORLD , 1, &worldsize ,

14 periods , 1, &comm);

15 int l_size = SIZE / worldsize;

16 if(myrank == worldsize -1)

17 l_size += SIZE % worldsize;

18 int l_gsize = l_size + 2;//Size + borders.

19 for(n=0; n<I; n++)

20 {

21 int p_src , p_dest;

22 //Send/receive - neighbor above

23 MPI_Cart_shift(comm ,0,1,&p_src ,& p_dest);

24 MPI_Sendrecv(A+gsize ,gsize ,MPI_DOUBLE ,

25 p_dest ,1,A,gsize , MPI_DOUBLE ,

26 p_src ,1,comm ,MPI_STATUS_IGNORE);

27 //Send/receive - neighbor below

28 MPI_Cart_shift(comm ,0,-1,&p_src ,& p_dest);

29 MPI_Sendrecv(A+(l_gsize -2)*gsize ,

30 gsize ,MPI_DOUBLE ,

31 p_dest ,1,A+(l_gsize -1)*gsize ,

32 gsize ,MPI_DOUBLE ,

33 p_src ,1,comm ,MPI_STATUS_IGNORE);

34 memcpy(T, A, l_gsize*gsize*sizeof(double));

35 double *a = A;

36 double *t = T;

37 for(i=0; i<SIZE; ++i)

38 {

39 int a = i * gsize;

40 double *up = &A[a+1];

41 double *left = &A[a+gsize];

42 double *right = &A[a+gsize +2];

43 double *down = &A[a+1+ gsize *2];

44 double *center = &T[a+gsize +1];

45 for(j=0; j<SIZE; ++j)

46 *center ++ = (* center + *up++ + *left++ + *right ++ + *down ++) \

47 / 5.0;

48 }

49 MPI_Barrier(MPI_COMM_WORLD);

50 }

Figure 5.5: Parallel version of the Jacobi Iterations in C using MPI.

49

the sequential version. Compared to Python/NumPy the C code has more than six
times the number of line codes. It uses explicit message parsing where the program-
mer must implement the domain decomposition and parallelization strategy. Memory
access through pointer arithmetic and synchronization between threads and processes is
handled completely by the programmer.

5.2 Summary

Overall, we conclude that the programming productivity with the vector-oriented pro-
gramming model is superior for some applications. Particularly, when comparing explicit
versus implicit parallelism. The vector-oriented programming model provides full knowl-
edge of data distribution and parallelization to all participating processors, which makes
it possible for the runtime system to execute vector operations seamlessly in parallel
without further assistance from the user. Additionally, the processors need not com-
municate when performing data dependency analysis and scheduling optimizations at
runtime.

However, the model also reduces the programmability because the user is restricted
to vector operations, which makes it inconvenient to perform task parallelism and con-
ditional computations. It is therefore essential that the application is vectorizable in
the sense that it is possible to express the application using high-level vector operations
primarily. This is the main reason why we insist on focusing on scientific application
rather than applications in general. Typically, a scientific application is easy to vector-
ize, which is evident when looking at the popularity of programming languages such as
MATLAB and Python/NumPy. Furthermore, the scientific community has a long tra-
dition of utilizing high-level array operations through libraries such as BLAS, LAPACK
and FFTW.

50

1 // Parameters

2 int I; // Number of iterations

3 double *A; //Input & Output Matrix (local)

4 double *T; // Temporary array (local)

5 int SIZE; // Symmetric Matrix Size (local)

6

7 // Computation

8 int gsize = SIZE +2; //Size + borders.

9 MPI_Comm_rank(MPI_COMM_WORLD , &myrank);

10 MPI_Comm_size(MPI_COMM_WORLD , &worldsize);

11 MPI_Comm comm;

12 int periods [] = {0};

13 MPI_Cart_create(MPI_COMM_WORLD , 1, &worldsize ,

14 periods , 1, &comm);

15 int l_size = SIZE / worldsize;

16 if(myrank == worldsize -1)

17 l_size += SIZE % worldsize;

18 int l_gsize = l_size + 2;//Size + borders.

19 for(n=0; n<I; n++)

20 {

21 int p_src , p_dest;

22 MPI_Request reqs [4];

23

24 // Initiate send/receive - neighbor above

25 MPI_Cart_shift(comm , 0, 1, &p_src , &p_dest);

26 MPI_Isend(A+gsize , gsize , MPI_DOUBLE , p_dest ,

27 1, comm , &reqs [0]);

28 MPI_Irecv(A, gsize , MPI_DOUBLE , p_src ,

29 1, comm , &reqs [1]);

30

31 // Initiate send/receive - neighbor below

32 MPI_Cart_shift(comm , 0, -1, &p_src , &p_dest);

33 MPI_Isend(A+(l_gsize -2)*gsize , gsize ,

34 MPI_DOUBLE ,

35 p_dest , 1, comm , &reqs [2]);

36 MPI_Irecv(A+(l_gsize -1)*gsize , gsize ,

37 MPI_DOUBLE ,

38 p_src , 1, comm , &reqs [3]);

39

40 // Handle the non -border elements.

41 memcpy(T+gsize , A+gsize , l_size*gsize*sizeof(double));

42 #pragma omp parallel for shared(A,T)

43 for(i=1; i<l_size -1; ++i)

44 compute_row(i,A,T,SIZE ,gsize);

45

46 // Handle the upper and lower ghost line

47 MPI_Waitall (4, reqs , MPI_STATUSES_IGNORE);

48 compute_row (0,A,T,SIZE ,gsize);

49 compute_row(l_size -1,A,T,SIZE ,gsize);

50

51 memcpy(A+gsize , T+gsize , l_size*gsize*sizeof(double));

52 }

53 MPI_Barrier(MPI_COMM_WORLD);

Figure 5.6: Parallel version in C using MPI and OpenMP. In this code we use the
function compute row() to compute one row. The implementation of compute row() is
simuliar to line 15 to 26 in Figure 5.4.

51

Chapter 6

Numerical Python

Python is a popular programming language in the Computational Science and Engi-
neering community. It prioritizes high-productivity over high-performance, which is
one of the reasons for its popularity. However, it also means that the performance of
applications purely written in Python is inadequate for must scientific purposes. In
order to address this performance issue the scientific community uses Python as the
gluing language of external libraries written in high-performance languages such as C
and FORTRAN. An example is SciPy[61], which is a very popular Python library that
provides a massive collection of optimized operations implemented in C, C++ and FOR-
TRAN. The operations are available in Python through a multidimensional array object
that nicely integrates with the Python language. The array object originates from the
Python library Numerical Python (NumPy)[82], which is a sub-project in SciPy and the
basis for most scientific applications in Python.

6.1 Universal Functions

Beside providing a broad range of high-level array operations, such as LU factorization,
FFT, and Matrix Multiplication, NumPy provides generic element-wise vector opera-
tions. By using these vector operations, NumPy takes advantage of the performance
of C while maintaining the high abstraction level of Python. In NumPy these element-
wise vector operations are called universal functions. A universal function (ufunc) is an
element-wise vector operation that computes all elements in an array-view independently.
Applying an ufunc operation on a whole array is semantically equivalent to performing
the ufunc operation on each array element individually. Using ufunc can result in a
significant performance boost compared to native Python because the computation-loop
is executed in C.

6.1.1 Function broadcasting

To make ufunc more flexible it is possible to use arrays with different number of di-
mensions. To utilize this feature the size of the dimensions must either be identical or

52

10

10 20

01 02

03 04

05 06

10 20

+ 20 =

11 22

13 04

15 26

Broadcasted element=

Figure 6.1: Universal function broadcasting. The ufunc addition is applied on a 3x2
array and a 1x2 array. The first dimension of the 1x2 array is broadcasted to the size of
the first dimension of the 3x2 array. The result is a 3x2 array in which the two arrays
are added together in an element-by-element fashion.

A[1:-1,1:-1] += A[-2:,1:-1] + A[2:,1:-1] + A[1:-1,:-2] + A[1:-1,2:]

Figure 6.2: Python expression of a simple 5-point stencil computation example.

have the length one. When the ufunc is applied, all dimensions with a size of one will
be broadcasted in the NumPy terminology. That is, the array will be duplicated along
the broadcasted dimension (Figure 6.1). It is possible to implement many array opera-
tions efficiently in Python by combining NumPy’s ufunc with more traditional numerical
functions like matrix multiplication, factorization etc.

6.2 Array Syntax and Views

NumPy uses an array syntax that is based on the Python list syntax. The arrays are
indexed positionally, 0 through length – 1, where negative indexes is used for indexing
from the end of the array instead of the beginning. Like the list syntax in Python, it is
possible to index multiple elements. All indexing that represents more than one element
returns a view of the elements rather than a new copy of the elements. It is this view
semantic that makes it possible to implement a stencil operation as demonstrated in
Figure 6.2. In order to force a real array copy rather than a new array reference NumPy
provides the copy method.

6.3 Interfaces

The primary interface in NumPy is a Python interface and it is possible to use NumPy
exclusively from Python. NumPy also provides a C interface in which it is possible to
access the same functionality as in the Python interface. Additionally, the C interface
also allows programmers to access low level data structures like pointers to array data

53

and thereby provides the possibility to implement arbitrary array operations efficiently
in C. The two interfaces may be used interchangeably through the Python program.

54

Chapter 7

Distributed Numerical Python

After my work with GPAW I explored the possibility of seamlessly utilize distributed
memory architectures directly in Python. GPAW make use of the Python module
NumPy. However, since NumPy do not support distributed memory parallel program-
ming, GPAW use of NumPy is limited to local operations inside MPI-processes. It is in
this context the idea of a parallel version of NumPy emerged.

In this section, I will present the development of a new version of NumPy that target
scalable architectures. We call this project Distributed Numerical Python (DistNumPy)
and it is a key contribution of this thesis. I divide the development of DistNumPy into
four stages and describe each development stage separately.

Stage One The basic implementation of DistNumPy that has very limited array-view
support.

Stage Two Introduction of full array-view support.

Stage Three Introduction of communication latency hiding.

Stage Four Introduction of PGAS-style programming.

However, before describing all four development stages I will give an overall introduction
of DistNumPy.

7.1 Introduction

Distributed Numerical Python (DistNumPy) is a library for doing numerical compu-
tation in Python that targets scalable distributed memory architectures. Replacing
NumPy with DistNumPy enables the user to write sequential Python programs that
seamlessly utilize distributed memory architectures. This feature is obtained by intro-
ducing a new backend for NumPy arrays that distribute data amongst the nodes in a
distributed memory multi-processor. All operations on this new array will seek to utilize
all available processors. The array itself is distributed between multiple processors in
order to support larger arrays than a single node can hold in memory.

55

The only difference in the API of NumPy and DistNumPy is the array creation
routines. DistNumPy allow both distributed and non-distributed arrays to co-exist thus
the user must specify, as an optional parameter, if the array should be distributed. The
following illustrates the only difference between the creation of a standard array and a
distributed array:

A = numpy.array ([1,2,3])#Non -Distributed

B = numpy.array ([1,2,3], dist=True)#Distributed

7.1.1 Target architectures

NumPy supports a long range of architectures from the widespread x86 to the specialized
Blue Gene architecture. However, NumPy is incapable of utilizing distributed memory
architectures like Blue Gene supercomputers or clusters of x86 machines. The target
of DistNumPy is to close this gap and fully support and utilize distributed memory
architectures.

7.1.2 Motivated by Related Work

Libraries and programming languages that support parallelism in a high productive
manner is a well-known concept. The existing tools either seek to provide optimal per-
formance in parallel applications or, like DistNumPy, seek to ease the task of writing
parallel applications. In a perfect framework, all parallelism introduced by the framework
is completely transparent to the user while the performance and scalability achieved is
optimal. However, most frameworks require the user to specify some kind of parallelism
– either explicitly by using parallel directives or implicitly by using parallel data struc-
tures. Libraries and programming languages that support parallelization on distributed
memory architectures is a well-known concept. The existing tools either seek to provide
optimal performance in parallel applications or, like DistNumPy, seek to ease the task
of writing parallel applications.

The library ScaLAPACK[?, 15], requires knowledge in distributed shared memory
programming and it is the responsibility of the programmer to ensure that the global
data structures, e.g. matrices and vectors, comply with the distribution layout specified
by ScaLAPACK.

Another library, Global Arrays[79], introduces a global array, which makes the data
distribution transparent to the user. It also supports efficient parallel operations and
provides a higher level of abstraction than ScaLAPACK. However, the programmer must
still explicitly coordinate the multiple processes that are involved in the computation.
The programmer must specify which region of a global array is relevant for a given
process.

Both ScaLAPACK and Global Arrays may be used from within Python and can even
be used in combination with NumPy, but it is only possible to use NumPy locally and not
with distributed operations. A more closely integrated Python project IPython supports
parallelized NumPy operations. IPython introduces a distributed NumPy array much
like the distributed array that is introduced in this work. Still, the user-application

56

must use the MPI framework and the user has to differentiate between the running
MPI-processes.

A higher level of abstraction is found in projects where the execution, seen from the
perspective of the user, is represented as a sequential algorithm. In effect, such project
provides a framework where the two most notorious types of parallel programming bugs,
data races and deadlocks, simply do not exist. The High Performance Fortran program-
ming language provides such an abstraction level. High Performance Fortran introduces
parallelism primarily with vector operations, which, in order to archive good perfor-
mance, must be aligned by the user to reduce communication. A lot of work has been
put into eliminating this alignment issue either at compile-time or run-time [67] [20] [11]
but the popularity of High Performance Fortran is still very limited.

The Simple Parallel R INTerface (SPRINT)[55] is a parallel framework for the pro-
gramming language R. The abstraction level in SPRINT is similar to DistNumPy in the
sense that the distribution and parallelization is completely transparent to the user.

7.2 The Basic Implementation

DistNumPy is a new version of NumPy that parallelizes array operations in a manner
completely transparent to the user - from the perspective of the user, the difference
between NumPy and DistNumPy is minimal. DistNumPy can use multiple processors
through the communication library Message Passing Interface (MPI)[50]. However, we
have chosen not to follow the standard MPI approach where the same user-program is
executed on all MPI-processes. This is because the standard MPI approach requires the
user to differentiate between the MPI-processes, e.g. sequential areas in the user-program
must be guarded with a branch based on the MPI-rank of the process. In DistNumPy
MPI communication must be fully transparent and the user needs no knowledge of MPI
or any parallel programming model. However, the user is required to use the array
operations in DistNumPy to obtain any kind of speedup. We think this is a reasonable
requirement since it is also required by NumPy.

7.2.1 Interfaces

There are two programming interfaces in NumPy - one in Python and one in C. We aim
to support the complete Python interface and a great subset of the C interface. However,
the part of the C interface that involves direct access to low level data structures will
not be supported. It is not feasible to return a C-pointer that represents the elements
in a distributed array.

7.2.2 Data layout

Two-Dimensional Block Cyclic Distribution is a very popular distribution scheme and it
is used in numerical libraries like ScaLAPACK and LINPACK[39]. It supports matrices
and vectors and has a good load balance in numerical problems that have a diagonal
computation workflow e.g. Gaussian elimination. The distribution scheme works by

57

P
0

P
0

P
0

P
0

P
0

P
0

P0
P0

P0

P
1

P
1

P
1

P0

P1

P0

P2
P2

P2

P2

P3

P2

P4
P4

P4

P4

P5

P4

Figure 7.1: The N-Dimensional Block Cyclic Distribution of a matrix on a 3 x 2 x 1 grid
of processors.

arranging all MPI-processes in a two dimensional grid and then distributing data-blocks
in a round-robin fashion either along one or both grid dimensions (Figure 2.10).

NumPy is not limited to matrices and vectors as it supports arrays with an arbitrary
number of dimensions1. DistNumPy therefore use a more generalized N-Dimensional
Block Cyclic Distribution inspired by High Performance Fortran[73], which supports an
arbitrary number of dimensions (Figure 7.1). Instead of using a fixed process grid, we
have a process grid for every number of dimensions. This works well when operating on
arrays with the same number of dimensions but causes problems otherwise. For instance
in a matrix-vector multiplication the two arrays are distributed on different process grid
and may therefore require more communication. ScaLAPACK solves the problem by
distributing vectors on two-dimensional process grids instead of one-dimensional process
grids, but this will result in vector operations that cannot utilize all available processors.
An alternative solution is to redistribute the data between a series of identically leveled
BLAS operations using a fast runtime redistribution algorithm like [87] demonstrates.

7.2.3 Operation dispatching

The MPI-process hierarchy in DistNumPy has one MPI-process (master) placed above
the others (slaves). All MPI-processes run the Python interpreter but only the master
executes the user-program, the slaves will block at the import numpy statement.

The following describes the flow of the dispatching:

1. The master is the dispatcher and will, when the user applies a numpy command on
a distributed array, compose a message with meta-data describing the command.

2. The message is then broadcasted from the master to the slaves with a blocking
MPI-broadcast. It is important to note that the message only contains meta-data
and not any actual array data.

1The number of dimensions NumPy supports is defined at compile time. The default value is 16
dimensions.

58

3. After the broadcast, all MPI-processes will apply the command on the sub-array
they own and exchange array elements as required (Point-to-Point communication).

4. When the command is completed, the slaves will wait for the next command from
the master and the master will return to the user’s python program. The mas-
ter will return even though some slaves may still be working on the command,
synchronization is therefore required before the next command broadcast.

7.2.4 Views

In NumPy an array does not necessarily represent a complete contiguous block of mem-
ory. An array is allowed to represent a subpart of another array i.e. it is possible to
have a hierarchy of arrays where only one array represent a complete contiguous block
of memory and the other arrays represent a subpart of that memory.

Inspired by NumPy, DistNumPy implements an array hierarchy where distributed
arrays are represented by the following two data structures.

• Array-base is the base of an array and has direct access to the content of the
array in main memory. An array-base is created with all related meta-data when
the user allocates a new distributed array, but the user will never access the array
directly through the array-base. The array-base always describes the whole array
and its meta-data such as array size and data type are constant.

• Array-view is a view of an array-base. The view can represent the whole array-
base or only a sub-part of the array-base. An array-view can even represent a non-
contiguous sub-part of the array-base. An array-view contains its own meta-data
that describe which part of the array-base is visible and it can add non-existing
1-length dimensions to the array-base. The array-view is manipulated directly by
the user and from the users perspective the array-view is the array.

Array-views are not allowed to refer to each other, which means that the hierarchy is
flat with only two levels: array-base below array-view. However, multiple array-views
are allowed to refer to the same array-base. This hierarchy is illustrated in Figure 7.2.

7.2.5 Non-Aligned Array Operations

Array views gives rise to a number of important performance challenges when combined
with data parallelism where the shared data is distributed across multiple processes. The
problem is that operations on views may translate into non-aligned distributed array
operations, which are difficult to handle efficiently. We define an aligned distributed
array operation as an operation on arrays that are distributed in a conformable manner,
i.e. the arrays use identical data distribution. A non-aligned distributed array operation
is then an operation without this property. For now, we will simply ignore this problem
– in the basic implementation we only supports aligned distributed array operations. In
the next implementation stage of DistNumPy, we introduce full array-view support (see
section 7.3 for further discussion of the performance implications).

59

01 02 03 04 05 06 07 08 09 10 11 12

03 04 05 06 07 08

04 05 06 04 06 08

10 11 12

1210 11Array-views

Array-bases

Memory

Non-aligned Aligned

Figure 7.2: Reference hierarchy between the two array data structures and the main
memory. Only the three array-views at top of the hierarchy are visible from the per-
spective of the user.

7.2.6 Parallel BLAS

NumPy supports BLAS operations on vectors and matrices. DistNumPy therefore im-
plements a parallel version of BLAS inspired by PBLAS from the ScaLAPACK library.
Since DistNumPy uses the same data-layout as ScaLAPACK, it would be straightforward
to use PBLAS for all parallel BLAS operations. However, to simplify the installation
and maintenance of DistNumPy we have chosen to implement our own parallel version
of BLAS. We use SUMMA[47] for matrix multiplication, which enable us to use the al-
ready available BLAS library locally on the MPI-processes. SUMMA is only applicable
on complete array-views and we therefore use a straightforward implementation that
computes one element at a time if partial array-views are involved in the computation.

7.2.7 Universal function

In DistNumPy, the implementation of ufunc uses three different scenarios.

1. In the simplest scenario we have an aligned match between all elements in the
array-views and applying an ufunc does not require any communication between
MPI-processes. The scenario is applicable when the ufunc is applied on complete
array-views with identical shapes.

2. In the second scenario the array-views must represent a continuous part of the
underlying array-base. The computation is parallelized by the data distribution of
the output array and data blocks from the input arrays are fetched when needed.
We use non-blocking one-side communication (MPI Get) when fetching data blocks,
which makes it possible to compute one block while fetching the next block (Figure
4.4).

60

1 from numpy import *

2 (x, y) = (empty([S], dist=True), \

3 empty([S], dist=True))

4 (x, y) = (random(x), random(y))

5 (x, y) = (square(x), square(y))

6 z = (x + y) < 1

7 print add.reduce(z) * 4.0 / S #The result

Figure 7.3: Computing Pi using Monte Carlo simulation. S is the number of
samples used. We have defined a new ufunc (ufunc random) to make sure that
we use an identical random number generator in all benchmarks. The ufunc uses
”rand()/(double)RAND MAX” from the ANSI C standard library (stdlib.h) to generate
numbers.

3. The final scenario does not use any simplifications and works with any kind of
array-view. It also uses non-blocking one-side communication but only one element
at a time.

7.2.8 Examples

To evaluate DistNumPy we have implemented three Python programs that all make use
of NumPy’s vector-operations (ufunc). They are all optimized for a sequential execution
on a single CPU and the only program change we make, when going from the original
NumPy to our DistNumPy, is the array creation argument dist. A walkthrough of a
Monte Carlo simulation is presented as an example of how DistNumPy handles Python
executions.

Monte Carlo simulation

We have implemented a trivial Monte Carlo Pi simulation using NumPy’s ufunc. The
implementation is a translation of the Monte Carlo simulation included in the bench-
mark suite SciMark 2.0[86], which is written in Java. It is very simple and uses two
vectors with length equal the number of samples used in the calculation. Because of
the memory requirements, this drastically reduces the maximum number of samples.
Combining multiple simulations will allow more samples but we will only use one simu-
lation. The implementation is included in its full length (Figure 7.3) and the following
is a walkthrough of a simulation (the bullet-numbers represents line numbers):

1: All MPI-processes interpret the import statement and initiate DistNumPy. Be-
sides calling MPI Init() the initialization is identical to the original NumPy but
instead of returning from the import statement, the slaves, MPI-processes with
rank greater than zero, listen for a command message from the master, the MPI-
process with rank zero.

61

1 h = zeros(shape(B), float , dist=True)

2 dmax = 1.0

3 AD = A.diagonal ()

4 while(dmax > tol):

5 hnew = h + (B - (A * h).sum()) / AD

6 tmp = absolute ((h - hnew) / h)

7 dmax = maximum.reduce(tmp)

8 h = hnew

9 print h #The result

Figure 7.4: Iteratively Jacobi solver for matrix A with solution vector B both are dis-
tributed arrays. The import statement and the creation of A and B is not included
here. tol is the maximum tolerated value of the diagonal-element with the highest
value (dmax).

2-3: The master sends two CREATE ARRAY messages to all slaves. The two messages
contain an array shape and unique identifier (UID), which in this case identifies x
and y, respectively. All MPI-processes allocate memory for the arrays and stores
the array information.

4: The master sends two UFUNC messages to all slaves. Each message contains a
UID and a function name ufunc random. All MPI-processes apply the function
on the array with the specified UID. A pointer to the function is found by call-
ing PyObject Get AttrString with the function name. It is thereby possible to
support all ufuncs from NumPy.

5: Again the master sends two UFUNC messages to all slaves but this time with function
name square.

6: The master sends a UFUNC messages with function name add followed by a UFUNC

messages with function name less than. The scalar 1 is also in the message.

7: The master sends a UFUNC REDUCE messages with function name add. The result
is a scalar, which is not distributed, and the master therefore solely computes the
remainder of the computation and print the result. When the master is done a
SHUTDOWN message is sent to the slaves and the slaves call exit(0).

Jacobi method

The Jacobi method is an algorithm for determining the solutions of a system of linear
equations. It is an iterative method that uses a spitting scheme to approximate the
result.

Our implementation uses ufunc operations in a while-loop until it converges. Most
of the implementation is included here(Figure 7.4).

62

Table 7.1: Hardware specifications

CPU Intel Core 2 Quad Q9400 Intel Nehalem E5520
CPU Frequency 2.26 GHz 2.66 GHz
CPU per node 1 2
Cores per CPU 4 4
Memory per node 8 GB @ 6.5 GB/s 24 GB @ 25.6 GB/s
Number of nodes 8 8
Network Gigabit Ethernet Gigabit Ethernet

Newtonian N-body simulation

A Newtonian N-body simulation is one that studies how bodies, represented by a mass,
a location, and a velocity, move in space according to the laws of Newtonian physics.
We use a straightforward algorithm computing all body-body interactions. The NumPy
implementation is a direct translation of a MATLAB program[26].

7.2.9 Experiments

In this section, we will conduct performance benchmarks on DistNumPy and NumPy2.
We will benchmark the three Python programs presented in Section 7.2.8. All bench-
marks are executed on two different Linux clusters. (Table 7.1).

Our experiments consist of a speedup benchmark, which we define as an execution
time comparison between a sequential execution with NumPy and a parallelized execu-
tion with DistNumPy while the input is identical.

Monte Carlo simulation

A Distributed Monte Carlo simulation is embarrassingly parallel and requires a minimum
of communication. This is also the case when using DistNumPy because ufuncs are only
applied on identically shaped arrays and it is therefore the simplest ufunc scenario.
Additionally, the implementation is CPU-intensive because a complex ufunc is used as
random number generator.

The result of the speedup benchmark is illustrated in Figure 7.5. We see a close to
linear speedup for the Nehalem cluster - a CPU utilization of 88% is achieved on 64
CPU-cores. The penalty of using multiple CPU-cores per node is noticeable on the Core
2 architecture - a CPU utilization of 68% is achieved on 32 CPU-cores.

Jacobi method

The dominating part of the Jacobi method, performance-wise, is the element-by-element
multiplication of A and h (Figure 7.4 line 5). It consists of O(n2) operations where as all
the other operations only consist O(n) operations. Since scalar-multiplication is a very
simple operation, the dominating ufunc in the implementation is memory-intensive.

2NumPy version 1.3.0

63

 1

 4

 8

 16

 32

 64

 1 4 8 16 32 64

S
p

e
e

d
u

p

No. of CPU−cores

Core 2 Quad
Nehalem

(a)

 1

 2

 4

 8

 1 2 4 8

S
p

e
e

d
u

p

No. of CPU−cores

Core 2 Quad
Nehalem

Core 2 Quad SMP
Nehalem SMP

(b)

Figure 7.5: Speedup of the Monte Carlo simulation. In graph (a) the two architectures
uses a minimum number of CPU-cores per node. Added in graph (b) is the result of
using multiple CPU-cores on a single node (SMP).

The result of the speedup benchmark is illustrated in Figure 7.6. We see a good
speedup with 8 CPU-cores and to some degree also with 16 Nehalem CPU-cores. How-
ever, the CPU utilization when using more than 16 CPU-cores is very poor. The problem
is memory bandwidth - since we use multiple CPU-cores per node when using more than
8 CPU-cores, the aggregated memory bandwidth of the Core 2 cluster does only increase
up to 8 CPU-cores. The Nehalem cluster is a bit better because it has two memory buses
per node, but using more than 16 CPU-cores will not increase the aggregated memory
bandwidth.

Newtonian N-body simulation

The result of the speedup benchmark is illustrated in Figure 7.7. Compared to the
Jacobi method we see a similar speedup and CPU utilization. This is expected because
the dominating operations are also simple ufuncs. Even though there are some matrix-
multiplications, which have a great scalability, it is not enough to significantly boost the
overall scalability.

Alternative programming language

DistNumPy introduces a performance overhead compared to a lower-level programming
language such as C/C++ or Fortran. To investigate this overhead we have implemented
the Jacobi benchmark in C. The implementation uses the same sequential algorithm as
the NumPy and DistNumPy implementations.

64

 1

 4

 8

 16

 32

 64

 1 4 8 16 32 64

S
p

e
e

d
u

p

No. of CPU−cores

Core 2 Quad
Nehalem

(a)

 1

 2

 4

 8

 1 2 4 8

S
p

e
e

d
u

p

No. of CPU−cores

Core 2 Quad
Nehalem

Core 2 Quad SMP
Nehalem SMP

(b)

Figure 7.6: Speedup of the Jacobi solver. In graph (a) the two architectures uses a
minimum number of CPU-cores per node. Added in graph (b) is the result of using
multiple CPU-cores on a single node (SMP).

 1

 4

 8

 16

 32

 64

 1 4 8 16 32 64

S
p

e
e

d
u

p

No. of CPU−cores

Core 2 Quad
Nehalem

(a)

 1

 2

 4

 8

 1 2 4 8

S
p

e
e

d
u

p

No. of CPU−cores

Core 2 Quad
Nehalem

Core 2 Quad SMP
Nehalem SMP

(b)

Figure 7.7: Speedup of Newtonian N-body simulation. In graph (a) the two architectures
uses a minimum number of CPU-cores per node. Added in graph (b) is the result of
using multiple CPU-cores on a single node (SMP).

65

Executions on the both architectures show that DistNumPy and NumPy is roughly
50% slower than the C implementation when executing the Jacobi method on one CPU-
core. This is in rough runtime numbers: 21 seconds for C, 31 seconds for NumPy and
32 seconds for DistNumPy.

7.2.10 Conclusion

The benchmarks clearly show that DistNumPy has both good performance and scalabil-
ity when execution is not bound by the memory bandwidth, which is evident from look-
ing at the CPU utilization when only one CPU-core per node is used. As expected the
scalability of the Monte Carlo simulation is better than the Jacobi and the N-body com-
putation because of the reduced communication requirements and more CPU-intensive
ufunc operation.

The scalability of the Jacobi and the N-body computation is drastically reduced
when using multiple CPU-cores per node. The problem is the complexity of the ufunc
operations. As opposed to the Monte Carlo simulation, which makes use of a complex
ufunc, the Jacobi and the N-body computation only use simple ufuncs e.g. add and
multiplication.

As expected the performance of the C implementation is better than the DistNumPy
implementation. However, by utilizing two CPU-cores it is possible to outperform the
C implementation in the case of the Jacobi method. This is not a possibility in the case
of the Monte Carlo simulation where the algorithm does not favor vectorization.

The basic implementation of DistNumPy demonstrates that it is possible to im-
plement a parallelized version of NumPy that seamlessly utilize distributed memory
architectures. A CPU utilization of 88% is achieved on a 64 CPU-core Nehalem cluster
running a CPU-intensive Monte Carlo simulation. A more memory-intensive N-body
simulation achieves a CPU utilization of 91% on 16 CPU-cores but only 63% on 64
CPU-cores. Similar a Jacobi solver achieves a CPU utilization of 85% on 16 CPU-cores
and 50% on 64 CPU-cores.

7.3 Full Array View Support

The second development stage of DistNumPy introduces a model for managing abstract
data structures that map to arbitrary distributed memory architectures. We use this
model in order to implement full array view support in DistNumPy though the model
is not restricted to DistNumPy.

7.3.1 Introduction

It is difficult to achieve scalable performance in data-parallel applications where the
programmer manipulates abstract data structures rather than directly manipulating
memory. On distributed memory architectures, such abstract data-parallel operations
may require communication between nodes. Therefore, the underlying system has to
handle communication efficiently without any help from the user. Our data model splits

66

data blocks into two sets – local data and remote data – and schedules the sub-block by
availability at runtime.

High Performance Fortran (HPF)[73] and ZPL[29] are two well-known examples of
data-parallel programming languages that supports abstract data structures. HPF is a
Fortran-based data-parallel programming language that requires static compilation for
distributed-memory systems[63]. To obtain good parallel performance the user must
align arrays together to reduce communication[11]. Our data model manages computa-
tion and communication of abstract data structures at runtime, which enables on-the-fly
data dependency analysis. Using our model the user will not have to align arrays in
order to obtain good parallel performance.

Data-Parallel Applications

Data-parallel applications are a class of applications that make use of data parallelism –
either explicitly handled by the programmer or implicitly handled by the programming
language or library. In this work, we focus on data-parallel applications written in a
high-productivity language where the programming language, scientific library, and/or
runtime system handles the data parallelism seamlessly. We target applications with the
following properties:

• The application uses high-level array operations instead of explicitly programmed
for loops.

• The application uses data parallelism to execute vector/array operation in parallel.

• In order to utilize distributed memory architectures, the application distributes
data evenly across process using a static distribution scheme.

• The application uses data structures that maps to arbitrary distributed memory,
e.g. by using data structures, such as array views, that may refer to parts of the
same underlying data.

It is no coincidence that DistNumPy has all four properties. The main motivation for
developing the model was clearly full view support in DistNumPy but the model is
general enough to support other parallel frameworks.

7.3.2 Managing Non-Aligned Array Operations

Managing overlapping data structures, aka array-view, for data-parallel applications
on distributed memory architectures gives rise to a number of important performance
challenges. For example, a 3-point stencil application uses three array-views, A, B
and C, to express a stencil (Figure 7.8). When executing on two processes the two
underlying array-bases, M and N , are distributed according to Figure 7.9. It is clear
that A and C does not map directly to the underlying array-bases M and N . Thus,
the result is a non-aligned array operation. In order to execute such an application the
two processes must exchange data blocks, which mean commutation when executing on

67

1 M = numpy.array ([1,2,3,4,5,6],dist=True)

2 N = numpy.empty ((6),dist=True)

3 A = M[2:]

4 B = M[0:4]

5 C = N[1:5]

6 C = A + B

Figure 7.8: This is an example of a small 3-point stencil application.

Figure 7.9: The data layout of the two arrays M and N and the three array-views A, B
and C in the 3-point stencil application (Figure 7.8). The arrays are distributed between
two nodes using a block-size of three.

a distributed memory architecture. Therefore, an efficient data structure model that
minimizes communication is vital for the parallel performance.

The main contribution in this work is a model for managing non-aligned array op-
erations efficiently. We introduce a hierarchy of data structures that makes it possible
to divided non-aligned array operations into aligned blocks at runtime while minimizing
the total amount of communication.

The model consists of three kinds of data blocks: base-blocks, view-blocks and sub-
view-blocks, which make up a three level abstraction hierarchy (Figure 7.10).

• Base-block is a block of an array-base and maps directly into one block of memory
located on one node. The memory block is contiguous and only one process has
exclusive access to the block. The base-blocks are distributed across multiple
processes in a round-robin fashion according to the N-Dimensional Block Cyclic
Distribution.

• View-block is a block of an array-view and from the perspective of the user a view-
block is a contiguous block of array elements. A view-block can span over multiple
base-blocks and consequently also over multiple processes. For a process to access a
whole view-block it will have to fetch data from possible remote processes and put
the pieces together before accessing the block. To avoid this process, which may
cause some internal memory copying, we divide view-blocks into sub-view-block.

• Sub-view-block is a block of data that is a part of a view-block but is located
on only one process. The memory block is not necessarily contiguous but only
one process has exclusive access to the block. The driving idea is that all array

68

operation is translated into a number of sub-view-block operations.

In this data model, an aligned array is an array that has a direct contiguous mapping
through the block hierarchy. That is, a distributed array in which the base-blocks, view-
blocks and sub-view-blocks are identical. A non-aligned array is then a distributed array
without this property.

It is straightforward to parallelization aligned array operations because each view-
block is identical to the underling base-block and is located on a single process. On
the other hand, when operating on non-aligned arrays each view-block may be located
on multiple processes. Therefore, we have to divide the computation into sub-view-
blocks and even into aligned blocks of sub-view-blocks, which makes the operation more
complex and introduces extra communication and computation overhead.

At the user level, an array operation operates on a number of input array-views and
output array-views. It is the user’s responsibility to make sure that the shape of these
array-views matches each other. Since all arrays uses the same block size, this guaranties
that all involved view-blocks match each other. Thus, it is possible to handle one view-
block from each array at a time. In order to compute an array operation in parallel all
available processes computes a view-block using the following steps:

1. The process fetches all the remote sub-view-blocks that constitute the involving
input view-blocks.

2. The process aligns the sub-view-blocks by dividing them into the smaller blocks
that are aligned to each other. If some output sub-view-blocks is not located on
the process it will use temporary memory for the output.

3. The process applies operation on these aligned blocks.

4. The process sends temporary output sub-view-blocks back to the original locations.

7.3.3 3-Point Stencil Application

To demonstrate how the model works we will walkthrough the execution of the first
block in a small 3-point stencil application. Two processes are executing the stencil
application with the two array-bases, M and N , using a block-size of three elements.
This means that three contiguous array elements are located on each process (Figure
7.9). The application uses two input array-views, A and B, and one output array-view,
C, to compute the 3-point stencil.

In order to compute the first view-block in the three array-views, process 0 divides
the computation into two parts (Figure 7.11). The first part, which consists of the first
two elements, needs no communication since all elements are located locally. The process
can therefore apply the operation directly on the first two elements of each array.

The second part, which consists of the third element, needs communication. The two
processes will transfer the third element in A from process 1 to process 0. Even though
the third element in C is located remotely, no communication is need now because C is

69

Figure 7.10: An illustration of the block hierarchy that represents a 2D distributed
array. The array is divided into three block-types: Base, View and Sub-View-blocks.
The 16 base-blocks make up the base-array, which may be distributed between multiple
processes. The 9 view-blocks make up a view of the base-array and represent the elements
that are visible to the user. Each view-block is furthermore divided into four sub-view-
blocks, each located on a single process.

Figure 7.11: The sub-view-block alignment of the first view-block in the three array-
views A, B and C (Figure 7.8 and 7.9).

the output. Instead, a temporary memory location is used for the output element. The
process will apply the the operation when the communication the element is finished.
When process 0 finishes the computation of part 2 the process transfer the third element
back to process 1.

7.3.4 Latency-Hiding

It is essential to the performance of non-aligned array operations that the execution
hides communication latency behind computation. In order to accomplish this, we make
use of the Latency-Hiding model we will introduce in the next development stage of
DistNumPy (Section 7.4).

70

Processor AMD Opteron 6172
Clock 2.1 GHz
Peak Performance per Core 8.4 Gflops
Cores per NUMA Domain 6
NUMA Domains per Node 4 (packaged in 2 sockets)
Total Cores per Node 24
Private L1 Data Cache 64 KB
Private L2 Data Cache 512 KB
Shared L3 Cache per Socket 12MB
Memory Bandwidth 25.6 GB/s
Memory per Node 32GB DDR3-1066 ECC
Compiler PGI 11.3
Math Library Cray Scientific Library 10.5
Interconnect Gemini 3-D Torus
Peak Bandwidth (per direction) 7 GB/s
MPI Cray MPI 5.1.4

Table 7.2: Cray XE-6 Supercomputer

7.3.5 Experiments

In this section, we will evaluate the performance impact of our model for managing non-
aligned array operations. We conduct all experiments on an Cray XE6 supercomputer
(Table 7.2). The system systems consist of multi-core Non-Uniform Memory Access
(NUMA) shared-memory nodes where each node has multiple NUMA domains. CPU
cores within the same NUMA domain have uniform data access latency to the local
memory while CPU cores of different NUMA domains would have non-uniform data
access latencies. We will focus on the MPI communication overhead associated with
non-aligned array operation and we will therefore only execute one MPI-process per
NUMA domain.

To evaluate the performance, we will compare aligned array operations with non-
aligned array operations. We use a 5-point stencil application that uses Jacobi Iteration
in a fixed number of iterations. Figure 7.12 is this application implemented in Python
using the DistNumPy library. It expresses the 5-point stencil using five array views that
are shifted one element in each direction and thereby non-aligned operations (Figure
6.2). In order to benchmark the efficiency of the data structures hierarchy we introduce
in this work, we compare this application with a synthetic version where all operations an
aligned and do the same amount of computation. Because of the exclusively use of aligned
operation the synthetic version requires no communication. It should be emphasize that
the synthetic version is purely for benchmark purposes and do no meaningful work.

The unfavorable computation-communication ratio in the 5-point stencil application
makes it difficult to achieve good scaling performance. The asymptotic computational
complexity is O(n) thus increasing the problem size does not improve the scaling per-
formance significantly.

For the experiment, we calculate the FLOPS based on the floating operation counts
of the ideal sequential algorithm and the measured execution times. Additionally, we
compare the results with the linearly scaling performance, which we calculate by ex-

71

1 I #Number of iterations

2 A #Input & Output Matrix

3 SIZE // Symmetric Matrix Size

4 #Temporary array

5 T = empty([SIZE]*2,dtype=double ,dist=True)

6 for i in xrange(I):

7 T[:] = A[1:-1, 1:-1] #Center

8 T += A[1:-1, 0:-2] #Left

9 T += A[1:-1, 2:] #Right

10 T += A[0:-2, 1:-1] #Up

11 T += A[2: , 1:-1] #Down

12 A[1:-1, 1:-1] = T

Figure 7.12: 5-point stencil application that uses Jacobi Iteration in a fixed number of
iterations implemented in DistNumPy

trapolating the sequential FLOPS performance of NumPy. We use this comparison as
an upper bound of the achievable scalable performance. We perform weak scaling ex-
periments, in which the problem size is scaled with the number of CPU-cores in the
executions. The experiment goes from 8 to 2048 CPU-cores where the CPU-cores and
problem size doubles between each execution.

Results

Figure 7.13 shows the result of the experiment. Overall the result is very promising,
we see a linear increase of performance in both the aligned and non-aligned version.
The aligned version demonstrates a speedup of 1514 at 2048 CPU-cores compared to a
sequential execution, which translates into a CPU utilization of 74%. The non-aligned
version demonstrates a speedup of 948 at 2048 CPU-cores compared to a sequential
execution, which translates into a CPU utilization of 46%.

To analyze the experiment result further we divide the execution time into three
categories in Figure 7.14. The execution time in each category is the average timing
from each process.

Computation is the time used on actually computing element values. It should be
fairly static through all the executions. However, variations in the data distribution
may result in different execution times.

Blocking is the time used on waiting for communication to finish. Each process will
do as much work as possible before interring a blocking state. However, as the
number of CPU-cores increases the chances that the job scheduler on the Cray
system allocates distant nodes to a job also increases. Furthermore, the torus
network performance may suffer from the communication traffics caused by other
jobs.

Overhead is the time used on handling the data structures associated with array oper-

72

ations. The overhead is proportional with the number of sub-view-blocks involved
in the computation. Since the number of sub-view-blocks increases with the prob-
lem size, the overhead also increases. In addition, the number of sub-view-blocks
increases even more when executing non-aligned operations.

As expected the blocking time is relatively small for all the aligned operation ex-
ecutions. Even at 2048, the blocking time is less the 2% of the total execution time.
On the other hand, the blocking time for the non-aligned version is not as good. At
2048, the blocking time is 18% of the total execution time. This increase in blocking
time is primarily because of an increase in communication, but also because of the MPI
implementation by Cray. Currently, the Cray MPI for the Cray Gemini network has
limited overlapping support for non-blocking MPI communication.

In the aligned operation version, the overhead time increases from 0.4% to 24% of the
overall execution time. This overhead incensement is a direct result of the increased prob-
lem size. In the non-aligned operation version, the overhead increases more drastically
– going from 6% to 34% of the overall execution time. This is because the non-aligned
operations results in four times the number of sub-view-blocks – one sub-view-block per
direction in the stencil computation.

73

 10

 100

 1000

 10000

 8 16 32 64 128 256 512 1024 2048

M
F

L
O

P
S

No. of CPU−cores

Linear Scaling
Aligned

Non−Aligned

Figure 7.13: Weak scaling of aligned and non-aligned array operation.

 0

 10

 20

 30

 40

 50

8 16 32 64 128
256

512
1024

2048
8 16 32 64 128

256
512

1024
2048

R
u

n
n

in
g

 t
im

e
 i
n

 s
e

c
o

n
d

s

No. of CPU-cores

Computation
Blocking

Overhead

Non-AlignedAligned

Figure 7.14: Weak scaling of aligned versus non-aligned array operation.

74

7.3.6 Conclusion

The single execution flow with abstract data operations is both the main strength and
weakness of data-parallel programming models: two most notorious types of parallel
programming bugs, data races and deadlocks, simply do not exist in data-parallel ap-
plications because there is only one execution thread. However, flexible abstract data
operations for data-parallel applications require a very efficient runtime system in order
to have good scalable performance.

In this work, we have successfully shown that by splitting data blocking based on
locality is possible to efficiently managing abstract data structures that map to arbi-
trary distributed memory. We demonstrate scalable performance of a Jacobi Iteration
application up to 2048 CPU-cores.

7.4 Communication Latency Hiding

The third development stage of DistNumPy introduces a runtime model for manag-
ing communication with support for latency-hiding. The model enables non-computer
science researchers to exploit communication latency-hiding techniques seamlessly. For
compiled languages, it is often possible to create efficient schedules for communication,
but this is not the case for interpreted languages. By maintaining data dependen-
cies between scheduled operations, it is possible to aggressively initiate communication
and lazily evaluate tasks to allow maximal time for the communication to finish before
entering a wait state. I implement a heuristic of this model in DistNumPy, an auto-
parallelizing version of numerical Python that allows sequential NumPy programs to
run on distributed memory architectures.

7.4.1 Introduction

To obtain performance in manual parallelization the programmer usually applies a tech-
nique known as latency-hiding, which is a well-known technique to improve the per-
formance and scalability of communication bound problems and is mandatory in many
scientific computations.

In this work, we introduce an abstract model to handle latency-hiding at runtime.
The target is scientific applications that make use of vectorized computation. The model
enables us to implement latency-hiding into high-productivity programming languages
where the runtime system handles communication and parallelization exclusively.

In such high-productivity languages, a key feature is automatic distribution, paral-
lelization and communication that are transparent to the user. Because of this trans-
parency, the runtime system has to handle latency-hiding without any help. Further-
more, the runtime system has no knowledge of the communication pattern used by the
user. A generic model for latency-hiding is therefore desirable.

The transparent latency-hiding enables a researcher that uses small self-maintained
programs, to use a high-productivity programming language, Python in our case, with-
out sacrificing the possibility of utilizing scalable distributed memory platforms. The

75

purpose of the work is not that the performance of an application, which is written
in a high-productivity language, should compete with that of a manually parallelized
compiled application. Rather the purpose is to close the gap between high-productivity
on a single CPU and high performance on a parallel platform and thus have a high-
productivity environment for scalable architectures.

The latency-hiding model proposed in this work is tailored to parallel programming
languages and libraries with the following properties:

• The programming language requires dynamic scheduling at runtime because it is
interpreted.

• The programming language supports and utilizes a distributed memory environ-
ment.

• All parallel processes have a global knowledge of the data distribution and com-
putation.

• The programming language makes use of data parallelism in a Single Instruction,
Multiple Data (SIMD) fashion in the sense that data affinity dictates the distribu-
tion of the computation.

Again, these properties match perfectly to DistNumPy but the latency-hiding model is
general enough to support other parallel frameworks.

Latency-Hiding

We define latency-hiding informally as in [93] – “a technique to increase processor uti-
lization by transferring data via the network while continuing with the computation at
the same time”. When implementing latency-hiding the overall performance depends on
two issues: the ability of the communication layer to handle the communication asyn-
chronously and the amount of computation that can overlap the communication – in
this work we will focus on the latter issue.

In order to maximize the amount of communication hidden behind computation when
performing vectorized computations our abstract latency-hiding model uses a greedy al-
gorithm. The algorithm divides the arrays, and thereby the computation, into a number
of fixed-sized data blocks. Since most numerical applications will work on identical di-
mensioned datasets, the distribution of the datasets will be identical. For many data
blocks, the location will therefore be the same and these will be ready for execution
without any data transfer. While the co-located data blocks are processed, the transfers
of the data blocks from different location can be carried out in the background thus im-
plementing latency-hiding. The performance of this algorithm relies on two properties:

• The number of data blocks must be significantly greater than number of parallel
processors.

• A significant number of data blocks must share location.

76

In order to obtain both properties we need a data structure that support easy retrieval
of dependencies between data blocks. Furthermore, the number of data blocks in a
computation is proportional with the total problem size thus efficiency is of utmost
importance.

Directed Acyclic Graph

It is well-known that a directed acyclic graph (DAG) can be used to express dependencies
in parallel applications[4]. Nodes in the DAG represent operations and edges represent
serialization dependencies between the operations, which in our case is due to conflicting
data block accesses.

Scheduling operations in a DAG is a well-studied problem. The scheduling problem is
NP-complete in its general forms [44] where operations are scheduled such that the overall
computation time is minimized. There exist many heuristic for solving the scheduling
problem [64], but none match our target.

The scheduling problem we solve in this work is not NP-hard because we are tar-
geting programming frameworks that make use of data parallelism in a SIMD fashion.
The parallel model we introduce is statically orchestrating data distribution and paral-
lelization based on predefined data affinity. Assignment of computation tasks is not part
of our scheduling problem. Instead, our scheduling problem consists of maximizing the
amount of communication that overlaps computation when moving data to the process
that is predefined to perform the computation.

In [90] the authors demonstrate that it is possible to dynamic schedule operations
in a distributed environment using local DAGs. That is, each process runs a private
runtime system and communicates with other processes regarding data dependences.
Similarly, our scheduling problem is also dynamic but in our case all processes have a
global knowledge of the data distribution and computation. Hence, no communication
regarding data dependences is required at all.

The time complexity of insetting a node into a DAG, G = (V,E), is O(V) in worse
case. Building the complete DAG is therefore O(V 2). Removing one node from the
DAG is O(V), which means that in the case where we simply wants to schedule all
operations in a legal order the time complexity is O(V 2). This is without minimizing
the overall computation or the amount of communication hidden behind computation.
We therefore conclude that a complete DAG approach is inadequate for runtime control
of latency-hiding in our case.

We address the shortcoming of the DAG approach through a heuristic that manage
dependencies on individual blocks. Instead of having a complete DAG, we maintain a
list of depending operations for each data block. Still, the time complexity of scheduling
all operations is O(V 2) in worse case, but the heuristic exploits the observation that in
the common case a scientific application spreads a vectorized operation evenly between
the data blocks in the involved arrays. Thus the number of dependencies associated
with a single data block is manageable by a simple linked list. In Section 7.4.2, we will
present a practical implementation of the idea.

77

Universal Function

A universal function (ufunc) is an element-wise vector operation that computes all ele-
ments in an array-view independently. Applying an ufunc operation on a whole array-
view is semantically equivalent to performing the ufunc operation on each array-view
block individually. This property makes it possible to perform a distributed ufunc op-
eration in parallel. A distributed ufunc operation consists of four steps:

1. All MPI-processes determine the distribution of the view-block computation, which
is strictly based on the distribution of the output array-view.

2. All MPI-processes exchange array elements in such a manner that each MPI-
process can perform its computation locally.

3. All MPI-processes perform their local computation.

4. All MPI-processes send the altered array elements back to the original locations.

7.4.2 Latency-Hiding

The standard approach to hide communication latency behind computation in message-
passing is a technique known as double buffering. The implementation of double buffer-
ing is straightforward when operating on a set of data block that all have identical sizes.
The communication of one data block is overlapped with the computation of another
already communicated data block and since the sizes of all the data blocks are identical
all iterations are identical.

In DistNumPy, a straightforward double buffering approach works well for ufuncs
that operate on aligned arrays, because it translates into communication and computa-
tion operations on whole view-blocks, which does not benefit from latency-hiding inside
view-blocks. However, for ufuncs that operate on non-aligned arrays this is not the
case because the view-block is distributed between multiple MPI-processes. In order to
achieve good scalable performance the DistNumPy implementation must therefore in-
troduce latency-hiding inside view-blocks. For example the computation of a view-block
in Figure 7.10 can make use of latency-hiding by first initiating the communication of
the three non-local sub-view-blocks then compute the local sub-view-block and finally
compute the three communicated sub-view-blocks.

Operation Dependencies

One of the key contributions in this work is a latency-hiding model that, by maintaining
data dependencies between scheduled operations, is able to aggressively initiate commu-
nication and lazily evaluate tasks, in order to allow maximal time for the communication
to finish before entering a wait state. In this section, we will demonstrate the idea of
the model by giving an example of a small 3-point stencil computation implemented in
DistNumPy (Figure 7.8). For now, we will use a traditional DAG for handling the data
dependencies. Later we will describe the implementation of the heuristic that enables

78

Figure 7.15: Illustration of a DAG that represents the dependencies in a 3-point stencil
application (Figure 7.8). The DAG consists of 12 operations, op1 to op12, divided
between two processes.

us to manage dependencies more efficiently. Additionally, it should be noted that the
parallel processes do not need to exchange dependency information since they all have
full knowledge of the data distribution.

Two processes are executing the stencil application and DistNumPy distributes the
two arrays, M and N , using a block-size of three. This means that three contiguous
array elements are located on each process (Figure 7.9). Using a DAG as defined in sec-
tion 7.4.1, Figure 7.15 illustrates the dependencies between 12 operations that together
constitute the execution. Initially the following six operations are ready:

R := {op1, op2, op3, op4, op9, op10}
Afterwards, without the need of communication, two more operations op5 and op8 may
be executed. Thus, it is possible to introduce latency-hiding by initiating the com-
munication, op6 and op7, before evaluating operation op5 and op8. The amount of
communication latency hidden depends on the computation time of op5 and op8 and the
communication time of op6 and op7.

We will strictly prioritize between operations based on whether they involve com-
munication or computation – giving priority to communication over computation. Fur-
thermore, we will assume that all operations take the same amount of time, which is a
reasonable assumption in DistNumPy since it divides array operations into small blocks
that often have the same computation or communication time.

Lazy Evaluation

Since Python is an interpreted dynamic programming language, it is not possible to
schedule communication and computation operations at compile time. Instead, we in-
troduce lazy evaluation as a technique to determine the communication and computation
operations used in the program at runtime.

79

During the execution of a DistNumPy program all MPI-processes record the re-
quested array operations rather than applying them immediately. The MPI-processes
maintain the operations in a convenient data structure and at a later point all MPI-
processes apply the operations. The idea is that by having a set of operations to carry
out it may be possible to schedule communication and computation operations that have
no mutual dependencies in parallel.

We will only introduce lazy evaluation for Python operations that involve distributed
arrays. If the Python interpreter encounters operations that do not include DistNumPy
arrays, the interpreter will execute them immediately. At some point, the Python in-
terpreter will trigger DistNumPy to execute all previously recorded operation. This
mechanism of executing all recorded operation we will call an operation flush and the
following three conditions may trigger it.

• The Python interpreter issues a read from distributed data. E.g. when the inter-
preter reaches a branch statement.

• The number of delayed operations reaches a user-defined threshold.

• The Python interpreter reaches the end of the program.

The Dependency System

The main challenge when introducing lazy evaluation is to implement a dependency
system that schedules operations in a performance efficient manner while the implemen-
tation keeps the overhead at an acceptable level.

Our first lazy evaluation approach makes use of a DAG-based data structure to
contain all recorded operations. When an operation is recorded, it is split across the
sub-view-blocks that are involved in the operation. For each such operation, a DAG
node is created just as in Figure 7.8 and 7.9.

Beside the DAG our dependency system also consist of a ready queue, which is a queue
of recorded operations that do not have any dependencies. The ready queue makes it
possible to find operations that are ready to be executed in the time complexity of O(1).

Operation Insertion The recording of an operation triggers an insertion of new node
into the DAG. A straightforward approach will simply implement insertion by comparing
the new node with all the nodes already located in the DAG. If a dependency is detected
the implementation adds an edge between the nodes. The time complexity of such
an implementation is O(n) where n is the number of operation in the DAG and the
construction of the complete DAG is O(n2).

Operation Flush To achieve good performance the operation flush implementation
must maximize the amount of communication that it is overlapped by computation.
Therefore, the flush implementation initiate communication at the earliest point in time
and only do computation when all communication has been initiated. Furthermore, to
make sure that there is progress in the MPI layer it checks for finished communication

80

Send

Recv Apply

Apply

Send

RecvApply

Apply

Process 1 Process 2

Iteration 1

Iteration 2

Iteration 3

Figure 7.16: Illustration of the näıve evaluation approach. The result is a deadlock in
the first iteration since both processes are waiting for the receive-node to finish, but that
will never happen because the matching send-node is in second iteration.

in between multiple computation operations. The following is the flow of our operation
flush algorithm:

1. Initiate all communication operations in the ready queue.

2. Check in a non-blocking manner if some communication operations have finished
and remove finished communication operations from the ready queue and the DAG.
Furthermore, register operations that now have no dependencies into the ready
queue.

3. If there is only computation operations in the ready queue execute one of them
and remove it from the ready queue and the DAG.

4. Go back to step one if there are any operations left in the ready queue else we are
finished.

The algorithm maintains the following three invariants:

1. All operations, that are ready, are located in the ready queue.

2. We only start the execution of a computation node when there is no communication
node in the ready queue.

3. We only wait for communication when the ready queue has no computation nodes.

81

Send

Recv Apply

Apply

Send

RecvApply

Apply

Process 1 Process 2

SendRecv

Apply

Send Recv

Apply

Apply Apply

Iteration 1

Iteration 2

Iteration 3

Figure 7.17: Illustration of a deadlock-free evaluation of the dependency graph in Figure
7.16. Each MPI-process evaluates as much as possible before waiting for any communi-
cation.

82

Deadlocks To avoid deadlocks a MPI-process will only enter a blocking state when it
has initiated all communication and finished all ready computation. This guaranties a
deadlock-free execution but it also reduces the flexibility of the execution order. Still,
it is possible to check for finished communication using non-blocking functions such as
MPI Testsome().

The näıve approach to evaluate a DAG is simply to first evaluate all nodes that have
no dependencies and then remove the evaluated nodes from the graph and start over –
similar to the traditional BSP model. However, this approach may result in a deadlock
as illustrated in Figure 7.16. Figure 7.17 illustrate the same DAG executed using our
approach where a MPI-process evaluates as much as possible before entering a blocking
state.

Dependency Heuristic Experiments with lazy evaluation using the DAG-based data
structure shows that the overhead associated with the creation of the DAG is very time
consuming and becomes the dominating performance factor. We therefore introduce a
heuristic to speed up the common case. We base the heuristic on the following two
observations:

• In the common case, a scientific DistNumPy application spreads a computation
evenly between all sub-view-blocks in the involved arrays.

• Operation dependencies are only possible between sub-view-blocks that are part
of the same base-block.

The heuristic is that instead of having a DAG, we introduce a prioritized operation
list for each base-block. The assumption is that, in the common case, the number of
operations associated with a base-block is manageable by a linked list.

We implement the heuristic using the following algorithm. A number of operation-
nodes and access-nodes represent the operation dependencies. The operation-node con-
tains all information needed to execute the operation on a set of sub-view-blocks and
there is a pointer to an access-node for each sub-view-block. The access-node represents
memory access to a sub-view-block, which can be either reading or writing. E.g., the
representation of an addition operation on three sub-view-blocks is two read access-nodes
and one write access-node (Figure 7.18).

Our algorithm places all access-nodes in dependency-lists based on the base-block
that they are accessing. When an operation-node is recorded each associated access-node
is inserted into the dependency list of the sub-view-blocks they access. Additionally,
the number of accumulated dependencies the access-nodes encounter is saved as the
operation-node’s reference counter.

All operation-nodes that are ready for execution have a reference count of zero and are
in the ready queue. Still, they may have references to access-nodes in dependency-lists
– only when we execute an operation-node will we remove the associated access-nodes
from the dependency-lists. Following the removal of an access-node we traverse the
dependency-list and for each depending access-node we reduce the associating reference

83

All access-nodes that access the same
base-block are linked together in a depen-
dency-list. The order of the list is simply
based on the time of node insertion (de-
scending order). Additionally an access-
node contains the information needed to
determine whether it depends on other
access-nodes.

An operation-node has a pointer to all
access-nodes that are involved in the op-
eration. Attached to an operation is a
reference counter that specifies the num-
ber of dependencies associated with the
operation. When the counter reaches
zero the operation is ready for execution.
At some point when the operation has
been executed the operation-node and all
access-nodes are completely remove from
the dependency system.

A base-block simply contains a pointer to
the first access-node in the dependency-
list.

Figure 7.18: The structures used in the dependency system.

counter by one. Because of this, the reference counter of another operation-node may
be reduced to zero, in which case we move the operation-node to the ready queue and
the algorithm starts all over.

Figure 7.18 goes through all the structures that make up the dependency system and
Figure 7.19 illustrates a snapshot of the dependency system when executing the 3-point
stencil application.

Table 7.3: Hardware Specifications

CPU Intel Xeon E5345
CPU Frequency 2.33 GHz
CPU per node 2
Cores per CPU 4
Memory per node 16 GB
Number of nodes 16
Interconnect Gigabit Ethernet
Compiler GCC 4.4.3
MPI Open MPI 1.5.1

84

Figure 7.19: Illustration of the dependency system when executing the 3-point stencil
in Figure 7.8, 7.9 and 7.15. The illustration is a snapshot of the dependency system on
node 0 after the creation of all the arrays. Note that since the block size is three, node
0 only has one block of each array.

7.4.3 Experiments

To evaluate the performance impact of the latency-hiding model introduced in this work,
we will conduct performance benchmark using DistNumPy and NumPy3. The bench-
mark is executed on an Intel Core 2 Quad cluster (Table 7.3) and for each application
we calculate the speedup of DistNumPy compared to NumPy. The problem size is con-
stant though all the executions, i.e. we are measuring strong scaling. To measure the
performance impact of the latency-hiding, we use two different setups: one with latency-
hiding and one that uses blocking communication. For both setups we measured the
time spent on waiting for communication, i.e. the communication latency not hidden
behind computation.

In this benchmark we utilizes the cluster in a by node fashion. That is, from one
to sixteen CPU-cores we start on MPI-process per node (no SMP) and above sixteen
CPU-cores we start multiple MPI-processes per node. The MPI library used throughout
this benchmark is OpenMPI4.

The benchmark consists of the following eight Python applications.

• Fractal Computation of the Mandelbrot Set. From a NumPy tutorial written by
Walt[98] (Figure 7.22).

• Black-Scholes Computation of the Black-Scholes model[14] implemented in NumPy
(Figure 7.20 and 7.23).

Both Fractal and Black-Scholes are embarrassingly parallel applications and we
expect that latency-hiding will not improve the performance.

3NumPy version 1.3.0
4OpenMPI version 1.5.1

85

• N-body A Newtonian N-body simulation that uses a näıve algorithm that com-
putes all body-body interactions. The NumPy implementation is a translation of
a MATLAB application by Casanova[26] (Figure 7.24).

• kNN A näıve implementation of a k nearest neighbor search (Figure 7.25).

The N-body and kNN applications have a computation complexity of O(n2).
This indicates that the two applications should have good scalability even without
latency-hiding.

• Lattice Boltzmann 2D Lattice Boltzmann model of channel flow in 2D using
the D2Q9 model. It is a translation of a MATLAB application by Latt[70] (Figure
7.26).

• Lattice Boltzmann 3D Lattice Boltzmann model of a fluid in 3D using the
D3Q19 model. It is a translation of a MATLAB application by Haslam[53] (Figure
7.27).

The two Lattice Boltzmann applications have a computation complexity of
O(n). More communication is therefore needed and we expect that latency-hiding
will improve the performance.

• Jacobi The Jacobi method is an algorithm for determining the solutions of a
system of linear equations. It is an iterative method that uses a spitting scheme
to approximate the result (Figure 7.28).

• Jacobi Stencil In this benchmark, we have implemented the Jacobi method using
stencil operations rather than matrix row operations (Figure 7.21 and 7.29).

The two Jacobi applications also have a computation complexity of O(n). How-
ever, the constant associated with n is very small, e.g. to compute one element
in the Jacob Stencil application four adjacent elements are required. We expect
latency-hiding to be very important for good scalability.

Discussion

Overall, the benchmarks show that DistNumPy has acceptable performance and scal-
ability. However, the scalability is somewhat worsening at 32 CPU-cores and above,
which correlates with the use of multiple CPU-cores per node. Because of this distinct
performance profile, we separate the following discussion into results executed on one to
sixteen CPU-cores (one CPU-core per node) and the results executed on 32 CPU-cores
to 128 CPU-cores (multiple CPU-cores per node).

One to Sixteen CPU-cores The benchmarks clearly shows that DistNumPy has
both good performance and scalability. Actually, half of the Python applications achieve
super-linear speedup at sixteen CPU-cores. This is possible because DistNumPy, op-
posed to NumPy, will try to reuse memory allocations by lazily de-allocating arrays.

86

1 # Black Scholes Function

2 # S: Stock price

3 # X: Strike price

4 # T: Years to maturity

5 # r: Risk -free rate

6 # v: Volatility

7 def BlackScholes(CallPutFlag ,S,X,T,r,v):

8 d1 = (log(S/X)+(r+v*v/2.)*T)/(v*sqrt(T))

9 d2 = d1 -v*sqrt(T)

10 if CallPutFlag ==’c’:

11 return S*CND(d1)-X*exp(-r*T)*CND(d2)

12 else:

13 return X*exp(-r*T)*CND(-d2)-S*CND(-d1)

Figure 7.20: This is the Black Sholes Function in the Black-Scholes benchmark where
CND is the cumulative normal distribution. Note that there is no source code difference
between a parallel and a sequential version – it is regular Python/Numpy source code.

1 while epsilon < delta:

2 T = 0.2 * (A[1:-1,1:-1] + A[2: ,1: -1] \

3 + A[1:-1,0:-2] + A[1: -1 ,2:])

4 delta = sum(abs(A[1:-1,1:-1] - T))

5 A[1:-1,1:-1] = T

Figure 7.21: This is the kernel in the Jacobi Stencil benchmark. Note that there
is no source code difference between a parallel and a sequential version – it is regular
Python/Numpy source code.

87

DistNumPy uses a very näıve algorithm that simply checks if a new array allocation
is identical to a just de-allocated array. If that is the case one memory allocation and
de-allocation is avoided.

In the two embarrassingly parallel applications, Fractal and Black-Scholes, we see
very good speedup as expected. Since the use of communication in both applications
is almost non-existing the latency-hiding makes no difference. The speedup achieved at
sixteen CPU-cores is 18.8 and 15.4, respectively.

The two näıve implementations of N-body and kNN do not benefit from latency-
hiding. In N-body the dominating operations are matrix-multiplications, which is a
native operation in NymPy and in DistNumPy implemented as specialized operations
using the parallel algorithm SUMMA[47] and not as a combination of ufunc operations.
Since both the latency-hiding and the blocking execution use the same SUMMA algo-
rithm the performance is very similar. However, because of the overhead associated with
latency-hiding, the blocking execution performs a bit better. The speedup achieved at
sixteen CPU-cores is 17.2 with latency-hiding and 17.8 with blocking execution. Simi-
larly, the performance difference between latency-hiding and blocking in kNN is minimal
– the speedup achieved at sixteen CPU-cores is 12.5 and 12.6, respectively. The rela-
tively modest speedup in kNN is the result of poor load balancing. At eight and sixteen
CPU-cores the chosen problem is not divided evenly between the processes.

Latency-hiding is somewhat beneficial to the two Lattice Boltzmann applications.
The waiting time percentage on sixteen CPU-cores goes from 19% to 13% in Lattice
Boltzmann 2D, and from 16% to 9% in Lattice Boltzmann 3D. However, the overall
impact on the speedup is not that great, primarily because of the overhead associated
with latency-hiding.

Finally, latency-hiding introduces a drastically improved performance to the two
communication intensive applications Jacobi and Jacobi Stencil. The waiting time
percentage going from 54% to 2% and from 62% to 9%, respectively. Latency-hiding
also has a major impact on the overall speedup, which goes from 5.9 to 12.8 and from
7.7 to 18.4, respectively. In other words latency-hiding more than doubles the overall
speedup and CPU utilization.

Scaling above sixteen CPU-cores Overall, the performance is worsening at 32
CPU-cores – particular at 64 CPU-cores and above where the CPU utilization is below
50%. One reason for this performance degradation is the characteristic of strong scaling.
In order to have considerable more data blocks than MPI-processes, the size of the data
distribution blocks decreases as the number of executing CPU-cores increases. Smaller
data blocks reduces the performance since the overhead in DistNumPy is proportional
with the size of a data block.

However, smaller data blocks are not enough to justify the observed performance
degradation. The von Neumann bottleneck[8] associated with main memory also hinder
scalability. This is evident when looking at Figure 7.30, which is a speedup graph of
N-body that compares by node and by core scaling. At eight CPU-cores, both result
uses identical data distribution and block size, but the performance when only using one

88

CPU-core per node is clearly superior to using all eight CPU-cores on one node.
A NumPy application will often use ufuncs heavily, which makes the application

vulnerable to the von Neumann bottleneck. The problem is that multiple ufunc opera-
tions are not pipelined in order to utilize cache locality. Instead, NumPy will compute a
single ufunc operation at a time. This problem is also evident in DistNumPy since our
latency-hiding model only address communication latency and not memory latency.

89

 4

 8

 16

 32

2 4 8 16 32 64 128
 0

 20

 40

 60

 80

 100

S
p

e
e

d
u

p
 o

f
D

is
tN

u
m

P
y
 c

o
m

p
a

re
d

 t
o

 N
u

m
P

y

R
e

la
ti
v
e

 w
a

it
in

g
 t

im
e

 i
n

 p
e

rc
e

n
ta

g
e

 o
f

to
ta

l
ti
m

e

No. of CPU−cores

Blocking (waiting time)
Latency−Hiding (waiting time)

Blocking (speedup)
Latency−Hiding (speedup)

Figure 7.22: Speedup of the Fractal application.

 2

 4

 8

 16

 32

 64

2 4 8 16 32 64 128
 0

 20

 40

 60

 80

 100

S
p

e
e

d
u

p
 o

f
D

is
tN

u
m

P
y
 c

o
m

p
a

re
d

 t
o

 N
u

m
P

y

R
e

la
ti
v
e

 w
a

it
in

g
 t

im
e

 i
n

 p
e

rc
e

n
ta

g
e

 o
f

to
ta

l
ti
m

e

No. of cluster nodes (one CPU−core per node)

Blocking (waiting time)
Latency−Hiding (waiting time)

Blocking (speedup)
Latency−Hiding (speedup)

Figure 7.23: Speedup of the Black-Scholes appli-
cation.

 4

 8

 16

2 4 8 16 32 64 128
 0

 20

 40

 60

 80

 100

S
p

e
e

d
u

p
 o

f
D

is
tN

u
m

P
y
 c

o
m

p
a

re
d

 t
o

 N
u

m
P

y

R
e

la
ti
v
e

 w
a

it
in

g
 t

im
e

 i
n

 p
e

rc
e

n
ta

g
e

 o
f

to
ta

l
ti
m

e

No. of CPU−cores

Blocking (waiting time)
Latency−Hiding (waiting time)

Blocking (speedup)
Latency−Hiding (speedup)

Figure 7.24: Speedup of the N-body application.

 4

 8

 16

2 4 8 16 32 64 128
 0

 20

 40

 60

 80

 100

S
p

e
e

d
u

p
 o

f
D

is
tN

u
m

P
y
 c

o
m

p
a

re
d

 t
o

 N
u

m
P

y

R
e

la
ti
v
e

 w
a

it
in

g
 t

im
e

 i
n

 p
e

rc
e

n
ta

g
e

 o
f

to
ta

l
ti
m

e

No. of CPU−cores

Blocking (waiting time)
Latency−Hiding (waiting time)

Blocking (speedup)
Latency−Hiding (speedup)

Figure 7.25: Speedup of the kNN application.

 4

 8

 16

 32

2 4 8 16 32 64 128
 0

 20

 40

 60

 80

 100

S
p

e
e

d
u

p
 o

f
D

is
tN

u
m

P
y
 c

o
m

p
a

re
d

 t
o

 N
u

m
P

y

R
e

la
ti
v
e

 w
a

it
in

g
 t

im
e

 i
n

 p
e

rc
e

n
ta

g
e

 o
f

to
ta

l
ti
m

e

No. of CPU−cores

Blocking (waiting time)
Latency−Hiding (waiting time)

Blocking (speedup)
Latency−Hiding (speedup)

Figure 7.26: Speedup of the Lattice Boltzmann
2D application.

 2

 4

 8

 16

2 4 8 16 32 64 128
 0

 20

 40

 60

 80

 100

S
p

e
e

d
u

p
 o

f
D

is
tN

u
m

P
y
 c

o
m

p
a

re
d

 t
o

 N
u

m
P

y

R
e

la
ti
v
e

 w
a

it
in

g
 t

im
e

 i
n

 p
e

rc
e

n
ta

g
e

 o
f

to
ta

l
ti
m

e

No. of CPU−cores

Blocking (waiting time)
Latency−Hiding (waiting time)

Blocking (speedup)
Latency−Hiding (speedup)

Figure 7.27: Speedup of the Lattice Boltzmann
3D application.

90

 2

 4

 8

 16

2 4 8 16 32 64 128
 0

 20

 40

 60

 80

 100

S
p

e
e

d
u

p
 o

f
D

is
tN

u
m

P
y
 c

o
m

p
a

re
d

 t
o

 N
u

m
P

y

R
e

la
ti
v
e

 w
a

it
in

g
 t

im
e

 i
n

 p
e

rc
e

n
ta

g
e

 o
f

to
ta

l
ti
m

e

No. of CPU−cores

Blocking (waiting time)
Latency−Hiding (waiting time)

Blocking (speedup)
Latency−Hiding (speedup)

Figure 7.28: Speedup of the Jacobi application.

 2

 4

 8

 16

2 4 8 16 32 64 128
 0

 20

 40

 60

 80

 100

S
p

e
e

d
u

p
 o

f
D

is
tN

u
m

P
y
 c

o
m

p
a

re
d

 t
o

 N
u

m
P

y

R
e

la
ti
v
e

 w
a

it
in

g
 t

im
e

 i
n

 p
e

rc
e

n
ta

g
e

 o
f

to
ta

l
ti
m

e

No. of CPU−cores

Blocking (waiting time)
Latency−Hiding (waiting time)

Blocking (speedup)
Latency−Hiding (speedup)

Figure 7.29: Speedup of the Jacobi Stencil appli-
cation.

 2

 4

 8

 16

 32

2 4 8 16 32 64 128

S
p

e
e

d
u

p
 o

f
D

is
tN

u
m

P
y
 c

o
m

p
a

re
d

 t
o

 N
u

m
P

y

No. of CPU−cores

By Node
By Core

Figure 7.30: Speedup of the N-body application that compares by node, in which the maximum number
of CPU-cores is used, and by core, in which the minimum number of nodes is used. Note that the by
node graph is identical to the latency-hiding graph in Figure 7.24.

91

7.4.4 Conclusion

While automatic parallelization for distributed memory architectures cannot hope to
compete with a manually parallelized version, the productivity that comes with auto-
matic parallelization still makes the technique of interest to a user who only runs a code
a few times between changes. For applications that are embarrassingly parallel or ap-
plications where the computational complexity is O(n2) or higher, it is fairly straight
forward to manage the communication for automatic parallelization. However, for com-
mon kernels the complexity is O(n log(n)) or even O(n) and here the application of
latency-hiding techniques is essential for performance.

In this work we have presented a scheme for managing latency-hiding, that is based
on the assumption that splitting the work in more blocks than there are processors will
allow us to aggressively communicate data-blocks between nodes, while at the same
time processing operations that require no external data-blocks. The same dependency
analysis may be done without a division into data-blocks, but the blocking approach
allows us to maintain a full DAG, an operation that is known to be costly, and replace
the DAG with a number of ordered linked lists, to which access is done in linear time.

We implement the model in Distributed Numerical Python, DistNumPy, a program-
ming framework that allows linear algebra operations expressed in NumPy to be executed
on distributed memory platforms and this is without any effort towards parallelization
from the programmer.

A selection of eight benchmarks show that the system, as predicted, does not improve
the performance of embarrassingly parallel applications or applications with complexity
O(n2) or higher. For applications with lower complexity the benefit from automatic
latency-hiding is highly dependent on the relationship between the amount of data that
needs to be transferred and the cost of updating the individual elements.

In the Lattice Boltzmann codes, both 2D and 3D, the version without latency-hiding
does quite well, simply because the operation of updating a data-point is time consuming
enough to amortize the communication latency. However, when the cost of communica-
tion becomes more significant, as in a Jacobi solver and stencil-based Jacobi solver, the
automatic latency-hiding significantly improve the performance.

The performance of the stencil-based Jacobi-solver improves from a speedup of 7.7
to 18.4 at sixteen processors and 8.6 to 25.0 at 128 processors, compared to standard
sequential NumPy. This is matched by the fact that the time spend on waiting for com-
munication drops from 62% to 9% and 87% to 41%, respectively, with the introduction
of latency-hiding.

Overall, the conclusion is that managing latency-hiding at runtime is fully feasible
and makes automatic parallelization feasible for a number of applications where manual
parallelization would otherwise be required. The most obvious target is the large base
of stencil-based algorithms.

92

7.5 PGAS-style Programming

The fourth and final development stage of DistNumPy introduces a parallel program-
ming model that combines two well-known execution models: Single Instruction, Mul-
tiple Data (SIMD) and Single Program, Multiple Data (SPMD). The combined model
supports SIMD-style data parallelism in global address space and supports SPMD-style
task parallelism in local address space.

One of the most important features in the combined model is that data communica-
tion is expressed by global data assignments instead of message passing. I implemented
this combined programming model into DistNumPy, making parallel programming with
Python both highly productive and performing on distributed memory multi-core sys-
tems.

I implemented the SPMD task parallelism as an extension to DistNumPy that enables
each process to have direct access to the local part of a shared array. To harvest the
multi-core benefits in modern processors we exploit multi-threading in both SIMD and
SPMD execution models. The multi-threading is completely transparent to the user –
it is implemented in the runtime with OpenMP and by using multi-threaded libraries
when available.

7.5.1 Introduction

There exists a broad range of execution models for parallel programming. Single In-
struction, Multiple Data (SIMD) and Single Program, Multiple Data (SPMD) are two
execution models often used in parallel programming. Our SIMD execution model refers
to a single sequential Python instruction stream with massive data parallelism. Our
programming model is executed in SIMD mode from the user’s perspective but the
underlying runtime system is built on top on MPI and is executed in SPMD mode.

SPMD Extension to DistNumPy

In this work, we introduce an extension to DistNumPy that mixes the already exist-
ing SIMD execution model in DistNumPy with the SPMD execution model. This new
extension enables users to express parallel algorithms in terms of global data manage-
ment and local operations. Using LINPACK as an example, the user may express the
distributed-memory LU factorization algorithm in Python and use BLAS/LAPACK for
local computations.

To overcome the relatively slow execution of the Python interpreter, we use four
optimization techniques to amortize the overheads:

• Multi-threading with OpenMP to exploit data parallelism in array operations.

• Use optimized libraries for basic local computations whenever possible, such as
BLAS, LAPACK, FFTW and vendor-optimized libraries. In common cases, most
execution time would be spent on computation in the library and thus the over-
heads incurred by the Python interpreter are negligible. Even for applications

93

written in FORTRAN and C, it is a good practice to use optimized libraries if
available because they usually run much faster than the standard implementa-
tions.

• Combine array operations through lazy evaluation. Using an internal dependency
tracking system, the DistNumPy runtime system will aggregate operations and
execute them in batch only when the results are required in the data flow. This
lazy evaluation strategy can not only perform code optimization on-the-fly but also
minimize the overheads of executing individual Python instructions.

• Overlap computation and communication by leveraging non-blocking communica-
tion. With sufficient overlapping, the Python interpreter overhead is hidden and
will not increase the execution time.

In case all fails, the user still has the option to implement the performance-critical section
in low-level languages and use it in the Python code to speed up execution. Because the
Python implementation is more concise to understand, it is much easier to identify the
bottleneck in such program than searching it in a very large C or FORTRAN application.

• Added support for SIMD and SPMD execution models in a single parallel pro-
gram so that both data-parallel and task-parallel applications can be conveniently
implemented with Python.

• Improved parallelism and scalability of DistNumPy by implementing hierarchical
parallelism in the runtime: using OpenMP for multi-threading and MPI for inter-
node communication.

• Enabled interoperability between DistNumPy and existing third-party libraries for
efficient local computation.

• Developed three benchmarks with our proposed SIMD+SPMD programming model
and evaluated their performance on up to 1536 cores.

7.5.2 Programming model

We propose a new PGAS programming model that combines the SIMD execution model
for global array operations and the SPMD execution model for local array operations.

Global Array Operations

DistNumPy supports global arrays distributed among all available processes. Python
applications can make use of DistNumPy by creating such global arrays. All global array
operations use the SIMD execution model, in which all processes need to execute the
same Python statement sequence even if some of them don’t need to take actions. The
computation place is based on the “owner computes” rule. Processes that own part or
all the operands of an operation need to participate in the operation. Non-participating
processes would simply mask out the current Python statement.

94

1 for i in xrange(nrow / BS):

2 #Apply local matrix multiplication

3 C.local()[:] += np.dot(A.local (), B.local ())

4

5 #Moving columns horizontal (left)

6 tmp = A[:,0:BS].copy()

7 A[:,0:-BS] = A[:,BS:]

8 A[:,-BS:] = tmp

9

10 #Moving rows vertical (up)

11 tmp = B[0:BS ,:]. copy()

12 B[0:-BS ,:] = B[BS:,:]

13 B[-BS:,:] = tmp

Figure 7.31: Cannon’s algorithm

In DistNumPy, each process runs a Python interpreter that interprets the Python
application. However, because of the synchronous nature of SIMD, the parallelism pro-
vided by DistNumPy is completely transparent to the user when every interpreter takes
the same code paths and only uses global arrays operation. This transparency enables
a user familiar with Python/NumPy to utilize multiple processes seamlessly. Figure
7.21 shows the kernel of a 5-point-stencil DistNumPy application where all arrays are
global and all participating Python interpreters will execute identical code. The parallel
code is identical to the sequential NumPy version and the data-parallel operations are
automatically executed in parallel on distributed-memory computers.

Global Assignment Operations

The SPMD execution model typically uses explicit message passing (one or two sided)
to move data in a distributed environment. DistNumPy enables using global data as-
signments to express data movement. For example, when multiplying two matrices by
Cannon’s algorithm, we shift matrix-blocks in the vertical and horizontal directions.
Figure 7.31 line 5-13, is an implementation of this data movement using regular Python
assignments. Actual communication associated with the assignments is completely hid-
den to the user. The user only needs to specify the algorithm’s data dependencies and
DistNumPy handles how to perform the data movements.

Local Array Operations

The user can get the local part of a global array from DistNumPy by the local func-
tion, which is the only global array operation that is non-collective and does not imply
synchronization. The local function returns a NumPy array view that can be used
together with any NumPy compatible Python libraries.

Figure 7.31 is an implementation of Cannon’s algorithm where we assume the ma-
trices are square. The implementation makes use of the local address space to compute

95

the local matrix multiplication (line 3) and the global address space to move matrix
blocks up and left (line 5-13). The user can mix local and global operations as needed.
The only rule is that a local array becomes undefined when executing a global array
operation. The user needs to use local to retrieve a new local NumPy array after a
global array operation . This restriction is because of the lazy evaluation used in the
original DistNumPy (Section 7.5.3).

Local Array Block Iterator

Iterating over all local array blocks is a common operation. blocks is an operation that
returns such an iterator. It is semantically equivalent to local but instead of returning
the local part of the global array, it returns an iterator that iterates over all local blocks
in the global array.

Data Layout

The user may have to be aware of the data layout when using local array operations.
In the SPMD execution model, the user will often have to differentiate computations
based on the process identity and data layout. To facilitate this, we assign a rank id
to each process that is accessible through the constant RANK. The user may specify the
data layout for global arrays at job start-up time and it is immutable over the course of
the execution.

DistNumPy global arrays are stored in generalized N-Dimensional block cyclic dis-
tribution schemes inspired by HPF [42]. The user can define flexible process grids by
using the datalayout() function. The block size is the same for all global arrays and is
accessible through the constant BLOCKSIZE.

One Process Distribution

DistNumPy supports an alternative array distribution where all data is located on a
single process. When creating a distributed array it is possible to specify where the data
is located by a rank affinity parameter. The following operation will create a global
array that is located on process 42 exclusively:

A = np.array ([1,2,3],dist=True ,onenode =42)

7.5.3 Implementation

DistNumPy is extended from NumPy as a Python package that can be used with reg-
ular Python interpreters. DistNumPy uses dynamic data dependency analysis, lazy
evaluation and communication aggregation techniques to hide communication latency.
Following the data dependencies between batched operations, DistNumPy proactively
initiates data transfers as early possible while consumes the data as late as possible to
maximize overlapping between communication and computation.

96

Multi-threading with OpenMP

The lack of efficient multi-threading support in the original DistNumPy is a severe
limitation when executing on multi-core distributed memory systems. We improve the
performance for data-parallel array operations by using multi-threading with OpenMP.

In NumPy and DistNumPy, a universal function (ufunc) is a vectorized function that
operates on all array elements independently and provides implicit data-parallelism.
In the runtime, we use OpenMP directives to parallelize the for loops in the ufunc
computations.

The current multi-threading implementation harvests parallelism within single op-
eration instead of parallelism over multiple operations because we find that it requires
extensive dependency analyses to do so, which is beyond the scope of this work.

Third Party Python Libraries

There exist a great number of optimized numerical Python libraries. Most of them
are compatible with NumPy because NumPy provides a C-pointer to the raw array
data. DistNumPy can also make use of these NumPy libraries for local computations
by converting the local part of the global array to a regular NumPy array. For example,
in the Cannon’s algorithm we use the local NumPy function dot() (Figure 7.31, line
3), which is a simple binding to an optimized BLAS library, to compute local matrix
multiplication.

7.5.4 Benchmarks

To evaluate the implementation of our proposed programming model, we developed three
mini-benchmarks: 1) matrix multiplication, 2) LU factorization and 3) 2-D heat equation
solution with the Jacobi iterative method. We implemented all three benchmarks in
pure Python and then used third party libraries, BLAS and LAPACK, to compute local
results when applicable.

Matrix Multiplication

Matrix multiplication is a fundamental operation in numerical computations. The global
matrices are distributed across all nodes with 2-D block-cyclic date layout. We use
the SUMMA [47] algorithm, which is based on outer-product BLAS level-3 updates
implemented by row and column broadcast communication followed by local matrix
multiplications on each node.

Figure 7.32 shows the complete source code of the SUMMA implementation. It
is completely written in Python and uses the NumPy function np.dot() (line 26) to
compute the local matrix multiplication. np.dot() calls the optimized BLAS library
available on the system.

The only communication in the SUMMA algorithm is in line 15-19, in which we
replicate a column-block horizontally and a row-block vertically. The communication is
elegantly expressed by global array assignments to a work and b work.

97

1 import numpy as np

2

3 def summa(a,b,c):

4 (prow ,pcol) = a.pgrid ()

5 BS = np.BLOCKSIZE

6 a_work = np.zeros ((a.shape [0],BS*pcol), \

7 dtype=a.dtype , dist=True)

8 b_work = np.zeros ((BS*prow ,b.shape [1]), \

9 dtype=a.dtype , dist=True)

10 Ksz = a.shape [1]

11 for k in xrange(0,Ksz ,BS):

12 bs = min(BS , Ksz -k)#Current block size

13

14 #Replicate column -block horizontal

15 for p in xrange(pcol):

16 a_work[:,p*BS:p*BS+bs] = a[:,k:k+bs]

17 #Replicate row -block vertical

18 for p in xrange(prow):

19 b_work[p*BS:p*BS+bs ,:] = b[k:k+bs ,:]

20

21 #Apply local outer dot product

22 l_a_work = a_work.local()[:,:bs]

23 l_b_work = b_work.local()[:bs ,:]

24 l_c = c_new.local()

25 if l_c.size > 0:

26 l_c += np.dot(l_a_work , l_b_work)

Figure 7.32: SUMMA Matrix Multiplication

98

LU Factorization

LU factorization is a classical numerical linear algebra problem that decomposes a ma-
trix as the product of a lower triangular matrix and an upper triangular matrix. The
implementation is a straightforward translation of a block LU factorization written in
Matlab [100]. Our implementation is simplified by skipping partial pivoting. Figure 7.33
shows the complete source code of implementation, which makes use of the SUMMA im-
plementation (line 47) from before (Figure 7.32) and a local LU factorization (line 25)
provide by the SciPy library, which in turn uses an optimized LAPACK library. Taking
advantage of the distributed array extension, we express all communication patterns
through Python assignments when replicating the local LU results horizontally and ver-
tically (line 27-31).

99

1 import numpy as np

2 from scipy import linalg

3 import pyHPC

4 from itertools import izip as zip

5

6 def lu(matrix):

7 SIZE = matrix.shape [0]

8 BS = np.BLOCKSIZE

9

10 (prow ,pcol) = matrix.pgrid()

11 A = matrix.copy()

12 L = np.zeros((SIZE ,SIZE),dtype=matrix.dtype ,\

13 dist=True)

14 U = np.zeros((SIZE ,SIZE),dtype=matrix.dtype ,\

15 dist=True)

16 for k in xrange(0,SIZE ,BS):

17 bs = min(BS ,SIZE - k) #Current block size

18 kb = k / BS # k as block index

19

20 #Compute local LU

21 slice = ((kb ,kb+1) ,(kb ,kb+1))

22 for a,l,u in zip(A.blocks(slice), \

23 L.blocks(slice), \

24 U.blocks(slice)):

25 (p,l[:],u[:]) = linalg.lu(a)

26

27 #Replicate local LU horizontal and vertical

28 for tk in xrange(k+bs ,SIZE ,BS):

29 tbs = min(BS ,SIZE - tk)

30 L[tk:tk+tbs ,k:k+bs] = U[k:k+tbs ,k:k+bs]

31 U[k:k+bs ,tk:tk+tbs] = L[k:k+bs ,k:k+tbs]

32

33 if k+bs < SIZE:

34 #Compute horizontal multiplier

35 slice = ((kb ,kb+1) ,(kb+1,SIZE/BS))

36 for a,u in zip(A.blocks(slice), \

37 U.blocks(slice)):

38 u[:] = np.linalg.solve(u.T,a.T).T

39

40 #Compute vertical multiplier

41 slice = ((kb+1,SIZE/BS),(kb ,kb+1))

42 for a,l in zip(A.blocks(slice), \

43 L.blocks(slice)):

44 l[:] = np.linalg.solve(l,a)

45

46 #Apply to remaining submatrix

47 A -= pyHPC.summa(L[:,:k+bs],U[:k+bs ,:])

48

49 return (L, U)

Figure 7.33: LU Factorization

100

System Intel Infiniband Cluster Cray XE-6

Processor Intel Xeon X5530 AMD Opteron 6172
Clock 2.4 GHz 2.1 GHz
Peak Performance per Core 10.6 Gflops 8.4 Gflops
Cores per NUMA Domain 4 6
NUMA Domains per Node 2 4 (packaged in 2 sockets)
Total Cores per Node 8 24
Private L1 Data Cache 64 KB 64 KB
Private L2 Data Cache 512 KB 512 KB
Shared L3 Cache per Socket 8MB 12MB
Memory Bandwidth 25.6 GB/s 25.6 GB/s
Memory per Node 24GB DDR3-1066 ECC 32GB DDR3-1066 ECC
Compiler Intel C/C++ 11.1 PGI 11.3
Math Library Intel MKL 10.2 Cray Scientific Library 10.5
Interconnect Infiniband 4X QDR Gemini 3-D Torus
Peak Bandwidth (per direction) 5 GB/s 7 GB/s
MPI OpenMPI 1.4.2 Cray MPI 5.1.4

Table 7.4: Two distributed-memory multi-core NUMA systems for the experiments

Heat Equation

The heat equation benchmark is to solve a partial differential equation that describes
the distribution of heat in a given region over time. We use the Jacobi iterative method
to approximate the result with a 5-point stencil implementation. Figure 7.21 shows the
computation loop of the implementation, which is concisely expressed by array opera-
tions and assignments.

7.5.5 Performance

We evaluate the performance of our benchmarks on two representative multi-core dis-
tributed memory systems – an Intel Nehalem cluster with Infiniband interconnects and
a Cray XE-6 supercomputer – up to 1536 cores (Table 7.4).

Both systems consist of multi-core Non-Uniform Memory Access (NUMA) shared-
memory nodes and each node has multiple NUMA domains. CPU cores within the same
NUMA domain have uniform data access latency to the local memory while CPU cores of
different NUMA domains would have non-uniform data access latencies. We use hybrid
parallelism, processes with threads, for all of our benchmark runs. Specifically, we run
one process per NUMA domain and one thread per core within the NUMA domain.
Threads within a NUMA domain communicate through shared memory and processes
across NUMA domains communicate through MPI.

Through empirical study, we find that this is the configuration that achieved best
performance. The two extremes usually do not work well: 1) running one process per
core without threading causes too much overheads in terms of both memory footprint
and communication time; 2) running one process per node and using threads across
NUMA domains would also slow down the execution due to the NUMA issues with data
locality and resource contention with too many threads.

101

�

��

���

����

�����
�
�
�
�
�
�

���	
��
��
����

�������	

���	���������������

�

��

���

����

�����

������

�
�
�
�
�
�

���	
��
��
����

�������	

���	���������������

(a) Intel Infiniband Cluster (b) Cray XE-6

Figure 7.34: Matrix Multiplication (SUMMA) benchmark performance

��

���

���

���

���

���

���

���

	��

��

����

� � � 	 �� �� �� ��	 ��� ���

����������	���
��

�������������� ���������������

��

���

���

���

���

���

���

���

	��

��

����

����������	���
��

�������������� ���������������

(a) Intel Infiniband cluster (b) Cray XE-6

Figure 7.35: Matrix Multiplication (SUMMA) benchmark communication and compu-
tation ratio

For each benchmark, we calculate the FLOPS based on the floating operation counts
of the ideal sequential algorithm and the measured execution times. Additionally, we
compare the results with the linearly scaling performance, which we calculate by ex-
trapolating the sequential FLOPS performance of NumPy. We use this comparison as
an upper bound of the achievable scalable performance. We perform weak scaling ex-
periments, in which the problem size is scaled with the number of CPU-cores in the
executions.

Matrix Multiplication (SUMMA)

Matrix multiplication has very high computation to communication ratio: its asymptotic
computation complexity is O(n3) while its data communication complexity is only O(n2),
as verified in the communication and computation ratio Figure 7.35. The SUMMA
algorithm is a well-known scalable parallel algorithm for matrix multiplication. Thus
this benchmark scales nearly linearly on the Intel Infiniband cluster and also performs

102

�

��

���

����

�����

�
�
�
�
�
�

���	
��
��
����

�������	

���	���������������

�

��

���

����

�����

�
�
�
�
�
�

���	
��
��
����

�������	

���	
�������������

(a) Intel Infiniband cluster (b) Cray XE-6

Figure 7.36: LU Factorization benchmark performance

��

���

���

���

���

���

���

���

	��

��

����

����������	���
��

�������������� ���������������

��

���

���

���

���

���

���

���

	��

��

����

����������	���
��

�������������� ���������������

(a) Intel Infiniband Cluster (b) Cray XE-6

Figure 7.37: LU Factorization communication and computation ratio

quite well on the Cray XE-6 system as in Figure 7.34. The communication cost of
running the benchmark on CPU cores in a single NUMA domain is zero because we use
threads to share data directly as described before.

Because all local matrix computations are done with the vendor-optimized BLAS
libraries (Intel MKL and Cray Scientific Library), our implementation obtains very good
absolute performance in terms of the hardware peak FLOP rate on both platforms. The
performance of our Python sequential implementation is very close to that of the C
sequential implementation because in both cases the majority of the running time is
spent in external optimized BLAS library.

The gap between our implementation “DistNumPy” and the ideal linear speed-ups of
the sequential implementation is basically the overheads of performing parallel execution
with the high-level abstractions in our programming model. For the Intel Infiniband
cluster, the python interpreter overheads are negligible as our obtained performance
tightly tracks the linear speed-up curve in Figure 7.34 (a).

103

�

��

���

����

�����
�
�
�
�
�
�

���	
��
��
����

�������	

���	���������������

���

�

��

���

����

�����

�
�
�
�
�
�

���	
��
��
����

������	
�

��	
���������������

(a) Intel Infiniband Cluster (b) Cray XE-6

Figure 7.38: Heat Equation benchmark performance

��

���

���

���

���

���

���

���

	��

��

����

����������	���
��

�������������� ���������������

��

���

���

���

���

���

���

���

	��

��

����

����������	���
��

�������������� ���������������

(a) Intel Infiniband Cluster (b) Cray XE-6

Figure 7.39: Heat Equation benchmark communication and computation ratio

LU Factorization

The LU factorization benchmark also has relatively high computation to communication
ratio but does require more communication and has more data dependencies than the
matrix multiplication benchmark. Thus it is expected to scales well. Figure 7.36 shows
that the LU benchmark scale well on the Intel Infiniband cluster up to 512 cores. But
the scalability of the LU benchmark decreases on the Cray XE-6 system when using
more than 384 cores when the communication times become dominant, as shown in Fig-
ure 7.37. The Python sequential implementation of LU is about 12% and 50% slower
than the C counterpart on the Intel Infiniband cluster and the Cray XE-6 system respec-
tively. The Python implementation is slower because it performs extra work to allocate
buffers and format data in addition to calling the LAPACK factorization routine.

Overall, the benchmark performance is better on the Intel Infiniband cluster than
on the Cray XE-6 system as the current Cray MPI for the Cray Gemini network has
limited overlapping support for non-blocking MPI communication. In addition, the job
scheduler on the Cray system may allocate distant nodes to a job and the torus network

104

performance would suffer from the communication traffics caused by other jobs.

Heat Equation

The computation to communication ratio of this stencil-type benchmark is inherently
low, which is a small constant. Thus its performance is somewhat limited by the memory
bandwidth when running within a node with shared-memory and limited by the network
latency and bandwidth when running on multiple nodes. Figure 7.38 shows that our im-
plementation scales well on up to 256 cores on the Intel Infiniband cluster and up to
192 cores on the Cray XE-6 system. As the number of cores goes up, the performance
is increasingly dominated by the communication time which results in suboptimal scal-
ability (Figure 7.39). The C implementation of the Heat Equation benchmark performs
much better than the Python implementation and we plan to address this performance
discrepancy issue due to Python interpreter overheads in future work.

Scalability Limitations

The global address space and the SIMD execution model introduce some scalability
limitations. It is nice to express data movement using the global address space but
it forces each process to iterate over all elements in a global array operation not only
the elements it has to compute. Thus, introducing a Python overhead that increases
proportional with the global size of an array operation. In a traditional SPMD execution
model the overhead is proportional with the local size of an array operation.

Another important limitation is the lack of communication latency-hiding. Dist-
NumPy will normally use lazy evaluation to overlap communication with computation.
However, the amount of instructions lazy evaluated decreases when applications use the
local operation.

7.5.6 Conclusion

The single execution flow with fully synchronous operations of SIMD is both the main
strength and weakness of data-parallel programming models: two most notorious types
of parallel programming bugs, data races and deadlocks, simply do not exist in data-
parallel programs because there is only one execution thread. However, it is inconvenient
to perform task parallelism and conditional computations with pure data parallelism.
To get the benefits of both data-parallelism and task-parallelism, we incorporate both
SIMD and SPMD execution models in our programming system.

Python and other scripting languages are commonly considered as unsuitable for large
scale high performance parallel computing due to its interpreter execution nature. Our
work is a proof of concept that shows that Python with proper extensions and optimiza-
tions can indeed be used to develop parallel applications that scale on large distributed
memory systems. The loss of raw performance due to Python interpreter overheads is
considerably small because the major part of execution time is spent in the underlying
computation and communication libraries. In addition, significant speedups can often be

105

achieved by using better algorithms and refined models, which are made much easier to
implement due to the high-level abstractions of our Python-based programming system.
Like Python, our programming model is general and applicable beyond scientific com-
puting applications. A distributed shared array in our system is essentially a partitioned
global address space in that the array elements may be used to store arbitrary objects.

As the ExaScale Software Study [23] pointed out: “current software approaches
will be inadequate in enabling future Grand Challenge applications on Extreme Scale
systems”. Traditional parallel programming languages, such as C and Fortran, are good
for getting hardware performance but less suitable for high-level application development
and algorithm exploration. We propose a two layer approach to address the programming
challenges for extreme scale systems: a low-level language layer that provides portable
performance across different hardware platforms and a high-level language layer that
provides portable productivity to end users. The work presented is a step towards
creating such a high-level programming system and has demonstrated the feasibility of
achieving productivity without compromising performance.

7.6 Summary

Overall, the DistNumPy project demonstrates that it is possible to introduce implicit
data parallelism in NumPy seamlessly. Even though the parallel performance of Dist-
NumPy is not equal manually parallelized applications, it provides good scalable perfor-
mance without sacrificing the high-productivity inherited from Python/NumPy.

106

Chapter 8

cphVB

While developing DistNumPy I started realizing that there is no reason to only support
Python/NumPy and distributed memory architectures. I strongly believe in the high-
productivity and high-performance idea in DistNumPy thus I find a generalization of
DistNumPy that support a broad range of languages and hardware architectures very
interesting.

The project Enjing[12, 13] – a sister project of DistNumPy – demonstrates that it
is possible to utilize GPGPUs1 seamlessly in Python/NumPy applications. Encourage
by this, we began the development of a new project, cphVB, that aims to provide a
high-productivity and high-performance framework that supports a broad range of both
programming languages and hardware architectures.

We introduce a new abstract machine framework, cphVB, that enables a vector
oriented high-level programming languages to map onto a broad range of architectures
efficiently. The idea is to close the gap between high-level languages and hardware
optimized low-level implementations. By translating high-level vector operations into
an intimidate vector byte code, cphVB enables specialized vector engines to efficiently
execute the vector operations.

8.1 Introduction

Obtaining high performance from today’s computing environments requires both a deep
and broad working knowledge on computer architecture, communication paradigms and
programming interfaces. Today’s computing environments are highly heterogeneous con-
sisting of a mixture of CPUs, GPUs, FPGAs and DSPs orchestrated in a wealth of
architectures and lastly connected in numerous ways.

Utilizing this broad range of architectures manually requires programming special-
ists and is a very time-consuming task – time and specialization a scientific researcher
typically does not have. A high-productivity language that allows rapid prototyping and
still enables utilizing of a broad range of architectures is clearly preferable.

1General Purpose Graphics Processing Unit

107

There exist high-productivity language and libraries that automatically utilize paral-
lel architectures [69][35][77]. They are however still few in numbers and have one problem
in common. They are closely coupled to both the front-end, i.e. programming language
and IDE, and the back-end, i.e. computing device, which makes them interesting only
to the few using the exact combination of front-, and back-end.

A tight coupling between front-end technology and back-end present another prob-
lem; the usefullnes of the developed program expires as soon as the back-end does. With
the rapid development of hardware architectures the time spend on implementing opti-
mized programs for a specific hardware target is lost as soon as the hardware product
expires.

In this work, we present a novel approach to the problem of closing the gap between
high-productivity languages and parallel architectures, which allows a high degree of
modularity and reusability. The approach involves creating a framework, cphVB, in
which the computing devices (hardware) are viewed as engines that processes vectorized
instructions, called Vector Engines. It defines a clear and easy to understand byte code
language that the Vector Engines executes. cphVB also contains a protocol to govern
the safe, and efficient exchange, creation, and destruction of model data.

cphVB provides a retargetable framework in which the user can write programs
utilizing whichever cphVB supported programming interface they prefer and run the
program on their own workstation while doing prototyping, such as testing correctness
and functionality of their programs. Users can then deploy the exact same program in
a more powerful execution environment without changing a single line of code and thus
effectively solve greater problem sets.

8.1.1 Related Work

The key motivation for cphVB is to provide a framework for the utilization of het-
erogeneous computing systems with the goal of obtaining high performance and high
productivity. Systems such as pyOpenCL/pyCUDA[66] provides a direct mapping from
frontend language to the optimization target. In this case, providing the user with direct
access to the low-level systems OpenCL[83] and CUDA[81] from the high-level language
Python[99]. The work in [66] enables the user with the ability to write a low-level imple-
mentation combined with a high-productivity language. The goal is similar to cphVB –
the approach however is entirely different. cphVB provides a means to hide low-level tar-
get specific code behind a programming model and providing a framework and runtime
environment to support it.

Intel Math Kernel Library[58] is in this regard more comparable to cphVB. Intel
MKL is a programming library providing utilization of multiple targets ranging from a
single core CPU to a multi-core shared memory CPU and even to a cluster of computers
all through the same programming API. However, cphVB is not only a programming
library it is a runtime system providing support for a vector oriented programming
model. The programming model is well-known from high-productivity languages such
as MATLAB [74], R[96], IDL[92], GNU Octave[41] and Numerical Python (NumPy) [82]
to name a few.

108

cphVB is more closely related to the work described in [46], here a compilation
framework is provided for execution in a hybrid environment consisting of both CPUs
and GPUs. Their framework uses a Python/NumPy based frontend that uses Python
decorators as hints to do selective optimizations. cphVB similarly provides a NumPy
based frontend and equivalently does selective optimizations. However, cphVB uses a
slightly less obtrusive approach; program selection hints are sent from the frontend via
the NumPy-bridge. This approach provides the advantage that any existing NumPy
program can run unaltered and take advantage of cphVB without changing a single line
of code. Whereas unPython requires the user to manually modify the source code by
applying hints in a manner similar to that of OpenMP[84]. This non-obtrusive design
at the source level is to the author’s knowledge novel.

Microsoft Accelerator[35] introduces ParallelArray, which is similar to the utilization
of the NumPy arrays in cphVB but there are strict limitations to the utilization of Paral-
lelArrays. ParallelArrays does not allow the use of direct indexing, which means that the
user must copy a ParallelArray into a conventional array before indexing. cphVB instead
allows indexed operations and additionally supports array-views, which are array-aliases
that provide multiple ways to access the same memory allocation. Thus, the data struc-
ture in cphVB is highly flexible and provides elegant programming solutions for a broad
range of numerical algorithms. Intel provides a similar approach called Intel Array
Building Blocks (ArBB) [77] that provides retargetability and dynamic compilation. It
is thereby possible to utilize heterogeneous architectures from within standard C++.
The retargetability aspect of Intel ArBB is represented in cphVB as a plain and simple
configuration file that define the cphVB runtime environment. Intel ArBB provides a
high performance library that utilizes a heterogeneous environment and hides the low-
level details behind a vector oriented programming model similar to cphVB. However,
ArBB only provides access to the programming model via C++ whereas cphVB is not
biased towards any one specific frontend language.

On multiple points cphVB is closely related in functionality and goals to the SEJITS
[27] project. SEJITS takes a different approach towards the frontend and programming
model. SEJITS provides a rich set of computational kernels in a high-productivity
language such as Python or Ruby. These kernels are then specialized towards optimality
criteria. This approach has shown to provide performance that at times out-performs
even hand-written specialized code towards a given architecture. Being able to construct
computational kernels is a core issue in data-parallel programming.

The programming model in cphVB does not provide this kernel methodology. cphVB
has a strong NumPy heritage which also shows in the programming model. The advan-
tage is easy adaptability of the cphVB programming model for users of NumPy, Matlab,
Octave and R. The cphVB programming model is not a stranger to computational ker-
nels – cphVB deduce computational kernels at runtime by inspecting the vector bytecode
generated by the Bridge.

cphVB provides in this sense a virtual machine optimized for execution of vector op-
erations, previous work [6] was based on a complete virtual machine for generic execution
whereas cphVB provides an optimized subset.

109

8.2 Target Programming Model

To hide the complexities of obtaining high-performance from a heterogeneous environ-
ment any given system must provide a meaningful high-level abstraction. This can
be realized in the form of domain specific languages, embedded languages, language
extensions, libraries, APIs etc. Such an abstraction serves two purposes: 1) It must
provide meaning for the end-user such that the goal of high-productivity can be met
with satisfaction. 2) It must provide an abstraction that consists of a sufficient amount
of information for the system to optimize its utilization.

cphVB is not biased towards any specific choice of abstraction or frontend technology
as long as it is compatible with a vector oriented programming model. This provides
means to use cphVB in functional programming languages, provide a frontend with a
strict mathematic notation such as APL[51] or a more relaxed syntax such as MATLAB.

8.3 Design of cphVB

The key contribution in cphVB is a framework that support a vector oriented program-
ming model. The idea of cphVB is to provide the mechanics to seamlessly couple a
programming language or library with an architecture-specific implementation of vec-
torized operations.

cphVB consists of a number of components that communicate using a simple protocol.
Components are allowed to be architecture-specific but they are all interchangeable since
all uses the same communication protocol. The idea is to make it possible to combine
components in a setup that perfectly match a specific execution environment. cphVB
consist of the following components:

• Programming Interface The programming language or library exposed to the
user. cphVB was initially meant as a computational back-end for the Python
library NumPy, but we have generalized cphVB to potential support all kind of
languages and libraries. Still, cphVB has design decisions that are influenced by
NumPy and its vector objects.

• Bridge The role of the Bridge is to introduce cphVB into an already existing lan-
guages and libraries. The Bridge generates the cphVB byte code that corresponds
to the user-code.

• Vector Engine The Vector Engine is the architecture-specific implementation
that executes cphVB byte code.

• Vector Engine Manager The Vector Engine Manager manages data location
and ownership of vectors. It also manages the distribution of computing jobs
between potentially several Vector Engines, hence the name.

An overview of the design can be seen in Figure 8.1.

110

Bridge	

Vector	 Engine	
Manager	

Vector	 Engine	
Manager	

Vector	 Engine	
Manager	

Vector	
Engine	

Vector	
Engine	

Vector	
Engine	

Vector	
Engine	

Bridge	 is	 language	 bindings	 and	 interface	
to	 cphVB,	 currently	 for	 numpy,	 and	 CIL	
(C#,	 F#,	 IronPython,	 etc)	

VEM	 has	 a	 simple	 interface	 and	 can	
support	 hieracical	 setups.	 The	 VEM	 can	
distribute	 and	 load-‐balance	 as	 required.	

Node	 level	 VEM	 knows	 about	 hardware	
features	 and	 schedules	 operaJons	
opJmally	 on	 hardware.	

VE's	 are	 the	 workhorses	 and	 know	 how	
to	 implement	 elementwise	 operaJons	
and	 composite	 operaJons	 on	 GPU	 or	
mulJcore.	

Figure 8.1: Design Overview of cphVB

111

1 #Root of the setup

2 [setup]

3 bridge = numpy

4 debug = true

5

6 #Bridge for NumPy

7 [numpy]

8 type = bridge

9 children = node

10

11 #Vector Engine Manager for a single machine

12 [node]

13 type = vem

14 impl = libcphvb_vem_node.so

15 children = pthread

16

17 #Vector Engine implemented using Posix Threads

18 [pthread]

19 type = ve

20 impl = libcphvb_ve_pthd.so

Figure 8.2: Configuration ini-file

8.3.1 Configuration

To make cphVB as flexible a framework as possible, we manage the setup of all the
components at runtime through a configuration file. The idea is that the user can change
the setup of components simply by editing the configuration file before executing the
user application. Additionally, the user only has to change the configuration file in order
to run the application on different systems with different computational resources. The
configuration file uses the ini syntax – Figure 8.2 is an example of a setup for NumPy
executing parallel on one machine using Pthreads.

8.3.2 Byte Code

The central part of the communication between all the components in cphVB is vector
byte code. The goal with the byte code language is to be able to express operations
on multidimensional vectors. Taking inspiration from single instruction, multiple data
(SIMD) instructions but adding structure to the data. This, of course, fits very well
with the array operations in NumPy but is not bound to nor limited to these.

We would like the byte code to be a concept that is easy to explain and understand. It
should have a simple design that is easy to implement. It should be easy and inexpensive
to generate and decode. To fulfill these goals we chose a design that conceptually is an
assembly language where the operands are multidimensional vectors. Furthermore, to
simplify the design the assembly language should have a one-to-one mapping between
instruction mnemonics and opcodes.

In the basic form, the byte-code instructions are primitive operations on data, e.g.

112

addition, subtraction, multiplication, division, square root etc. As an example, let us
look at addition. Conceptually it has the form:

add $d , $a , $b

Where add is the opcode for addition. After execution $d will contain the sum of $a

and $b.
The requirement is straightforward: we need an opcode. The opcode will explicitly

identify the operation to perform. Additionally the opcode will implicitly define the
number of operands. Finally, we need some sort of symbolic identifiers for the operands.
Keep in mind that the operands will be multidimensional arrays.

8.3.3 Interface

The Vector Engine and the Vector Engine Manager exposes simple API that consists
of the following functions: initialization, finalization, registration of a user-defined op-
eration and execution of a list of byte codes. Furthermore, the Vector Engine Manager
exposes a function to define new arrays.

8.3.4 Bridge

The Bridge is the bridge between the programming interface, e.g. Python/NumPy,
and the Vector Engine Manager. The Bridge is the only component that is specifically
implemented for the programming interface. In order to add cphVB support to a new
language or library, one only has to implement the bridge component. It generates byte
code based on programming interface and sends them to the Vector Engine Manager.

8.3.5 Vector Engine Manager

Instead of just letting the front-end communicate directly with the Vector Engine, we
introduced a Vector Engine Manager (VEM) into the design. It is the responsibility
of the VEM to manage data ownership and distribute byte code instructions to several
Vector Engines.

For efficiency reasons, the VEM handles instantiating and discarding arrays. If the
programming interface or the Bridge controls this, they would always have to copy data
from main memory to the device that is going to do the calculations. Often arrays are
created with structured data (e.g. random, constants), with no data at all (e.g. empty),
or as a result of calculation. In any case it saves, potentially several, memory copies to
delay the actual memory allocation. Typically, array data will exist on the computing
device exclusively.

In order to minimize data copying we introduce a data ownership scheme. It keeps
track of which components in cphVB that needs to access a given array. The goal is to
allow the system to have several copies of the same data while ensuring that they are in
synchronization. We base the data ownership scheme on three instructions, sync, release
and discard :

113

• Sync is used to request read access to a data object. This means that when
acknowledging a sync request, the copy existing in shared memory needs to be the
most resent copy.

• Discard is used to signal that the copy in shared memory has been updated and
all other copies are now invalid. Normally used for upgrading a read access to a
write access.

• Release is simply the same as a sync followed by a discard. This is used for
requesting write access.

The cphVB components follow the following four rules when implementing the data
ownership scheme:

1. The Bridge will always ask the Vector Engine Manager for access to a given data
object. It will send a sync request for read access and a release request for write
access. The Bridge will not keep track of ownership itself.

2. A Vector Engine can assume that it has write access to all of the output parameters
that are referenced in the instructions it receives. Likewise, it can assume read
access on all input parameters.

3. A Vector Engine is free to manage its own copies of arrays and implement its own
scheme to minimize data copying. It just needs to copy modified data back to
share memory when receiving a sync instruction and delete all local copies when
receiving a discard instruction. A release instruction can be handled as async
followed by a discard instruction.

4. The Vector Engine Manager keeps track of array ownership for all its children.
The owner of an array has full (i.e. write) access. When the parent component of
the Vector Engine Manager, normally the Bridge, request access to an array, the
Vector Engine Manager will forward the request to the relevant child component.
The Vector Engine Manager never accesses the array itself.

The Vector Engine Manager also keeps track of how many references there is to any
given array. If there are no more references to an array it deallocates memory and sends
discard instructions to any child component that may have a local copy.

Additionally, the Vector Engine Manager needs the capability to handle multiple
children components. In order to maximize parallelism the Vector Engine Manager can
distribute workload and array data between its children components.

8.3.6 Vector Engine

Though the Vector Engine is the most complex component of cphVB, it has a very simple
and a clearly defined role. It has to execute all instructions it receives in a manner that
obey the serialization dependencies between instructions. Finally, it has to ensure that
the rest of the system has access to the results as governed by the rules of the sync,
release, and discard instructions.

114

8.4 Implementation of cphVB

In order to demonstrate our cphVB design we have implemented a basic cphVB setup.
This concretization of cphVB is by no means exhaustive. The setup is targeting the
NumPy library executing on a single machine with multiple CPU-cores. In this section,
we will describe the implementation of each component in the cphVB setup – the Bridge,
the Vector Engine Manager, and the Vector Engine. The cphVB design rules (Section
8.3) govern the interplay between the components.

8.4.1 Bridge

The role of the Bridge is to introduce cphVB into an already existing project. In this
specific case NumPy, but could just as well be “R” or any other language/tool that
works primarily on vectorizable operations on large data objects.

It is the responsibility of the Bridge to generate cphVB instructions on basis of
the Python program that is being run. The NumPy Bridge is an extension of NumPy
version 1.6. It uses hooks to divert function call where the program access cphVB enabled
NumPy arrays. The hooks will translate a given function into its corresponding cphVB
byte code when possible. When it is not possible, the hooks will feed the function call
back into NumPy and thereby forcing NumPy to handle the function call itself.

The Bridge operates with two address spaces for arrays: the cphVB space and the
NumPy space. All arrays starts in the NumPy space as a default. The original NumPy
implementation handles these arrays and all operations using them. It is possible to
assign an array to the cphVB space explicitly by using an optional cphVB parameter in
array creation functions such as empty and random. The cphVB bridge implementation
handles these arrays and all operations using them.

In two circumstances, it is possible for an array to transfer from one address space
to the other implicitly at runtime.

1. When an operation accesses an array in the cphVB address space but it is not
possible for the bridge to translate the operation into cphVB code. In this case,
the bridge will synchronize and move the data to the NumPy address space. For
efficiency no data is actually copied instead the bridge uses the mremap2 function
to re-map the relevant memory pages.

2. When an operations access arrays in different address spaces the Bridge will trans-
fer the arrays in the NumPy space to the cphVB space. Afterwards, the bridge
will translate the operation into byte code that cphVB can execute.

In order to detect direct access to arrays in the cphVB address space by the user,
the original NumPy implementation, a Python library or any other external source,
the bridge protects the memory of arrays that are in the cphVB address space using
mprotect3. Because of this memory protection, subsequently accesses to the memory

2The function mremap() in GNU C library 2.4 and greater.
3The function mprotect() in the POSIX.1-2001 standard.

115

will trigger a segmentation fault. The Bridge can then handle this kernel signal by
transferring the array to the NumPy address space and cancel the segmentation fault.
This technique makes it possible for the Bridge to support all valid Python/NumPy
application since it can always fallback to the original NumPy implementation.

In order to gather greatest possible information at runtime, the Bridge will collect a
batch of instructions rather than executing one instruction at a time. The Bridge will
keep recording instruction until either the application reaches the end of the program
or untranslatable NumPy operations forces the Bridge to move an array to the NumPy
address space. When this happens, the Bridge will call the Vector Engine Manager to
execute all instructions recorded in the batch.

8.4.2 Vector Engine Manager

The Vector Engine Manager (VEM) in our setup is very simple because it only has to
handle one Vector Engine thus all operations go to the same Vector Engine. Still, the
VEM creates and deletes arrays based on specification from the Bridge and handles all
meta-data associated with arrays.

8.4.3 Vector Engine

In order to maximize the CPU cache utilization and enables parallel execution the first
stage in the VE is to form a set of instructions that enables data blocking. That is, a
set of instructions where all instructions can be applied on one data block completely at
a time without violating data dependencies. This set of instructions will be referred to
as a kernel.

The VE will form the kernel based on the batch of instructions it receives from the
VEM. The VE examines each instruction sequentially and keep adding instruction to the
kernel until it reaches an instruction that is not blockable with the rest of the kernel. In
order to be blockable with the rest of the kernel an instruction must satisfy the following
two properties where A is all instructions in the kernel and N is the new instruction.

1. The input arrays ofN and the output array of A do not share any data or represents
precisely the same data.

2. The output array of N and the input and output arrays of A do not share any
data or represents precisely the same data.

When the VE has formed a kernel, it is ready for execution. Since all instruction
in a kernel supports data blocking the VE can simply assign one block of data to each
CPU-core in the system and thus utilizing multiple CPU-cores. In order to maximize the
CPU cache utilization the VE may divide the instructions into even more data blocks.
The idea is to access data in chunks that fits in the CPU cache. The user, through an
environment variable, manually configures the number of data blocks the VE will use.

116

Processor Two Intel Xenon
Clock 2.67 GHz GHz
Private L1 Data Cache 64 KB
Private L2 Data Cache 512 KB
Shared L3 Cache per Socket 12MB
Memory Bandwidth 25.6 GB/s
Memory per Node 96GB DDR3-1066
Compiler GCC 4.4.5

Table 8.1: Lenovo ThinkStation D20

8.5 Performance Study

In order to demonstrate the performance of our initial cphVB implementation and
thereby the potential of the cphVB design, we will conduct some performance bench-
marks using NumPy4. We execute the benchmark applications on one Lenovo ThinkSta-
tion D20 with two Intel Xenon processers (Table 8.1). The experiments use up to all
eight CPU-cores on the machine and for each executaion we calculate the speedup of
cphVB compared to NumPy. We perform strong scaling experiments, in which the prob-
lem size is constant though all the executions. For each experiment, we find the block
size that results in best performance and we calculate the result of each experiment using
the average of three executions.

The benchmark consists of the following Python/NumPy applications. All are pure
Python applications that make use of NumPy and none uses any external libraries.

• Monte Carlo Pi Approximating Pi using Monte Carlo simulation. The imple-
mentation is a translation and vectorization of the Monte Carlo simulation included
in the benchmark suite SciMark 2.0[86], which is written in Java (Figure 8.3).

• kNN A näıve implementation of a k Nearest Neighbor search (Figure 8.4).

• N-body A Newtonian N-body simulation that uses a O(n2) algorithm that com-
putes all body-body interactions. (Figure 8.5).

• Shallow Water A simulation that simulates a system governed by the shallow
water equations. It is a translation of a MATLAB application by Burkardt[21]
(Figure 8.6).

8.5.1 Discussion

The Monte Carlo Pi simulation is an embarrassingly parallel problem because thread
coordination is only relevant at the end of the program. Thus, cphVB provides good
performance speedup compared to NumPy – at eight CPU-cores cphVB is more than
six times faster than NumPy.

4NumPy version 1.6.1

117

On the other hand, our näıve implementation of the k Nearest Neighbor search is not
an embarrassedly parallel problem. However, it has a time complexity of O(n2) when
the number of elements and the size of the query set is n, thus the problem should be
scalable. The result of our experiment is also promising – with a performance speedup
of more than five when running on eight CPU-cores. Because of better cache utilization
through data blocking, the performance of cphVB is more than twice as good as NumPy
when using one CPU-core. Still, when using more than four CPU-cores the memory
bandwidth becomes the limiting factor.

The N-body simulation also has a time complexity of O(n2) but it exhibits less cache
locality. At one CPU-core NumPy outperforms cphVB by quite a margin. This is
because the N-body implementation uses matrix transpose as part of the computation
loop, which NumPy controls more efficiently than cphVB.

Finally, the Shallow Water simulation only has a time complexity of O(n) thus it
is the most memory intensive application in our benchmark. Still, cphVB manages to
achieve a performance speedup of almost three compared to NumPy.

8.6 Summary

The vector oriented programming model used in cphVB provides a framework for high-
performance and high-productivity. It enables the end-user to execute vectorized ap-
plications on a broad range of hardware architectures efficiently without any hardware
specific knowledge. Furthermore, the cphVB design supports scalable architectures such
as clusters and supercomputers. It is even possible to combine architectures in order
to exploit hybrid programming where multiple levels of parallelism exist. The authors
in [68] demonstrate that combining shared memory and distributed memory parallelism
through hybrid programming is essential in order to utilize the Blue Gene/P architecture
fully.

In a case study, we demonstrate the design of cphVB by implementing a frontend
for Python/NumPy that targets multi-core CPUs in a shared memory environment.
The implementation executes vectorized applications in parallel without any user in-
tervention. Thus showing that it is possible to retain the high abstraction level of
Python/NumPy while fully utilizing the underlying hardware. Furthermore, the im-
plementation demonstrates scalable performance – a k-nearest neighbor search purely
written in Python/NumPy obtains a speedup of more than five compared to a native
execution.

Future work will further test the cphVB design model as new frontend technologies
and heterogeneous architectures are supported.

118

1 2 4 8
CPU-cores

1

2

3

4

5

6

7

Re
la
tiv

e
Sp

ee
du

p
Co

m
pa

re
d
to
 N
um

Py
 v
1.
6

Figure 8.3: Performance of the Monte Carlo Pi
Approximation. The job consists of a vector with
100M elements using 10 iterations.

1 2 4 8
CPU-cores

1

2

3

4

5

Re
la
tiv

e
Sp

ee
du

p
Co

m
pa

re
d
to
 N
um

Py
 v
1.
6

Figure 8.4: Performance of the k Nearest Neigh-
bor search. The job consists of 1K elements and
the query set also consists of 1K elements.

1 2 4 8
CPU-cores

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Re
la
tiv

e
Sp

ee
du

p
Co

m
pa

re
d
to
 N
um

Py
 v
1.
6

Figure 8.5: Performance of the N-body simula-
tion. The job consists of 8K bodies that simulate
10 time steps.

1 2 4 8
CPU-cores

0.5

1.0

1.5

2.0

2.5

3.0

Re
la
tiv

e
Sp

ee
du

p
Co

m
pa

re
d
to
 N
um

Py
 v
1.
6

Figure 8.6: Performance of the Shallow Water
Equation. The job consists of 4M grid points
that simulate 10 time steps.

119

Chapter 9

Future Work

The development of the three projects discussed in this thesis, GPAW, DistNumPy and
cphVB, is not finished. Of the three projects, GPAW is the most mature project but still
work remains if the entire GPAW computation should utilize latency-hiding and hybrid
programming.

DistNumPy

The DistNumPy project is still in the early development stage. We have introduced com-
munication latency-hiding and full array-view support but the result from our bench-
marks shows that memory latency is another aspect that is important to address. One
approach to address this issue is to extend our latency-hiding model with cache locality
optimization. The scheduler will have to prioritize array operations that are likely to be
in the cache. Additionally, just in time compilation can reduce the DistNumPy over-
head and make array operations more CPU-intensive and by merging array operations
together into a joint operation. Finally, the introduction of hybrid programming could
improve the utilization of shared memory nodes.

One of the main features in DistNumPy when using the SIMD execution model
is automatic communication latency hiding. This feature is disabled somewhat when
mixing SIMD and SPMD. The problem is that DistNumPy has to execute all lazy
evaluated operations when the user changes to the SPMD model, e.g. when the user calls
local in order to apply computations based on process affinity. Therefore, DistNumPy
will not automatically overlap local operations with communication.

The introduction of a scheduler function in DistNumPy could solve the problem.
The user would then use this new function to schedule local operations instead of ap-
plying them immediately. This would enable DistNumPy to include the local operation
in its lazy evaluation system thus making it possible to overlap local operations with
communication.

One the other hand, it is harder to address the scalability limitation introduced by
using the global address space. The use of global data iterations is very natural when
programming using the global address space. Still, it is possible to limit this issue by

120

introducing dedicate global functions, such as functions to move or replicate data.

cphVB

The cphVB project is also in the early development stage. The future goals of cphVB
involve improvement in two major areas; expanding support and improving perfor-
mance. Work has started on a CIL-bridge, which will leverage the use of cphVB to
every CIL based programming language, which among others include: C#, Visual C++
and VB.NET. Another project in current progress within the area of support is a C++
bridge providing a library-like interface to cphVB using overloading and templates to
provide a high-level interface in C++.

To improve both support and performance, work is in progress on a vector engine
targeting OpenCL compatible hardware, mainly focusing on using GPU-resources to
improve performance. Additionally, we plan to convert DistNumPy into a vector engine
manager that targets distributed memory architectures and thereby merging the two
projects.

In terms of pure performance enhancement, cphVB will introduce JIT compilation
in order to improve memory intensive applications. The current vector engine for multi-
cores CPUs uses data blocking to improve cache utilization but as our experiments show
then the memory intensive applications still suffer from the von Neumann bottleneck[8].
By JIT compile the instruction kernels; it is possible to improve cache utilization dras-
tically.

121

Chapter 10

Conclusion

In this thesis, I explore the possibility of parallel execute sequential scientific applications
seamlessly. Essential for my work is vector-oriented parallelism as a high-productivity
programming approach to develop applications that targets a broad range of parallel
hardware architectures. I introduce data parallelism implicitly to the numerical Python
library, NumPy, where its emphasis on high-level array operations matches very well
data parallelism.

I realized this high-productivity potential of NumPy through my involvement in the
scientific application GPAW. In turns out that, GPAW uses Python/NumPy as the main
development language but because of the extreme scalable performance requirement
GPAW resort to the more low-level C language and using MPI for the parallelization.
Though architecture optimizations, such as communication latency hiding and hybrid
programming, I managed a CPU utilization of 70% on Blue Gene/P supercomputer
using 16384 CPU-cores.

Because of a large user base, this low-level approach is practical for the GPAW
project. However, in smaller projects, which do not have the resources to employ
dedicated developers, this is an impracticable approach. Therefore, I introduce the
project, DistNumPy, to parallelize Python/NumPy application automatically. The
performance of DistNumPy is not equal manually parallelized applications but it pro-
vides good scalable performance without sacrificing the high-productivity inherited from
Python/NumPy.

The DistNumPy project targets a single programming language, Python, and a single
hardware architecture, cluster of single-core CPUs, exclusively. DistNumPy do support
multi-core CPUs but all optimizations targets single-cores nodes in a distributed mem-
ory cluster. We strongly believe in the high-productivity and high-performance idea in
DistNumPy thus we find a generalization of DistNumPy that support a broad range
of languages and hardware architectures very interesting. Therefore, we introduce new
abstract machine framework, cphVB, that enables a vector oriented high-level program-
ming languages to map onto a broad range of architectures efficiently.

The vector oriented programming model used in cphVB provides a framework for
high-performance and high-productivity. It enables the end-user to execute vectorized

122

applications on a broad range of hardware architectures efficiently without any hardware
specific knowledge. Furthermore, the cphVB design supports scalable architectures such
as clusters and supercomputers. It is even possible to combine architectures in order to
exploit hybrid programming where multiple levels of parallelism exist.

In a case study, we demonstrate the design of cphVB by implementing a frontend for
Python/NumPy that targets multi-core CPUs in a shared memory environment. The
implementation executes vectorized applications in parallel without any user intervention
thus showing that it is possible to retain the high abstraction level of Python/NumPy
while fully utilizing the underlying hardware.

cphVB is the more promising of the two projects, DistNumPy and cphVB, because
it generalize the idea in DistNumPy. In a sense, the DistNumPy project is a subset of
the cphVB project because DistNumPy essential is a cphVB implementation that only
supports Python/NumPy and distributed memory clusters.

Generally, the work shows that it is indeed possible to hide parallelism from the pro-
grammer without designing a new programming language (X10, Fortress, etc.). However,
the amount of parallelism is limited to the use of high-level array operations.

123

Bibliography

[1] MPI for Python. http://mpi4py.scipy.org/.

[2] UPC Language Specifications, v1.2. Technical Report LBNL-59208, 2005.

[3] J. C. Adams, W. S. Brainerd, J. T. Martin, B. T. Smith, and J. L. Wagener.
Fortran 90 Handbook. Intertext-McGraw Hill, 1992.

[4] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: principles, tech-
niques and tools. Addison-Wesley, Reading, MA, 1986.

[5] E. Allen, D. Chase, J. Hallett, V. Luchangco, J. W. Maessen, S. Ryu, G. L.
Steele Jr, S. Tobin-Hochstadt, J. Dias, and C. Eastlund. The Fortress language
specification v1.0. Sun Microsystems, 2008.

[6] Rasmus Andersen and Brian Vinter. The Scientific Byte Code Virtual Machine.
In Proceedings of the 2008 International Conference on Grid Computing & Appli-
cations, GCA 2008 : Las Vegas, Nevada, USA, July 14-17, 2008. CSREA Press.,
pages 175–181, 2008.

[7] E. Anderson, Z. Bai, J. Dongarra, A. Greenbaum, A. McKenney, J. Du Croz,
S. Hammerling, J. Demmel, C. Bischof, and D. Sorensen. LAPACK: a portable
linear algebra library for high-performance computers. In Supercomputing ’90:
Proceedings of the 1990 ACM/IEEE conference on Supercomputing, pages 2–11,
Los Alamitos, CA, USA, 1990. IEEE Computer Society Press.

[8] J. Backus. Can Programming be Liberated from the von Neumann Style?: A
Functional Style and its Algebra of Programs. Communications of the ACM,
16(8):613–641, 1978.

[9] R. Bariuso and A. Knies. SHMEM’s User’s Guide: Cray Research. Inc., SN-2516,
rev, 2(2), 1994.

[10] Kevin J. Barker, Kei Davis, Adolfy Hoisie, Darren J. Kerbyson, Mike Lang, Scott
Pakin, and Jose C. Sancho. Entering the petaflop era: the architecture and perfor-
mance of Roadrunner. In SC ’08: Proceedings of the 2008 ACM/IEEE conference
on Supercomputing, pages 1–11, Piscataway, NJ, USA, 2008. IEEE Press.

124

[11] Siegfried Benkner, Piyush Mehrotra, John Van Rosendale, and Hans Zima. High-
level management of communication schedules in HPF-like languages. In Pro-
ceedings of the 12th international conference on Supercomputing, ICS ’98, pages
109–116, New York, NY, USA, 1998. Institute for Software Technology and Parallel
Systems, University of Vienna.

[12] Morten A. Bentsen. Enjing A JIT Compiling CUDA Backend for NumPy. Master’s
thesis, University of Copenhagen, Denmark, June 2010.

[13] Morten A. Bentsen and Brian Vinter. Enjing - a JIT Backend for CUDA Devices.
Second Workshop on Programming Models for Emerging Architectures, 2010.

[14] F. Black and M. Scholes. The pricing of options and corporate liabilities. The
journal of political economy, pages 637–654, 1973.

[15] Laura Susan Blackford. ScaLAPACK. In Proceedings of the 1996 ACM/IEEE
conference on Supercomputing (CDROM) - Supercomputing 96 Supercomputing
96, page 5, 1996.

[16] P. E. Blochl. Projector augmented-wave method. Phys. Rev. B, 50(24):17953–
17979, 1994.

[17] Troels Blum. Generalizing Execution of Vectorizable Computations by Generating
Vector Oriented Byte Code. Master’s thesis, University Of Copenhagen, Denmark,
April 2011.

[18] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, J. N. Seizovic,
and Wen-King K. Su. Myrinet – A Gigabit-per-Second Local-Area-Network. j-
IEEE-MICRO, 15(1):29–36, 1995.

[19] Dan Bonachea. GASNet Specification, v1.1. Technical Report UCB/CSD-02-1207,
University of California at Berkeley, Berkeley, CA, USA, 2002.

[20] T. Brandes and F. Zimmermann. ADAPTOR - A transformation tool for HPF
programs. 1994.

[21] John Burkardt. Shallow Water Equations, 2010.

[22] Alfredo Buttari, Julien Langou, Jakub Kurzak, and Jack Dongarra. A class of
parallel tiled linear algebra algorithms for multicore architectures. Parallel Com-
puting, 35(1):38, 2009.

[23] Dan Campbell, Mary Hall, William Harrod, Jon Hiller, David Koester, John
Levesque, Robert Schreiber, and Allan Snavely. ExaScale Software Study : Soft-
ware Challenges in Extreme Scale Systems Exascale Software Study : Software
Challenges in Extreme Scale Systems. Government PROcurement, pages 1–159,
2009.

125

[24] Franck Cappello and Daniel Etiemble. MPI versus MPI+OpenMP on the IBM SP
for the NAS Benchmarks. SC Conference, 0:12, 2000.

[25] William W. Carlson, Jesse M. Draper, David Culler, Kathy Yelick, Eugene Brooks,
and Karren Warren. Introduction to UPC and Language Specification. Technical
Report CCS-TR-99-157, Bowie, MD, May 1999.

[26] H. Casanova. N-body Simulation Assignment, Nov 2008.

[27] Bryan Catanzaro, Shoaib Kamil, Yunsup Lee, Krste Asanović, James Demmel,
Kurt Keutzer, John Shalf, Kathy Yelick, and O. Fox. SEJITS: Getting Produc-
tivity and Performance With Selective Embedded JIT Specialization. In Proc of
1st Workshop Programmable Models for Emerging Architecture PMEA, number
UCB/EECS-2010-23. Citeseer, 2009.

[28] B.L. Chamberlain. Parallel Programmability and the Chapel Language. Interna-
tional Journal of High Performance Computing Applications, 21(3):291, 2007.

[29] Bradford L. Chamberlain, Sung-Eun Choi, E. Christopher Lewis, Calvin Lin,
Lawrence Snyder, and Derrick Weathersby. ZPL: A Machine Independent Pro-
gramming Language for Parallel Computers. Software Engineering, 26(3):197–211,
2000.

[30] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan
Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10: an
object-oriented approach to non-uniform cluster computing. In Proceedings of the
20th annual ACM SIGPLAN conference on Object oriented programming systems
languages and applications - OOPSLA ’05, pages 519–538, New York, NY, USA,
2005. ACM.

[31] R. Choy and A. Edelman. MATLAB*P 2.0: A unified parallel MATLAB. Technical
report, Massachusetts Institute of Technology, January 2003.

[32] R. Choy and A. Edelman. Parallel MATLAB: Doing it Right. Proceedings of the
IEEE, 93(2):331, 2005.

[33] C. J. Conti. Concepts for buffer storage. IEEE Computer Group News, 2(8):9–13,
1969.

[34] L. Dagum and R Menon. OpenMP: an industry standard API for shared-memory
programming. IEEE Computational Science and Engineering, 5(1):46, 1998.

[35] Tarditi David, Puri Sidd, and Oglesby Jose. Accelerator : Using Data Parallelism
to Program GPUs for General-Purpose Uses. October.

[36] M. J. Daydé and I. S. Duff. Use of parallel level 3 BLAS in LU factorization on
three vector multiprocessors the ALLIANT FX/80, the CRAY-2, and the IBM
3090 VF. ACM SIGARCH Computer Architecture News, 18(3):82, 1990.

126

[37] Jack J. Dongarra. Performance of Various Computers Using Standard Linear
Equations Software. Technical Report CS-89-85, University of Tennessee, dec 1990.

[38] Jack J. Dongarra and R. Clint Whaley. LAPACK Working Note 94: A User’s Guide
to the BLACS v1.0. Technical Report UT-CS-95-281, Department of Computer
Science, University of Tennessee, mar 1995.

[39] J.J. Dongarra, J.R. Bunch, C.B. Moler, and G.W. Stewart. LINPACK users’ guide.
SIAM, 1, 1979.

[40] Paul F. Dubois. Guest Editor’s Introduction: Python: Batteries Included. Com-
puting in Science Engineering, 9(3):7–9, may-june 2007.

[41] John W. Eaton. GNU Octave. History, 103(February):1–356, 1997.

[42] High Performance Fortran Forum. High Performance Fortran Language Specifica-
tion, version 1.0. Technical Report CRPC-TR92225, Houston, Tex., 1993.

[43] Nathan R. Fredrickson, Ahmad Afsahi, and Ying Qian. Performance character-
istics of openMP constructs, and application benchmarks on a large symmetric
multiprocessor. In ICS ’03: Proceedings of the 17th annual international confer-
ence on Supercomputing, pages 140–149, New York, NY, USA, 2003. ACM.

[44] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA,
1979.

[45] Rahul Garg and José Nelson Amaral. Compiling Python to a hybrid execution en-
vironment. In GPGPU ’10: Proceedings of the 3rd Workshop on General-Purpose
Computation on Graphics Processing Units, pages 19–30, New York, NY, USA,
2010. ACM.

[46] Rahul Garg and José Nelson Amaral. Compiling Python to a hybrid execution
environment. Computing, pages 19–30, 2010.

[47] Robert A. van de Geijn and Jerrell Watts. SUMMA: scalable universal matrix
multiplication algorithm. Concurrency - Practice and Experience, 9(4):255–274,
1997.

[48] D. H. Gibson. Considerations in block-oriented systems design. In AFIPS ’67
(Spring): Proceedings of the April 18-20, 1967, spring joint computer conference,
pages 75–80, New York, NY, USA, 1967. ACM.

[49] William Gropp. MPICH2: A New Start for MPI Implementations. Lecture Notes
in Computer Science, 2474:7, 2002.

[50] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI Portable Parallel
Programming with the Message Passing Interface. The MIT Press, 1994.

127

[51] C. Guide, F. Love, H. Loan, K. Kreuk, P. Hilton, and K.E. Iverson. APL (pro-
gramming Language). Website.

[52] M. U. Guide. The MathWorks. Inc., Natick, MA, 5, 1998.

[53] Iain Haslam. 3D Lattice Boltzmann (BGK) model of a fluid, 2006.

[54] D. S. Henty. Performance of Hybrid Message-Passing and Shared-Memory Paral-
lelism for Discrete Element Modeling. Supercomputing, ACM/IEEE 2000 Confer-
ence, pages 10–10, 2000.

[55] Jon Hill, Matthew Hambley, Thorsten Forster, Muriel Mewissen, Terence M Sloan,
Florian Scharinger, Arthur Trew, and Peter Ghazal. SPRINT: a new parallel
framework for R. BMC Bioinformatics, 9:558, 2008.

[56] M. Hipp and W. Rosenstiel. Parallel Hybrid Particle Simulations Using MPI and
OpenMP, pages 189–197. Springer-Verlag Berlin Heidelberg, 2004.

[57] J. Hollingsworth, K. Liu, and V. Paúl Pauca. Parallel Toolbox for MATLAB.
Technical report, Winston-Salem, NC, USA, 1996.

[58] Intel. Transform, 2008.

[59] Jacob Jensen. Suitability of the CBE for a scientific program. Master’s thesis,
Department of computer science. University of Copenhagen, 2008.

[60] Weihang Jiang, Liuxing Liu, Hyun-Wook Jin, D.K. Panda, W. Gropp, and
R. Thakur. High performance MPI-2 one-sided communication over infinilband.
In IEEE International Symposium on Cluster Computing and the Grid, 2004. CC-
Grid 2004., page 531, 2004.

[61] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific
tools for Python, 2001–.

[62] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and D. Shippy.
Introduction to the Cell multiprocessor. IBM Journal of Research and Develop-
ment, 49(4):589, 2005.

[63] Ken Kennedy, Charles Koelbel, and Hans Zima. The rise and fall of High Per-
formance Fortran: an historical object lesson. In Proceedings of the third ACM
SIGPLAN conference on History of programming languages, HOPL III, pages 7–1,
New York, NY, USA, 2007. ACM.

[64] A. A. Khan, C. L. McCreary, and M. S. Jones. A Comparison of Multiprocessor
Scheduling Heuristics. Parallel Processing, International Conference on, 2:243–
250, 1994.

128

[65] Michael Kistler, John Gunnels, Daniel Brokenshire, and Brad Benton. Petas-
cale computing with accelerators. In PPoPP ’09: Proceedings of the 14th ACM
SIGPLAN symposium on Principles and practice of parallel programming, pages
241–250, New York, NY, USA, 2009. ACM.

[66] Andreas Klöckner, Nicolas Pinto, Yunsup Lee, Bryan Catanzaro, Paul Ivanov, and
Ahmed Fasih. PyCUDA and PyOpenCL: A Scripting-Based Approach to GPU
Run-Time Code Generation. Brain, 911(4):1–24, 2009.

[67] C. Koelbel and P. Mehrotra. Compiling Global Name-Space Parallel Loops for
Distributed Execution. IEEE Trans. Parallel Distrib. Syst., 2(4):440–451, 1991.

[68] M. Kristensen, H. Happe, and B. Vinter. Hybrid Parallel Programming for Blue
Gene/P. Scalable Computing: Practice and Experience, 12(2):265–274, 2011.

[69] Mads R. B. Kristensen and Brian Vinter. Numerical Python for Scalable Archi-
tectures. In Fourth Conference on Partitioned Global Address Space Programming
Model, PGAS’10. ACM, 2010.

[70] Jonas Latt. Channel flow past a cylinderical obstacle, using a LB method, 2006.

[71] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic Linear Algebra
Subprograms for Fortran Usage. ACM Trans. Math. Softw., 5(3):308–323, 1979.

[72] C. E. Leiserson. Fat-Trees: Universl Networks for Hardware-Efficient Supercom-
puting. IEEE Transactions on Computers, c-34(10), 1985.

[73] D.B. Loveman. High Performance Fortran. IEEE Parallel & Distributed Technol-
ogy: Systems & Applications, 1(1):25, 1993.

[74] MATLAB. version 7.10.0 (R2010a). The MathWorks Inc., Natick, Massachusetts,
2010.

[75] H. Meuer, E. Strohmaier, J. J. Dongarra, and H. D. Simon. Top500 supercomputer
sites, Nov 2009.

[76] J. J. Mortensen, L. B. Hansen, and K. W. Jacobsen. Real-space grid implementa-
tion of the projector augmented wave method. Physical Review B, 71(3):035109,
2005.

[77] Chris J. Newburn, Byoungro So, Zhenying Liu, Michael Mccool, Anwar Ghuloum,
Stefanus Du Toit, Zhi Gang Wang, Zhao Hui Du, Yongjian Chen, Gansha Wu,
Peng Guo, Zhanglin Liu, and Dan Zhang. Intel ’ s Array Building Blocks : A Re-
targetable , Dynamic Compiler and Embedded Language. Symposium A Quarterly
Journal In Modern Foreign Literatures, pages 1–12, 2011.

[78] J. Nieplocha and M. Krishnan. High Performance Remote Memory Access Co-
munications: The ARMCI Approach. International Journal of High Performance
Computing and Applications, 20:2006, 2005.

129

[79] Jaroslaw Nieplocha, Robert J. Harrison, and Richard J. Littlefield. Global arrays:
A nonuniform memory access programming model for high-performance comput-
ers. The Journal of Supercomputing, 10(2), 1996.

[80] Robert W. Numrich and John Reid. Co-array Fortran for parallel programming.
SIGPLAN Fortran Forum, 17(2):1–31, 1998.

[81] Null Nvidia. NVIDIA Corporation, 2010.

[82] Travis E. Oliphant. Python for Scientific Computing. Computing in Science and
Engineering, 9:10–20, 2007.

[83] Khronos Opencl, Working Group, and Aaftab Munshi. OpenCL Specification.
ReVision, pages 1–377, 2010.

[84] Ruud Van Der Pas. An Introduction Into OpenMP. ACM SIGARCH Computer
Architecture News, 34(5):1–82, 2005.

[85] Fernando Pérez and Brian E. Granger. IPython: a System for Interactive Scientific
Computing. Comput. Sci. Eng., 9(3):21–29, may 2007.

[86] R. Pozo and B. Miller. SciMark 2.0, 12 2002.

[87] Löıc Prylli and Bernard Tourancheau. Fast Runtime Block Cyclic Data Redistri-
bution on Multiprocessors. J. Parallel Distrib. Comput, 45(1):63–72, 1997.

[88] Gautam Shah, Jarek Nieplocha, Jamshed H. Mirza, Chulho Kim, Robert J. Har-
rison, Rama Govindaraju, Kevin J. Gildea, Paul DiNicola, and Carl A. Bender.
Performance and Experience with LAPI - a New High-Performance Communica-
tion Library for the IBM RS/6000 SP. In IPPS/SPDP, pages 260–266, 1998.

[89] Tom Shanley. Infiniband. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2002.

[90] Fengguang Song, Asim YarKhan, and Jack Dongarra. Dynamic task scheduling
for linear algebra algorithms on distributed-memory multicore systems. In Pro-
ceedings of the Conference on High Performance Computing Networking, Storage
and Analysis, New York, NY, USA, 2009. ACM.

[91] Carlos Sosa. IBM System Blue Gene Solution: Blue Gene/P Application Devel-
opment. INTERNATIONAL TECHNICAL SUPPORT ORGANIZATION, 2008.

[92] B. A. Stern. Interactive Data Language. 2000.

[93] Volker Strumpen and Thomas L. Casavant. Exploiting Communication Latency
Hiding for Parallel Network Computing: Model and Analysis. In Proc. PDS’94,
pages 622–627. IEEE, 1994.

130

[94] V. S. Sunderam. PVM: a framework for parallel distributed computing. Concur-
rency: Pract. Exper., 2(4):315–339, 1990.

[95] IBM BLUE GENE TEAM. Overview of the IBM Blue Gene/P project. IBM
Journal of Research and Development, 52, 2008.

[96] R. Development Core Team. R: A Language and Environment for Statistical Com-
puting. Vienna, Austria, 2011.

[97] N. Travinin Bliss and J. Kepner. pMATLAB Parallel MATLAB Library. Interna-
tional Journal of High Performance Computing Applications, 21(3):336–359, 2007.

[98] Stéfan van der Walt. NumPy: lock ’n load, 2008.

[99] Guido van Rossum. Python Programming Language. Python Software Foundation,
2009.

[100] T. Warburton. Lecture 24: Brief introduction to block LU factorization and par-
allel implementation., 2011.

[101] Katherine Yelick, Dan Bonachea, Wei-Yu Chen, Phillip Colella, Kaushik Datta,
Jason Duell, Susan L. Graham, Paul Hargrove, Paul Hilfinger, Parry Husbands,
Costin Iancu, Amir Kamil, Rajesh Nishtala, Jimmy Su, Michael Welcome, and
Tong Wen. Productivity and performance using partitioned global address space
languages. In PASCO ’07: Proceedings of the 2007 international workshop on
Parallel symbolic computation, pages 24–32, New York, NY, USA, 2007. ACM.

[102] Kathy Yelick, Luigi Semenzato, Geoff Pike, Carleton Miyamoto, Ben Liblit, Arvind
Krishnamurthy, Paul Hilfinger, Susan Graham, David Gay, Phil Colella, and Alex
Aiken. Titanium: a high-performance Java dialect. Concurrency: Practice and
Experience, 10(11–13):825–836, 1998.

131

Appendix A

Publications

A.1 GPAW Optimized for Blue Gene/P using Hybrid Pro-
gramming

Mads Ruben Burgdorff Kristensen, Hans Henrik Happe, and Brian Vinter.
GPAW Optimized for Blue Gene/P using Hybrid Programming
In Proceedings of the 2009 IEEE International Symposium on Parallel and Distributed
Processing (IPDPS ’09). IEEE Computer Society, Washington, DC, USA, 1-6.

132

GPAW optimized for Blue Gene/P
using hybrid programming

Mads Ruben Burgdorff Kristensen
eScience Centre

University of Copenhagen
Denmark

Hans Henrik Happe
eScience Centre

University of Copenhagen
Denmark

Brian Vinter
eScience Centre

University of Copenhagen
Denmark

Abstract—In this work we present optimizations of a Grid-
based projector-augmented wave method software, GPAW [1]
for the Blue Gene/P architecture. The improvements are achieved
by exploring the advantage of shared and distributed memory
programming also known as hybrid programming. The work
focuses on optimizing a very time consuming operation in
GPAW, the finite-different stencil operation, and different hybrid
programming approaches are evaluated. The work succeeds in
demonstrating a hybrid programming model which is clearly
beneficial compared to the original flat programming model.
In total an improvement of 1.94 compared to the original
implementation is obtained. The results we demonstrate here are
reasonably general and may be applied to other finite difference
codes.

I. INTRODUCTION

GPAW[1] is a simulation software which simulates many-
body systems at the sub-atomic level. GPAW is primarily
used by physicists and chemists to investigate the electronic
structure, principally the ground state, of many-body systems.
A significant part of a GPAW computation consists of a
distributed finite-difference operation. The main object of this
paper is to optimize this finite-difference operation on the Blue
Gene/P[2] (BGP).

BGP, like most popular HPC hardware, consists of multiple
shared-memory computation nodes. A hybrid programming
paradigm may therefore be explored when targeting the BGP
architecture. Unfortunately, it is not trivial to obtain good
performance when combining threads and MPI[3]. It is often
the case that the sole use of MPI outperforms a combination
of OpenMP/Pthread and MPI when computing on clusters of
SMP computation nodes[4], [5], [6].

II. GPAW

GPAW is a real-space grid implementation of the projector
augmented wave method[7]. It uses uniform real-space grids
and the finite-difference approximation for the density func-
tional theory calculations.

A central part of density functional theory and a very time
consuming task in GPAW, is to solve Poisson and Kohn-Sham
equations. Both equations rely on finite-difference operations
when solved by GPAW. When solving the Poisson equation, a
finite-difference stencil is applied to the electrostatic potential
of the system. When solving the Kohn-Sham equation, a
finite-difference stencil is applied to all wave-functions in the

Fig. 1. A stencil operation on a 2D grid.

system. Both the electron density and the wave-functions are
represented by real-space grids. A system typically consists
of one electron density and thousands of wave-functions. The
number of wave-functions in a system depends on the number
of valence electrons in the system. For every valence electron
there may be up to two wave-functions.

The computational magnitude of a GPAW simulation de-
pends mainly on three factors: The world size, simulation
system resolution and the number of valence electrons. The
world size and resolution determine the dimensions of the real-
space grids and the number of valence electrons determines
the number of real-space grids.

A user is typically more interested in adding valence elec-
trons to the simulation than to increase the size or resolution of
the world. The real-space grid size will ordinary be between
1003 to 2003 where as the total number of real-space grids
will be greater than thousand.

A. Finite-difference

A stencil operation updates a point in a grid based on the
surrounding points. A typical 2D example is illustrated in
Figure 1 where points are updated based on the two nearest
points in all four directions.

The finite-difference methods used in GPAW are stencil
operations on the real-space grids (3D arrays). The stencil
operation used is a linear combination of a point’s two nearest
neighbors in all six directions and itself. The stencil operations
do normally use periodic boundary condition but that is not
always the case.

If we look at the real-space grid A and a predefined list of
constants C, a point Ax,y,z is computed like this:

A′x,y,z = C1Ax,y,z + C2Ax−1,y,z + C3Ax+1,y,z+
C4Ax−2,y,z + C5Ax+2,y,z + C6Ax,y−1,z+
C7Ax,y+1,z + C8Ax,y−2,z + C9Ax,y+2,z+
C10Ax,y,z−1 + C11Ax,y,z+1+
C12Ax,y,z−2 + C13Ax,y,z+2

TABLE I
HARDWARE DESCRIPTION OF A BLUE GENE/P NODE

Node CPU Four PowerPC 450 cores
CPU frequency 850 MHz
L1 cache (private) 64KB per core
L2 cache (private) Seven stream prefetching
L3 cache (shared) 8MB
Main memory 2GB
Main memory bandwidth 13.6GB/s
Peak performance 13.6 Gflops/node
Torus bandwidth 6 × 2 × 425MB/s = 5.1GB/s

III. BLUE GENE/P

Blue Gene/P consists of a number of nodes interconnected
with three independent networks: a 3D torus network, a collec-
tive tree structured network, and a global barrier network. All
point-to-point communication goes through the torus network
and every node is equipped with a direct memory access
(DMA) engine to offload torus communication from the CPUs.
The collective tree structured network is used for collective
operation like the MPI reduce operation and the global barrier
network is used for barriers.

Table I is a brief description of a BGP node. One thing to
highlight is the ratio between the speed of the CPU-cores and
the main memory. Since the CPU-cores are relatively slow
and the main memory is relatively fast compared to today’s
standard, the performance of the main memory is not as far
behind the CPU as usually. Furthermore, the torus bandwidth
is only three times lower than the main memory if all six
connections are used. The von Neumann bottleneck associated
with main memory and network is therefore reduced.

The CPU-cores can be utilized by normal SMP approaches
like pthread or OpenMP, with the limitation that BGP only
supports one thread per CPU-core. The BGP addresses the
problem of utilizing multiple CPU-cores by supporting a
virtual partition of the nodes. From the programmers point
of view the four CPU-cores would then look like four indi-
vidual nodes with each 512MB of main memory. This virtual
partitioning is called virtual mode.

A. MPI

BGP implements the MPICH2 library which comply with
the MPI-2 specification[8]. MPI-2 specifies different levels of
threaded communication. BGP supports the fully thread-safe
mode called MULTIPLE which allows any thread to call the
MPI library at any time. Since there is an overhead associated
with MULTIPLE (e.g. locks), it is also possible to use the more
restricted SINGLE mode, which do not allow concurrent calls
to MPI.

The MPICH2 implementation is tailored to utilize the
BGP’s DMA engine which means that non-blocking MPI com-
munication is handled asynchronously with minimum CPU
involvement.

BGP supports the MPI_Cart_create function which
tells BGP to reorder the MPI ranks in order to match the torus
network. We make use of this function in all the following.

 0

 50

 100

 150

 200

 250

 300

 350

 400

10^0 10^1 10^2 10^3 10^4 10^5 10^6 10^7

B
an

dw
id

th
 in

 M
B

/s
ec

Message size in bytes

Fig. 2. A bandwidth graph showing how the message size influence
the bandwidth. In this experiment, one MPI message is send between two
neighboring BGP nodes.

Fig. 3. Four 2D grids distributed over nine processes.

To investigate how much the message size influence point-
to-point bandwidth, we have performed an experiment in
which one MPI message is send between two neighboring
BGP nodes (Figure 2). The result of the experiment clearly
shows that in order to maximize the bandwidth, a message
size greater than 105 bytes is needed, while half the asymptotic
bandwidth is achieved at approximate 103 bytes.

IV. THE GPAW IMPLEMENTATION

GPAW is implemented using C and Python. The intention
is that the users of GPAW should write the model description
in Python and then call C and Fortran functions from within
Python. It is in this context a user would apply the C
implemented finite-difference operation on one or more real-
space grids.

The parallel version of GPAW uses MPI in a flat program-
ming model and the parallelization is done by simple domain
decomposition of every real-space grid in the simulation. That
is, every MPI process gets the same subset of every real-space
grid in the simulation. This is important because some part of
the GPAW computation, like the orthogonalization of wave-
functions, requires the same subset of every real-space grid in
the simulation. This is illustrated in Figure 3 with 2D real-
space grids instead of 3D grids.

Fig. 4. 2D grid distributed over nine processes. A process needs some of
its neighbor’s surface points, to compute its own surface points.

The grids are simply divided into a number of quadrilaterals
matching the number of available MPI processes. If no user-
defined domain decomposition is present, GPAW will try to
minimize the aggregated surface of the quadrilaterals. A real-
space grid is represented as a three dimensional array where
every point in the grid can be a real or complex number (8 or
16 bytes)

A. Distributed Finite-difference

Generally, it should be easy to obtain good scalability for a
distributed finite-difference operation since computation grows
faster than communication. If we look at a 3D grid of size
n × n × n the aggregated computation is O

(
n3

)
where as

the aggregated communication is only O
(
n2

)
. The operation

should scale very well when n grows at the same rate as the
number of CPUs.

In GPAW, however, scalability is very hard to obtain since
the grid size will ordinarily not exceed 2003. Furthermore,
since GPAW requires that every MPI process gets the same
subset of every grid, it is hard to take advantage of the fact
that the number of grids grows at the same pace as the CPUs.

One feature in GPAW which makes it easier to parallelize,
is the fact that the input grid and the output grid used in the
finite-difference operation is always two separate grids. We
need, therefore, not consider the order in which the grid-points
are computed.

Applying a finite-difference operation on a grid involves
all MPI processes. It is possible for an MPI process to
compute most of the points in the sub-grid assigned to it.
However, points near the surface of the sub-grid, surface
points, are dependent on remote points located in neighboring
MPI processes. This dependency is illustrated in Figure 4.

The straightforward approach, and the one used in GPAW,
for making remote points available, is to exchange the surface
points between neighboring MPI processes before applying
the finite-difference operation. The serialized communication
pattern looks like this:

1) Exchange surface points in the first dimension.
2) Exchange surface points in the second dimension.
3) Exchange surface points in the third dimension.
4) Apply the finite-difference operation.

V. OPTIMIZATIONS

In order to make GPAW run faster on the BGP, we have
explored different optimizations. Optimizations which have

been beneficial, will be discussed in this section.
The most obvious optimization is to exchange surface

elements simultaneously in all three dimensions, by using the
following non-blocking communication pattern:

1) Initiate the exchange of surface points in all three
dimensions.

2) Wait for all exchanges to finish.
3) Apply the finite-difference operation.

The idea is to fully utilize the torus network in all six directions
simultaneously, see Table I.

Another important performance aspect is how to map
the distributed real-space grids onto the physical network
topology. The 3D torus network is used for point-to-point
communication in MPI, thus it is the network, we should
attempt to map the distributed real-space grids onto. Since
the grids have the same number of dimensions as the torus
network, and since the finite-difference operation may use
periodic boundary condition, a torus topology is a perfect
match to our problem. However, the BGP requires a partition
with 512 or more nodes to form a torus topology. A partition
under 512 nodes can only form a mesh topology.

A. Multiple real-space grids

Double buffering and communication batching are two
techniques which can improve the performance of the finite-
difference operation. Both techniques requires multiple real-
space grids but the finite-difference operation is typically
applied on thousands of real-space grids.

Double buffering

Double buffering is a technique which makes it possible
to overlap communication and computation. The following
communication pattern illustrates how:

1) Initiate the exchange of surface points in all three
dimensions for the first grid.

2) Initiate the exchange of surface points in all three
dimensions for the second grid.

3) Wait for all exchanges of the first grid to finish.
4) Apply the stencil operation on the first grid.
5) Initiate the exchange of surface points in all three

dimensions for the third grid.
6) Wait for all exchanges of the second grid to finish.

The performance gain is dependent on the ability of the MPI
library and the underlying hardware to process non-blocking
send and receive calls. On the BGP, progress in non-blocking
send and receive calls will be maintained by the DMA engine
and increased performance is therefore expected.

Batching

An way to ensure critical packet size is to pack real-space
grids into batches; inspired by the message size experiment
(Figure 2).

Continuously dividing the grids between more and more
MPI processes reduces the number of surface points in a single
sub-grid. That is, at some point the amount of data send by
a single MPI call will be reduced to a size in which the MPI

overhead and network latency will dominate the communica-
tion overhead. The idea is to send a batch of surface points in
each MPI call, instead of sending surface points, individually.
This will reduce the communication overhead considerably,
as the size of the sub-grids decreases. The number of grids
packed together in this way, we call the batch-size.

When using double buffering, it is important to allow the
CPUs to start computing as soon as possible. Combining a
large batch-size with double buffering will therefore introduce
a penalty as the initial surface points exchange cannot be
hidden. One approach to minimize this penalty, is to increase
the batch-size continuously in the initial stage. For instance
a batch-size of 128 could be reduced to 64 in the initial
exchange.

VI. PROGRAMMING APPROACHES

Different approaches exist when combining threads and
MPI. To preserve control we have chosen to handle the
threading manually in pthread.

The following is a description of different programming
approaches that we have investigated. Every programming
approach except the Flat original uses the optimizations
described in section V.
• Flat original is the approach originally used in GPAW. It

uses the BGP’s virtual mode, where the four CPU-cores
are treated as individual nodes, to utilize all four CPU-
cores and it is therefore not necessary to modify anything
to support the BGP architecture.

• Flat optimized is an optimized version of the original
approach and just like the Flat original it uses the virtual
mode.

• Hybrid multiple does not use the virtual mode. Instead,
one hardware thread per CPU-core is spawned. Every
thread handles its own inter-node communication. The
node will distribute the real-space grids between its
four CPU-cores, not by dividing the grids into smaller
pieces but by assigning different grids to every CPU-
core. Because of this no synchronization is needed until
all grids are computed, the synchronization penalty is
therefore constant. This way of exploiting multiple grids
is the main advantage of this approach.

• Hybrid master-only also spawns one thread per CPU-
core, but only one thread, the master thread, handles
inter-node communication. Since we have to synchronize
between every grid-computation, each grid-computation
will be divided between the four CPU-cores. The syn-
chronization penalty thus become proportional to the
number of grids. On the other hand, this approach does
work in SINGLE MPI-mode and the overhead associated
with MULTIPLE is therefore avoided.

VII. RESULTS

A benchmark of each implementation has been executed on
the Blue Gene/P. 16384 CPU-cores or 4096 nodes or 4 racks
were made available to us. Every benchmark graph compares
the different programming approaches of the finite-difference

operation in GPAW and a periodic boundary condition is used
in all cases.

Figure 5 is a classic speedup graph comparing every imple-
mented approach with a sequential execution. It is a relatively
small job containing only 32 real-space grids. But because of
the memory demand, it is not possible to have more than 32
grids running on a single CPU-core.

The result clearly show that the best scaling and running
time is obtained with Flat optimized and Hybrid multiple
both using a batch-size of 8 grids. Since the job only consists
of 32 grids a batch-size of 8 is the maximum if all four CPU-
cores should be used. Another interresting observation is that
the advantage of batching is greater in Hybrid multiple than
in Flat optimized. This indicates that if a job consist of more
grids, the Hybrid multiple approach may become faster than
Flat optimized.

A. Multiple real-space grids

As the number of grids grow there is a corresponding linear
growth in the computation required in the finite-difference
operation. It is therefore possible to create a Gustafson graph
by increasing the number of grids in the same rate as the
number of CPU-cores (Figure 6). It is important to note that
the required communication per node increases faster than
the needed computation; this is due to the increased surface
size associated with the additional partitioning of the grids.
To illustrate this communication increase, the right scale in
Figure 6 shows the needed communication per node for Flat
optimized and Hybrid multiple respectively.

At 512 CPU-cores Hybrid multiple is faster than Flat
optimized. The main reason is the difference in the needed
communication. Flat optimized divides the grids four times
more than the Hybrid multiple. We did not see this effect
in the speedup graph, Figure 5, because of the small number
of grids. Furthermore, Hybrid multiple is better to exploit
an increase in grids because of the thread synchronization
overhead. The overhead is small and constant, but since the
total running time is very small for 32 grids (9 milliseconds
with 2048 CPU-cores), the impact of the synchronization
overhead is drastically reduced when the number of grids, and
thereby the total running time, is increased.

To investigate the scalability of a large job with many real-
space grids, we have made a speedup graph beginning at
1k CPU-cores, which allows for a 2816 grid job (Figure 7).
Again Hybrid multiple has the best performance - going from
1k to 16k CPU-cores gives a speedup of approximately 16.5
compared to Flat original. Comparing Hybrid multiple with
itself, we have a speedup of 12 where 16 would be linear but
unobtainable due to the increase in the needed communication.

To further investigate the performance difference between
Hybrid multiple and Flat optimized, we have made a small
experiment. We modifies Flat optimized to statically divide
the real-space grids into four sub-groups. It is now possible for
all four CPU-cores to work on its own sub-group and the real-
space grids will be divided into the same level as in Hybrid
multiple. The only difference between the two approaches is

that Flat optimized uses BGP’s virtual mode and Hybrid
multiple uses threads. It should be noted, however, that in
a real GPAW computation this modification does not work,
since GPAW requires that every MPI process gets the same
subset of every real-space grid, see section IV. The experiment
is not included in any of the graphs since its performance is
identical with the Hybrid multiple. Because of the identical
performance, we find it reasonable to conclude that the level of
real-space partitioning is the sole reason for the performance
difference between Hybrid multiple and the non-modified
Flat optimized.

VIII. CONCLUSIONS

Overall this work has managed to improve the performance
of a domain specific finite-difference code when scaling to
very large systems. The primary improvements are obtained
through the introduction of asynchronous communication
which, even in a well balanced system such as the Blue
Gene, efficiently improves processor utilization. Furthermore,
two hybrid programming approaches have been explored: the
hybrid multiple and the master-only approach.

The hybrid programming approach, in which inter-node
communication is handled individually by every thread, has
shown a positive impact on the performance. By allowing
every thread to handle its own inter-node communication, the
overhead for thread synchronization remains constant and the
application becomes faster than the non-hybrid version.

On the other hand, the alternative hybrid programming
approach, in which one thread handles the inter-node com-
munication on behalf of all threads in the process, cannot
compete with the non-hybrid version. That is explained by the
overhead that is introduced by thread synchronization which
grows proportional to the number of grids in the computation.

When comparing our fastest implementation compared to
the original implementation, the hybrid programming approach
combined with the latency-hiding techniques is 94% faster at
16384 CPU-cores. Translated into utilization this means that
CPU utilization grows from 36% to 70%.

While latency-hiding is the primary factor for the improve-
ment we observe, the hybrid implementation is still 10% faster
than the non-hybrid approach.

A. Further work

Overall we are satisfied with the performance of the new
implementation of the finite-difference operation, still a lot of
work remains if the entire GPAW computation should utilize
latency-hiding and hybrid programming. It may not be worth
the hard work that is needed to rewrite most of GPAW, but it
is our expectation that an overall performance gain as the one
demonstrated in this work may be obtained for the application
overall.

ACKNOWLEDGMENTS

The authors would like to thank the GPAW team at the Tech-
nical University of Denmark in particular Jens J. Mortensen
and Marcin Dulak. Furthermore we would like to thank

Argonne National Laboratory for giving us access to the Blue
Gene/P.

REFERENCES

[1] J. J. Mortensen, L. B. Hansen, and K. W. Jacobsen, “Real-space grid
implementation of the projector augmented wave method,” Physical
Review B, vol. 71, no. 3, p. 035109, 2005.

[2] I. B. G. TEAM, “Overview of the IBM Blue Gene/P project,” IBM Journal
of Research and Development, vol. 52, 2008.

[3] W. Gropp, E. Lusk, and A. Skjellum, Using MPI Portable Parallel
Programming with the Message Passing Interface. The MIT Press, 1994.

[4] D. S. Henty, “Performance of Hybrid Message-Passing and Shared-
Memory Parallelism for Discrete Element Modeling,” Supercomputing,
ACM/IEEE 2000 Conference, pp. 10–10, Nov. 2000.

[5] M. Hipp and W. Rosenstiel, Parallel Hybrid Particle Simulations Using
MPI and OpenMP. Springer-Verlag Berlin Heidelberg, 2004, pp. 189–
197.

[6] B. Vinter and J. M. Bjørndalen, “A Comparison of Three MPI Imple-
mentations,” in Communicating Process Architectures 2004, I. R. East,
D. Duce, M. Green, J. M. R. Martin, and P. H. Welch, Eds., sep 2004,
pp. 127–136.

[7] P. E. Blochl, “Projector augmented-wave method,” Phys. Rev. B, vol. 50,
no. 24, pp. 17 953–17 979, Dec 1994.

[8] W. Gropp, S. Huss-Lederman, A. Limsdaine, E. Lusk, W. Saphir, and
M. Snir, The Complete Reference: Volume 2, the MPI-2 Extensions. MIT
Press, 1998.

 0

 500

 1000

 1500

 2000

 2500

 1 512 1024 2048 4096

S
pe

ed
up

No. of CPU-cores

Flat optimized
Hybrid multiple

Hybrid master-only
Flat original

 0

 500

 1000

 1500

 2000

 2500

 1 512 1024 2048 4096

S
pe

ed
up

No. of CPU-cores

Flat optimized
Hybrid multiple

Hybrid master-only

Fig. 5. Speedup of the finite-difference operation. The job consist of only 32 real-space grids all with a size of 1443. In the left graph batching is disabled
and in the right graph batching is enabled using a batch-size of 8.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1 2048 4096 8192 16384
 0

 200

 400

 600

 800

 1000

R
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

C
om

m
un

ic
at

io
n

pe
r

no
de

 in
 M

B

No. of CPU-cores and real-space grids

Flat optimized
Hybrid multiple

Hybrid master-only
Flat original
Flat comm.

Hybrid comm.

Fig. 6. A Gustafson graph showing the running time of the finite-difference
operation when the number of real-space grids is increasing in the same rate
as the number of CPU-cores - one grid per CPU-core. The grid size are 1923

and the best batch-size has been found for every number of CPU-cores. The
right scale shows the needed communication per node.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

1k 2k 4k 8k 16k

S
pe

ed
up

No. of CPUs

Flat optimized
Hybrid multiple

Hybrid master-only
Flat original

Fig. 7. A Speedup graph starting at 1024 CPU-cores running the finite-
difference operation; every approach is compared to the original approach at
1024 CPU-cores. The job consists of 2816 real-space grids all size of 1923,
and the best batch-size has been found for every number of CPU-cores.

A.2 Hybrid Parallel Programming for Blue Gene/P

M. Kristensen, H. Happe, and B. Vinter, Hybrid Parallel Programming for
Blue Gene/P
Scalable Computing: Practice and Experience, vol. 12, no. 2, 2011. ISSN 1895-1767.

139

HYBRID PARALLEL PROGRAMMING FOR BLUE GENE/P

MADS R. B. KRISTENSEN , HANS H. HAPPE , AND BRIAN VINTER∗

Abstract. The concept of massively parallel processors has been taken to the extreme with
the introduction of the BlueGene architectures from IBM. With hundreds of thousands of proces-
sors in one machine the parallelism is extreme, but so are the techniques that must be applied to
obtain performance with that many processors. In this work we present optimizations of a Grid-
based projector-augmented wave method software, GPAW, for the Blue Gene/P architecture. The
improvements are achieved by exploring the advantage of shared and distributed memory program-
ming also known as hybrid programming and blocked communication to improve latency hiding.
The work focuses on optimizing a very time consuming operation in GPAW, the stencil operation,
and different hybrid programming approaches are evaluated. The work succeeds in demonstrating
a hybrid programming model, which is clearly beneficial compared to the original flat programming
model. In total an improvement of 1.94 compared to the original implementation is obtained. The
results we demonstrate here are reasonably general and may be applied to other stencil codes.

Key words. GPAW, HPC, Hybrid-programming, Multicore platforms

1. Introduction. Grid Based Projector Augmented Wave (GPAW)[8] is a sim-
ulation software, which simulates many-body systems at the sub-atomic level. GPAW
is primarily used by physicists and chemists to investigate the electronic structure,
principally the ground state, of many-body systems. The GPAW users often have a
desire to increase the system size and resolution to the point where the simulation
time escalates to weeks and sometimes even months. A massively parallel implemen-
tation of GPAW, which is able to fully utilize a supercomputer, is therefore highly
desirable.

The performance profile of GPAW dependence almost entirely on the electronic
structures that are being simulated. Therefore, it is difficult to measure the general
performance of GPAW. However, a significant part of any GPAW computation consists
of a distributed stencil operation. Thus an optimization of this stencil operation will
result in an improvement of the general performance of GPAW. The main object of this
paper is to optimize the stencil operation for the Blue Gene/P[9] (BGP) architecture.

The current trend in HPC hardware is towards systems of shared-memory com-
putation nodes. The BGP also follows this trend and consists of four CPU-cores
per node. Furthermore, it is quite possible that future versions of the Blue Gene
architecture will consists of even more CPU-cores per node.

To exploit the memory locality in shared-memory computation nodes a paradigm
that combines shared and distributed memory programming may be of interest. The
idea is to avoid communication between CPU-cores on the same node. Unfortunately,
it is not trivial to obtain good performance when combining shared-memory program-
ming with distributed memory programming. Even though inter-CPU communication
is avoided, it is often the case that the sole use of MPI[5] outperforms a combina-
tion of threads and MPI when computing on clusters of shared-memory computation
nodes[6, 7, 10].

We evaluate two different hybrid programming approaches. One approach in
which inter-node communication is handled individually by every thread and another
approach in which one thread handles the inter-node communication on behalf of all
the other threads in a node. The work shows that, on the Blue Gene/P, the first
approach is clearly superior the latter. In [3] the authors concludes that, on a well

∗Niels Bohr Institute, Copenhagen, Denmark. {madsbk, happe, vinter}@nbi.dk

1

2 M.R.B. KRISTENSEN, H.H. HAPPE, AND B. VINTER

Fig. 2.1. A stencil operation on a 2D grid.

balanced system, a loop level parallelization approach, corresponding to our second
hybrid approach, is unfavorably compared to a strict MPI implementation. Our first
hybrid approach was developed on the basis of that conclusion.

2. GPAW. GPAW is a real-space grid implementation of the projector aug-
mented wave method[2]. It uses uniform real-space grids and the finite-difference
approximation for the density functional theory calculations.

A central part of density functional theory and a very time consuming task in
GPAW, is to solve Poisson and Kohn-Sham equations. Both equations rely on stencil
operations when solved by GPAW. When solving the Poisson equation, a stencil is
applied to the electrostatic potential of the system. When solving the Kohn-Sham
equation, a stencil is applied to all wave-functions in the system. Both the electron
density and the wave-functions are represented by real-space grids. A system typically
consists of one electron density and thousands of wave-functions. The number of wave-
functions in a system depends on the number of valence electrons in the system. For
every valence electron there may be up to two wave-functions.

The computational magnitude of a GPAW simulation depends mainly on three
factors: The world size, simulation system resolution and the number of valence
electrons. The world size and resolution determine the dimensions of the real-space
grids and the number of valence electrons determines the number of real-space grids.

A user is typically more interested in adding valence electrons to the simulation
than to increase the size or resolution of the world. The real-space grid size will
ordinary be in the interval 1003 to 2003 where as the total number of real-space grids
will be greater than thousand.

2.1. Stencil Operation. A stencil operation updates a point in a grid based on
the surrounding points. A typical 2D example is illustrated in Fig. 2.1 where points
are updated based on the two nearest points in all four directions.

Stencil operations on the real-space grids (3D arrays) are used for the finite-
difference approximation in GPAW. The stencil operation used is a linear combination
of a point’s two nearest neighbors in all six directions and itself. The stencil operations
do normally use periodic boundary condition but that is not always the case.

If we look at the real-space grid A and a predefined list of constants C, a point
Ax,y,z is computed like this:

A′
x,y,z = C1Ax,y,z + C2Ax−1,y,z + C3Ax+1,y,z+

C4Ax−2,y,z + C5Ax+2,y,z + C6Ax,y−1,z+
C7Ax,y+1,z + C8Ax,y−2,z + C9Ax,y+2,z+
C10Ax,y,z−1 + C11Ax,y,z+1+
C12Ax,y,z−2 + C13Ax,y,z+2

3. Blue Gene/P. Blue Gene/P consists of a number of nodes interconnected
with three independent networks: a 3D torus network, a collective tree structured
network, and a global barrier network. All point-to-point communication goes through

SCPE 3

Table 3.1
Hardware description of a Blue Gene/P node

Node CPU Four PowerPC 450 cores
CPU frequency 850 MHz
L1 cache (private) 64KB per core
L2 cache (private) Seven stream prefetching
L3 cache (shared) 8MB
Main memory 2GB
Main memory bandwidth 13.6GB/s
Peak performance 13.6 Gflops/node
Torus bandwidth 6 × 2 × 425MB/s = 5.1GB/s

the torus network and every node is equipped with a direct memory access (DMA)
engine to offload torus communication from the CPUs. The collective tree structured
network is used for collective operation like the MPI reduce operation and the global
barrier network is used for barriers.

Table 3.1 is a brief description of a BGP node. One thing to highlight is the
ratio between the speed of the CPU-cores and the main memory. Since the CPU-
cores are relatively slow and the main memory is relatively fast compared to today’s
standard, the performance of the main memory is not as far behind the CPU as
usually. Furthermore, the torus bandwidth is only three times lower than the main
memory bus when all six connections are used. The von Neumann bottleneck[1]
associated with main memory and network is therefore reduced.

The CPU-cores can be utilized by normal SMP approaches like pthread or Open-
MP, with the limitation that BGP only supports one thread per CPU-core. The
BGP addresses the problem of utilizing multiple CPU-cores by supporting a virtual
partition of the nodes. From the programmers point of view the four CPU-cores would
then look like four individual nodes with each 512MB of main memory. This virtual
partitioning is called virtual mode.

3.1. MPI. BGP implements the MPICH2 library, which comply with the MPI-
2 specification[4]. MPI-2 specifies different levels of threaded communication. BGP
supports the fully thread-safe mode called MULTIPLE that allows any thread to call
the MPI library at any time. Since there is an overhead associated with MULTIPLE

(e.g. locks), it is also possible to use the more restricted SINGLE mode that do not
allow concurrent calls to MPI.

The MPICH2 implementation is tailored to utilize the BGP’s DMA engine which
means that non-blocking MPI communication is handled asynchronously with mini-
mum CPU involvement.

BGP supports the MPI Cart create function, which tells BGP to reorder the
MPI ranks in order to match the torus network. We make use of this function in all
the following.

To investigate how much the message size influence point-to-point bandwidth,
we have performed an experiment in which one MPI message is send between two
neighboring BGP nodes (cf. Fig. 3.1). The result of the experiment clearly shows
that in order to maximize the bandwidth, a message size greater than 105 bytes is
needed, while half the asymptotic bandwidth is achieved at approximate 103 bytes.

4. The GPAW Implementation. GPAW is implemented using C and Python.
The intention is that the users of GPAW should write the model description in Python
and then call C and Fortran functions from within Python. It is in this context a user

4 M.R.B. KRISTENSEN, H.H. HAPPE, AND B. VINTER

 0

 50

 100

 150

 200

 250

 300

 350

 400

10^0 10^1 10^2 10^3 10^4 10^5 10^6 10^7

B
an

dw
id

th
 in

 M
B

/s
ec

Message size in bytes

Fig. 3.1. A bandwidth graph showing how the message size influence the bandwidth. In this
experiment, one MPI message is send between two neighboring BGP nodes.

The same MPI process

Grids

Fig. 4.1. Four 2D grids distributed over nine processes.

would apply the C implemented stencil operation on one or more real-space grids.

The parallel version of GPAW uses MPI in a flat programming model and the
parallelization is done by simple domain decomposition of every real-space grid in the
simulation. That is, every MPI process gets the same subset of every real-space grid
in the simulation. This is important because some part of the GPAW computation,
like the orthogonalization of wave-functions, requires the same subset of every real-
space grid in the simulation. This domain decomposition is illustrated in Fig. 4.1
with 2D real-space grids instead of 3D grids.

The grids are simply divided into a number of quadrilaterals matching the num-
ber of available MPI processes. If no user-defined domain decomposition is present,
GPAW will try to minimize the aggregated surface of the quadrilaterals. A real-space
grid is represented as a three dimensional array where every point in the grid can be
a real or complex value (8 or 16 bytes)

4.1. Distributed Stencil Operation. Generally, it should be easy to obtain
good scalability for a distributed stencil operation since computation grows faster than
communication. If we look at a 3D grid of size n×n×n the aggregated computation is
O
(
n3

)
where as the aggregated communication is only O

(
n2

)
. The operation should

scale very well when n grows at the same rate as the number of CPUs. In GPAW,
however, scalability is very hard to obtain since the grid size will ordinarily not exceed
2003. Thus, the n is smaller than 200 even when parallelizing over thousands of CPUs.

SCPE 5

Fig. 4.2. 2D grid distributed over nine processes. A process needs some of its neighbor’s surface
points, to compute its own surface points.

The fact that the number of independent grids grows linearly with the number of
valence electrons that a simulated would normally make the problem embarrassingly
parallel. Each MPI process could compute a whole grid without the need of any
communication, since no communication between grids is required in GPAW. However,
this is not possible because GPAW requires that every MPI process gets the same
subset of every grid (cf. Fig. 4.1).

One feature in GPAW, which makes it easier to parallelize, is the fact that the
input grid and the output grid used in the stencil operation is always two separate
grids. We need therefore not consider the order in which the grid-points are computed.

Applying a stencil operation on a grid involves all MPI processes. It is possible
for an MPI process to compute most of the points in the sub-grid assigned to it.
However, points near the surface of the sub-grid, surface points, are dependent on
remote points located in neighboring MPI processes. This dependency is illustrated
in Fig. 4.2.

The straightforward approach, and the one used in GPAW, for making remote
points available, is to exchange the surface points between neighboring MPI processes
before applying the stencil operation. The serialized communication pattern looks
like this:

1. Exchange surface points in the first dimension.
2. Exchange surface points in the second dimension.
3. Exchange surface points in the third dimension.
4. Apply the stencil operation.

5. Optimizations. In order to make GPAW run faster on the BGP, we have
explored different optimizations. In this section, we will discuss the optimizations
that have been beneficial for the overall performance.

The most obvious optimization is to exchange surface elements simultaneously in
all three dimensions by using the following non-blocking communication pattern:

1. Initiate the exchange of surface points in all three dimensions.
2. Wait for all exchanges to finish.
3. Apply the stencil operation.

The idea is to fully utilize the torus network in all six directions simultaneously, see
Table 3.1.

Another important performance aspect is how to map the distributed real-space
grids onto the physical network topology. The 3D torus network is used for point-to-
point communication in MPI, thus it is the network, we should attempt to map the
distributed real-space grids onto. Since the grids have the same number of dimensions
as the torus network, and since the stencil operation may use periodic boundary

6 M.R.B. KRISTENSEN, H.H. HAPPE, AND B. VINTER

Comm

n++

n++
Last iteration

start
n+1

Comm
start

n

Comm
wait

n

Comp
Stencil

n

Fig. 5.1. Flow diagram illustrating double buffering. The n’th iteration is expressed with a n
and Comm and Comp stands for communication and computation, respectively. n++ is an iteration
to n’s successor.

condition, a torus topology is a perfect match to our problem. However, the BGP
requires a partition with 512 or more nodes to form a torus topology. A partition
under 512 nodes can only form a mesh topology.

5.1. Multiple Real-space Grids. Double buffering and communication batch-
ing are two techniques which can improve the performance of the stencil operation.
Both techniques requires multiple real-space grids but the stencil operation is typically
applied on thousands of real-space grids.

5.1.1. Double Buffering. Double buffering is a technique that makes it possi-
ble to overlap communication and computation. The following communication pattern
illustrates how (cf. Fig. 5.1):

1. Initiate the exchange of surface points in all three dimensions for the first
grid.

2. Initiate the exchange of surface points in all three dimensions for the second
grid.

3. Wait for all exchanges of the first grid to finish.
4. Apply the stencil operation on the first grid.
5. Initiate the exchange of surface points in all three dimensions for the third

grid.
6. Wait for all exchanges of the second grid to finish.

The performance gain is dependent on the ability of the MPI library and the under-
lying hardware to process non-blocking send and receive calls. On the BGP, progress
in non-blocking send and receive calls will be maintained by the DMA engine and
increased performance is therefore expected.

5.1.2. Batching. An way to obtain critical packet size is to pack real-space grids
into batches; inspired by the message size experiment (cf. Fig. 3.1).

Continuously dividing the grids between more and more MPI processes reduces
the number of surface points in a single sub-grid. That is, at some point the amount
of data send by a single MPI call will be reduced to a size in which the MPI overhead
and network latency will dominate the communication overhead. The idea is to send a
batch of surface points in each MPI call, instead of sending surface points, individually.
This will reduce the communication overhead considerably, as the size of the sub-grids
decreases. The number of grids packed together in this way, we call batch-size.

When using double buffering, it is important to allow the CPUs to start computing
as soon as possible. Combining a large batch-size with double buffering will therefore
introduce a penalty as the initial surface points exchange cannot be hidden. One
approach to minimize this penalty, is to increase the batch-size continuously in the
initial stage. For instance a batch-size of 128 could be reduced to 64 in the initial
exchange. This technique we call sloped batching.

SCPE 7

l : latency
B : bandwidth
C : computation time of one stencil element
t : total stencil size
b : batch-size
n : number of batch-size increasements initially

WaitT ime = l +
b

2nB
+

n∑

i=1

max

(
0, l +

b

2i−1B
− Cb

2i

)
+

max

(
0, l +

b

B
− Cb

)(
t

b
+ 1 − 2n+1

)

Fig. 5.2. Formula of the amount of time used by waiting on non-hidden communication when
using double buffering and sloped batching. The first line represents the initial communication, which
can not overlap computation. The second line represents the sloped bashing, in which the block-size
is doubled in each iteration and the third line represents the rest of the iterations, in which the
block-size remains constant.

The amount of time used by waiting on non-hidden communication depends on
many factors – some related to the runtime system and some related to the imple-
mentation. A general expression of the relationship is given in figure 5.2, which can
be used to find the optimal batch-size and the optimal number of initial batch-size
increasements when doing sloped batching. The CPU overhead associated with a im-
plementation of double buffering and sloped batching is not included in the expression
likewise the memory access time associated with the stencil computation is also not
included.

6. Programming Approaches. Different approaches exist when combining
threads and MPI. To preserve control we have chosen to handle the threading manu-
ally in pthread.

The following is a description of different programming approaches that we have
investigated. Every programming approach except the Flat-original uses the opti-
mizations described in Sect. 5.

Flat-original is the approach originally used in GPAW. It uses the BGP’s virtual
mode, where the four CPU-cores are treated as individual nodes, to utilize all
four CPU-cores. Therefore, it is not necessary to modify anything to support
the BGP architecture.

Flat-optimized is an optimized version of the original approach and just like the
Flat-original it uses the virtual mode.

Hybrid-multiple does not use the virtual mode. Instead, one hardware thread per
CPU-core is spawned. Every thread handles its own inter-node communica-
tion. The node will distribute the real-space grids between its four CPU-cores,
not by dividing the grids into smaller pieces but by assigning different grids to
every CPU-core. Because of this no synchronization is needed until all grids
are computed and the synchronization penalty is therefore constant. This
way of exploiting multiple grids is the main advantage of this approach.

Hybrid-master-only also spawns one thread per CPU-core, but only one thread,
the master thread, handles inter-node communication. Since we have to syn-
chronize between every grid-computation, each grid-computation will be di-
vided between the four CPU-cores. The synchronization penalty thus become

8 M.R.B. KRISTENSEN, H.H. HAPPE, AND B. VINTER

Fig. 6.1. A illustrates of the relationship between the four programming approaches – going
from the Flat-original approach to the Hybrid-multiple approach.

proportional to the number of grids. On the other hand, this approach does
work in SINGLE MPI-mode and the overhead associated with MULTIPLE is
therefore avoided.

Fig. 6.1 illustrates the relationship between the four programming approaches –
from the original approach, in which pure MPI programming is used and the wave-
functions are partitioned inside the nodes, to the hybrid approach where hybrid pro-
gramming is used and the wave-functions are shared inside the nodes.

7. Results. A benchmark of each implementation has been executed on the Blue
Gene/P (Sec. 3). 16384 CPU-cores or 4096 nodes or 4 racks were made available to
us. Every benchmark graph compares the different programming approaches of the
stencil operation in GPAW and a periodic boundary condition is used in all cases.

Fig. 7.2 is a classic speedup graph comparing every implemented approach with
a sequential execution. It is a relatively small job containing only 32 real-space grids.
But because of the memory demand, it is not possible to have more than 32 grids
running on a single CPU-core.

The result clearly show that the best scaling and running time is obtained with
Flat-optimized and Hybrid-multiple both using a batch-size of 8 grids. Since the job
only consists of 32 grids a batch-size of 8 is the maximum if all four CPU-cores should
be used. Another interesting observation is that the advantage of batching is greater
in Hybrid-multiple than in Flat-optimized. This indicates that if a job consist of more
grids, the Hybrid-multiple approach may become faster than Flat-optimized.

7.1. Communication and Computation Profile. The communication and
computation profile becomes very important when scaling to a massive number of
processes. As the number of MPI processes increases the communication time has a
tendency to increase due to network congestion. It is therefore essential that com-
munication is spread evenly between the CPU-core and that the diversity of the
communication and computation time is minimized.

Fig. 7.1 is a profile of the Hybrid-multiple approach executing on 1024 CPU-cores.
It shows a distinct pattern in which the communication and the computation phase
are aligned throughout the execution. From that it is evident that Hybrid-multiple
actually do execute in a fairly synchronized manner and no ripple effect of waiting
processes is observed.

7.2. Multiple Real-space Grids. As the number of grids grow there is a cor-
responding linear growth in the computation required in the stencil operation. It is
therefore possible to create a Gustafson graph by increasing the number of grids in
the same rate as the number of CPU-cores (cf. Fig. 7.3). It is important to note that
the required communication per node increases faster than the needed computation.
This is due to the increased surface size associated with the additional partitioning

SCPE 9

Time

M
P
I-
p
r
o
c
e
s
s
e
s

Communication

CPU idle (MPI_Wait)

Computation

Fig. 7.1. Profile of the communication and computation pattern when computing 1024 real-
space grids on 1024 CPU-cores and the Hybrid-multiple approach is used. A line represents a
MPI-process and the length of the line represents the progress of time.

of the grids. To illustrate this communication increase, the right graph in Fig. 7.3
shows the needed communication per node for Flat-optimized and Hybrid-multiple
respectively.

If we, for example, look at a computation of a grid with a size of 1923 using 1024
nodes, the grid will either be divided between 1024 MPI processes when using Hybrid-
multiple or 4096 MPI process when using Flat-optimized. Flat-optimized needs to
communicate approximately 140KB more data per node than Hybrid-multiple. Note
that this is only for a single real-space grid, the different will grow linearly with the
number of grids in the computation.

At 512 CPU-cores Hybrid-multiple is faster than Flat-optimized. The main rea-
son is the difference in the needed communication. Flat-optimized divides the grids
four times more than the Hybrid-multiple. We did not see this effect in the speedup
graph, Fig. 7.2, because of the small number of grids. Furthermore, Hybrid-multiple
is better to exploit an increase in grids because of the thread synchronization over-
head. The overhead is small and constant, but since the total running time is very
small for 32 grids (9 milliseconds with 2048 CPU-cores), the impact of the synchro-
nization overhead is drastically reduced when the number of grids, and thereby the
total running time, is increased.

To investigate the scalability of a large job with many real-space grids, we have
made a scalability graph beginning at 1k CPU-cores, which allows for a 2816 grid job
(cf. Fig. 7.4). Again Hybrid-multiple has the best performance - going from 1k to
16k CPU-cores gives a speedup of approximately 12.5 where 16 would be linear but
unobtainable due to the increase in the needed communication. If we compare the
running time of Hybrid-multiple with Flat-original, we see a 94% performance gain
at 16384 CPU-cores.

To further investigate the performance difference between Hybrid-multiple and
Flat-optimized, we have made a small experiment. We modifies Flat-optimized to
statically divide the real-space grids into four sub-groups. It is now possible for

10 M.R.B. KRISTENSEN, H.H. HAPPE, AND B. VINTER

 0

 500

 1000

 1500

 2000

 2500

 1 512 1024 2048 4096

S
pe

ed
up

No. of CPU-cores

Flat optimized
Hybrid multiple

Hybrid master-only
Flat original

 0

 500

 1000

 1500

 2000

 2500

 1 512 1024 2048 4096

S
pe

ed
up

No. of CPU-cores

Flat optimized
Hybrid multiple

Hybrid master-only

Fig. 7.2. Speedup of the stencil operation. The job consist of only 32 real-space grids all with
a size of 1443. In the left graph batching is disabled and in the right graph batching is enabled using
a batch-size of 8.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1 2048 4096 8192 16384

R
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

No. of CPU-cores and real-space grids

Flat optimized
Hybrid multiple

Hybrid master-only
Flat original

 0

 100

 200

 300

 400

 500

 600

 700

 800

 1 2048 4096 8192 16384

C
om

m
un

ic
at

io
n

pe
r

no
de

 in
 M

B

No. of CPU-cores and real-space grids

Flat programming
Hybrid programming.

Fig. 7.3. Gustafson graphs showing the running time of the stencil operation and the needed
inter-node communication when the number of real-space grids is increasing in the same rate as the
number of CPU-cores - one grid per CPU-core. The left graph shows the running time and the right
graph shows the needed inter-node communication. The grid size are 1923 and the best batch-size
has been found for every number of CPU-cores.

all four CPU-cores to work on its own sub-group and the real-space grids will be
divided into the same level as in Hybrid-multiple. The only difference between the
two approaches is that Flat-optimized uses the virtual mode in Blue Gene/P and
Hybrid-multiple uses threads. It should be noted, however, that in a real GPAW
computation this modification does not work, since GPAW requires that every MPI
process gets the same subset of every real-space grid, see Sect 4. The experiment is
not included in any of the graphs since its performance is identical with the Hybrid-
multiple. Because of the identical performance, we find it reasonable to conclude that
the level of real-space partitioning is the sole reason for the performance difference
between Hybrid-multiple and the non-modified Flat-optimized.

8. Conclusions. Overall this work has managed to improve the performance
of a domain specific stencil code when scaling to a very high degree of parallelism.

SCPE 11

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

1k 2k 4k 8k 16k

R
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

No. of CPUs

Flat optimized
Hybrid multiple

Hybrid master-only
Flat original

 0

 2

 4

 6

 8

 10

 12

 14

1k 2k 4k 8k 16k

S
pe

ed
up

No. of CPUs

Flat optimized
Hybrid multiple

Hybrid master-only
Flat original

Fig. 7.4. A scalability graph starting at 1024 CPU-cores running the stencil operation. In
the left graph the running time of every approach is shown and in the right graph every approach
is compared against the fastest approach on 1024 CPU-cores namely the Hybrid-multiple. All jobs
consists of 2816 real-space grids all size of 1923, and the best batch-size has been found for every
number of CPU-cores.

The primary improvements are obtained through the introduction of asynchronous
communication which, even in a well balanced system such as the Blue Gene, efficiently
improves processor utilization. Furthermore, two hybrid programming approaches
have been explored: the hybrid multiple and the master-only approach.

The hybrid programming approach, in which inter-node communication is han-
dled individually by every thread, has shown a positive impact on the performance.
By allowing every thread to handle its own inter-node communication, the overhead
for thread synchronization remains constant and the application becomes faster than
the non-hybrid version.

On the other hand, the alternative hybrid programming approach, in which one
thread handles the inter-node communication on behalf of all threads in the process,
cannot compete with the non-hybrid version. That is explained by the overhead that
is introduced by thread synchronization which grows proportional to the number of
grids in the computation.

When comparing our fastest implementation compared to the original implemen-
tation, the hybrid programming approach combined with the latency-hiding tech-
niques is 94% faster at 16384 CPU-cores. Translated into utilization this means that
CPU utilization grows from 36% to 70%.

While latency-hiding is the primary factor for the improvement we observe, the
hybrid implementation is still 10% faster than the non-hybrid approach.

8.1. Further Work. Overall we are satisfied with the performance of the new
implementation of the stencil operation, still a lot of work remains if the entire GPAW
computation should utilize latency-hiding and hybrid programming. It may not be
worth the hard work that is needed to rewrite most of GPAW.

Acknowledgments. The authors would like to thank The Danish Agency for
Science, Technology and Innovation and the GPAW team at the Technical University
of Denmark in particular Jens J. Mortensen and Marcin Dulak. Furthermore we
would like to thank Argonne National Laboratory for giving us access to the Blue
Gene/P.

12 M.R.B. KRISTENSEN, H.H. HAPPE, AND B. VINTER

REFERENCES

[1] J. Backus, Can programming be liberated from the von neumann style?: A functional style
and its algebra of programs, Communications of the ACM, 16 (1978), pp. 613–641.

[2] P. E. Blochl, Projector augmented-wave method, Phys. Rev. B, 50 (1994), pp. 17953–17979.
[3] F. Cappello and D. Etiemble, Mpi versus mpi+openmp on the ibm sp for the nas bench-

marks, SC Conference, 0 (2000), p. 12.
[4] W. Gropp, S. Huss-Lederman, A. Limsdaine, E. Lusk, W. Saphir, and M. Snir, The

Complete Reference: Volume 2, the MPI-2 Extensions, MIT Press, 1998.
[5] W. Gropp, E. Lusk, and A. Skjellum, Using MPI Portable Parallel Programming with the

Message Passing Interface, The MIT Press, 1994.
[6] D. S. Henty, Performance of hybrid message-passing and shared-memory parallelism for dis-

crete element modeling, Supercomputing, ACM/IEEE 2000 Conference, (2000), pp. 10–10.
[7] M. Hipp and W. Rosenstiel, Parallel Hybrid Particle Simulations Using MPI and OpenMP,

Springer-Verlag Berlin Heidelberg, 2004, pp. 189–197.
[8] J. J. Mortensen, L. B. Hansen, and K. W. Jacobsen, Real-space grid implementation of

the projector augmented wave method, Physical Review B, 71 (2005), p. 035109.
[9] I. B. G. TEAM, Overview of the ibm blue gene/p project, IBM Journal of Research and

Development, 52 (2008).
[10] B. Vinter and J. M. Bjørndalen, A comparison of three mpi implementations, in Commu-

nicating Process Architectures 2004, I. R. East, D. Duce, M. Green, J. M. R. Martin, and
P. H. Welch, eds., 2004, pp. 127–136.

A.3 Numerical Python for scalable architectures

Mads Ruben Burgdorff Kristensen and Brian Vinter. Numerical Python for
scalable architectures
In Proceedings of the Fourth Conference on Partitioned Global Address Space Program-
ming Model (PGAS ’10). ACM, New York, NY, USA

152

Numerical Python for Scalable Architectures

Mads Ruben Burgdorff Kristensen
Brian Vinter
eScience Centre

University of Copenhagen
Denmark

madsbk@diku.dk/vinter@diku.dk

Abstract
In this paper, we introduce DistNumPy, a library for doing numeri-
cal computation in Python that targets scalable distributed memory
architectures. DistNumPy extends the NumPy module[15], which
is popular for scientific programming. Replacing NumPy with Dist-
NumPy enables the user to write sequential Python programs that
seamlessly utilize distributed memory architectures. This feature is
obtained by introducing a new backend for NumPy arrays, which
distribute data amongst the nodes in a distributed memory multi-
processor. All operations on this new array will seek to utilize all
available processors. The array itself is distributed between multi-
ple processors in order to support larger arrays than a single node
can hold in memory.

We perform three experiments of sequential Python programs
running on an Ethernet based cluster of SMP-nodes with a total of
64 CPU-cores. The results show an 88% CPU utilization when run-
ning a Monte Carlo simulation, 63% CPU utilization on an N-body
simulation and a more modest 50% on a Jacobi solver. The pri-
mary limitation in CPU utilization is identified as SMP limitations
and not the distribution aspect. Based on the experiments we find
that it is possible to obtain significant speedup from using our new
array-backend without changing the original Python code.

Keywords NumPy, Productivity, Parallel language

1. Introduction
In many scientific and engineering areas, there is a need to solve
numerical problems. Researchers and engineers behind these appli-
cations often prefer a high level programming language to imple-
ment new algorithms. Of particular interest are languages that sup-
port a broad range of high-level operations directly on vectors and
matrices. Also of interest is the possibility to get immediate feed-
back when experimenting with an application. The programming
language Python combined with the numerical library NumPy[15]
supports all these features and has become a popular numerical
framework amongst researchers.

The idea in NumPy is to provide a numerical extension to the
Python language. NumPy provides not only an API to standard-
ized numerical solvers, but a possibility to develop new numeri-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PGAS’10 Oct 12–15, 2010, New York.
Copyright c© 2010 ACM [to be supplied]. . . $10.00

Prototype Months
Final
version

Idea Days

Too slow

Did not work

(a)

Final
version

Idea Days

Did not work or too slow

(b)

Figure 1. Development workflow. (a) is a typical workflow that
involves two languages: one for the prototype and one for the final
version. In (b) only one language is used in the workflow.

cal solvers that are both implemented and efficiently executed in
Python, much like the idea behind the MATLAB[8] framework.

NumPy is mostly implemented in C and introduces a flexible N-
dimensional array object that supports a broad range of numerical
operations. The performance of NumPy is significantly increased
when using array-operations instead of scalar-operations on this
new array.

Parallel execution is supported by a limited set of NumPy func-
tions, but only in a shared memory environment. However, many
scientific computations are executed on large distributed memory
machines because of the computation and memory requirements of
the applications. In such cases, the communication between proces-
sors has to be implemented by the programmer explicitly. The re-
sult is a significant difference between the sequential program and
the parallelized program. DistNumPy eliminates this difference by
introducing a distributed version of the N-dimensional array object.
All operations on such distributed arrays will utilize all available
processors and the array itself is distributed between multiple pro-
cessors, which makes it possible to expand the size of the array to
the aggregated available memory.

1.1 Motivation
Solutions to numerical problems often consist of two implementa-
tions: a prototype and a final version. The algorithm is developed
and implemented in a prototype by which the correctness of the
algorithm can be verified. Typical many iterations of development

are required to obtain a correct prototype, thus for this purpose a
high productivity language is used, most often MATLAB. How-
ever, when the correct algorithm is finished the performance of the
implementation becomes essential for doing research with the al-
gorithm. This performance requirement presents a problem for the
researcher since highly optimized code requires a fairly low-level
programming language such as C/C++ or Fortran. The final ver-
sion will therefore typical be a reimplementation of the prototype,
which involves both changing the programming language and par-
allelizing the implementation (Fig. 1a).

The overall target of DistNumPy is to provide a high productiv-
ity tool that meets both the need for a high productivity tool that
allows researcher to move from idea to prototype in a short time,
and the need for a high performance solution that will eliminate the
need for a costly and risky reimplementation (Fig. 1b). It should
be possible to develop and implement an algorithm using a sim-
ple notebook and then effortlessly execute the implementation on a
cluster of computers while utilizing all available CPUs.

1.2 Target architectures
NumPy supports a long range of architectures from the widespread
x86 to the specialized Blue Gene architecture. However, NumPy
is incapable of utilizing distributed memory architectures like Blue
Gene supercomputers or clusters of x86 machines. The target of
DistNumPy is to close this gap and fully support and utilize dis-
tributed memory architectures.

1.3 Related work
Libraries and programming languages that support parallelization
on distributed memory architectures is a well known concept. The
existing tools either seek to provide optimal performance in parallel
applications or, like DistNumPy, seek to ease the task of writing
parallel applications.

The library ScaLAPACK[2] is a parallel version of the linear
algebra library LAPACK[1]. It introduces efficient parallel opera-
tions on distributed matrices and vectors. To use ScaLAPACK, an
application must be programmed using MPI[7] and it is the respon-
sibility of the programmer to ensure that the allocation of matrices
and vectors comply with the distribution layout ScaLAPACK spec-
ifies.

Another library, Global Arrays[13], introduces a distributed
data object (global array), which makes the data distribution trans-
parent to the user. It also supports efficient parallel operations and
provides a higher level of abstraction than ScaLAPACK. How-
ever, the programmer must still explicitly coordinate the multiple
processes that are involved in the computation. The programmer
must specify which region of a global array is relevant for a given
process.

Both ScaLAPACK and Global Arrays may be used from within
Python and can even be used in combination with NumPy, but it
is only possible to use NumPy locally and not with distributed
operations. A more closely integrated Python project IPython[16]
supports parallelized NumPy operations. IPython introduces a dis-
tributed NumPy array much like the distributed array that is intro-
duced in this paper. Still, the user-application must use the MPI
framework and the user has to differentiate between the running
MPI-processes.

Co-Array Fortran[14] is a small language extension of Fortran-
95 for parallel processing on Distributed Memory Machines. It in-
troduce a Partitioned Global Address Space (PGAS) by extending
Fortran arrays with a co-array dimension. Each process can ac-
cess remote instances of an array by indexing into the co-array
dimensions. A similar PGAS extension called Unified Parallel C
(UPC)[3] extent the C language with a distributed array declara-
tion. Both languages provide a high abstraction level, but users still

program with the SPMD model in mind, writing code with the un-
derstanding that multiple instances of it will be executing coopera-
tively.

A higher level of abstraction is found in projects where the ex-
ecution, seen from the perspective of the user, is represented as
a sequential algorithm. The High Performance Fortran (HPF)[12]
programming languages provide such an abstraction level. How-
ever, HPF requires the user to specify parallelizable regions in the
code and which data distribution scheme the runtime should use.

The Simple Parallel R INTerface (SPRINT)[9] is a parallel
framework for the programming language R. The abstraction level
in SPRINT is similar to DistNumPy in the sense that the distribu-
tion and parallelization is completely transparent to the user.

2. NumPy
Python has become a popular language for high performance com-
puting even though the performance of Python programs is much
lower than that of compiled languages. The growing popularity is
because Python is used as the coordinating language while the com-
pute intensive tasks are implemented in a high performance lan-
guage.

NumPy[15] is a library for numerical operations in Python
which is implemented in the C programming language. NumPy
provides the programmer with an N-dimensional array object and
a whole range of supported array operations. By using the array
operations, NumPy takes advantage of the performance of C while
retaining the high abstraction level of Python. However, this also
means that no performance improvement is obtained otherwise e.g.
using a Python loop to traverse a NumPy array does not result in
any performance gain.

2.1 Interfaces
The primary interface in NumPy is a Python interface and it is pos-
sible to use NumPy exclusively from Python. NumPy also provides
a C interface in which it is possible to access the same function-
ality as in the Python interface. Additionally, the C interface also
allows programmers to access low level data structures like point-
ers to array data and thereby provides the possibility to implement
arbitrary array operations efficiently in C. The two interfaces may
be used interchangeably through the Python program.

2.2 Universal functions
An important mechanism in NumPy is a concept called Universal
function. A universal function (ufunc) is a function that operates
on all elements in an array independently. That is, a ufunc is a
vectorized wrapper for a function that takes a fixed number of scalar
inputs and produces a fixed number of scalar outputs. Using ufunc
can result in a significant performance boost compared to native
Python because the computation-loop is executed in C.

2.2.1 Function broadcasting
To make ufunc more flexible it is possible to use arrays with
different number of dimensions. To utilize this feature the size of
the dimensions must either be identical or have the length one.
When the ufunc is applied, all dimensions with a size of one will
be broadcasted in the NumPy terminology. That is, the array will
be duplicated along the broadcasted dimension (Fig. 2).

It is possible to implement many array operations efficiently
in Python by combining NumPy’s ufunc with more traditional
numerical functions like matrix multiplication, factorization etc.

2.3 Basic Linear Algebra Subprograms
NumPy makes use of the numerical library Basic Linear Algebra
Subprograms (BLAS) [11]. A highly optimized BLAS implemen-
tation exists for almost all HPC platforms and NumPy exploits

10

10 20

01 02

03 04

05 06

10 20

+ 20 =

11 22

13 04

15 26

Broadcasted element=

Figure 2. Universal function broadcasting. The ufunc addition
is applied on a 3x2 array and a 1x2 array. The first dimension of the
1x2 array is broadcasted to the size of the first dimension of the 3x2
array. The result is a 3x2 array in which the two arrays are added
together in an element-by-element fashion.

this when possible. Operations on vector-vector, matrix-vector and
matrix-matrix (BLAS level 1, 2 and 3 respectively) all use BLAS
in NumPy.

3. DistNumPy
DistNumPy is a new version of NumPy that parallelizes array op-
erations in a manner completely transparent to the user – from
the perspective of the user, the difference between NumPy and
DistNumPy is minimal. DistNumPy can use multiple processors
through the communication library Message Passing Interface
(MPI)[7]. However, we have chosen not to follow the standard
MPI approach in which the same user-program is executed on all
MPI-processes. This is because the standard MPI approach requires
the user to differentiate between the MPI-processes, e.g. sequential
areas in the user-program must be guarded with a branch based on
the MPI-rank of the process. In DistNumPy MPI communication
must be fully transparent and the user needs no knowledge of MPI
or any parallel programming model. However, the user is required
to use the array operations in DistNumPy to obtain any kind of
speedup. We think this is a reasonable requirement since it is also
required by NumPy.

The only difference in the API of NumPy and DistNumPy is
the array creation routines. DistNumPy allow both distributed and
non-distributed arrays to co-exist thus the user must specify, as an
optional parameter, if the array should be distributed. The following
illustrates the only difference between the creation of a standard
array and a distributed array:

#Non - Distributed
A = numpy.array ([1 ,2 ,3])
Distributed
B = numpy.array ([1,2,3], dist=True)

3.1 Interfaces
There are two programming interfaces in NumPy – one in Python
and one in C. We aim to support the complete Python interface
and a great subset of the C interface. However, the part of the C
interface that involves direct access to low level data structures
will not be supported. It is not feasible to return a C-pointer that
represents the elements in a distributed array.

3.2 Data layout
Two-Dimensional Block Cyclic Distribution is a very popular
distribution scheme and it is used in numerical libraries like
ScaLAPACK[2] and LINPACK[5]. It supports matrices and vec-
tors and has a good load balance in numerical problems that have
a diagonal computation workflow e.g. Gaussian elimination. The
distribution scheme works by arranging all MPI-processes in a two
dimensional grid and then distributing data-blocks in a round-robin
fashion either along one or both grid dimensions (Fig. 3); the result
is a well-balanced distribution.

(0,1) (0,2)

(1,0)

(2,0)

(3,0)

(0,4) (0,5)(0,3)(0,0)

(2,3)

Blocks owned by the processors [0,0]

(0,0)

Grid of Processors

0 1 2

0

1

Global view of matrix

(2,0)

(1,0)

(3,0)

(0,3) (0,1) (0,4) (0,2) (0,5)

(2,3)

(1,3)

(3,3)

(2,1)

(1,1)

(3,1)

(2,4)

(1,4)

(3,4)

(2,2)

(1,2)

(3,2)

(2,5)

(1,5)

(3,5)

Figure 3. The Two-Dimensional Block Cyclic Distribution of a
matrix on a 2 x 3 grid of processors.

NumPy is not limited to matrices and vectors as it supports ar-
rays with an arbitrary number of dimensions. DistNumPy therefore
use a more generalized N-Dimensional Block Cyclic Distribution
inspired by High Performance Fortran[12], which supports an arbi-
trary number of dimensions. Instead of using a fixed process grid,
we have a process grid for every number of dimensions. This works
well when operating on arrays with the same number of dimensions
but causes problems otherwise. For instance in a matrix-vector
multiplication the two arrays are distributed on different process
grid and may therefore require more communication. ScaLAPACK
solves the problem by distributing vectors on two-dimensional pro-
cess grids instead of one-dimensional process grids, but this will
result in vector operations that cannot utilize all available proces-
sors. An alternative solution is to redistribute the data between a
series of identically leveled BLAS operations using a fast runtime
redistribution algorithm like [18] demonstrates.

3.3 Operation dispatching
The MPI-process hierarchy in DistNumPy has one MPI-process
(master) placed above the others (slaves). All MPI-processes run
the Python interpreter but only the master executes the user-
program, the slaves will block at the import numpy statement.

The following describes the flow of the dispatching:

1. The master is the dispatcher and will, when the user applies
a python command on a distributed array, compose a message
with meta-data describing the command.

2. The message is then broadcasted from the master to the slaves
with a blocking MPI-broadcast. It is important to note that the
message only contains meta-data and not any actual array data.

3. After the broadcast, all MPI-processes will apply the command
on the sub-array they own and exchange array elements as
required (Point-to-Point communication).

4. When the command is completed, the slaves will wait for the
next command from the master and the master will return to
the user’s python program. The master will return even though
some slaves may still be working on the command, synchro-
nization is therefore required before the next command broad-
cast.

3.4 Views
In NumPy an array does not necessarily represent a complete con-
tiguous block of memory. An array is allowed to represent a subpart
of another array i.e. it is possible to have a hierarchy of arrays where
only one array represent a complete contiguous block of memory
and the other arrays represent a subpart of that memory.

01 02 03 04 05 06 07 08 09 10 11 12

03 04 05 06 07 08

03 04 05 03 05 07

10 11 12

1210 11Array-views

Array-bases

Memory

Partial views Complete view

Figure 4. Reference hierarchy between the two array data struc-
tures and the main memory. Only the three array-views at top of
the hierarchy are visible from the perspective of the user.

Inspired by NumPy, DistNumPy implements an array hierarchy
where distributed arrays are represented by the following two data
structures.

• Array-base is the base of an array and has direct access to
the content of the array in main memory. An array-base is
created with all related meta-data when the user allocates a new
distributed array, but the user will never access the array directly
through the array-base. The array-base always describes the
whole array and its meta-data such as array size and data type
are constant.

• Array-view is a view of an array-base. The view can represent
the whole array-base or only a sub-part of the array-base. An
array-view can even represent a non-contiguous sub-part of
the array-base. An array-view contains its own meta-data that
describe which part of the array-base is visible and it can add
non-existing 1-length dimensions to the array-base. The array-
view is manipulated directly by the user and from the users
perspective the array-view is the array.

Array-views are not allowed to refer to each other, which means
that the hierarchy is flat with only two levels: array-base below
array-view. However, multiple array-views are allowed to refer to
the same array-base. This hierarchy is illustrated in Figure 4.

3.5 Optimization hierarchy
It is a significant performance challenge to support array-views that
represent a non-contiguous sub-part of an array-base. The difficulty
lies in the process of packing communication and computation to-
gether in large blocks, which is very expensive when operating on
non-contiguous data. To overcome this problem we introduce a hi-
erarchy of implementations all optimized for specific operation sce-
narios. When an operation is applied a search through the hierarchy
determines the most optimized implementation for that particular
operation. All operations have its own hierarchy some with more
levels than others, but at the bottom of the hierarchy all operations
have an implementation that can handle all scenarios.

3.6 Parallel BLAS
As previously mentioned NumPy supports BLAS operations on
vectors and matrices. DistNumPy therefore implements a paral-
lel version of BLAS inspired by PBLAS from the ScaLAPACK
library. Since DistNumPy uses the same data-layout as ScaLA-
PACK, it would be straightforward to use PBLAS for all parallel
BLAS operations. However, to simplify the installation and main-
tenance of DistNumPy we have chosen to implement our own par-
allel version of BLAS. We use SUMMA[6] for matrix multiplica-

1 from numpy import *
2 (x, y) = (empty([S], dist=True), \
3 empty([S], dist=True))
4 (x, y) = (random(x), random(y))
5 (x, y) = (square(x), square(y))
6 z = (x + y) < 1
7 print add.reduce(z) * 4.0 / S #The result

Figure 5. Computing Pi using Monte Carlo simulation. S is
the number of samples used. We have defined a new ufunc
(ufunc random) to make sure that we use an identical ran-
dom number generator in all benchmarks. The ufunc uses
”rand()/(double)RAND MAX” from the ANSI C standard library
(stdlib.h) to generate numbers.

tion, which enable us to use the already available BLAS library
locally on the MPI-processes. SUMMA is only applicable on com-
plete array-views and we therefore use a straightforward implemen-
tation that computes one element at a time if partial array-views are
involved in the computation.

3.7 Universal function
In DistNumPy, the implementation of ufunc uses three different
scenarios.

1. In the simplest scenario we have a perfect match between all
elements in the array-views and applying an ufunc does not
require any communication between MPI-processes. The sce-
nario is applicable when the ufunc is applied on complete array-
views with identical shapes.

2. In the second scenario the array-views must represent a con-
tinuous part of the underlying array-base. The computation is
parallelized by the data distribution of the output array and data
blocks from the input arrays are fetched when needed. We use
non-blocking one-side communication (MPI Get) when fetch-
ing data blocks, which makes it possible to compute one block
while fetching the next block (double buffering).

3. The final scenario does not use any simplifications and works
with any kind of array-view. It also uses non-blocking one-side
communication but only one element at a time.

4. Examples
To evaluate DistNumPy we have implemented three Python pro-
grams that all make use of NumPy’s vector-operations (ufunc).
They are all optimized for a sequential execution on a single CPU
and the only program change we make, when going from the origi-
nal NumPy to our DistNumPy, is the array creation argument dist.
A walkthrough of a Monte Carlo simulation is presented as an ex-
ample of how DistNumPy handles Python executions.

4.1 Monte Carlo simulation
We have implemented an efficient Monte Carlo Pi simulation using
NumPy’s ufunc. The implementation is a translation of the Monte
Carlo simulation included in the benchmark suite SciMark 2.0[17],
which is written in Java. It is very simple and uses two vectors
with length equal the number of samples used in the calculation.
Because of the memory requirements, this drastically reduces the
maximum number of samples. Combining multiple simulations
will allow more samples but we will only use one simulation.
The implementation is included in its full length (Fig. 5) and the
following is a walkthrough of a simulation (the bullet-numbers
represents line numbers):

1 h = zeros(shape(B), float , dist=True)
2 dmax = 1.0
3 AD = A.diagonal ()
4 while(dmax > tol):
5 hnew = h + (B - add.reduce(A * h, 1)) /

AD
6 tmp = absolute ((h - hnew) / h)
7 dmax = maximum.reduce(tmp)
8 h = hnew
9 print h #The result

Figure 6. Iteratively Jacobi solver for matrix A with solution vec-
tor B both are distributed arrays. The import statement and the cre-
ation of A and B is not included here. tol is the maximum tolerated
value of the diagonal-element with the highest value (dmax).

1: All MPI-processes interpret the import statement and initi-
ate DistNumPy. Besides calling MPI Init() the initialization
is identical to the original NumPy but instead of returning
from the import statement, the slaves, MPI-processes with rank
greater than zero, listen for a command message from the mas-
ter, the MPI-process with rank zero.

2-3: The master sends two CREATE ARRAY messages to all slaves.
The two messages contain an array shape and unique identifier
(UID), which in this case identifies x and y, respectively. All
MPI-processes allocate memory for the arrays and stores the
array information.

4: The master sends two UFUNC messages to all slaves. Each mes-
sage contains a UID and a function name ufunc random.
All MPI-processes apply the function on the array with the
specified UID. A pointer to the function is found by call-
ing PyObject Get AttrString with the function name. It
is thereby possible to support all ufuncs from NumPy.

5: Again the master sends two UFUNC messages to all slaves but
this time with function name square.

6: The master sends a UFUNC messages with function name add
followed by a UFUNC messages with function name less than.
The scalar 1 is also in the message.

7: The master sends a UFUNC REDUCE messages with function
name add. The result is a scalar, which is not distributed,
and the master therefore solely computes the remainder of the
computation and print the result. When the master is done a
SHUTDOWN message is sent to the slaves and the slaves call
exit(0).

4.2 Jacobi method
The Jacobi method is an algorithm for determining the solutions of
a system of linear equations. It is an iterative method that uses a
spitting scheme to approximate the result.

Our implementation uses ufunc operations in a while-loop until
it converges. Most of the implementation is included here(Fig. 6).

4.3 Newtonian N-body simulation
A Newtonian N-body simulation is one that studies how bodies,
represented by a mass, a location, and a velocity, move in space
according to the laws of Newtonian physics. We use a straightfor-
ward algorithm computing all body-body interactions. The NumPy
implementation is a direct translation of a MATLAB program[4].
The working loop of the two implementations take up 19 lines in
Python and 22 lines in MATLAB thus it is too big to include here.
However, the implementation is straightforward and use universal
functions and matrix multiplications.

Table 1. Hardware specifications
CPU Core 2 Quad Nehalem
CPU Frequency 2.26 GHz 2.66 GHz
CPU per node 1 2
Cores per CPU 4 4
Memory per node 8 GB @ 6.5 GB/s 24 GB @ 25.6 GB/s
Number of nodes 8 8
Network Gigabit Ethernet Gigabit Ethernet

5. Experiments
In this section, we will conduct performance benchmarks on Dist-
NumPy and NumPy1. We will benchmark the three Python pro-
grams presented in Section 4. All benchmarks are executed on two
different Linux clusters – an Intel Core 2 Quad cluster and an In-
tel Nehalem cluster. Both clusters consist of processors with four
CPU-cores, but the number of processors per node differs. Intel
Core 2 Quad cluster has one CPU per node whereas the Intel Ne-
halem cluster has two CPUs per node. The interconnect is Gigabit
Ethernet in both clusters. (Table 1).

Our experiments consist of a speedup benchmark, which we de-
fine as an execution time comparison between a sequential exe-
cution with NumPy and a parallelized execution with DistNumPy
while the input is identical. Strong-scaling is used in all bench-
marks and the input size is therefore constant.

5.1 Monte Carlo simulation
A Distributed Monte Carlo simulation is embarrassingly parallel
and requires a minimum of communication. This is also the case
when using DistNumPy because ufuncs are only applied on identi-
cally shaped arrays and it is therefore the simplest ufunc scenario.
Additionally, the implementation is CPU-intensive because a com-
plex ufunc is used as random number generator.

The result of the speedup benchmark is illustrated in Figure 7.
We see a close to linear speedup for the Nehalem cluster – a CPU
utilization of 88% is achieved on 64 CPU-cores. The penalty of
using multiple CPU-cores per node is noticeable on the Core 2
architecture – a CPU utilization of 68% is achieved on 32 CPU-
cores.

5.2 Jacobi method
The dominating part of the Jacobi method, performance-wise, is
the element-by-element multiplication of A and h (Fig. 6 line 5).
It consists of O(n2) operations where as all the other operations
only consist O(n) operations. Since scalar-multiplication is a very
simple operation, the dominating ufunc in the implementation is
memory-intensive.

The result of the speedup benchmark is illustrated in Figure 8.
We see a good speedup with 8 CPU-cores and to some degree also
with 16 Nehalem CPU-cores. However, the CPU utilization when
using more than 16 CPU-cores is very poor. The problem is mem-
ory bandwidth – since we use multiple CPU-cores per node when
using more than 8 CPU-cores, the aggregated memory bandwidth
of the Core 2 cluster does only increase up to 8 CPU-cores. The
Nehalem cluster is a bit better because it has two memory buses
per node, but using more than 16 CPU-cores will not increase the
aggregated memory bandwidth.

5.2.1 Profiling of the Jacobi implementation
To investigate the memory bandwidth limitation observed in the
Jacobi execution we have profiled the execution by measuring the
time spend on computation and communication (Fig. 9). As ex-

1 NumPy version 1.3.0

 1
 4

 8

 16

 32

 64

 1 4 8 16 32 64

S
pe

ed
up

No. of CPU−cores

Core 2 Quad
Nehalem

(a)

 1

 2

 4

 8

 1 2 4 8

S
pe

ed
up

No. of CPU−cores

Core 2 Quad
Nehalem

Core 2 Quad SMP
Nehalem SMP

(b)

Figure 7. Speedup of the Monte Carlo simulation. In graph (a) the two architectures uses a minimum number of CPU-cores per node. Added
in graph (b) is the result of using multiple CPU-cores on a single node (SMP).

pected the result shows that the percentages used with communica-
tion increases when the number of CPU-cores increases. Further-
more, a noteworthy observation is the almost identical communi-
cation overhead at eight CPU-cores and sixteen CPU-cores. This is
due the change from a single CPU-core per node to multiple CPU-
cores per node. At sixteen CPU-cores half of the communication is
performed through the use of shared memory, which means that the
communication, just like the computation, is bound by the limited
memory bandwidth.

5.3 Newtonian N-body simulation
The result of the speedup benchmark is illustrated in Figure 10.
Compared to the Jacobi method we see a similar speedup and
CPU utilization. This is expected because the dominating opera-
tions are also simple ufuncs. Even though there are some matrix-
multiplications, which have a great scalability, it is not enough to
significantly boost the overall scalability.

5.4 Alternative programming language
DistNumPy introduces a performance overhead compared to a
lower-level programming language such as C/C++ or Fortran. To
investigate this overhead we have implemented the Jacobi bench-
mark in C. The implementation uses the same sequential algorithm
as the NumPy and DistNumPy implementations.

Executions on both architectures show that DistNumPy and
NumPy is roughly 50% slower than the C implementation when
executing the Jacobi method on one CPU-core. This is in rough
runtime numbers: 21 seconds for C, 31 seconds for NumPy and 32
seconds for DistNumPy.

Obviously highly hand-optimized implementations have a clear
performance advantages over DistNumPy. For instance by the use
of a highly optimized implementation in C [10] demonstrates ex-
treme scalability of a similar Jacobi computation – an execution
by 16384 CPU-cores achieves a CPU utilization of 70% on a Blue
Gene/P architecture.

5.5 Summary
The benchmarks clearly show that DistNumPy has both good per-
formance and scalability when execution is not bound by the mem-
ory bandwidth, which is evident from looking at the CPU utiliza-
tion when only one CPU-core per node is used. As expected the
scalability of the Monte Carlo simulation is better than the Jacobi
and the N-body computation because of the reduced communica-
tion requirements and more CPU-intensive ufunc operation.

The scalability of the Jacobi and the N-body computation is
drastically reduced when using multiple CPU-cores per node. The
problem is the complexity of the ufunc operations. As opposed to
the Monte Carlo simulation, which makes use of a complex ufunc,
the Jacobi and the N-body computation only use simple ufuncs e.g.
add and multiplication.

As expected the performance of the C implementation is better
than the DistNumPy implementation. However, by utilizing two
CPU-cores it is possible to outperform the C implementation in
the case of the Jacobi method. This is not a possibility in the case
of the Monte Carlo simulation where the algorithm does not favor
vectorization.

6. Future work
In its current state DistNumPy does not implement the NumPy
interface completely. Many specialized operations like Fast Fourier
transform or LU factorization is not implemented, but it is our
intention to implement the complete Python interface and most of
the C interface.

Other important future work include performance and scala-
bility improvement. As showed by the benchmarks, applications
that are dominated by non-complex ufuncs easily become memory
bounded. One solutions is to block ufuncs, that operate on com-
mon arrays, together in one joint operation and thereby make the
joint operation more CPU-intensive. If it is possible to join enough
ufuncs together the application may become CPU bound rather than
memory bound.

 1
 4

 8

 16

 32

 64

 1 4 8 16 32 64

S
pe

ed
up

No. of CPU−cores

Core 2 Quad
Nehalem

(a)

 1

 2

 4

 8

 1 2 4 8

S
pe

ed
up

No. of CPU−cores

Core 2 Quad
Nehalem

Core 2 Quad SMP
Nehalem SMP

(b)

Figure 8. Speedup of the Jacobi solver. In graph (a) the two architectures uses a minimum number of CPU-cores per node. Added in graph
(b) is the result of using multiple CPU-cores on a single node (SMP).

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 (1)
 2 (2)

 4 (4)
 8 (8)

16 (8)

32 (8)

%
 o

f t
he

 to
ta

l e
xe

cu
tio

n
tim

e

Total no. of CPU-cores (total no. of nodes)

Core 2 Quad

(a)

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 (1)
 2 (2)

 4 (4)
 8 (8)

16 (8)

32 (8)

64 (8)

%
 o

f t
he

 to
ta

l e
xe

cu
tio

n
tim

e

Total no. of CPU-cores (total no. of nodes)

Nehalem

(b)

Figure 9. Profiling of the Jacobi experiment. The two figures illustrate the relationship between communication and computation when
running on the Core 2 Quad architecture (a) and the Nehalem architecture (b). The area with the check pattern represent MPI communication
and the clean area represent computation. Note that these figures relates directly to the Jacobi speedup graph (Fig 8a).

 1
 4

 8

 16

 32

 64

 1 4 8 16 32 64

S
pe

ed
up

No. of CPU−cores

Core 2 Quad
Nehalem

(a)

 1

 2

 4

 8

 1 2 4 8

S
pe

ed
up

No. of CPU−cores

Core 2 Quad
Nehalem

Core 2 Quad SMP
Nehalem SMP

(b)

Figure 10. Speedup of Newtonian N-body simulation. In graph (a) the two architectures uses a minimum number of CPU-cores per node.
Added in graph (b) is the result of using multiple CPU-cores on a single node (SMP).

7. Conclusions
In this work we have successfully shown that it is possible to
implement a parallelized version of NumPy[15] that seamlessly
utilize distributed memory architectures. The only API difference
between NumPy and our parallelized version, DistNumPy, is an
extra optional parameter in the array creation routines.

Performance measurements of three Python program, which
make use of DistNumPy, show very good performance and scal-
ability. A CPU utilization of 88% is achieved on a 64 CPU-core
Nehalem cluster running a CPU-intensive Monte Carlo simulation.
A more memory-intensive N-body simulation achieves a CPU uti-
lization of 91% on 16 CPU-cores but only 63% on 64 CPU-cores.
Similar a Jacobi solver achieves a CPU utilization of 85% on 16
CPU-cores and 50% on 64 CPU-cores.

To obtain good performance with NumPy the user is required
to make use of array operations rather than using Python loops.
DistNumPy take advantage of this fact and parallelizes array oper-
ations. Thus most efficient NumPy applications should be able to
benefit from DistNumPy with the distribution parameter as the only
change.

We conclude that it is possible to obtain significant speedup with
DistNumPy. However, further work is needed if shared memory
machines are to be fully utilized as nodes in a scalable architecture.

References
[1] E. Anderson, Z. Bai, J. Dongarra, A. Greenbaum, A. McKenney,

J. Du Croz, S. Hammerling, J. Demmel, C. Bischof, and D. Sorensen.
Lapack: a portable linear algebra library for high-performance com-
puters. In Supercomputing ’90: Proceedings of the 1990 ACM/IEEE
conference on Supercomputing, pages 2–11, Los Alamitos, CA, USA,
1990. IEEE Computer Society Press. ISBN 0-89791-412-0.

[2] L. S. Blackford. Scalapack. In Proceedings of the 1996 ACM/IEEE
conference on Supercomputing (CDROM) - Supercomputing 96 Su-
percomputing 96, page 5, 1996. doi: 10.1145/369028.369038.

[3] W. W. Carlson, J. M. Draper, D. Culler, K. Yelick, E. Brooks, and
K. Warren. Introduction to upc and language specification. Technical
Report CCS-TR-99-157, Bowie, MD, May 1999.

[4] H. Casanova. N-body simulation assignment, Nov 2008. URL
http://navet.ics.hawaii.edu/~casanova/courses/
ics632_fall08/projects.html.

[5] J. Dongarra, J. Bunch, C. Moler, and G. Stewart. Linpack users’ guide.
SIAM, 1, 1979.

[6] R. A. v. d. Geijn and J. Watts. Summa: scalable universal matrix
multiplication algorithm. Concurrency - Practice and Experience, 9
(4):255–274, 1997.

[7] W. Gropp, E. Lusk, and A. Skjellum. Using MPI Portable Parallel
Programming with the Message Passing Interface. The MIT Press,
1994.

[8] M. U. Guide. The mathworks. Inc., Natick, MA, 5, 1998.

[9] J. Hill, M. Hambley, T. Forster, M. Mewissen, T. M. Sloan,
F. Scharinger, A. Trew, and P. Ghazal. Sprint: a new parallel frame-
work for r. BMC Bioinformatics, 9:558, 2008. doi: 10.1186/
1471-2105-9-558.

[10] M. R. B. Kristensen, H. H. Happe, and B. Vinter. Gpaw optimized
for blue gene/p using hybrid programming. Parallel and Distributed
Processing Symposium, International, 2009. doi: 10.1109/IPDPS.
2009.5160936.

[11] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic
linear algebra subprograms for fortran usage. ACM Trans. Math.
Softw., 5(3):308–323, 1979. doi: 10.1145/355841.355847.

[12] D. Loveman. High performance fortran. IEEE Parallel & Distributed
Technology: Systems & Applications, 1(1):25, 1993. doi: 10.1109/88.
219857.

[13] J. Nieplocha, R. J. Harrison, and R. J. Littlefield. Global ar-
rays: A nonuniform memory access programming model for high-
performance computers. The Journal of Supercomputing, 10(2), 1996.
doi: 10.1007/BF00130708.

[14] R. W. Numrich and J. Reid. Co-array fortran for parallel programming.
SIGPLAN Fortran Forum, 17(2):1–31, 1998. ISSN 1061-7264. doi:
10.1145/289918.289920.

[15] T. E. Oliphant. Python for scientific computing. Computing in
Science and Engineering, 9:10–20, 2007. ISSN 1521-9615. doi:
10.1109/MCSE.2007.58.

[16] F. Pérez and B. E. Granger. Ipython: a system for interactive scientific
computing. Comput. Sci. Eng., 9(3):21–29, may 2007.

[17] R. Pozo and B. Miller. Scimark 2.0, 12 2002. URL http://math.
nist.gov/scimark2/.

[18] L. Prylli and B. Tourancheau. Fast runtime block cyclic data redistri-
bution on multiprocessors. J. Parallel Distrib. Comput, 45(1):63–72,
1997.

A.4 Managing Overlapping Data Structures for Data-Parallel
Applications on Distributed Memory Architectures

Mads Ruben Burgdorff Kristensen and Brian Vinter. Managing Overlap-
ping Data Structures for Data-Parallel Applications on Distributed Memory
Architectures
GSTF International Journal on Computing (JoC), vol. 1, no. 2, pp. 145-151, 2012.
ISSN: 2010-2283.

162

�

��

�������������������	�
���
���������
�	����
�������	�	�����

	����	��� �	�	� ��������
�� ��	�� �	�� ��� 	�����	��� ���������
��

�
����� 	�����
����
��� ��� ��� ���������� ��� 	���
�
� ��	�	��
�

�
�����	��
� ��� �	�	��	�	��
�� 	�����	������ �
�
� ��
�

�����	��
���	�����	�
�� 	����	��� �	�	� ��������
�� �	��
�� ��	��

���
����� �	�����	����� �
������ ��� ���������
�� �
�����

	�����
����
�� ����� 	����	��� �	�	��	�	��
�� ��
�	������ �	��

�
����
� ��������	����� �
�

�� ���
��� ��
�
���
�� ��
�

���
������� ����
�� �	�� ��� �	���
� ��������	�����
�����
�����

������� 	��� �
��� ����� ��
� ��
��� ���� �	�	� ���
�� ������� �	�	�

������� ����� ��� �
��� ��� ���	�� �	�	� 	��� �
���
� �	�	� ��� 	���

���
���
����
��������������	�	��	�������	��������
��

�
� ����
�
��� ��
��
�����
�����
�� ��� ���!��"�� ���	������

������������� �����	������ ����	��� ���� "������� �
� ��� ��� ���

�	��	�
� ��
� ����
�
��	����� ������ 	� �
��
�
��	���
����������
��

�
����� ����
�� ��� 	� #�	�� $%�&� '��
�������
�� ��� ��� ��� ()*+�

���
��� ��
� �
����	������ �
������ �
������	�
� ��	�	��
� �����

�
�����	��
��

��	
��
����,"#�� !��"��� ,����"������������� 	�	�

"	�	��
��� ���!��"���

�

��� �������	�����

���������������� ������������ ���������� ���� ����� ��������

��� ��� �������������� ����������� ���������� �������� ����

������� ���!��� ������������ ��� ���������� ����������	������

��������� ���������������� ���������� ��� ��������� ����������

��� ����� ����������� ������������������������������������ ����

���

�������� �"�� ���������������� ���������#� $%�&%'� ����

(����#� ���� �������� ��� ��� ����������� ���������� ����������

�������� ��� �� ���� ���� ��� ��������� ������� ���� �����)�

�������������

��� ��� ��������� ��� �)������ ��������� �������������"������� ��� ��

���������������� ���������������!��������������������������

"������������������������������*+#�,,-����������������������

������������ ��� ������ ���� ��������� ������� ���� �����)�

��"����

���������������������������������������"�����������������������

����� ���������� ��������#� ����� ������������ ��������� �����

!��"������ ��� ����� ������������� ���� ���������.������ ��� ����

�������������� ����������#� "��� ��!��� ��� ��������� ���� ���

�
$���������� ��������� /�������� ,0#� 12,1��$�������'��3��������������'�����

4���������"���������'������������#���������������	��������#�������!��5����6�
�����!7�����!8������7�����!��

�������� ������� ��� �)������ ������� ����������� ����������� ���

�
/���,#� $����)� �)��������� ��� �� ������� 9������� ��������

������������ �)������� :��� /������ 1� ���� ��� �)��������� ���

$%�&%'�����/������;���������)������������(������

�

�
/����1#�9������������������������������������<�������������������

����)���������������������������������������$%�&%'��

�

��������� "������ ������� ����������� ����� ��� ������

%�����������#� ��� ����������� ����� ���� ������������ "���

����������� ����� ����������� ��������� ���� ����������

������.������� ��� ���������
�"����#� ��� ��"������ ��� �����

��

���

=����)���

�����)�����������#���������������������������#���������������

��5���#�/������,����

1�������������"������������������9���������������������������

��� $%�&%'� ��� ���������� ��� ������ ��� �������� ��� ��������#�

������������� ������������ ���������� "����� �� ����� ������

��������������������������"���������������������)�������������

��������������"��

���

��� �����)�� ��� ���� �����#� "�� "���� ���� ������ ���"�� ��� ��

�������� ���� ���� ��������� ����� ����������� ���� ���� ������ ���

����������������������������������

%����� ���"�� ������ ����� ��� �� ������� ��� ����������

����������������������"������������"��������������������

"��

��� �������� ��� ���� ����������� ��� ���"������ ���������� �����

���	
������ ������������ ������ ����������#� "��� ���� ����������

��� ������ �������������=��������� ���
������ ������������ ������

���������� ��� ��� ���������� ��� ������� ���� ���� ������������ ��� ��

$�������������������������:��������������

�����(��������%���������������������������

$������%������������

$����������'���������3��������������'�����4������

�

������������ ������#� ����� ��� ������� ���� ���������� �����

��������������%��

�������������"��������������������

��� ���� �����#� "�� "���� ���������� �� ����������� ���� ���������

���������� �������� ��� ������������ ����� ������������ =�� "����

��������.�� ��� ����� ������ ��� ������������� ���������� ������

���"�� ��� ��� ���������������� ��������� �������(�*,,-#�

"��� ����������� ���(�� ������������� ��� ����� ���������

��

������� ����� ��������� ������������"�� ��������� ���"��!� ���

*,+-� "�� ���������� ��� ���������� �������������� ��������

���������������

�

��� ���
��������

&���

������������ ��� �� ��� ����������� ������� ��� �� "����!��"��

���������������������������"��!�������������������������������

��� �����"��!� ��� ����������� ����� ����� ��� ����� "���� ���

������������ ���� ������������ �������� ��� ���������
�"����#�

����� �����"��!�� �� ����� ��� ����� ��� �������� ����� !���� ���

������������ ��� ������ �)���

���

��� (����������� /������� >
(/?*,1-� ����@(&*A-� ���� �"��

"����!��"�� �)������� ��� �������������� ������������

���������� ���� ��������� ��������� ����� ������������
(/� ��� ��

/������������� �������������� ������������ ��������� ����

�� ������ ������� ������������ ���� �������������������

�������*,2-�� � ��� ������� ����� ��������� ������������ ��� �����

�����
����� ������� �������� ��� ��������������������*,-������

����� ������ �������� ������������ ���� �������������� ���

��������� ����� ����������� ��� �������#�"��� �������� ����������

�� ��������"��������

���� ���
����� ������� ��� ������ ��� ������� ����� ���������

�������������

(����� �)��������#� ���(�*,A-� ���� :��(�*B-#� ���� �����

������������� ����� ��� ����������� ���������*0-� �������� �����

��������� ������������� ���� ����� ������ ��� ������������

������������� ������)������ ������ �����������(��������!�����

���� ������� ���� ������� ���!�� :��������#� $%�&%'� ��� �����

�������� �������� ��� �� ��������� ����� ���������� ������������

��������� ���(�#� :��(�#� ����$%�&%'����� ���������� �������

����� �������� "���� ��� ���� ������ ��� ���������� �����������

��������� ����� �)����� �)�������� ��� $%�&%'� ���� ��������

����������� ��������� $%�&%'C(*+-� ����������� �����

������������ ��� $%�&%'� "��� �������� ���� ��������� �����

�����������������������

�

���� �%�D5���%�%�(%�%&&5&�%((&�	%����:�

�������������� ������������� ���� �� ������ ��� ������������� ����

��!�� ���� ��� ����� ������������ ��� ������ �)��������� ������� ���

��� ����������� ��� ����������� ������� ��� ��� ������������

��������� ��� ��������� ��� ���� "��!#� "�� ������ ��� ��������������

������������� "������� ��� �� ���������������� ��������� "����

�����������������������#�������������������#����8�����������

���

=�� ������� ������������� "��� ��� �����"���� ����������6�����

�
�����-������"��������������'���!�	������������������������

�����)������1�)�A���������������������

�

�� ��� ������������ ����� ��������� ������ �����������

������������)�������������������������������

�� ��� ������������ ����� ����� ������������ ��� �)������

������8�����������������������������

�� ��� ������ ��� �����.�� ������������ ������� ������������#�

��� ������������ ����������� ���������������������������

�����������������������������������

�

��� ������������ ����� ����� ����������� ���� ����� ��� ����������

������������ ������#� ����� ��� ������ ����� ����������#� ���� ���

������ ���"�#� ���� ���� ������ ��� ������ ��� ��� ����� �����������

�������

�

��� �
�
��������������

��

������� �������������� ��� �������� �������� �"� ����� ����

������������ ��� ������������ ������� ���������� "��� ���������

"��� �� ������� ������������� ������� �"�������������� '���!�

	��

��� �������� ������������������������������:��&%(%	3*1-�����

&��(%	3*9-E�� ��� ��������� ��������� ���� �������� ���� ��� ��

���

������������ "��!���"� ����� D�������� ������������� ���

�������������������"��!�����������������������������������"��

������������ ����� ���� ���� ������������� ���������!�� ��� ��

��

>/����A?F����������������"���������������������������

�

��� ���
������
������

���
��������� ������ ���������� ��� ��������� ���� ���� !����� ���

��������������:��

���� ����� ������ ����������� ���� ����� ��������� 5�������"����

����������� ��� ������� ���� ��� ����������� ����� ��� ����� ���

�

������������� ���������� ���� ����������� � ��� ����������� ���

������������ �������� ��� ��������� ������������ �����#�

��������������)����������#�"��������������������������

���5�������"���� ����������� ��!�� �� ��)��� ������� ��� �������

�����������������������)�����������������������������5���#����

��������"���� ��������� ��!��� ����� ���������"�� ��� ��������6�

�"�������������������������������������/��������������#����

���������� ����� ��� �"�� ������ ������� �������� ����"������ ���

������� ����� ��� ������� ������� %�������� ��� ��������"����

���������������"��������������������������� �������������

�
/���� +#� ���������� �������� ���"���� ��� �"�� ������ �����

����������� ���� ��������������������� ��� ��������������"��

���

������

�

����������� ��� ���������� ��� ���� ������������ ������ ����!�

�������������� ���� �����������!��� ��� ��������� ��� �������� ���

��������������������"����������������������������

��� ���
��������

���%����� ���"�� ���� ���������� "��� �)��������� ����������

������ ��������� ������ ������������ ��� ��!��� ��� ��������� ���

������������������������ ���������������)�������������"������

����������������	�����������#����������"�����������������

"���� ���� ������ ���"�������� ��� ��� ����������� GG����HH������

GG����HH� ��� ���� ��� ������ ���� ����� ��������� ��� �� �����������

������ ��� �������� =�� ������� ��� �"�� �����#� ����������� ����

���������"#���������"�6�

�� ���	���	�
� ��� ��� ����� ��� ��� ������ ���� ��� �������

������� ��� ��� �������� ��� ��� ������ ����������������

%�� ����������� ��� �������� "��� ���� ������������������

"��� ��� �������������������"������������������#�����

��������"���

��� ������������ ��� ����������� ��"���� ���������� ���

"���.������

������������������������

�� ����	����
� ��������"�������������������������"�����

���������� ���"������������������������� ������������

��� ������������ %�� ���������"� ���� ����� ���������� ��

��%��������

���"���������������"�������������������������"���

����� ��� ��� ����������� ��� ��������� ��� ���������"� ���

������������ ������������ ������������ ����� ���������

������������ ��� ���������"� ��� ������� �� �������

������������������

�

/��� ����������#� ���������"�� ���� ���� ����"��� ��� ������ ��� ����

����#� "��� ����� ���� ��� �������� ��� ����� "��� ����� �"��

������6����������������"����������"��
�"����#����������������

���"�� ���� ����"��� ��� ������ ��� ��� ����� ������������ ����

��������������������������/������+��

����� ����%&�D�5��%��%I��(5�%����:�

$�����������������������������������#��!�����������"#�����

��

���

�
����� .����� ����� ������� ��� ��� �"�� �������$������� ���� ���

����� ���������"�� %#� '� ���� 	� ��� ��� A������� ��������

��"�����"������������

������������!���.�����������

�

��� �������� ��� ���� ��������"���� ����������� ��� ������

���"�� ���� ���������� ����� ���	
������ ������������ ������

����������#� "��� ���� ���������� ��� ������ ����������������� ��#�

��������"���� ����������� ��� ���������"�� ���� ����� ���� ����

��������������������������������������

�

/����)�����#���A���

���"�#��#��� �����#� ��� �)������ �� ���������=��� �)�������� ���

�"�� ���������� ��� �"������������� �����������#��� �����#� ����

������������ ���������� ���/����9�� ��� ��������� ������ �����������

���� ���� ��������� ��� ��� ����������� ������������ �� ���� ���

���#� ��� ������� ��

�)�����������������������������"������������������)������

����� ����!�#�"�������� ������������"��� �)�������� ��� ��

������������������� ���������������������#� ��� ���������������

��������������������������.���������������������������������

����������������������

�4�� $%�%D��D�����%&�D�5��%��%I��(5�%����:�

��� ����� ������������� ��� ���� "��!� ��� �� ������ ����

��������� ������������ ������ ����������� ������������� =��

���!���������������

���!�����

�������� "���� ������.���� ��� ������ ������� ���

����������������

��� ������ ��������� ��� ����� !����� ��� ����� ����!�6� �����

����!�#� ���"�����!�� ���� �������"�����!�#� "��� ��!�� ��� ��

�������������������������������>/����0?��

�� �/	�
������� ��� �� ����!� ��� ��� ����������� ���������

��������� �������������!����������� ���������������

������ ��� ������� ����!� ��� ����������� ���� �����

����������������)�������������������������!�����

���������!�� ���� ������������ ������� ���������

���������� ��� �� ������������ ������� ���������� ���

�����������������'���!�	��������������������

�� ��
������� ��� �� ����!� ��� ��� ���������"� ���� �����

�

��� ������������ ��� ��� ����� �� ���"�����!� ��� ��

���������������!��������������������%����"�����!�

���� ����� ����� ��������� ���������!�� ����

����� ������� ����� ����� ��������� ����������� /��� ��

�������� ��� ������� ��"���� ���"�����!� ���"��������

��� ����� ����� ����� ��������� ������� ���������� ����

��!��

��� ������ ���� �������#� "��� ���� ������ �����

��������� ������� �������#� "�� ������� ���"�����!��

������������"�����!��

�� '�����
����������������!����������������������������

���"�����!��

������� ����!� ��� ���� ������������ ����������� ����

���������������������)�������������������������!��

��� �������� ����� ��� ���� ���� ������ ���������� ���

����������� ����� �� ������� ��� �������"�����!�

������������

�

�
/����0#�%�������������������������!��������������������������

1�� ������������ ������� ��� ������ ��� �������� ����� ����� ����!�

�����6�'���#�4��"� ����:���4��"�����!������,0����������!��

��!�� ��� ��� ����������#� "��� ���� ��� ������������ ���"����

��������� ����������������������"�����!����!����������"����

��� ����������� ���� ���������� ��� ��������� ���� ���� �������� ���

��� ������ 5��� ���"�����!� ��� ����������� �������� ����� �����

�������"�����!�#����������������������������������

�

��� ��������������#���������������������������������������

���������������������������������������!��������������

��#� �� ������������ ������ ���"��� ��� ���������!�#� ���"�����!��

���� �������"�����!�� ���� ����������� %� ������������ ������ ���

������������������������"��������������������

��� ��� ����������"���� ��� ���������.������ �������� ������

����������� �������� ���� ���"�����!� ��� ���������� ��� ���

���������� ���������!� ���� ��� �������� ��� �� ������� ������������

��� ����� ���#� "��� ���������� ��� ������������ ������� ����

���"�����!�������� �������� �������������������������������#�

"�� ���� ��� ������� ��� ������������ ����� �������"�����!������

����������������������!������������"�����!�#�"�����!������

���������������������)�����������������)������������������

�������������������������

%���������������#���

��� ������ ���������"�� ���� ������� ���������"��� ��� ��� ��� ����J��

��������������������!������������������������������������"��

�����������������:���������������������������������!���.�#�

���� ����������� ���� ���� ��������� ���"�����!�� ����� ����

���������#��������������������������������"�����!����������

������ ��� �� ������ ��� ������ ��� �������� ��� ������ ���������� ���

��������� ���� ���������� ���������� ��������� �� ���"�����!� ������

��������"���������6�

,?���� �������� ������� ���� ��� ������� �������"�����!��

�������������������������������������"�����!���

1?���� �������� ������� ��� �������"�����!�� ��� ���������

������������������������!�������������������������

������ ��� ������������ �������"�����!�� ������� ��������

��� ��������������"��������������������������������

��������

A?��!���

+?���� �������� ������ ���������� ������� �������"�����!��

���!���������������������������

�
/���� K#�����������"�����!�������������� ��� ���������"�����!�

��������������������"���#���������>/����9?��

�

��� �����������

����������������"����������"��!��"��"����"��!�������

��� �)�������� ��� ��� ������ ����!� ��� �� ������ A������� ��������

������������� �"�� ���������� ���� �)�������� ��� ��������

������������"�������"�������������#��������#�������������!�

��.��

������������������������������������>/����9?�����������������

����� �"�� ������ ���������"�#��� �����#� ���� ���� ������� ������

���"#��#���������������A�����������������

��������������������������������"�����!������������������

���"�#���������2������������������������������"��������>/����

K?�� ��� ������ ����#� "��� ��������� ��� ��� ������ �"�� ��������#�

������ ��� �������������� ������ ���� ��������� ���� ��������

���

�������������"��������������������������

��������������#�"������������������������������#�������

��������������� ��� �"�� ���������� "���� ��������� ��� �����

�������� ����� ����� �������� ,� ��� �������� 2�� 5���� ����� ���

������������� ����� ��� �������� ��������#������������������ ���

����� ��"� �������� �� ��� ��� �������� �������#� �� ����������

������� ��������� �������� ���� ������������������������������

"�����������������������"�������������������������������

������������=�����������2��������������������������������1�

���������������������������������������!������������,���

�

��� ��
�����	������

��� ��� ���������� ��� ��� ������������ ��� ������������ ������

����������� ���� ��� �)�������� ����� �������������� ��������

�

���"����!������

��� ��� &�������
������ ������ ����������� ��� *,+-�� ������ ����

�����#�"�������������������!���������������������������������

����� ���� ����� ��� ������������ ������ ���� �������������� ���

����� ����������� /���������#� "�� ���!� ���� ��������������

��������������"���!��

����� ���� ����� ��� ��������� ��� ��� �������������� ����������

�)�����������"������������"�6�

�

,?� ��

1?�	��!� ��� ���� �������������� ����������� ��� �����

�������� ��� �� ��������!���� ������� ���� �������

����������� ������������������������ ����� ���������

 ������

A?�=��#��)������

���� ��� ���� �����������"������������ �����������

��������������������������� ������

+?�D�����!��

�������������������

�

������������������������������"�������������������6�

,?�%������������������������������������ ������

1?�	���������������������������)������������"��������

�� ������

A?�	������������� ����������� ���� ���!��� ����

�����������"��� ����� ��� ��� ������������ ����������

������������ ������

�

�	��
�0��#�	��$%�&�'��
�������
��

(��������� %$����������0,K1�

	���!� 1�,�D
.�

(��!�(���������������	���� ;�+�D������

	�����������$%�������� 0�

��$%������������������ +�>���!��������1����!���?�

������	�������������� 1+�

(�������&,������	���� 0+�3'�

(�������&1������	���� 9,1�3'�

:�����&A�	��������:��!��� ,1$'�

$������'���"���� 19�0�D'8��

$��������������� A1D'����A�,200�5		�

	�������� (D��,,�A�

$���&������� 	����:����������&�������,2�9�

������������� D������A���������

(��!�'���"����>�������������?� K�D'8��

$(�� 	����$(��9�,�+�

�

4�� ��:���'��5����$5��	%&�(I�
���

��� ������ ��� ������������ ��� ����������� ��� ���� ������ ����

���������������������������������#�"��������.���������������

(����� �������� ������������ ���������� (����� >�������(�?�

*,,-� ������ ���� ������� �������(�� ��� �� ��"� �������� ���

���(�*,A-� ���� ���������.��� ������ ����������� ��� �� �������

����������� ������������ ��� ��� ����� ��� ����� ������������������

��� ����#� ��� ����������� ���"���� ���(�� ���� �������(�� ���

����������������(���������������������������������������

�������������� ��������$������� (������� ���������� >$(�?*K-��

�"����#� �������(�� ����� ���� ���� ��� ������������ �������

����������������������>:($�?�����������������������������

�������#� ��� $(�� �������������� ��� �������(�� ��� ������

������������ ���� ��� ����� ���������!��"���������$(���������

�����������������������������

������������������� ��� ���%(��������(�������������(��

��� ��� ������ ��������� ���������� �������(�� ����"� ����

��)����������������

������������#�������������������������#����������������������

������������� ��� �����"���� ������������ ��� ����� �����������

���"���� ��� ��������� ��� �� ��������� ������ ���� �� ������������

�����6�

�
���������	�
����

�����������		������������

�����	�
����

�����������		�����������������	����

�

��� ������ �������� ����������(������� ���� �������� ����������

������������ ������ ������������ ���� ������ "��� �����������

������������� ���� ����� �������� ������������ ������ ����������#�

�������$�����	��

����������� "�� ���������� ���� ������ ���� ��������� ���������

����� ����������� �������������=�� �)����� ����� ������������ ����

������������ "��� ���������� ���� ��������������� "��� ���

����������������������������������*,+-���

��� ��������������� ��� �������(�� ��� ������������ ����

�����������������>���688���������������8�8�������(�?��

�

�
/����;#�9������������������������������������<�������������������

����)��(���

4��� 5L(5��$5��:�

��������������#�"��"��������������������������������������

���� ������ ���� ��������� ������������ ������ ������������ =��

�������� ���� �)���������� ��� ��� 	���� L50� ��������������

>������ ,?�� ��� ������� �������� �������� ��� ����������� ����

�������� $������ %������ >��$%?� ������������� ������

"���� ���� ����� ��������������$%���������� �	(��������

"����� ��� ����� ��$%� ������� ���� �������� ����� �������

�������� ��� ��� ������ ������� "���� 	(�� ������ ��� ����������

��$%� �������� "����� ���� ������������ ����� �������

�����������=��"����������������$(������������������������

����������� "��� ������������ ������ ���������� ���� "�� "����

���������������)����������$(����������������$%����������

��� ��������� ��� �����������#� "�� "���� �������� ��������

�����������������"���������������������������������=��������

9������������������������������������<�����������������������)���

�

����������������������/������;��������������������������������

��� (����� ������ ��� �������(�� ��������� ��� �)�������� ��� 9�

������ �������� ������ ����� ������ ���"�� ���� ���� ������� ����

���

>/���� ,?�� ��� ������ ��� �������!� ��� ����������� ��� ��� �����

����������� ��������"�� ���������� ��� ���� "��!#� "�� ��������

����������������"����������������������"�������������������

���'�������

�
/���� B#� =��!� �������� ��� �������� ���� ������������ ������

�����������

�

�
/���� ,2#� =��!� �������� ��� �������� ������� ������������ ������

�����������

�

��� ��� �)���������� ���� ��� �������� ���������� ��� ���������

�������� �� ������ ��� ��������������� ��� ������ ��� ������.��

���� ��� ��������� �������� ��� ������� ���� �������!� ���������

���������������������"��!��

��� ������������ �������������������������� ������ ��� ���

9������� �������� ��������������!��� ������������� ���������������

�������� ������������� ��� ����������� ��������������

������)���� �������� ����������������������������.�����������

���

/��� ��� �)��������#�"������������ ���/&�(:���������� ���

��������� ���������� ������� ��� ��� ������ �� �������� ���������

�����������������)���������������%�����������#�"����������

��� �������� "��� ��� ��������� �������� �����������#� "���"��

��������������)����������������� ��������/&�(:�������������

������(���=���

���������� ��������� ������������� �=����������"��!� ��������

�)���������#� ��� "��� ��� �������� ��.�� ��� ������� "��� ���

����������	(���������������)��������������)��������������

�����;����12+;�	(��������"�������	(��������������������

��.�������������"���������)���������

��� ��������

/������B���"�������������������)���������������������

������������������������#�"���������������������������

��

��,9,+����12+;�	(��

���������������������� ���������)�������#�"��������������

�������	(�������.���������K+M�������������������������

��������������������������B+;����12+;�	(�����������������

������� ���������)�������#�"���������������������	(��

�����.���������+0M���

��������.������)�����������������������"������������

�)�������������������������������������/������,2�����

�)���

�������������

�� #�����	����� ��� ��� ��������������������������������

���������������� ��� ��������� �������������� ����������

��� �)����������
�"����#� ����������� ��� ��� �����

��������������������������������������)���������������

�� /�������� ��� ��� ����� ����� ��� "������� ����

�������������� ��� ������� 5��� �������� "���� ��� ���

���� "��!� ��� ��������� ������� ���������� �� ����!����

�������
�"����#� ��� ��� ������� ��� 	(��������

���������� ��� ������� ���� ��� N��� ��������� ��� ���

	���� ������� ���������� �������� ������ ��� �� N��� �����

����������� /���������#� ��� ������ ���"��!�

������������ ���� ������� ����� ��� ��������������

������������������������N�����

�� ��
��
	�� ��� ��� ����� ����� ��� �������� ��� �����

����������� ����������� "��� ������ ������������ ���

�������� ��� ������������� "��� ��� ������� ��� ����

���"�����!�� ��������� ��� ��� ������������� :����� ���

������� ��� �������"�����!�� ���������� "��� ���

�������� ��.�#� ��� �������� ����� ����������� ���

��������#� ��� ������� ��� �������"�����!�� ����������

����������"����)��������������������������������

�

%���)��������������!��

�������������������)����������5�������12+;#��������!���������

�����������1M��������������)����������������������������#�

�������!��

%��12+;#��������!������������,;M��������������)��������������

���� ��������� ��� ����!���� ����� ��� ���������� �������� ��� ���

��������� ��� �������������#� ���� ����� �������� ��� ��� $(��

��������������� ��� 	����� 	��������#� ��� 	���� $(�� ���� ���

	���� D������ ���"��!� ��� �������� ������������ �������� ����

��������!����$(�����������������

��� ��� �������� ���������� �������#� ��� �������� �����

���������� ����� 2�+M� ��� 1+M� ��� ��� �������� �)�������� ������

������������ ������������ �����������������������������������

�

�������� ��.��� ��� ��� ������������ ���������� �������#� ���

���0M����A+M�

���������������)��

����������� �������� ��� ����� ������ ��� ������� ��� �������"�

����!�� ��� ���� �������"�����!� ���� ���������� ��� ��� ��������

�������������

4���� 	��	&�:����

��� ������� �)�������� ���"�"��� ������������������������� ���

���� ��� ����� �������� ���� "��!����� ��� ��������������

������������ ������6� �"�� ����� ���������� ������ ��� ���������

������������ ����#� ����� ������ ���� �������!�#� ��������������

�)���� ��� �������������� ������������� �������� ����� ��� ����� ����

�)�������� �������
�"����#� ���)����� ��������� ����� �����������

������������������������������� �� ������������������������������

���

��� ����"��!#�"���������������������"�� �����������������

����� ����!���� ������ ��� ��������� ��� ��� ��������� ��� ������������

��������� ��������� ����� ����������� ���� ���� ��� ����������

��������������������=��������������������������������������

��<����������������������������������12+;�	(����������

%	3��=&5�D$5���

���� �������� ��� ���������� ��� ��� ������ :���������

�������� 	������#� ������ O2B�20AKK2�� ���� �������� �����

���������� ��� ��� ��������� 5������ �������� :����������

	��������� 	�����#� "��� ��� ���������� ��� ��� ������� ���

:���������������:����������������5������������	������������

�5�%	21�29	
,,1A,��

�5/5�5�	5:�

*,-� :�� '��!���#� (�� $������#� <�� 4��� ���������#� ����
�� @�����
���������
����������� ��� �������������� ��������� ���
(/���!�� ����������� ���
(�����������������,1������������������������������:�������������#��	:�
JB;#� ������ ,2BP,,0#���"�I��!#��I#��:%#�,BB;�� ���������� ����:���"����
���������� ���� (�������� :������#������������ ���4������� �:'��2�;BKB,�
BB;�L��

*1-� &�� :�� '���!������ :��&%(%	3�� ��� (����������� ��� ��� ,BB0� %	$8�555�
����������� ��� :�������������� >	���$?� �� :�������������� B0� :�����
����������B0#������9#�,BB0��

*A-� '�� &�� 	���������#� :��5�� 	��#� 5��	�� &�"��#� 	�� &��#� &�� :�����#� �������
=���������� @(&6� %� $������ ������������ (����������� &�������� ����
(��������	����������:���"����5����������#�10>A?6,BKP1,,#�1222��

*+-� ���	�������%��5��������$%�&%'C(�1�26�%������������������$%�&%'��
���������������#�$����������������������������������#�<�������122A��

*9-� <����������#�<��'���#�	��$����#�����D��:��"�����&��(%	3������J��������
:�%$#�,#�,BKB��

*0-� (�� /�� �������� D����� 5�����J�� ������������6� (����6� '��������� ����������
	������������:�������5����������#�B>A?6KPB#�����N����122K���::��,91,�
B0,9��

*K-� =�� D����#� 5�� &��!#� ���� %�� :!N������� ������ $(�� (�������� (��������
(�����������"������$�������(���������������������$���(����#,BB+��

*;-� $�����D���������$��=��!�������#������!#�$%#�9#�,BB;��
*B-� 5��<����#�����������#�(��(�������#��������:��(�6������������������������������

����(����#�122,��
*,2-� 3�� 3������#� 	�� 3������#� ����
�� @����� ��� ����� ���� ����� ���
���

(�����������/������6����������������N���������������(����������������������
%	$�:�D(&%����������������
�������������������������������#�
�(&�
���#� ������KP,#���"�I��!#��I#��:%#�122K��%	$�� �:'��BK;�,�9B9BA�
K00�K��

*,,-� $�� ��� '�� 3���������� ���� '�� 4������� ���������� (����� ���� :��������
%������������� ���/�����	�������������(�����������D������%�������:�����
(�����������$����#�(D%:J,2��%	$#�12,2���:'��BK;�,�+92A�2+0,�2��

*,1-� ��� &��������
��� (����������� /�������� �555� (�������� Q� ������������
���������6�:�������Q�%�����������#�,>,?619#�,BBA��

*,A-� ��� 5�� ��������� (����� ���� :����������	����������	��������� ��� :�������
����5����������#�B6,2P12#�122K���::��,91,�B0,9��

*,+-� $��������'���������3��������������'��4�������$��������	�������������
&�������
������ ��� �������� ���� (�������� (����������� &��������� ����
&����������%�)���(����������L��6,12,�A;2+�,#�N���12,1��

�

�

�

�
�
1	��� 2��
�� /��������� 3����
��
�� ��� �� (�� �������� ��� ��� ������ '���

���������#� ����������� ��� 	����������
��� �������� (�� ������ ��� ���
:������������������$������������������������	�������"��!���������������������
������������ ��� ����������� (����� ������������� "��� �������� ������ ��� �)���������
���������������������������������

�
�
�
�
�

�
�

/��	�� ����
�� ��� (��������� ��� ��� ������ '��� ���������#� ����������� ���
	����������
��� �������� ������������������D�������������#�:��������������
���� $���������� ��������������
�� ��� ����� �������� ��� ��� ������ ���
���
(����������� 	�������� ������ ,BB+�� 	������� �������� ��������� ������� ����
�����������������.��"�����������������
����)��	5&&�'5�����'���D�����

A.5 Managing Communication Latency-Hiding at Runtime
for Parallel Programming Languages and Libraries

Mads Ruben Burgdorff Kristensen and Brian Vinter. Managing Communi-
cation Latency-Hiding at Runtime for Parallel Programming Languages and
Libraries
In Proceedings of the 2012 IEEE International Conference on High Performance Com-
puting and Communications (HPCC’12). IEEE.

170

Managing Communication Latency-Hiding at

Runtime for Parallel Programming Languages and

Libraries

Mads Ruben Burgdorff Kristensen

Niels Bohr Institute

University of Copenhagen

Denmark

madsbk@nbi.dk

Brian Vinter

Niels Bohr Institute

University of Copenhagen

Denmark

vinter@nbi.dk

Abstract—This work introduces a runtime model for managing
communication with support for latency-hiding. The model en-
ables non-computer science researchers to exploit communication
latency-hiding techniques seamlessly. For compiled languages, it
is often possible to create efficient schedules for communication,
but this is not the case for interpreted languages. By maintaining
data dependencies between scheduled operations, it is possible
to aggressively initiate communication and lazily evaluate tasks
to allow maximal time for the communication to finish before
entering a wait state. We implement a heuristic of this model in
DistNumPy, an auto-parallelizing version of numerical Python
that allows sequential NumPy programs to run on distributed
memory architectures. Furthermore, we present performance
comparisons for six benchmarks with and without automatic
latency-hiding. The results shows that our model reduces the
time spent on waiting for communication as much as 27 times,
from a maximum of 54% to only 2% of the total execution time,
in a stencil application.

I. INTRODUCTION

There are many ways to categorize scientific applications

– terms including scalability, communication pattern, IO and

so forth. In the following, we wish to differentiate between

large maintained codes, often commercial or belonging to a

community, and smaller, less organized, codes that are used by

individual researchers or in a small research group. The large

codes are often fairly static and each version of the code can

be expected to be run many times by many users, and thus

justifying a large investment in writing the code. The small

development codes on the other hand, change frequently and

may only be run a few times after each change, usually only

by the one user who made the changes.

The consequence of these two patterns is that the large codes

may be written in a compiled language with explicit message-

passing. While the small codes have an inherent need to be

written in a high-productivity programming language, where

the development time is drastically reduced compared to a

compiled language with explicit message-passing.

High-productivity languages such as Matlab and Python –

popular languages for scientific computing – are generally

accepted as being slower than compiles languages, but more

importantly they are inherently sequential and while intro-

ducing parallelism is possible in these languages [1][2][3] it

limits the productivity. It has been previously shown that it is

possible to parallelize matrix and vector-based data-structures

from Python, even on distributed memory architectures[4].

However, the parallel execution speed is severely impeded by

communication between nodes, in such a scheme for automatic

parallelization.

To obtain performance in manual parallelization the pro-

grammer usually applies a technique known as latency-hiding,

which is a well-known technique to improve the performance

and scalability of communication bound problems and is

mandatory in many scientific computations.

In this paper, we introduce an abstract model to handle

latency-hiding at runtime. The target is scientific applica-

tions that make use of vectorized computation. The model

enables us to implement latency-hiding into high-productivity

programming languages where the runtime system handles

communication and parallelization exclusively.

In such high-productivity languages, a key feature is au-

tomatic distribution, parallelization and communication that

are transparent to the user. Because of this transparency, the

runtime system has to handle latency-hiding without any help.

Furthermore, the runtime system has no knowledge of the

communication pattern used by the user. A generic model for

latency-hiding is therefore desirable.

The transparent latency-hiding enables a researcher that uses

small self-maintained programs, to use a high-productivity

programming language, Python in our case, without sacrificing

the possibility of utilizing scalable distributed memory plat-

forms. The purpose of the work is not that the performance

of an application, which is written in a high-productivity

language, should compete with that of a manually parallelized

compiled application. Rather the purpose is to close the

gap between high-productivity on a single CPU and high

performance on a parallel platform and thus have a high-

productivity environment for scalable architectures.

The latency-hiding model proposed in this paper is tailored

to parallel programming languages and libraries with the

following properties:

• The programming language requires dynamic scheduling

at runtime because it is interpreted.

• The programming language supports and utilizes a dis-

tributed memory environment.

• All parallel processes have a global knowledge of the data

distribution and computation.

• The programming language makes use of data parallelism

in a Single Instruction, Multiple Data (SIMD) fashion in

the sense that data affinity dictates the distribution of the

computation.

Distributed Numerical Python (DistNumPy) is an example

of such a parallel library, and the first project that fully

incorporate our latency-hiding model. The implementation of

DistNumPy is open-source and freely available1.

The rest of the paper is organized as follows. In section

2, 3 and 4, we go through the background and theory of

our latency-hiding model. In section 5, we describe how we

use our latency-hiding model in DistNumPy. In section 6, we

present a performance study. Section 7 is future work, and

finally in section 8 we conclude.

II. RELATED WORK

Libraries and programming languages that support paral-

lelism in a high productive manner is a well-known concept.

In a perfect framework, all parallelism introduced by the

framework is completely transparent to the user while the

performance and scalability achieved is optimal. However,

most frameworks require the user to specify some kind of

parallelism – either explicitly by using parallel directives or

implicitly by using parallel data structures.

In this paper we will focus on data parallel frameworks,

in which parallelism is based on the exploitation of data

locality. A classical example of such a framework is High

Performance Fortran (HPF) [5], which is an extension of the

Fortran-90 programming language. HPF introduces parallelism

primarily with vector operations, which, in order to archive

good performance, must be aligned by the user to reduce

communication. However, a lot of work has been put into

eliminating this alignment issue either at compile-time or run-

time [6] [7] [8].

DistNumPy[4] is a library for doing numerical computation

in Python that targets scalable distributed memory architec-

tures. DistNumPy accomplishes this by extending the NumPy

module[9], which combined with Python forms a popular

framework for scientific computations. The parallelization

introduced in DistNumPy focuses on parallel vector operations

like HPF, but because of the latency-hiding we introduce in

this paper, it is not a requirement to align vectors in order to

achieve good performance.

Hardware architectures also exploit data parallelism to

hiding memory latency [10] or communication latency [11].

Likewise, parallel data dependency analysis is essential in

1DistNumPy is available at http://code.google.com/p/DistNumPy

order to efficiently schedule instructions and avoid pipeline

interlocks [12] [13].

III. LATENCY-HIDING

We define latency-hiding informally as in [14] – “a tech-

nique to increase processor utilization by transferring data via

the network while continuing with the computation at the same

time”. When implementing latency-hiding the overall perfor-

mance depends on two issues: the ability of the communication

layer to handle the communication asynchronously and the

amount of computation that can overlap the communication –

in this work we will focus on the latter issue.

In order to maximize the amount of communication hidden

behind computation when performing vectorized computations

our abstract latency-hiding model uses a greedy algorithm. The

algorithm divides the arrays, and thereby the computation, into

a number of fixed-sized data blocks. Since most numerical

applications will work on identical dimensioned datasets, the

distribution of the datasets will be identical. For many data

blocks, the location will therefore be the same and these will

be ready for execution without any data transfer. While the

co-located data blocks are processed, the transfers of the data

blocks from different location can be carried out in the back-

ground thus implementing latency-hiding. The performance of

this algorithm relies on two properties:

• The number of data blocks must be significantly greater

than number of parallel processors.

• A significant number of data blocks must share location.

In order to obtain both properties we need a data structure that

support easy retrieval of dependencies between data blocks.

Furthermore, the number of data blocks in a computation is

proportional with the total problem size thus efficiency is of

utmost importance.

IV. DIRECTED ACYCLIC GRAPH

It is well-known that a directed acyclic graph (DAG) can

be used to express dependencies in parallel applications[15].

Nodes in the DAG represent operations and edges represent

serialization dependencies between the operations, which in

our case is due to conflicting data block accesses.

Scheduling operations in a DAG is a well-studied problem.

The scheduling problem is NP-complete in its general forms

[16] where operations are scheduled such that the overall

computation time is minimized. There exist many heuristic

for solving the scheduling problem [17], but none match our

target.

The scheduling problem we solve in this paper is not NP-

hard because we are targeting programming frameworks that

make use of data parallelism in a SIMD fashion. The parallel

model we introduce is statically orchestrating data distribution

and parallelization based on predefined data affinity. Assign-

ment of computation tasks are not part of our scheduling prob-

lem. Instead, our scheduling problem consists of maximizing

the amount of communication that overlaps computation when

moving data to the process that is predefined to perform the

computation.

In [18] the authors demonstrate that it is possible to dynamic

schedule operations in a distributed environment using local

DAGs. That is, each process runs a private runtime system

and communicates with other processes regarding data de-

pendences. Similarly, our scheduling problem is also dynamic

but in our case all processes have a global knowledge of the

data distribution and computation. Hence, no communication

regarding data dependences is required at all.

The time complexity of insetting a node into a DAG,

G = (V,E), is O(V) in worse case. Building the complete

DAG is therefore O(V 2). Removing one node from the DAG

is O(V), which means that in the case where we simply

wants to schedule all operations in a legal order the time

complexity is O(V 2). This is without minimizing the overall

computation or the amount of communication hidden behind

computation. We therefore conclude that a complete DAG

approach is inadequate for runtime control of latency-hiding

in our case.

We address the shortcoming of the DAG approach through

a heuristic that manage dependencies on individual blocks.

Instead of having a complete DAG, we maintain a list of

depending operations for each data block. Still, the time

complexity of scheduling all operations is O(V 2) in worse

case, but the heuristic exploits the observation that in the

common case a scientific application spreads a vectorized

operation evenly between the data blocks in the involved

arrays. Thus the number of dependencies associated with a

single data block is manageable by a simple linked list. In

Section V-G, we will present a practical implementation of

the idea.

V. DISTRIBUTED NUMERICAL PYTHON

The programming language Python combined with the

numerical library NumPy[9] has become a popular numerical

framework amongst researchers. It offers a high level program-

ming language to implement new algorithms that support a

broad range of high level operations directly on vectors and

matrices.

The idea in NumPy is to provide a numerical extension to

the Python language that enables the Python language to be

both high productive and high performing. NumPy provides

not only an API to standardized numerical solvers, but also

the option to develop new numerical solvers that are both

implemented and efficiently executed in Python, much like

the idea behind the Matlab[19] framework.

DistNumPy is a new version of NumPy that parallelizes

array operations in a manner completely transparent to the

user – from the perspective of the user, the difference between

NumPy and DistNumPy is minimal. DistNumPy can use mul-

tiple processors through the communication library Message

Passing Interface (MPI)[20]. However, DistNumPy does not

use the traditional single-program multiple-data (SPMD) par-

allel programming model that requires the user to differentiate

between the MPI-processes. Instead, the MPI communication

in DistNumPy is fully invisible and the user needs no knowl-

edge of MPI or any parallel programming model. The only

difference in the API of NumPy and DistNumPy is the array

creation routines. DistNumPy allows both distributed and non-

distributed arrays to co-exist, the user must specify, as an

optional parameter, if the array should be distributed. The

following illustrates the only difference between the creation

of a standard array and a distributed array:

#Non-Distributed
A = numpy.array([1,2,3])
#Distributed
B = numpy.array([1,2,3], dist=True)

A. Views

NumPy and DistNumPy use identical arrays syntax, which

is based on the Python list syntax. The arrays are indexed

positionally, 0 through length – 1, where negative indexes is

used for indexing in the reversed order. Like the list syntax in

Python, it is possible to index multiple elements. All indexing

that represents more than one element returns a view of the

elements rather than a new copy of the elements. This means

that an array does not necessarily represent a complete, con-

tiguous block of memory. It is possible to have a hierarchy of

arrays where only one array represents a complete contiguous

block of memory and the other arrays represent a subpart

of that memory. DistNumPy implements an array hierarchy

where distributed arrays are represented by the following two

data structures.

• Array-base is the base of an array and has direct access

to the content of the array in main memory. An array-

base is created with all related meta-data when the user

allocates a new distributed array, but the user will never

access the array directly through the array-base. The

array-base always describes the whole array and its meta-

data such as array size and data type.

• Array-view is a view of an array-base. The view can

represent the whole array-base or only a sub-part of

the array-base. An array-view can even represent a non-

contiguous sub-part of the array-base. An array-view

contains its own meta-data that describes which part of

the array-base is visible. The array-view is manipulated

directly by the user and from the users perspective the

array-view is simply a normal contiguous array.

Array-views are not allowed to refer to each other, which

means that the hierarchy is flat with only two levels: array-base

below array-view. However, multiple array-views are allowed

to refer to the same array-base. This two-tier hierarchy is

illustrated in Figure 1.

B. Data Layout

The data layout in DistNumPy consists of three kinds of data

blocks: base-blocks, view-blocks and sub-view-blocks, which

make up a three level abstraction hierarchy (Fig. 2).

• Base-block is a block of an array-base. It maps directly

into one block of memory located on one node. The mem-

ory block is not necessarily contiguous but only one MPI-

process has exclusive access to the block. Furthermore,

DistNumPy makes use of a N-Dimensional Block Cyclic

01 02 03 04 05 06 07 08 09 10 11 12

03 04 05 06 07 08

04 05 06 04 06 08

10 11 12

1210 11Array-views

Array-bases

Memory

Non-aligned Aligned

Fig. 1. Reference hierarchy between the two array data structures and the

main memory. Only the three array-views at top of the hierarchy are visible

from the perspective of the user.

Fig. 2. An illustration of the block hierarchy that represents a 2D distributed
array. The array is divided into three block-types: Base, View and Sub-View-

blocks. The 16 base-blocks make up the base-array, which may be distributed

between multiple MPI-processes. The 9 view-blocks make up a view of the

base-array and represent the elements that are visible to the user. Each view-
block is furthermore divided into four sub-view-blocks, each located on a

single MPI-process.

Distribution inspired by High Performance Fortran[5], in

which base-blocks are distributed across multiple MPI-

processes in a round-robin fashion.

• View-block is a block of an array-view, from the per-

spective of the user a view-block is a contiguous block

of array elements. A view-block can span over multiple

base-blocks and consequently also over multiple MPI-

processes. For a MPI-process to access a whole view-

block it will have to fetch data from possibly remote MPI-

processes and put the pieces together before accessing

the block. To avoid this process, which may cause some

internal memory copying, we divide view-blocks into

sub-view-block.

• Sub-view-block is a block of data that is a part of a

view-block but is located on only one MPI-process. The

driving idea is that all array operation is translated into a

number of sub-view-block operations.

We will define an aligned array as an array that have a direct,

contiguous mapping through the block hierarchy. That is, a

distributed array in which the base-blocks, view-blocks and

sub-view-blocks are identical. A non-aligned array is then a

distributed array without this property.

C. Universal Function

An important mechanism in DistNumPy is a concept called

a Universal function. A universal function (ufunc) is an

element-wise vector operation that computes all elements in

an array-view independently. Applying an ufunc operation on

a whole array-view is semantically equivalent to performing

the ufunc operation on each array-view block individually.

This property makes it possible to perform a distributed ufunc

operation in parallel. A distributed ufunc operation consists of

four steps:

1) All MPI-processes determine the distribution of the

view-block computation, which is strictly based on the

distribution of the output array-view.

2) All MPI-processes exchange array elements in such a

manner that each MPI-process can perform its compu-

tation locally.

3) All MPI-processes perform their local computation.

4) All MPI-processes send the altered array elements back

to the original locations.

D. Latency-Hiding

The standard approach to hide communication latency be-

hind computation in message-passing is a technique known

as double buffering. The implementation of double buffering

is straightforward when operating on a set of data block

that all have identical sizes. The communication of one data

block is overlapped with the computation of another already

communicated data block and since the sizes of all the data

blocks are identical all iterations are identical.

In DistNumPy, a straightforward double buffering approach

works well for ufuncs that operate on aligned arrays, because

it translates into communication and computation operations

on whole view-blocks, which does not benefit from latency-

hiding inside view-blocks. However, for ufuncs that operate

on non-aligned arrays this is not the case because the view-

block is distributed between multiple MPI-processes. In order

to achieve good scalable performance the DistNumPy im-

plementation must therefore introduce latency-hiding inside

view-blocks. For example the computation of a view-block in

Figure 2 can make use of latency-hiding by first initiating the

communication of the three non-local sub-view-blocks then

compute the local sub-view-block and finally compute the

three communicated sub-view-blocks.

E. Operation Dependencies

One of the key contributions in this paper is a latency-hiding

model that, by maintaining data dependencies between sched-

uled operations, is able to aggressively initiate communication

and lazily evaluate tasks, in order to allow maximal time for

the communication to finish before entering a wait state. In this

section, we will demonstrate the idea of the model by giving an

example of a small 3-point stencil computation implemented in

DistNumPy (Fig. 3). For now, we will use a traditional DAG

for handling the data dependencies. Later we will describe

the implementation of the heuristic that enables us to manage

dependencies more efficiently. Additionally, it should be noted

1 M = numpy.array([1,2,3,4,5,6],dist=True)
2 N = numpy.empty((6),dist=True)
3 A = M[2:]
4 B = M[0:4]
5 C = N[1:5]
6 C = A + B

Fig. 3. This is an example of a small 3-point stencil application.

Fig. 4. The data layout of the two arrays M and N and the three array-

views A, B and C in the 3-point stencil application (Fig. 3). The arrays are

distributed between two nodes using a block-size of three.

that the parallel processes do not need to exchange dependency

information since they all have full knowledge of the data

distribution.

Two processes are executing the stencil application and

DistNumPy distributes the two arrays, M and N , using a

block-size of three. This means that three contiguous array

elements are located on each process (Fig. 4). Using a DAG

as defined in section IV, figure 5 illustrates the dependencies

between 12 operations that together constitute the execution.

Initially the following six operations are ready:

R := {op1, op2, op3, op4, op9, op10}

Afterwards, without the need of communication, two more

operations op5 and op8 may be executed. Thus, it is possible to

introduce latency-hiding by initiating the communication, op6
and op7, before evaluating operation op5 and op8. The amount

of communication latency hidden depends on the computation

time of op5 and op8 and the communication time of op6 and

op7.
We will strictly prioritize between operations based on

whether they involve communication or computation – giving

priority to communication over computation. Furthermore, we

Fig. 5. Illustration of a DAG that represents the dependencies in a 3-point

stencil application (Fig. 3). The DAG consists of 12 operations, op1 to op12,
divided between two processes.

will assume that all operations take the same amount of

time, which is a reasonable assumption in DistNumPy since it

divides array operations into small blocks that often have the

same computation or communication time.

F. Lazy Evaluation

Since Python is an interpreted dynamic programming lan-

guage, it is not possible to schedule communication and

computation operations at compile time. Instead, we introduce

lazy evaluation as a technique to determine the communication

and computation operations used in the program at runtime.

During the execution of a DistNumPy program all MPI-

processes record the requested array operations rather than

applying them immediately. The MPI-processes maintain the

operations in a convenient data structure and at a later point

all MPI-processes apply the operations. The idea is that by

having a set of operations to carry out it may be possible to

schedule communication and computation operations that have

no mutual dependencies in parallel.

We will only introduce lazy evaluation for Python opera-

tions that involve distributed arrays. If the Python interpreter

encounters operations that do not include DistNumPy arrays,

the interpreter will execute them immediately. At some point,

the Python interpreter will trigger DistNumPy to execute all

previously recorded operation. This mechanism of executing

all recorded operation we will call an operation flush and the

following three conditions may trigger it.

• The Python interpreter issues a read from distributed data.

E.g. when the interpreter reaches a branch statement.

• The number of delayed operations reaches a user-defined

threshold.

• The Python interpreter reaches the end of the program.

G. The Dependency System

The main challenge when introducing lazy evaluation is to

implement a dependency system that schedules operations in a

performance efficient manner while the implementation keeps

the overhead at an acceptable level.

Our first lazy evaluation approach makes use of a DAG-

based data structure to contain all recorded operations. When

an operation is recorded, it is split across the sub-view-blocks

that are involved in the operation. For each such operation, a

DAG node is created just as in figure 3 and 4.

Beside the DAG our dependency system also consist of a

ready queue, which is a queue of recorded operations that do

not have any dependencies. The ready queue makes it possible

to find operations that are ready to be executed in the time

complexity of O(1).
a) Operation Insertion: The recording of an operation

triggers an insertion of new node into the DAG. A straightfor-

ward approach will simply implement insertion by comparing

the new node with all the nodes already located in the

DAG. If a dependency is detected the implementation adds

an edge between the nodes. The time complexity of such an

implementation is O(n) where n is the number of operation in

the DAG and the construction of the complete DAG is O(n2).

Send

Recv Apply

Apply

Send

RecvApply

Apply

Process 1 Process 2

Iteration 1

Iteration 2

Iteration 3

Fig. 6. Illustration of the naı̈ve evaluation approach. The result is a deadlock

in the first iteration since both processes are waiting for the receive-node to

finish, but that will never happen because the matching send-node is in second
iteration.

b) Operation Flush: To achieve good performance the

operation flush implementation must maximize the amount of

communication that it is overlapped by computation. There-

fore, the flush implementation initiate communication at the

earliest point in time and only do computation when all

communication has been initiated. Furthermore, to make sure

that there is progress in the MPI layer it checks for finished

communication in between multiple computation operations.

The following is the flow of our operation flush algorithm:

1) Initiate all communication operations in the ready queue.

2) Check in a non-blocking manner if some communi-

cation operations have finished and remove finished

communication operations from the ready queue and the

DAG. Furthermore, register operations that now have no

dependencies into the ready queue.

3) If there is only computation operations in the ready

queue execute one of them and remove it from the ready

queue and the DAG.

4) Go back to step one if there are any operations left in

the ready queue else we are finished.

The algorithm maintains the following three invariants:

1) All operations, that are ready, are located in the ready

queue.

2) We only start the execution of a computation node when

there is no communication node in the ready queue.

3) We only wait for communication when the ready queue

has no computation nodes.

1) Deadlocks: To avoid deadlocks a MPI-process will only

enter a blocking state when it has initiated all communi-

cation and finished all ready computation. This guaranties

a deadlock-free execution but it also reduces the flexibility

of the execution order. Still, it is possible to check for

finished communication using non-blocking functions such as

MPI_Testsome().
The naı̈ve approach to evaluate a DAG is simply to first

evaluate all nodes that have no dependencies and then remove

the evaluated nodes from the graph and start over – similar to

the traditional BSP model. However, this approach may result

in a deadlock as illustrated in figure 6.

2) Dependency Heuristic: Experiments with lazy evalu-

ation using the DAG-based data structure shows that the

overhead associated with the creation of the DAG is very time

consuming and becomes the dominating performance factor.

We therefore introduce a heuristic to speed up the common

case. We base the heuristic on the following two observations:

• In the common case, a scientific DistNumPy application

spreads a computation evenly between all sub-view-

blocks in the involved arrays.

• Operation dependencies are only possible between sub-

view-blocks that are part of the same base-block.

The heuristic is that instead of having a DAG, we introduce

a prioritized operation list for each base-block. The assump-

tion is that, in the common case, the number of operations

associated with a base-block is manageable by a linked list.

We implement the heuristic using the following algorithm.

A number of operation-nodes and access-nodes represent

the operation dependencies. The operation-node contains all

information needed to execute the operation on a set of sub-

view-blocks and there is a pointer to an access-node for each

sub-view-block. The access-node represents memory access to

a sub-view-block, which can be either reading or writing. E.g.,

the representation of an addition operation on three sub-view-

blocks is two read access-nodes and one write access-node

(Fig. 7).

Our algorithm places all access-nodes in dependency-lists

based on the base-block that they are accessing. When an

operation-node is recorded each associated access-node is

inserted into the dependency list of the sub-view-blocks they

access. Additionally, the number of accumulated dependencies

the access-nodes encounter is saved as the operation-node’s

reference counter.

All operation-nodes that are ready for execution have a

reference count of zero and are in the ready queue. Still,

they may have references to access-nodes in dependency-

lists – only when we execute an operation-node will we

remove the associated access-nodes from the dependency-

lists. Following the removal of an access-node we traverse

the dependency-list and for each depending access-node we

reduce the associating reference counter by one. Because of

this, the reference counter of another operation-node may be

reduced to zero, in which case we move the operation-node

to the ready queue and the algorithm starts all over.

Figure 7 goes through all the structures that make up the

dependency system and figure 8 illustrates a snapshot of

the dependency system when executing the 3-point stencil

application.

VI. EXPERIMENTS

To evaluate the performance impact of the latency-hiding

model introduced in this paper, we will conduct performance

benchmark using DistNumPy and NumPy2. The benchmark is

executed on an Intel Core 2 Quad cluster (Table I) and for each

2NumPy version 1.3.0

All access-nodes that access the same base-block

are linked together in a dependency-list. The order
of the list is simply based on the time of node in-

sertion (descending order). Additionally an access-

node contains the information needed to determine

whether it depends on other access-nodes.

An operation-node has a pointer to all access-nodes

that are involved in the operation. Attached to
an operation is a reference counter that specifies

the number of dependencies associated with the

operation. When the counter reaches zero the op-

eration is ready for execution. At some point when
the operation has been executed the operation-node

and all access-nodes are completely remove from

the dependency system.

A base-block simply contains a pointer to the first
access-node in the dependency-list.

Fig. 7. The structures used in the dependency system.

Fig. 8. Illustration of the dependency system when executing the 3-point

stencil in figure 3, 4 and 5. The illustration is a snapshot of the dependency

system on node 0 after the creation of all the arrays. Note that since the block
size is three, node 0 only has one block of each array.

application we calculate the speedup of DistNumPy compared

to NumPy. The problem size is constant though all the exe-

cutions, i.e. we are measuring strong scaling. To measure the

performance impact of the latency-hiding, we use two different

setups: one with latency-hiding and one that uses blocking

communication. For both setups we measured the time spent

on waiting for communication, i.e. the communication latency

not hidden behind computation.

In this benchmark we utilizes the cluster in a by node
fashion. That is, from one to sixteen CPU-cores we start on

MPI-process per node (no SMP) and above sixteen CPU-cores

we start multiple MPI-processes per node. The MPI library

TABLE I

HARDWARE SPECIFICATIONS

CPU Intel Xeon E5345

CPU Frequency 2.33 GHz
CPU per node 2

Cores per CPU 4

Memory per node 16 GB

Number of nodes 16
Network Gigabit Ethernet

Black Scholes Function
S: Stock price
X: Strike price
T: Years to maturity
r: Risk-free rate
v: Volatility
def BlackScholes(CallPutFlag,S,X,T,r,v):

d1 = (log(S/X)+(r+v*v/2.)*T)/(v*sqrt(T))
d2 = d1-v*sqrt(T)
if CallPutFlag==’c’:

return S*CND(d1)-X*exp(-r*T)*CND(d2)
else:

return X*exp(-r*T)*CND(-d2)-S*CND(-d1)

Fig. 9. This is the Black Sholes Function in the Black-Scholes benchmark

where CND is the cumulative normal distribution. Note that there is no source

code difference between a parallel and a sequential version – it is regular
Python/Numpy source code.

used throughout this benchmark is OpenMPI3.

The benchmark consists of the following six Python appli-

cations.

• Fractal Computation of the Mandelbrot Set. From a

NumPy tutorial written by Walt[21] (Fig. 11).

• Black-Scholes Computation of the Black-Scholes

model[22] implemented in NumPy (Fig. 9 and 12).

Both Fractal and Black-Scholes are embarrassingly par-

allel applications and we expect that latency-hiding will

not improve the performance.

• N-body A Newtonian N-body simulation that uses a naı̈ve

algorithm that computes all body-body interactions. The

NumPy implementation is a translation of a MATLAB

application by Casanova[23] (Fig. 13).

• kNN A naı̈ve implementation of a k nearest neighbor

search (Fig. 14).

The N-body and kNN applications have a computation

complexity of O(n2). This indicates that the two applica-

tions should have good scalability even without latency-

hiding.

• Jacobi The Jacobi method is an algorithm for deter-

mining the solutions of a system of linear equations.

It is an iterative method that uses a spitting scheme to

approximate the result (Fig. 15).

• Jacobi Stencil In this benchmark, we have implemented

the Jacobi method using stencil operations rather than

matrix row operations (Fig. 10 and 16).

The two Jacobi applications also have a computation

complexity of O(n). However, the constant associated

with n is very small, e.g. to compute one element in

the Jacob Stencil application four adjacent elements are

required. We expect latency-hiding to be very important

for good scalability.

A. Discussion

Overall, the benchmarks show that DistNumPy has both

good performance and scalability. However, the scalability

is somewhat worsening at 32 CPU-cores and above, which

3OpenMPI version 1.5.1

1 while epsilon < delta:
2 T = 0.2 * (A[1:-1,1:-1] + A[2:,1:-1] \
3 + A[1:-1,0:-2] + A[1:-1,2:])
4 delta = sum(abs(A[1:-1,1:-1] - T))
5 A[1:-1,1:-1] = T

Fig. 10. This is the kernel in the Jacobi Stencil benchmark. Note that there

is no source code difference between a parallel and a sequential version – it

is regular Python/Numpy source code.

correlates with the use of multiple CPU-cores per node.

Because of this distinct performance profile, we separate the

following discussion into results executed on one to sixteen

CPU-cores (one CPU-core per node) and the results executed

on 32 CPU-cores to 128 CPU-cores (multiple CPU-cores per

node).

1) One to Sixteen CPU-cores: The benchmarks clearly

shows that DistNumPy has both good performance and scala-

bility. Actually, half of the Python applications achieve super-

linear speedup at sixteen CPU-cores. This is possible because

DistNumPy, opposed to NumPy, will try to reuse memory

allocations by lazily de-allocating arrays. DistNumPy uses

a very naı̈ve algorithm that simply checks if a new array

allocation is identical to a just de-allocated array. If that is

the case one memory allocation and de-allocation is avoided.

In the two embarrassingly parallel applications, Fractal and
Black-Scholes, we see very good speedup as expected. Since

the use of communication in both applications is almost non-

existing the latency-hiding makes no difference. The speedup

achieved at sixteen CPU-cores is 18.8 and 15.4, respectively.

The two naı̈ve implementations of N-body and kNN do

not benefit from latency-hiding. In N-body the dominating

operations are matrix-multiplications, which is a native op-

eration in NymPy and in DistNumPy implemented as spe-

cialized operations using the parallel algorithm SUMMA[24]

and not as a combination of ufunc operations. Since both

the latency-hiding and the blocking execution use the same

SUMMA algorithm the performance is very similar. However,

because of the overhead associated with latency-hiding, the

blocking execution performs a bit better. The speedup achieved

at sixteen CPU-cores is 17.2 with latency-hiding and 17.8

with blocking execution. Similarly, the performance difference

between latency-hiding and blocking in kNN is minimal –

the speedup achieved at sixteen CPU-cores is 12.5 and 12.6,

respectively. The relatively modest speedup in kNN is the

result of poor load balancing. At eight and sixteen CPU-

cores the chosen problem is not divided evenly between the

processes.

Finally, latency-hiding introduces a drastically improved

performance to the two communication intensive applications

Jacobi and Jacobi Stencil. The waiting time percentage going

from 54% to 2% and from 62% to 9%, respectively. Latency-

hiding also has a major impact on the overall speedup, which

goes from 5.9 to 12.8 and from 7.7 to 18.4, respectively.

In other words latency-hiding more than doubles the overall

speedup and CPU utilization.

 4

 8

 16

 32

2 4 8 16 32 64 128
 0

 20

 40

 60

 80

 100

S
p

e
e

d
u

p
 o

f
D

is
tN

u
m

P
y
 c

o
m

p
a

re
d

 t
o

 N
u

m
P

y

R
e

la
ti
v
e

 w
a

it
in

g
 t

im
e

 i
n

 p
e

rc
e

n
ta

g
e

 o
f

to
ta

l
ti
m

e

No. of CPU−cores

Blocking (waiting time)
Latency−Hiding (waiting time)

Blocking (speedup)
Latency−Hiding (speedup)

Fig. 11. Speedup of the Fractal application.

2) Scaling above sixteen CPU-cores: Overall, the per-

formance is worsening at 32 CPU-cores – particular at 64

CPU-cores and above where the CPU utilization is below

50%. One reason for this performance degradation is the

characteristic of strong scaling. In order to have considerable

more data blocks than MPI-processes, the size of the data

distribution blocks decreases as the number of executing CPU-

cores increases. Smaller data blocks reduces the performance

since the overhead in DistNumPy is proportional with the size

of a data block.

However, smaller data blocks are not enough to justify

the observed performance degradation. The von Neumann

bottleneck[25] associated with main memory also hinder scal-

ability. This is evident when looking at Figure 17, which is a

speedup graph of N-body that compares by node and by core
scaling. At eight CPU-cores, both result uses identical data

distribution and block size, but the performance when only

using one CPU-core per node is clearly superior to using all

eight CPU-cores on one node.

A NumPy application will often use ufuncs heavily, which

makes the application vulnerable to the von Neumann bottle-

neck. The problem is that multiple ufunc operations are not

pipelined in order to utilize cache locality. Instead, NumPy

will compute a single ufunc operation at a time. This problem

is also evident in DistNumPy since our latency-hiding model

only address communication latency and not memory latency.

VII. FUTURE WORK

The latency-hiding model introduced in this paper focuses

on communication latency. However, the result from out

benchmarks shows that memory latency is another aspect that

is important for good scalability – particular when utilizing

shared memory nodes.

One approach to address this issue is to extend our latency-

hiding model with cache locality optimization. The scheduler

will have to prioritize computation operations that are likely to

be in the cache. One heuristic to accomplish this is to sort the

operations in the ready queue after the last time the associated

data block has been accessed.

 2

 4

 8

 16

 32

 64

2 4 8 16 32 64 128
 0

 20

 40

 60

 80

 100

S
p

e
e

d
u

p
 o

f
D

is
tN

u
m

P
y
 c

o
m

p
a

re
d

 t
o

 N
u

m
P

y

R
e

la
ti
v
e

 w
a

it
in

g
 t

im
e

 i
n

 p
e

rc
e

n
ta

g
e

 o
f

to
ta

l
ti
m

e

No. of cluster nodes (one CPU−core per node)

Blocking (waiting time)
Latency−Hiding (waiting time)

Blocking (speedup)
Latency−Hiding (speedup)

Fig. 12. Speedup of the Black-Scholes application.

 4

 8

 16

2 4 8 16 32 64 128
 0

 20

 40

 60

 80

 100

S
p

e
e

d
u

p
 o

f
D

is
tN

u
m

P
y
 c

o
m

p
a

re
d

 t
o

 N
u

m
P

y

R
e

la
ti
v
e

 w
a

it
in

g
 t

im
e

 i
n

 p
e

rc
e

n
ta

g
e

 o
f

to
ta

l
ti
m

e

No. of CPU−cores

Blocking (waiting time)
Latency−Hiding (waiting time)

Blocking (speedup)
Latency−Hiding (speedup)

Fig. 13. Speedup of the N-body application.

 4

 8

 16

2 4 8 16 32 64 128
 0

 20

 40

 60

 80

 100

S
p

e
e

d
u

p
 o

f
D

is
tN

u
m

P
y
 c

o
m

p
a

re
d

 t
o

 N
u

m
P

y

R
e

la
ti
v
e

 w
a

it
in

g
 t

im
e

 i
n

 p
e

rc
e

n
ta

g
e

 o
f

to
ta

l
ti
m

e

No. of CPU−cores

Blocking (waiting time)
Latency−Hiding (waiting time)

Blocking (speedup)
Latency−Hiding (speedup)

Fig. 14. Speedup of the kNN application.

 2

 4

 8

 16

2 4 8 16 32 64 128
 0

 20

 40

 60

 80

 100

S
p

e
e

d
u

p
 o

f
D

is
tN

u
m

P
y
 c

o
m

p
a

re
d

 t
o

 N
u

m
P

y

R
e

la
ti
v
e

 w
a

it
in

g
 t

im
e

 i
n

 p
e

rc
e

n
ta

g
e

 o
f

to
ta

l
ti
m

e

No. of CPU−cores

Blocking (waiting time)
Latency−Hiding (waiting time)

Blocking (speedup)
Latency−Hiding (speedup)

Fig. 15. Speedup of the Jacobi application.

 2

 4

 8

 16

2 4 8 16 32 64 128
 0

 20

 40

 60

 80

 100

S
p

e
e

d
u

p
 o

f
D

is
tN

u
m

P
y
 c

o
m

p
a

re
d

 t
o

 N
u

m
P

y

R
e

la
ti
v
e

 w
a

it
in

g
 t

im
e

 i
n

 p
e

rc
e

n
ta

g
e

 o
f

to
ta

l
ti
m

e

No. of CPU−cores

Blocking (waiting time)
Latency−Hiding (waiting time)

Blocking (speedup)
Latency−Hiding (speedup)

Fig. 16. Speedup of the Jacobi Stencil application.

 2

 4

 8

 16

 32

2 4 8 16 32 64 128

S
p

e
e

d
u

p
 o

f
D

is
tN

u
m

P
y
 c

o
m

p
a

re
d

 t
o

 N
u

m
P

y

No. of CPU−cores

By Node
By Core

Fig. 17. Speedup of the N-body application that compares by node, in

which the maximum number of CPU-cores is used, and by core, in which the
minimum number of nodes is used. Note that the by node graph is identical

to the latency-hiding graph in figure 13.

Another approach is to merge calls to ufuncs, that operate

on common arrays, together in one joint operation and thereby

make the joint operation more CPU-intensive. If it is possible

to merge enough ufuncs together the application may become

CPU bound rather than memory bound.

Introducing Hybrid Programming could also be a solution

to the problem. In order to utilize hybrid architectures, [26]

shows that shared and distributed memory programming can

improve the overall performance and scalability.

VIII. CONCLUSIONS

While automatic parallelization for distributed memory ar-

chitectures cannot hope to compete with a manually paral-

lelized version, the productivity that comes with automatic

parallelization still makes the technique of interest to a user

who only runs a code a few times between changes. For

applications that are embarrassingly parallel or applications

where the computational complexity is O(n2) or higher, it

is fairly straight forward to manage the communication for

automatic parallelization. However, for common kernels the

complexity is O(n log(n)) or even O(n) and here the applica-

tion of latency-hiding techniques is essential for performance.

In this work we have presented a scheme for managing

latency-hiding, that is based on the assumption that splitting

the work in more blocks than there are processors will allow

us to aggressively communicate data-blocks between nodes,

while at the same time processing operations that require no

external data-blocks. The same dependency analysis may be

done without a division into data-blocks, but the blocking

approach allows us to maintain a full DAG, an operation that

is known to be costly, and replace the DAG with a number of

ordered linked lists, to which access is done in linear time.

We implement the model in Distributed Numerical Python,

DistNumPy, a programming framework that allows linear

algebra operations expressed in NumPy to be executed on

distributed memory platforms and this is without any effort

towards parallelization from the programmer.

A selection of six benchmarks show that the system, as

predicted, does not improve the performance of embarrass-

ingly parallel applications or applications with complexity

O(n2) or higher. For applications with lower complexity the

benefit from automatic latency-hiding is highly dependent on

the relationship between the amount of data that needs to be

transferred and the cost of updating the individual elements.

The performance of the stencil-based Jacobi-solver improves

from a speedup of 7.7 to 18.4 at sixteen processors and 8.6

to 25.0 at 128 processors, compared to standard sequential

NumPy. This is matched by the fact that the time spend on

waiting for communication drops from 62% to 9% and 87%

to 41%, respectively, with the introduction of latency-hiding.

Overall, the conclusion is that managing latency-hiding at

runtime is fully feasible and makes automatic parallelization

feasible for a number of applications where manual paralleliza-

tion would otherwise be required. The most obvious target is

the large base of stencil-based algorithms.

REFERENCES

[1] J. Hollingsworth, K. Liu, and V. P. Pauca, “Parallel toolbox for matlab,”

Winston-Salem, NC, USA, Tech. Rep., 1996.
[2] O. J. Anshus, J. M. Bjørndalen, and B. Vinter, “Pycsp - communicating

sequential processes for python,” in Communicating Process Architec-
tures 2007, A. A. McEwan, W. Ifill, and P. H. Welch, Eds., jul 2007,

pp. 229–248.
[3] R. Bromer and F. Hantho, “pupympi,” 2011. [Online]. Available:

https://bitbucket.org/bromer/pupympi

[4] M. R. B. Kristensen and B. Vinter, “Numerical python for scalable
architectures,” in Fourth Conference on Partitioned Global Address
Space Programming Model, PGAS’10. ACM, 2010.

[5] D. Loveman, “High performance fortran,” IEEE Parallel & Distributed
Technology: Systems & Applications, vol. 1, no. 1, p. 25, 1993.

[6] C. Koelbel and P. Mehrotra, “Compiling global name-space parallel

loops for distributed execution,” IEEE Trans. Parallel Distrib. Syst.,
vol. 2, no. 4, pp. 440–451, 1991.

[7] T. Brandes and F. Zimmermann, “Adaptor - a transformation tool for

hpf programs,” 1994.

[8] S. Benkner, H. Zima, P. Mehrotra, and J. V. Rosendale, “High-level

management of communication schedules in hpf-like languages,” Tech.
Rep., 1997.

[9] T. E. Oliphant, “Python for scientific computing,” Computing in Science
and Engineering, vol. 9, pp. 10–20, 2007.

[10] R. Espasa, M. Valero, and J. E. Smith, “Out-of-order vector archi-

tectures,” in Proceedings of the 30th annual ACM/IEEE international
symposium on Microarchitecture, ser. MICRO 30. Washington, DC,

USA: IEEE Computer Society, 1997, pp. 160–170.
[11] S. Kaxiras, “Distributed vector architectures,” Journal of Systems Archi-

tecture, vol. 46, no. 11, pp. 973–990, 2000.
[12] J. L. Hennessy and T. Gross, “Postpass code optimization of pipeline

constraints,” ACM Trans. Program. Lang. Syst., vol. 5, no. 3, pp. 422–
448, 1983.

[13] P. B. Gibbons and S. S. Muchnick, “Efficient instruction scheduling for a

pipelined architecture,” SIGPLAN Not., vol. 21, no. 7, pp. 11–16, 1986.
[14] V. Strumpen and T. L. Casavant, “Exploiting communication latency

hiding for parallel network computing: Model and analysis,” in Proc.
PDS’94. IEEE, 1994, pp. 622–627.

[15] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: principles, techniques
and tools. Reading, MA: Addison-Wesley, 1986.

[16] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. New York, NY, USA: W. H.
Freeman & Co., 1979.

[17] A. A. Khan, C. L. McCreary, and M. S. Jones, “A Comparison of Mul-

tiprocessor Scheduling Heuristics,” Parallel Processing, International
Conference on, vol. 2, pp. 243–250, 1994.

[18] F. Song, A. YarKhan, and J. Dongarra, “Dynamic task scheduling for

linear algebra algorithms on distributed-memory multicore systems,”

in Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis. New York, NY, USA: ACM.

[19] M. U. Guide, “The mathworks,” Inc., Natick, MA, vol. 5, 1998.
[20] W. Gropp, E. Lusk, and A. Skjellum, Using MPI Portable Parallel

Programming with the Message Passing Interface. The MIT Press,
1994.

[21] S. van der Walt, “Numpy: lock ’n load,” 2008. [Online]. Available:

http://mentat.za.net/numpy/intro/intro.html

[22] F. Black and M. Scholes, “The pricing of options and corporate
liabilities,” The journal of political economy, pp. 637–654, 1973.

[23] H. Casanova, “N-body simulation assignment,” Nov 2008. [Online].

Available: http://navet.ics.hawaii.edu/∼casanova/courses/ics632 fall08/
projects.html

[24] R. A. v. d. Geijn and J. Watts, “Summa: scalable universal matrix mul-

tiplication algorithm,” Concurrency - Practice and Experience, vol. 9,
no. 4, pp. 255–274, 1997.

[25] J. Backus, “Can programming be liberated from the von neumann style?:

A functional style and its algebra of programs,” Communications of the
ACM, vol. 16, no. 8, pp. 613–641, 1978.

[26] M. Kristensen, H. Happe, and B. Vinter, “Hybrid parallel programming

for blue gene/p,” Scalable Computing: Practice and Experience, vol. 12,
no. 2, 2011.

A.6 PGAS for Distributed Numerical Python Targeting
Multi-core Clusters

Mads Ruben Burgdorff Kristensen, Yili Zheng, and Brian Vinter. PGAS for
Distributed Numerical Python Targeting Multi-core Clusters
In Proceedings of the 2012 IEEE International Symposium on Parallel and Distributed
Processing (IPDPS’12). IEEE.

181

PGAS for Distributed Numerical Python Targeting Multi-core Clusters

Mads Ruben Burgdorff Kristensen
Niels Bohr Institute

University of Copenhagen
Denmark

madsbk@nbi.dk

Yili Zheng
Lawrence Berkeley National Lab

Berkeley, CA 94720
USA

yzheng@lbl.gov

Brian Vinter
Niels Bohr Institute

University of Copenhagen
Denmark

vinter@nbi.dk

Abstract—In this paper we propose a parallel programming
model that combines two well-known execution models: Sin-
gle Instruction, Multiple Data (SIMD) and Single Program,
Multiple Data (SPMD). The combined model supports SIMD-
style data parallelism in global address space and supports
SPMD-style task parallelism in local address space. One of the
most important features in the combined model is that data
communication is expressed by global data assignments instead
of message passing. We implement this combined programming
model into Python, making parallel programming with Python
both highly productive and performing on distributed memory
multi-core systems.

We base the SIMD data parallelism on DistNumPy, an
auto-parallelizing version of the Numerical Python (NumPy)
package that allows sequential NumPy programs to run on
distributed memory architectures.

We implement the SPMD task parallelism as an extension
to DistNumPy that enables each process to have direct access
to the local part of a shared array. To harvest the multi-core
benefits in modern processors we exploit multi-threading in
both SIMD and SPMD execution models. The multi-threading
is completely transparent to the user – it is implemented in the
runtime with OpenMP and by using multi-threaded libraries
when available.

We evaluate the implementation of the combined program-
ming model with several scientific computing benchmarks using
two representative multi-core distributed memory systems – an
Intel Nehalem cluster with Infiniband interconnects and a Cray
XE-6 supercomputer – up to 1536 cores. The benchmarking
results demonstrate scalable good performance.

Keywords-Parallel Programming; Parallel Computing;
Python; Scientific Computing;

I. INTRODUCTION

Finding the solution for computational scientific and
engineering problems often requires experimenting various
algorithms and different parameters with feedback in several
iterations. Therefore, being able to quickly prototype the
solution is critical to timely and successful scientific discov-
ery. Python has emerged as such an important programming
language in the Computational Science and Engineering
community [1], [2], [3] for its ease of use, concise syntax
close to mathematical formulas and the rich set of packages
available. While Python is popular and widely used on
individual workstations, it has limited support for develop-
ing parallel algorithms on large scale distributed-memory

clusters. Currently, the most common usage of Python for
supercomputers is to provide a convenience wrapper to run
legacy parallel applications written in FORTRAN and C
with MPI. However, it is challenging to implement parallel
applications directly through Python due to the constraint
of separate physical address spaces on distributed-memory
systems. In addition, there are concerns about slow execu-
tion of the Python interpreter for HPC. To make quickly
prototyping parallel algorithms on supercomputers possible,
we extend Python with global view support on distributed-
memory systems.

A. SIMD and SPMD

There exists a broad range of execution models for parallel
programming. Single Instruction, Multiple Data (SIMD) and
Single Program, Multiple Data (SPMD) are two execution
models often used in parallel programming. Our SIMD exe-
cution model refers to a single sequential Python instruction
stream with massive data parallelism. Our programming
model is executed in SIMD mode from the user’s perspective
but the underlying runtime system is built on top on MPI
and is executed in SPMD mode.

SIMD is well suited for expressing data-centric paral-
lelism and avoids many nasty parallel programming bugs,
such as deadlocks and data races, due to the single thread
execution model. In our distributed-memory implementation,
the SIMD programming model provides full knowledge of
data distribution and dependencies to all participating pro-
cessors, which makes it is possible for the runtime system to
execute array operations and perform data movement in par-
allel without user interventions. Additionally, the processors
need not communicate when performing data dependency
analysis and operation scheduling optimizations at runtime.
However, SIMD also reduces programming flexibility be-
cause the user is restricted to data-parallel operations. The
SPMD execution model provides more flexibility than SIMD
by allowing different processes to execute different code
paths. But it makes auto parallelization and auto commu-
nication much harder because each process only has it local
state information.

B. DistNumPy

Distributed Numerical Python (DistNumPy) [4] is an
extended version of NumPy [1] that parallelizes array op-
erations for distributed-memory systems in a completely
transparent manner from the user’s perspective. DistNumPy
can use multiple processors through the Message Passing
Interface (MPI) [5] communication library. The original
DistNumPy only uses the SIMD execution model with
implicit data parallelism in which the MPI communication is
fully invisible to the user. The only difference in the API of
NumPy and DistNumPy is the array creation routines. Dist-
NumPy allows both distributed and non-distributed arrays to
co-exist and the user specifies, as an optional parameter, if
the array should be distributed (Lst. 1).

Listing 1: Creation of Local and Global Arrays
1 #Non−D i s t r i b u t e d
2 A = numpy . a r r a y ([1 , 2 , 3])
3 # D i s t r i b u t e d
4 B = numpy . a r r a y ([1 , 2 , 3] , d i s t =True)

Figure 1 shows an example of using global matrix
views to implement a stencil operation by just one line
of DistNumPy code. In contrast, conventional programming
languages would require using tedious scalar operations with
for loops and MPI send/recv to express the same high-level
operation.

C. SPMD Extension to DistNumPy

In this paper, we introduce an extension to DistNumPy
that mixes the already existing SIMD execution model in
DistNumPy with the SPMD execution model. This new
extension enables users to express parallel algorithms in
terms of global data management and local operations.
Using LINPACK as an example, the user may express the
distributed-memory LU factorization algorithm in Python
and use BLAS/LAPACK for local computations.

To overcome the relatively slow execution of the Python
interpreter, we use four optimization techniques to amortize
the overheads:

• Multi-threading with OpenMP to exploit data paral-
lelism in array operations.

• Use optimized libraries for basic local computations
whenever possible, such as BLAS, LAPACK, FFTW
and vendor-optimized libraries. In common cases, most
execution time would be spent on computation in the
library and thus the overheads incurred by the Python
interpreter are negligible. Even for applications written
in FORTRAN and C, it is a good practice to use
optimized libraries if available because they usually run
much faster than the standard implementations.

• Combine array operations through lazy evaluation. Us-
ing an internal dependency tracking system, the Dist-
NumPy runtime system will aggregate operations and
execute them in batch only when the results are required

in the data flow. This lazy evaluation strategy can
not only perform code optimization on-the-fly but also
minimize the overheads of executing individual Python
instructions.

• Overlap computation and communication by leveraging
non-blocking communication. With sufficient overlap-
ping, the Python interpreter overhead is hidden and will
not increase the execution time.

In case all fails, the user still has the option to implement
the performance-critical section in low-level languages and
use it in the Python code to speed up execution. Because the
Python implementation is more concise to understand, it is
much easier to identify the bottleneck in such program than
searching it in a very large C or FORTRAN application.

The authors in [6] optimize DistNumPy by combining
array operations through lazy evaluation and overlapping
computation and communication. We use this optimized
version of DistNumPy as the bases of our work. For a
detailed description of the lazy evaluation and automatic
communication latency hiding, we refer to prior work [4],
[6].

We have incorporated our extension into the open-source
DistNumPy package1 and demonstrated the feasibility of
using Python to implement parallel algorithms for multi-core
clusters. Specifically, the main contributions of this paper
include:

• Added support for SIMD and SPMD execution models
in a single parallel program so that both data-parallel
and task-parallel applications can be conveniently im-
plemented with Python.

• Improved parallelism and scalability of DistNumPy by
implementing hierarchical parallelism in the runtime:
using OpenMP for multi-threading and MPI for inter-
node communication.

• Enabled interoperability between DistNumPy and exist-
ing third-party libraries for efficient local computation.

• Developed three benchmarks with our proposed
SIMD+SPMD programming model and evaluated their
performance on up to 1536 cores.

II. RELATED WORK

Our programming system supports both the SIMD data-
parallel programming model and the SPMD task-parallel
programming model. High Performance Fortran (HPF) [7]
and ZPL [8] are two well-known examples of data-parallel
programming languages. HPF is a Fortran-based data-
parallel programming language that requires static compila-
tion for distributed-memory systems [9]. Our Python-based
programming system uses dynamic execution and on-the-fly
data dependency analysis, which is more accurate than static
analysis and thus enable more performance optimizations by
reordering Python interpreter instructions at runtime.

1DistNumPy is available at http://code.google.com/p/DistNumPy

Figure 1: Matrix expression of a simple 5-point stencil computation example. See listing 2, line 8 for the Python expression.

Global Arrays (GA) [10], [11] is a library that supports
global arrays in SPMD programs for distributed-memory
computers. The main difference between Global Arrays and
our programming system is that our DisNumPy supports
the SIMD execution model, of which the single control
flow is more convenient for data parallelism and easier to
reason about for programmers. In addition, our programming
system provides nice object encapsulations for the array
objects and hence allows the user to naturally perform array
operations, for example, writing A+B for matrix addition.

Python extensions, NumPy [1] and SciPy [2], have been
successfully used in scientific computing [3], [12] because
their high-level abstractions are very close to mathematical
formulas and there exist a super rich set of Python packages
for almost any common task. Both NumPy and SciPy are
targeted to single-node systems but our extension is targeted
to multi-node systems.

MPI is the most popular parallel programming model
for distributed memory systems today and there are several
implementations for providing MPI to Python programs,
such as MPI for Python [13]. In contrast to message passing,
our programming system enables the user to directly access
shared data through assignment statements and our runtime
system performs communication automatically based on the
location of the data.

Many recent parallel programming languages, such as
UPC, Co-array Fortran, X10 and Chapel [14], [15], [16],
[17], [18], [19], [20], provide the feature of Partitioned
Global Address Space (PGAS), which combines the ef-
ficiency of leveraging data locality and the programming
productivity of using shared-memory. Our programming
system based on Python belongs to the PGAS family and
supports global shared data across all processes and private
local data within each process.

III. PROGRAMMING MODEL

We propose a new PGAS programming model that com-
bines the SIMD execution model for global array operations
and the SPMD execution model for local array operations.
In this section, we first briefly introduce the basic array
syntax used in NumPy and DistNumPy and then describe
our programming model.

A. NumPy and DistNumPy Syntax

NumPy and DistNumPy use identical array syntax based
on the Python list syntax. Elements of 1-D arrays are
indexed from 0 to (length − 1), where negative integers
are used to index in the reversed order. Multi-dimensional

arrays are stored in row-major order and indexed by each
dimension sequentially. Like the list syntax in Python, it
is possible to index multiple elements with ranges. Array
ranges including more than one elements return a view
(reference) to the sub-array rather than a new copy of the
elements. Operations performed on the view change the
underlying data of the original array directly. This view
mechanism makes it convenient to implement the stencil
operation in Figure 1. NumPy and DistNumPy have a copy
method to create a real copy of the array data when needed.

Listing 2: 5-Point-Stecil
1 c e n t e r = f u l l [1:−1 , 1:−1]
2 up = f u l l [0:−2 , 1:−1]
3 down = f u l l [2 : , 1:−1]
4 l e f t = f u l l [1:−1 , 0:−2]
5 r i g h t = f u l l [1:−1 , 2 :]
6 w h i l e e p s i l o n < d e l t a :
7 work [:] = c e n t e r
8 work += 0 . 2 ∗ (up+down+ l e f t + r i g h t)
9 d i f f = a b s o l u t e (c e n t e r − work)

10 d e l t a = sum (d i f f)
11 c e n t e r [:] = work

Listing 3: Cannon’s algorithm
1 f o r i i n x r an g e (nrow / BS) :
2 # Apply l o c a l m a t r i x m u l t i p l i c a t i o n
3 C . l o c a l () [:] += np . d o t (A. l o c a l () , B . l o c a l ())
4
5 # Moving columns h o r i z o n t a l (l e f t)
6 tmp = A [: , 0 : BS] . copy ()
7 A[: , 0 : −BS] = A [: , BS :]
8 A[: ,−BS :] = tmp
9

10 # Moving rows v e r t i c a l (up)
11 tmp = B [0 : BS , :] . copy ()
12 B[0:−BS , :] = B[BS : , :]
13 B[−BS : , :] = tmp

B. Global Array Operations

DistNumPy supports global arrays distributed among all
available processes. Python applications can make use of
DistNumPy by creating such global arrays. All global array
operations use the SIMD execution model, in which all
processes need to execute the same Python statement se-
quence even if some of them don’t need to take actions. The
computation place is based on the “owner computes” rule.
Processes that own part or all the operands of an operation
need to participate in the operation. Non-participating pro-
cesses would simply mask out the current Python statement.

In DistNumPy, each process runs a Python interpreter
that interprets the Python application. However, because of
the synchronous nature of SIMD, the parallelism provided

by DistNumPy is completely transparent to the user when
every interpreter takes the same code paths and only uses
global arrays operation. This transparency enables a user
familiar with Python/NumPy to utilize multiple processes
seamlessly. Listing 2 shows the kernel of a 5-point-stencil
DistNumPy application where all arrays are global and all
participating Python interpreters will execute identical code.
The parallel code is identical to the sequential NumPy
version and the data-parallel operations are automatically
executed in parallel on distributed-memory computers.

C. Global Assignment Operations

The SPMD execution model typically uses explicit mes-
sage passing (one or two sided) to move data in a dis-
tributed environment. DistNumPy enables using global data
assignments to express data movement. For example, when
multiplying two matrices by Cannon’s algorithm, we shift
matrix-blocks in the vertical and horizontal directions. List-
ing 3 line 5-13, is an implementation of this data movement
using regular Python assignments. Actual communication
associated with the assignments is completely hidden to the
user. The user only needs to specify the algorithm’s data
dependencies and DistNumPy handles how to perform the
data movements.

D. Local Array Operations

The user can get the local part of a global array from
DistNumPy by the local function, which is the only global
array operation that is non-collective and does not imply
synchronization. The local function returns a NumPy
array view that can be used together with any NumPy
compatible Python libraries.

Listing 3 is an implementation of Cannon’s algorithm
where we assume the matrices are square. The implemen-
tation makes use of the local address space to compute the
local matrix multiplication (line 3) and the global address
space to move matrix blocks up and left (line 5-13). The
user can mix local and global operations as needed. The only
rule is that a local array becomes undefined when executing
a global array operation. The user needs to use local
to retrieve a new local NumPy array after a global array
operation . This restriction is because of the lazy evaluation
used in the original DistNumPy (Sec. IV).

E. Local Array Block Iterator

Iterating over all local array blocks is a common opera-
tion. blocks is an operation that returns such an iterator. It
is semantically equivalent to local but instead of returning
the local part of the global array, it returns an iterator that
iterates over all local blocks in the global array.

F. Data Layout

The user may have to be aware of the data layout when
using local array operations. In the SPMD execution model,

(0,1) (0,2)

(1,0)

(2,0)

(3,0)

(0,4) (0,5)(0,3)(0,0)

(2,3)

Blocks owned by the processors [0,0]

(0,0)

Grid of Processors

0 1 2

0

1

Global view of matrix

(2,0)

(1,0)

(3,0)

(0,3) (0,1) (0,4) (0,2) (0,5)

(2,3)

(1,3)

(3,3)

(2,1)

(1,1)

(3,1)

(2,4)

(1,4)

(3,4)

(2,2)

(1,2)

(3,2)

(2,5)

(1,5)

(3,5)

Figure 2: The Two-Dimensional Block Cyclic Distribution
of a matrix on a 2 x 3 grid of processors.

the user will often have to differentiate computations based
on the process identity and data layout. To facilitate this, we
assign a rank id to each process that is accessible through
the constant RANK. The user may specify the data layout for
global arrays at job start-up time and it is immutable over
the course of the execution.

DistNumPy global arrays are stored in generalized N-
Dimensional block cyclic distribution schemes inspired by
HPF [7]. The user can define flexible process grids by using
the datalayout() function. The block size is the same
for all global arrays and is accessible through the constant
BLOCKSIZE. Fig. 2) is an example of the common 2-D
block cyclic data layout for matrix. The distribution scheme
works by arranging all processes in a two dimensional grid
and then distributing data-blocks in a round-robin fashion
either along one or both grid dimensions.

G. One Process Distribution

DistNumPy supports an alternative array distribution
where all data is located on a single process. When creating
a distributed array it is possible to specify where the data is
located by a rank affinity parameter. The following operation
will create a global array that is located on process 42
exclusively:

A = np . a r r a y ([1 , 2 , 3] , d i s t =True , onenode =42)

IV. IMPLEMENTATION

DistNumPy is extended from NumPy as a Python pack-
age that can be used with regular Python interpreters.
DistNumPy uses dynamic data dependency analysis, lazy
evaluation and communication aggregation techniques to
hide communication latency [6]. Following the data depen-
dencies between batched operations, DistNumPy proactively
initiates data transfers as early possible while consumes the
data as late as possible to maximize overlapping between
communication and computation.

A. Lazy Evaluation

Since Python is an interpreted dynamic programming
language, it is not possible to schedule communication and
computation operations at compile time. Instead, DistNumPy
determines the best execution order of operations in the
program with lazy evaluation at run time. During the ex-
ecution of a DistNumPy program, all processes record the
requested array operations in a convenient data structure and
then apply them in batch later with optmizations.

DistNumPy only uses lazy evaluation for Python oper-
ations that involve global arrays. If the Python interpreter
encounters operations that do not include global arrays,
the interpreter will execute them immediately. The Python
interpreter will trigger DistNumPy to execute all previously
recorded operation at any of the following conditions:

• The Python interpreter executes a local operation.
• The number of delayed operations passes a user-defined

threshold.
• The Python interpreter reaches the end of the program.
In order to achieve good performance when executing all

previously recorded operations, DistNumPy tries to maxi-
mize communication and computation overlapping. There-
fore, DistNumPy initiates non-blocking communication at
the earliest time and only does computation after all commu-
nication has been initiated. Furthermore, DistNumPy checks
for communication completion between multiple computa-
tion operations to make sure that there is progress in the
communication layer. The execution flow is as follows:

1) Initiate all non-depended communication operations.
2) Check if any communication operations has been fin-

ished in a non-blocking manner and insert operations
that have no dependencies into the ready queue.

3) When only computation operations are ready, execute
one of them and move new operations that have no
dependencies into the ready queue.

4) Go back to step one if there are unfinished operations
or else terminate.

The algorithm maintains the following three invariants:
1) All ready operations are in the ready queue.
2) Computation operations are executed only when there

is no communication operation in the ready queue.
3) Communication operations are checked for completion

when there is no computation operation in the ready
queue.

B. Multi-threading with OpenMP

The lack of efficient multi-threading support in the orig-
inal DistNumPy is a severe limitation when executing on
multi-core distributed memory systems. We improve the
performance for data-parallel array operations by using
multi-threading with OpenMP.

In NumPy and DistNumPy, a universal function (ufunc)
is a vectorized function that operates on all array elements

independently and provides implicit data-parallelism. In the
runtime, we use OpenMP directives to parallelize the for
loops in the ufunc computations.

The current multi-threading implementation harvests par-
allelism within single operation instead of parallelism over
multiple operations because we find that it requires extensive
dependency analyses to do so, which is beyond the scope of
this paper.

C. Third Party Python Libraries

There exist a great number of optimized numerical Python
libraries. Most of them are compatible with NumPy because
NumPy provides a C-pointer to the raw array data. Dist-
NumPy can also make use of these NumPy libraries for
local computations by converting the local part of the global
array to a regular NumPy array. For example, in the Cannons
algorithm we use the local NumPy function dot() (Lst. 3,
line 3), which is a simple binding to an optimized BLAS
library, to compute local matrix multiplication.

V. BENCHMARKS

To evaluate the implementation of our proposed program-
ming model, we developed three mini-benchmarks: 1) matrix
multiplication, 2) LU factorization and 3) 2-D heat equation
solution with the Jacobi iterative method. We implemented
all three benchmarks in pure Python and then used third
party libraries, BLAS and LAPACK, to compute local results
when applicable.

A. Matrix Multiplication

Matrix multiplication is a fundamental operation in nu-
merical computations. The global matrices are distributed
across all nodes with 2-D block-cyclic date layout. We
use the SUMMA [21] algorithm, which is based on outer-
product BLAS level-3 updates implemented by row and
column broadcast communication followed by local matrix
multiplications on each node.

Listing 4 shows the complete source code of the SUMMA
implementation. It is completely written in Python and uses
the NumPy function np.dot() (line 26) to compute the
local matrix multiplication. np.dot() calls the optimized
BLAS library available on the system.

The only communication in the SUMMA algorithm is
in line 15-19, in which we replicate a column-block hor-
izontally and a row-block vertically. The communication is
elegantly expressed by global array assignments to a_work
and b_work.

Listing 4: SUMMA Matrix Multiplication
1 i m p o r t numpy as np
2
3 d e f summa (a , b , c) :
4 (prow , p c o l) = a . p g r i d ()
5 BS = np . BLOCKSIZE
6 a work = np . z e r o s ((a . shape [0] , BS∗ p c o l) , \
7 d t y p e =a . d type , d i s t =True)

8 b work = np . z e r o s ((BS∗prow , b . shape [1]) , \
9 d t y p e =a . d type , d i s t =True)

10 Ksz = a . shape [1]
11 f o r k i n x r an g e (0 , Ksz , BS) :
12 bs = min (BS , Ksz−k) # C u r r e n t b l o c k s i z e
13
14 # R e p l i c a t e column−b l o c k h o r i z o n t a l
15 f o r p i n x r an g e (p c o l) :
16 a work [: , p∗BS : p∗BS+bs] = a [: , k : k+bs]
17 # R e p l i c a t e row−b l o c k v e r t i c a l
18 f o r p i n x r an g e (prow) :
19 b work [p∗BS : p∗BS+bs , :] = b [k : k+bs , :]
20
21 # Apply l o c a l o u t e r d o t p r o d u c t
22 l a work = a work . l o c a l () [: , : bs]
23 l b work = b work . l o c a l () [: bs , :]
24 l c = c new . l o c a l ()
25 i f l c . s i z e > 0 :
26 l c += np . d o t (l a work , l b work)

B. LU Factorization

LU factorization is a classical numerical linear algebra
problem that decomposes a matrix as the product of a
lower triangular matrix and an upper triangular matrix. The
implementation is a straightforward translation of a block
LU factorization written in Matlab [22]. Our implementation
is simplified by skipping partial pivoting. Listing 5 shows
the complete source code of implementation, which makes
use of the SUMMA implementation (line 47) from before
(Lst. 4) and a local LU factorization (line 25) provide
by the SciPy library, which in turn uses an optimized
LAPACK library. Taking advantage of the distributed array
extension, we express all communication patterns through
Python assignments when replicating the local LU results
horizontally and vertically (line 27-31).

Listing 5: LU Factorization
1 i m p o r t numpy as np
2 from s c i p y i m p o r t l i n a l g
3 i m p o r t pyHPC
4 from i t e r t o o l s i m p o r t i z i p as z i p
5
6 d e f l u (m a t r i x) :
7 SIZE = m a t r i x . shape [0]
8 BS = np . BLOCKSIZE
9

10 (prow , p c o l) = m a t r i x . p g r i d ()
11 A = m a t r i x . copy ()
12 L = np . z e r o s ((SIZE , SIZE) , d t y p e = m a t r i x . d type ,\
13 d i s t =True)
14 U = np . z e r o s ((SIZE , SIZE) , d t y p e = m a t r i x . d type ,\
15 d i s t =True)
16 f o r k i n x r an g e (0 , SIZE , BS) :
17 bs = min (BS , SIZE − k) # C u r r e n t b l o c k s i z e
18 kb = k / BS # k as b l o c k i n d e x
19
20 #Compute l o c a l LU
21 s l i c e = ((kb , kb +1) , (kb , kb +1))
22 f o r a , l , u i n z i p (A. b l o c k s (s l i c e) , \
23 L . b l o c k s (s l i c e) , \
24 U. b l o c k s (s l i c e)) :
25 (p , l [:] , u [:]) = l i n a l g . l u (a)
26
27 # R e p l i c a t e l o c a l LU h o r i z o n t a l and v e r t i c a l
28 f o r t k i n x r an g e (k+bs , SIZE , BS) :

29 t b s = min (BS , SIZE − t k)
30 L [t k : t k + t b s , k : k+bs] = U[k : k+ t b s , k : k+bs]
31 U[k : k+bs , t k : t k + t b s] = L [k : k+bs , k : k+ t b s]
32
33 i f k+bs < SIZE :
34 #Compute h o r i z o n t a l m u l t i p l i e r
35 s l i c e = ((kb , kb +1) , (kb +1 , SIZE / BS))
36 f o r a , u i n z i p (A. b l o c k s (s l i c e) , \
37 U. b l o c k s (s l i c e)) :
38 u [:] = np . l i n a l g . s o l v e (u . T , a . T) . T
39
40 #Compute v e r t i c a l m u l t i p l i e r
41 s l i c e = ((kb +1 , SIZE / BS) , (kb , kb +1))
42 f o r a , l i n z i p (A. b l o c k s (s l i c e) , \
43 L . b l o c k s (s l i c e)) :
44 l [:] = np . l i n a l g . s o l v e (l , a)
45
46 # Apply t o r e m a i n i n g s u b m a t r i x
47 A −= pyHPC . summa (L [: , : k+bs] ,U [: k+bs , :])
48
49 r e t u r n (L , U)

C. Heat Equation

The heat equation benchmark is to solve a partial dif-
ferential equation that describes the distribution of heat
in a given region over time. We use the Jacobi iterative
method to approximate the result with a 5-point stencil
implementation. Listing 2 shows the computation loop of
the implementation, which is concisely expressed by array
operations and assignments.

VI. PERFORMANCE

We evaluate the performance of our benchmarks on two
representative multi-core distributed memory systems – an
Intel Nehalem cluster with Infiniband interconnects and a
Cray XE-6 supercomputer – up to 1536 cores (Table I).

Both systems consist of multi-core Non-Uniform Memory
Access (NUMA) shared-memory nodes and each node has
multiple NUMA domains. CPU cores within the same
NUMA domain have uniform data access latency to the
local memory while CPU cores of different NUMA do-
mains would have non-uniform data access latencies. We
use hybrid parallelism, processes with threads, for all of
our benchmark runs. Specifically, we run one process per
NUMA domain and one thread per core within the NUMA
domain. Threads within a NUMA domain communicate
through shared memory and processes across NUMA do-
mains communicate through MPI.

Through empirical study, we find that this is the config-
uration that achieved best performance. The two extremes
usually do not work well: 1) running one process per core
without threading causes too much overheads in terms of
both memory footprint and communication time; 2) running
one process per node and using threads across NUMA
domains would also slow down the execution due to the
NUMA issues with data locality and resource contention
with too many threads.

System Intel Infiniband Cluster Cray XE-6
Processor Intel Xeon X5530 AMD Opteron 6172
Clock 2.4 GHz 2.1 GHz
Peak Performance per Core 10.6 Gflops 8.4 Gflops
Cores per NUMA Domain 4 6
NUMA Domains per Node 2 4 (packaged in 2 sockets)
Total Cores per Node 8 24
Private L1 Data Cache 64 KB 64 KB
Private L2 Data Cache 512 KB 512 KB
Shared L3 Cache per Socket 8MB 12MB
Memory Bandwidth 25.6 GB/s 25.6 GB/s
Memory per Node 24GB DDR3-1066 ECC 32GB DDR3-1066 ECC
Compiler Intel C/C++ 11.1 PGI 11.3
Math Library Intel MKL 10.2 Cray Scientific Library 10.5
Interconnect Infiniband 4X QDR Gemini 3-D Torus
Peak Bandwidth (per direction) 5 GB/s 7 GB/s
MPI OpenMPI 1.4.2 Cray MPI 5.1.4

Table I: Two distributed-memory multi-core NUMA systems for the experiments

For each benchmark, we calculate the FLOPS based on
the floating operation counts of the ideal sequential algo-
rithm and the measured execution times. Additionally, we
compare the results with the linearly scaling performance,
which we calculate by extrapolating the sequential FLOPS
performance of NumPy. We use this comparison as an upper
bound of the achievable scalable performance. We perform
weak scaling experiments, in which the problem size is
scaled with the number of CPU-cores in the executions.

A. Matrix Multiplication (SUMMA)

Matrix multiplication has very high computation to com-
munication ratio: its asymptotic computation complexity is
O(n3) while its data communication complexity is only
O(n2), as verified in the communication and computation
ratio Figure 4. The SUMMA algorithm is a well-known
scalable parallel algorithm for matrix multiplication. Thus
this benchmark scales nearly linearly on the Intel Infiniband
cluster and also performs quite well on the Cray XE-6
system as in Figure 3. The communication cost of running
the benchmark on CPU cores in a single NUMA domain
is zero because we use threads to share data directly as
described before.

Because all local matrix computations are done with
the vendor-optimized BLAS libraries (Intel MKL and Cray
Scientific Library), our implementation obtains very good
absolute performance in terms of the hardware peak FLOP
rate on both platforms. The performance of our Python
sequential implementation is very close to that of the C
sequential implementation because in both cases the majority
of the running time is spent in external optimized BLAS
library.

The gap between our implementation “DistNumPy” and
the ideal linear speed-ups of the sequential implementation is
basically the overheads of performing parallel execution with
the high-level abstractions in our programming model. For
the Intel Infiniband cluster, the python interpreter overheads

are negligible as our obtained performance tightly tracks the
linear speed-up curve in Figure 3 (a).

B. LU Factorization

The LU factorization benchmark also has relatively high
computation to communication ratio but does require more
communication and has more data dependencies than the
matrix multiplication benchmark. Thus it is expected to
scales well. Figure 5 shows that the LU benchmark scale
well on the Intel Infiniband cluster up to 512 cores. But the
scalability of the LU benchmark decreases on the Cray XE-6
system when using more than 384 cores when the commu-
nication times become dominant, as shown in Figure 6. The
Python sequential implementation of LU is about 12% and
50% slower than the C counterpart on the Intel Infiniband
cluster and the Cray XE-6 system respectively. The Python
implementation is slower because it performs extra work to
allocate buffers and format data in addition to calling the
LAPACK factorization routine.

Overall, the benchmark performance is better on the Intel
Infiniband cluster than on the Cray XE-6 system as the
current Cray MPI for the Cray Gemini network has limited
overlapping support for non-blocking MPI communication.
In addition, the job scheduler on the Cray system may
allocate distant nodes to a job and the torus network perfor-
mance would suffer from the communication traffics caused
by other jobs.

C. Heat Equation

The computation to communication ratio of this stencil-
type benchmark is inherently low, which is a small constant.
Thus its performance is somewhat limited by the memory
bandwidth when running within a node with shared-memory
and limited by the network latency and bandwidth when
running on multiple nodes. Figure 7 shows that our im-
plementation scales well on up to 256 cores on the Intel
Infiniband cluster and up to 192 cores on the Cray XE-6
system. As the number of cores goes up, the performance

�

��

���

����

�����

�
�
�
�
�
�

���	
��
��
����

�������	

���	���������������

�

��

���

����

�����

������

�
�
�
�
�
�

���	
��
��
����

�������	

���	���������������

(a) Intel Infiniband cluster (b) Cray XE-6

Figure 3: Matrix Multiplication (SUMMA) benchmark performance

��

���

���

���

���

���

���

���

	��

��

����

� � � 	 �� �� �� ��	 ��� ���

����������	���
��

�������������� ���������������

��

���

���

���

���

���

���

���

	��

��

����

����������	���
��

�������������� ���������������

(a) Intel Infiniband cluster (b) Cray XE-6

Figure 4: Matrix Multiplication (SUMMA) benchmark communication and computation ratio

�

��

���

����

�����

�
�
�
�
�
�

���	
��
��
����

�������	

���	���������������

�

��

���

����

�����

�
�
�
�
�
�

���	
��
��
����

�������	

���	
�������������

(a) Intel Infiniband cluster (b) Cray XE-6

Figure 5: LU Factorization benchmark performance

��

���

���

���

���

���

���

���

	��

��

����

����������	���
��

�������������� ���������������

��

���

���

���

���

���

���

���

	��

��

����

����������	���
��

�������������� ���������������

(a) Intel Infiniband cluster (b) Cray XE-6

Figure 6: LU Factorization communication and computation ratio

�

��

���

����

�����

�
�
�
�
�
�

���	
��
��
����

�������	

���	���������������

���

�

��

���

����

�����

�
�
�
�
�
�

���	
��
��
����

������	
�

��	
���������������

(a) Intel Infiniband cluster (b) Cray XE-6

Figure 7: Heat Equation benchmark performance

��

���

���

���

���

���

���

���

	��

��

����

����������	���
��

�������������� ���������������

��

���

���

���

���

���

���

���

	��

��

����

����������	���
��

�������������� ���������������

(a) Intel Infiniband cluster (b) Cray XE-6

Figure 8: Heat Equation benchmark communication and computation ratio

is increasingly dominated by the communication time which
results in suboptimal scalability (Fig. 8). The C implementa-
tion of the Heat Equation benchmark performs much better
than the Python implementation and we plan to address
this performance discrepancy issue due to Python interpreter
overheads in future work.

D. Scalability Limitations

The global address space and the SIMD execution model
introduce some scalability limitations. It is nice to express
data movement using the global address space but it forces
each process to iterate over all elements in a global array
operation not only the elements it has to compute. Thus,
introducing a Python overhead that increases proportional
with the global size of an array operation. In a traditional
SPMD execution model the overhead is proportional with
the local size of an array operation.

Another important limitation is the lack of communication
latency-hiding. DistNumPy will normally use lazy evalua-
tion to overlap communication with computation. However,
the amount of instructions lazy evaluated decreases when
applications use the local operation.

VII. FUTURE WORK

One of the main features in DistNumPy when using the
SIMD execution model is automatic communication latency
hiding. This feature is disabled somewhat when mixing
SIMD and SPMD. The problem is that DistNumPy has to
execute all lazy evaluated operations when the user changes
to the SPMD model, e.g. when the user calls local in order
to apply computations based on process affinity. Therefore,
DistNumPy will not automatically overlap local operations
with communication.

The introduction of a scheduler function in DistNumPy
could solve the problem. The user would then use this new
function to schedule local operations instead of applying
them immediately. This would enable DistNumPy to include
the local operation in its lazy evaluation system thus making
it possible to overlap local operations with communication.

One the other hand, it is harder to address the scalability
limitation introduced by using the global address space.
The use of global data iterations is very natural when
programming using the global address space. Still, it is
possible to limit this issue by introducing dedicate global
functions, such as functions to move or replicate data.

Both the Matrix Multiplication and LU factorization
benchmark replicate data blocks, listing 4 line 14-19 and
listing 5 line 27-31, by using Python loops that iterates
over global arrays. A new function similar to the matrix
replication function, repmat, in Matlab could handle these
replications with a single function call thus making the
Python loops unnecessary.

VIII. CONCLUSION

The single execution flow with fully synchronous opera-
tions of SIMD is both the main strength and weakness of
data-parallel programming models: two most notorious types
of parallel programming bugs, data races and deadlocks,
simply don’t exist in data-parallel programs because there
is only one execution thread. However, it is inconvenient
to perform task parallelism and conditional computations
with pure data parallelism. To get the benefits of both data-
parallelism and task-parallelism, we incorporate both SIMD
and SPMD execution models in our programming system.

Python and other scripting languages are commonly
considered as unsuitable for large scale high performance
parallel computing due to its interpreter execution nature.
Our work is a proof of concept that shows that Python
with proper extensions and optimizations can indeed be
used to develop parallel applications that scale on large
distributed memory systems. The loss of raw performance
due to Python interpreter overheads is considerably small
because the major part of execution time is spent in the
underlying computation and communication libraries. In
addition, significant speed-ups can often be achieved by
using better algorithms and refined models, which are made
much easier to implement due to the high-level abstractions
of our Python-based programming system. Like Python,
our programming model is general and applicable beyond
scientific computing applications. A distributed shared array
in our system is essentially a partitioned global address space
in that the array elements may be used to store arbitrary
objects.

As the ExaScale Software Study [23] pointed out: “current
software approaches will be inadequate in enabling future
Grand Challenge applications on Extreme Scale systems”.
Traditional parallel programming languages, such as C and
Fortran, are good for getting hardware performance but
less suitable for high-level application development and
algorithm exploration. We propose a two layer approach
to address the programming challenges for extreme scale
systems: a low-level language layer that provides portable
performance across different hardware platforms and a high-
level language layer that provides portable productivity to
end users. The work presented in this paper is a step
towards creating such a high-level programming system and
has demonstrated the feasibility of achieving productivity
without compromising performance.

ACKNOWLEDGMENT

This research was supported in part by the Office of
Science of the U.S. Department of Energy (DE-AC02-
05CH11231). This research used resources of the National
Energy Research Scientific Computing Center, which is
supported by the Office of Science of the U.S. Department
of Energy under Contract No. DE-AC02-05CH11231.

REFERENCES

[1] T. E. Oliphant, “Python for scientific computing,” Computing
in Science and Engineering, vol. 9, pp. 10–20, 2007.
[Online]. Available: http://numpy.scipy.org

[2] E. Jones, T. Oliphant, P. Peterson et al., “SciPy: Open source
scientific tools for Python,” 2001–. [Online]. Available:
http://www.scipy.org/

[3] P. F. Dubois, “Guest editor’s introduction: Python: Batteries
included,” Computing in Science Engineering, vol. 9, no. 3,
pp. 7 –9, may-june 2007.

[4] M. R. B. Kristensen and B. Vinter, “Numerical python
for scalable architectures,” in Fourth Conference on Parti-
tioned Global Address Space Programming Model, PGAS’10.
ACM, 2010.

[5] MPI Forum, “MPI: A message-passing interface standard,
v1.1,” University of Tennessee, Knoxville, Technical Report,
June 12, 1995.

[6] M. Ruben Burgdorff Kristensen and B. Vinter, “Manag-
ing Communication Latency-Hiding at Runtime for Paral-
lel Programming Languages and Libraries,” Arxiv Preprint
arXiv:1201.3804v1 , jan 2012.

[7] High Performance Fortran Forum, “High Performance
Fortran language specification, version 1.0,” Houston, Tex.,
Tech. Rep. CRPC-TR92225, 1993. [Online]. Available:
citeseer.ist.psu.edu/fortran92high.html

[8] B. L. Chamberlain, S.-E. Choi, E. C. Lewis, C. Lin,
L. Snyder, and D. Weathersby, “ZPL: A machine independent
programming language for parallel computers,” Software
Engineering, vol. 26, no. 3, pp. 197–211, 2000. [Online].
Available: citeseer.ist.psu.edu/article/chamberlain00zpl.html

[9] K. Kennedy, C. Koelbel, and H. Zima, “The rise and fall
of high performance fortran: an historical object lesson,”
in Proceedings of the third ACM SIGPLAN conference on
History of programming languages, ser. HOPL III. New
York, NY, USA: ACM, 2007, pp. 7–1–7–22. [Online].
Available: http://doi.acm.org/10.1145/1238844.1238851

[10] J. Nieplocha, B. Palmer, V. Tipparaju, M. Krishnan, H. Trease,
and E. Apr, “Advances, applications and performance of
the global arrays shared memory programming toolkit,”
International Journal of High Performance Computing
Applications, vol. 20, no. 2, pp. 203–231, Summer 2006.
[Online]. Available: http://hpc.sagepub.com/content/20/2/203.
abstract

[11] “Global arrays webpage,” http://www.emsl.pnl.gov/docs/
global/.

[12] T. Oliphant, “Python for scientific computing,” Computing
in Science Engineering, vol. 9, no. 3, pp. 10 –20, may-june
2007.

[13] “MPI for Python,” http://mpi4py.scipy.org/.

[14] K. Yelick, D. Bonachea, W.-Y. Chen, P. Colella, K. Datta,
J. Duell, S. L. Graham, P. Hargrove, P. Hilfinger, P. Husbands,
C. Iancu, A. Kamil, R. Nishtala, J. Su, M. Welcome, and
T. Wen, “Productivity and performance using partitioned
global address space languages,” in PASCO ’07: Proceedings
of the 2007 international workshop on Parallel symbolic
computation. New York, NY, USA: ACM, 2007, pp. 24–
32.

[15] “UPC language specifications, v1.2,” Lawrence Berkeley Na-
tional Lab, Tech. Rep. LBNL-59208, 2005.

[16] R. W. Numrich and J. Reid, “Co-array fortran for parallel
programming,” ACM Fortran Forum, vol. 17, no. 2, pp.
1 – 31, 1998. [Online]. Available: citeseer.ist.psu.edu/
numrich98coarray.html

[17] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit,
A. Krishnamurthy, P. Hilfinger, S. Graham, D. Gay, P. Colella,
and A. Aiken, “Titanium: A high-performance java dialect,”
Concurrency: Practice and Experience, vol. 10, no. 11-13,
September-November 1998.

[18] Cray Inc., “The Chapel Parallel Programming Language
Home Page,” http://chapel.cray.com/ (Mar. 2011).

[19] E. Allen, D. Chase, J. Hallett, V. Luchangco, J.-W.
Maessen, S. Ryu, G. L. Steele Jr., and S. Tobin-
Hochstadt, The Fortress Language Specification, 1st ed.,
Sun Microsystems, Inc., Sep. 2006. [Online]. Available:
http://research.sun.com/projects/plrg/fortress.pdf

[20] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar, “X10: an
object-oriented approach to non-uniform cluster computing,”
in Proceedings of the 20th annual ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and
applications, ser. OOPSLA ’05. New York, NY, USA:
ACM, 2005, pp. 519–538. [Online]. Available: http:
//doi.acm.org/10.1145/1094811.1094852

[21] R. A. v. d. Geijn and J. Watts, “Summa: scalable universal
matrix multiplication algorithm,” Concurrency - Practice and
Experience, vol. 9, no. 4, pp. 255–274, 1997.

[22] T. Warburton, “Lecture 24: Brief introduction to block
lu factorization and parallel implementation.” 2011.
[Online]. Available: http://www.caam.rice.edu/∼timwar/
MA471F03/Lecture24.pdf

[23] D. Campbell, M. Hall, W. Harrod, J. Hiller, D. Koester,
J. Levesque, R. Schreiber, and A. Snavely, “Exascale software
study : Software challenges in extreme scale systems exas-
cale software study : Software challenges in extreme scale
systems,” Government PROcurement, pp. 1–159, 2009.

A.7 cphVB: A Scalable Virtual Machine for Vectorized
Applications

M. Kristensen, S. Lund, T. Blum, and B. Vinter. cphVB: A Scalable Virtual
Machine for Vectorized Applications
Submitted to the International Conference on Parallel Processing (ICPP’12). Pitts-
burgh, PA, 2012.

193

cphVB: A Scalable Virtual Machine for Vectorized Applications

Mads Ruben Burgdorff Kristensen
Niels Bohr Institute

University of Copenhagen
Denmark

madsbk@nbi.dk

Simon Andreas Frimann Lund
Niels Bohr Institute

University of Copenhagen
Denmark

safl@nbi.dk

Troels Blum
Niels Bohr Institute

University of Copenhagen
Denmark

blum@nbi.dk

Brian Vinter
Niels Bohr Institute

University of Copenhagen
Denmark

vinter@nbi.dk

Abstract—Modern processor architectures, in addition to
having still more cores, also require still more consideration
to memory-layout in order to run at full capacity. The use-
fulness of most languages is deprecating as their abstractions,
structures or objects are hard to map onto modern processor
architectures efficiently.

The work in this paper introduces a new abstract machine
framework, cphVB, that enables a vector oriented high-level
programming languages to map onto a broad range of architec-
tures efficiently. The idea is to close the gap between high-level
languages and hardware optimized low-level implementations.
By translating high-level vector operations into an intimidate
vector byte code, cphVB enables specialized vector engines to
efficiently execute the vector operations.

The primary success parameters are to maintain a complete
abstraction from low-level details and to provide efficient code
execution across different, modern, processors. We evaluate
the presented design through a setup that targets multi-
core CPU architectures. We evaluate the performance of
the implementation using Python implementations of well-
known algorithms: a k-nearest neighbor, a Pi approximation,
an n-body simulation, and a shallow water simulation. All
demonstrate good performance.

I. INTRODUCTION

Obtaining high performance from todays computing envi-
ronments requires both a deep and broad working knowledge
on computer architecture, communication paradigms and
programming interfaces. Todays computing environments
are highly heterogeneous consisting of a mixture of CPUs,
GPUs, FPGAs and DSPs orchestrated in a wealth of archi-
tectures and lastly connected in numerous ways.

Utilizing this broad range of architectures manually
requires programming specialists and is a very time-
consuming task – time and specialization a scientific re-
searcher typically does not have. A high-productivity lan-
guage that allows rapid prototyping and still enables utilizing
of a broad range of architectures is clearly preferable.

There exist high-productivity language and libraries that
automatically utilize parallel architectures [1][2][3]. They
are however still few in numbers and have one problem in
common. They are closely coupled to both the front-end,
i.e. programming language and IDE, and the back-end, i.e.
computing device, which makes them interesting only to the
few using the exact combination of front-, and back-end.

A tight coupling between front-end technology and back-
end present another problem; the usefullnes of the developed
program expires as soon as the back-end does. With the rapid
development of hardware architectures the time spend on
implementing optimized programs for a specific hardware
target is lost as soon as the hardware product expires.

In this paper, we present a novel approach to the problem
of closing the gap between high-productivity languages
and parallel architectures, which allows a high degree of
modularity and reusability. The approach involves creat-
ing a framework, cphVB, in which the computing devices
(hardware) are viewed as engines that processes vectorized
instructions, called Vector Engines. It defines a clear and
easy to understand byte code language that the Vector
Engines executes. cphVB also contains a protocol to govern
the safe, and efficient exchange, creation, and destruction of
model data.

cphVB provides a retargetable framework in which the
user can write programs utilizing whichever cphVB sup-
ported programming interface they prefer and run the pro-
gram on their own workstation while doing prototyping, such
as testing correctness and functionality of their programs.
Users can then deploy the exact same program in a more
powerful execution environment without changing a single
line of code and thus effectively solve greater problem sets.

The rest of the paper is organized as follows. In Section III
we describe the programming model supported by cphVB.
Section II describes Numerical Python, which is the first
programming interface that fully supports cphVB. In Section
IV, we describe the overall design of cphVB. Section V
describes an implementation of the cphVB design. In Section
VI, we conduct a performance study of the implementation.
Finally, in Section VII and VIII we discuss future work and
conclude.

A. Related Work

The key motivation for cphVB is to provide a framework
for the utilization of heterogeneous computing systems with
the goal of obtaining high performance and high produc-
tivity. Systems such as pyOpenCL/pyCUDA[4] provides a
direct mapping from frontend language to the optimization
target. In this case, providing the user with direct access to

the low-level systems OpenCL[5] and CUDA[6] from the
high-level language Python[7]. The work in [4] enables the
user with the ability to write a low-level implementation
combined with a high-productivity language. The goal is
similar to cphVB – the approach however is entirely dif-
ferent. cphVB provides a means to hide low-level target
specific code behind a programming model and providing
a framework and runtime environment to support it.

Intel Math Kernel Library[8] is in this regard more
comparable to cphVB. Intel MKL is a programming library
providing utilization of multiple targets ranging from a sin-
gle core CPU to a multi-core shared memory CPU and even
to a cluster of computers all through the same programming
API. However, cphVB is not only a programming library
it is a runtime system providing support for a vector ori-
ented programming model. The programming model is well-
known from high-productivity languages such as MATLAB
[9], R[10], IDL[11], GNU Octave[12] and Numerical Python
(NumPy) [13] to name a few.

cphVB is more closely related to the work described in
[14], here a compilation framework is provided for execution
in a hybrid environment consisting of both CPUs and GPUs.
Their framework uses a Python/NumPy based frontend that
uses Python decorators as hints to do selective optimizations.
cphVB similarly provides a NumPy based frontend and
equivalently does selective optimizations. However, cphVB
uses a slightly less obtrusive approach; program selection
hints are sent from the frontend via the NumPy-bridge. This
approach provides the advantage that any existing NumPy
program can run unaltered and take advantage of cphVB
without changing a single line of code. Whereas unPython
requires the user to manually modify the source code by
applying hints in a manner similar to that of OpenMP[15].
This non-obtrusive design at the source level is to the authors
knowledge novel.

Microsoft Accelerator[2] introduces ParallelArray, which
is similar to the utilization of the NumPy arrays in cphVB
but there are strict limitations to the utilization of ParallelAr-
rays. ParallelArrays does not allow the use of direct index-
ing, which means that the user must copy a ParallelArray
into a conventional array before indexing. cphVB instead
allows indexed operations and additionally supports array-
views, which are array-aliases that provide multiple ways to
access the same memory allocation. Thus, the data structure
in cphVB is highly flexible and provides elegant program-
ming solutions for a broad range of numerical algorithms.
Intel provides a similar approach called Intel Array Building
Blocks (ArBB) [3] that provides retargetability and dynamic
compilation. It is thereby possible to utilize heterogeneous
architectures from within standard C++. The retargetability
aspect of Intel ArBB is represented in cphVB as a plain and
simple configuration file that define the cphVB runtime en-
vironment. Intel ArBB provides a high performance library
that utilizes a heterogeneous environment and hides the low-

level details behind a vector oriented programming model
similar to cphVB. However, ArBB only provides access to
the programming model via C++ whereas cphVB is not
biased towards any one specific frontend language.

On multiple points cphVB is closely related in function-
ality and goals to the SEJITS [16] project. SEJITS takes a
different approach towards the frontend and programming
model. SEJITS provides a rich set of computational kernels
in a high-productivity language such as Python or Ruby.
These kernels are then specialized towards optimality crite-
ria. This approach has shown to provide performance that
at times out-performs even hand-written specialized code
towards a given architecture. Being able to construct compu-
tational kernels is a core issue in data-parallel programming.

The programming model in cphVB does not provide this
kernel methodology. cphVB has a strong NumPy heritage
which also shows in the programming model. The advantage
is easy adaptability of the cphVB programming model
for users of NumPy, Matlab, Octave and R. The cphVB
programming model is not a stranger to computational
kernels – cphVB deduce computational kernels at runtime
by inspecting the vector bytecode generated by the Bridge.

cphVB provides in this sense a virtual machine optimized
for execution of vector operations, previous work [17] was
based on a complete virtual machine for generic execution
whereas cphVB provides an optimized subset.

II. NUMERICAL PYTHON

Before describing the design of cphVB, we will briefly go
through Numerical Python (NumPy) [13]. Numerical Python
heavily influenced many design decisions in cphVB – it also
uses a vector oriented programming model as cphVB.

NumPy is a library for numerical operations in Python,
which is implemented in the C programming language.
NumPy provides the programmer with an multidimensional
array object and a whole range of supported array operations.
By using the array operations, NumPy takes advantage of the
performance of C while retaining the high abstraction level
of Python.

NumPy uses an arrays syntax that is based on the Python
list syntax. The arrays are indexed positionally, 0 through
length – 1, where negative indexes is used for indexing in the
reversed order. Like the list syntax in Python, it is possible to
index multiple elements. All indexing that represents more
than one element returns a view of the elements rather
than a new copy of the elements. It is this view semantic
that makes it possible to implement a stencil operation as
demonstrated in Figure 1 and 2. In order to force a real array
copy rather than a new array reference NumPy provides the
copy method.

In the rest of this paper, we define the array-base as the
original allocate array that lies contiguous in memory. In
addition, we will define the array-view as a view of elements
in an array-base.

Figure 1. Matrix expression of a simple 5-point stencil computation
example. See Figure 2, line 8 for the Python expression.

1 c e n t e r = f u l l [1: −1 , 1:−1]
2 up = f u l l [0: −2 , 1:−1]
3 down = f u l l [2 : , 1:−1]
4 l e f t = f u l l [1: −1 , 0:−2]
5 r i g h t = f u l l [1: −1 , 2 :]
6 w h i l e e p s i l o n < d e l t a :
7 work [:] = c e n t e r
8 work += 0 . 2 ∗ (up+down+ l e f t + r i g h t)
9 c e n t e r [:] = work

Figure 2. A 5-Point-Stecil application implemented in Python using
NumPy.

III. TARGET PROGRAMMING MODEL

To hide the complexities of obtaining high-performance
from a heterogeneous environment any given system must
provide a meaningful high-level abstraction. This can be
realized in the form of domain specific languages, embedded
languages, language extensions, libraries, APIs etc. Such an
abstraction serves two purposes: 1) It must provide meaning
for the end-user such that the goal of high-productivity can
be met with satisfaction. 2) It must provide an abstraction
that consists of a sufficient amount of information for the
system to optimize its utilization.

cphVB is not biased towards any specific choice of
abstraction or frontend technology as long as it is compatible
with a vector oriented programming model. This provides
means to use cphVB in functional programming languages,
provide a frontend with a strict mathematic notation such as
APL[18] or a more relaxed syntax such as MATLAB.

The vector oriented programming model encourages ex-
pressing programs in the form of high-level array operations,
e.g. by expressing the addition of two arrays using one high-
level function instead of computing each element individu-
ally. The NumPy application in Figure 2 is a good example
of using the vector oriented programming model.

IV. DESIGN OF CPHVB

The key contribution in this paper is a framework, cphVB,
that support a vector oriented programming model. The idea
of cphVB is to provide the mechanics to seamlessly couple
a programming language or library with an architecture-
specific implementation of vectorized operations.

cphVB consists of a number of components that com-
municate using a simple protocol. Components are allowed
to be architecture-specific but they are all interchangeable
since all uses the same communication protocol. The idea is
to make it possible to combine components in a setup that

Figure 3. cphVB design idea

perfectly match a specific execution environment. cphVB
consist of the following components:

• Programming Interface The programming language
or library exposed to the user. cphVB was initially
meant as a computational back-end for the Python
library NumPy, but we have generalized cphVB to
potential support all kind of languages and libraries.
Still, cphVB has design decisions that are influenced
by NumPy and its vector objects.

• Bridge The role of the Bridge is to introduce cphVB
into an already existing languages and libraries. The
Bridge generates the cphVB byte code that corresponds
to the user-code.

• Vector Engine The Vector Engine is the architecture-
specific implementation that executes cphVB byte code.

• Vector Engine Manager The Vector Engine Manager
manages data location and ownership of vectors. It also
manages the distribution of computing jobs between
potentially several Vector Engines, hence the name.

An overview of the design can be seen in Figure 3.

A. Configuration

To make cphVB as flexible a framework as possible, we
manage the setup of all the components at runtime through
a configuration file. The idea is that the user can change the
setup of components simply by editing the configuration file
before executing the user application. Additionally, the user
only has to change the configuration file in order to run the
application on different systems with different computational
resources. The configuration file uses the ini syntax – Figure
4 is an example of a setup for NumPy executing parallel on
one machine using Pthreads.

B. Byte Code

The central part of the communication between all the
components in cphVB is vector byte code. The goal with
the byte code language is to be able to express operations
on multidimensional vectors. Taking inspiration from single

1 # Root o f t h e s e t u p
2 [s e t u p]
3 b r i d g e = numpy
4 debug = t r u e
5
6 # B r i dg e f o r NumPy
7 [numpy]
8 t y p e = b r i d g e
9 c h i l d r e n = node

10
11 # V e c t o r Engine Manager f o r a s i n g l e machine
12 [node]
13 t y p e = vem
14 impl = l ibcphvb vem node . so
15 c h i l d r e n = p t h r e a d
16
17 # V e c t o r Engine imp lemen ted u s i n g P o s i x Threads
18 [p t h r e a d]
19 t y p e = ve
20 impl = l i b c p h v b v e p t h d . so

Figure 4. Configuration ini-file

instruction, multiple data (SIMD) instructions but adding
structure to the data. This, of course, fits very well with the
array operations in NumPy but is not bound to nor limited
to these.

We would like the byte code to be a concept that is easy
to explain and understand. It should have a simple design
that is easy to implement. It should be easy and inexpensive
to generate and decode. To fulfill these goals we chose a
design that conceptually is an assembly language where
the operands are multidimensional vectors. Furthermore, to
simplify the design the assembly language should have a
one-to-one mapping between instruction mnemonics and
opcodes.

In the basic form, the byte-code instructions are primitive
operations on data, e.g. addition, subtraction, multiplication,
division, square root etc. As an example, let us look at
addition. Conceptually it has the form:

add $d , $a , $b

Where add is the opcode for addition. After execution $d
will contain the sum of $a and $b.

The requirement is straightforward: we need an opcode.
The opcode will explicitly identify the operation to perform.
Additionally the opcode will implicitly define the number of
operands. Finally, we need some sort of symbolic identifiers
for the operands. Keep in mind that the operands will be
multidimensional arrays.

C. Interface

The Vector Engine and the Vector Engine Manager ex-
poses simple API that consists of the following functions:
initialization, finalization, registration of a user-defined op-
eration and execution of a list of byte codes. Furthermore,
the Vector Engine Manager exposes a function to define new
arrays.

D. Bridge

The Bridge is the bridge between the programming in-
terface, e.g. Python/NumPy, and the Vector Engine Man-
ager. The Bridge is the only component that is specifically
implemented for the programming interface. In order to
add cphVB support to a new language or library, one only
has to implement the bridge component. It generates byte
code based on programming interface and sends them to the
Vector Engine Manager.

E. Vector Engine Manager

Instead of just letting the front-end communicate directly
with the Vector Engine, we introduced a Vector Engine
Manager (VEM) into the design. It is the responsibility of
the VEM to manage data ownership and distribute byte code
instructions to several Vector Engines.

For efficiency reasons, the VEM handles instantiating and
discarding arrays. If the programming interface or the Bridge
controls this, they would always have to copy data from main
memory to the device that is going to do the calculations.
Often arrays are created with structured data (e.g. random,
constants), with no data at all (e.g. empty), or as a result of
calculation. In any case it saves, potentially several, memory
copies to delay the actual memory allocation. Typically,
array data will exist on the computing device exclusively.

In order to minimize data copying we introduce a data
ownership scheme. It keeps track of which components in
cphVB that needs to access a given array. The goal is to
allow the system to have several copies of the same data
while ensuring that they are in synchronization. We base the
data ownership scheme on three instructions, sync, release
and discard:

• Sync is used to request read access to a data object.
This means that when acknowledging a sync request,
the copy existing in shared memory needs to be the
most resent copy.

• Discard is used to signal that the copy in shared
memory has been updated and all other copies are now
invalid. Normally used for upgrading a read access to
a write access.

• Release is simply the same as a sync followed by a
discard. This is used for requesting write access.

The cphVB components follow the following four rules
when implementing the data ownership scheme:

1) The Bridge will always ask the Vector Engine Man-
ager for access to a given data object. It will send
a sync request for read access and a release request
for write access. The Bridge will not keep track of
ownership itself.

2) A Vector Engine can assume that it has write access to
all of the output parameters that are referenced in the
instructions it receives. Likewise, it can assume read
access on all input parameters.

3) A Vector Engine is free to manage its own copies
of arrays and implement its own scheme to minimize
data copying. It just needs to copy modified data back
to share memory when receiving a sync instruction
and delete all local copies when receiving a discard
instruction. A release instruction can be handled as
async followed by a discard instruction.

4) The Vector Engine Manager keeps track of array
ownership for all its children. The owner of an array
has full (i.e. write) access. When the parent component
of the Vector Engine Manager, normally the Bridge,
request access to an array, the Vector Engine Manager
will forward the request to the relevant child compo-
nent. The Vector Engine Manager never accesses the
array itself.

The Vector Engine Manager also keeps track of how many
references there is to any given array. If there are no more
references to an array it deallocates memory and sends
discard instructions to any child component that may have
a local copy.

Additionally, the Vector Engine Manager needs the ca-
pability to handle multiple children components. In order
to maximize parallelism the Vector Engine Manager can
distribute workload and array data between its children
components.

F. Vector Engine

Though the Vector Engine is the most complex component
of cphVB, it has a very simple and a clearly defined role.
It has to execute all instructions it receives in a manner that
obey the serialization dependencies between instructions.
Finally, it has to ensure that the rest of the system has access
to the results as governed by the rules of the sync, release,
and discard instructions.

V. IMPLEMENTATION OF CPHVB

In order to demonstrate our cphVB design we have imple-
mented a basic cphVB setup. This concretization of cphVB
is by no means exhaustive. The setup is targeting the NumPy
library executing on a single machine with multiple CPU-
cores. In this section, we will describe the implementation of
each component in the cphVB setup – the Bridge, the Vector
Engine Manager, and the Vector Engine. The cphVB design
rules (Sec. IV) govern the interplay between the components.

A. Bridge

The role of the Bridge is to introduce cphVB into an
already existing project. In this specific case NumPy, but
could just as well be “R” or any other language/tool that
works primarily on vectorizable operations on large data
objects.

It is the responsibility of the Bridge to generate cphVB
instructions on basis of the Python program that is being run.
The NumPy Bridge is an extension of NumPy version 1.6. It

uses hooks to divert function call where the program access
cphVB enabled NumPy arrays. The hooks will translate a
given function into its corresponding cphVB byte code when
possible. When it is not possible, the hooks will feed the
function call back into NumPy and thereby forcing NumPy
to handle the function call itself.

The Bridge operates with two address spaces for arrays:
the cphVB space and the NumPy space. All arrays starts
in the NumPy space as a default. The original NumPy
implementation handles these arrays and all operations us-
ing them. It is possible to assign an array to the cphVB
space explicitly by using an optional cphVB parameter in
array creation functions such as empty and random. The
cphVB bridge implementation handles these arrays and all
operations using them.

In two circumstances, it is possible for an array to transfer
from one address space to the other implicitly at runtime.

1) When an operation accesses an array in the cphVB
address space but it is not possible for the bridge
to translate the operation into cphVB code. In this
case, the bridge will synchronize and move the data
to the NumPy address space. For efficiency no data is
actually copied instead the bridge uses the mremap1

function to re-map the relevant memory pages.
2) When an operations access arrays in different address

spaces the Bridge will transfer the arrays in the NumPy
space to the cphVB space. Afterwards, the bridge will
translate the operation into byte code that cphVB can
execute.

In order to detect direct access to arrays in the cphVB
address space by the user, the original NumPy implemen-
tation, a Python library or any other external source, the
bridge protects the memory of arrays that are in the cphVB
address space using mprotect2. Because of this memory
protection, subsequently accesses to the memory will trigger
a segmentation fault. The Bridge can then handle this kernel
signal by transferring the array to the NumPy address space
and cancel the segmentation fault. This technique makes it
possible for the Bridge to support all valid Python/NumPy
application since it can always fallback to the original
NumPy implementation.

In order to gather greatest possible information at runtime,
the Bridge will collect a batch of instructions rather than
executing one instruction at a time. The Bridge will keep
recording instruction until either the application reaches the
end of the program or untranslatable NumPy operations
forces the Bridge to move an array to the NumPy address
space. When this happens, the Bridge will call the Vector
Engine Manager to execute all instructions recorded in the
batch.

1The function mremap() in GNU C library 2.4 and greater.
2The function mprotect() in the POSIX.1-2001 standard.

Processor Two Intel Xenon
Clock 2.67 GHz GHz
Private L1 Data Cache 64 KB
Private L2 Data Cache 512 KB
Shared L3 Cache per Socket 12MB
Memory Bandwidth 25.6 GB/s
Memory per Node 96GB DDR3-1066
Compiler GCC 4.4.5

Table I
LENOVO THINKSTATION D20

B. Vector Engine Manager

The Vector Engine Manager (VEM) in our setup is very
simple because it only has to handle one Vector Engine thus
all operations go to the same Vector Engine. Still, the VEM
creates and deletes arrays based on specification from the
Bridge and handles all meta-data associated with arrays.

C. Vector Engine

In order to maximize the CPU cache utilization and
enables parallel execution the first stage in the VE is to
form a set of instructions that enables data blocking. That
is, a set of instructions where all instructions can be applied
on one data block completely at a time without violating
data dependencies. This set of instructions will be referred
to as a kernel.

The VE will form the kernel based on the batch of
instructions it receives from the VEM. The VE examines
each instruction sequentially and keep adding instruction to
the kernel until it reaches an instruction that is not blockable
with the rest of the kernel. In order to be blockable with the
rest of the kernel an instruction must satisfy the following
two properties where A is all instructions in the kernel and
N is the new instruction.

1) The input arrays of N and the output array of A do
not share any data or represents precisely the same
data.

2) The output array of N and the input and output arrays
of A do not share any data or represents precisely the
same data.

When the VE has formed a kernel, it is ready for execu-
tion. Since all instruction in a kernel supports data blocking
the VE can simply assign one block of data to each CPU-
core in the system and thus utilizing multiple CPU-cores. In
order to maximize the CPU cache utilization the VE may
divide the instructions into even more data blocks. The idea
is to access data in chunks that fits in the CPU cache. The
user, through an environment variable, manually configures
the number of data blocks the VE will use.

VI. PERFORMANCE STUDY

In order to demonstrate the performance of our initial
cphVB implementation and thereby the potential of the

cphVB design, we will conduct some performance bench-
marks using NumPy3. We execute the benchmark applica-
tions on one Lenove ThinkStation D20 with two Intel Xenon
processers (Table I).

We execute the benchmark applications on one Lenovo
ThinkStation D20 with two Intel Xenon processers (Table
I). The experiments use up to all eight CPU-cores on the
machine and for each executaion we calculate the speedup
of cphVB compared to NumPy. We perform strong scaling
experiments, in which the problem size is constant though all
the executions. For each experiment, we find the block size
that results in best performance and we calculate the result
of each experiment using the average of three executions.

The benchmark consists of the following Python/NumPy
applications. All are pure Python applications that make use
of NumPy and none uses any external libraries.

• Monte Carlo Pi Approximating Pi using Monte Carlo
simulation. The implementation is a translation and
vectorization of the Monte Carlo simulation included in
the benchmark suite SciMark 2.0[19], which is written
in Java (Fig. 5).

• kNN A naı̈ve implementation of a k Nearest Neighbor
search (Fig. 6).

• N-body A Newtonian N-body simulation that uses a
O(n2) algorithm that computes all body-body interac-
tions. (Fig. 7).

• Shallow Water A simulation that simulates a system
governed by the shallow water equations. It is a trans-
lation of a MATLAB application by Burkardt[20] (Fig.
8).

A. Discussion

The Monte Carlo Pi simulation is an embarrassingly
parallel problem because thread coordination is only relevant
at the end of the program. Thus, cphVB provides good
performance speedup compared to NumPy – at eight CPU-
cores cphVB is more than six times faster than NumPy.

On the other hand, our naı̈ve implementation of the k
Nearest Neighbor search is not an embarrassedly parallel
problem. However, it has a time complexity of O(n2)
when the number of elements and the size of the query
set is n, thus the problem should be scalable. The result
of our experiment is also promising – with a performance
speedup of more than five when running on eight CPU-cores.
Because of better cache utilization through data blocking,
the performance of cphVB is more than twice as good as
NumPy when using one CPU-core. Still, when using more
than four CPU-cores the memory bandwidth becomes the
limiting factor.

The N-body simulation also has a time complexity of
O(n2) but it exhibits less cache locality. At one CPU-
core NumPy outperforms cphVB by quite a margin. This is

3NumPy version 1.6.1

1 2 4 8
CPU-cores

1

2

3

4

5

6

7

Re
la
tiv

e
Sp

ee
du

p
Co

m
pa

re
d
to
 N
um

Py
 v
1.
6

Figure 5. Runtime of the Monte Carlo Pi Approximation. The job consists
of a vector with 100M elements using 10 iterations.

1 2 4 8
CPU-cores

1

2

3

4

5

Re
la
tiv

e
Sp

ee
du

p
Co

m
pa

re
d
to
 N
um

Py
 v
1.
6

Figure 6. Runtime of the k Nearest Neighbor search. The job consists of
1K elements and the query set also consists of 1K elements.

because the N-body implementation uses matrix transpose as
part of the computation loop, which NumPy controls more
efficiently than cphVB.

Finally, the Shallow Water simulation only has a time
complexity of O(n) thus it is the most memory intensive
application in our benchmark. Still, cphVB manages to
achieve a performance speedup of almost three compared
to NumPy.

VII. FUTURE WORK

The future goals of cphVB involves improvement in two
major areas; expanding support and improving performance.
Work has started on a CIL-bridge which will leverage the
use of cphVB to every CIL based programming language
which among others include: C#, Visual C++ and VB.NET.
Another project in current progress within the area of

1 2 4 8
CPU-cores

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Re
la
tiv

e
Sp

ee
du

p
Co

m
pa

re
d
to
 N
um

Py
 v
1.
6

Figure 7. Runtime of the N-body simulation. The job consists of 8K
bodies that simulate 10 time steps.

1 2 4 8
CPU-cores

0.5

1.0

1.5

2.0

2.5

3.0

Re
la
tiv

e
Sp

ee
du

p
Co

m
pa

re
d
to
 N
um

Py
 v
1.
6

Figure 8. Runtime of the Shallow Water Equation. The job consists of
4M grid points that simulate 10 time steps.

support is a C++ bridge providing a library-like interface to
cphVB using overloading and templates to provide a high-
level interface in C++.

To improve both support and performance, work is in
progress on a vector engine targeting OpenCL compatible
hardware, mainly focusing on using GPU-resources to im-
prove performance. Additionally the support for program
execution using distributed memory is on progress. This
functionality will be added to cphVB in the form a vector
engine manager.

In terms of pure performance enhancement, cphVB will
introduce JIT compilation in order to improve memory
intensive applications. The current vector engine for multi-
cores CPUs uses data blocking to improve cache utilization
but as our experiments show then the memory intensive ap-
plications still suffer from the von Neumann bottleneck[21].

By JIT compile the instruction kernels, it is possible to
improve cache utilization drastically.

VIII. CONCLUSION

The vector oriented programming model used in cphVB
provides a framework for high-performance and high-
productivity. It enables the end-user to execute vectorized
applications on a broad range of hardware architectures
efficiently without any hardware specific knowledge. Fur-
thermore, the cphVB design supports scalable architectures
such as clusters and supercomputers. It is even possible to
combine architectures in order to exploit hybrid program-
ming where multiple levels of parallelism exist. The authors
in [22] demonstrate that combining shared memory and
distributed memory parallelism through hybrid programming
is essential in order to utilize the Blue Gene/P architecture
fully.

In a case study, we demonstrate the design of cphVB
by implementing a frontend for Python/NumPy that targets
multi-core CPUs in a shared memory environment. The
implementation executes vectorized applications in parallel
without any user intervention. Thus showing that it is pos-
sible to retain the high abstraction level of Python/NumPy
while fully utilizing the underlying hardware. Furthermore,
the implementation demonstrates scalable performance – a
k-nearest neighbor search purely written in Python/NumPy
obtains a speedup of more than five compared to a native
execution.

Future work will further test the cphVB design model as
new frontend technologies and heterogeneous architectures
are supported.

REFERENCES

[1] M. R. B. Kristensen and B. Vinter, “Numerical Python
for Scalable Architectures,” in Fourth Conference on
Partitioned Global Address Space Programming Model,
PGAS{’}10. ACM, 2010. [Online]. Available: http://
distnumpy.googlecode.com/files/kristensen10.pdf

[2] T. David, P. Sidd, and O. Jose, “Accelerator : Using Data
Parallelism to Program GPUs for General-Purpose Uses,”
October. [Online]. Available: http://research.microsoft.com/
apps/pubs/default.aspx?id=70250

[3] C. J. Newburn, B. So, Z. Liu, M. Mccool, A. Ghuloum,
S. D. Toit, Z. G. Wang, Z. H. Du, Y. Chen, G. Wu,
P. Guo, Z. Liu, and D. Zhang, “Intel s Array
Building Blocks : A Retargetable , Dynamic Compiler and
Embedded Language,” Symposium A Quarterly Journal In
Modern Foreign Literatures, pp. 1–12, 2011. [Online].
Available: http://software.intel.com/en-us/blogs/wordpress/
wp-content/uploads/2011/03/ArBB-CGO2011-distr.pdf

[4] A. Klöckner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov,
and A. Fasih, “PyCUDA and PyOpenCL: A Scripting-Based
Approach to GPU Run-Time Code Generation,” Brain,
vol. 911, no. 4, pp. 1–24, 2009. [Online]. Available:
http://arxiv.org/abs/0911.3456

[5] K. Opencl, W. Group, and A. Munshi, “OpenCL
Specification,” ReVision, pp. 1–377, 2010. [Online].
Available: http://scholar.google.com/scholar?hl=en\&btnG=
Search\&q=intitle:OpenCL+Specification\#2

[6] N. Nvidia, “NVIDIA CUDA Programming Guide
2.0,” pp. 1–111, 2010. [Online]. Available:
http://developer.download.nvidia.com/compute/cuda/3\
2\ prod/toolkit/docs/CUDA\ C\ Programming\ Guide.pdf

[7] G. V. Rossum and F. L. Drake, “Python Tutorial,” History,
vol. 42, no. 4, pp. 1–122, 2010. [Online]. Available:
http://docs.python.org/tutorial/

[8] Intel, “Intel Math Kernel Library (MKL),” pp. 2–4, 2008.
[Online]. Available: http://software.intel.com/en-us/articles/
intel-mkl/

[9] MATLAB, version 7.10.0 (R2010a). Natick, Massachusetts:
The MathWorks Inc., 2010.

[10] R Development Core Team, R: A Language and Environment
for Statistical Computing, R Foundation for Statistical
Computing, Vienna, Austria, 2011. [Online]. Available:
http://www.r-project.org

[11] B. A. Stern, “Interactive Data Language.” ASCE, 2000.

[12] J. W. Eaton, “GNU Octave,” History, vol. 103, no. February,
pp. 1–356, 1997. [Online]. Available: http://www.octave.org

[13] T. E. Oliphant, “Python for Scientific Computing,” Computing
in Science Engineering, vol. 9, no. 3, pp. 10–20, 2007.
[Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=4160250

[14] R. Garg and J. N. Amaral, “Compiling Python to a
hybrid execution environment,” Computing, pp. 19–30,
2010. [Online]. Available: http://portal.acm.org/citation.cfm?
id=1735688.1735695

[15] R. V. D. Pas, “An Introduction Into OpenMP,” ACM
SIGARCH Computer Architecture News, vol. 34, no. 5,
pp. 1–82, 2005. [Online]. Available: http://portal.acm.org/
citation.cfm?id=1168898

[16] B. Catanzaro, S. Kamil, Y. Lee, K. Asanović, J. Demmel,
K. Keutzer, J. Shalf, K. Yelick, and O. Fox, “SEJITS: Getting
Productivity and Performance With Selective Embedded JIT
Specialization,” in Proc of 1st Workshop Programmable
Models for Emerging Architecture PMEA, no. UCB/EECS-
2010-23, EECS Department, University of California,
Berkeley. Citeseer, 2009. [Online]. Available: http://www.
eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-23.html

[17] R. Andersen and B. Vinter, “The Scientific Byte Code
Virtual Machine,” in Proceedings of the 2008 International
Conference on Grid Computing & Applications, GCA
2008 : Las Vegas, Nevada, USA, July 14-17, 2008.
CSREA Press., 2008, pp. 175–181. [Online]. Available:
http://dk.migrid.org/public/doc/published\ papers/sbc.pdf

[18] “why apl?” [Online]. Available: http://www.sigapl.org/
whyapl.htm

[19] R. Pozo and B. Miller, “SciMark 2.0,” 2002. [Online].
Available: http://math.nist.gov/scimark2/

[20] J. Burkardt, “Shallow Water Equations,” 2010.
[Online]. Available: http://people.sc.fsu.edu/∼jburkardt/m\
src/shallow\ water\ 2d/

[21] J. Backus, “Can Programming be Liberated from the von
Neumann Style?: A Functional Style and its Algebra of
Programs,” Communications of the ACM, vol. 16, no. 8, pp.
613–641, 1978.

[22] M. Kristensen, H. Happe, and B. Vinter, “Hybrid Parallel Pro-
gramming for Blue Gene/P,” Scalable Computing: Practice
and Experience, vol. 12, no. 2, pp. 265–274, 2011.

	Introduction
	Scientific Expressions
	Contributions
	Publications
	Thesis Outline

	Parallel programming
	Shared Memory Programming
	Open Multi-Processing
	Numerical Libraries

	Distributed Memory Programming
	Message Passing
	Remote Memory Access
	Libraries and Languages
	Partitioned Global Address Space Languages
	High Productivity Computing Systems
	Incorporate Parallelism into Existing Languages

	Combining Distributed and Shared Memory
	Vector Oriented Programming
	High Performance Fortran
	Z-level Programming Language

	Target Architectures
	Network
	Roadrunner
	The node design
	Network

	Blue Gene/P
	The node design
	Network
	Application Development
	Argonne National Laboratory

	Scientific Application: GPAW
	Introduction
	GPAW
	Stencil Operation

	The implementation
	Distributed Stencil Operation

	Optimizations
	Multiple real-space grids

	Programming approaches
	Results
	Communication and Computation Profile
	Multiple real-space grids

	Summary

	Productivity
	Parallelization
	OpenMP
	MPI
	MPI and OpenMP

	Summary

	Numerical Python
	Universal Functions
	Function broadcasting

	Array Syntax and Views
	Interfaces

	Distributed Numerical Python
	Introduction
	Target architectures
	Motivated by Related Work

	The Basic Implementation
	Interfaces
	Data layout
	Operation dispatching
	Views
	Non-Aligned Array Operations
	Parallel BLAS
	Universal function
	Examples
	Experiments
	Conclusion

	Full Array View Support
	Introduction
	Managing Non-Aligned Array Operations
	3-Point Stencil Application
	Latency-Hiding
	Experiments
	Conclusion

	Communication Latency Hiding
	Introduction
	Latency-Hiding
	Experiments
	Conclusion

	PGAS-style Programming
	Introduction
	Programming model
	Implementation
	Benchmarks
	Performance
	Conclusion

	Summary

	cphVB
	Introduction
	Related Work

	Target Programming Model
	Design of cphVB
	Configuration
	Byte Code
	Interface
	Bridge
	Vector Engine Manager
	Vector Engine

	Implementation of cphVB
	Bridge
	Vector Engine Manager
	Vector Engine

	Performance Study
	Discussion

	Summary

	Future Work
	Conclusion
	Publications
	GPAW Optimized for Blue Gene/P using Hybrid Programming
	Hybrid Parallel Programming for Blue Gene/P
	Numerical Python for scalable architectures
	Managing Overlapping Data Structures for Data-Parallel Applications on Distributed Memory Architectures
	Managing Communication Latency-Hiding at Runtime for Parallel Programming Languages and Libraries
	PGAS for Distributed Numerical Python Targeting Multi-core Clusters
	cphVB: A Scalable Virtual Machine for Vectorized Applications

