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The dynamics of a neuron are influenced by the connections with the network where it lies.
Recorded spike trains exhibit patterns due to the interactions between neurons. However,
the structure of the network is not known. A challenging task is to investigate it from the

analysis of simultaneously recorded spike trains. We develop a non-parametric method

based on copulas, that we apply to simulated data according to different bivariate Leaky In-

tegrate and Fire models. The method discerns dependencies determined by the surround-
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ing network, from those determined by direct interactions between the two neurons.
Furthermore, the method recognizes the presence of delays in the spike propagation.
This article is part of a Special Issue entitled “Neural Coding”.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The knowledge of the structure of a network is helpful to un-
derstand principles of its organization. Unfortunately, the
connections between neurons belonging to a specific or differ-
ent areas of the brain are generally unknown. Experimental
techniques will not allow to get such information in an imme-
diate future. However, the analysis of recorded spike trains
may suggest possible connections and help neuroscientists
to reconstruct the structure of networks.

Raster displays might reveal the presence of dependencies
between the interspike intervals (ISIs) of the observed neu-
rons, reflecting the existence of connections in the network.
To study its structure, one should first establish the depen-

* Corresponding author. Fax: +45 35320704.

dencies between the recorded neurons, and then investigate
the nature and the strength of these dependencies.

Since the pioneering work of Perkel et al. (1967), large ef-
forts have been devoted to analyze simultaneously recorded
data coming from several neurons. In the last thirty years, dif-
ferent techniques have been proposed; limits and difficulties
are known, allowing their use in laboratories. There exists a
lot of fundamental work on this subject. An exhaustive list
of references can be found in a recent book (Griin and Rotter,
2010), where the available methods are collected, explained
and discussed.

The most used methods to detect connections between
neurons are based on the study of the crosscorrelation func-
tion (Perkel et al., 1967). Unfortunately, crosscorrelation de-
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scribes linear dependencies and it might fail to detect non-
linearities (Sacerdote and Tamborrino, 2010).

Other techniques include Generalized Linear Models
(GLMs) (Brillinger, 1988) with their variants (Stevenson et al.,
2009). However, these methods present difficulties too. A typ-
ical problem is the dependence of the results upon the size of
the testing window (Eldawlatly et al., 2009).

Updating an older paper (Borisyuk et al., 1985), Masud and
Borisyuk (2011) propose to use the Cox method as a statistical
method to analyze functional connectivity of simultaneously
recorded multiple spike trains. It is based on the theory of
modulated renewal processes (Cox, 1972). This method de-
tects bivariate dependencies between multiple spike trains
in a neural network, providing statistical estimates of the
strengths of influence and their confidence intervals. More-
over, it presents a set of advantages with respect to the others,
e.g. it does not depend on the window amplitude, it detects
weak dependencies and it succeeds in the presence of spuri-
ous connection due to common source or indirect connec-
tions. However, it requests a preliminary estimation of a set
of parameters that is a very difficult task if the underlying
model is unknown. Therefore, the results may become
unreliable.

We propose the use of the copula notion to detect possible
dependencies between ISIs. Copulas are joint probability dis-
tributions with uniform marginal distributions (Nelsen,
2006). Therefore, they catch dependencies between random
variables (rvs), and they can be easily used for modeling pur-
poses, being scale-free.

In neuroscience, the use of copulas is not a novelty. Jenison
and Reale (2004) show how to couple probability densities to
get flexibility in the construction of a multivariate neural popu-
lation. Furthermore, they express the mutual information be-
tween two ISIs in terms of the copula distribution. More
recently, Onken et al. (2009) inferred the connectivity between
neurons by fitting the spike counts through the copulas of a
given family. In particular, they provide a method to estimate
the parameters of the prescribed copula. Sacerdote and Sirovich
(2010) propose to use copulas to model the coupling of two or
more neurons, while Sacerdote and Tamborrino (2010) investi-
gate the reliability of crosscorrelograms analysis to detect de-
pendencies in spike trains with known connections, being
simulated through copula models.

A spike train is a collection of spike times and it can be con-
sidered as a vector of rvs. Therefore, a copula between two
spike trains can be determined. Different types of dependency
correspond to different shapes of the copula.

The aim of this work is to illustrate the ability of copulas to
recognize dependencies between spike trains coming from
different underlying models. To do this, we propose a non-
parametric method.

A detailed study on simulated data could allow to classify
shapes of copulas corresponding to different kinds of connec-
tions. However, in this paper, our main goal is to detect de-
pendencies, instead of classifying their nature. Indeed, it
represents a long task, since it corresponds to determine the
joint distribution, i.e. the copula, that fits the data.

Furthermore, we limit ourselves to the study of two spike
trains. The extension to multiple dependencies arising in the
case of a larger number of spike trains requests further

mathematical effort. Indeed, in a network of n neurons, it
would correspond to investigate dependencies in groups of k
neurons, k=2,...,n, i.e. to investigate k dimensional copulas
for groups of k spike trains. However, our method can be ap-
plied immediately to the case of n spike trains, if the interest
is focused on pairwise dependencies, as it happens in Masud
and Borisyuk (2011). To do this, it is enough to select a target
and a reference neuron, and then consider all the possible
combinations.

In Section 2, we describe our method to catch dependen-
cies between spike trains through copulas. In Section 3, we in-
troduce the different Leaky Integrate and Fire (LIF) models
used to generate coupled spike trains. In Section 4, we test
the proposed method on those data. In Section 5, we discuss
the results of our approach, providing a comparison with
other methods, in particular with the Cox method. Finally, in
Section 6, we describe conclusions, open problems and possi-
ble developments.

2. The copula method
2.1. A mathematical tool: copulas

A copula is a mathematical object that catches dependencies
between rvs. In (Nelsen, 2006), it is defined as

Definition 1. A two-dimensional copula is a function C:
[0,1]>—[0,1] with the following properties:

C(y;0) = C(0;v) =0 and C(y;1) = u; C(1;v)
=v for every u,vE[0;1]; (1)

C is 2—increasing, i.e.forﬂevery Uy, Uz, U1, U2€[0; 1jsuch that
U1=Uz,V1=Uz,

C(u1,v1) + C(uz,v2)-C(u1,v2)-C(uz,v1) > 0.

Let X and Y be two rvs with marginal cumulative distribu-
tion functions (cdfs) F and G, respectively. Let H (x, y) be the
joint cdf of (X,Y). Due to the Sklar’s theorem, a two dimension-
al copula C satisfies:

H(x,y) = C(F(x),G(y)) x, y<R. (1

This theorem holds also in the multivariate case (Nelsen,
2006).

From Eq. (1), it follows that a copula is a joint cdf with two
standard uniform marginals. Therefore, copulas are scale-free
and capture all the information related to the joint behavior,
and do not involve the marginal distributions. Hence, the
study of a bivariate distribution can be split in two parts: the
marginal behaviors caught by the marginal cdfs and the de-
pendencies contained in the copula structure.

Copulas have other properties, as for instance the invari-
ance under strictly increasing transformations, or the possi-
bility to model several joint distribution functions.

In the literature, there exists a list of families of copulas,
e.g. the Archimedean and the Euclidean families. Given a
sample, we may perform a goodness-of-fit test to test if the
data could belong to a certain family (Genest et al., 2009).
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After that, we may estimate the involved parameters as done
by Genest and Favre (2007) or Onken et al. (2009).

To measure the strength of dependencies, we consider the
Kendall’s tau 7. It is a rank correlation index assuming values
in [-1,1] and it measures the concordance for bivariate ran-
dom vectors.

Given a data sample of size n, an estimatort of the Kendall’s
tau is given by:

Nne—ngy

in(n-1)’

=1

Here, n. and ny denote the number of concordant and dis-
cordant pairs in the sample. A pair of observations (x;y;) and
(x;,y:) is said to be concordant if (x;-x;) (yi-y;)>0, otherwise it
is called discordant (Nelsen, 2006).

A rank correlation test verifies if 4 is statistically different
from zero, i.e. if data are dependent. This index detects non
linear dependencies, while the common Pearson’s and Spear-
man’s rho detect linear dependencies (Nelsen, 2006).

In the next Subsection, we explain how to obtain empirical
copulas starting from data belonging to samples of first pas-
sage times (FPTs) or spike trains.

2.2 Detect dependencies between ISIs through copulas

Copulas are multivariate joint distributions. For this reason,
they can be used to investigate dependencies in a neural net-
work with n neurons. However, their use is more intuitive for
n=2. The extension to the pairwise analysis for tn neurons is
immediate, while the study of k dimensional dependencies,
for k=3,...,n, is computationally not trivial, although it is theo-
retically analogous.

Given a sample {(X1,Y1),...,(Xn,Yn)}, we calculate the empiri-
cal cdfsf andG as

~ 1n ~ 1n
FX) == lixep, GO) ==X Ly, X YER (2)
ni— ni—q

Then, we define the pseudo-observations from the copula
asU; = (f(Xg,C(YQ), i=1,...,n. A scatterplot of U, called “copula
scatterplot”, helps to understand dependencies between the
involved rvs.

From the theory of copulas, we know that the points lying
on the main diagonal (i.e. the diagonal which runs from the
bottom left corner to the top right corner) correspond to
times related by a strictly increasing function f such that
F(X) =fleft(G(Y)). If X~Y, then f becomes the identity function,
otherwise a new curve appears. Indeed, if the marginal distri-
butions are different, then a straight line on the time scatter-
plot is transformed into a curve on the copula scatterplot.
We call it curve of monotony. If X and Y are times, then the syn-
chrony is caught by a straight line along the diagonal on the
time scatterplot. These points are mapped into points lying
on the main diagonal or on a curve on the copula scatterplot,
depending on whether X and Y are identically distributed.

For independent rvs, characterized by the independent
copula C(u,v)=uv, the scatterplot presents a uniform distribu-
tion of points on the square [0,1]°. On the contrary, the pres-
ence of clusters of points reveals a specific dependency.
Furthermore, we have considered the empirical cdf C, and

the empirical probability density function (pdf) C,, of the copu-
la (Nelsen, 2006). Their study, together with the estimation of
the Kendall’s tau, gives further information about the depen-
dencies between X and Y.

To illustrate how to apply copulas to neuronal data, we first
assume to have a sample of FPTs T={(T4,T3),...,(TA, Th)}, where
(T, T5) and (Th, T}) are independent for i#j and (Th, Ts) ~ (T, Th),
where ~ denotes rvs with the same distributions. In this case,
we can calculate the pseudo-observations as described before.

Then, to deal with pairs of spike trains, we need to define
how to extract a sample of two-dimensional rvs, representa-
tive of the dependencies between the spike trains.Denote S},
and Sj; the epochs of the i-th and the j-th events in the spike
trains A and B, and T} and T} the i-th and j-th ISIs, for i=1,...,
n; j=1,...,l. On a fixed time, the number of spikes of two neu-
rons is different, i.e. n#l. We assume that the ISIs T} (resp.
Th) in A (B) are independent and identically distributed and
we denote them T, (Tp).

To pursue the analysis, we select A as target neuron. To
each spike time Sk, we associate the time 6, defined as the
intertime between Si and the first spike in B following it
(Fig. 1, Panel I). The pairs (T4,0%), ...,(TX,0~) determine a sam-
ple (Ta,0) for the study of the relationships between the
spike trains. If the corresponding copula is not the indepen-
dent copula, then there is a connection between the two neu-
rons. We investigate it comparing the two scatterplots and
testing if 7 is statistically different from zero. Moreover, the
copula scatterplot allows to make hypotheses on the dynam-
ics driving the membrane potential (MP) evolutions of the
two neurons, as explained in Section 4.

Another interesting task is the investigation of the dura-
tion (or “memory”) of the dependency between spike trains.
After a certain time M, neuron B may forget the activity of
neuron A, if no new phenomena coupling their dynamics are
present. The time M may be short, corresponding to instanta-
neous effect, or long, implying a durable effect in the coupling.

To investigate it, we consider the sample <TA, 0+ zg;ngk))
- {(T}\, 0t + Zi"leélk)) . (Tﬁ;’, oV + z;ggé””), as shown in
Fig. 1, Panel I. Here, T§" corresponds to the k-th ISI following
0;, while N denotes the sample size that might change with
m. In particular, we are interested in the value m such that

the corresponding copula approaches the independent one,
i.e. 1=0. If the dependence disappears for small (large) m,

L L, T
 — X %

o' Tlgul e T
I H I I 1\

>

a

T T 0T T T
~ o o o ; o~ A= o
0 time (ms) © time (ms)

Fig. 1 - Samples of FPTs and of spike trains. Let A be the
target neuron. Panel I: sample of FPTs, obtained considering
only the first ISIs in A and B following synchronous spikes.
Panel II: rvs involved in a sample of spike trains. For each
T in A, we show the corresponding 6’ and the following T
inBfori=1,2 and m=3.
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then the coupling has an instantaneous (long) effect. Further-
more, we study the optimal value m maximizing the coupling.
It can be detected as the value of m that maximizest. Note that
m=0 leads to the previous sample (T4, 6).

To study the presence of delayed dependencies, we analyze
the sample (Ta,T&)={(T,TE¥),...,(T4, T§™)}). Indeed, it might
happen that a spike in A influences the k-th spike in B. There-
fore, the delay can be estimated as 0+Z)k=1T§j)—T}\, where k is
the first index such that the Kendall’s tau for (Ta, T) is statisti-
cally different from zero.

These properties of memory and delayed dependencies
hold when E[0+YF 1T - B[Ta]> B[TY), i.e. the projection of
T® on A does not overlap with T, on average, otherwise
such phenomena are due to the slower nature of A.

To conclude the analysis, we select B as target neuron and
we repeat the procedure. Note that this is not necessary if Ta
and Ty are identically distributed, since this leads to the
same results, the study being symmetric.

3. Models for data generation

The samples were generated from two bivariate LIF models.
Both of them describe the spike times of each neuron as the
FPT of their MP evolution through a boundary, where the
MPs are coupled through different rules.

3.1. Model of the MP evolution through jump diffusion
processes

Musila and Lansky (1991) proposed to use jump diffusion pro-
cesses to describe the MP evolution of a single neuron to ac-
count for the effects of the postsynaptic potentials (PSPs)
impinging on the membrane near the trigger zone. Deco and
Schiirmann (1998) studied resonance phenomena for central
neurons described by Ornstein Uhlenbeck (OU) processes
with jumps modeling a discrete input spike train. In Sirovich
(2003), jump processes are associated to the arrival of a
spike, but the model is not a diffusion. Recently, Sirovich

(2006) and Sirovich et al. (2007) proposed to use these process-
es to describe interactions in a small network.

Here, we describe the MP evolutions through a two dimen-
sional jump diffusion process X(t) ={(X1,X2)(t);t>to}. Each compo-
nent evolves independently from the other, until the time when
one of them attains a threshold value C for the first time. Then,
that neuron releases a spike, its MP is reset to its resting value
and the evolution restarts anew. Meanwhile, the MP of the
other neuron has a jump of amplitude h (Fig. 2, Panel I) and
then it pursues its evolution. In the absence of jumps, the MP
of each neuron is modeled as an OU process given by

dXi(t) = (—%Xi(t) + }J.i> dt + Uidwi(t), (3)

with tp=0 and X;(0)=xo;, for i=1,2. Here, 1, u;, o; denote the
membrane constant (or decay time), the input and the noise
intensity respectively. Moreover, W;(t) and Wo(t) are two stan-
dard Wiener processes. Hence, the Brownian increments are
independent.

We say that this corresponds to a local connection be-
tween neurons, since the dependency between spikes is di-
rect, being determined only by the jumps.

To simulate a sample of FPTs T, we proceed as follows.
When both neurons release a spike, the MPs are reset to
their resting values and a new simulation starts. This type of
sample reproduces the interspike times following synchro-
nous spikes of the two neurons (Fig. 1, Panel I).

To generate two coupled spike trains, we collect the crossing
times of the two MPs up to a maximum observed time tx.

3.2.  Model of the MP evolution through correlated diffusion
processes

The Stein process for the spiking activity of a single neuron
was introduced by Stein (1965). However, the study of the
FPT problem for jump processes is mathematically intracta-
ble. Assuming the high frequency and the small amplitude
of the jumps, diffusion limits have been proposed for instance
by Capocelli and Ricciardi (1971) and Lansky (1984). From a

II

T T T T
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Fig. 2 - MP evolution through jump diffusion processes. Description of the MP evolution of two coupled neurons through a two
dimensional jump process. The MP evolution of A (B) is reset to its resting value after that it spikes, meanwhile the MP
evolution of B (A) has a jump of amplitude h. These dynamics are stopped when both neurons have released a spike (Panel I) or

after a maximum time ty,.x (Panel II).
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biological view point, when the neuron receives a huge num-
ber of inputs from the surrounding network, the continuous
limit is a good approximation of the original process. A multi-
variate extension of these models has been recently proposed
(Tamborrino et al., submitted for publication). There, the PSPs
impinging on each neuron correspond to two kinds of input:
those influencing a specific neuron and those simultaneously
acting on a collection of at least two neurons.

Here, the MP evolutions of the two neurons are described
by a bivariate diffusion process X(t) with correlated compo-
nents. The sub-threshold MP evolutions are still described by
Eg. (3), but now the Brownian increments are not independent
anymore. Indeed, we assume Cou(W(t),Wa(t)) =c15t, with oq5€
(0,1). Therefore, the evolutions proceed jointly in all the ob-
served time intervals, due to the presence of a common
noise. We say that this situation corresponds to a global
kind of dependence, since the dependencies are determined
by the surrounding network.

To obtain a sample of FPTs T, we stop the MP evolution of
the fastest neuron after it fires. Meanwhile, the slowest one
continues its evolution until its MP reaches the boundary
(Fig. 3, Panel I). After that, the dynamics restarts anew.
These neural dynamics are characterized by a continuous
coupling effect up to the first spike.

To generate two coupled spike trains, we reset the MP of
the firing neuron to its resting potential and then restart it.
Meanwhile, the other neuron continues its evolution until it
spikes (Fig. 3, Panel II). This procedure continues up to tmax,
coupling the dynamics of the two neurons.

4, Results

In this Section, we apply our method on samples of FPTs and
pairs of spike trains simulated from the jump and the covari-
ance models. In Subsection 4.3, we enlighten the differences
observed in the corresponding copula scatterplots. Performing
the data analysis, we ignore the knowledge of the models and
we infer coupling properties directly from copula scatterplots

and Kendall’s tau (values reported in the captions of the fig-
ures). The goodness of fit of the results is finally checked.

The parameter values of the models agree with those used
for one dimensional LIF models in the literature. In particular,
we choose membrane constant t=10 ms, threshold value for
the MP C=10 mV, jump amplitude h=3 mV, covariances 0.5;
0.8; 0.91 mV?ms™?, drifts and noise intensities are reported in
Table 1. Examples of negative covariances, implying negative
dependencies between spike trains, have been also analyzed,
obtaining correct results. Also in this case, our method detects
them. Unfortunately, the simulation of data from the jump
model requests long computational times when we have neg-
ative jump amplitudes. For this reason, we do not illustrate
these examples.

4.1. Data from the jump model

4.1.1. Samples of FPTs

The biological interpretation of samples of FPTs is not intui-
tive, since they do not correspond to time series. However,
they can be interpreted as the intertimes after synchronous
spikes (Fig. 1, Panel I) and their analysis helps to understand
the use of copula scatterplots.

In Fig. 4, we report the copula scatterplots for different
samples of T, obtained from the jump model, using the pa-
rameters reported in Table 1, with h=3 mV. We first test the
null hypothesis Hy:Ta~Tg through a Kolmogorov-Smirnov
(KS) test. Since the p—valuesls are 1, 0.998, 0.901 and O respec-
tively, we reject Hy:Ta ~ T only for the fourth sample, in agree-
ment with how they were sampled.

We start considering the first three samples. The distribu-
tion of T, (and hence of Tg) changes in each sample. Indeed,
their means and variances are different (values not reported).

From the scatterplots and the values of7 in Fig. 4, Panels I-1],
we observe the following features:

1. Panels are characterized by decreasing values of 7, all sta-
tistically different from 0.
2. many points lie on the main diagonal, drawing its shape;

I II
I T I ln T T T T T
e 2 C
5+ / St M
X2 X2 . e P
o o L o 0 W’V\Ww
1 L\W‘HJ 1 1 1 1 1 ]
0 5 time(ms) 10 Sg 0 5 10 time (ms) sy’ 2
10 C T T I/p T 10 C T T T T T
6 _ 6
", WJMM | X12 n
Wl _
0 0 A‘mfi
1 1 1 1 L 1 1
0 5 tmeqms 1 Sa 0 5 10 sP 2 sg
time (ms)

Fig. 3 — MP evolution through correlated diffusion processes. Example of MP evolution of two neurons coupled through a two
dimensional correlated diffusion process. The MP evolution of A (B) is reset to its resting value after it spikes, while the MP
evolution of B (A) is not influenced by the spike. These dynamics are stopped after both neurons have released a spike (Panel I)

or after a maximum time ty,,x (Panel II).
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Table 1 - Drifts y and noise intensities o2 used to simulate
1, respectively.

spike data. Units are: mVms~* and mV?ms-

I 1.2 1.2 0.3 0.3
I 1.2 1.2 0.5 0.5
I 1.2 1172 1.l 1.1
v 1.0 1.5 0.5 0.5

3. scatterplots exhibit similar features, although with different
densities of the points. Moving from the left to the right side,
the density of the points not on the diagonal increases;

4. there is a lack of points around the main diagonal.

Due to feature 1, a dependency is caught by the method in
each sample. The analogies between the plots suggest the pres-
ence of a similar coupling phenomenon acting with different
strengths, as suggested also by the first feature. The coupling
phenomenon acts only to determine the synchrony, while the
other intertimes are scarcely dependent. Indeed, feature 4 and
the lack of clusters do not reveal further dependencies. That
means that specific phenomenon might determine synchro-
nous spikes or have no effect if the instantaneous coupling is
not strong enough. A local connection is compatible with this
kind of behavior. These remarks agree with the underlying
model used to generate the samples.

Now, consider Panel IV. Also in this case, a positive 7 is ob-
served, but the copula scatterplot is not symmetric anymore.
In the time scatterplots (figures not reported), we observe
many points lying on the main diagonal. Therefore, the curve
in Panel IV corresponds to the curve of synchrony. Moreover, a
high density of points is observed on the curve that is sur-
rounded by a lack of points. Hence, we can hypothesize a simi-
lar dynamics to that observed in Panels I-III, but with different
marginals.

4.1.2.  Samples of spike trains

We consider two spike trains generated according to the jump
model with parameters given by case Il in Table 1. We cannot
reject Ho: Ta~Tj, since p = 0.998. Therefore, the analysis does
not change inverting the roles of target and reference neu-
rons. Thus, we choose A as target neuron.

The pairs (Ta, T¥) are characterized by Kendall’s tau statis-
tically equal to zero (e.g.p = 0.71,0.70,0.79 for k=1,2,3). Hence,
the samples do not present delayed coupling phenomena.

In Fig. 5, we report the copula scatterplots of (Ta,0+Y p=1T g@)
for m=0,1,2,3,5,10. From these plots and the values of 4, we ob-
serve that increasing the value of m, the copula scatterplots ap-
proach the independent copula.

In Panel I, the curve with the highest density of points is
well approximated by a straight line. Moreover, T, and 6
have a similar distribution (histograms not shown). Since
Ta~Tg, 0, and Tz have a similar distribution too. Therefore,
the spiking dynamics are characterized by the presence of
synchronous spikes. Moreover, we observe a lack of points
around the diagonal, as in Fig. 4. Therefore, we can hypothe-
size a local coupling.

In the remaining panels, new curves catch the dependency
between T, and 0+ 3 11 TP. Since these rvs have different dis-
tributions (p-values not reported), these curves correspond to
curves of monotony.

Now, we consider two spike trains obtained with parame-
ters of case IV in Table 1. We reject Ho:Ta~Tg and Hp:Ta~0,
since both p-values are null. The Kendall’s tau for (T, T{) is
statistically different from zero only when k=1, since p=0 for
Ho: 7=0. However, it does not represent a delayed dependency,
since E[Ta]=17.92, E[6 +T§"]=20.40 and E[T{"]=10.32.

In Fig. 6, we plot the copulas for (T,,6+Y 1, T¥). Here, m=1
maximizes 7. This figure presents some similarities to Fig. 5.
Indeed, for m greater than the optimal one, the dependency
decreases and the copula scatterplots look like the indepen-
dent copula. Moreover, in both figures, we observe a lack of
points around the curve of monotony for m=0 and 1 as well
as the presence of clusters. Finally, in Fig. 6, these curves can
be detected up to m=5.

The analogies between samples of Figs. 5 and 6 allow to hy-
pothesize dynamics for the spike trains driven by similar
kinds of dependencies, even if with different marginal
behaviors.

Since T, and Ty are not identically distributed, we repeat
the analysis considering B as target neuron. In Fig. 7, we report
the copula scatterplots for m=0, 1, 2. The shapes of these scat-
terplots and the strength of the dependencies caught by 7 are
different from those in Fig. 6. Also in this case, T is statistically
different from 0. Furthermore, a curve of monotony is

Fig. 4 - Samples of FPTs from the jump model. Copula scatterplots corresponding to four samples of ISIs (T, Tg), Where T ~Tg
for the first three pairs. The estimated Kendall’s tau are 7,-0.84, 7 = 0.69, 71y = 0.41 and Ty = 0.18, respectively. They are
statistically different from zero, since all the corresponding p-values are smaller than 0.05.
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III: m=2

Fig. 5 - Sample of spike trains from the jump model, where T, ~ Ts. Copula scatterplots of (T, 0+ Y I ;T{), form=0, 1, 2, 3, 5, 10,
where T, and Tg have the same distribution. The estimated Kendall’s tau are statistically different from zero, with values
71=0.42,73 = 0.20,7; = 0.15,7v =0.12,7y = 0.10 and Fy; = 0.07, respectively. Note that m=0 represents the optimal value
maximizing the dependency between the involved times.

recognized only for m=0. This is related to the slower nature The results obtained applying our method are coherent
of neuron A.Note that we have detected dependencies alter- with the features of the models used to simulate data. In par-
nating A and B as target neurons. Therefore, there exists a ticular, we were able to detect bi-directional connections,
bi-directional influence connection between the two neurons. such as those determined by the jump dynamics of the

III: m=2

” 871 4

I: m=0 II: m=1

Fig. 6 - Sample of spike trains from the jump model with different distributions of T, and T. Copula scatterplots of (T, 8+ i, TE™), for
m=0, 1, 2, 3, 5, 10, where T, and T have different distributions. The estimated Kendall’s tau are statistically different from zero and
equal toT; =0.04,7 =0.12, 7 =0.06, 7 =0.04, 7y = 0.02, Ty = 0.01, where m=1 represents the optimal value maximizing 7.
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II: m=1

T

T T
[ 0.2 U 0.8 1

Fig. 7 - Choice of B as target neuron. Copula scatterplots of (Tg, 0+ ., T¥), for m=0, 1, 2, obtained considering B as target
neuron in the spike trains analyzed in Fig. 6. The estimated Kendall’s tau are 7;=0.23,%=0.08,7; = 0.06, respectively. The

maximum dependence is observed for m=0.

considered model, as well as to hypothesize a correct local
coupling. As previously remarked, we have ignored the
knowledge of the underlying models during the analysis
phase.

4.2. Data from the covariance model

Here, we consider data generated from the covariance model
with parameters reported in Table 1 and covariances equal
to 0.5, 0.8, 0.91, 0.8 mV?ms~?, respectively.

4.2.1. Samples of FPTs

In Fig. 8, we report the copula scatterplots coming for the four

samples of FPTs. Testing Ho: Ta~Tp, we obtain p = 0.69,

0.95, 0.89 and 0, respectively. We start considering the first

three pairs, characterized by identically distributed ISIs.
Looking at Fig. 8, Panels I-III and the corresponding 7, we

observe the following features:

1. Panels are characterized by increasing values of £, all sta-
tistically different from 0.

2. many points lie on the main diagonal and around it;

3. scatterplots exhibit similar features, although with different
densities of the points. Moving from the left to the right side,
the density of the points far from the diagonal decreases.

Positive dependencies are caught in all samples. Further-
more, the numerous points lying on the diagonal (indicator

of synchrony) are surrounded by a cloud of other points.
This suggests the presence of a noise that continuously per-
turbs the coupling phenomenon, destroying the synchrony.
A global connection is compatible with this kind of behavior.

Now, consider Panel IV. In the time scatter plot, not
reported, (resp. copula scatterplot) no points lie on or above
the main diagonal (the curve of synchrony), due to the fact
that E[Ta]=24.98, E[Ts]=10.65. Therefore, no synchrony is ob-
served. For the similarity with Panel I, we hypothesize a simi-
lar dynamics characterized by different marginals.

4.2.2.  Samples of spike trains

We consider two spike trains generated with drifts and variances
given by case Il in Table 1, and covariance 0.91 mV?ms™*. We
cannot reject T4 ~ T, since p = 0.94. Therefore, it is sufficient to
consider A as target neuron.

In Fig. 9, we report the copula scatterplots of (Ta, 0+Y L1 TH)
for m=0, 1, 2, 3, 5, 10. From these plots and the values of 7, we
note that the copula scatterplots approach the independent
copula as m increases.

In Panel I, T4 and 0 have different distributions sincep = 0
for the hypothesis Ho: Ta ~ 0. Therefore, the monotone depen-
dency is caught by a curve and the largest part of the points
lays on and under it. This behavior may be explained admit-
ting the existence of a noise that perturbs the system and de-
stroys the deterministic relationship. Furthermore, the
dependencies seem to be determined by a continuous phe-
nomenon that tunes the activity of the two neurons, despite

I IV

Fig. 8 - Samples of FPTs from the covariance model. Copula scatterplots corresponding to four pairs of ISIs (T,,Ts), with T, ~ T; for
the first three pairs. The estimated Kendall’s tau are ¥; = 0.41, 7 = 0.53, 7y = 0.67, respectively. They are statistically different from

zero, since the corresponding p-values are smaller than 0.05.
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II: m=1

Fig. 9 - Sample of spike trains from the covariance model, where T, ~ Ts. Copula scatterplots of (Ta, 0+ Y L ,TH), for m=0, 1, 2, 3,
5, 10, where T, and Ty have the same distribution. The estimated Kendall’s tau are statistically different from zero, with values
T1=0.16,7 = 0.30,7 1 = 0.25, Ty = 0.22,7y =0.18, and 7Ty; = 0.14, respectively. Note that m=0 represents the optimal value

maximizing the dependency between the involved times.

the noise. Therefore, a global coupling might be hypothesized.
This is supported by the fact that (Ta,Y k- 1Tge)) becomes statis-
tically independent for m>409. That means that we are ob-
serving a long memory phenomenon.

In the remaining panels, new curves of monotony catch the
synchrony between T, and 6+ L 1T, In particular, in Panel II,
the number of points lying on this curve is greater than those in
Panel I.

Finally, we consider two spike trains generated using the
parameters given by case IV in Table 1, and covariance
0.8 mV?ms~t. We reject Hy: Ta~T, since p=0. In Fig. 10, we
plot the copulas for (Ta, 0+ L1T¥). Here, m=2 maximizes 7
for the considered samples and curve of monotony can be
detected up to m=5. This figure presents some similarities to
Fig. 9. Indeed, for m greater than the optimal value, the depen-
dence decreases and the copula scatterplots look like the in-
dependent copula. These analogies allow to hypothesize
dynamics for the spike trains driven by similar kinds of de-
pendencies, even with different marginal behaviors.

Due to the different roles of neurons A and B, we repeat the
analysis considering B as target neuron. The copula scatter-
plots for m=0, 1, 2 are plotted in Fig. 11. The shapes are obvi-
ously different from those in Fig. 10, but also in this case, 7 is
statistically different from 0. Therefore, we have detected a
bi-directional connection between the two neurons.

In both samples, no delayed phenomena are detected. In-
deed, no p-values statistically different from zero are ob-
served for (Ta,T{) such that B[6+3 51T - B[T]> B[TY).

The results agree with those expected, determined by the
structure of the used model.

4.3. Comparison between data from the two models

Data used in Figs. 4-8, 5-9, 6-10, 7-11 came from two OU pro-
cesses with the same parameters, but coupled according to
different rules, i.e. jumps or positive covariances. The differ-
ent coupling leads to different shapes in the copula scatter-
plots, as well as to different properties. For instance,
copula scatterplots related to the jump model are character-
ized by a lack of points around the main diagonals, while a
cluster of points is observed in those coming from the co-
variance model. This allows us to hypothesize different cou-
pling phenomena for those scatterplots presenting different
features.

Furthermore, we may observe different shapes of scatter-
plots even with a similar . Look for instance at Fig. 4, Panel II
and Fig. 8, Panel III, with T =0.69 and 7 = 0.67, respectively.
Therefore, the study of correlation or rank correlation indexes,
such as the Pearson’s rho or the Kendall’s tau, is useful to recog-
nize the presence of dependencies, but it cannot be used to in-
vestigate their nature.

5. Discussion

The use of copulas allows a new approach to analyze depen-
dencies between spike trains. The discussed examples illus-
trate some features highlighted by means of this technique.
Suitable statistical tests and further developments of the
mathematical tools will allow to determine families of cop-
ulas able to fit data. Furthermore, a classification of the



252 BRAIN RESEARCH 1434 (2012) 243-256

III: m=2

¥
0

Fig. 10 - Sample of spike trains from the covariance model, with different distributions of T, and Tg. Copula scatterplots of
(Ta, 0+ 1, TEM), form=0, 1, 2, 3, 5, 10, where T, and T; have different distributions. The estimated Kendall’s tau are statistically
different from zero and equal to 7; =0.07, 7 = 0.27,7; = 0.33, 7y = 0.31,7y = 0.26, 7y = 0.20, where m=2 represents

the optimal value maximizing .

different copulas corresponding to different kinds of coupling
may help to interpret the structure of the network.

In this Section, we compare some of our results with those
obtained through classical tools. At first, we consider cross-
correlograms and time scatterplots. Then, we briefly discuss
some features of the GLMs and finally we perform a detailed
comparison with the Cox method.

Crosscorrelograms are one of the most used techniques to
analyze spike trains. They detect synchronous and delayed ac-
tivities but they are often unable to recognize other kinds of de-
pendencies. Reversely, in copula scatterplots, the layout of the
points out of the curve of synchrony discloses the presence of
other kinds of dependencies. Moreover, it helps to hypothesize

the underlying coupling effects. A common feature between
crosscorrelograms and the proposed approach is the necessity
to fix a target neuron. Usually, the analysis is repeated, ex-
changing the roles of the two neurons.

The analysis of crosscorrelograms requests the simulta-
neous study of the autocorrelograms. Indeed, oscillations in
the crosscorrelogram might be due to marginal behaviors, as
described by Sacerdote and Tamborrino (2010) and Tetzlaff
et al. (2008). Thus, it is not always possible to distinguish be-
tween the two cases. Furthermore, the duration of the depen-
dencies is hidden in crosscorrelograms. Indeed, this
information depends on the presence of several peaks or
troughs and by their width. Unfortunately, these features

Fig. 11 - Choice of B as target neuron. Copula scatterplots of (Ts, 6+ I, T®), for m=0, 1, 2, obtained considering B as target
neuron, in the spike trains analyzed in Fig. 10. The estimated Kendall’s tau are ¥; =0.27,7; =0.22,7; =0.18 and m=0

maximizes the dependency.
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change according to the used bin. On the contrary, copulas
allow to determine the value of m such that the two consid-
ered random times become independent, disclosing memory
properties. In Fig. 12, we show autocorrelograms and crosscor-
relograms corresponding to samples analyzed in Figs. 5 and 9.
For each sample, we only plot one autocorrelogram, since
Ta~Ts. In the crosscorrelograms, peaks and troughs far from
zero are due to the marginal behaviors, as explained by the
autocorrelograms. Hence, these oscillations do not represent
two neurons firing with a delay, i.e. the only statistically
meaningful peaks are those in 0.

One might wonder why to use copula scatterplots instead of
time scatterplots. In a time scatterplot, one can easily recognize
synchronous spikes from the presence of a straight line. Further-
more, such plot gives information on the marginal behavior,
allowing to recognize the range of the involved times. However,
the merge of marginal and joint behaviors represents the main
limit of this tool. Indeed, it is hard to distinguish meaningful
clusters, observing clouds of points (Fig. 13, Panels I and IV).
Hence, any classification of the observed kinds of dependencies
becomes difficult. Reversely, copula scatterplots (Fig. 13, Insets
I’ and IV’) solve this problem, catching only the joint behavior,
since the marginal distributions are uniform. The same consid-
erations hold when one plots the 3-D histograms for the times
(Fig. 13, Panels I and V) and for the copulas (Fig. 13, Panels III
and VI).

GLMs, as well as correlation indices, privilege linear depen-
dencies, while copulas and the Kendall’s r deal with any kind of
dependency. For instance, correlation indices assume value 1
when the rvs are related by a linear relationship. On the contrary,
the Kendall’s tau is equal to 1 if there exists a strictly increasing
transformation between the rvs. Furthermore, GLMs are sensible
to the amplitude of the test window. In our approach, this prob-
lem becomes relevant only plotting a 3-D histogram for the copu-
la, to perform a fit of data to a specific family of copulas.

The recent upgrading of the Cox method makes it a useful
approach for the detection of dependencies in a neural net-
work (Masud and Borisyuk, 2011). They study the dependency
of a target neuron A on the other (n-1) reference neurons,
considering pairwise dependencies. For this reason, we focus
on the comparison of the two methods for the case n-2,
reporting the main advantages of each method.

5.1. Copula method versus Cox method

5.1.1. The Cox method

The Cox method makes use of the hazard function, that is de-
fined as the occurrence rate at time t conditional on survival
time until time t or later:

(t<T<t + AtT > t)
At

. P
olt) - lim

Here, F(t) is the cdf of the ISIs and f{t) is their density.

In (Masud and Borisyuk, 2011), modulated renewal pro-
cesses (refer to Cox (1972) and Borisyuk et al. (1985)) have
been considered to introduce the dependency between spike
trains. They suppose that the hazard function ¢ of the target
neuron A is a product of two multipliers. The first term is
the hazard function ¢ of the renewal process A without influ-
ence from the reference neuron B, and the second term de-
scribes the influence of neuron B on A. In particular, they
introduce an influence function Zy(t) that determines how
the reference neuron influences the target. They propose to
use a hazard function given by

(4)

Here, U,(t) is the backward recurrence time of the process
A at time t and g is the parameter that has to be estimated
(Perkel et al., 1967). It gives the strength of influence from
train B to A: if -0, no influence is observed. Their method
provides an estimation of g and a confidence interval for the
test hypothesis Hp:-0.

Asinfluence function Zg, they choose the alpha function pro-
posed by Gerstner and Kistler (2002) to describe the synaptic
connectivity between neurons. This choice implies the necessi-
ty to estimate a set of parameters: the delay time A due to spike
propagation from neuron B to A and the characteristic decay
and rise times of the postsynaptic potential (PSP), denoted by
7s and ,, respectively.

The estimation of A can be properly done using using a pair-
wise Cox method or considering the time shift to the right side
of zero corresponding to the highest value of the crosscorrela-
tion function exceeding the upper boundary. If the MP evolution
is described by a Stein’s model, the decay time can be estimated

o(t) = @a(Ua(t)) exp(pZs(t)).
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Fig. 12 - Autocorrelograms and crosscorrelograms. Panels I and III: autocorrelograms of TA for the samples analyzed in Figs. 5
and 9, respectively. The line with circles represents the estimated autocorrelation. The two straight lines limit the confidence
interval at 0.05 for ﬁ. Panels II and IV: crosscorrelograms for the considered samples. The line with stars (dotted line) denotes
the empirical (theoretical) crosscorrelation, while the two straight lines delimit a confidence interval for the hypothesis of

independence between T, and Tg.
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Fig. 13 - Analyses through ISIs and copulas. Scatterplots and 3-D histograms for times and copulas. The upper (lower) panels
correspond to the samples analyzed in Fig. 5 (Fig. 9). Panels I, IV: ISI scatterplots of (T,,Ts). Inset I': copula scatterplot
corresponding to (T,,6) (previously shown in Fig. 5, Panel I). Panel IV': copula scatterplot corresponding to (Ta, 0+ T§) (already
shown in Fig. 9, Panel II). Panels II and V: 3-D time histograms. Panels IIl and VI: 3-D copula histograms.

from the ISI data using the algorithm in Tuckwell and Richter
(1978), while the rise time is assumed to satisfy s = 7357/

In general, the estimation of 75 and 7, from the ISI data is an
unsolved task. Indeed, it requires the knowledge of the under-
lying model and the measurement of the PSP. Therefore, the
results from the method may become unreliable. A solution
might be to change the influence function Z, choosing a
more general expression.

In the sequel, we consider a set of examples analyzed with
the two methods.

5.1.2. Examples

We apply the Cox method to the data sample used in Section 4.
For an OU process, 1s=0, while 7s=0. However, to perform the
analysis, we assume 7,=0.1, as in Masud and Borisyuk (2011).
The delay A is estimated using crosscorrelograms. To estimate
p from Eq. (4) and its confidence interval, we use the software
provided kindly to us by Borisyuk and Masud.

Using data from the covariance model, we obtain A=0 or
A=1. With these estimates, the Cox method correctly catches
the bi-directional dependencies, providing statistically posi-
tive estimates of  (analysis not reported).

However, the method does not succeed using data from the
jump model. Choosing A as target neuron, we investigate fa,
i.e. the influence from B to A. Here, we report the study of the
Cox method on the spike trains analyzed in Fig. 5, with crosscor-
relogram in Fig. 12, Panel II. Looking to the right side of Fig. 12,
two peaks are observed at times 0 and 10. However, the second
one is due to the autocorrelation and therefore, we choose A=0.
This leads to fisa=—5.89 with confidence interval (-6.22;-5.59).

Therefore, a wrong negative dependency is caught. Vice versa,
choosing the wrong delay A=10, we got a correct positive depen-
dency 4 =0.71, with confidence interval (0.46;0.97). Choosing B
as target neuron, similar features follow (data not reported).

Hence, the goodness of the results depends highly on the un-
derlying model and on the ability of the experimenter to esti-
mate the parameters correctly, when this can be done, i.e.
when we can measure the PSP or we know 1, and 1, in advance.

As a second check, we have generated two spike trains
according to the enhanced LIF model described in (Borisyuk,
2004), using the software from the website www.tech.
plymouth.ac.uk/infovis. This model considers different bio-
logical parameters, e.g. the already mentioned A and t;, but
also the absolute refractory period r, defined as the interval
following a spike where the neuron is unable to spike again.
Furthermore, the software allows to specify the connection
scheme between the two neurons.

Here, we test the Copula method on two spike trains gener-
ated choosing A=7,15=2.78,7,=0.1,r=5 and uni-directional con-
nection fga=12.18, i.e. B influences A. Choosing A as target
neuron, no delayed phenomena are observed. Indeed, the Ken-
dall’s tau for the pairs (Ta, T¥) are statistically equal to zero
(refer to Table 2, for k=1, 2). Reversely, we obtain a positive Ken-
dall’s tau for m=0, i.e. for the pair (T4, ). Furthermore, the pairs
(Ta, 0+, T¥) are independent for m>1, having a p-value larg-
er than 0.05 (values not reported). Therefore, these data are
characterized by an instantaneous effect. Choosing B as target
neuron, no dependencies are catched, as shown in Table 2.
Hence, as the Cox method, our method catches the connection
scheme correctly.
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Table 2-Kendall’s tau from different pairs of rvs
extracted from spike trains generated via the enhanced
LIF model. The choice of A as target neuron leads to a

positive dependence between (T,, 6). Vice versa, selecting
B as target neuron, no dependencies are observed.
Therefore, a uni-directional connection is found.

A as target neuron B as target neuron

Case T p-value Case T p-value
(Ta,T§)  -0.0094 0.4862 (TaT§)  0.0307 0.0538
(Ta,T®)  -0.0038 0.7807 (Ts, T?)  0.0074 0.6407
(Ta, 0) 0.0527 0.0001 (T, 0) 0.0092 0.5672

5.1.3. Advantages of the two methods

Summarizing, each method presents some advantages and
disadvantages, according to different situations.
The main advantages of the copula method are that:

e it is a non parametric method, only requesting the renewal
assumptions, i.e. iid ISIs;

e it recognizes the duration of the effect of a coupling phe-
nomenon through the investigation of m;

e it allows to recognize the presence of similar underlying dy-
namics for the MP, when the copula scatterplots or densities
have similar shapes;

e it gives the possibility to fit the joint distribution for the ex-
amined ISIs, after a fit of the copula density. This allows a
classification of different kinds of dependencies (not pre-
sent in this paper);

e it might be extended to capture dependencies in triplets,
quartets, etc.

A remark on the last feature. Our method can be already used
to investigate dependencies of a neural network as done in
Masud and Borisyuk (2011), i.e. considering pairs of spike trains
and performing the aforementioned analysis on each pair. How-
ever, it would be interesting to investigate also the existence of
triplets, quartets, etc. of dependencies. Using the copula method,
this would request the investigation of k dimensional copulas, for
k>2, and the results may present difficulties of illustration, due to
the impossibility to use scatterplots. Using the Cox method, this
study would become even more difficult, since one should rede-
fine the hazard function ¢ in a proper way, e.g. switching from ¢,
to a function for the k involved neurons.

Two drawbacks of the Copula method are that sometimes
this method does not catch small dependencies and it requests
a large sample size to estimate the Kendall’s tau properly.

The main advantages of the Cox method are that:

e it is reliable also for small sample size (i.e. 50 data for each
train);

e it allows to ignore the “spurious”’connection, distinguishing
between direct and indirect connections and dealing correctly
with connectivity due to common source

e it has been already tested in a network of 20 neurons, with
satisfactory results.

The main drawback is its dependence on the goodness of
the influence function Zz for the considered data. Furthermore,

even choosing a good influence function, the estimation of its
parameter, such as 5,7, for the alpha function, may represent
a hard task.

Finally, both methods allow to detect the presence of a
delay in the coupling.

Cox and Lewis (1972) underline the complementary role of
the study of the occurrence rate of events (as done in the
Cox method), and of the ISIs (as done in the copula method)
for the theoretical study of point processes. This fact agrees
with our results for the statistical study of dependencies be-
tween point processes. Hence, a reliable analysis should con-
sider both methods.

6. Conclusions

We have proposed the use of the copula notion to analyze de-
pendencies between two spike trains. This has allowed the de-
velopment of a new non-parametric method based on the
study of their scatterplots and densities, as well as association
indexes, such as the Kendall’s tau. This method allows to en-
lighten the effect of an interspike on the subsequent ones of
the other neuron. This can be studied checking copula scatter-
plots and performing a test Hy:t=0. Furthermore, the use of
copulas helps to recognize the direction scheme of two neurons,
exchanging the role of target and reference neurons. Finally,
considering all this information, one might conjecture the na-
ture of the phenomenon at the origin of the dependencies.

The proposed method can be also applied to experimental
data, allowing to catch dependencies. However, it may happen
to obtain copula scatterplots with shapes different from those
discussed here. To interpret them, it is advisable to enlarge
the set of examples, to include cases involving inhibition phe-
nomena or spurious connections. The development of a specific
software enclosing copulas and the previously mentioned
methods, particularly Cox with a proper influence function Zg,
represents an important step toward a better comprehension
of the structure of a network. Our future work will consider
the possibility to fit data with suitable copula families.

Finally, a further step will be to consider k-dimensional
copulas to investigate the dependencies in groups of k neu-
rons, non pairwise.
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