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Abstract

This thesis covers the studies of two distinct biological systems: embryo de-
velopment and miRNA regulations.

A segmented body plan is the defining characteristic of vertebrates. The
process of segmentation is carried out by a combination of changes in gene
expressions and relative cell positions within the developing embryo. The
genes influencing the segmentation in embryos are differentially expressed
in cells depending on their anterior-posterior (head-to-tail) position in the
embryo. In the anterior end somites are formed during a process called
somitogenesis. The somites are small bundles of cells that appear in pairs
along the future vertebral column, like beads on a string. They are the
precursors of muscles, skeleton, and skin.

The Wnt signaling pathway is essential in controlling somitogenesis. Sev-
eral Wnt target genes have oscillating expressions, which could constitute a
segmentation clock. A clock that controls the very precise period of somite
formation. Two theoretical models for the Wnt pathway are proposed within
this thesis. These models explore features such as synchronization of neigh-
boring cells in the anterior part of the embryo and termination of somitoge-
nesis are explored. The mechanism behind the latter is unknown, but here
a theoretical explanation of these is given.

MicroRNAs (miRNAs) are small RNA molecules that bind to protein
coding messenger RNAs (mRNAs) and inhibit their translation. An in-
hibition that can either cause or prevent a disease to develop. Therefore
miRNAs have the potential as important components in diagnosing and
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treating several diseases such as cancer. The problem is to figure out which
miRNAs bind to which mRNAs and simultaneously identify those that are
deregulated upon development of a disease. The first is known as miRNA
target prediction. In this thesis a solution to this problem is given by means
of a new miRNA target prediction method that exploits the large amount
of information stored in data for gene expressions. It is based on the use of
independent component analysis in combination with sequence and pathway
analyses. Ultimately, by this method it is possible to unravel the huge net-
work that our genome comprises and predict miRNAs deregulated in type
1 diabetes and propose for miRNA mediated deregulations of pathways in
ovarian cancer.
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Danish summary/Dansk resumé

Denne afhandling omhandler stiduer af to særskilte biologiske systemer: em-
bryo udvikling og mikroRNA regulering.

En segmenteret kropsopbygning er det mest karakteristiske for alle hvir-
veldyr. Selve processen bag segmenteringen sker som en følge af ændringer
i gen udtryk og relativ placering af celler i embryoet. Generne som p̊avirker
segmenterings processen er forskelligt udtrykt i embryoniske celler afhængigt
af deres anterior-posterior (hoved-til-hale) placering. I den anteriore del af
embryoet dannes somitterne under en proces kaldet somitogenese. Somit-
terene er sm̊a bundter af celler dannet i par langs den kommende rygsøjle,
som perler p̊a en snor. De er forstadierne til muskler, skelet og hud.

Wnt signalering er essentiel for kontrollerigen af somitogenese. Mange
gener, som er styret af Wnt signalering, har oscillerende ekspressioner. Disse
kunne udgøre et segmenterings ur. Et ur som styrer den meget præcise
periode for dannelsen af somitter. To teoretiske modeller for Wnt signaler-
ing foresl̊aes i denne afhandling. Ved hjælp af disse to modeller udforskes
vigtigheden af synkronisering mellem nabo celler i den anterior del af em-
bryoet. Desuden gives en teoretisk forklaring p̊a, hvorledes segmenterings
processen stopper. Et fænomen der stadig ikke er fuldt forst̊aet og beskrevet.

MikroRNAer (miRNAer) er sm̊a RNA molekyler, som binder til protein
kodende messenger RNAer (mRNAer) og hæmmer translationen af disse. En
hæmning, der enten kan for̊arsage eller forhindre sygdomsudvikling. Derfor
har miRNAer et potentiale som vigtige komponenter for diagnostiseringen
og behandlingen af bl.a. kræft. Problemet er at kæde de rigtige miR-
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NAer sammen med de rigtige mRNAer og samtidig identificere dem, som
ændrer ekspressions niveau n̊ar en sygdom udvikles. Det første er kendt
som forudsigelse af miRNA interaktioner. I denne afhandling gives en mulig
løsning af problemet i form af en ny metode til at forudsige miRNA in-
teraktioner, som udnytter den store informations mængde gemt i data for
genekspressioner. Metoden bygger p̊a brugen af independent component
analysis i sammenhæng med sekvens og metabolisk signalerings analyse. Ul-
timativt, vil denne metode kunne bruges til at optrævle det store netværk
vores genom udgørog forudsige miRNAer, der er dereguleret i og type 1 di-
abetes og foresl̊a signalerings veje, som er dereguleret i æggestokkræft pga.
ændringer i miRNA ekspressioner.
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Preface

This thesis is submitted in fulfilment with the requirements for obtaining
a PhD degree at the Niels Bohr Institute, Faculty of Science, University of
Copenhagen. The PhD study has been conducted under the supervision of
Prof. Mogens Høgh Jensen at the Niels Bohr Institute. It was initiated in
July 2008 and ended in March 2012 including 9 months of maternity leave.

The thesis includes four peer-reviewed papers Jensen et al. [1], Mengel
et al. [2], Bang-Berthelsen et al. [3] and Pedersen et al. [4] and two submitted
papers Pedersen and Hagedorn [5] and Pedersen et al. [6]. In the publication
list full references for all papers are listed in the following pages.

The thesis is divided into two parts. The first part covers embryo devel-
opment and the second miRNA target prediction. Each part is a synopsis
of the most interesting and novel observations from the six papers included
in the thesis. The reader is therefore encouraged to consult these papers
included at the end of the thesis in Appendices B-G. For papers including
supplementary files, these are included as well besides those that are excel-
files. In Appendix A a short description of some general statistics is given,
which is used in the second part of the thesis.

During my PhD studies I collaborated with the group of Jim McGuire at
Hagedorn Research Institute on identifying diabetic nephropathy biomark-
ers. My contribution to this collaboration was the analysis of proteomic
data by use of independent component analysis and the analysis is included
in Overgaard et al. [7]; Hansen et al. [8]. Furthermore, I also took part in
a collaboration with the group of Jens Høiriss Nielsen at the Department of
Biomedical Sciences, University of Copenhagen. The aim of the study was
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to identify miRNAs differentially regulated during the development of pan-
creas in mouse embryos and is published in Larsen et al. [9]. I contributed
with an analysis of miRNA expression data. The papers of Overgaard et al.
[7]; Hansen et al. [8]; Larsen et al. [9] are not included in the thesis and
consequently they will not be discussed further.

All simulations and analyses performed in this thesis are carried by
the author using the R environment for statistical computing and graphics
(http://www.r-project.org/). Gene names are written in italic (axin2 ),
mRNA names with low case letters (axin2), and protein names with a capital
letter (Axin2).
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Part I

EMBRYO DEVELOPMENT





CHAPTER

1

Embryo segmentation

Everything has a life cycle, from the daily newspaper to the long life of tor-
toises, which live more than 150 years. For metazoan animals the life cycle
starts with fertilization of an egg, and then follows cleavage, gastrulation,
germ layer formation, organ formation, metamorphosis or birth, maturation
and growth, and it ends with senescence. The part of the life cycle that
comes in-between the formation of germ layers and organ formation is im-
portant for proper axis formation in vertebrate animals. Because, at this
developmental stage the precursors of the vertebrates are formed. These
are called somites and the formation of somites (somitogenesis) is the main
focus for the chapters to follow.
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10 Biological systems on a small scale

1.1 Embryogenesis

At the earliest stage of embryo development (embryogenesis) the fertilized
egg is cleaved into smaller cells (blastomeres)1. After cleavage several thou-
sand blastomeres form a hollow sphere called the blastula (Fig. 1.1A). During
gastrulation the one-layered blastula is rearranged to form a three-layered
structure, the gastrula (Fig. 1.1D) . The three layers are called ectoderm, en-
doderm and mesoderm and they are progenitors of specific future tissues, for
example, part of the mesoderm becomes the skeleton. The rearrangement of
the blastula happens by involution of the endoderm and mesoderm while the
ectoderm spreads to surround the endoderm and mesoderm (Fig. 1.1A-D).

During gastrulation the primitive streak is formed as the indentation
coursed by the involution of the ectoderm and mesoderm (Fig. 1.1E). The
primitive streak is the first embryonic axis marking the anterior-posterior
direction. At the anterior end of the primitive streak there is a thickening
of cells called Hensen’s node or the primitive knot. The function of the
node is to organize gastrulation and it moves posteriorly as the primitive

Node
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Endoderm Mesoderm Ectoderm

Node

Notochord

A
n
te

rio
r-p

o
ste

rio
r

Dorsal

Ventral

E

Figure 1.1 Embryonic gastrulation.
(A-D) The involution of the endoderm and mesoderm during gastrulation. (E) A
cross–section of the embryo displaying the three germ layers, the node, the primitive
streak and the notochord. Figures adapted from Wolpert et al. [10].

1This section is based on Wolpert et al. [10] and Gilbert [11].
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streak extends. The most dorsal cells in the region around the node forms
a rigid rod-like notochord. The neural tube is formed from ectodermal cells
overlying the notochord and the tube will develop into the spinal cord and
brain. When regression of the primitive streak sets in, then the node moves
towards the posterior end of the embryo and the primitive streak stops
growing.

On each side of the notochord somites are formed in pairs as bundles
of mesodermal cells (see Fig. 1.2). The mesodermal cells are part of the
presomitic mesoderm (PSM), which lies on each side of the notochord and
extends from the anterior most somite to the tail bud. The tail bud consist
of stem cells that are remnants of the node, and it moves posteriorly as stem
cells divide contributing to the elongation of the embryo.

The somites are segmented at regular time intervals that are species de-
pendent, i.e., they are segmented every 90 min in frogs and every 120 min
in mice. Also, the number of somites is species dependent. For example,
humans have 33 somites and mice have 65 somites. The setting of somite
number is unknown, as is the mechanism for how the somitogenesis termi-
nates. On the other hand, the mechanism of how the somites are formed
from cells within the PSM has been explained and is the subject for the next
section.

1.2 The Clock and Wavefront model

During the years different types of models have been proposed to explain
the periodicity of somitogenesis. The most recognized is the Clock and
Wavefront model proposed in 1976 by Cooke and Zeeman [12] . There the
timing of the PSM cells is set by an oscillating clock and the position is set by
a wavefront. With these informations the PSM cells know when and where
to become part of a somite. Figure 1.2 (p. 12) is a schematic presentation
of the Clock and Wavefront model.

1.2.1 The clock

The oscillating clock that provides the temporal information has first been
discovered through the oscillation of the Axin2 gene in mouse embryos [13].
Since then a more genome-wide approach has been taken and several oscil-
lating genes have been found [14]. These genes belong to the three major
pathways in somitogenesis: Wnt, Notch and FGF. Interestingly, the genes
of the Wnt pathway oscillate out of phase with the genes of the FGF and
Notch pathways, and FGF acts upstream of Wnt, which acts upstream of
Notch [15].

The Wnt pathway is often referred to as the canonical Wnt/β-catenin
pathway, since the main function of the Wnt signal is to destabilize β-catenin
through a phosphorylation process induced by the formation of a destruction



12 Biological systems on a small scale

S1

S1

S0

S0

S2

M
S

P

Axis extension

dr
o

h
c

ot
o

N

Anterior

Posterior

T
a
il 

b
u
d

S
o
m

it
e
s

0 hours 2 hours 4 hours 6 hoursone cycle

S-1

S-1

S2

S1

S3

S0

S3

S2

S4

S1

S-1

S-1

S0

1 2 3 4

Rostral
Caudal

time

1 2
3

120 min

gene expression

level in PSM

4
Wnt gradient

Determination front

Mesp2

One cycle

Figure 1.2 Schematic drawing of the Clock and Wavefront model.
The cells within the PSM expresses genes in an oscillatory manner with a period of
120 min. The Wnt gradient decreases from the posterior to the anterior end of the
PSM (shades of yellow). Past the determination front (cyan line) somites can be
formed. Depending on the level of expression the cells are either permissive to form
somites (green) or not (red). In somite S-1 cells from the PSM form a prospective
somite, where the border of the somite has not been defined yet. A border has been
defined for somite S0, however the actual segmentation has not yet occurred as is
the case for somite S1. The black and grey colors of cells within a somite refers to
their rostral and caudal positioning, respectively. Mesp2 (magenta) is expressed in
S-1 cells.

complex comprised of the kinases glycogen synthase kinase (GSK3β) and ca-
sein kinase (CKIα), the scaffolding proteins Axin and adenomatous polypo-
sis coli (APC) and β-catenin itself. Wnt signaling is initiated by the binding
of a Wnt ligand to the receptor-coreceptor complex comprised of Frizzled
and low-density lipoprotein receptor-related protein 5 and 6 (LRP5/6) on
the cell membrane [16]. Besides being active during somitogenesis the Wnt
pathway is also active in many diseases. For example, a constitutive activa-
tion of Wnt caused by mutations leads to the development of some cancers
[17]. For a more detailed description of the Wnt signaling pathway see the
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AXIN2 paper and the DKK1 paper.

Synchronization between neighboring cells in the PSM is a key factor for
proper somite formation [18]. The Notch pathway provides the link between
neighboring cells by controlling the level of intracellular Notch (NICD),
which is part of the Notch signal transduction. Notch is a transmembrane
receptor with ligands also being transmembrane proteins and among them
are the Delta like receptors (Dll). Upon binding of Dll from one cell to the
Notch receptor on another cell Notch signaling is transferred. Disruption
of the Notch pathway in developing embryos results in a salt-and-pepper
pattern, when staining Notch target genes [18; 19].

1.2.2 The wavefront

The wavefront is considered to be some morphogen gradient. There are
three main gradients in the PSM, which can constitute the wavefront: Wnt,
FGF and retinoic acid (RA) [20]. The Wnt and FGF gradients decrease
anteriorly. At a certain level of FGF the cells become permissive to form
a somite [21] (level 1 in Fig. 1.2). This level of FGF or stage of the FGF
gradient is called the determination front (cyan line in Fig. 1.2). There are
several members of the FGF family comprising the FGF gradient. Fgf4 and
Fgf8 act in synergy to stop the oscillations, because separately they cannot
constitute the determination front. The FGF members also act together
with Wnt3a, which constitutes the Wnt gradient [13]. How the synergy
between these two gradients is enabled is yet to be explored.

The third gradient of RA increases from the tail bud and throughout
the PSM, thus opposing the gradient of Wnt and FGF. The FGF and RA
gradients antagonize each other [22]: RA controls the expression of fgf8, and
Fgf8 in turn regulates the onset of RA synthesis. This interplay is thought
to cause the right timing for the Fgf8 level at the determination front.

1.2.3 Linking the clock and wavefront

The gene Mesp2 is critical for stopping the oscillations and inducing the
somite borders. It is believed to be the link between the temporal informa-
tion from the clock and the spatial information from the wavefront [21]. The
wavefront formed by a decreased level of FGF represses Dll1 [23], which con-
trols Notch signaling as described above. That is, as FGF levels decreases,
Notch levels increases. Notch induces periodically expression of Mesp2 [24]
due to the periodic expression of Notch itself.

Just anteriorly to the determination front Mesp2 is expressed in S-1 cells
(colored magenta in Fig. 1.2), and the expression is initiated synchronously
in the PSM due to the induction of Notch [21]. The posterior border of
Mesp2 expression is set by Tbx6 [21]. Once activated by Tbx6 Mesp2 then
represses translation of tbx6 and an anterior border for the somite is set.
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Figure 1.3 Schematic illustration of Mesp2 regulations.
Somitogenesis is often divided into three phases depending on the phase of the oscil-
lations. (Phase III) A certain FGF (orange) threshold sets the determination front
and the posterior limit of the Mesp2 (pink) expression domain. When Notch ac-
tivity (NICD, blue) reaches the anterior PSM, where Mesp2 transcription has been
initiated in the cells with Tbx6 expression, then Mesp2 expression increases. (Phase
I) Mesp2 protein accumulates and suppresses NICD and Tbx6 protein. (Phase II)
When the next wave of Notch activity has just reached the anterior PSM region,
the NICD, Mesp2 and Tbx6 expression domains are completely separated and the
boundary between NICD and Mesp2 marks the segmental border. The boundary
between Mesp2 and Tbx6 marks the next Mesp2 anterior limit. Adapted from
Oginuma et al. [21].

Thus, Mesp2 is a post-translational regulator of Tbx6 because in Mesp2 null
mutants, there is still a clear anterior border for the tbx6 mRNA, but not
for the Tbx6 protein [21]. FGF knock-out mouse showed no well defined
anterior border of Tbx6 and no apparent oscillation of Notch. Thus, it is
believed that at the determination front FGF reaches a certain level that
trickers Tbx6 transcription to stop. If at the same time Notch signaling is
high, then a somite border is formed [25]. Figure 1.3 schematically illustrates
the regulation of Mesp2.

Another important role of Mesp2 is to set the rostral-caudal polarization
of the somites. Because when the organs start to form the caudal part of
a somite fuses with the rostral part of its posterior neighbor [26]. This
resegmentation causes a proper formation of the skeleton and vertebrate.
Thus, the somites need to have the correct rostral-caudal polarization. Once
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somitogenesis terminates the organs start to form. The genes responsible
for laying out the correct body plan, e.g., forming the right organs at the
right place, are the Hox genes [27].
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CHAPTER

2

Oscillations in a dynamical system

Whether it is the circadian clock, the inflammatory response of Nf-κB or
the segmentation process in embryos oscillations are observed. In the OSC
paper it is deduced why oscillations are better in transmitting information
than steady-state signals. In order to deduce this it is necessary to construct
regulatory networks of the signaling pathways and investigate their behav-
ior. In this chapter a broad overview of genetic regulation and feedback
loops is given. The concepts of these are used in constructing the models of
embryo segmentation described in Chapter 3.

This chapter includes results from:

B. Mengel, A. Hunziker, L. Pedersen, A. Trusina, M. H. Jensen, and
S. Krishna. Modeling oscillatory control in NF-kappaB, p53 and Wnt
signaling. Curr Opin Genet Dev, 20(6):656–664, December 2010
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2.1 Gene regulatory networks

In a gene regulatory network (GRN) the chemical compounds, such as DNA,
mRNA and proteins, constitute the nodes, and the links between these are
their mutual interactions, e.g., complex formation, phosphorylation, and
activation of transcription. The dynamics of a GRN can be simulated in
numerous ways. The most common is to solve a system of ordinary differen-
tial equations (ODEs) to describe the dynamics of a GRN; if the system size
is large enough so that fluctuations are equalled out. On the other hand if
the system size is small and fluctuations have to be taken into account then
Gillespie or Monte Carlo simulations can be performed to simulate a GRN.

In a deterministic formulation of a GRN the most basic dynamics needed
to be included is the production/formation and degradation/breaking of a
chemical compound. In terms of protein production the central dogma [28]
states that DNA is transcribed into messenger RNA (mRNA), which in
turn is translated into a protein. The transcription and translation are
carried out at specific rates. In order to model a GRN it is often necessary
to form a complex with a certain rate of formation and breaking. In the
following a brief description is given for the mathematical formulation of
protein production and degradation together with complex formation. This
constitutes the basic tools used to write down the equations for the Wnt
signaling pathway described in Chapter 3.

Translation and degradation The simplest form of protein dynamics in-
clude the translation of mRNA into protein and the degradation of
protein. In the simplest example possible the translation is assumed
to occur at a constant rate (ctsl) and degradation with a protein half-
life of τA. The ODE for the changes in protein concentration (A) is
then

dA

dt
= ctslAm − A

τA
. (2.1)

Transcription and complex formation In the case of a transcription
factor (T ) binding at the promoter (P ) of a gene the following chemical
reaction is considered

[T ] + [P ]
kf−⇀↽−
kb

[TP ] . (2.2)

The rates kf and kb are the rates at which the transcription factor
binds to or dissociates with the promoter, respectively. At equilibrium
these rates are equal and from the law of mass action follows

[T ][P ]kf = [TP ]kb . (2.3)
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Defining K = kb
kf

gives

K =
[T ][P ]

[TP ]
⇒ [TP ]

Ptot
=

[T ]

K + [T ]
, (2.4)

wheres it is used that the total concentration of promoter is

Ptot = [P ] + [TP ] . (2.5)

For low values of K the promoter sites are highly saturated even for
low concentrations of [T ], i.e., almost all promoter sites have a tran-
scription factor bound to it. In this case the ratio in Eq. 2.4 is ap-
proximately one meaning that the concentration of total promoter sites
(Ptot) equals the concentration of occupied promoter sites ([TP ]). The
type of kinetics, where one species is a limiting factor, here the tran-
scription factor, for a reaction is called Michaelis Menten kinetics.

In general when a complex forms as the formation of [TP ] in Eq. 2.2
then the ratio between the breaking and formation rates (K = kb

kf
) is

called the dissociation constant.

Saturated degradation The degradation stated in Eq. 2.1 is very simple
and is proportional to the concentration of A. If there is a limit on
the degradation, e.g., due to complex formation, then saturated degra-
dation occurs. This is an example of Michaelis Menten kinetics and
hence the mathematical formulation for saturated degradation of A is

dA

dt
= −v

A

A + K
. (2.6)

Even for very high concentrations of A ≫ K the maximum rate of
degradation saturates to the constant v. Therefore it is called satu-
rated degradation.

2.2 Feedback loops

A feedback loop is a closed and cyclic GRN with nodes either inhibiting
or activating their next node. An example of a feedback loop is drawn in
Fig. 2.1A. Depending on the regulatory interplay the loop can either be a
negative feedback loop if the mutual regulation is inhibitory or positive if the
mutual regulation is activating. Regarding the feedback loop in Fig. 2.1A it
will be negative if N is odd and positive if N is even.

For oscillations to occur the minimum requirement is that the feedback
loop must be negative and have a time delay [29] as in Fig. 2.1B. Other ways
to obtain oscillations are exemplified in Fig. 2.1(C-E). An implicit time delay
follows from a loop with many intermediate steps before a signal is passed
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Signal

explicit time delay

A CB

D E

many intermediate steps

Switch-like response Saturated degradation

degradation of

one component

Figure 2.1 Different kinds of feedback loops.
(A) Feedback loop with N nodes. The links between nodes alternates in being
activating (arrows) or inhibiting (barred arrows). A feedback loop with N odd is a
negative feedback loop. (B-E) Time delays in feedback loops can be incorporated
by an explicit time delay (B), many intermediate steps (C), an additional positive
feedback, which produces a switch-like response (D), and saturated degradation
(E).

on (Fig. 2.1C). If a regulator needs to reach a certain threshold before acting
in the loop it causes a time delay as in Fig. 2.1D. Saturated degradation, as
shown in Fig. 2.1E, will be investigated further in the chapter to follow.

2.2.1 Stability analysis of feedback loops

Lewis [30] has proposed a very simple negative feedback loop with a time
delay for the clock of zebrafish somitogenesis. In the model the regulations
of an mRNA (m) and a protein (p) follow the system of ODEs below

dp(t)

dt
= am(t− τp) − bp(t) = f(p,m)

dm(t)

dt
=

k

1 + p(t−τm)2

p20

− cm(t) = g(p,m) ,
(2.7)

where τp and τm are the time delays caused by translation of mRNA (m)
into protein (p) and transcription of the mRNA, respectively. The analytical
solution to a linear two-dimensional system of ODEs is simple in the case of
no time delays. Whereas if it is a system of delayed differential equations, a
numerical solver is needed.

As an example of an analytical solution to a two-dimensional system of
ODEs the non-delayed version of Eq. 2.7 is considered1. They are not linear
and hence a linearization of the system is performed in order to investigate

1This section is based on Strogatz [31].
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the behavior of p(t) and m(t) close to equilibrium where f(p,m) = g(p,m) =
0. The values of p and m satisfying this equality are called the fixed points
and are denoted p∗ and m∗. Very close to the fixed points of the system, a
Taylor expansion around x = p− p∗ and y = m−m∗ can be done by

dx

dt
= f(p,m) = f(p∗ + x,m∗ + y)

=

(

f + x
∂f

∂p
+ y

∂f

∂m

)

∣

∣

∣

∣

∣

(p∗,m∗)

+ O(x2, y2, xy)

=

(

x
∂f

∂p
+ y

∂f

∂m

)

∣

∣

∣

∣

∣

(p∗,m∗)

+ O(x2, y2, xy) (2.8)

and similarly

dy

dt
=

(

x
∂g

∂p
+ y

∂g

∂m

)

∣

∣

∣

∣

∣

(p∗,m∗)

+ O(x2, y2, xy) . (2.9)

Omitting quadratic terms in Eqs. 2.8 and 2.9 the system of ODEs in Eq. 2.7
close to the fixed points can be written in matrix notation as

(

dp
dt
dm
dt

)

=

(

dx
dt
dy
dt

)

=





∂f
∂p

∂f
∂m

∂g
∂p

∂g
∂m





(p∗,m∗)

(

x

y

)

= J(p∗,m∗)

(

x

y

)

. (2.10)

Here J is the Jacobian matrix. The system in Eq. 2.10 is straight forward
to solve by finding the eigenvalues (λ) and eigenvectors (v) of J, since then

x(t) =

(

x(t)

y(t)

)

= c1 exp(λ1t)v1 + c2 exp(λ2t)v2 (2.11)

=

2
∑

k=1

ck exp(αk)
(

cos(βkt) + i sin(βkt)
)

vk . (2.12)

The eigenvalues are written in complex form as λ = α + iβ.
Different classes of fixed points exist, e.g., they can be attractive or

repellant. The class of a fixed point is dependent on the nature of the eigen-
values and -vectors. From Eq. 2.12 it is seen that the solution is oscillatory
if β 6= 0 and the sign of α determines wether the solution is repelled away
from the fixed point (α > 0) towards a limit cycle or attracted towards the
fixed point (α < 0). Thus, to obtain sustained oscillations a complex con-
jugated pairs of eigenvalues with a positive real part is needed. This can,
for example, happen through a Hopf bifurcation where a pair of complex
conjugated eigenvalues crosses from the negative into the positive half-plane
as a parameter is changed.
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Returning to the example of Lewis [30] the Jacobian evaluated at the
fixed points is

J(p∗,m∗) =





−b a
−2p∗p20k

(p20+p∗2)2
−c



 (2.13)

The trace and determinant of this Jacobian are

τ = −b− c and ∆ = bc +
2p∗p2

0ka

(p2
0 + p∗2)2

, (2.14)

respectively. From the trace and determinant the eigenvalues of J are given
by

λ± =
τ ±

√
τ2 − 4∆

2
. (2.15)

The physical quantities, i.e., p, b, c, are non-negative, which gives τ < 0 and
∆ > 0. Therefore sustained oscillations cannot be obtained for this system,
because the real part of λ± will always be negative. This is an example of
a famous theorem by Dulac, which states that sustained oscillations can-
not be obtained in a two dimensional monotonic system. However, if time
delays are introduced, it is possible. The classification of fixed points can-
not be determined in the same manner when considering higher dimensions.
However, the stability of the fixed points is still determined based on the
eigenvalues of the Jacobian evaluated at the fixed points.



CHAPTER

3

Modeling embryo segmentation

After establishing the basic concepts of modeling a GRN and giving a de-
scription for classifying the dynamics of a GRN, in the previous chapter, I
will now turn to actually model the GRN behind the Wnt signaling path-
way. The first model, to be described in this chapter, is based on the Axin2
protein and in the section to follow a model based on the Wnt inhibitor Dick-
kopf1 (Dkk1) will be described. The models are described and discussed in
details in the AXIN2 paper and the DKK1 paper, respectively, and therefore
it is only the main and most interesting results of these two models that are
presented in this chapter.

This chapter is based on:

P. B. Jensen, L. Pedersen, S. Krishna, and M. H. Jensen. A Wnt
oscillator model for somitogenesis. Biophysical journal, 98(6):943–950,
March 2010

L. Pedersen, M. H. Jensen, and S. Krishna. Dickkopf1 - a new player
in modelling the wnt pathway. PLoS ONE, 6(10):e25550, 2011
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3.1 Existing models of segmentation

In previous years a large range of models have been proposed to describe
somitogenesis. Most of them are based on molecular networks with [30; 32–
35] or without [36–38] an explicit time delay resulting in oscillations of the
target genes. The goal of these models are to set up a clock, which in
practice could set the time for the segmentation process. The space is then,
in some models, set by including a morphogen gradient [39–41]. To mimic
the growing embryo some models couple the oscillating molecular networks
[18; 42]. In this way a 2D model of somitogenesis is constructed. Models not
containing an explicit molecular network are usually based on coupling of
oscillators arising using delayed coupling theory [43; 44], partial differential
equations [45; 46] or coupling of phase oscillators [47; 48].

Both the Axin2 and Dkk1 models are based on a GRN without de-
lays. They are structured in a simple manner in order to capture the ba-
sic dynamics of mRNAs and proteins during segmentation and propose for
mechanisms of segmentation that are experimentally testable. The models
are written based on known interactions of the Wnt/β-catenin signalling
pathway. Furthermore it is assumed that the system size is large enough
to exclude fluctuations. Therefore deterministic ODEs are written as to
describe the Wnt signaling.

3.2 A model for somitogenesis based on Axin2

The first gene to be discovered with an oscillatory expression in the PSM
of a mouse was Axin2 [13]. Axin2 takes part in the destruction complex
phosphorylating β-catenin during Wnt signaling. Above it was stated that
the GRN needs to be a negative feedback loop in order to oscillate. An
oscillatory behavior is the goal for the model in order to mimic the oscillatory
behavior of Axin2 in the PSM. The negative feedback loop of Wnt regulation
comes in place because β-catenin is a transcription factor of Axin2 [49;
50]. When β-catenin gets phosphorylated then less Axin2 gets transcribed
and less Axin2 will become available for the phosphorylation of β-catenin.
Consequently the concentration of β-catenin increases, which then again
leads to an increased production of Axin2 and the negative feedback loop is
completed.

The model is shown in Fig. 3.1 and is described by the following equations

dC

dt
= cfCB[GA] − cbCC − αC (3.1)

d [GA]

dt
= cf [GA]GA− cb[GA][GA] − cfCB[GA] + cbCC + αC (3.2)

dB

dt
= SB − cfCB[GA] + cbCC (3.3)
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Figure 3.1 The Axin2 model in an oscillatory state.
Left: The model of Wnt signaling based on the regulation of Axin2. Right: The
oscillations of the variables in the Axin2 model simulated with the default param-
eters from Table 3.A on p. 26. The sequential steps in the loop are as follows: a
spike in β-catenin is followed by Axin2 building up. This leads to the formation
of the destruction complex and consequently the degradation of β-catenin. Less
Axin2 is then transcribed and more Axin2 is phosphorylated. As the concentration
of Axin2 decreases β-catenin builds up.

dG

dt
= −cf [GA]GA + cb[GA][GA] (3.4)

dA

dt
= −cf [GA]GA + cb[GA][GA] + ctlAAm

−cf [AL]AL + cb[AL][AL] (3.5)

dAm

dt
= ctsAB

2 − Am

τAm

(3.6)

d [AL]

dt
= cf [AL]AL− cb[AL][AL] − ν[AL] (3.7)

dL

dt
= −cf [AL]AL + cb[AL][AL] + ν[AL] , (3.8)

where C, [GA], B, G, A, Am, [AL] are, respectively, concentrations of
the destruction complex, GSK3β-Axin2 complex, β-catenin, GSK3β, Axin2,
Axin2 mRNA and Axin2-LRP5/6 complex. There is a constant source of
β-catenin (SB) and the phosphorylation of β-catenin happens with a con-
stant rate (α). The proteins B, G, A and L are assumed to be stable [37]
and therefore no half-lifes are included for these.

Simulations of the Axin2 model in Eqs. 3.1-3.8 returns sustained oscil-
lations with a period of 108 min (Fig. 3.1). The default parameters used
to obtain these oscillations are listed in Table 3.A in the column denoted
Axin2.
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Table 3.A Default parameters for the Axin2 and Dkk1 models.
Some parameters are adapted from Lee et al. [37] others are chosen in order to obtain
sustained oscillations of the models. Experimentally the dissociation constant for
the LRP5/6-Dkk1 complex in the Dkk1 model has been measured to be K[LD] =
0.4 − 0.5 nM [51; 52].

Parameter Process Axin2 Dkk1 unit

KC Dissociation constant C 70 8 nM

cbC Breaking of C 7 7 min−1

α Degradation of β-catenin 200 2.2 min−1

K[GA] Dissociation constant [GA] 6 1.5 nM

cb[GA] Breaking of [GA] 1.2 4 min−1

SB Constant source of β-catenin 0.4 1 nM/min

ν Degradation of Axin2/Axin 0.1 3.8 min−1

K[AL] Dissociation of [AL] 0.008 - nM

cb[AL] Breaking of [AL] 0.08 - min−1

ctsA Transcription of axin2 0.7 - (nMmin)−1

ctlA Translation of Axin2 0.7 - min−1

τAm Half-life of Axin2 mRNA 40 - min

K[LGA] Dissociation constant [LGA] - 1 nM

cb[LGA] Breaking of [LGA] - 10 min−1

K[LD] Dissociation constant [LD] - 0.5 nM

cb[LD] Breaking of [LD] - 0.02 min−1

SA Constant source of Axin - 0.02 nM/min

ctsl Transcription of dkk1 - 0.02 min−1

ctsc Translation of Dkk1 - 0.025 (Nm2 min)
−1

τDm Half-life of dkk1 mRNA - 8 min

τD Half-life of Dkk1 - 16 min

GSK3βtot Total G level 50 45 Nm

Ltot Total L level 70 15 Nm
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3.2.1 The importance of Saturated degradation

Besides the main negative feedback loop consisting of the six ODEs in Eqs.
3.1-3.6, there are two additional ODEs (Eqs. 3.7 and 3.8) describing the
phosphorylation of Axin2 at the cell membrane. Upon Wnt signaling Axin2
is recruited to the LRP5/6 receptor, where it gets phosphorylated and de-
graded. This degradation of Axin2 is included in the model with a constant
rate of degradation (ν).

By assuming that the timescales for breaking and formation of the [AL]
complex are much faster than other processes in the model, i.e., there exist
a quasi-equilibrium for the [AL] complex, then d [AL]

dt = 0. Looking at the
default parameters in Table 3.A it is seen that the dissociation constant
for the [AL] complex is orders of magnitudes smaller than the dissociation
constants for the [GA] and destruction complexes. Once Axin2 is bound to
the LRP5/6 complex then it rarely dissociates and consequently the [AL]
complex will be in a state of quasi-equilibrium. Therefore it is reasonable
to assume a state of quasi-equilibrium for the [AL] complex, where . The
dynamics of Axin2 in Eq. 3.5 then becomes

dA

dt
= −cf [GA]GA + cb[GA][GA] + ctlAAm − cA

A

kA + A
. (3.9)

The maximum rate at which Axin2 gets degraded is given by cA = νLtot,
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Figure 3.2 Saturated degradation is necessary for sustained oscillations.
Left: The oscillating regime for varying values of cf [AL]. The cb[AL] value is also var-
ied so as to keep the ratio cf [AL]/cb[AL] constant, i.e., to keep the binding strength
of the [AL] constant. Oscillations occur within the tongue-shape bounded by the
colored lines. Outside these boundaries all complex eigenvalues have negative real
parts and therefore sustained oscillations cannot be obtained. Right: Colors show
the ratio of average Axin2 concentration, 〈A〉, to kA on the kA − cA parameter
plane. White contour lines indicate the amplitude of oscillations (in nM) observed
after 4 hours.
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where Ltot is the total concentration of the LRP5/6 receptor.

The effect of saturated degradation in obtaining sustained oscillations of
the Axin2 model is explored. The rates of [AL] formation and breaking are
increased while keeping the dissociation constant unchanged in order to ap-
proach a quasi-equilibrium state of [AL]. As the rates increase the oscillatory
regime of the system increases as seen from Fig. 3.2(left). The oscillatory
regime lies within the growing area surrounded by the tongue-shape. At
quasi-equilibrium the rates are very fast and following Fig. 3.2(left) the os-
cillatory regime is large for the reference value of cf [AL] = 10 (nM min)−1

resulting in a system stable in producing sustained oscillations.

In Eq. 3.9 the parameter kA =
cb[AL]+ν

cf [AL]
is an effective dissociation con-

stant of [AL]. When the ratio A/kA is large then saturation is approached
and the degradation of Axin2 has reached its maximum as explained in Sec-
tion 2.1. In Fig. 3.9(right) the ratio 〈A〉/kA is plotted in the kA − cA plane.
The white lines indicate the amplitude (in nM) of the oscillations at time
t = 4 hours. Only when 〈A〉/kA ≫ 1, where Axin2 is degraded by satura-
tion, oscillations are observed. The reference state used in the AXIN2 paper
lies within the oscillatory regime in Fig. 3.2 where it is marked REF.

Since the oscillatory regime increases as the dynamics of [AL] approaches
quasi-equilibrium and oscillations only occur when 〈A〉/kA ≫ 1 it is stated
that saturated degradation of Axin2 at the LRP5/6 receptor is necessary for
oscillations, but it cannot be stated that it is sufficient to obtain sustained
oscillations.

It is only possible to make this statement because the dynamics of Axin2
phosphorylation at the cell membrane is included in the Axin2 model. The
model resembles a similar model proposed by Goldbeter and Pourquié [36].
There Michaelis Menten kinetics are used to describe most processes except
for the simple complex formation of the [GA] complex. By including the
degradation of Axin2 at the cell membrane we can give an argument as to
why the degradation of Axin2 follows Michaelis Menten kinetics.

3.3 Dkk1 an inhibitor of Wnt signaling

The lack of phenotype for Axin2 knock-out mutants published by Yu et al.
[53] led to my proposal of a Wnt model based on the Wnt inhibitor Dkk1.
This protein is chosen based on its oscillatory behavior during embryo seg-
mentation and that lowering the expression of Dkk1 causes a smaller and
more irregular vertebrae in mouse embryos [54; 55], which is similar to a
mouse phenotype where Wnt3a is overexpressed [56].

The regulation of Dkk1 is similar to the one described above regarding
Axin2 regulations, in the sense that β-catenin is also a transcription factor
for Dkk1 [57; 58]. Axin2 is substituted with Axin in the Dkk1 model because
they are functionally equivalent [59]. A schematic illustration of the Dkk1
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Figure 3.3 The Dkk1 model in an oscillatory state.
(A) The Dkk1 model. Upon Wnt signalling Axin gets degraded and β-catenin
promotes the transcription of Dkk1. When the Wnt signal is off then β-catenin gets
degraded at the destruction complex, causing a decrease in Dkk1 transcription. (B)
The oscillations of the variables using the default parameters in Table 3.A.

model is shown in Fig. 3.3A. When Wnt signaling is on Wnt is bound to the
LRP5/6 receptor and causes phosphorylation of Axin at the cell membrane.
Thus, β-catenin is stabilized and promotes Dkk1 transcription. Dkk1 in-
hibits the binding of Wnt to the LRP5/6 by binding to this receptor. When
Wnt signaling is off then β-catenin gets phosphorylated and degraded at
the destruction complex, which leads to less transcription of Dkk1. Hence,
a negative feedback loop is established with Dkk1 at the core of the loop.

The structure of the Dkk1 model is similar to the Axin2 model and the
equations for the Dkk1 model are

dB

dt
= SB + cbCC − cfC [GA]B (3.10)

dC

dt
= −αC + cfC [GA]B − cbCC (3.11)

d [GA]

dt
= αC + cbCC − cfC [GA]B + cb[LGA][LGA] (3.12)

−cf [LGA]L[GA] + cf [GA]GA− cb[GA][GA] (3.13)

dG

dt
= ν[LGA] + cb[GA][GA] − cf [GA]GA (3.14)

dL

dt
= ν[LGA] + cb[LGA][LGA] − cf [LGA]L[GA] (3.15)

+cb[LD][LD] − cf [LD]LD (3.16)

d [LGA]

d
= −ν[LGA] + cf [LGA]  L[GA] − cb[LGA][LGA] (3.17)

dDm

dt
= ctscB

3 − Dm

τDm

(3.18)
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dD

dt
= ctslDm − D

τD
+ cb[LD][LD] − cf [LD]LD (3.19)

d [LD]

dt
= cf [LD]LD − cb[LD][LD] (3.20)

dA

dt
= SA + cb[GA][GA] − cf [GA]GA (3.21)

The new variables in the Dkk1 model are Dkk1 (D), Dkk1 mRNA (Dm), the
LRP5/6-Dkk1 complex ([LD]), the LRP5/6-GSK3β-Axin complex ([LGA]),
and Axin2 is substituted with Axin (A). Using the default parameters listed
in Table 3.A oscillations of the variables are obtained (Fig. 3.3B) together
with a low concentration of total Axin, which has been measured to be low
in xenopus embryos by Lee et al. [37].

Since the proposal of our Axin2 model new knowledge came to our mind
about the dual role of GSK3β in Wnt signaling. Firstly, GSK3β takes
part in the destruction complex leading to β-catenin degradation. Secondly,
GSK3β also binds to Axin and when bound at LRP5/6 GSK3β aids in phos-
phorylating Axin at the cell membrane. Thus, GSK3β plays two conflicting
roles in Wnt signaling [60] and it is unknown whether it is the same or two
distinct [GA] complexes that take part in the two different phosphorylation
processes. In the Dkk1 model they are equal.

The period of the oscillations is 116 min for the Dkk1 model at the ref-
erence state. It is mostly affected by changes in the phosphorylation and
degradation of β-catenin (α) the source of Axin (SA) and the dynamics of
the destruction complex (KC). For the Axin2 model we also observed that
the period is strongly dependent on the dynamics of the destruction complex.

The Wnt signal is almost constantly turned off since the concentration
of free and available LRP5/6 is very low, see Table 3.B. When Wnt is
turned off then β-catenin is stabilized and therefore the concentration of
free β-catenin will be high as seen from Table 3.B. The limiting factor for
the formation of the destruction complex is Axin, which is only present at

Table 3.B Average concentrations for Dkk1 variables in the reference state.

Variable average conc Variable average conc

[nM ] [nM ]

Dm 1042.0 C 0.454

D 333.0 [GA] 0.293

G 44.2 L 0.0254

B 16.8 A 0.01011

[LD] 14.97 [LGA] 5.26 · 10−3
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low concentrations. During Wnt signaling it is sequestered to the cell mem-
brane where it is degraded. If it is not bound to LRP5/6 at the membrane
Axin2 is bound to GSK3β, since little Axin2 is left unbound as seen from
Table 3.B. As the concentration of Dkk1 builds up the level of β-catenin de-
creases and the level of Dkk1 will consequently decrease turning on a quick
transition from phosphorylation of β-catenin in the destruction complex to
Axin phosphorylation at the cell membrane. This transition occurs quickly
because most of the Axin is constantly bound to GSK3β. However, there
are no spiky oscillations as observed for β-catenin in the Axin2 model.

3.3.1 Incorporating a Wnt gradient in the PSM

The clock and wavefront model, described in Chapter 1, proposes a mor-
phogen gradient to set the space once the time is set by a clock. In the
Axin2 and Dkk1 models a morphogen gradient is introduced by letting the
Wnt level decrease with time as to mimic the decrease of Wnt throughout
the PSM. Wnt is only produced in the tail bud of the embryo and by dif-
fusion and/or Wnt decay a gradient of Wnt is established in the PSM. In
the AXIN2 paper the Wnt level is controlled by the parameter ν, which is
the rate of Axin2 phosphorylation. However, the Wnt level is crucial for the
formation of the [LGA] complex, since if Wnt is bound to Frizzled then the
[GA] complex cannot bind to LRP5/6 and form the [LGA] complex. The
[LGA] complex is not included in the Axin2 model where Axin2 alone binds
to LRP5/6.

The inclusion of a Wnt gradient is carried out through a time depen-
dence for the rate of [LGA] complex formation, i.e. cf [LGA] must be time
dependent. The reason for choosing cf [LGA] to be time dependent instead of
ν, as in the Axin2 model, is due to the fact that the Wnt signal is mediated
by Wnt binding to LRP5/6. Simulating the Dkk1 model with a Gaussian
profile of the Wnt level with a 2-fold decrease (Fig. 3.4D) causes the oscil-
lations to decrease in amplitude, and the periods get slightly shorter, see
Figure S2 of the DKK1 paper. Decreasing the Wnt level in the Axin2 model
by decreasing ν 3-fold resulted in slightly longer periods.

Experimentally it has been shown that the wavelength of the oscillations
decreases from the tail bud to the determination front [48]. Assuming that
the wavelength is proportional to the period, then the period also decreases
from the tail bud to the determination front. This supports the idea of
including the Wnt gradient by a time dependency in cf [LGA] instead of a
time dependence in ν. As a side note, the increase/decrease in the periods
for the Axin2/Dkk1 model is not dependent on the Wnt gradient being linear
or Gaussian. Experimentally, it has been measured that FGF (regulated by
Wnt) exhibits a gradient in the PSM with a fold change of two to five [61].
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Figure 3.4 Synchronization of cells at the tail bud.
(A) Time series of the Dkk1 concentration with a decreasing value of cf [LGA]. Space
is introduced by letting a cell bud off from the tail bud every 10th min. The initial
state of this cell is equal to that of its most anterior neighbour. The cells move
relatively in the PSM. At the determination front (dotted line) the oscillations
arrest. (B/C) The level of Dkk1 at the determination front with (B) and without
(C) synchronization of neighboring cells at the tail bud. (D) The Gaussian profile
used for cf [LGA] in the anteroposterior direction. TB: tail bud. Si: Somite i, where
S0 is the newly formed somite.

3.3.2 Synchronization of neighboring cells at the tail bud

The cells in the PSM are synchronized such that neighboring cells are oscil-
lating in phase. This synchronization is important for proper somite for-
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mation as explained in Chapter 1. In the DKK1 paper the cells within the
PSM are coupled in a simple manner by letting a newly cell budded off from
the tail bud having the initial state equal to the state of its most anterior
neighboring cell. It can be compared to a wave during a football game on
a stadium. Using this simple synchronization scheme we are able to ex-
plore the importance of synchronization by showing that the level of Dkk1
oscillates at the determination front (Fig. 3.4A,B), which is important for
setting the boundaries of somites. If all cells are initialized with equal states
then the level of Dkk1 at the determination front is constant (Fig. 3.4C).
This constant value of Dkk1 depends on the initial concentration of Dkk1
at the tail bud. In Fig. 3.4C the level of Dkk1 at the determination front
is rather high around 300 nM. If other initial values of Dkk1 are used then
the constant Dkk1 level at the determination front can be changed.

3.3.3 Longer periods towards the end of somitogenesis

A decreasing level of Wnt in the tail bud has been measured experimentally
[62] (Fig. 3.5(A-C)) along with an increase in the period [63] as the embryo
approaches its full length. It is not known how the segmentation process ac-
tually terminates. The fact that the period increases along with a decrease
in the amplitude of the oscillations, suggest that as the Wnt level decreases
the oscillations arrest until the amplitude and/or period reaches a certain
value, where the segmentation process then terminates. Using the synchro-
nization scheme described above it is possible to simulate a decreasing level
of Wnt in the tail bud. Performing this simulation returns oscillations of
Dkk1 at the determination front with a decreasing amplitude and increas-
ing period (from 341 min to 438 min, see Fig. 3.5D). On the other hand, if
the Wnt level is increased in the tail bud then the periods shorten. These
findings reject the hypothesis of Aulehla and Herrmann [64] stating that the
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Figure 3.5 The level of Wnt decreases in the tail bud.
(A-C) Chick embryos hybridised for Wnt3a expression show a decreasing Wnt3a
expression in the tail bud as they develop. Adapted from Gibb et al. [62]. (D) As
the Wnt level decreases in the tail bud synchronized PSM cells display a lengthening
of the segmentation period and a decrease in Dkk1 amplitude.
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increase in period is caused by an increase in the Wnt level.

In the synchronization scheme the differing length of the PSM observed
experimentally [63] is not taken into account. Towards the end of somito-
genesis the PSM shortens. Because the length of the PSM is reflected by
the time the simulation is run the shortening of the PSM could simply be
incorporated by letting the simulation run for a shorter time period. It is
possible that incorporating this shortening of the PSM at the end of the seg-
mentation process would show a more abrupt arrest of the oscillations. This
is just speculations that needs supporting evidence in the form of numerical
simulations.

3.3.4 Sustained or decaying oscillations - what is needed?

The half-life of Axin is 6 min according to Lee et al. [37], where the measure-
ments are performed on xenopus. In the Axin2 and Dkk1 models Axin is
assumed to be stable within the timescales of segmentation, i.e. the half-life
of Axin is effectively infinite. There are no measurements for the half-life of
Axin in mouse or chicken embryos. Maybe it is longer. However, the mea-
sured 6 min half-life of Axin is within the timescales of segmentation, and
the effect of incorporating a half-life of Axin is explored within this section.

If a half-life (τA) is included for the dynamics of Axin then

dA

dt
= SA + cb[GA][GA] − cf [GA]GA− A

τA
. (3.22)

If τA = 6 min is used together with the default parameters listed in Table
3.A, then the oscillations of Dkk1 are decaying. On the other hand if the
half-life is slightly increased to τA = 9 min then the oscillations become
sustained, see Fig. 3.6. Thus, it seems that the Dkk1 model is on the edge of
a bifurcation. The type of bifurcation would be determined be investigating
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Figure 3.6 Introduction of an Axin2 half-life in the Dkk1 model.
The half-life of Axin takes the Dkk1 model from an oscillatory state (left) to a
non-oscillatory state (right) as it is decreased from τA = 9 min to τA = 6 min.
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the eigenvectors and eigenvalues around the fixed points as described in
Chapter 2.

As discussed for the Axin2 model an increasing half-life of Axin2 mRNA
increased the period of oscillations. This is also found for the Dkk1 model,
where the period of oscillations increases slightly as τA is increased above
τA = 9 min. Interestingly, the period of Dkk1 oscillations lengthen as the
half-life is decreased for τA < 9 min. Because the segmentation period
increases as the embryo elongates one could speculate wether the bifurcation
caused by decreasing τA actually occurs in the embryo as to terminate the
somitogenesis process. The decrease in Axin half-life could be caused by
increasing the activity of the ubiquitin proteasome pathway [65].

Could it be that the half-life of Axin is changed during somitogenesis as
to terminate the process through a bifurcation? Or is it a minimal change
of the default parameters that takes the system from a non-oscillatory to an
oscillatory state for τA = 6 min?
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CHAPTER

4

Concluding remarks Part I

The general concern within the field of describing and modeling segmenta-
tion is the lack of an overall pacemaker. In both the Axin2 model and Dkk1
model the concentration of β-catenin needs to oscillate in order for Axin2
or Dkk1 to oscillate. From the observations of Aulehla et al. [66] β-catenin
needs not to oscillate in the PSM, because if β-catenin is constitutively ex-
pressed then the target genes of Wnt and Notch still oscillate in the PSM.
Even though β-catenin does not oscillate it has been shown that the Notch
target gene Nrarp, which stabilizes LEF-1 [67], does oscillate [14]. LEF-1
does not oscillate in the PSM [62]. Notch and Wnt target genes oscillates
out of phase. Thus, when Axin2 or Dkk1 is high, Nrarp will have a low
expression, resulting in LEF-1 ubiquitination and consequently less Dkk1
and Axin2, because LEF-1 promotes the transcription of Wnt target genes.
Thus, the β-catenin variable in both the Axin2 and Dkk1 models can be
considered as a coarse-grained variable combining the effects of β-catenin,
Nrarp and LEF-1.

Furthermore, it has been shown that the Notch pathway is not neces-
sary for proper boundary formation of the somites and it is only required for
synchronization of the cells in the posterior PSM [68]. Also, it is only Nrarp
mRNA that oscillate and not Nrarp protein [69]. This might explain why
LEF-1 does not oscillate in the PSM, but together with the story of Notch
it also adds to the mystery story of finding an overall pacemaker of somi-
togenesis as mentioned in Aulehla et al. [66] and Dequéant and Pourquié [15].

Throughout this Part the aim has been to find sustained oscillations.
However, could it be that the oscillations might not need to be sustained,

37
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but only oscillatory for the time it takes the cell to move relatively from the
tail bud to the determination front? This question puts another perspective
on modeling somitogenesis, because a wider selection of models might be
possible and the parameter space might become bigger. Actually, by only
requiring damped oscillations it might be possible to circumvent the issue
of β-catenin not oscillating in the PSM.



Part II

MICRORNA TARGET

PREDICTION





CHAPTER

5

Complexity of miRNA target
prediction

In a hand-written signature it is the small, personal curls and bows that
uniquely define us. It is almost impossible to imitate a signature due to
these. The same is true for our genetic signature where the small curls
and bows could be represented by the small but regulatory important mi-
croRNAs (miRNAs). They target protein coding mRNAs by blocking their
translation. microRNAs are commonly deregulated in many diseases and
consequently their targets are deregulated, which contribute to the devel-
opment of diseases. Therefore reliable and accurate microRNA target pre-
diction methods are important for a better understanding of gene networks
regulated by miRNAs. A better understanding of these might lead to new
and improved treatments or maybe even a cure of diseases.

In this chapter a brief review of microRNAs and their regulatory mecha-
nisms is given, along with an overview of the research field of computational
miRNA target prediction. It is important to understand the mechanisms be-
hind miRNA regulation in order to develop precise miRNA target prediction
methods, and to understand the limitations of these.

41
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5.1 microRNA biogenesis and regulation

In 1993 Lee et al. [70] discovered a C. elegans gene (lin-4 ) which did not code
for a protein and the effective gene consisted of only 22 nucleotides. Fur-
thermore, the expressions of both lin-14 mRNA and protein were downreg-
ulated upon lin-4 expression, thus a translational repression was observed.
The mechanism behind this inhibition was unknown, but when the 3’UTR
of lin-14 was deleted then a gain-of-function was observed [71].

The lin-4 gene is the first miRNA to be discovered. miRNAs are a family
of non-coding genes with a size of approximately 22 nucleotides. Despite
their short length, and the fact that they comprise only 0.5-1% of the genes
in a genome, they each target roughly 200 transcripts [72] and overall they
regulate 60% of the human genome [73].

The genomic location of miRNAs can be intergenic, intronic or exonic

Figure 5.1 From pri-miRNA to mature miRNA.
(1) The miRNA genes are transcribed by RNA polymerase II, and Drosha pro-
cessing makes the pri-miRNAs into pre-miRNAs. These are exported out into the
cytoplasm (2), where Dicer processing (3) incorporates the mature miRNA into the
RISC complex (4). If there is nearly perfect complementarity between the 3’UTR
and the miRNA then the mRNA is cleaved (5). If the mature miRNA sequence has
imperfect complementarity with the 3’UTR of the target mRNA then translation-
ally repression takes places (6). Figure adapted from Bernardo et al. [74].
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[75]. Intergenic miRNAs are located alone or in clusters in genomic regions
without a known transcription unit. Intronic and exonic miRNAs are located
within introns or exons of known transcript units. The transcription of most
miRNA genes are carried out by the RNA polymerase II as for protein-
coding genes [76]. The transcribed miRNA forms an imperfect stem-loop
called a pri-miRNA and cleavage of this gives a hairpin-loop called pre-
miRNA (Fig. 5.1). The last step in obtaining a mature sequence of the
miRNA involves a protein complex called Dicer that cleaves the pre-miRNA
into a mature miRNA of about 22 nucleotides. The regulation of target
gene expression includes an incorporation of the mature miRNA into the
RNA-induced silencing complex (RISC). In the following it is the mature
form of the miRNA that is referred to when miRNAs are mentioned.

The general knowledge is that the first 6-8 nucleotides, counted either
from the first or second nucleotide in the 5’ end of the miRNA, are of par-
ticular interest [77; 78]. Because these show near perfect complementarity
between the miRNA and the 3’UTR of the target mRNA. They are called
the seed region. When the miRNA binds to the mRNA the seed region
acts like a rapid zip, that overcomes thermal diffusion, and is followed by a
stabilizing thermodynamic step where more base pairs are formed between
the miRNA and mRNA [77]. After forming imperfectly stem-loop struc-
tures with the target mRNA the miRNAs either degrades the mRNA by
cleavage or inhibits the translation of the mRNA. The degree of comple-
mentarity in the miRNA:mRNA duplex determines the fate of the mRNA
[79] (see Fig. 5.1). In plants the miRNAs usually binds with close to perfect
complementarity. As a consequence their targets are cleaved [80].

5.2 Predicting miRNA targets

Starting in 2008 many papers have shown that miRNAs target coding re-
gions just as well as they target 3’UTRs [81–83]. Furthermore, it has also
been shown that miRNA seeds are not always present in the miRNA tar-
gets [81; 84–89]. Also, an upregulation of a targeted mRNA is seen when
the miRNA binds to the 5’UTR [90]. These findings exemplifies the high
complexity of miRNA regulations, which makes the computational task of
predicting miRNA targets very difficult.

The list of available miRNA target prediction methods is long and counts
more than 30 published methods. The basics of these are [73; 91; 92]:

1. Base pairing: There exist different types of base pairing between the
miRNA and its target mRNA. Complementary binding at the seed
region is sometimes followed by additional base pairing at the 3’end of
the miRNA. Sometimes a mismatch or wobble is observed within the
seed region, which is compensated by a long stretch of complementary
base pairing in the 3’-end of the miRNA.
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2. Favourable seed sites: It requires energy to unfold the mRNA and
free energy is produced when the miRNA binds to the mRNA. Thus
some seed sites are more energetically favourable than others [93].
The flanking region of the seed site is also important, since it has been
observed that some motifs, e.g., AU-rich regions [94], in the flanking
region improves the target prediction methods [95; 96].

3. Expression analysis: Usually there is a negative correlation between
the expression of the miRNA and its target. Thus targets are sought
among the mRNAs anti-correlating the most with the targeting mi-
RNA.

4. Conservation: Both the seed region of the miRNA and its targets are
well conserved among related species [97]. Therefore miRNA targets
should be conserved across species and a phylogenetic analysis is often
performed.

5. Cooperativity: miRNAs fine tune the expression of genes in a combi-
natorial manner, meaning that several miRNAs can target the same
mRNA transcript or multiple mRNA transcripts [72; 98]. Further-
more, a cluster of co-expressed miRNAs can regulate functionally re-
lated genes [99].

The features above are included to different extends in different methods and
the mathematical scheme for predicting the targets also varies greatly be-
tween the methods. Some methods use simple enrichment tests [100], while
others make use of different machine learning algorithms [101; 102], where
one dataset is used to train the algorithm to classify miRNA targets, and
then a second dataset is used to test the learning algorithm. Consequently,
the overlaps between the target prediction methods are sparse. Kertesz et al.
[93] report an overlap ranging from 19%-31%.

5.2.1 Accuracy of available target prediction methods

A miRNA target prediction is a binary test with a positive outcome if the
mRNA is predicted as a target for the miRNA and a negative if the mRNA
is not predicted as target. The aim of many miRNA target prediction meth-
ods is to get no false-positives or false-negatives, i.e. high sensitivities and
specificities1. However, this is unattainable since there are a lot of unknown
variables behind miRNA regulations that still needs to be mapped. If the
method contains tunable parameters or is based on a machine learning al-
gorithm, then it is common to optimize the method as to have the optimal
trade-off between the sensitivity and specificity.

1Sensitivity and specificity are explained in App A.
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Figure 5.2 The performance for a selection of miRNA target prediction methods.
The methods are tested by Sturm et al. [96] on a dataset consisting of validated
miRNA:mRNA pairs from Stark et al. [103] (A,C) and Kertesz et al. [93] (B,D).
References for methods: TargetSpy [96], EIMMo [104], miRanda [105], PicTar [72],
PITA [93], RNA22 [106], TargetScanS [107], miRBase (mirbase.org). The figure
is adapted from Sturm et al. [96].

In Sturm et al. [96] a selection of methods with tunable parameters
are tested on two validation datasets, see Fig. 5.2. In Fig. 5.2(A,B) the
sensitivity is plotted against (1-specificity) for the different methods. This is
a common plot as to validate a target prediction method and the area under
the curves (AUC) measures the performance of the method (Fig. 5.2(C,D)).
If all miRNAs predicted by the method is always “true” miRNA targets then
AUC equals one, since there will be no false-positives. As can be seen from
Fig. 5.2 it is very difficult to compare the performance of different methods,
because it very much depends on the data that the methods are tested on.
Methods that are trained on a specific dataset will be biased by the quality
and contents of the dataset.

5.2.2 Expression data used for miRNA target prediction

Considering both the features incorporated into the methods of Fig. 5.2 and
their AUC values indicate that incorporating multiple features increases the
accuracy of the methods. This is also mentioned in the review on miRNA
target prediction by Saito and Saetrom [91]. The method to be presented
in this thesis uses expression data along with seed match and an optional
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cooperativity feature. Thus it incorporates two-three different features. The
method will de described in Chapter 6, but as an introduction a broad
overview of existing methods including expression data will be given here.

Only a few of the published prediction methods incorporate gene expres-
sion data. This is mostly caused by the lack of gene expression data, where
both miRNA and mRNA have been profiled within two different classes of
samples. As the cost of performing a microarray experiment decreases more
datasets of this kind will be available, e.g., through the large gene expression
repository of the Cancer Genome Atlas (TCGA, cancergenome.nih.gov).
Listed below are prediction methods incorporating gene expression data.

TargetMiner Bandyopadhyay and Mitra [102] propose a support vector
machine (SVM) based classifier of miRNA targets. Putative miRNA
targets are curated from the union of published miRNA targets. For
these mRNAs they filter out those that positively correlate with miR-
NAs differentially expressed in a microarray experiment. Those mR-
NAs not filtered out need also to be differentially expressed under the
same conditions as the miRNAs.

HOCTAR Gennarino et al. [108] consider intronic miRNAs, which are
transcribed along with their targets. The expression of these intronic
miRNAs must anti-correlate with the expression of their host genes.

Stanhope Stanhope et al. [109] apply a regression model to the expres-
sion data in order to filter out the contributions from systemic noise,
other miRNAs binding to the target and the noise introduced by RISC
binding to the mRNA.

Genmir++ Potential miRNA targets are retrieved using an existing target
prediction model. These potential targets are then used in a Bayesian
learning algorithm to find miRNA targets, which anti-correlate in ex-
pression with the miRNA [101].

Sylamer van Dongen et al. [100] use expression data, where a miRNA
is typically knocked down. Upon knockdown the potential miRNA
targets will be upregulated. The idea behind Sylamer is that there
is an enrichment of words complementary to the seed of the knocked
down miRNA in 3’UTRs of the upregulated mRNAs.

Except for Stanhope all the methods searches for anti-correlations be-
tween mRNA and miRNA expressions. Only Stanhope considers the fact
that miRNA and targeted mRNA expressions might not anti-correlate.



CHAPTER

6

miRNA target prediction using
independent component analysis

In this chapter a new and innovative method for predicting miRNA targets
is proposed. It is called miICA. The innovative feature of miICA is that it
is based on independent component analysis (ICA), which has been shown
superior to clustering and principal component analysis (PCA) commonly
used for analyzing microarray data [110–113]. In combination with ICA
enrichments of putative miRNAs and biological pathways are sought. Ul-
timately miICA will be capable of unravel the huge genomic network that
underlies the development of several diseases.

Furthermore, in a microarray experiment thousands of genes can be pro-
filed and performing several microarray experiments for different experimen-
tal conditions provides a high-dimensional set of expression profiles. Turning
these data into useful information is a research area on its own. In the ICA
paper a method of implementing ICA and retrieving useful information from
microarray data is described. A short overview of the ICA paper is given in
this chapter.

This chapter contains results from:

L. Pedersen and P. H. Hagedorn. Ranking of Independent Components
in Gene Expression Microarray Data Using Weighted Scoring. Under
revision in PLoS ONE, 2011
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6.1 Principles of independent component analysis

ICA was originally proposed for signal analysis [114]. It is a linear decompo-
sition method used for blind source separation (BSS). In BSS it is the sources
(C) behind the measured signals (E) that is wanted, but only the signals
are known. For example, if the signal is a mixture of different sources, e.g.,
three microphones recording the sound from two speakers, then ICA can
decompose the measured signal from the three microphones and retrieve the
two original sources from the speakers. The retrieved sources of the speak-
ers are called independent components (ICs). The matrix formulation of the
problem is

E = CM or Egs =

T
∑

t=1

CgtMts , (6.1)

where the mixing matrix (M) gives the linear combination of the sources
resulting in the measured signals. It was found by Comon [114] that if
the sources are assumed to be independent then the problem of finding
both C and M becomes solvable. The sources are estimated by the ICs,
which constitute the columns of the component matrix C. The entries of C
(Cgt) are denoted loads and the entries of M (Mts) are denoted component
weights. If E is a G × S matrix , i.e. g ∈ {1, . . . , G} and s ∈ {1, . . . , S},
then the maximum number of ICs that can be estimated is min(G,S).

From the matrix formulation of ICA it is seen that M and C are not
uniquely defined or ordered. Hence three constraints are set on C [114]:

• Each IC is centered yielding a mean of zero and a standard deviation
of one of the loads, i.e. for IC t then

〈C.t〉 = 0 and σ(C.t) = 1 . (6.2)

• The eigenvalues for the covariance matrix of C are ordered to give the
order of the ICs.

• In each IC the largest modulus must be positive, i.e.

sign
(

Cgt

∣

∣|C.t| = max(|C.t|)
)

= 1 . (6.3)

A last condition that needs to be fulfilled for ICA to be uniquely defined
is that at most one of the ICs must have Gaussian distributed loads. This
condition is almost always true for signals obtained by measuring a phys-
ical quantity, where the noises on the measurements are often Gaussian
distributed but the sources themselves are non-Gaussian distributed.
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Figure 6.1 ICs capture biological pathways and cellular processes.
Different biological processes are mixed to obtain the gene expressions for yeast
(Saccharomyces cerevisiae) responding to diverse environmental transitions. Figure
adapted from Lee and Batzoglou [111].

6.1.1 ICA applied to gene expression data

ICA is a method widely used to analyze microarray data. Assuming that
the individual contributions on mRNA expressions are linearly separable
and reasonable independent of each other, ICA can separate the various
contributions to the mRNA expressions. The result of several microarray ex-
periments can be contained in an expression matrix (E), where the columns
correspond to different samples and the rows correspond to genes. The pre-
processing steps performed in order to obtain E will not be described in
detail here, but see the ICA paper, the T1D paper, and the OVC paper for
further details.

ICA has been proven to be superior to both clustering and PCA [110–
113]. Both methods are widely used for the analysis of mRNA microarray
data and recently, ICA was applied to miRNA profiling data as well [115].
When ICA is applied to expression data then the expression profile for each
sample acts as a microphone. The speakers are the levels of genes within a
transcriptional program (biological pathway, cellular component, etc). Ac-
tually, the ICs identified using ICA has been shown to capture the differen-
tial regulation of well-defined biological processes and metabolic pathways
in breast cancer [113], acute myeloid leukemia [116], and Alzheimer’s dis-
ease [117]. When these are mixed together they will add up to give the
expression profiles of the samples. In Fig. 6.1 this is exemplified for yeast
(Saccharomyces cerevisiae) exposed to different environmental transitions
such as heat shock and starvation.

Each gene is weighted in the ICs according to its gene weight (Cgt),
which in the previous was called a load as is common terminology. In the
T1D paper the component and gene weights are called mixes and loads, re-
spectively, as is tradition. In the OVC paper the terms gene and component
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weights are introduced to use a more biological terminology.
There have been many proposals on how to select genes differentially

expressed based on their gene weights [110; 111; 116]. In this thesis the
method proposed by Liebermeister [110] is used. Liebermeister selects a
gene g from IC t if

|Cgt| > 2σ(|C.t|) , (6.4)

where |Cgt| is the absolute gene weigth of gene g in IC t, σ is the standard
deviation and |C.t| is the absolute values of all the gene weights in IC t. A
gene satisfying Eq. 6.4 is said to be active within IC t.

The ICs retrieved from a collection of gene expression profiles will be
weighted differentially across the samples according to the values of Mts in
Eq. 6.1. The component weights measure the activity level of the transcrip-
tional programmes across the samples, i.e. Mts is the activity level of process
t in condition s. For example, assume that an IC maps to a cancer related
pathway then the weights of this IC will be very high in cancerous samples
and negligible in non-cancerous samples. Thus the component weights can
be used to classify samples according to a physiological, histological, etc.
feature of the samples. Actually, tumor classification based on ICs seems to
be a promising application of ICA [118; 119].

6.1.2 Ranking of independent components

One drawback of ICA is that no ranking of the ICs is given. In the ICA paper
a method of ranking the ICs is described. It is based on a weighting scheme
for the ICs, where the ranking is based on the ICs ability to separate samples
according to their classification, the Gaussianity of the gene and component
weights, the stability of the ICs and the biological concordance of the ICs.
ICs map to biological processes or metabolic pathways, as described above,
and the biological concordance measures the fraction of genes satisfying
Eq. 6.4 that are also annotated by a biological pathway or process. Thus the
biological concordance score measures the ICs capability to map to biological
pathways or processes, and therefore the biological concordance feature of
the ICA paper is important.

Other ranking methods have been proposed. Liebermeister [110] ranks
the ICs according to the variance captured by the component weights and
the negentropy of the gene weights. Similarly, Winther and Petersen [120]
rank the ICs according to the energy ∝

∑

M2
ts that they each capture.

Chiappetta et al. [121] rank the ICs according to the stability of these.
The ranking method proposed in the ICA paper therefore includes ranking
schemes already proposed in the literature, but it also includes some new
and very important ranking features, such as the biological concordance.

In the ICA paper it is shown how a set of 492 genes correctly classi-
fies cancer samples according to their grade with a accuracy of 96%. The
genes are chosen based on their gene weights in the highest ranking ICs.
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Figure 6.2 ICA applied to mRNA and miRNA expressions.
The expression matrix is decomposed into a component matrix with ICs in the
columns and a mixing matrix with weights of each IC in the rows. There are two
clinical conditions cancer vs control and high vs low grade tumor. Two ICS are esti-
mated with weights correlating with cancer (IC 1) and tumor grade (IC 2). mRNA1
and miR-1 are down/upregulated in cancer, thereby having negative/positive gene
weights in IC 1, and mRNA2 and miR-2 are down/upregulated in low grade tumors,
thereby having negative/positive gene weights in IC 2.
Red/green denotes negative/positive log2 expressions. Yellow/cyan denotes nega-
tive/positive gene and component weights.

The method presented in the ICA paper for ranking and identifying ICs
and genes might therefore be interesting from a classification point-of-view.
Furthermore, the described method of ranking ICs has also shown applicable
in the analysis of proteome data in Overgaard et al. [7] and Hansen et al.
[8]. The aim of these studies were to predict better biomarkers for diabetic
nephropathy.

6.2 miICA - miRNA target prediction based on

ICA

The most common way to incorporate expression analysis into miRNA tar-
get predictions is by finding anti-correlation between the expressions of a



52 Biological systems on a small scale

miRNA and its target mRNA as in TargetMiner [102], HOCTAR [108],
and Genmir++ [101] listed in Section 5.2.2. However, due to, e.g., multi-
ple miRNA regulations, transcription factor binding and site accessibility
the anti-correlation between the miRNA expression and its target mRNA
expression doesn’t need to be significant [109]. It has, for example, been
observed experimentally that miRNAs can act both activating and inhibit-
ing during the cell cycle of HEK293 cells [122]. As a way to separate these
factors ICA is applied to the expression data.

Figure 6.2 is a schematic illustration for the application of ICA to an
expression matrix (E) of both mRNAs and miRNAs. E is decomposed into
a component matrix (C) with two ICs (IC 1 and IC 2) and a mixing matrix
(M). IC 1 is weighted differently between cancerous and control samples
and IC 2 between tumor grades. These regulation patterns are also observed
for the expressions of mRNA1 and miR-1, which differ between cancer and
normal samples (red versus green), and for the expressions of mRNA2 and
miR-2, which differ between different tumor grades (shades of red/green).
Consequently, mRNA1 and miR-1 lie at the ends of IC 1 and mRNA2 and
miR-2 lie at the ends of IC 2.

Notice, when the gene weights of the miRNAs and mRNAs lie at the
very ends of the ICs, as miR-1 and mRNA1 in IC 1, then the miRNAs lie
oppositely to the targeted mRNAs due to the inhibitory effect from the mi-
RNAs. Thus, in ICs weighted differentially according to a factor of interest,
e.g. cancer, it is expected that miRNA targets will be overrepresented op-
positely to the miRNA itself. Additionally, if there is an overrepresentaion
of genes annotated with a biological pathway in the same end as for the
miRNA targets, then I propose for a regulatory relationship between the
miRNA regulation and the biological pathway. This is the basis of miICA.
The individual steps of miICA are described below.

1. Applying ICA to the expression matrices
There are several numerical implementations of ICA. Among them are
the JADE algorithm [123], based on 4th order statistics, the RADI-
CAL algorithm [124], based on mutual information, and the fastICA
algorithm [125], based on maximization of negentropy. It has been
found that different ICA algorithms including fastICA, RADICAL and
JADE perform similar overall [111; 113]. Because of its nice implemen-
tation in R fastICA is often used when analyzing microarray data by
ICA [110; 116–119; 121; 126].

fastICA returns slightly different estimates at each run, therefore con-
sensus component and mixing matrices are calculated by running fas-
tICA N = 20 times. Each time estimating the maximum number of
ICs to preserve the full information hidden in data [127; 128]. The
fastICA algorithm and the calculation of consensus matrices are de-
scribed in OVC paper and the T1D paper.
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Sometimes the miRNA expression levels might be very different from
the mRNA expression levels. This makes it impossible to apply ICA
to the combined mRNA and miRNA expression matrix, as was done
in Fig. 6.2. If the miRNA expression levels are very high then the
miRNAs might only have very negative/positive gene weights in a
single IC as was observed in the OVC paper. Oppositely, if the miRNA
expressions are very low, then the gene weights of the miRNAs will
never be significant as in the T1D paper. A way to circumvent this is
to use the mixing matrix for the mRNAs (Mm), and then estimate a
component matrix for the miRNAs (Cmi) by solving Emi = CmiMm,
where Emi is the miRNA expression matrix.

2. Finding significant components
The samples are classified according to one or more factors. An
ANOVA is applied to the component weights of each IC to test if
they are significantly different between groups of samples. The result-
ing p-values are corrected for multiple testing. If the classification of
the samples is unknown then the method of ranking ICs represented
in the ICA paper can be used to find significant ICs. For the use of
miICA it will especially be the bioconcordance score of the ICA paper
that is of interest, because ICs mapping to biological pathways are of
special interest.

3. Performing target enrichment analysis
A target matrix (T) is generated with entries denoting the numbers of
seed matches between the mRNA sequence and the miRNA seed, e.g.,
Tmg = 5 corresponds to miRNA m having five seed matches in the
mRNA sequence of gene g. A Wilcoxon rank sum test is then applied
to each IC to test if the putative miRNA targets have significantly
lower or higher gene weights than non-targets. If they have lower or
higher gene weights in an IC then there is an enrichment of miRNA
targets in the negative or positive end of that IC, respectively.

Upon enrichment analysis the p-values are FDR corrected for multiple
testing. The default length of the seed is 6 nucleotides, but the use of
7mer or 8mer seeds is optional. The mature sequences of the miRNAs
are downloaded from miRBase (mirbase.org). The mRNA sequences
are extracted by using the biomaRt package in R and they can either be
3’UTR, coding region or 5’UTR sequences. When multiple sequences
are available for the same mRNA, then the longest is used.

The enrichment analysis is applied to the ICs, which have gene weights
that are non-Gaussian. Hence the statistical test must be usable for
non-Gaussian data. This is true for the Kolmogorov-Smirnov (K-S)
and Wilcoxon-rank-sum (WRS) tests. Tests that require Guassianity
of data are, e.g., t-test or z-test. The WRS-test is applied, because
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data might be ordinal, i.e. not direct measurements, and the K-S test
does not allow for ordinal data.

4. Performing pathway enrichment analysis
A target matrix is created as above. The entries now denote if the
gene is annotated by a certain pathway or cellular process, i.e. Tpg = 1
corresponds to gene g being annotated by pathway/process p and if
Tpg = 0 then gene g is not annotated by pathway/process p. A major
repository of biological pathways is the Kyoto Encyclopedia of Genes
and Genomes (KEGG) [129] and in the Gene Ontology (GO) [130]
a gene product is associated with its cellular component, biological
process or molecular function. The Molecular Signatures Database,
Broad Institute (MSigDB, [131]) is a metabolic pathway and molecular
process repository, which is curated from existing repositories (such as
GO and KEGG) and from results on pathways and processes published
in the literature.

A large amount of data can be the output from step 1-4 of miICA if the
dimensions of the miRNA and mRNA expression matrices are high, which
is usually the case. Depending on the aim of the study different approaches
can be undertaken in order to retrieve useful information from miICA. In the
T1D paper the aim was to find differentially expressed miRNAs in a model
of type 1 diabetes (T1D). In the OVC paper the aim of the study was to
investigate which pathways the ICs map to and propose new links between
miRNA regulations and deregulated pathways in ovarian cancer (OVC). In
both papers miICA was validated by searching for regulatory mechanisms of
T1D and OVC already published in the literature. Additionally, in the OVC
paper the samples were profiled using two different microarray platforms
enabling a direct validation of miICA. This is a unique opportunity, since it
is seldom that the same set of samples is profiled twice.



CHAPTER

7

miICA applied to a model of type 1
diabetes

According to the World Health Organization (WHO) the number of diabetes
patients is expected to be doubled in 2030. For the approximately 10% of
diabetes patients with T1D the disease requires daily insulin therapy, which
is not a cure of T1D and the patients are still at risk for developing late
diabetic complications. Furthermore, diabetes is a costly disease for the
global health care system. The cause of T1D is a destruction of the β-cells
and cytokines are implicated in this destruction. The investigation of genes
and miRNAs regulated by specific β cell transcription factors and/or by
cytokines could give new insight to the mechanisms of T1D and hopefully
guide the way for the prevention and targeted treatment of T1D.

The aim of the T1D paper was to investigate mRNAs and miRNAs
deregulated during β-cell maturation and the effect of cytokines on this
maturation. From this investigation novel miRNAs causing an increased
sensitivity of cytokines in mature β-cells are identified.

This chapter is based on the findings in:

C. H. Bang-Berthelsen, L. Pedersen, T. Fløyel, P. H. Hagedorn,
T. Gylvin, and F. Pociot. Independent component and pathway-based
analysis of miRNA-regulated gene expression in a model of type 1
diabetes. BMC Genomics, 12:97, 2011
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7.1 An introduction to type 1 diabetes

Diabetes Mellitus is a severe chronic disease characterized by defects in
insulin production and/or response to insulin. Two main classes of diabetes
exist: type 1 diabetes (T1D) and type 2 diabetes (T2D). T1D is caused by
an immune-mediated destruction of the β-cells in genetically predisposed
individuals and T2D is caused by a resistance to and/or abnormal secretion
of insulin. The β-cells are found in the islets of Langerhans in the pancreas
[132]. They are responsible for the production and release of insulin. The
maturation of β-cells in the pancreas is dependent on different transcription
factors of which one is the pancreatic duodenum homeobox (pdx-1) [133].
Cytokines, such as interleukin-1β (IL-1β), are implicated in the pathogenesis
of T1D as mediators for the destruction of β-cells [134].

7.2 Type 1 diabetes microarray data

In this study the INSrαβ rat cell line is used. In response to pdx-1 induc-
tion by doxycycline treatment the INSrαβ cells progress from an immature
(α-cell phenotype) to a mature β-cell phenotype [133]. This maturation
is accompanied by an increased sensitivity to the toxic effects of cytokines
monitored by the addition of IL-1β. There are three experimental conditions
in this experimental design, which are pdx-1 overexpression (denoted DOX)
with or without additional IL-1β treatment (denoted IL and IL+DOX, re-
spectively). Samples are taken 2h and 24h after induction of pdx-1 and/or
IL-1β treatment, and there are three-four replicates within each of the six
classes of samples. In total that gives 23 mRNA profiled and 18 miRNA
profiled samples, where log2-ratios are calculated for each sample against a
control reference. The miRNAs have very low expression levels as compared
to the mRNAs. Therefore ICA is only applied to the mRNA expression
matrix and 23 ICs are estimated.

7.3 Independent components capture the expres-

sion of miRNAs

Five ICs are differentially weighted between the six classes of samples (p <
10−4, FWER corrected), see Fig. 7.1B. IC 1 is a Pdx-1 component weighted
negatively upon pdx-1 induction. ICs 2 and 3 are cytokine components
because they are non-present in DOX samples and weighted positively and
negatively upon IL-1β treatment, respectively. The component weights of
IC 4 correlate with the induction of pdx-1 and treatment with IL-1β after
24 h. IC 5 is a time component with component weights increasing from 2
h to 24 h in the three treatment conditions (DOX, IL, and IL+DOX).
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There are eight miRNAs differentially expressed across the samples (p <
0.1, FWER corrected, see Fig. 7.1A), and these have expressions that are
well explained by the five significant ICs. In fact a linear superposition of
the five ICs captures ≥ 97% of their variance, see Fig. 7.1C and Table 7.A.
Seven out of the eight differentially expressed miRNAs have putative targets
enriched in one or more of the five significant ICs (q < 0.05, see Table 7.A).

The five significant ICs capture the expression of the eight miRNAs and
seven of those have targets enriched among them. Therefore it is assumed
that the transcriptional regulations within these five ICs are partly mediated
by the eight miRNAs. Furthermore, targets of five (miR-128, 192, 194, 204,
and 375) of the eight miRNAs were significantly regulated by cytokines in
models of β-cell destruction in human islets [135], in rat β-cells [136] and in
insulin producing INS-1E cells [137]. miR-672 does not have targets enriched
in any of the five ICs. However, miR-672 is differentially expressed between
α and β-cells (p = 0.05, FWER corrected), see Supplementary Fig. 7 in the
T1D paper. Together with miR-708 it is the first time that miR-672 has
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Figure 7.1 miRNA expressions and weights of ICs in a model of T1D.
There are three treatment conditions: IL (red), DOX (blue) and IL+DOX (green).
(A) Log2-transformed fold changes for the eighth differentially expressed miRNAs
between condition and control. *: 0.05 > q > 0.01, **: 0.01 > q > 0.001, ***:
0.001 > q > 0. (B) The weights of the five ICs across the samples. (C) The
coefficient for the linear superposition of the ICs giving the best fit of the miRNA
expressions. The coefficients are scaled to have an absolute sum of one. The bars
in (A) and (B) are standard deviations.
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Table 7.A The eight miRNA regulations are composed of five ICs.
The coefficient of determination (R2) is the variance explained by the linear super-
position of the five ICs. See Appendix A for a definition of R2. The row ICA q
denotes the q-value for miRNA target enrichment in the end (End) of the IC (IC).
The row neg q denotes the q-values for enrichment of negative correlation between
the miRNA and its targets.

miRNA

124 128 192 194 204 375 672 708

R2 1.00 1.00 1.00 0.97 0.99 0.97 1.00 0.99

ICA q 4.4-3 0.026 7.E-45 0.012 0.012 0.015 0.27 7.5E-4

IC IC 5 IC 5 IC 5 IC 2 IC 5 IC 1 IC 2 IC 5

End neg neg neg pos neg neg pos neg

neg q 2.7E-3 0.63 0.63 1.6E-3 0.63 2.7E-3 0.87 0.023

been examined in β-cells. Thus, all of the eight miRNAs are interesting
candidates for further studies and especially miR-672 and miR-708 because
of their novelty within β-cell research.

7.3.1 miICA performs better than negative correlation

Calculating the Pearson correlation coefficient between one of the eight
miRNAs and the expressions of the mRNAs reveals that only four of the
eight miRNAs have significant enrichment of negative correlation coefficients
among their putative targets. Thus, it seems that miICA outperforms the
use of negative correlation in miRNA target prediction, since the level of
significancy is also greater for miICA than for negative-correlation.

7.3.2 Cooperativity between miRNAs

In this study, small expression changes in the miRNAs are observed. How-
ever, even minute changes in miRNA expressions might have impact on
mRNA expressions, and miRNAs acting in a cooperative manner can most
likely induce biologically relevant expression changes in their targets. Co-
operativity between miRNAs are investigated and it is found that miRNA
pairs miR-375/672, miR-194/375, miR-192/375 and miR-124/194 have sig-
nificant regulatory effects (q < 0.05). Interestingly, miR-124 is upregulated
and miR-194 is downregulated upon pdx-1 induction and only miR-194 is
expressed in the IL cells (see Fig. 7.1A). Thus their regulation on common
targets will be counteracting upon pdx-1 induction.
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7.4 Combining the effects of independent compo-

nents

As explained above the five ICs capture different aspects of β-cell matura-
tion and their sensitivity to cytokines as was the aim of the study. Therefore
it would be interesting to investigate if miRNA targets are significantly en-
riched in combinations of the five ICs. Instead of performing the enrichment
analysis on the gene weights of putative targets the enrichment is now per-
formed on the maximum rank of a gene within the ICs. First each gene is
ranked within each IC. Secondly, in pairs of ICs the maximum rank for each
gene is found. Thirdly, an enrichment analysis for these maximum ranks of
putative miRNA targets is carried out.

As an example, enrichment of targets in the positive end of IC 3 and the
negative end of IC 5 is explored. Genes that lies at the very positive end of
IC 3 and at the very negative end of IC 5 will in general be downregulated
in IL-1β treated cells and they become even more downregulated with time.
To see this, consider the component weights of IC 3 in Fig. 7.1 and then
add to this the component weights of IC 5 flipped around the x-axis. The
following is an example of how the maximum rank of genes can be found.
Assume that IC 3 has gene weights C.3 with ranks ρ(C.3)
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and that IC 5 has gene weights C.5 with ranks ρ(C.5)
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then the maximum rank for the gene weights in a combination of IC 3 and
the inverse of IC 5 is

max
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Targets of miR-128 are actually significantly enriched in the positive end
of IC 3 combined with the negative end of IC 5 (q = 0.00090). In the
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linear superposition of ICs, IC 3 contributes negatively and IC 5 contributes
positively to the expression of miR-128. This is in perfect agreement with
its targets being enriched in the positive end of IC 3 and the negative end
of IC 5. Interestingly, when performing enrichment of targets in pairs of the
five ICs the positive ends of ICs 1, 2, and 3 together with the negative end
of IC 5 show up as most significantly enriched for miRNA targets. In the
negative end of IC 5 most of the miRNAs also have targets enriched as seen
from Table 7.A.

7.5 Components map to diabetes related pathways

IC 3 mimics the sensitivity to IL-1β as being weighted negatively upon IL-1β
treatment. Testing for enrichment of pathways there are several T1D related
pathways, besides the T1D pathway, enriched in IC 3, e.g. β-cell antigen re-
ceptor, which promotes β-cell activation, in the negative end, and oxidative
phosphorylation in the positive end. Genes involved in oxidative phosphory-
lation are downregulated in diabetes [138], which means that they should be
downregulated in IL+DOX cells. IC 3 is weighted most negatively in IL-1β
treated cells, and since targets for oxidative phosphorylation are enriched in
the positive end of IC 3, these will be downregulated in IL-1β treated cells.
This complies with oxidative phosphorylation being downregulated in T1D.

From the miRNA expressions in Fig. 7.1A and from a study on miRNA
regulations in human pancreas [139] miR-375 is downregulated in β-cells. In
agreement with this miR-375 targets are enriched in the negative end of IC
1, which corresponds to them being upregulated upon pdx-1 induction.
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Figure 7.2 Pathways enriched at the ends of the ICs.
Red: negative end. Green: positive end.
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Five of the eight miRNAs have targets enriched in the negative end of
IC 5. IC 5 is enriched for genes annotated by oxidative phosphorylation
in the negative end. When performing enrichments for miRNA targets in
pairs of ICs, IC 5 shows up in 70 out of the 115 significant pairs with
q < 0.05. In only one of these 70 pairs the enrichment of miRNA targets is
in the positive end of IC 5. Thus miRNA targets are generally enriched in
the negative end of IC 5, meaning that they are downregulated over time.
Most pronounced in DOX cells, indicating that IL-1β might inhibit miRNA
mediated regulations. This is of course pure speculations and needs further
experimental validation. Though it does illustrate the hypothesis-generating
feature of miICA.

7.6 Further insight into miRNA regulations

Next-generation-sequencing (NGS) is a type of high-throughput-sequencing
(HTS) that will be used more frequently in the future to explore changes
in gene regulation. In an NGS experiment RNA samples are sequenced and
each sequence, called a RefSeq, is annotated and given a count measuring
the presence of the RefSeq within the sample. However, it is not possible to
annotate all RefSeqs due to SNPs or point mutations within the sequenced
samples or maybe because the RefSeqs might not be of human origin. In
a Chinese study exogenous plant miRNAs are found to be present within
the tissue and sera of various animals [140]. The plant miRNAs are mainly
acquired orally. For example, a rice miRNA was found to be enriched in
chinese subjects.

It is believed that regulations from viruses contribute to the onset of
T1D [141; 142]. In this context viral miRNAs are interesting, because it has
been found that viral miRNAs are differentially regulated upon infection of
the virus itself [143]. Therefore we want to investigate whether viral miRNA
can mediate the onset of T1D. To achieve this we use a data set consisting of
a large collection of blood samples taken from patients 3-6 months after the
debut of T1D. In this data set two pools of samples are created, one with
samples only from Denmark and one with samples from Europe. Together
with a pool of Danish control blood samples NGS is performed. The task
is then to test if some of the unannotated RefSeqs could be of viral origin.
Especially, we want to see if we can match some of the unannotated RefSeqs
with the sequences of Coxsackie virus A and B (Cox A and B) and viral
miRNA. Cox A and B are strongly coupled to the development of T1D
[144; 145] and are therefore of special interest.
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CHAPTER

8

miICA reveals miRNA regulations
in ovarian cancer

Early diagnosis and targeted treatment are important for all types of cancer.
In the case of ovarian cancer (OVC) it is especially important because it is
the fifth leading cause of death among females (in the US) [146] and it is
usually diagnosed in a late stage [147]. From a societal point of view it is
also important to have an early diagnosis tool and a targeted treatment in
order to increase the chance of survival and the quality of life for the pa-
tients. From 2005-2009 there were 577 new occasions of OVC per year and
387 deaths per year in Denmark according to the Danish Cancer Society
(cancer.dk). The aim of applying miICA to a microarray dataset of OVC
was initially to validate the method, because the samples have been profiled
twice using two different microarray assays. However, as the analysis of the
data proceeded new an interesting results were found.

This chapter is based on:

L. Pedersen, W. Xiao, M. Jensen, and P. Gunaratne. Independent
component analysis reveals possible microRNA regulated pathways in
ovarian cancer. Submitted to PLoS Computational, 2012
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8.1 Ovarian cancer microarray data

The OVC data set contains a test and a validation set of mRNA expression
profiles. The test set is used in the OVC paper to test miICA and the
validation set is used to validate the results from the test set. The test set
includes miRNA and mRNA expressions in 537 samples. Thus, 537 ICs are
estimated in the first step of miICA. Out of the 537 samples there are 514
cancer, 15 recurrent and 8 normal samples. The 15 recurrent samples are
taken from patients, where there is a paired sample at the initial onset of
OVC. These matched pairs of samples make it possible to deeply investigate
the mRNA and miRNA regulations at the recurrence of OVC as studied in
the OVC paper.

8.2 The p53 pathway is deregulated in ovarian can-

cer

p53 acts as a tumor suppressor and the p53 pathway is deregulated in 50%
of all cancers [148]. The p53 pathway has been linked to high-grade serous
OVC and about 96% of ovarian tumors from TCGA database exhibited
mutations in p53 [149]. As a validation it is investigated whether miICA
can rediscover the deregulation of the p53 pathway found experimentally
in OVC [150]. There are 178 ICs that are weighted differentially between
cancer, recurrent and normal samples. Of these, IC 339 shows the strongest
enrichment of genes annotated by the p53 pathway. The enrichment is in
the negative end of IC 339. This IC is not present in cancer and recurrent
samples and is weighted negatively in normal samples (see Fig. 8.1). Since
IC 339 is lowest weighted in normal samples and the p53 pathway is enriched
in the negative end, genes annotated by the p53 pathway will in general be
downregulated in cancerous samples. This complies with the fact that the
p53 gene is deficient in about 96% of the TCGA ovarian tumors [149] with
a lower p53 activity as a consequence. The finding of the p53 pathway as
being deregulated in OVC based on the gene and component weights of IC
339 is a first validation of miICA.

8.3 miRNA regulations of the Wnt and mTOR

pathways

The Wnt [151] and mTOR [152] pathways are deregulated in OVC. The
miRNAs miR-29c [153] and miR-130b [151] targets the Wnt pathway and
the tumor suppressor miR-100 [152] regulates the mTOR pathway.

The expression pattern of miR-130b is upregulated in recurrent samples
compared to normal and cancer samples, see Fig. 8.1. Whereas, miR-29c is
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Figure 8.1 Components mapping to the p53, Wnt and mTOR pathways.
Barplots show the component weights and log2-transformd miRNA expressions.
Bars are mean values ± variance. The enrichment for each IC is written below the
bar plots. If the enrichment is in positive end then the enriched targets follow the
regulations of the component weights. If the enrichment is in the negative end they
anti-correlate with the regulations of the components weights.

downregulated in both recurrent and cancer samples. Thus the regulatory
impact from these miRNAs on the Wnt pathway must be different and not
surprisingly, they have targets enriched in two different ICs. In IC 277
targets of mir-130b are enriched in the positive end and in IC 309 targets
of miR-29c are enriched in the positive end. Figure 8.1 shows barplots for
the component weights of ICs 277 and 309. IC 277 is weighted highest and
positively in normal samples. The component weighs of 309 anti-correlate
with this regulation in the sense that IC 309 is weighted negatively in normal
samples and positively in recurrent and normal samples.

Despite their anti-correlated component weights ICs 277 and 309 are
both enriched for the Wnt pathway in the positive end. This again might
reflect two different controlling mechanisms, since miR-29c and miR-130b
also have different regulatory patterns. Considering the component weights
of ICs 277 and 309 in Fig. 8.1, it is seen that these contribute to an inhibition
or activation respectively, of Wnt target genes in cancerous samples. In
fact it is known that both activation or inhibition of Wnt target genes are
observed in cancers [17; 154]. Dickkopf1 (Dkk1) is a known inhibitor of Wnt
signaling as described in Part 1 and it is frequently overexpressed in OVC
[154]. In ICs 277 and 309 Dkk1 has a negative and a positive gene weight,
respectively, which in general results in an upregualtion of Dkk1 in cancer.
This complies with the experimental finding and strengthens the mapping
of ICs 277 and 309 to the Wnt pathway.

Because miR-100 is a tumor suppressor it is downregulated in cancerous
cells (Fig. 8.1). The targets of miR-100 are enriched in the negative end of
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IC 501, which is lowest weighted in cancer samples. In the negative end of
IC 501 targets of the mTOR pathway are also enriched and a link between
miR-100 downregulation and upregulation of mTOR target genes in cancer
can be established.

The validation set consists of 584 samples, because there is a greater
number of cancer samples profiled using an Affymetrix microarray assay.
This is the assay used for profiling the mRNAs in the validation set. miICA
applied to the validation set documents one IC with overrepresentation of
p53 genes corresponding to a downregulation of these, one IC documents a
link between miR-130b and miR-29c and the Wnt pathway and yet another
IC propose for a regulatory relationship between miR-100 and the mTOR
pathway. These findings support and validate the results of miICA applied
to the test set. This high degree of congruence observed between the results
of the test and validation set gives a high level of confidence in the stability
and predictive power of miICA.

8.4 Fingerprints of miRNA regulations

miICA can be used to find fingerprints of miRNAs that have been shown to
be differentially regulated in the literature, but does not appear differentially
regulated in the TCGA data. This can be caused by experimental and
biological noise.

In cell lines where the p53 gene is dysfunctional or absent, miR-31 stops
the cells from dividing wildly and induces apoptosis [150]. Transfecting miR-
31 back into ovarian cancer cells actually turns off tumor growth. Actually,
miR-31 is the most downregulated miRNA in OVC and consequently the
targets of miR-31 should be upregulated in cancer samples. In the TCGA
data miR-31 is not significantly, differentially expressed between cancer and
normal samples (p = 0.11). Figure 8.1 shows the expression of miR-31 in
cancer and normal samples. There is a trend of miR-31 being downregulated
in cancer samples, as expected, since miR-31 inhibits tumor growth.

There is one IC, which can document a regulatory relationship between
miR-31 and the p53 pathway. IC 53 is positively weighted in normal samples
and is non-present in cancerous samples (q = 0.0058, see Fig. 8.1). For the
miR-31 targets to be upregulated in cancerous samples, they need to be
enriched in the negative end of IC 53, which is actually the fact (q = 0.020).
Furthermore, in the positive end of IC 53 targets for the stabilization of p53
is enriched (q = 0.035) meaning that they in general are downregulated in
cancerous samples. This complies with the p53 being destabilized in OVC
and the stabilization can be mediated by miR-31 through the transcriptional
program mapped by IC 53.
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8.5 miR-374a and p53 form a new regulatory re-

lationship

In the sections above three examples were described as to validate the pre-
dictions of miICA. In this section new regulatory relationships are sought.
The starting point is to use the above finding of IC 339 mapping to the p53
pathway.

Among the gene weights of IC 339 I search for miRNA targets, which
are overrepresented in either the negative or positive ends. Table 8.A lists
the nine miRNAs with q < 10−4 for the enrichment of targets in IC 339.
Among these nine miRNAs only miR-374a,b and miR-154* are differen-
tially expressed between cancer, normal and recurrent samples. For their
expressions see Fig. 8.2. Only miR-374a and miR-154* are upregulated in
both cancer and recurrent samples and miR-374a to a larger extend than
miR-154*. IC 339 has almost no weight in cancerous cells and above it was
found that IC 339 documents that p53 target genes are downregulated in
cancerous samples. Thus the very significant upregulation of miR-374a in
cancerous cells together with its targets being enriched in the negative end
of IC 339 might lead to a miR-374a mediated inhibition of p53 target genes
in cancer. This inhibitory effect of miR-374a on the p53 pathway is a new
regulatory relationship of OVC not yet prosed in the literature.

Recently, there has been a lot of research on p63, a p53 family member,
because its role in cancer seems to be dual and very complex. It is known
that depending on the isoform of p63 it can either activate or inhibit p53

Table 8.A miRNAs with the strongest enrichment of targets in IC 339.
1st column: q-values of the target enrichment analysis. 2nd column: the end of
IC 339 in which the enrichment is found. 3rd column: q-values for the test of
differentially expression between cancer, recurrent and normal samples.

enrichment
q (·10−5)

enrichment
end of IC 339

diff exp
(q)

miR-374a 6.17 negative 4.4 · 10−6

miR-374b 6.17 negative 5.5 · 10−3

miR-154* 1.54 negative 0.033

miR-487a 1.54 negative 0.24

let-7a* 0.774 negative 0.053

let-7b* 0.774 negative 0.22

let-7f-1* 0.7.74 negative 0.23

let-7f-2* 0.774 negative 0.77

miR-744 0.290 positive 0.15
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Figure 8.2 Log2-transformed miRNA expressions for miR-374a, - 374b, and -154*.

target genes [155]. It is known that phosphorylated ∆Np63α, an isoform of
p63, activates miR-374a and there is a seed match between miR-374a and
p63. In IC 339 p63 lies among the 10 % genes with the most negative gene
weights, i.e. it lies in the same end as genes annotated by the p53 pathway.
In a recent study of Creighton et al. [156] it was found that miR-374a is
strongly linked to the overall survival of patients in TCGA.

The fact that miR-374a correlates with better survival and miICA docu-
ments it to regulate the p53 pathway through p63 targeting is very promising
for the possibility of treating OVC by use of miR-374a.

ICA has already been used as a tool for classification of tumors. Based
on gene and pathway regulations found from miICA it would be nice to
pinpoint miRNAs that can be used to diagnose ovarian cancer, because of
its high mortality rate caused by a late discovery of the cancer. Actually, for
the diagnosis of cutaneous T-cell lymphoma three miRNAs have been found
to be the key factors [157]. Also, as mentioned above miR-31 and miR37a
seem to be promising for the treatment of ovarian cancer, since miR-31 turns
off tumor growth and miR-374a increases the sensitivity of chemotherapy
[158] and correlates with a good prognosis for survival of OVC.
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9

Concluding remarks Part II

miICA is not a traditional miRNA target prediction method in the sense
that it does not output a ranked list of miRNA targets as in PITA [93] and
Sylamer [100]. The output of miICA can be a ranked list of miRNA targets,
but the aim of miICA is also to retrieve mRNAs and miRNAs that are dif-
ferentially expressed and investigate if these represent or regulate biological
pathways important for the studied biological system. Thus, miICA is an
all-in-one method for gene expression analysis.

The secondary structure of the mRNA [93] and the flanking region
around the seed sites [95; 159] make some seed sites more favourable than
others, as mentioned in Section 5.2. Therefore incorporating a measure for
the structure and contents of the flanking region surrounding the seed site
would improve the performance of miICA significantly. Furthermore, since
high-throughput sequencing (HTS) becomes more common for gene profiling
an adjustment of miICA would de desirable to enable the analysis of both
microarray and HTS data by use of miICA. ICA has not yet been applied
to HTS data. Though it seems plausible that ICA is applicable to HTS
data, since the structure of microarray and HTS data are similar. They
both measure gene expression levels.

Initial pre-processing of the expression data and creation of a classifica-
tion scheme are the only steps that need to be performed before applying
miICA. Even if miICA is also extended to include HTS data and an ana-
lysis of the seed site region. Therefore, miICA would be well suited as a
web-based miRNA target prediction tool, where the user simply uploads
the expression matrices and a classification scheme for the samples. This is
the ultimate goal of the further development of miICA.

69
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C. Peña, S. Cal, A. Garćıa de Herreros, F. Bonilla, and A. Muñoz. The
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APPENDIX

A

Basic statistics

This appendix describes some basic statistical tools that are used within
Part II.

A.1 ANOVA - analysis of variance

The ANOVA is a hypothesis testing method based on general linear models.
Assume that observations are done for samples which are classified accord-
ing to some factor. In the simple case of classification according to two
factors, then ANOVA simplifies to a t-test. When more factors are present
then ANOVA is more desirable than multiple t-tests, due to the problem
of multiple testing explained below. ANOVA is based on the comparison
of the means within different classes of samples and especially the variance
between these mean values. In general the measurements within a group
of samples need to be Normal distributed, however away from normality
an ANOVA can still be performed if the symmetry of the distribution is
preserved [160].

A.2 Coefficient of determination

The variance explained by fitting a regression model to data can be measured
by the coefficient of determination. It is defined as the ratio between the
sum of squares due to the regression model and the total sum of squares.
Thus, the definition is

R2 =

∑

j(ŷj − ȳ)2
∑

j(yj − ȳ)2
, (A.1)
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for a linear regression model yj = β0+
∑

i βixji+ǫi. Here ŷj is the predicted
value, ȳ is the mean of the observations and ǫi is an additive noise.

A.3 Sensitivity and specificity

In a binary test it is common to operate with the terminology true-positive
(TP), false-positive (FP), false-negative (FN) and true-negative (TN). Ta-
ble A.A shows how this terminology can be transferred to miRNA target
prediction. The aim is to obtain no false-positives and no false-negatives.
To measure wether this is obtained the sensitivity and specificity are often
calculated. The specificity/sensitivity of a prediction method is simply the
probability that the test is positive/negative when the mRNA is actually
validated as a target/non-target, i.e.

Sensitivity =
TP

TP + FN
and Specificity =

TN

TN + FP
. (A.2)

If the method does not include any variable parameters, then the sen-
sitivity and specificity are just single numbers. If, on the other hand, the
method contains tunable variables then it is common to plot the true-positive
rate (sensitivity) and the false-positive rate (1-specificity) against each other
in a receiver operating characteristic curve (ROC). Based on ROC the area
under the curve can be calculated (AUC). A higher AUC value corresponds
to a better performance of the method, because then it is possible to obtain
a high number of true-positives without consequently increasing the number
of false-positives.

Table A.A Contingency table for results of a miRNA target prediction method

Test outcome

positive negative

Experimental
validation

target TP FN

non-target FP TN

A.4 Correction for multiple testing

The statistical tests performed in this thesis returns a p-value indicating
the significancy of the test. A p-value of 0.01 indicates that there is a 1%
chance that the rejected null hypothesis is true. When analyzing 100 genes
this means that 1 gene is expected to be a false-positive, i.e. a gene based
on the p-value is differentially expressed but is not. With a larger sample
size there is a problem of multiple testing. For example, when testing 10,000



Correction for multiple testing 89

genes, then 100 out of these will be false-positives. A correction of multiple
testing is needed.

The False Discovery Rate (FDR) [161] is widely used in the analyses of
gene expressions. The FDR gives the expected rate of false-positives, i.e. the
fraction of falsely rejected null hypotheses. There is a tradition of labeling
FDR corrected p-values with a q instead of a p, i.e. q < 0.05 means that the
FDR is less than 0.05.

The Bonferroni adjustment controls the Familywise Error Rate (FWER).
The FWER is the probability of one false-positive among all hypotheses.
Thus, the FWER is a more conservative error rate than the FDR. In this
thesis the FDR correction is used when many tests are performed and the
FWER is used for corrections of fewer tests.
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A Wnt Oscillator Model for Somitogenesis

Peter B. Jensen, Lykke Pedersen, Sandeep Krishna, and Mogens H. Jensen*
Niels Bohr Institute, Copenhagen, Denmark

ABSTRACT We propose a model for the segmentation clock in vertebrate somitogenesis, based on theWnt signaling pathway.

The core of the model is a negative feedback loop centered around the Axin2 protein. Axin2 is activated by b-catenin, which in

turn is degraded by a complex of GSK3b and Axin2. The model produces oscillatory states of the involved constituents with

typical time periods of a few hours (ultradian oscillations). The oscillations are robust to changes in parameter values and are

often spiky, where low concentration values of b-catenin are interrupted by sharp peaks. Necessary for the oscillations is the

saturated degradation of Axin2. Somite formation in chick and mouse embryos is controlled by a spatial Wnt gradient which

we introduce in the model through a time-dependent decrease in Wnt3a ligand level. We find that the oscillations disappear

as the ligand concentration decreases, in agreement with observations on embryos.

INTRODUCTION

Oscillations are ubiquitous in biological systems. Circadian

(24 h) rhythms are well known, but recently ultradian

(1–4 h) oscillations have been observed in the expression

of genes involved in the immune system, programmed cell

death, and embryo development (1,2). We focus on the latter,

where the oscillations have an obvious physiological func-

tion: the segmentation clock provided by the oscillations is

responsible for the periodic spacing of somites, structures

that eventually become the vertebrae. We have made a model

of the molecular network of genes in the Wnt signaling

pathway, based on known experimental data. The model

produces oscillations of the observed frequency and clarifies

the essential ingredients required for such oscillations. In

particular, our model shows how the oscillations can be

stopped by a decrease in the Wnt ligand concentration. This

is important because experiments have shown that a higher

concentration of Wnt ligand demarcates the region where

the somites form in the embryo (3).

The embryological process of somitogenesis in verte-

brates is the rhythmic formation of vertebrae precursors

known as somites in the anterior presomitic mesoderm tissue

(PSM). As the embryo elongates in the posterior direction,

adding new cells to the posterior PSM, the maturing anterior

PSM sequentially buds off pairs of cell clusters—the

somites. In mice, a new pair of somites forms approximately

every 120 min (4). The strict periodicity of the process

suggests the involvement of a cellular clock (the segmenta-

tion clock), the elucidation of which has been the focus of

many studies. Underlying most models is the idea of locally

coupled intracellular clocks controlled by a morphogen

gradient in the PSM. This can supply cells with both the

temporal information (cycle state) and spatial information

(axial position) necessary to form distinct somites at the right

time and place. This general idea is known as the clock-and-

gradient, or clock-and-wavefront model, originally proposed

by Cooke and Zeeman (5).

Although species-dependent, the key to the clock opera-

tion seems to lie in the action and interaction of a number

of cellular pathways, most notably Notch and Wnt. A

number of oscillating Notch target genes has been identified

and possible feedback loops have been proposed (reviewed

in (6)). In particular, attention has been given to the autoin-

hibiting hes/her genes (7,8) and the glycosyltransferase lfng

believed to alter Notch ligand susceptibility (9,10). In cells in

the posterior two-thirds of the PSM, these genes demonstrate

oscillation frequencies matching the somite segmentation

frequency in different animals (120 min in mice, 90 min in

chick embryos, i.e., ultradian periods).

Underlying the oscillations there must necessarily be

a negative feedback loop (11). Most of the mathematical

models of somite formation so far have focused on delay-

driven negative feedback loops in Notch (12–15), or larger

Wnt-Notch models operating with Dsh as a direct activator

of axin2 transcription and inhibitor of hes transcription

(16). This potential role for Dsh is still undocumented exper-

imentally in vertebrates, and circumvents essential parts of

canonical Wnt signaling. In 2003, Aulehla et al. (2) discov-

ered that axin2, a target gene of the canonical Wnt signaling

pathway, displays a 120-min cyclic expression in mice

completely out of phase with the Notch target genes.

Axin2 is a known inhibitor of its own transcription, thus

forming a negative feedback loop, and Aulehla et al. (2)

suggests this loop in the Wnt pathway as the driving force

behind the segmentation clock.

Here, we present a mathematical model based on this idea,

where the Axin2 feedback loop is closed by its forming

a complex with GSK3b and b-catenin (the destruction

complex), which results in b-catenin degradation. We have

determined most parameter values of the model from exper-

imental data found in the literature, and have explored a range

of values for those parameters we could not fix. In the
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particular case where the complex of Axin2 and LPR5/6 cor-

eceptor at the membrane is in quasiequilibrium, our model

reduces to a form very similar to that described in Goldbeter

and Pourquié (17). The association and dissociation rates of

this complex have not been measured, so it is difficult to say

whether the quasiequilibrium assumption is a good one

in vivo. Our model allows us to investigate the robustness

of the oscillations as one moves away from quasiequilibrium

to slower association/dissociation of the complex. In addi-

tion, it clarifies how the nonlinear degradation terms used

in the simpler model of Goldbeter and Pourquié (17) arise

from the interaction of Axin2 with the LPR5/6 coreceptor.

Lastly, as our model is less coarse-grained, the parameters

represent specific physical processes and therefore several

of them can be directly ascertained from experimental data.

The overall goal of our model is to capture the oscillatory

dynamics of key Wnt target genes in individual cells in the

posterior two-thirds of the PSM.

THE MODEL

A Wnt oscillator

The key to canonical Wnt signaling (reviewed in Logan and

Nusse (18)) is b-catenin. Accumulated b-catenin acts as

a part of a transcription complex in the nucleus leading to

transcription of Wnt target genes. The regulation of b-cate-

nin levels in the cell is under the control of the destruction

complex, which is composed of a large number of proteins.

Two key players, whose role is well understood, are the

Glycogen Synthase Kinase 3b (GSK3b) and the scaffolding

protein Axin. Phosphorylation of b-catenin by GSK3b leads

to the degradation of b-catenin. Axin is known to boost this

phosphorylation by several thousand-fold (19). Interestingly,

whereas Wnt/b-catenin does not regulate transcription of

Axin, it does regulate transcription of Axin2 (a homolog of

Axin). Along with the oscillatory properties of Axin2 in

the PSM tissue, this suggests that Axin2 is a likely compo-

nent of the negative feedback loop driving oscillations.

Fig. 1 shows the selected key components of our mathe-

matical model of the Wnt feedback network. Wnt signaling

is initiated by the binding of a Wnt ligand to the Frizzled/

LRP receptor-coreceptor complex on the cell membrane

(20,21). How the signal is then mediated to the destruction

complex and b-catenin regulation is still not clear, but it is

known to involve the protein Disheveled (Dsh) (22). Dsh

also binds to the Frizzled receptor, and Wnt activation

recruits Axin to the LRP5/6 coreceptor (23). Additionally,

Axin and Dsh can bind together and have been demonstrated

to colocalize at the membrane (24). This sequestering and

possible degradation of Axin at the membrane could lead

to a decrease in the concentration of the destruction complex,

leading to b-catenin accumulation. We have used this

scenario in the model. Axin and Axin2 are functionally

equivalent (25), thus Axin2 should be able to fill the role

as scaffolding protein in the destruction complex and as

binding partner to Dsh and LRP5/6.

In the model, we also include the full destruction complex

(composed of Axin2, b-catenin and GSK3b) and one of

potentially three subcomplexes (Axin2 bound to GSK3b).

Other destruction complex components such as the priming

kinase CKIa and the other scaffolding protein APC do not

play a role in the feedback loop and are therefore absorbed

into the parameters. Dsh is similarly absorbed into parame-

ters describing Axin2 binding and degradation at the receptor

complex. b-catenin is present in a free form and as part of the

destruction complex. Finally, there is GSK3b, which is

present in free forms and bound forms in the destruction

complex and subcomplex.

The processes shown in Fig. 1 are modeled using standard

reaction kinetics, treating all complex formation reactions as

reversible processes. This leads to a system of eight coupled

ordinary differential equations,

dC

dt
¼ cfCB½GA� � cbCC� aC; (1)

d½GA�

dt
¼ cf½GA�GA� cb½GA�½GA� � cfCB½GA� þ cbCC þ aC;

(2)

FIGURE 1 Illustration of the processes included in our model of the Wnt

system. The core is a negative feedback loop: b-catenin (red) activates

production of Axin2 (green) which, via a complex involving GSK3b

(cyan), results in degradation of b-catenin. The pathway is controlled by

Wnt ligands which, when bound to a receptor-coreceptor complex, catalyze

the degradation of Axin2.
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dB

dt
¼ S� cfCB½GA� þ cbCC; (3)

dG

dt
¼ �cf½GA�GA þ cb½GA�½GA�; (4)

dA

dt
¼ �cf½GA�GA þ cb½GA�½GA� þ ctlAAm � cf½AL�AL

þ cb½AL�½AL�; (5)

dAm

dt
¼ ctsAB

2 �
Am

tAm

; (6)

d½AL�

dt
¼ cf½AL�AL� cb½AL�½AL� � n½AL�; (7)

dL

dt
¼ �cf½AL�AL þ cb½AL�½AL� þ n½AL�; (8)

where C, [GA], B, G, A, Am, and [AL] are, respectively,

concentrations of the destruction complex, GSK3b-Axin2

complex, b-catenin, GSK3b, Axin2, Axin2 mRNA, and

the Axin2-LRP complex.

Subscripts of parameters (c) are named according to the

following system: A subscripted f denotes complex forma-

tion followed by the name of the complex being formed.

Correspondingly, a subscripted b denotes dissociation of

a complex. tlA and tsA denote translation and transcription

of Axin2.

Equations 1 and 2 model the breaking and formation of the

destruction complex C and the subcomplex [GA]. The

a-term models destruction of C due to phosphorylation of

b-catenin, whereas the cbC-term is the spontaneous dissocia-

tion of the complex into [GA] and B (unphosphorylated

b-catenin). Equation 3 deals with the concentration of free

b-catenin. S represents constitutive production of b-catenin.

Because free b-catenin has been shown to be extremely

stable (26), no degradation term is included in Eq. 3.

GSK3b is extremely stable and its total concentration is

assumed to be fixed on the timescales involved (26); there-

fore, no source or sink terms are included in Eq. 4.

The concentrations of Axin2 and Axin2 mRNA are deter-

mined, respectively, by Eqs. 5 and 6. Translation is directly

proportional to the amount of Axin2 mRNA transcript. In

the activation of transcription byb-catenin, we use aHill coef-

ficient of 2, that is, we assume some cooperativity. In the

absence of cooperativity, i.e., for a Hill coefficient of 1, there

are no sustained oscillations, whereas higher values increase

the region of parameter space where oscillations are found,

but otherwise do not change our results. As there is some

evidence for cooperativity in the action of b-catenin

(27,28), using a value of 2 for the Hill coefficient seems

reasonable.

tAm is the average lifetime of the Axin2 mRNA. Finally,

Eqs. 7 and 8 deal with the binding of Axin2 to the LRP5/6

coreceptor and its subsequent degradation (the n-term). As

with GSK3b, we assume a constant total concentration of

LRP5/6. Note that activation of Wnt signaling, when

wnt3a ligand binds to the receptor, is exclusively mediated

down the pathway through the interaction of the LRP5/6 cor-

eceptor with Axin2, and wnt3a ligand levels are therefore

absorbed into the parameter n. Thus, keeping n constant

corresponds to a constant level of Wnt signaling.

Default parameter values

The literature contains limited quantitative measurements of

concentrations and kinetics for the Wnt components in

mouse PSM tissue. We therefore use results from general

experiments on Wnt signaling. The primary source of param-

eter values is Lee et al. (26), where a number of component

concentrations and dissociation constants are measured and

calculated in Xenopus (frog) extracts, which has the same

canonical Wnt signaling pathway as in mice. These include

dissociation constants for the destruction complex and its

primary subcomplex:

DC ¼
cbC

cfC
and

D½GA� ¼
cb½GA�

cf½GA�
:

Lee et al. (26) also supplies the total concentration of GSK3b

and the source of b-catenin synthesis and allows for a good

estimation of the a-value. The measurements in Lee et al.

(26) are done forAxin, but as Axin2 is functionally equivalent

to Axin (25), we assume it has the same binding affinities.

Table 1 shows the 14 parameters in the model, together

with their estimated values and units. These default param-

eter values define a reference state.

The first six parameter values are from Lee et al. (26).

From the values of D[GA] and DC given in Lee et al. (26),

TABLE 1 Parameters in the eight-variable model of the Wnt

system and their default values

Parameter Process Default value

cfC Binding of B to [GA] to form destruction

complex C

0.1 nM�1 min�1

cbC Dissociation of C into B and [GA] 7 min�1

a Dissociation of C due to destruction

of b-catenin

200 min�1

cf[GA] Binding of G to A to form [GA] 0.2 nM�1 min�1

cb[GA] Dissociation of [GA] into G and A 1.2 min�1

S Constant source of b-catenin 0.4 nM min�1

cf[AL] Binding of A to L 10 nM�1 min�1

cb[AL] Dissociation of [AL] into A and L 0.08 min�1

ctsA Transcription of axin2 gene 0.7 nM�1 min�1

ctlA Translation of Axin2 mRNA 0.7 min�1

tAm Average lifetime of Axin2 mRNA 40 min

n Degradation of Axin2 in [AL] complex 0.1 min�1

GSK3btot Total G level 50 nM

Ltot Total L level 70 nM

Biophysical Journal 98(6) 943–950
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the values of cfC, cbC, cf[GA], and cb[GA] are estimated.

mRNA half-lives are known to range from a few minutes

to several hours, thus the half-life of mRNA Axin2 tAm is

set to 40 min. Looking at Eqs. 5 and 6 it is evident that

ctlA and ctsA have a similar effect; the behavior of the system

depends only on their product. Therefore, we simply assign

them equal values. The constants concerned with the degra-

dation of Axin2 are also unknown. The values in Table 1

were tuned to produce oscillations with an ultradian period

of ~120 min. The table also gives the total amounts of

GSK3b and LRP5/6 in the reference state, which are needed

as a boundary condition for the system, as neither source nor

sink are included for these variables in our model.

RESULTS

Oscillatory behavior with default parameters

Fig. 2 shows a timeseries of the behavior of the eight vari-

ables of the Wnt system for default parameters (Table 1).

The system is clearly oscillatory in all variables with a period

close to 120 min. All variables are initially set to zero, except

for GSK3b and LRP5/6 which are set to 50 nM and 70 nM,

respectively.

The phases of the individual variables appear according to

their relative positions in the negative feedback loop (as ex-

pected (11)). Starting with, for example, the onset of a b-cat-

enin peak we observe Axin2 mRNA levels and then protein

levels rise with a slight delay. The newly produced Axin2

then binds to the free GSK3b to form the [GA] complex.

GSK3b and [GA] have mirror image profiles. As soon as

[GA] levels go up, destruction complexes C will also form,

causing a depletion of b-catenin. The kinetics of the destruc-

tion complex is extremely fast (a ¼ 200 min�1). Hence any

formed C breaks up very quickly with a resulting loss of

b-catenin in the process.

Robustness of the oscillations

Although the default parameters produce oscillations that are

qualitatively similar to those observed in Wnt target genes

and have the correct time period, it is worth examining

what happens as the parameters are varied. We find in

general that the oscillations are quite robust to changes in

parameter values. Their shape remains qualitatively the

same, with short spikes in b-catenin-separating periods,

where its level is close to zero. The period of the oscillations

is quite sensitive to changes in some of the parameters, e.g.,

DC, D[GA], and tAm—although being almost independent of

other parameters, e.g., a (see the Supporting Material).

Fig. 3 shows a plot of the amplitude and the oscillation

period as a function of DC and D[GA]. These two parameters

affect the formation and dissociation of the destruction

complex and the [GA] complex. Robustness to other param-

eters is described in the Supporting Material. The reference

state is indicated on the plot, as well as four other parameter

sets. Timeseries corresponding to the latter are shown in

Fig. 4.

A mathematical analysis of the oscillatory properties of

this system is presented in the Supporting Material. There

we show that the model equations allow only one physically

feasible steady state, for any choice of parameter values.

Whether the system shows sustained oscillations at given
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FIGURE 2 Oscillations of the Wnt model for default parameter values

(see Table 1): the reference state. (Upper panel) b-catenin and C concentra-

tions (the latter is multiplied by 100 for visibility). (Lower panel) Axin2,

GSK3b, mAxin2, and [GA] concentrations, as a function of time.

FIGURE 3 The DC and D[GA] parameter plane. (Left

panel) The amplitude of the Axin2 oscillations. (Right

panel) Oscillation period of Axin2. The shaded borderline

indicates the boundary of sustained oscillations, derived

from a stability analysis of the system. The reference state

(see Fig. 2) is indicated by the dot labeled ‘‘ref state’’.

Timeseries corresponding to the four numbered dots are

shown in Fig. 4.
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parameter values can then be determined by examining the

linear stability of the steady state via the eigenvalues of the

Jacobian. This is explained in more detail in the Supporting

Material. The shaded contour in Fig. 3 shows the boundary

of the oscillatory region as determined by this stability

analysis.

With all other parameters fixed at their default values, we

observe that there is a large domain across the diagonal of the

DC – D[GA] plane where the system can oscillate with signif-

icant amplitude and a period at ~100 min. The region of

oscillation spans almost three orders of magnitude in both

DC and D[GA]. We find that the reference state in fact lies

close to the upper border of states with sustained oscillations.

Importance of saturated degradation of Axin2

It turns out to be crucial for the oscillatory behavior that the

rate of degradation of Axin2 is proportional not to A, the

Axin2 concentration, but rather to [AL], the concentration

of the Axin2-LRP complex. This is because, in the model,

the only route for degradation of Axin2 lies via the formation

of this complex. The rates of association and dissociation of

the [AL] complex have not been measured experimentally.

We therefore examined the effect of varying these rates in

our model.

From Fig. 5 it is seen that the oscillatory domain increases

as the rate of association and dissociation of [AL] increases

(while keeping the binding strength of the complex

constant). In the limit of very fast association and dissocia-

tion, the complex can be considered to be in quasiequili-

brium, and we can reduce the model to a six-variable version,

as shown in the Supporting Material. This six-variable model

is very similar to the model of Goldbeter and Pourquié (17).

FIGURE 4 Four selected timeseries

corresponding to the four numbered

dots in Fig. 3. (Top left) State 1 shows

sustained oscillations with a time period

at approximately two-thirds of the refer-

ence state. (Top right) State 2 has very

slowly damped oscillations (in practice,

such oscillations would be indistin-

guishable from sustained oscillations

in an embryo). (Bottom left and right)

States 3 and 4 showing clearly damped

oscillations.

FIGURE 5 The oscillating regime for varying values of cf[AL]. The cb[AL]
value is also varied so as to keep the ratio cf[AL]/cb[AL] constant, i.e., to keep

the binding strength of the [AL] complex unvarying. Oscillations occur

within the tongue-shape bounded by the colored lines, where the largest

real part of the eigenvalues of the Jacobian is positive. Outside these bound-

aries all eigenvalues have negative real parts and therefore there can be no

sustained oscillations.

Biophysical Journal 98(6) 943–950

Wnt Oscillator Model 947



In the six-variable equations it is now clear that the degrada-

tion rate of Axin2 is not proportional to A. The degradation is

instead given by –cAA/(kAþ A). We call this saturated degra-

dation (29) because when A becomes much larger than the

constant kA, the degradation rate approaches a saturation

value, cA, beyond which it cannot increase further. This satu-

rated degradation is a direct consequence of the complex

formation between Axin2 and LRP5/6, especially evident

in the case where the complex can be considered to be in

quasiequilibrium. In the Supporting Material, we show, by

varying cA and kA values, that oscillations occur only

when the average A concentration is much larger than kA.

Thus, saturated degradation is a necessary (but not sufficient)

condition for oscillations.

Onset of oscillations: integration with a Wnt

gradient

In a growing embryo, new cells are added continuously to

the posterior PSM. Older cells therefore have a relative

movement toward the anterior PSM. It is known that there

is a gradient of Wnt3a ligand across the embryo (2). If we

assume that the gradient remains tied to the anterior end of

the PSM, any given cell in the PSM effectively sees a slowly

decreasing Wnt level with time. This provides a simple way

of converting temporal periodicity to spatial periodicity

required for precise placement of somites. Fig. 6 shows

how oscillations look inside a cell with this kind of

decreasing Wnt signal (modeled by a decreasing n-value).

When Wnt falls below a threshold level, of course, the oscil-

lations cease. Before that, however, the oscillation amplitude

steadily decreases, while the time period is quite robust.

The reason for this behavior can be explained mathemati-

cally using the stability analysis we did, described earlier,

which enables us to examine the nature of the transition

between oscillations and steady states. For the parameter

ranges we have explored, we find that when a biologically

feasible steady state (wherein all concentrations are positive

and finite) exists, then it is unique. For some parameter

values there is no feasible steady state—in this case some

concentrations eventually become infinite. For the default

parameters, we find that of the six eigenvalues, one is zero,

three are real and negative, and two are complex-conjugated

with positive real parts. Thus, the unique fixed point is

unstable. For all the parameter variations we have studied,

where the system changes from a steady state to an oscil-

lating state, we find the onset of oscillations coincides with

a Hopf bifurcation (see the Supporting Material). That is,

at the point of onset, the real part of a complex conjugate

pair of eigenvalues becomes positive, whereas the imaginary

part is finite and nonzero. Hopf bifurcations indicate that the

oscillations have a finite time period as soon as they occur,

which is why the time period is so robust in the time series

of Fig. 6, although the amplitude slowly increases as the

system moves away from the Hopf bifurcation and deeper

into the oscillating regime.

DISCUSSION

The important features of our model are:

1. It is based on a negative feedback loop within the canon-

ical Wnt signaling pathway, which involves Axin2 and

the destruction complex.

2. It exhibits oscillations in the expression of Wnt target

genes such as Axin2.

3. The oscillation periods match experimental values for

parameters in realistic domains.

4. The system incorporates Wnt signaling in a way that can

account for the absence of oscillations in regions where

Wnt concentration is low.

5. The system has the potential for interaction with the

Notch signaling pathway in a way that can explain why

Notch target genes oscillate out of phase to Wnt targets

(see below).

What is necessary to produce the oscillations?

The oscillations arise from a combination of two features:

1. The core negative feedback loop visible in Fig. 1: a high

concentration of free b-catenin promotes high concentra-

tions of Axin2 mRNA and protein, which promotes the

forming of the [GA] subcomplex and the destruction

complex. The latter degrades b-catenin, leading to

a reduced production of Axin2 and so on.

2. The binding of Axin2 at the LPR5/6 coreceptor results in

saturated degradation of Axin2. The existence of an upper

limit to the degradation rate means Axin2 is degraded

relatively slowly when its concentration is large. This
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produces an effective time delay, which is required to

make a negative feedback loop oscillate (29).

The structure of the model, based on negative feedback

plus a time delay due to saturated degradation, is remarkably

similar to that of the regulatory circuit producing oscillations

in the immune response regulator NF-kB in mammalian cells

(29). The tumor suppressor gene, p53, along with its

repressor Mdm2, also exhibits oscillations and has the

same features (1). This design could thus be quite a ubiqui-

tous way of generating ultradian oscillations in widely

varying biological contexts.

Possible mechanism for interaction between Wnt

and Notch pathways

In addition to its ability to phosphorylate and degrade b-cat-

enin, GSK3b has also been shown to bind to the intracellular

domain of the Notch receptor (Nicd) (30,31), which is a tran-

scription factor in Notch signaling. This involvement of

GSK3b in both Wnt and Notch signaling provides a simple

mechanism which could explain the observation (2) that

Wnt and Notch targets oscillate out of phase with each other.

The argument would proceed as follows: When Axin2 levels

are high, GSK3b is sequestered in the destruction complex or

in [GA], leaving little to bind to Nicd. Vice versa, when Axin2

levels are low, GSK3b is free to sequester Nicd. If this results

in an activation ofNicd, as is the case for someNotch receptors

(31), then there would be an increased transcription of

Notch target genes. That is, Notch targets would show

a high expression when Wnt targets, like Axin2, have a low

expression, and vice versa, i.e., the oscillations of Notch

targets would be out of phase with respect to Wnt targets.

This scenario, in which the two pathways (in a sense) compete

for GSK3b, of course requires more experimental evidence.

Axin2 mutants

An important experimental observation that bears on this

issue is that Axin2 deleted mice (Axin2–/–) have no dramatic

segmentation phenotype (32). This suggests that Notch

targets can still oscillate even in the absence of a Wnt oscil-

lator such as the one proposed in this article. It has, however,

been shown that Wnt signaling, at the level of b-catenin, is

crucial for oscillations of both Wnt and Notch target genes

(33). In loss of function mutants, neither Wnt nor Notch

target genes oscillate; however, in stabilized (constant b-cat-

enin level) mutants, only Wnt targets stop oscillating. This

puts b-catenin upstream of all pathways and suggests for it

a permissive rather than oscillatory role. Our proposed model

could fit into this scenario, and can explain the observed

oscillations in Wnt targets even if Notch targets have their

own intrinsic oscillator. In Axin2–/– mice, normal Axin,

which is present in small concentrations, could resume its

normal role from non-PSM tissue and supply the needed

scaffolding for the destruction complex. This is sufficient

for canonical Wnt signaling and for a permissive role of b-

catenin.
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Supplementary information

November 4, 2009

1 Robustness of oscillations and Stability analysis of the eight vari-

able Wnt model

1.1 The fixed points of the Wnt model

The following are the equations of our Wnt model (see main text):

dC

dt
= cfCB[GA] − cbCC − αC (1)

d[GA]

dt
= cf [GA]GA− cb[GA][GA] − cfCB[GA] + cbCC + αC (2)

dB

dt
= S − cfCB[GA] + cbCC (3)

dG

dt
= −cf [GA]GA + cb[GA][GA] (4)

dA

dt
= −cf [GA]GA + cb[GA][GA] + ctlAAm − cf [AL]AL + cb[AL][AL] (5)

dAm

dt
= ctsAB

h − Am

τAm

(6)

d[AL]

dt
= cf [AL]AL− cb[AL][AL] − ν[AL] (7)

dL

dt
= −cf [AL]AL + cb[AL][AL] + ν[AL] (8)

The fixed points of the eight variable Wnt model are found by equating Eqs. 1-8 equal to zero with the
boundary conditions

G + [GA] + C −Gtot = 0 , (9)

and
L + [AL] − Ltot = 0 , (10)

where Gtot and Ltot are the total concentrations of GSK3β and LRP5/6, respectively. In the following an
asterix (*) denotes a fixed point.

Firstly, we define

cA = νLtot and kA =
cb[AL] + ν

cf[AL]
. (11)

The fixed points of [AL] and L are:

[AL]
∗

= Ltot
A∗

A∗ + kA
L∗ = Ltot − [AL]

∗

The fixed points C∗, A∗
m and [GA]

∗
are easily found from Eqs. 1, 6 and 9, respectively:

C∗ =
S

α
,

A∗
m = ctsAτAmB∗2

[GA]
∗

= Gtot −
S

α
−G∗ .

1



From Eq. 4 we have cf [GA]G
∗A∗ = cb[GA][GA]

∗
. An expression for A∗ is obtained by inserting this into Eq. 5

together with A∗
m:

ctlActsAτAmB∗2 = cA
A∗

kA + A∗
⇔ A∗ =

τAmctlActsAkAB
∗2

cA − τAmctlActsAB∗2
=

τkAB
∗2

cA − τB∗2
,

where τ is defined as τ = τAmctlActsA. The fixed points of [GA]
∗

and C∗ are inserted into Eq. 1, and G∗ is
found

0 = −cfCB
∗

(

Gtot −
S

α
−G∗

)

+ cbC
S

α
+ S ⇔

G∗ = Gtot −
S

α
− cbCS

cfCB∗α
− S

cfCB∗
.

The fixed point for β-catenin is the last one that needs to be found. To do this the fixed points of A∗, [GA]∗

and G∗ are inserted into Eq. 4:

0 = −cf [GA]

(

Gtot −
S

α
− 1

B∗

(

cbCS

cfCα
+

S

cfC

))

· τkAB
∗2

cA − τB∗2

+cb[GA]
1

B∗

(

cbCS

cfCα
+

S

cfC

)

⇒

0 = −cf [GA]τkA

(

Gtot −
S

α

)

1

cAX2 − τ
+

cb[GA]S

cfC

(cbC
α

+ 1
)

X

+
τkAScf [GA]

cfC

(cbC
α

+ 1
) X

cAX2 − τ
, (12)

where X = 1
B∗

to ease the notation. To get a simple cubic equation the constants η, θ and µ are defined by

η = −cf [GA]τkA

(

Gtot −
S

α

)

(13)

θ =
τkAScf [GA]

cfC

(cbC
α

+ 1
)

(14)

µ =
cb[GA]S

cfC

(cbC
α

+ 1
)

. (15)

The cubic equation for X is then

0 = η
1

cAX2 − τ
+ θ

X

cAX2 − τ
+ µX ⇔ 0 = X3 +

θ − µτ

µcA
X +

η

µcA
(16)

with the discriminant

D =

(

θ − µτ

3µcA

)3

+

(

− η

2µcA

)2

≡ Q3 + R2. (17)

In the reference state (see Table 1 in the main text), the discriminant is negative. A negative D leads to
three real solutions:

X1 = 2
√

−Q cos(1/3φ) = 1.81 nM−1 ,

X2 = 2
√

−Q cos(1/3φ + 2/3π) = −1.80 nM−1 , and

X3 = 2
√

−Q cos(1/3φ + 4/3π) = −0.00725 nM−1 ,

with cos(φ) = R√
−Q3

. Since the concentration of β-catenin must be positive the (unique) fixed point in the

2
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Figure 1: The real (left) and imaginary (right) parts of the complex conjugated eigenvalue with positive imagi-
nary part. When the imaginary part is zero (black) the real part of the complex conjugated eigenvalues splits
into two, i.e the real value shown decreases and then increases as DC passes through the black region whereas
the other complex conjugated eigenvalue behaves oppositely.

reference state is:

B∗ =
1

X1
= 0.592 nM (18)

G∗ = Gtot −
S

α
− cbCS

cfCB∗α
− S

cfCB∗
= 43.0 nM (19)

[GA]
∗

= Gtot −
S

α
−G∗ = 6.99 nM (20)

C∗ =
S

α
= 0.002 nM (21)

A∗ =
τkAB

∗2

cA − τB∗2
= 0.976 nM (22)

A∗
m = ctsAB

∗2τAm = 9.82 nM (23)

[AL]
∗

= Ltot
A∗

A∗ + kA
= 68.7 nM (24)

L∗ = Ltot − [AL]
∗

= 1.29 nM (25)

In general the solutions to a cubic equation can be written as

X0 = U + T and X± = − 1
2 (U + T ) ± 1

2

√
3(U − T )i , (26)

where U =
3
√

R +
√
D and T =

3
√

R−
√
D. The fixed point of the β-catenin concentration is the real valued

maximum of 1/X0 or 1/X±. When the fixed point B∗ is found the rest follows from in Eqs. 19-25.

1.2 Eigenvalues of the Jacobian

The Jacobian of the Wnt system is given by

J =

2

6

6

6

6

6

6

6

6

6

6

4

−cbC − α cfCB cfC [GA] 0 0 0 0 0
cbC + α −cb[GA] − cfCB −cfC [GA] cf [GA]A cf [GA]G 0 0 0
cbC −cfCB −cfC [GA] 0 0 0 0 0
0 cb[GA] 0 −cf [GA]A −cf [GA]G 0 0 0
0 cb[GA] 0 −cf [GA]A −cf [GA]G− cf [AL]L ctlA cb[AL] −cf [AL]A

0 0 2ctsAB 0 0 −
1

τAm
0 0

0 0 0 0 cf [AL]L 0 −cb[AL] cf [AL]A

0 0 0 0 −cf [AL]L 0 cb[AL] −cf [AL]A

3

7

7

7

7

7

7

7

7

7

7

5

.

In the reference state there are eight eigenvalues of the Jacobian evaluated in the fixed points. Two are
complex conjugated, two are zero and the other four are real.

The stability of the model is investigated by considering the complex conjugated eigenvalues in the plane
spanned by the dissociation constants DC = cbC

cfC
and D[GA] =

cb[GA]

cf[GA]
. We only vary the cfC and cb[GA], whereas

3



the other constants are as in the reference state. The real and imaginary part of the complex conjugated
eigenvalue with positive imaginary part is shown in Fig. 1. At the top of the heatmap in Fig. 1 (left) the
complex conjugated eigenvalues splits into two real valued eigenvalues where the imaginary part is zero (colored
in black). The range of DC where all eigenvalues are real broaden as the value of D[GA] increases.

There is a tongue shape in the D[GA]-DC plane where the real part of the complex conjugated eigenvalue
is positive. This tongue shape collides with the area in the D[GA]-DC plane where the amplitude of the Axin2
oscillations is non-zero (see Fig. 3 in the main text). For a constant value of D[GA] and increasing DC the real
part changes from negative to positive and then back again. This indicates that a Hopf bifurcation takes place.
To test this we set D[GA] = 10 and find the eigenvalues of the Jacobian evaluated in the fixed points as DC

increases. In Fig. 2 the real part of the eigenvalues is plotted against the imaginary part. It is seen that there
is one set of complex conjugated eigenvalues (a+b), two eigenvalues are always zero (g+h), and two are always
negative (d+f). The eigenvalues in Fig. 2c,e are both negative and positive. However, they are negative when
the complex conjugated eigenvalues have positive real parts. Thus a Hopf bifurcation may occur at DC ≈ 17
and DC ≈ 136 where the real part of the eigenvalues in Fig. 2ab is zero, see Fig. 3(left).

In the expression of A∗, Eq. 22, a singularity occurs when cA = τB∗2. In Fig. 4 this singularity can be seen
around DC = 500, where A∗ changes sign from positive to negative. The same change in sign occurs for G∗.
The negative values of G∗ and A∗ are biologically improbable. The eigenvalues in Fig. 3(right) as a function
of DC reflect this change in sign as being discontinuous around DC = 500. All the fixed points are shown as a
function of DC with D[GA] = 10 in Fig. 4.

When the complex conjugated eigenvalues have positive real parts and non-zero imaginary parts there should
be sustained oscillations in the solutions of the Wnt model. To show this, timeseries for DC = {20, 30, 50, 100}
(sustained oscillations) and DC = {10, 450} (no or decaying oscillations) are simulated. Within the range of
DC where the complex conjugated eigenvalues have positive real parts, the oscillations are in fact sustained,
see Fig. 5, and for DC = {10, 450} the system turns into a non-oscillating mode, see Fig 6. In the case of
sustained oscillations the period of the oscillations increases as the value of DC increases. This is caused by a
simultaneous decrease in the absolute value of the imaginary parts of the complex conjugated eigenvalues, see
Fig. 3(middle).

A behaviour similar to what is described in this section is observed when D[GA] = {100, 500}. The two things
that change are for which value of DC the singularity of A∗ occurs and for which range of DC the complex
conjugated eigenvalues have positive real part.
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Figure 2: Real part against imaginary part of the eigenvalues of the Jacobian evaluated in the fixed points when
D[GA] = 10.
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Figure 3: Left Real and imaginary parts of the eigenvalues in Fig. 2ab. Right The real parts of the eigenvalues
in Fig. 2ce have a singularity at DC ≈ 500. All eigenvalues are real between DC ≈ 470 − 540.

1.3 Changing the half-life of Axin2 mRNA

If the Axin2 mRNA halflife is increased the tongue shape in the DC −D[GA] plane in Fig. 1 is narrowed and
shifted downwards to the right, i.e. oscillations will occur in a more narrow range of DC and D[GA], see Fig. 7.

At τAm equal to 100 min there is one pair of complex conjugated eigenvalues of the Jacobian evaluated in the
fixed points. The imaginary part of one of these is plotted as function of the real part in Fig. 8 (left). There is a
resemblance to Fig. 2a except that the real part stays negative for all values of DC and consequently the system
will not display sustained oscillations. Timeseries for D[GA] = 10, DC = 15 and τAm = 100 min can be seen in
Fig. 9, where the system is oscillating, but the oscillations decay. As for the complex conjugated eigenvalue the
other real eigenvalues resembles the ones displayed in Fig. 2, i.e. one is always zero, two is constantly negative
and one has a singularity.

Even though the system is not showing any sustained oscillations the characteristics such as the singularity
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Figure 4: The fixed points of the Wnt model as a function of DC . Other parameters are kept constant at the
default values.
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Figure 5: Timeseries for D[GA] = 10 and DC = {20, 30, 50, 100} (top to bottom). In all panels there are
sustained oscillations with periods increasing as DC increases.
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Figure 6: Timeseries for D[GA] = 10 and DC = {10, 450} (A,B). In all panels the system evolves towards a
non-oscillating mode.

of A∗, and the splitting of the complex conjugated eigenvalues into two real eigenvalues are still seen. The
singularity occurs around DC = 320, see Fig. 8 (middle, right). The splitting of the complex conjugated
eigenvalues occurs approximately between DC = 308 and DC = 330.

When D[GA] = 100 there are values of DC for which the real part of the complex conjugated eigenvalues is
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positive. Hence between DC = 4 and DC = 22 the system can display sustained oscillations which is shown
in Fig. 10. Clearly the range of DC where the system can oscillate is narrowed when the half-life of Axin is
increased.

Again it is seen that the periods of the oscillations increase as the value of DC increases (data not shown),
and as described above, it is caused by a decrease in the absolute value of the imaginary part of the complex
conjugated eigenvalues. Furthermore, the period of the oscillations is increased when τAm is increased from
40 min to 100 min. This is expected since the balance between degradation and translation of Axin2 mRNA
determines the concentration of Axin2. Thus when the half-life of Axin2 mRNA is increased then the time
wherein Axin2 concentration is building up becomes longer resulting in a longer period of Axin2 oscillations, as
seen in Fig. 11.

1.4 The effect of β-catenin degradation

The speed at which β-catenin is degraded from the destruction complex is determined by the value of the
parameter α. It simultaneously also measures the speed by which the destruction complex breaks apart. Its
default value of 200 min−1 is very high, which is clearly evidenced from the time series in Fig. 2 (main article),
where the concentration of the destruction complex C is nearly always zero. Around its default value, however,
α has little effect on the time period of the oscillations, as compared to parameters such as DC or τAm (see
Figure 12).

Figure 13 shows plots of the amplitude of the oscillations of Axin2 in the DC −D[GA] parameterplane for

three different values of α. There is a clear trend that for values of α lower than 200 min−1, the domain of
oscillations moves almost vertically down in the DC −D[GA] plane. This is not surprising, when we look at Eq.1

for the destruction complex. Only when α becomes comparable in size to cbC (which is equal to 7 min−1), do
the dynamics begin to change, because normal breaking of the destruction complex (governed by cbC) becomes
relatively strong.

Re-entering the oscillatory domain (moving from the dot marked with “ref state” to the one marked with
“osc state”) requires a decrease of DC , which is in reality accomplished by raising cfC , the formation constant
of C. The effect of a lower degradation rate and an increased formation of C is seen in the timeseries in Figure
13, where C shows an increase in concentration. A higher accumulation of destruction complex is thus needed
in order to keep β-catenin levels low between its spikes.

As the oscillatory domain moves down in the DC − D[GA] plane, it maintains its profile. Because of the
sinusoidal profile of the Axin2 oscillation, there is a good relationship between the amplitude and period of
Axin2. Areas of the parameterplots with comparable amplitude generally have comparable periods. Periods of
around 100 minutes, require Axin2 amplitudes approximately between 120 nM and 250 nM.
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Figure 7: The real (left) and imaginary (right) parts of the complex conjugated eigenvalue of the Jacobian
evaluated in the fixed points with τAm = 100 min. The black area indicates where the imaginary part is zero as
in Fig. 1.
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Figure 9: Timeseries of the Wnt model with D[GA] = 10, DC = 15 and τAm = 100 min. The oscillations decay
because of a negative real part in the complex conjugated eigenvalues.
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Figure 10: Timeseries of the Wnt model with D[GA] = 100, DC = 10 and τAm = 100 min.
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Figure 12: Effect of changes in α, DC and τAm on the period of oscillations.
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2 Reduction from eight to six variables in the Wnt model

We begin with the equations of our eight variable model:

dC

dt
= cfCB[GA] − cbCC − αC (27)

d[GA]

dt
= cf [GA]GA− cb[GA][GA] − cfCB[GA] + cbCC + αC (28)

dB

dt
= S − cfCB[GA] + cbCC (29)

dG

dt
= −cf [GA]GA + cb[GA][GA] (30)

dA

dt
= −cf [GA]GA + cb[GA][GA] + ctlAAm − cf [AL]AL + cb[AL][AL] (31)

dAm

dt
= ctsAB

h − Am

τAm

(32)

d[AL]

dt
= cf [AL]AL− cb[AL][AL] − ν[AL] (33)

dL

dt
= −cf [AL]AL + cb[AL][AL] + ν[AL] (34)

Assuming the complex [AL] is in quasi-equilibrium (i.e., assuming the association and dissociation timescales
are much faster than other processes) gives:

d[AL]

dt
= 0 ⇔ ν[AL] = cf [AL]AL− cb[AL][AL] , (35)

which can be substituted for the last two terms in Eq. 31. Since Ltot = [AL] + L and [AL] are constant, then
L is also constant giving dL

dt
= 0 in Eq. 34. To get rid of the substituted [AL] term in Eq. 31 we rewrite Eq. 35

and substitute L = Ltot − [AL]:

[AL] =
cf [AL]AL

cb[AL] + ν
=

cf [AL]A

cb[AL] + ν
(Ltot − [AL]) . (36)

Finally, isolating [AL] in Eq. 36 and substituting kA =
cb[AL]+ν

cf[AL]
gives:

[AL] =
A

kA
(Ltot − [AL]) ⇒ [AL] =

LtotA

kA + A
. (37)

Substituting with [AL] gives the following equation for Axin2 time dependency:

dA

dt
= −cf [GA]GA + cb[GA][GA] + ctlAAm − νLtot

A

kA + A
. (38)

None of the constants involved in the last term of Eq. 38 are known, and one could as well replace νLtot by
a single constant cA. The final result is the reduction of the eight variable system to the following six variable
system:

dC

dt
= cfCB[GA] − cbCC − αC (39)

d[GA]

dt
= cf [GA]GA− cb[GA][GA] − cfCB[GA] + cbCC + αC (40)

dB

dt
= S − cfCB[GA] + cbCC (41)

dG

dt
= −cf [GA]GA + cb[GA][GA] (42)

dA

dt
= −cf [GA]GA + cb[GA][GA] + ctlAAm − cA

A

kA + A
(43)

dAm

dt
= ctsAB

2 − Am

τAm

(44)

This system is very similar to the one proposed by Ref. [1]. In particular, the crucial ingredient in this six-
variable model, as well as the model of Ref. [1] is the saturated degradation term in Eq. 35: −cA

A
kA+A

. We call

11



this saturated degradation, because when A is sufficiently large, the degradation rate saturates to a finite value,
cA. Our analysis shows that the source of this nonlinearity is in fact the quasi-equilibriated complex formation
between A and L.

Figure 14 shows evidence that saturated degradation is necessary for oscillations. The colormap shows the
ratio of average A concentration to kA on the kA − cA parameter plane. Superimposed on this are contour
lines corresponding to the amplitude of Axin2 oscillations observed after t=4 hours. It is clear that oscillations
with significant amplitude only occur in regions where 〈A〉/kA ≫ 1, indicating that saturated degradation is
necessary (though not sufficient) for oscillations. Note that because we plot the amplitude after t=4 hours,
we cannot distinguish between sustained oscillations or slowly damped oscillations that have not died out by 4
hours. However, this seems a reasonable procedure because for an embryo it is irrelevant whether the oscillations
are truly sustained, or so slowly damped that they maintain a significant amplitude over many hours.
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Oscillations are commonly observed in cellular behavior and

span a wide range of timescales, from seconds in calcium

signaling to 24 hours in circadian rhythms. In between lie

oscillations with time periods of 1–5 hours seen in NF-kB,

p53 and Wnt signaling, which play key roles in the immune

system, cell growth/death and embryo development,

respectively. In the first part of this article, we provide a brief

overview of simple deterministic models of oscillations. In

particular, we explain the mechanism of saturated

degradation that has been used to model oscillations in the

NF-kB, p53 and Wnt systems. The second part deals with

the potential physiological role of oscillations. We use the

simple models described earlier to explore whether

oscillatory signals can encode more information than steady-

state signals. We then discuss a few simple genetic circuits

that could decode information stored in the average,

amplitude or frequency of oscillations. The presence of

frequency-detector circuit downstream of NF-kB or p53

would be a strong clue that oscillations are important for the

physiological response of these signaling systems.
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Introduction
Living cells continuously adjust gene expression patterns

in response to changing environmental conditions. A

simple way of encoding the presence of a stress or

stimulus is to shift the concentration of a signaling mol-

ecule from one steady-state level to another. This scheme

has potential disadvantages including the cost of continu-

ous production of signaling molecules at a high level and

unwanted cross-talk between pathways. It is not surpris-

ing, therefore, that cells often encode information about

environmental changes in complex time-varying signals.

This review deals with one subclass of such systems:

those that exhibit oscillations.

The most obvious examples of periodic behavior are

circadian rhythms [1,2] and cell cycles [3]. Much more

rapid oscillations are seen in the levels of cellular calcium

[4]. Many hormones also show intermittently periodic

behavior and pulsatile secretion [5]. Figure 1 shows three

more systems where oscillations have been observed: the

NF-kB [6��,7��,8,9], p53 [10��,11��] and somitogenesis

systems [12,13��,14], which are important for the immune

response, cell growth/death and embryo development,

respectively.

The purpose of this review is to provide a brief conceptual

overview of deterministic mathematical models of such

oscillations, and suggest how they can be used to explore

the potential physiological role of oscillatory signals. Our

emphasis will be on simplified models and the quintes-

sential understanding they provide [15–17], rather than

complex models which aim to reproduce experimental

data in detail.

Modeling oscillations

Minimum ingredients for generating oscillations

The minimum requirement for oscillations is a negative

feedback loop with a time delay [18]. A feedback loop is a

closed cycle of nodes, representing genes, proteins,

mRNA, etc. (henceforth: ‘regulators’), each affecting

the concentration or activity of the next node through

activatory or inhibitory links (Figure 2a). A negative

feedback loop is the one with an odd number of inhibitory

links. A small perturbation of one regulator will perturb

the next one in the loop, which will increase or decrease

the concentration of the next regulator, and so on, until

the signal returns to the original regulator. The original

perturbation will be cancelled if there are an odd number

of inhibitory links. Thus, negative feedback tends to

produce homeostasis. The faster the signal goes around

the loop, the quicker the perturbations are nullified and

therefore the tighter the homeostasis. However, if the

signal goes around sufficiently slowly, that is, with a

distinct time delay, then this homeostasis can be broken.

Negative feedback will still try to counteract pertur-

bations, but the delay can make the regulator concen-

trations repeatedly overshoot their homeostatic levels and

so oscillate (Figure 2b).

There are several ways to obtain an effective time

delay [18], which will be elaborated upon in the next

section:
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Figure 1

The NF-kB, p53 and Wnt signaling systems. Schematic figures of some of the important proteins (rounded rectangles), mRNA (rectangles), genes

(double lines), and interactions (activatory: ordinary arrows; inhibitory: barred arrows) in the three systems. Ordinary arrows are also used to represent

conversion and transport between cellular compartments, and merging arrows indicate complex formation. More details of each network can be found

in Refs. [59,60] (NF-kB), [61,62,53] (p53), [63,64] (Wnt). Experiments showing sustained and damped oscillations in these systems can be found in

Refs. [6��,7��,8,9] (NFkB), [10��,11��] (p53), [13��,14] (Wnt).
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1. Processes that take a minimum amount of time.
For example, transcription and translation (Figure

2b.1).

2. Many intermediate steps, that is, a long feedback

loop. Each step adds to the overall time delay (Figure

2b.2).

3. Switch-like responses, where a regulator must reach a

threshold concentration before it acts on the next in

the loop (Figure 2b.3).

4. Saturated degradation, where the degradation of a

regulator is delayed by saturated complex formation

(Figure 2b.4).

658 Genetics of system biology

Figure 2

Modeling negative feedback and time delay. (a) A general feedback loop containing activatory (ordinary arrows) and inhibitory links (barred arrows).

Negative feedback loops are those that contain an odd number of inhibitory links. (b1) The simplest negative feedback loop: a single regulator

inhibiting its own production/activity with an explicit time delay described by the equation dx/dt = a/(K + x(t � t)h) � gx. As the time delay in this loop is

increased, the behavior shifts from homeostasis to damped to sustained oscillations. (b2 –b4) Different ways of obtaining a time delay: more

intermediate steps in the loop, an additional positive feedback which produces a switch-like response, and saturated degradation. (c –e) Core

feedback loops generating oscillations in the NF-kB, p53 and Wnt systems. Rectangles denote mRNA and rounded rectangles represent proteins. Also

shown are equations of three-variable models for each system. The NF-kB model is taken from Ref. [39]. The p53 and Wnt models have been

simplified from the models of Refs. [42–44] by assuming all complexes are in quasi-equilibrium. Capital letters signify protein/mRNA concentrations,

Greek letters are degradation rates, subscripted k’s denote maximal production rates, and subscripted K’s are dissociation constants. All these

models use saturated degradation (terms in shaded boxes) to generate the sustained oscillations shown in the lower panels. The times when the

relevant complexes are saturated are indicated by the flat peaks of the blue curves (bottom panels) that plot: (c) I/(KI + I), (d) P/(K + P), (e) A/(KA + A).

For a selection of more detailed deterministic models of these three systems see [65,66] (NFkB), [67,68] (p53), [69,70] (Wnt).
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Modeling negative feedback and time delay

The model of Hes oscillations in [19] is an example of

case (1) above, where an explicit time delay in the

production of Hes mRNA (which is inhibited by Hes

protein) represents the amount of time taken for tran-

scription, translation and then nuclear import of Hes

protein (the identical model was published again in

[20]). Models using explicit time delay have been widely

used to model oscillations, for example, in respiration

patterns and hematopoiesis [21], p53 [22�], somitogenesis

[23], insulin secretion [24], and the hypothalamic-pitu-

itary-adrenal axis [25]. In our opinion, however, using

explicit delays is somewhat ad hoc and we find it more

satisfying to model the specific molecular processes that

produce delay.

The conceptually simplest way to do this is case (2)

above. For example, an oscillator formed by a loop of

six nodes, involving three proteins, and their mRNA,

each protein inhibiting transcription of the next

(Figure 2b.2), has been modeled and experimentally

realized in Ref. [26�]. Another synthetic circuit that

oscillates due to many intermediate steps was con-

structed in [27]. More complex is case (3) where one

regulator affects only the nextwhen it reaches a threshold

concentration. The delay arises from the time taken for

the threshold to be reached. Simple models of oscil-

lations have implemented this using either a highly

cooperative interaction with a large (�8) Hill coefficient

[28] or positive feedback loops [29�,30]. Both large Hill

coefficients and positive feedback result in sigmoidal,

switch-like responses and hence a threshold concen-

tration below which the response is essentially zero.

Combining positive and negative feedback has the

advantage of making oscillations more robust and yet

tunable [29�,30], and has been used to model many

phenomena, including cell cycles [31,32], circadian

rhythms [2,16,33], division site localization in Escherichia

coli [34], and p53 oscillations [10��,35,36], as well as to

design synthetic oscillators [37,38,27]

The next section elaborates on case (4), saturated degra-

dation, which we find particularly interesting as it is seen

in NF-kB, p53 and Wnt signaling. Note however that

these time-delay mechanisms are not mutually exclusive.

Systems typically use several of these mechanisms, each

contributing to the overall delay.

Saturated degradation models of NF-kB, p53 and Wnt

signaling

The key negative feedback loop underlying sustained

and damped oscillations in NF-kB, in both wild-type and

genetically modified cells, involves the inhibitor protein

IkBa. The feedback loop has two legs (Figure 2c):

first, NF-kB activates IkBa production, second, IkBa

inhibits NF-kB by binding to it and sequestering it in

the cytoplasm. Leg (i) is active when there is little IkBa,

so most NF-kB is free to enter the nucleus, causing IkBa

levels to rise. Free NF-kB levels then fall rapidly as it gets

bound to newly synthesized IkBa. In the model of

Figure 2c [39], the amount of NF-kB–IkBa complex

has a Michaelis–Menten form: NcI/(KI + I), where I is

the IkBa concentration and Nc is the total cytoplasmic

NF-kB concentration. The binding is strong, that is, KI is

small, so IkBa levels quickly become large enough to

saturate NF-kB, at which point the amount of complex

becomes equal to Nc and independent of I. This is leg (ii)

of the feedback. Now there is no further production of

IkBa, so its levels will eventually fall. However, IkBa

molecules that are bound to NF-kB are more susceptible

to IKK-dependent degradation (due to stabilization of

IkBa by NF-kB [40]) so the degradation rate (second

term in the dI/dt equation in Figure 2c) depends not on

the amount of IkBa present, but on the amount of the

complex. Because the complex is saturated and equal to

Nc most of the time (see blue curve in Figure 2c, bottom

panel) we call this ‘saturated degradation’. If, instead,

IKK-inducing stimuli led to equal degradation of both

free and complexed IkBa, then the degradation rate

would be proportional to I, which would make I fall

exponentially fast. By contrast, with saturated degra-

dation I falls slower than exponentially, resulting in the

more rounded shape of I vs. time seen in Figure 2c (green

curve). This provides a sufficient time delay to generate

oscillations. The model of Figure 2c is of course a sim-

plified one and it is important to check whether the

assumptions made in simplifying the system are reason-

able. For example, in wild-type cells, free IkBa is also

degraded but the model ignores this. This could be

included in the model as an additional degradation term,

that is, proportional to I leading to an exponential, non-

saturated, decrease of IkBa levels, which may neutralize

the time delay provided by the saturated degradation

pathway. To see which pathway of degradation is more

important, one must compare the half-life of free IkBa

with the rate of the NF-kB-IkBa complex formation.

Using numbers for wild-type cells from Ref. [6��,41],

we find the average time for complex formation is of

the order of tens of seconds, whereas the half-life of free

IkBa is several minutes. Thus, we expect that saturated

degradation is an important source of time delay in the

NF-kB-IkBa feedback loop despite the presence of other

non-saturated degradation pathways.

The p53-Mdm2 feedback loop (Figure 2d) is very

similar: first, p53 activates Mdm2 production, second,

Mdm2 inhibits p53 by binding to it. Mdm2 also causes

poly-ubiquitination and thereby degradation of p53,

again resulting in saturated degradation. Here, it is

the transcription factor (TF) that has saturated degra-

dation, rather than the inhibitor. This is the opposite to

what happens with NF-kB, but the model of [42], a

simplified version of which is shown in Figure 2d, shows

that it does not matter for generating oscillations — the
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time delay in this model occurs when p53 levels are high

and fall relatively slowly, rather than when the inhibitor

levels are high (see Figure 2d). Because p53 levels

remain high for longer, Mdm2 levels also rise much

higher than they would without saturated degradation.

The extra time required for Mdm2 levels to fall in leg (ii)

of the feedback provides an addition delay that helps

oscillations. The half-life of p53 in the absence of Mdm2

is of the order of hours, whereas the average time for p53-

Mdm2 complex formation is of the order of seconds (see

[42] and references therein). So again, even though the

p53-Mdm2 interaction is quite transient, we expect the

saturated complex formation to be the dominant path-

way for p53 degradation, rather than non-saturated path-

ways.

A third system where saturated degradation has been

used to model oscillations is Wnt signaling (Figure 2e)

[43,44]. Wnt and b-catenin are upstream controllers of

all oscillating signals in the presomitic mesoderm [45]

so it is useful to study the negative feedback loop

involving Wnt, b-cetenin and Axin2. The model of this

loop in Figure 2e demonstrates an interesting variation

on the ones in Figure 2c,d, showing that saturated

degradation need not arise from the same complex that

results in inhibition of the TF. In the model, Axin2

binds to the TF b-catenin and separately to the Wnt-

activated LRP receptor complex. The former provides

the negative feedback but the binding is weak and not

saturated. The latter complex has a much smaller

dissociation constant, that is, larger binding strength,

and results in saturated degradation of Axin2. Thus,

negative feedback and saturated degradation are sep-

arate ingredients that can be implemented indepen-

dently in an oscillator.

Other simple models of oscillations using saturated

degradation can be found in Refs. [46�,47–49]. It is

interesting that saturated degradation typically produces

quite spiky oscillations, which have the advantage that

the signaling molecule can achieve high levels without

having to be produced at a high rate all the time. This

brings us to the question of what these oscillations are

useful for.

Potential physiological role of oscillations
In some systems periodicity is an obvious requirement. A

periodic spatial pattern is clearly necessary for proper

somite spacing and temporal oscillations in Wnt and

Notch targets are a way of generating the spatial period-

icity [50�,51]. Circadian clocks in cyanobacteria are useful

for entraining metabolism, photosynthesis, cell division

and global gene expression to the day–night cycle [52].

However, in NF-kB and p53 it is not obvious that the

oscillations per se are important for the physiological

response. For example, it has been suggested that p53

pulses might be a byproduct of pulsatility in ATM, an

upstream regulator of p53 required for proper DNA

damage repair [53].

From the opposite angle, what benefit could oscillations

provide in helping NF-kB and p53 produce gene expres-

sion patterns specific to distinct stimuli? One idea is that

signals with complex temporal variation contain more

information than steady-state signals and therefore can

control downstream genes more subtly [39,54,53]. We

elaborate on this below.

Encoding information in oscillatory signals

Steady-state signals have a single adjustable character-

istic, the level of the signal, while oscillations have many

— average, amplitude, time period, spikiness, spike

width, spike symmetry (see Figure 3a). Oscillations in

NF-kB or p53 could thus encode more information than

steady-states about which stimulus was triggering the

system provided: first, different stimuli affect different

parameters, and second, changing different parameters

affects oscillation characteristics differently.

(i) In the p53 system, we know that different stimuli

affect different sets of parameters. DNA damage affects

Mdm2 activity and stability, hypoxia additionally alters

the transcription rate of Mdm2, while other triggers like

Nutlin change only the binding strength between p53

and Mdm2 (see references in [42]). In the NF-kB

model, many triggers act through the IKK level which

affects the degradation rate of IkBa, but different

stimuli produce different profiles of IKK and thereby

NF-kB [55,8].

(ii) Figure 3b–e show that for the simple model of NF-kB

described above, changing different parameters does

indeed affect oscillation characteristics differently. The

plots show that there are parameter regimes where one of

the three characteristics, time period, average and peak,

can vary while the other two remain constant. However,

not all characteristics can be independently varied

because there are correlations. For example, spikiness

is correlated with larger time periods, lower averages and

asymmetry of the spike shape. Experiments have also

shown that characteristics of the temporal profile of

nuclear NF-kB concentration, for example, the steepness

of the initial increase and the later decline, are under the

control of different regulators [56��].

Similar behavior is seen in the p53 and Wnt models, so

one can conclude that an oscillatory signal produced from

a simple negative feedback loop with saturated degra-

dation can indeed encode more information than steady-

state signals.

Decoding information from oscillatory signals

Next, it is necessary that different genes should respond

to different characteristics of the oscillations. Consider
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the simplest case where an oscillating TF binds to a single

operator site (Figure 4a). Two parameters describe the

binding: the association (kon) and dissociation (koff) rate

constants. Figure 4a shows that the expression of a gene,

Gfast, with sufficiently large kon and koff, will closely follow

the oscillations. If the stimulus changes the peak level of

the oscillations, the expression of this gene will follow

that change; Gfast is a peak-detector. By contrast, the

activity of Gslow, which has a much smaller koff, will not

follow the oscillations because its expression has not time

to decline much before the next spike occurs. Thus, this

gene’s expression averages over many spikes. Gslow is

therefore an average detector. Note that if we look at

the concentration of the proteins encoded by Gfast and

Gslow, then we also have to take into account their half-

lives and those of the mRNAs. Thus, for example, if Gfast

produces a very long lived mRNA or protein then the

protein concentration would follow changes in the aver-

age of the input oscillations rather than the peak. By

contrast, even if Gslow produces a short-lived mRNA or

protein it would remain an average detector.

The slightly more complex circuit of Figure 4b is a

frequency detector. Two genes with twofold different

koff values respectively activate and inhibit a third, output

gene. The average steady-state expression of this output

gene has a maximum for a certain ‘resonance’ frequency

(Figure 4b). Away from this resonance, especially for

larger frequencies, the steady-state output falls dramatic-

ally. Here, the protein level will also show a similar

resonance irrespective of its half-life because, assuming

there is no complex translational or post-translational

regulation, the average steady-state concentration of a

protein is proportional to the average steady-state expres-

sion level of its gene. Interestingly, the spiky nature of

the input oscillations is very important for this frequency

resonance. Smooth oscillations with exactly the same

time period and amplitude show a much weaker
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Figure 3

Encoding information in oscillations. (a) Characteristics of oscillatory signals that could potentially be used to encode information about external

stimuli. (b –e) Time period (red dashed line), average (blue dotted line) and peak levels (green solid line) of NF-kB oscillations as selected parameters

are varied in the model of NF-kB from Figure 2c. The braces mark the parameter ranges that produce smooth and spiky oscillations. Peak levels can

be varied independently of time period and average by changing Ntot when oscillations are smooth. Similarly, average levels can be varied

independently of the other two by changing kc when oscillations are smooth. Finally, time period can be varied while average and peak remain constant

by changing d when oscillations are spiky. For all the parameter ranges shown, we also found that increased spikiness is correlated with larger time

periods, lower averages and asymmetry of the spike shape.

www.sciencedirect.com Current Opinion in Genetics & Development 2010, 20:656–664



steady-state response. This circuit is therefore a spiki-

ness-detector as well.

Outlook
Some of the interesting questions this discussion raises for

future research on oscillatory control are:

(A) Relating to encoding information in oscillations:

� Which parameters, and which characteristics of

oscillations, do different stimuli affect in the NF-kB

and p53 systems?

� Can additional feedback loops enhance the encoding

abilities of oscillations?

(B) Relating to decoding information from oscillations:

� Can other decoding circuits be constructed to count,

say, the number of spikes in a signal, or distinguish

between symmetry and asymmetry, or other charac-

teristics of oscillations?

� Do any such circuits exist downstream of NF-kB or

p53?

The ideal experiment to evaluate the necessity of oscil-

lations would require being able to control the frequency,

number and width of spikes produced when NF-kB or

p53 is triggered, and to see how this affects the physio-

logical response. Exactly such experiments have shown

that varying the frequency of oscillations in calcium

signaling [4] and hormone secretion [5] changes the

physiological response. Similar experiments on the NF-

kB system are just beginning to be actualized, and have

reported some dependence of gene expression on fre-

quency of oscillations [57��]. Other experiments have

shown the opposite, that expression of some NF-kB

targets is unaffected in non-oscillating mutants [58].

These results are not necessarily contradictory, but until

more comprehensive experiments become feasible for

the NF-kB and p53 systems it might be useful to examine

more carefully the genetic circuits downstream of these

TFs. A frequency-detector circuit downstream of NF-kB

or p53 would be a strong clue that oscillations are import-

ant for the physiological response.
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Decoding information from oscillatory signals. (a) Regulation of gene

expression by a transcription factor (TF) that associates with a single

operator site with a rate constant kon and dissociates with a rate

constant koff. We make the (conservative, for NF-kB and p53)

assumption that the maximal concentration of the TF is 100-fold the

operator concentration. Gene Gfast has kon = 0.1 min�1 per operator site,

koff = 0.3 min�1 and follows the oscillations of the TF closely (green).

Therefore the peak of Gfast expression follows changes in the peak level

of oscillations. Gslow has kon = 0.1 min�1 per operator site,

koff = 0.003 min�1 and its peak expression follows the average level of

the oscillations. Note the vastly different responses in the two cases. (b)

G1 (kon = 0.1 min�1 per operator site, koff = 0.03 min�1) and G2

(kon = 0.1 min�1 per operator site, koff = 0.06 min�1) respectively activate

and inhibit a third, output gene G: dG/dt = k(G1/(1 + G1/K1))(1/(1 + (G2/

K2)
2)) � gG. For this circuit, we can find parameter values for the dG/dt

equation such that the average expression of G has a maximum

(‘resonance’) when the time period is around T = 150 min, when the input

is spiky square-pulse oscillations (green curve). The position of this

maximum can be tuned by varying koff values of G1 and G2. With the

same parameter values, when the input is smooth sine-wave oscillations

of the same amplitude the response is much weaker (blue curve). See

[47,71] for other frequency-detector circuits, involving protein

phosphorylation.
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Abstract

Background: Several approaches have been developed for miRNA target prediction, including methods that

incorporate expression profiling. However the methods are still in need of improvements due to a high false

discovery rate. So far, none of the methods have used independent component analysis (ICA). Here, we developed

a novel target prediction method based on ICA that incorporates both seed matching and expression profiling of

miRNA and mRNA expressions. The method was applied on a cellular model of type 1 diabetes.

Results: Microrray profiling identified eight miRNAs (miR-124/128/192/194/204/375/672/708) with differential

expression. Applying ICA on the mRNA profiling data revealed five significant independent components (ICs)

correlating to the experimental conditions. The five ICs also captured the miRNA expressions by explaining >97%

of their variance. By using ICA, seven of the eight miRNAs showed significant enrichment of sequence predicted

targets, compared to only four miRNAs when using simple negative correlation. The ICs were enriched for miRNA

targets that function in diabetes-relevant pathways e.g. type 1 and type 2 diabetes and maturity onset diabetes of

the young (MODY).

Conclusions: In this study, ICA was applied as an attempt to separate the various factors that influence the mRNA

expression in order to identify miRNA targets. The results suggest that ICA is better at identifying miRNA targets

than negative correlation. Additionally, combining ICA and pathway analysis constitutes a means for prioritizing

between the predicted miRNA targets. Applying the method on a model of type 1 diabetes resulted in

identification of eight miRNAs that appear to affect pathways of relevance to disease mechanisms in diabetes.

Background

microRNAs (miRNAs) are a class of small non-coding

RNAs that function as posttranscriptional regulators of

gene expression by mediating translational inhibition or

mRNA degradation. miRNA bind to “seed” sites, i.e.

stretches of 6-8 nucleotides in the 3’ untranslated region

(UTR) of their target mRNAs. miRNAs regulate various

cellular processes and appear to be involved in the

development of many diseases.

Most approaches for miRNA target identification rely

on either one or a combination of seed matching, site

accessibility and phylogenetic conservation [1]. In addi-

tion, some have incorporated target site location,

multiple target sites and expression profiling [1].

A number of target prediction methods use expression

profiling of both miRNA and mRNA expressions [2-5].

Most of the approaches are based on negative correla-

tion, i.e. reciprocal expressions of miRNAs and their

degraded target mRNAs.

High-dimensional biological data, such as microarray

profiling data, are often interpreted as being composed

of sets of transcriptional- or activity programs that

explain some, or most, of the complexity in the data

[6-8]. Various methods are being applied on profiling

data e.g. principal component analysis (PCA) and clus-

tering. In the last couple of years independent compo-

nent analysis (ICA) has been extensively applied on
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mRNA profiling data and recently, ICA was applied on

miRNA profiling data as well [9].

ICA is a computational method for separating mixed

independent signals and can be used to decompose the

expression matrix into independent components [10].

This decomposition has been shown to be informative

in several studies [11-15], and superior to clustering and

PCA [16-19]. Apparently, the representation of gene

expression as a mix of independent, possibly overlap-

ping, transcriptional programs captures the differential

regulation of well-defined biological processes and meta-

bolic pathways [19,20].

Type 1 diabetes (T1D) is an immune-mediated

disease characterized by insulin deficiency due to a

specific destruction of the pancreatic b-cells. Pro-

inflammatory cytokines are involved in the destruction

through induction of apoptosis [21]. The endocrine

cells in the pancreatic islets all arise from the same

progenitor stem cell and the maturation of the differ-

ent cell types is dependent on a number of factors,

such as transcription factors and miRNAs, that are

activated in a tightly regulated pattern [22,23]. One of

the central transcription factors in pancreatic develop-

ment is Pancreatic and duodenal homeobox 1 (Pdx-1)

[24-26]. In the mature endocrine cells, Pdx-1 expression

is restricted to the b-cell, where it is important for

insulin expression [27].

In the present study, we have used a model of type

1 diabetes based on b-cell maturation and interleukin-

1b (IL-1b) sensitivity. In response to Pdx-1 induction

the cells progress from an immature to a mature b-cell

phenotype [28]. The b-cell maturation is accompanied

by an increased sensitivity to the toxic effects of IL-1b

that is reflected in both transcriptional and protein

expression patterns [29-31]. Genes regulated by Pdx-

1 are therefore believed to be involved in the acquired

IL-1b sensitivity, and identification of these genes

would provide knowledge about the mechanisms

underlying this b-cell specific trait. Interestingly, a

study investigating genomic targets of transcription

factors in a b-cell line suggested that several miRNAs

are under Pdx-1 regulation [32]. Furthermore, a num-

ber of miRNAs have been implicated in the regulation

of pancreatic development and b-cell differentiation

[22,33-36].

Here, we have developed a novel miRNA target pre-

diction method that is based on ICA and combines seed

matching and expression profiling. We comprehensively

profiled both miRNA and mRNA expressions from the

type 1 diabetes model. ICA was applied on the mRNA

expression data for identification of miRNA targets. Our

method was compared to negative correlation. We vali-

dated our observations by use of pathway analysis and

human pancreatic islet preparations.

Results

b-cell specific gene expression

To confirm that the INSrab cells progressed from a

hybrid ab-like phenotype to a more mature b-cell phe-

notype upon Pdx-1 induction as seen in previous studies

[28,37], the expression levels of known insulin and Pdx-

1 dependent genes were examined using the array data

(Additional file 1). The observed expression profiles

were in agreement with insulin and Pdx-1 regulations

known from other studies.

The dox-induced Pdx-1 expression was examined

using qPCR and western blotting with mouse-specific

primers and antibody, respectively. We found that dox

treatment for 24 hours resulted in increased expression

of both Pdx-1 mRNA (33 fold, p < 0.05) and protein

(6 fold, p < 0.05) (Figure 1).

miRNAs differentially expressed in a model of type

1 diabetes

miRNA expression profiling resulted in identification of

eight miRNAs with differential expression in response

to Pdx-1 induction and/or IL-1b exposure. All eight

miRNAs (miR-124/128/192/194/204/375/672/708)

showed significant (p < 0.05) changes in expression

between conditions and/or time points (Figure 2A). The

eight miRNA expression profiles capture all three

experimental conditions: dox-induced Pdx-1 expression,

IL-1b exposure and time. For example, the miR-

672 expression decreased significantly (p < 0.05) with

time independent of Pdx-1 induction and/or IL-1b treat-

ment. The reversed pattern was seen for miR-204,

though only for cells with induced Pdx-1 expression.

Figure 1 Pdx-1 induction in the INSrab cell line. Fold changes

(mean and standard deviations) in Pdx-1 protein and mRNA after

treatment with doxycycline (dox) for 24 h. The gels to the right

represent Pdx-1 and b-actin induction with and without dox

stimulation for 24 h.
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A third example was the up-regulating effect of IL-1b

treatment on the expressions of miR-128/192/194.

The expression of two of the eight miRNAs were vali-

dated in a new set of samples using real-time quantitative

PCR. We found that the expression of miR-375 was sig-

nificantly decreased in response to Pdx-1 induction (by

~50%, p < 0.05), whereas the miR-194 expression was sig-

nificantly increased in response to IL-1b treatment (by

~50%, p < 0.05), see Figure 3. Furthermore, there was a

tendency towards a decreased miR-194 expression in

response to Pdx-1 induction (by ~50%, p = 0.05). These

expression changes confirmed the results from the array.

miRNA target prediction using negative correlation or ICA

To assess the effect of the Pdx-1- and IL-1b-mediated

miRNA activity, mRNAs were profiled in the same set

of samples as used for the miRNA arrays.

Initially, targets were predicted for each of the eight

miRNAs using 6mer seed matching. The total number

of 6mer seed matches for each miRNA is listed in

Table 1. For identification of miRNA targets using nega-

tive correlation, correlation coefficients were calculated

between each pair of miRNA and mRNA profiles and

the mRNAs were ordered according to these correlation

coefficients. Four of the eight miRNAs showed a signifi-

cant enrichment of sequence predicted targets among

mRNAs with correlation coefficients close to -1 (q <

0.1), Table 1. Additional file 2 lists all calculated correla-

tion coefficients.

Applying ICA on the mRNA expression data resulted

in identification of five highly significant ICs (Bonferroni

corrected q < 0.0001) with mixes shown in Figure 2B.

See Additional file 2 for all loads, as well as the method

section for further details on ICA.

Figure 2 miRNA expressions and mixes of independent components. There are three experimental conditions: Pdx-1 induction (dox

treatment), IL-1b treatment and time (samples are taken 2 h and 24 h after treatment). (A) Log2-transformed fold changes (mean and standard

deviations) between experimental and control (untreated cells) conditions. *: 0.05 > q > 0.01, **: 0.01 > q > 0.001, ***: 0.001 > q > 0. (B) For

each independent component (IC) the average of mixes are shown for each condition. Bars represent mean and standard deviation. IC1 is a

Pdx-1 component showing mixes correlating to Pdx-1 induction. IC 2 and 3 are cytokine components with mixes correlating to IL-1b treatment.

IC 4 shows mixes correlating to induction of Pdx-1 and treatment with IL-1b after 24 h. IC 5 has mixes increasing from 2 h to 24 h in all three

conditions. (C) The coefficient for the linear combination of the ICs giving the best fit of the miRNA expressions. The coefficients are scaled to

have an absolute sum of one.
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For each of the eight miRNAs, the loads in each IC

were tested for enrichment of predicted targets with a

6mer seed match. Seven of the eight miRNAs (includ-

ing all four identified by negative correlation) showed

a significant enrichment of sequence predicted targets

in the IC loads (q < 0.07), Table 1. Furthermore, we

analyzed IC 1 for cooperativity between each pair of

miRNAs by testing the loads in IC 1 for enrichment of

predicted targets with seed matches for both miRNAs

(Additional file 3).

We found that the miRNA pairs miR-375/672, miR-

194/375, miR-192/375 and miR-124/194 had a signifi-

cant regulatory effect (Bonferroni corrected q < 0.05)

when testing for enrichment of their common targets

in IC 1.

The miRNAs had small fold changes compared to the

fold changes of the mRNAs. Therefore it was not possi-

ble to apply ICA on the miRNA data or on a combina-

tion of the mRNA and miRNA expression matrices.

However, by forming a linear superposition of the ICs

we identified the major contributions from the ICs on

the miRNA expressions. Interestingly, all eight miRNAs

could be represented (percent variance explained >97%)

by a superposition of the five ICs, as shown in

Figure 2C (also see Additional file 4). The majority of

predicted miRNA targets were present in two or three

of the ICs. For example, miR-124 primarily has targets

in component 1 and 4, which both are Pdx-1 affected

components. Another example is miR-192 and miR-

194 that both have targets in component 1, 2 and 4,

which were affected by both Pdx-1 and IL-1b.

Independent components have clear biological profiles

To assess the biological relevance of the identified ICs,

we tested the ICs for enrichment of genes known to

be regulated by Pdx-1 or affected by IL-1b (Additional

file 5). Mixes of IC 1 clearly correlated with the induc-

tion of Pdx-1, and genes regulated by Pdx-1 were over-

represented in this IC (p < 0.047, data not shown).

Interestingly, one group had low negative loads and

another had high positive loads, indicating positive and

negative regulation by Pdx-1, respectively. Similarly, ICs

3 and 4 correlated with the presence or absence of IL-

1b. Specifically, IC 3 was enriched for known IL-1b

affected genes among genes with low negative load (p <

0.0021, data not shown), whereas IC 4 was enriched for

IL-1b affected genes with high positive load (p < 0.024,

data not shown).

In a similar manner, we tested the ICs for enrichment

of miRNA targets associated with metabolic or signalling

pathways, as annotated by KEGG [38] or by the Molecu-

lar Signatures Database (MSigDB, http://www.broadin-

stitute.org). Specifically, we tested the genes with high

positive or low negative loads in each IC for overrepre-

sentation of annotated pathway genes.

When using KEGG terms only, 25 pathways were sig-

nificantly enriched for miRNA targets in the five ICs

(q < 0.05). The most significant and diabetes-relevant

pathways are shown in Figure 4 (all are listed in Addi-

tional file 6). Notable was the significance of genes with

low loads in IC 3 belonging to the T1D pathway. IC

Figure 3 Expression of miR-375 and miR-194 using real-time

qPCR. Log2-transformed fold changes (mean and standard

deviation) between experimental and control condition after Pdx-1

induction (dox) and/or IL-1b stimulation for 24 h. *: p < 0.05.

Table 1 Target prediction using negative correlation or

ICA (loads)

miRNA # 6mer matches Correlation (q-value) Load (q-value)

miR-124 2215 0.0027 0.005

miR-128 2105 0.63 0.07

miR-192 1128 0.63 0.0007

miR-194 1110 0.0016 0.02

miR-204 1560 0.63 0.02

miR-375 1128 0.0027 0.04

miR-672 1060 0.87 0.5

miR-708 1675 0.023 0.0007

The table shows the number of 6mer seed matches in the array data for each

of the eight miRNAs (2nd column), the q-values (corrected p-values) for

negative correlation (3rd column) or load values (4th column). The q-values in

the 4th column are the lowest q-value found among the five significant ICs.

Bang-Berthelsen et al. BMC Genomics 2011, 12:97

http://www.biomedcentral.com/1471-2164/12/97

Page 4 of 11



3 had a clear correlation with stimulation of IL-1b.

Furthermore, the pathways maturity onset diabetes of

the young (MODY), type 2 diabetes (T2D) mellitus and

oxidative phosphorylation were significant. The first two

have an obvious relation to diabetes, and the oxidative

phosphorylation pathway has been shown to be related

to both type 1 and type 2 diabetes [39]. When using

MSigDB annotations, 150 pathways were significantly

enriched for miRNA targets belonging to the five ICs

(q < 0.05). A selection of the pathways is shown in Fig-

ure 4 (all are listed in Additional file 6). Since KEGG is

part of MSigDB it comes as no surprise that T2D,

MODY and oxidative phosphorylation again showed up

as significant. However, T1D did not show up as a sig-

nificant pathway, probably due to correction of multiple

testing, since MSigDB is a much larger repository. Also,

dysregulation of genes involved in the p53 signaling

pathway have been suggested to sensitize the cells to

apoptotic stimuli [32,40]. In accordance with this, we

find genes annotated with the p53-signalling pathway

(using MSigDB) having significant low loads in IC 3.

Identification of miRNA regulatory networks

miRNAs and mRNAs can interact in regulatory net-

works. miRNAs can regulate mRNAs directly or indir-

ectly through secondary factors. Furthermore, mRNA

targets can act as transcription factors for miRNAs, thus

forming a regulatory loop.

Using a combined bioinformatics approach involving

seed matching, promoter analysis, text mining and ICA

we identified miRNA regulatory networks (Figure 5).

Using the miRNA database http://www.miRbase.org, we

found STAT3 binding sites in the promoter of the

human miR-124 gene. This interaction was supported

by ICA that showed that miR-124 and Stat3 both have

negative contribution from IC 1 (Additional file 2 and

Figure 2C) correlating with an up-regulation in response

to Pdx-1 induction. Interestingly, the 3’UTR of Stat3 has

seed matches for miR-124 (TargetScan and 6mer seed

matching), indicating a potential feedback loop.

Furthermore, we found positive and negative contribu-

tion from IC 1 for Pax6 and miR-124/128, respectively

(Additional file 2 and Figure 2C), meaning they have

reciprocal expressions (down-regulation of Pax6 and up-

regulation of miR-124/128) in response to Pdx-1 induc-

tion. Interestingly, the 3’UTR of Pax6 contains a 6mer

seed match for miR-128 indicating potential repression

of Pax6 by miR-128.

Validation in human pancreatic islets and b-cell studies

To verify the identified miRNA targets affected by Pdx-

1 and/or cytokine stimulation, we used mRNA expres-

sion profiling data from studies on human pancreatic

islets and rat b-cell lines and tested whether the data

were enriched for ICA-identified targets of the eight

miRNAs.

Using mRNA profiling data from untreated and cyto-

kine treated human pancreatic islet preparations

(unpublished data) we tested the cytokine-induced fold

changes for enrichment of predicted miRNA targets.

Interestingly, we found that predicted targets of miR-

128/192/194/204/375 were significantly up-regulated

in response to cytokine treatment as compared to non-

targets (q = 0.007, q = 0.004, q = 0.033, q = 0.001 and

Figure 4 miRNA target-enriched pathways. Diagram showing a

selection of the significant pathways for the miRNA targets in the

five ICs when using KEGG annotations (blue text), MSigDB

annotations (magenta text) or both annotations (purple text). The

color of the bars indicate positive loads (red line) and negative

loads (green line) of the miRNA targets in the ICs.

Figure 5 miRNA regulatory network. miRNA regulatory networks

were identified using a combined bioinformatics approach

involving seed matching, promoter analysis, text mining and ICA.

The nodes and links were established by linking miRNAs with

potential mRNA targets or transcription factors.
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q = 0.05, respectively). The results suggest that the five

miRNAs may play a role in human pancreatic islets as

well.

Additionally, we performed similar analysis of publicly

available data from two previous studies on b-cells. Car-

dozo et al. [41] performed mRNA profiling on b-cells

from 10 weeks old male Wistar rats, un-stimulated or

stimulated with cytokines (IL-1b and/or IFNg). Using

their mRNA data, we found that targets of miR-

192 were significantly down-regulated in response to IL-

1b stimulation when comparing to non-targets (q =

0.02). Kutlu et al. [42] performed mRNA profiling on

insulin producing INS-1E cells, untreated or exposed to

a combination of IL-1b and IFNg. In their data set, we

found that the expressions of miR-128 targets were sig-

nificant increased in response to cytokine exposure

when comparing to non-targets (q = 0.002).

Discussion

The motivation for applying a more advanced method

like ICA for miRNA target prediction than negative cor-

relation was that surprisingly few mRNAs have clear

negative correlations with their targeting miRNAs. This

is probably due to the mRNA profiles being influenced

by a number of factors e.g. miRNA regulation, transcrip-

tion factor binding and site accessibility. Here, ICA was

used as an attempt to filter the factors influencing

mRNA expression. Decomposition of microarray data

using ICA has been shown to outperform other linear

data representations, such as PCA [16-19]. Several target

prediction methods have incorporated miRNA and

mRNA profiling data. However, none of them uses ICA.

The miRNA array profiling identified eight miRNAs

with differential expression in a type 1 diabetes model.

Performing ICA on the mRNA expressions from the

same samples resulted in five ICs that correlated with the

experimental conditions studied. Comparing the two tar-

get prediction methods indicated that ICA was better at

capturing miRNA activity than negative correlation.

Seven miRNAs showed a significant enrichment of

sequence-predicted targets when using ICA, as compared

to only four by use of negative correlation. Interestingly,

the ICs were enriched for miRNA targets with functional

roles in diabetes-relevant pathways e.g. the pathways

T1D, T2D, MODY, oxidative phosphorylation, insulin,

cytokine-cytokine receptors and type 1 interferon. This

supports that the eight miRNAs are implicated in disease

mechanisms in diabetes. Additionally, targets of five of

the eight miRNAs were significantly regulated by cyto-

kines in models of b-cell destruction e.g. in human islets.

miRNAs fine tune the expression of genes in a combi-

natorial manner, meaning that several miRNAs can tar-

get the same mRNA transcript [43]. Furthermore, a

cluster of co-expressed miRNAs can regulate

functionally related genes [44]. In this study, we observe

small expression changes in the miRNAs. However,

even minute changes in miRNA expressions might have

impact on mRNA expression, and miRNAs acting in a

cooperative manner can most likely induce biologically

relevant expression changes in their targets. ICA can

uncover these more complex interactions. Interestingly,

it was recently suggested that cooperativity could be

incorporated for prediction of target interactions

between different miRNAs [1]. For the eight miRNAs

we identified, there is a significant overlap in the

mRNAs they target. We have incorporated cooperativity

between miRNAs pairwise and identified four miRNA

pairs (miR-375/672, miR-194/375, miR-192/375, miR-

124/194) that had a significant co-regulatory effect on

their common targets in IC 1.

Of the eight significant miRNAs, miR-124 and miR-

375 have previously been identified in b-cells

[33,35,45,46]. Further, the expression of miR-204 has

been shown to be induced in insulinomas, where its

expression correlated with insulin expression [47].

That miR-375 was significantly regulated strengthens

our model since a previous study observed interaction

between Pdx-1 (and NeuroD1) and the miR-375 locus

[32]. However, no Pdx-1 consensus binding sites were

identified, but binding elements for other transcription

factors have been identified in the miR-375 locus [48].

The decreased miR-375 expression could, at least in

part, be mediated through NeuroD1, since we observed

a decreased NeuroD1 expression in response to Pdx-

1 induction. Additionally, the decreased miR-375 expres-

sion is in agreement with miR-375 having a higher

expression level in non-b-cells than in b-cells [35]. This

is also supported by our findings in a-cells versus

b-cells (Additional file 7). Interestingly, both miR-

375 and Pax6, a key factor in a-cell development, had

negative loads in IC 1, i.e. both were down-regulated in

response to Pdx-1. The decreased miR-375 expression is

also in compliance with the function of miR-375 as a

negative regulator of insulin exocytosis [45], since it cor-

relates with the need for an increased insulin secretion

in the mature b-cell phenotype. Similarly, miR-124 has

been shown to modulate insulin secretion by targeting

Foxa2 [33]. miR-194 is highly expressed in liver and in

intestinal epithelial cells, where it is under regulation by

Hnf1a [49,50]. Interestingly, Hnf1a is required for

proper b-cell function and mutations in this gene cause

MODY [23]. miR-192 is also expressed in the liver and

is in cluster with miR-194, suggesting co-regulation

[49,50]. Furthermore, miR-128 has been shown to

induce apoptosis in kidney cells through interaction

with Bax [51]. So far, miR-672 and miR-708 have not

been examined in b-cells. The likely involvement of

miR-128/192/194/204/708 in b-cell regulatory networks
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(Figure 5) and the high expression in b-cells compared

to a-cells for miR-672/204 (Additional file 7) make

them interesting candidates for further studies.

We have used ICA for bioinformatics investigation of

the functional roles of the miRNAs and their targets.

ICA in combination with pathway analysis indicates that

the eight miRNAs, through their mRNA targets, are

implicated in several diabetes relevant pathways.

The transcriptional changes mediated by miRNAs on

their targets may not be entirely explained by direct

repression but may also reflect indirect mechanisms

such as activation by feedback and feed-forward tran-

scriptional loops within regulatory networks [52,53].

miRNAs can be important players in these networks.

By use of a combined bioinformatics approach we

identified miRNA regulatory networks. The results

suggest connections between seven of the eight miR-

NAs through interactions with key pancreatic tran-

scription factors, cytokine signalling molecules and

insulin (Figure 5).

Conclusions

Using ICA, we have developed a novel miRNA target

prediction method that incorporates seed matching and

expression profiling. We believe that the method has

advantages compared to simple negative correlation.

Additionally, ICA in combination with bioinformatics

approaches such as pathway analysis constitutes a means

of prioritizing between the predicted miRNA targets for

further investigations. To the best of our knowledge this

is the first study that uses ICA for miRNA target predic-

tion. Interestingly, applying the method on a model of

type 1 diabetes resulted in identification of eight miRNAs

that appear to directly or indirectly affect pathways of

relevance to disease mechanisms in diabetes.

Methods

Cell cultures

INSrab, bTC-3 and aTC-1 cells were cultured in com-

plete RPMI-1640 medium (RPMI-1640 with Glutamax

(Gibco BRL, Paisley, Scotland, UK), 100 U/ml penicillin

and 100 μg/ml streptomycin) supplemented with 10%

FBS. 50 μM b-mercaptoethanol was additionally added

to the INSrab cells. For the INSrab cells, TeT system

approved FBS (CLONTECH, Palo Alto, CA) was used,

and the medium was supplemented with 150 μg/ml

geneticin and 100 μg/ml hygromycin to maintain a pure

culture of cells expressing the Pdx-1 plasmid construct.

The INSrab cells were treated with doxycycline

(500 ng/ml; Sigma Aldrich, Saint Louis, MO, USA) for

24 h to allow for Pdx-1 expression after which the cells

were cultured in the presence or absence of human

recombinant IL-1b (40 pg/ml; BD Pharmingen, San

Diego, CA) for additionally 2 h or 24 h.

Human pancreatic islet preparations

Human islet preparations (n = 4) provided through the

Juvenile Diabetes Research Foundation (JDRF) Islet Dis-

tribution Program (JDRF award 6-2005-1178) by Islet

Cell Resource Centres in Milan (Italy) and Lille (France)

were treated for 48 hours with IL-1b (1 ng/ul) or a com-

bination of IL-1b (1 ng/ul), IFNg (20 ng/ul) and TNFa

(8 ng/ul).

RNA extraction and RT-qPCR

Total RNA was extracted using TRIzol reagent (Invitro-

gen, Carlsbad, CA) according to the manufacturer’s

instructions. cDNA was prepared using miScript reverse

transcription kit (Qiagen, Hilden, Germany), TaqMan

microRNA reverse transcription reagents (Applied Bio-

systems, Foster City, CA) or TaqMan reverse transcrip-

tion reagents (Applied Biosystems), as described by the

manufacturer.

In INSrab cells (n = 5) the miRNA expression levels

were analysed by use of miScript Primer Assays (Qia-

gen), whereas in bTC-3 (n = 5) and aTC-1 (n = 5) cells

miRNA expressions were analysed using TaqMan

microRNA assays (Applied Biosystems). Gene expression

levels were analysed using TaqMan gene expression

assays (Applied Biosystems). All samples were analyzed

in duplicates on a ABI 7900HT system (Applied Biosys-

tems). Data were evaluated using the 2-∆∆Ct method

[54], normalizing miRNA/gene expressions to an endo-

genous control, and subsequently comparing each

miRNA/gene in treated vs. un-stimulated cells. miRNAs

were normalized to let-7c, whereas genes were normal-

ized to Ppia. The coefficient of variation (CV) for miS-

cript assays ranged from 0.018 to 0.077.

Western blotting

The INSrab cells (n = 4) were washed with PBS and

lysed. The protein concentrations of whole cell protein

lysates were measured with Bio-Rad Protein Assay. Sam-

ples were boiled before loading on a NuPage gel (10%

BisTris gels, Invitrogen) placed in an X-Cell Surelock

system (Invitrogen). Proteins were separated and then

transferred to a pre-soaked nitrocellulose membrane

(Invitrogen), which was blocked in milk for one hour

and then washed. The membrane was incubated in a

5 ml milk solution containing primary antibody, either

monoclonal Pdx-1 mouse antibody [37] overnight or

monoclonal mouse b-actin antibody (Abcam, Cam-

bridge, MA; #ab6276) for one hour. Horseradish peroxi-

dase conjugated anti-mouse antibodies (Cell signalling,

#7076) were used as secondary antibodies. The mem-

brane was incubated in LumiGlo (Cell Signialing Tech-

nology, Danvers, MA) solution and visualized using the

LAS2000 system (Fujifilm Europa GmbH, Dusseldorf,

Germany).

Bang-Berthelsen et al. BMC Genomics 2011, 12:97

http://www.biomedcentral.com/1471-2164/12/97

Page 7 of 11



Profiling and preprocessing of array data

The mRNA expressions from INSrab cells (n = 4) were

profiled on Affymetrix Rat Genome 230 2.0 arrays. For

each probeset in each sample, log2-ratios were calcu-

lated between the expression of that probeset and the

average of the control samples.

The miRNA expressions from INSrab cells (n = 3)

were profiled on Exiqon miRCURY LNA microRNA

Array v.11.0 arrays and median normalized. The control

samples (n = 3) were pooled and used as a common

reference on all arrays, and log2-ratios were calculated

for each sample against this reference.

The mRNA expressions from human islet preparations

(n = 4) were analyzed on Affymetrix Human Genome

U133 Plus 2.0 arrays. The b-cell data from Refs. [41]

and [42] were downloaded from T1DBase http://www.

t1dbase.org. These mRNA expressions had been profiled

using the Affymetrix Rat Genome U34A array.

All CEL-files were preprocessed using the RMA pack-

age [55] in Bioconductor [56] with remapped Ensembl

build 50 gene probesets [57].

For mRNA data from human islets and published

b-cell studies, foldchanges log2(cytokine, 24 h)/

(untreated, 24 h) were calculated for the average of the

replicate samples in each condition.

Sequence based miRNA target prediction

For 7764 out of the 9953 Ensembl gene probesets ana-

lyzed, 3’UTR sequences could be downloaded from

Ensembl through Biomart [58]. Mature sequences of sig-

nificantly changed miRNAs were downloaded from miR-

base [59] and the 6mer seed matches extracted. Ensembl

gene probesets with a given miRNA 6mer seed match in

their 3’UTR were identified as targets of that miRNA.

Independent component analysis

Mathematically, T transcriptional programs are active in

the cells under study, each of which is a (column) vector
C t

, t = 1, .., T , representing Gt gene inductions or

repressions. We measure all G induced or repressed

genes in S samples.

Each of these programs can be identified by a simple

linear decomposition of the G × S expression matrix E,

E CM or E  or gs= = =
= =

∑ ∑C M E C Mgt ts

t

T

s t ts

t

T

1 1



where C is the G × T matrix containing the transcrip-

tional programs, in coefficient vector notation,

C C C CT= ( ) 



1 2, , , , likewise E E E ES= ( ) 



1 2, , , and

M is the T × S matrix giving the linear mixing of each

program in each sample. Two-way clustering of corre-

lated genes and samples into non-overlapping sets was

represented by component vectors

C t

with discrepant

sets of non-vanishing entries

C C j tgt gj≠ ⇔ ≈ ∀ ≠0 0  .

ICA extracts n = min{G, S} independent components.

Since the number of samples was much lower than the

number of genes, we assumed n = S. The number of inter-

esting transcriptional programs T may be equal to, or

lower than S. A common practice is to project E onto it’s

first O principal component directions, and then extract O

independent components in this subspace. This approach

has several important drawbacks. First, the number of

interesting transcriptional programs is not known before-

hand, and one therefore needs to guess or resort to a

recursive trial-and-error approach to choose an O that

allows all T transcriptional programs to be extracted. Sec-

ond, it is not obvious that a projection onto O <S principal

component directions preserves all T transcriptional pro-

grams. It is possible to construct examples where two clus-

ters in the data are only well separated in the subspace of

the first and last principal components [60]. Clustering in

a subspace spanned by principal components generally

degrades cluster quality [61]. Finally, even when a projec-

tion onto T principal components allows all the T interest-

ing transcriptional programs to be extracted by ICA, a way

to explore and rank these independent components to

clarify their significance is still needed. In the present

study, the independent components were ranked accord-

ing to their accordance with the experimental conditions.

The fastICA algorithm [62,63] in R http://www.R-pro-

ject.org was used to estimate the component matrix and

mixing matrix, by numeric maximization of the negen-

tropy of the independent components. The negentropy

was approximated by J(y) = (〈G(y)〉 - 〈G(v)〉)2, where y is

the distribution of loads, v is a random variable distribu-

ted as ℵ(0,1), and the contrast function G(u) was here

defined as G(u) -exp -u 2
=

2






 . By convention, the

loads in each component have mean 0 and variance 1.

Assuming that the individual contributions on mRNA

expression are linearly separable and reasonable inde-

pendent of each other, ICA can separate the various

contributions making it possible to detect pathways

regulated by the various miRNAs.

ICs with mixes, i.e. rows in M showing significant

changes between the experimental conditions and/or

time points, are identified by calculating F-statistics and

requiring Bonferroni corrected p-values less than 0.0001.
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Statistics

Overall expression data were analysed using one-way

analysis of variance (ANOVA; F-statistics). The eight

significant miRNAs were selected based on an overall

q-value < 0.1 (Additional file 8). Comparison between

groups was done using t-test. Correction for multiple

testing was performed either by applying a Bonferroni

or a false discovery rate (fdr) correction to the p-values

(q-value). A Bonferroni correction was chosen when

few tests were performed, as was the case for the find-

ing of significant ICs and miRNAs. When a larger

number of tests were performed a fdr correction was

applied.

The loads in each IC are considered non-Gaussian

distributed. Loads/fold changes for genes that had seed

match for the miRNAs or were assigned to a specific

biological pathway were analysed using Wilcoxon rank

sum test. For analysis of negative correlation, Pearson

correlation coefficients were calculated between each

pair of miRNA and mRNA profiles. The mRNAs were

then ordered according to these correlation coefficients.

P-values < 0.05 were considered significant.

Additional material

Additional file 1: Expressions of insulin and Pdx-1 dependent genes.

There are three experimental conditions: Pdx-1 induction (dox

treatment), IL-1b treatment and time (samples are taken 2 h and 24 h

after treatment). Log2-transformed fold changes (mean and standard

deviation) between experimental and control conditions. *: 0.05 > q >

0.01, **: 0.01 > q > 0.001, ***: 0.001 > q > 0.

Additional file 2: miRNA target prediction based on mRNA

expression data. For each Ensembl annotated gene on the Affymetrix

array is given the gene symbol, gene description, loads in the five ICs,

coefficients for correlation with the eight miRNA expression profiles and

6mer seed match with the eight miRNAs. We assumed that loads were

significant if they had an absolute load greater than 2. For seed match,

1/0 denotes ≥1 seed matches and no seed match.

Additional file 3: Cooperativity between miRNAs in IC 1. The p-

values (uncorrected) and q-values (corrected) for pairwise miRNA

cooperativity in IC 1 are shown. 1/-1 denotes whether the individual

miRNA has positive or negative loads in IC 1.

Additional file 4: Coefficients for the linear superposition of the ICs

giving the miRNA expression profiles. R2 is the coefficient of

determination.

Additional file 5: Genes regulated by Pdx-1 and/or IL-1b. 1/0
denotes regulation and no regulation based on text mining.

Additional file 6: Pathways significantly enriched for genes with

high positive or low negative loads in the ICs. Sheet 1 shows KEGG

pathways whereas sheet 2 shows MSigDB pathways. Only pathways with

q-values < 0.05 (fdr corrected p-values) are highlighted.

Additional file 7: Expression of the eight miRNAs in a- versus b-
cells. Ratio of basal ∆CT values for aTC1 versus bTC3 cells. The ratio is

found for un-stimulated cells. Bars are standard deviations and asterisks

denote: **: 0.01 > q > 0.001, ***: 0.001 > q > 0.

Additional file 8: Overall q-values for the miRNA expressions. FWER:

family-wise error rate.

List of abbreviations

3’UTR: untranslated region in the 3’ end of the mRNA; dox: doxycycline;

FBS: fetal bovine serum; IC: independent component; ICA: independent

component analysis; IFNγ: interferon gamma; IL-1β: interleukin 1 beta; miR/

miRNA: microRNA; MODY: maturity onset diabetes of the young; mRNA:

messenger RNA; PBS: phosphate buffered saline; PCA: principal component

analysis; RT-qPCR: reverse transcription - quantitative polymerase chain

reaction; T1D: type 1 diabetes; T2D: type 2 diabetes; TNFα: tumor necrosis

factor alpha.
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Abstract

The Wnt signaling pathway transducing the stabilization of b-catenin is essential for metazoan embryo development and is
misregulated in many diseases such as cancers. In recent years models have been proposed for the Wnt signaling pathway
during the segmentation process in developing embryos. Many of these include negative feedback loops where Axin2 plays
a key role. However, Axin2 null mice show no segmentation phenotype. We therefore propose a new model where the
negative feedback involves Dkk1 rather than Axin2. We show that this model can exhibit the same type of oscillations as the
previous models with Axin2 and as observed in experiments. We show that a spatial Wnt gradient can consistently convert
this temporal periodicity into the spatial periodicity of somites, provided the oscillations in new cells arising in the
presomitic mesoderm are synchronized with the oscillations of older cells. We further investigate the hypothesis that a
change in the Wnt level in the tail bud during the later stages of somitogenesis can lengthen the time period of the
oscillations and hence the size and separation of the later somites.
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Introduction

A segmented body plan is a fundamental characteristic feature

of vertebrates. The process of segmentation is carried out by a

combination of changes in gene expression and relative anterior-

posterior cell position in the presomitic mesoderm (PSM) [1]. In

the anterior end of the embryo the somites are segmented at

equally separated time points with species dependent periods. In

mice the period is around 120 min and in frogs it is around

90 min.

In 1976 Cooke and Zeeman [2] proposed the clock and

wavefront model to describe the segmentation process. The idea is

that locally coupled oscillators are controlled by a morphogen

gradient in the PSM. The oscillators are the clocks providing

temporal information, e.g., cycle state, and the morphogen

gradient is the wavefront providing spatial information about

axial position. Until now three major pathways controlling the

segmentation process have been found: the Notch, Wnt and FGF

pathways. They all have target genes, which oscillates and,

interestingly, Wnt target genes oscillate out of phase with Notch

and FGF target genes [3]. These three pathways could be the

clocks. There are decreasing gradients of wnt3a and fibroblast

growth factor 8 (fgf8) starting from the tail bud through the PSM

[4,5]. The two gradients act in synergy with each other during the

somitogenesis [6,7]. The actual setting of the somites happens at

the determination front, where the fgf8 level reaches a certain

threshold. Cells past this determination front become permissive to

form somites depending on their phase of oscillation [8].

In 2003 it was discovered by Aulehla et al. [4] that Axin2

oscillates during the segmentation process in developing mouse

embryos. Since their discovery several models for the Wnt

oscillator have been proposed [9–11] with Axin2 as a key variable.

However, while Axin2 is a negative regulator of the Wnt pathway,

mice with a null mutation of Axin2 do not exhibit a segmentation

phenotype – only malformations of skull structures [12]. There-

fore, we propose a new model for the core negative feedback loop

generating oscillations in the Wnt pathway, with Dickkopf1

(Dkk1), rather than Axin2, closing the feedback loop. Dkk1 has

an oscillatory behavior during the segmentation process in mouse

embryos [3] and lowered expression of Dkk1 results in smaller and

more irregular vertebrae in mice [13,14]; similar to the phenotype

produced by overexpression of Wnt3a.

Analysis

Modeling the Wnt/b-catenin pathway
During Wnt signaling b-catenin interacts with the TCF/LEF-1

DNA-binding proteins to promote transcription of Wnt target

genes [15,16]. As for Axin2 the transcription factor for Dkk1 is

b-catenin [17,18]. After transcription and translation Dkk1 goes

through the cellular membrane where it can bind to the extra-

cellular domains of the low-density lipoprotein receptor-related

protein 5 and 6 (LRP5/6). When bound to LRP5/6, Dkk1 acts as

an inhibitor of Wnt signaling by blocking the association between

Wnt, Frizzled (Fz) and LRP5/6 [19]. Wnt acts as an inducer for

the formation of this complex and Dkk1 is a competitor to this

induction [20,21].

It has been proposed that the Wnt signal is transduced through

the cell membrane by the binding of Dishevelled (Dsh) to the

intracellular domain of the Fz receptor [22]. Axin and Dsh can

bind together via their DIX domains [22] and they co-localize at

the membrane [23] during Wnt signaling. Therefore Dsh bound

to Fz may recruit Axin bound to the glycogen synthase kinase 3

(GSK3b) to the LRP5/6 receptor [24], where a phosphorylation

PLoS ONE | www.plosone.org 1 October 2011 | Volume 6 | Issue 10 | e25550



of LRP5/6 is initiated. The LRP5/6 receptor has a binding site for

Axin and upon Wnt signalling GSK3b (bound to Axin)

phosphorylates LRP5/6, which requires Axin [24]. The phos-

phorylated LRP5/6 receptor may be able to recruit and more

efficiently bind the Axin-GSK3b complex to the membrane and

the phosphorylation process is thereby amplified [25].

At the cell membrane Axin is phosphorylated by GSK3b and

then degraded [26,27]. The degradation of Axin leads to a

decrease in the formation of the destruction complex comprised of

b-catenin, the two kinases GSK3b and casein kinase (CKIa), and

the scaffolding proteins Axin and adenomatous polyposis coli

(APC). In the destruction complex b-catenin gets phosphorylated

and subsequently degraded.

Interestingly enough GSK3b plays a dual role in controlling the

Wnt signal. When the Wnt signal is off then GSK3b phosphor-

ylates b-catenin in the destruction complex and when the signal is

on then it phosphorylates Axin at the LRP5/6 receptor. Whether

it is the same or distinct Axin-GSK3b complexes that carry out the

phosphorylation of b-catenin and Axin is unknown [28].

Our model does not include the dynamics of the kinase CK1a,

the scaffolding protein APC, the DNA binding proteins TCF/

LEF-1 and the protein Dsh, since their dynamics are not a major

part of the negative feedback loop. The dynamics of CK1a and

APC are included in the parameters governing the destruction

complex, the TCF/LEF-1 dynamics are contained within the

transcription of Dkk1, and the dynamics of Dsh are included in the

formation of the complex consisting of Axin, GSK3b and LRP5/6

at the cell membrane. Figure 1 shows a simplified diagram of the

proposed model and the associated equations. The variables C,

[GA], G, B, L, Dm, D, [LD], A and [LGA] are the concentrations of

the destruction complex, GSK3b-Axin complex, GSK3b, b-

catenin , LRP5/6, Dkk1 mRNA, Dkk1 protein, Dkk1-LRP5/6

complex, Axin and LRP5/6-Axin-GSK3b complex. The forma-

tion and breaking of a complex X are denoted by cfX and cbX ,

respectively. The transcription and translation rates of Dkk1 are

given by the parameters ctsc and ctsl , respectively. The Hill

coefficient on B regarding the transcription of Dm is associated to

the amount of cooperativity between b-catenin and the TCF/

LEF-1 complex. For example, no cooperativity would result in a

Hill coefficient of one.

The concentration of GSK3b has been shown to be extremely

stable [10] and consequently its total concentration, GSK3btot, is

assumed to be constant during the time scales considered. The

same assumption goes for the total concentration of LRP5/6, since

the half-life of LRP6 is around 4.7 hours [29]. Therefore we have

not included any source or sink for the concentrations of G and L.

Figure 1. The diagram, simulation and equations of the Wnt model. (Top,left): A diagram of the Wnt model with a feed-back loop over Dkk1.
Included are only members of the Wnt pathway that are important for the understanding of the negative feedback loop. When the Wnt signal is on,
then Axin gets degraded at the LRP5/6 complex and b-catenin can act as a transcription factor of the Wnt inhibitor Dkk1. Vice-versa, when the Wnt
signal is off, due to inhibition by Dkk1, then b-catenin gets degraded. (Top,right): Simulated time series for a selection of variables from the model
listed in the bottom panel. The total level of Axin (magenta) is low, which complies with the findings of [10]. (Bottom): Equations of the Wnt model
split up in terms describing production, degradation and complex dynamics.
doi:10.1371/journal.pone.0025550.g001
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Only constitutive sources, SB and SA, of b-catenin and Axin,

respectively, are included in the model, because free (unpho-

sphorylated) b-catenin and Axin is stable [10].

Determination of the parameter values
The parameters used for our model are listed in Table 1. In Ref.

[10] a model for the Wnt pathway in Xenopus is proposed and from

this article estimates for the dissociation constants for the

destruction complex (C) and the [GA] complex, the degradation

of b-catenin (a), the total concentration of GSK3b, and the sources

of Axin and b-catenin are taken. Dkk1 binds to LRP5/6 with a

high affinity; the dissociation constant has been measured to be

around K½LD�~0:4{0:5 nM [19,20].

The other parameters are estimated to produce oscillations with

a period of around 120 min and a very low concentration of total

Axin as found by Ref. [10]. The low concentration of total Axin is

thought to act as a buffer to changes in the concentration of the

other constituents, which may also take part in other signaling

pathways [30].

In the activation of transcription of Dkk1 by b-catenin we

assume cooperativity between b-catenin and TCF/LEF. The Hill

coefficient is set to three. A Hill coefficient of two can produce

oscillations, but this requires the affinity of b-catenin to the [GA]

complex to be much higher than suggested by the dissociation

constant value used in Ref. [10]. Therefore, we preferred to retain

the parameter values of Ref. [10] but increase the Hill coefficient

to three. In other models of the Wnt pathway, Hill coefficients of

values two and five have been used [9,10,31].

Results and Discussion

Oscillations of the mRNA, protein and complex levels
The parameter values produce oscillations of the involved

constituents with a period of around 120 min as seen in Fig. 1. In

addition, the concentration of Axin is very low compared to the

concentrations of the other variables, as discussed above. The

phase shifts between the different oscillatory components of the

Wnt model can be explained by considering the sequential steps of

the model. An increase in the [LGA] concentration leads to a

decrease in the Axin concentration. This decrease causes a

reduction in the concentration of the destruction complex and

consequently an increase in the b-catenin concentration. This

increase will after a while cause an increase in the Dkk1

concentration, which leads to an increase in the [LD] concentra-

tion. The high affinity of the [LD] complex leaves little free LPR5/

6 behind to form a complex with [GA]. Thus the concentration of

the [LGA] complex decreases, leading to an increase in Axin, and

the cycle continues. The concentrations of GSK3b and [GA] are

mirrors of each other, since a high concentration of [GA] will leave

less free GSK3b behind.

Ref. [32] found no significant oscillations in the level of b-

catenin . For our choice of parameters b-catenin shows an

oscillatory behavior with an amplitude of approximately 5nM,

which is not significantly low. A different set of parameters could

possibly give a smaller amplitude of b-catenin but the general

results, presented later, are not significantly altered by this. Even

though b-catenin does not oscillate it has been shown that the

Notch target gene Nrarp, which stabilizes LEF-1 [33], does

oscillate [3]. LEF-1 does not oscillate in the PSM [34]. Notch and

Wnt target genes oscillates out of phase. Thus, when Dkk1 is high,

resulting in the inhibition of Wnt signaling, Nrarp will have a low

expression, resulting in LEF-1 ubiquitination and consequently

less Dkk1. The oscillatory behavior seen in Fig. 1 nearly resembles

this. Thus, the b-catenin variable in our model can be considered

as a coarse-grained variable combining the effects of b-catenin ,

Nrarp and LEF-1.

Stability of the period and amplitudes of oscillations
In Fig. 2 the period and amplitude of the Dkk1 oscillations are

plotted as a function of a selection of parameters. Changing KC
results in the most drastic changes in amplitude and period of

Dkk1 (Fig. 2F). Even though the assembling of GSK3b and Axin is

involved in three out of the four complexes in our model, changes

in K[GA] do not affect the period and only for K[GA].1 is the

amplitude of Dkk1 oscillations really affected, see Fig. 2H.

The degradation of both Axin and b-catenin affects the

amplitude. If more b-catenin is degraded then less Dkk1 is

transcribed (Fig. 2B). Vice versa with the degradation of Axin. If

more Axin gets degraded then less b-catenin gets phosphorylated

at the destruction complex resulting in more transcription of Dkk1

(Fig. 2A). As these parameters affect the system in opposite

directions, an experiment where the capability of GSK3b to

phosphorylate Axin and b-catenin is tested, could shed light on the

dual mechanism of GSK3b in the Wnt pathway.

The half-life of Dkk1 affects the period – a shorter half-life leads

to a shorter period (Fig. 2C). A similar effect of Axin2 half-life was

seen in a previous model with an Axin2 negative feedback loop

[11] similar to our Wnt model with a negative Dkk1 loop. Shorter

periods are also found when the translation and transcription rates

are increased (Fig. 2E,G). In comparing Figs. 2B,D it can be seen

that altering a is almost the same as altering SA, which makes sense

since the concentration of C is dependent on both the source of

Axin and the rate of b-catenin phosphorylation.

The amplitude of Dkk1 oscillations differs between the case with

h=3 and h=2, compare Figs. 1 and S1. Figure S1 shows the

oscillations for h=2 and the parameters used for h=2 are listed in

Table S1. A measure of the actual size of the Dkk1 amplitude

along with a measure of the kinetics of the destruction complex

Table 1. Parameters in our model of the Wnt system and
their default values.

Parameter Process Default Value

KC Dissociation constant C 8 nM

cbC Breaking of C 7 min21

a Degradation of b-catenin 2.2 min21

K[GA] Dissociation constant [GA] 1.5 nM

cb½GA� Breaking of [GA] 4 min21

K[LGA] Dissociation constant [LGA] 1 nM

cb½LGA� Breaking of [LGA] 10 min21

v Degradation of Axin 3.8 min21

K½LD� Dissociation constant [LD] 0.5 nM

cb½LD� Breaking of [LD] 0.02 min21

SB Constant source of b-catenin 1 nM/min

SA Constant source of Axin 0.02 nM/min

ctsl Transcription of dkk1 0.02 min21

ctsc Translation of Dkk1 mRNA 0.025 (Mm2 min)21

tDm Average lifetime of dkk1 mRNA 8 min

tD Average lifetime of Dkk1 16 min

GSK3btot Total G level 45 nM

Ltot Total L level 15 nM

doi:10.1371/journal.pone.0025550.t001
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could give a hint of the cooperativity between b-catenin and the

TCF/LEF-1 complex. If the real Hill coefficient is two, then our

model predicts that to produce oscillations they must also bind

with a high affinity, and that the resultant oscillations of Dkk1 will

have a relatively smaller amplitude than if the Hill coefficient is

three.

A spatial Wnt gradient induced by time variation
The oscillations of the variables in our model could function as

the segmentation clock postulated in the clock and wavefront

model [2]. We now investigate whether such oscillations can

consistently be coupled to a wavefront, i.e. a spatial gradient of

Wnt. As oscillating cells move through the PSM they effectively see

a decreasing level of Wnt in time. Therefore we model the spatial

Wnt gradient simply by a time dependent decrease in the para-

meter cf ½LGA�. Other models have also been proposed with a

gradient of a morphogen protein [35-37]. These models are

complementary to ours in that they use abstract models of the

clock, not any concrete mRNA, proteins and complexes interact-

ing as in our model.

The reason for using cf ½LGA� as the time dependent parameter to

mimic a Wnt gradient is clear if we introduce the variable [LW]

describing the binding of Wnt (W) to the LRP5/6 receptor:

d½LW �

dt
~cf ½LW �LW (t){cb½LW �½LW �, ð1Þ

and if we assume steady state for the binding of Wnt to LRP5/6

then

½LW �~
cfLWLW (t)

cb½LW �
~

LW (t)

K½LW �
: ð2Þ

When substituting [LW] for L in the equations with terms

governing the formation of the [LGA] complex, it can be seen that

the rate constant for formation of [LGA] will be time dependent

cf ½LGA�(t)~
cf ½LGA�W (t)

K½LW �
: ð3Þ

For simplicity we will assume that the Wnt gradient, and hence

cf ½LGA�, has a Gaussian profile, which is what one would expect if

the gradient was determined mainly by diffusive processes. For

reference, Fig. 3 shows the amplitude and period of Dkk1

concentration for a range of cf ½LGA� values. The green line refers to

the reference value of cf ½LGA�; reducing it results in smaller

amplitudes.

The length of the PSM is approximately constant during the

formation of the first 15–20 somites in mice embryos [38]. The

same is almost true for the size of the somites. At this stage the

somites are ,100 mm and the PSM is about 1 mm, i.e. the PSM

has a length corresponding to the length of 10 somites. Thus, a cell

budded off in the tail bud at this stage will be segmented in around

,1100–1300 min.

It has been measured that FGF (regulated by Wnt) exhibits a

gradient in the PSM with a fold change of two to five [5]. The fold

change used for cf ½LGA� is two. Assuming that Wnt diffuses through

Figure 2. Changes in the periods and amplitudes when varying parameter values. The period (black) and amplitude (yellow) of Dkk1
oscillations as v (A), a (B), tD (C), SA (D), ctsl (E), KC (F), ctsc (G) and K½GA� (H) are varied. The green lines refer to the values listed in Table 1.
doi:10.1371/journal.pone.0025550.g002
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the PSM and setting the final value of cf ½LGA� equal to 5
1

nMmin
enable us to calculate a Gaussian profile of cf ½LGA� representing the

Wnt gradient. In Fig. S2, Gaussian profiles of cf ½LGA� in the PSM

are plotted with different initial values. A decreasing value of

cf ½LGA� in the PSM will give rise to smaller amplitudes and slightly

shorter periods. Experimentally it has been shown that the

wavelength of the oscillations in the PSM decreases from the tail

bud to the determination front [39]. If the oscillations are

proportional to the wavelength, then the steepness of the cf ½LGA�
profile sets the pace with which the wavelength decreases.

Synchronization of neighbouring cells
Figure 4A shows the Dkk1 oscillations in an elongating embryo

with a decreasing cf ½LGA� as described above. The elongation of the

embryo is modeled in a very simplified manner. It is considered in

only one dimension and a cell buds off from the tail bud at regular

time intervals denoted by R. In Fig. 4 we use R=10 min. We

further assume that the initial state of a newly budded cell in the

PSM is the same as that of its anterior neighboring cell, i.e. if the

state for a cell i at time t is denoted Si(t), then the initial state of a

cell i+1 is Siz1(0)~Si(R). Thus, we effectively introduce a

synchronization in the oscillations of adjacent cells. But this is put

in by hand, rather than by an explicit coupling between cells in the

model. The final level of Dkk1 at the determination front is

oscillating (see Fig. 4B with a period of 120 min. It is the built-in

synchronization that is the reason behind this. If, instead, all the

cells were assigned the same initial state, i.e. Siz1(0)~Si(0), then

the levels of Dkk1 at the determination front would also be equal,

as in Fig. 4C. In a real embryo the synchronization, of course,

occurs through coupling of the individual clocks in the PSM cells

[40], which we have not modeled. However, the way we put in

synchronization in our model is sufficient to demonstrate that its

presence is necessary for a proper function of the segmentation

process. The importance of synchronization has also been shown

experimentally [41].

One could imagine that the synchronization of the clocks is not

perfect. If the initial state is randomly chosen within the whole

range of Dkk1 levels, then the oscillations of Dkk1 at the

determination front are disrupted and no periodicity is visible

(see Fig. S3B). If the initial state of a cell i+1 is chosen randomly

within the interval Si(R{
R

2
){Si(Rz

R

2
), then the period is

almost unaltered (see Fig. S3A). Thus, the system seems to be

robust to small changes in the synchronization.

In zebrafish the mechanism of synchronization is well under-

stood by Delta-Notch interactions [42]. In the literature we have

found models which couple the cells in zebrafish [40,42–45] by

various mechanisms, such as coupling of phase oscillators and

coupling of oscillating clock genes with a signalling protein. The

model of Ref. [44] shows that even a weak coupling helps

synchronization. In the embryo, mitosis and stochastic gene

expression could result in nonlinear noise [40] that could disrupt

the synchronization if they are not coupled strongly enough.

In the above simulations, a Gaussian profile of cf ½LGA� is used,

since diffusion of Wnt is thought to be the main reason for the Wnt

gradient in the PSM. The profile of cf ½LGA� would still be Gaussian

if we also included a half-life of Wnt. If the Wnt gradient was only

controlled by the half-life of Wnt then the levels of Dkk1 still

oscillate at the determination front with a period of 120 min, when

the model is simulated as above with R=10 min.

Because Ref. [32] found a decreasing gradient of b-catenin in

the PSM, we also tried giving SB a Gaussian profile in the PSM

with a fold change of two from the tail bud to the anterior part of

the PSM. This did not alter the 120 min oscillations of Dkk1 at the

determination front, when the model was simulated as above with

R=10 min.

A decreasing Wnt level in the tail bud and an increase in
period of segmentation
It is known that the period of somite formation increases [38]

during late stages of somitogenesis in various organisms. In 2004

Aulehla and Hermann [46] hypothesized that an increase in the

Wnt level of the tail bud could result in longer periods of the

segmentation process observed in mice embryos. In our model,

simulating an increasing level of Wnt (cf ½LGA� from 10
1

nMmin
to

14
1

nMmin
) in the tail bud we do see that the period initially

lengthens and the amplitude increases, see Fig. S4B. However, if

the Wnt level is increased further the period decreases to as low as

30 min. An experiment where Wnt is upregulated in the tail bud

would elucidate their hypothesis and our findings.

Recent experiments with chick embryos show the opposite –

Wnt is downregulated in the tail bud at late stages of somitogenesis

[34]. In our model, simulating a linear decrease of Wnt, through

the parameter cf ½LGA�, from 10
1

nMmin
to 5

1

nMmin
, causes the

period of Dkk1 oscillations to increase. The mechanism behind

this increase in the period is different from that causing a small

increase in the period as described above. There the Wnt level was

decreased throughout the PSM, where here the initial level of Wnt

in the tail bud is decreased, i.e. the gradient of Wnt in the PSM

Figure 3. The effect of the Wnt level on the period and
amplitude. The amplitude (solid) and the period (dashed) of Dkk1
oscillations for varying values of the parameter cf ½LGA�. The green
vertical line denotes the value of cf ½LGA� in the reference state.
doi:10.1371/journal.pone.0025550.g003
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becomes less steep. The amplitude of the Dkk1 oscillations

decreases at the same time, which is expected because the

segmentation process does stop as the Wnt level diminishes.

Outlook
We propose a Wnt model with Dkk1 as the core for the

negative feedback loop which exhibits sustained oscillations of

Dkk1. The clock and wavefront model was investigated using the

Dkk1 oscillations as the clock and a Wnt gradient in the PSM as

the wavefront. By simulating the elongating embryo we were able

to test the importance of synchronization between neighboring

cells. In addition, we could also show that small errors in the

synchronization did not significantly disrupt smooth oscillations

of the Dkk1 levels at the determination front. We could

reproduce the experimental finding in chick embryos that

downregulation of Wnt in the tail bud might lengthen the

oscillation time periods during late stages of somitogenesis. The

negative feedback loop involving Dkk1 introduced produces very

similar behavior as the Axin2 negative feedback loops modeled

previously. Thus, it is conceivable that these two loops function

together, providing some redundancy with respect to each other.

This could explain why Axin2 null mutant mice do not show any

segmentation phenotype and Dkk1 null mutant mice show only

some irregularity in the vertebrae. Such redundancy has been

seen in the case of fgf4 and fgf8. Neither are individually essential,

but removing both disrupts somitogenesis [7]. It would there be

interesting to see what phenotype a double knockout of both

Axin2 and Dkk1 exhibits.

Supporting Information

Figure S1 Oscillations of the Wnt model with h=2. The

Wnt model is simulated with a Hill coefficient of h=2. The model

still shows oscillations with a period of around 120 min, but the the

affinity of the b-catenin to bind the [GA] complex needs to be

much higher than expected from experiments. The parameters

used in this simulation ca be found in Table S1.

(PDF)

Figure 4. Synchronization of neighboring cells. (A) Time series for the Dkk1 concentration. Space is introduced by letting a cell bud off from the
tail bud every 10th min. Thus the cells move relatively in the PSM. At the determination front the oscillations arrest. (B/C)The level of Dkk1 at the
determination front with R= 10 min and synchronization between neighboring cells and with R= 10 min and the cells have the same initial level of
Dkk1 (C). (D) The Gaussian profile of cf ½LGA� in the anteroposterior direction. TB: tail bud. Si: Somite i, where S0 is the newly formed somite.
doi:10.1371/journal.pone.0025550.g004
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Figure S2 Gaussian profiles of the Wnt gradient. (Top):

Gaussian profiles of cf ½LGA� in the PSM are plotted with different

initial values. A decreasing value of cf ½LGA� in the PSM will give

rise to smaller amplitudes (middle) and slightly shorter/ almost

constant periods (bottom). The abbreviation ref6i denotes the

reference state value of cf ½LGA� 6i.

(PDF)

Figure S3 Desynchronization of neighboring cells. If the

desynchronization between neighboring cells is small (A) then the

oscillations of the Dkk1 level at the determination front is almost

unaltered. However, if the desynchronization is strong then these

oscillations are not appearing.

(PDF)

Figure S4 The Wnt level in the tail bud. (A): When the Wnt

level decreases in the tail bud, then the period of the Dkk1 level at

the determination front extends. (B): The period is also extended

when the Wnt level increases in the tail bud, but the periods drop

significantly below the period in the reference state.

(PDF)

Table S1

(PDF)
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8. Dubrulle J, McGrew M, Pourquié O (2001) Fgf signaling controls somite
boundary position and regulates segmentation clock control of spatiotemporal

hox gene activation. Cell 106: 219–232.
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Figure S1 - Oscillations of the Wnt model with
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The Wnt model is simulated with a Hill coefficient of h = 2. The model still
shows oscillations with a period of around 120 min, but the the affinity of the
β-catenin to bind the [GA] complex needs to be much higher than expected
from experiments. The parameters used in this simulation ca be found in
Table S1.



Figure S2 - Gaussian profiles of the Wnt gra-

dient
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Top: Gaussian profiles of cf [LGA] in the PSM are plotted with different initial
values. A decreasing value of cf [LGA] in the PSM will give rise to smaller am-
plitudes (middle) and slightly shorter/ almost constant periods (bottom).
The abbreviation ref ± i denotes the reference state value of cf [LGA] ±i.



Figure S3 - Desynchronization of neighboring

cells
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If the desynchronization between neighboring cells is small (A) then the
oscillations of the Dkk1 level at the determination front is almost unaltered.
However, if the desynchronization is strong then these oscillations are not
appearing.



Figure S4 - The Wnt level in the tail bud
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(A) When the Wnt level decreases in the tail bud, then the period of the
Dkk1 level at the determination front extends. (B) The period is also ex-
tended when the Wnt level increases in the tail bud, but the periods drop
significantly below the period in the reference state.



Table S1

Parameters in our model of the Wnt system with h = 2

Parameter Process Default Value

KC Dissociation constant C 0.4 nM

cbC Breaking of C 16min−1

α Degradation of β-catenin 10min−1

K[GA] Dissociation constant [GA] 0.5 nM

cb[GA] Breaking of [GA] 10min−1

K[LGA] Dissociation constant [LGA] 0.5 nM

cb[LGA] Breaking of [LGA] 10min−1

ν Degradation of Axin 0.2min−1

K[LD] Dissociation constant [LD] 0.5 nM

cb[LD] Breaking of [LD] 0.02min−1

SB Constant source of β-catenin 0.9 nM/min

SA Constant source of Axin 0.002 nM/min

ctsl Transcription of dkk1 0.025min−1

ctsc Translation of Dkk1 mRNA 0.025 (Nm2min)
−1

τDm Average lifetime of dkk1 mRNA 10min

τD Average lifetime of Dkk1 10min

GSK3βtot Total G level 50 nM

Ltot Total L level 7 nM



APPENDIX

F

ICA paper

This paper is under revision in PLoS ONE.

151



1

Ranking of Independent Components in Gene Expression
Microarray Data Using Weighted Scoring
Lykke Pedersen1,∗, Peter H Hagedorn2,3

1 Center for Models of Life, Niels Bohr Institute, University of Copenhagen, DK-2100

Copenhagen, Denmark

2 Center for Biological Sequence Analysis, Department of Systems Biology, Technical

University of Denmark, DK-2800 Lyngby, Denmark

3 Present address: Santaris Pharma, DK-2970 Hørsholm, Denmark

∗ E-mail: Corresponding lykkep@nbi.dk

Abstract

Decomposition of gene expression microarray data using independent component analysis (ICA) has
been used to identify and separate underlying transcriptional programs from observed gene expressions.
In contrast to other linear data representations, such as principal component analysis (PCA) or linear
discriminant analysis (LDA), however, ICA does not provide an implicit ranking of the identified com-
ponents. We score each independent component according to its stability, contribution to overall gene
expression, unsupervised information content, and, when applicable, ability to separate sample groups as
well as representation in known biological processes and pathways. A weighted sum of these scores sup-
plies a simple and robust ranking of the independent components. This is shown for synthetic microarray
data where the transcriptional programs are known by design, as well as for three instructive biological
examples. For each example, inspection of the individual score values provides additional insights into
the underlying biology. Weighted scoring of a few key attributes of independent components provides
a generally applicable and unbiased method for ranking, as well as exploring, such components in gene
expression microarray data.

Introduction

High-dimensional biological data, such as data from gene expression microarrays, can be interpreted as
being composed of overlapping sets of transcriptional programs, or gene expression modules, that explain
most of the differential expressions observed in the data. Based on the known regulatory control and
functional role of genes in an identified transcriptional program, one can infer how overall biological
processes and metabolic pathways are affected under different conditions [1–3]. Mathematically, suppose
that T transcriptional programs are active in the samples under study, each of which is a (column)

vector ~Ct, t = 1, ..., T , representing Gt gene inductions or repressions. With microarrays, we measure
the expression of all G (where Gt ⊆ G) induced or repressed genes in S samples. Assuming that each of
these programs can be identified by a simple linear decomposition of the G× S expression matrix E, we
can write

E = CM or Egs =

T
∑

t=1

CgtMts or Ẽs =

T
∑

t=1

CtMts

where C is the G × T matrix containing the transcriptional programs, in coefficient vector notation,
C = (~C1, ~C2, . . . , ~CT ), likewise E = ( ~E1, ~E2, . . . , ~ES), and M is the T × S matrix giving the linear mixing
of each program in each sample. The decomposition can be done in numerous ways. Two-way clustering
of correlated genes and samples into non-overlapping sets can be represented by component vectors ~Ct

with discrepant sets of non-vanishing entries Cgt 6= 0 ⇔ Cgj ≈ 0 ∀ j 6= t. Principal component analysis
(PCA) decomposes E such that the transcriptional programs, the principal components, are mutually

orthogonal, ~Ct⊥ ~Cj ∀ j 6= t. Finally, linear discriminant analysis (LDA) decomposes E in a manner that
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maximally separates the samples based on pre-defined classes. Both clustering, PCA, and LDA are used
extensively when analyzing profiling data.

If statistical independence, instead of e.g. orthogonality, between transcriptional programs is assumed,
one can decompose E using independent component analysis (ICA) [4]. This decomposition has been
shown to be informative for microarray analysis by ourselves and others [5–11], and compares favorably
to clustering and PCA [12–15]. Apparently, the representation of gene expression as a mix of independent,
possibly overlapping, transcriptional programs, often matches the biological reality well [16]. Specifically,
the independent components (ICs) identified using ICA has been shown to capture the differential reg-
ulation of well-defined biological processes and metabolic pathways, in breast cancer [15], acute myeloid
leukemia [17], and Alzheimer’s disease [18]. Tumor classification based on ICs also seems to be a promis-
ing application of ICA [19, 20]. Recently, ICA has also been used to decompose the effects of multiple
deregulated microRNAs on their partially overlapping sets of mRNA targets [10, 21].

ICA extracts n = min{G,S} ICs. Since the number of samples is almost always much lower than the
number of genes, we assume n = S. The number of interesting transcriptional programs T may be equal
to, or lower than S. A common practice is to project E onto it’s firstO principal component directions, and
then extract O ICs in this subspace. This approach has several important drawbacks. First, the number
of interesting transcriptional programs is not known beforehand, and one therefore needs to guess or resort
to a recursive trial-and-error approach to choose an O that allows all T transcriptional programs to be
extracted. And second, it is not obvious that a projection onto O < S principal component directions
preserves all T transcriptional programs. In fact, as shown by Chang [22] one can easily construct
examples where two clusters in the data are only well separated in the subspace of the first and last
principal components. Complementing this, Yeung and Ruzzo [23] showed that clustering in a subspace
spanned by principal components generally degrades cluster quality. Finally, even when a projection onto
T principal components allows all the T interesting transcriptional programs to be extracted by ICA, one
still needs a way to explore and rank these ICs to clarify their significance.

By extracting all S ICs and then identify and rank those that represent interesting transcriptional
programs, these issues are avoided. One possible ranking that has been suggested is based on calculating
the statistical overrepresentation of genes related to specific biological processes and metabolic pathways
among the genes with the absolute largest loads |Cgt| in each component ~Ct [13]. This, however, requires
that all genes are annotated with respect to the transcriptional programs under study, which might
often not be the case. Another possibility is to use the information contained in the loads Cgt of each
component, along with the manner in which these ICs are represented in each sample given by the mixes
Mts. For specific applications of ICA, various methods for inherent identification by such load-based
ranking have been used. Liebermeister [12] calculates the negentropy and captured variance for each
component. The captured variance is similar to the energy, defined as Et =

∑

s M
2
ts, and used to sort

ICs by Winther and Petersen [24]. Chiappetta et al. [6] rank the ICs according to a stability score based
on repeated runs of the algorithm. Finally, an ensemble feature selection approach that requires the data
to be divided into training and test sets has been suggested [25].

Although each of these ranking schemes performs reasonably well for some studies, they are not, we
find, generally applicable for all the various kinds of transcriptional regulations probed by gene expression
microarrays. As introduced below, however, a simple weighted scoring scheme stably identifies the infor-
mative ICs across three highly different studies. It encompasses some of the already proposed methods
for identification, as well as a few sensible new ones.
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Methods

ICA algorithm and preprocessing

The fastICA algorithm [26] is used to estimate the component matrix C and mixing matrix M, by numeric
maximization of the negentropy of the ICs. The negentropy is approximated by J(y) = (〈G(y)〉−〈G(v)〉)2 ,
where y is the distribution of loads, v is a random variable distributed asN (0, 1), and the contrast function
G(u) is here defined as G(u) = − exp(−u2/2). By convention, the loads in each component have mean 0
and variance 1.

The expression matrix E is normalized by GCRMA [27] (for biological data), or quantile normalized
(for synthetic data), log2-transformed, centered by subtracting the mean of each column and dividing by
the standard deviation, and whitened, so that the columns are uncorrelated, by projecting it onto its S
principal components (thus resulting in no loss of information).

Synthetic data

The synthetic data consists of 20000 genes measured in 30 samples. The 30 samples are divided into six
groups of five samples each (e.g. six individuals measured at five time points each). Six transcriptional
programs determine the gene expressions. The effect of each transcriptional program is indicated in
Figure 1A, which shows the true expressions. Besides individual groups of genes affected by only one
program, two groups of genes are affected by two programs each. In Figure 1B is shown the standardized
synthetic data with noise added as

y = β + x exp(η) + ǫ (1)

where x is the true expression, y the expression with noise added, ǫ the additive background noise,
distributed as N (0, σ2

ǫ ), η the multiplicative noise, distributed as N (0, σ2
η), and β the background [28].

The data presented in Calvano et al. [29] which have an experimental design reasonably similar to the
setup of the synthetic data, are used to estimate the values of these parameters, giving β = −0.77,
σ2
ǫ = 0.14, and σ2

η = 0.14.

Feature selection

The standard deviation σt is calculated for the absolute values of the loads |Cgt| in each independent
component. The genes with absolute loads greater than ασt in component t are selected to represent
that component [7, 12, 15]. For the biological examples we use the stringent choice of α = 4 [12].

Scores and weights

Each independent component ~Ct is given a score λit as defined below. To make different scores compa-
rable, each score is individually scaled to sum to unity across ICs, i.e.

∑

t λit = 1.
Informative loads, score λ1t. The non-normality of the distribution of loads Cgt in each component

~Ct, calculated as the negentropy of the loads. The negentropy is approximated as suggested in the fastICA
algorithm.

Informative mixes, score λ2t. The non-normality of the distribution of mixes Mts for each com-
ponent, calculated as the negentropy of the mixes. As for the informative loads, the negentropy is
approximated as suggested in the fastICA algorithm.

Overall highest loads, score λ3t. The absolute value of either the 0.5% or the 99.5% quantile of
the loads, depending on which is greatest.

Component stability, score λ4t. Depending on the initial random guess for the un-mixing matrix
(the inverse of M), the convergence of ICs that do not represent data structures, may be to local, instead
of global, non-normality maxima. A component identifying structures in the data is expected to always
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be extracted by ICA, that is, to always converge to the same non-normality maximum. To quantify this
ICA is run 100 times. In each run, Spearmann’s correlation coefficients are calculated between each of
the original ICs ~Ct, and the ICs in run r, ~Ctr. The highest absolute correlation coefficient ρtr calculated
for each ~Ct in run r is stored. The stored absolute correlation coefficients are averaged component-wise
over all runs, ρt = 1/100

∑

r ρtr.
Sample separability, score λ5t. When samples can be separated into n classes (e.g. treatment

groups), the proportion of the variability accounted for by this separation, denoted the coefficient of
determination R2, is calculated by fitting a one-way ANOVA to the mixes for each component.

Biological concordance, score λ6t. When genes or features are annotated by GO-terms or mapped
to KEGG-pathways, the genes selected as described under feature selection are divided into two groups,
depending on each gene’s load being positive or negative. For each group, significantly overrepresented
(family-wise error rate < 0.001 using the Bonferroni correction) GO-terms and KEGG-pathways are
found by hypergeometric testing. The fraction of selected genes annotated with significant terms or
pathways is used as a measure of biological concordance. When significantly overrepresented GO-terms
and KEGG-pathways are found for the negative loads only, by convention, all loads of that component
as well as the corresponding row in the mixing matrix M, are multiplied by −1.

Weighting. Using the standard deviation σi of each score across ICs to define weights, each weight
is calculated as wi = σi/

∑

i σi. For weights w1, w2, . . . , w6, where
∑

i wi = 1, the overall score of each
independent component is calculated straightforwardly as λt =

∑

iwiλit and ranked accordingly.

Results

To show the performance of weighted scoring for exploring as well as ranking ICs, synthetic data where
the transcriptional programs are known by design, as well as three instructive examples with biological
data, are presented below.

Synthetic data

For the synthetic data, the biological concordance score cannot be calculated. The equally weighted
(wi = 1/5) sum of the remaining five scores defined in the methods section, correctly assign highest rank
to the six ICs that represent the six transcriptional programs (Figure 2A). The informative loads score
and the sample separability score contribute the most to the differentiation between the six top-ranking
ICs and the rest. When inspecting the distribution of each score λit across ICs (the compound bars in
Figure 2A), it is evident that the higher the spread of score values, the better that score differentiates
between ICs that represent transcriptional programs and ICs that do not. By assigning weights according
to the standard deviation of each score, the six top ranking ICs will consequently stand out even more
clearly. This weighting by standard deviation is used for the three examples with biological data presented
below.

Using α = 4 for feature selection identifies all 668 genes known to be affected and 212 non-affected
in addition (giving a sensitivity of 100% but a positive predictive value (PPV) of only 75%). For α = 5,
which is the value used in Figure 2, 664 out of the 668 affected genes are identified as well as 9 non-
affected (98% sensitivity and 97% PPV). Finally, α = 6 identifies 639 of the 668 affected genes and only
one non-affected in addition (95% sensitivity and very close to 100% PPV).

To explore the performance of the fastICA algorithm, as well as the ranking of ICs, at different noise
levels, the background, β, the variance of the additive noise, σ2

ǫ , and the variance of the multiplicative
noise, σ2

η (refer to Equation 1), are doubled (and also quadrupled in the case of σ2
η) one at a time.

All six transcriptional programs are identified as separate ICs and ranked at the top when doubling β
and σ2

ǫ (data not shown). When doubling σ2
η, however, the fastICA algorithm does not identify the

transcriptional program labelled with purple in Figure 1 (data not shown). The expression profile of this
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transcriptional program is not varying significantly with time and is at a high level in only three samples
out of 30. When increasing the value of σ2

η the noise is increased especially on genes with high expression
levels. This transcriptional program is therefore especially sensitive to this kind of noise degradation.
The five other transcriptional programs are still ranked at the top. When quadrupling σ2

η, none of the
transcriptional programs are identified by the fastICA algorithm (data not shown).

Example 1: Beta cell function

Type 1 diabetes results in a permanent destruction of insulin producing beta cells of the pancreas. To
investigate beta cell function and development, a rat insulinoma cell line (INS-1αβ) transfected with the
mouse transcription factor pancreatic duodenum homeobox (pdx1 ) gene, was profiled [30]. Cells were
selectively treated with doxycycline. The resulting overexpression of both mouse and rat pdx1 genes
activates a negative feedback loop affecting rat pdx1 expression only. This depletes PDX1 protein below
effective levels. Interleukin 1β (IL-1β), an important mediator of the inflammatory response, was also
selectively administered at various lengths of exposure. Since the samples are taken from treatment-
synchronized, supposedly genetically identical, cell lines, the variability between biological replicates is
low. The ranking of ICs with α = 4 for feature selection, and weighting based on standard deviations,
is shown in Figure 3. The six top ranking ICs all show high sample separability scores and are readily
interpreted in the context of presence/absence of PDX1 as well as time of IL-1β exposure. ICs 1 and
2 score especially high for informative loads and overall highest loads, signifying a clear presence of the
significant genes in these ICs.

Component 1 correlate with time of IL-1β exposure, and genes belonging to the adipocytokine signal-
ing pathway, and immune processes in general, are overrepresented. Component 2 correlate with PDX1,
and the clear positive or negative presence of the component result in a high informative mixes score.
Although genes annotated with system development are overrepresented in component 2, it is only a
small fraction, 4%, of all the genes selected to represent that component. This might reflect that the
functional role of most of these genes in relation to PDX1 and beta cell development has first been uncov-
ered with this study and are therefore not part of the annotation yet. ICs 3 to 6 all display high biological
concordance scores (between 25% and 77%), related to cell cycle processes (3), antigen processing and
presentation (4), cell communication (5), and signal transduction (6), among others. Component 7 has
a relatively high informative loads score, a high biological concordance score (cellular localization and
intracellular transport, among others, being overrepresented), but a low sample separability score. This
component probably represents a transcriptional program that is not clearly related to PDX1 and IL-1β,
but to some other aspect of the study such as, e.g., phase in the cell cycle.

Figure 3C shows the loads of all 2302 genes present in one or more of the seven top-ranking ICs. Each
component consists of a large group of genes unique to that component (especially component 7) as well
as smaller groups of genes overlapping with one or more of the other ICs.

Example 2: Inflammation

Inflammation is a hallmark of many diseases. To elucidate the transcriptional programs in blood leuko-
cytes activated in response to systemic inflammation, four healthy human subjects were profiled at 0,
2, 4, 6, 9 and 24h after administration of bacterial endotoxin (eliciting an inflammatory response), and
another four were profiled at the same times, having been administered sodium chloride, as control [29].
Leukocytes were recovered from blood samples by centrifugation. The within-group sample variability is
higher than for the beta cell data, since individual people are more different than individual cell lines, and
because of cell heterogeneity (lymphocytes, monocytes, and granulocytes present in varying amounts).

The ranking of ICs (α = 4) is shown in Figure 4. ICs 1, 2, and 4 show the same relative profile in
Figure 4A, being positive in the controls and at 0h and 24h in the inflammation subjects, and negative
between 2h and 9h. Figure 4B reveals that the mixes of each component are at different baselines.



6

Component 1 is always present, component 2 is absent between 2h and 9h in inflammation subjects, and
positive otherwise, and component 4 is negative between 2h and 9h in inflammation subjects, and absent
otherwise. Component 1 shows significant overrepresentation of genes related to translation of proteins
in ribosomes, among others, component 2 to immune processes and translation also, and component 4 to
cytolysis. Component 3 is positive at 2h in inflammation subjects, and otherwise negative (Figure 4B),
defense responses and MHC class II receptor activity, among others, are overrepresented. Component 5
is positive at 2h, 4h, and 6h, with a peak at 4h, and otherwise absent. The biological concordance score
is zero.

A lot of ICs besides the top five also show differences between inflammation and control patients.
Moving down the list, the inter-group variability becomes progressively larger though, resulting in lower
sample separability scores. Only 9 ICs have stability scores below 80% (the six top-ranking ICs have
stability scores at or above 90%), reflecting that most if not all extracted ICs represent real structures in
the data.

Figure 4C shows the loads of all 1405 genes present in one or more of the six top-ranking ICs. As for
the beta cell data, each component consists of a large group of genes unique to that IC as well as smaller
groups of genes overlapping with one or more of the other ICs.

Example 3: Breast cancer

A clinically and prognostically important part of evaluating a breast cancer is to determine its histologic
grade. A low grade cancer is well-differentiated, meaning that the tumor grows relatively slowly and have
a well-defined shape. Oppositely, a high grade cancer is poorly differentiated, with breast cells that do
not appear normal and tend to grow and spread more aggressively. Identification of the transcriptional
programs that are active in breast cancers of various aggressiveness could be used to grade tumors more
accurately. To this end, invasive breast carcinomas from 189 patients were profiled [31].

The ranking of ICs (α = 4) is shown in Figure 5, where 104 patients (the validation set in [31], but used
as the training set here), and the top 16000 most varying transcript profiles, are included in the analysis.
Component 1 is clearly negative for grades 1, and absent for grades 2 and 3. Immune system processes,
antigen processing and presentation, as well as extracellular matrix structural constituent activity, are
overrepresented. Component 2 is clearly most positive for grade 3, and closer to zero for grades 1 and 2,
and structural constituents of ribosome are overrepresented. Figure 5C shows the loads of the 492 genes
present in one or both of the two top-ranking ICs. Most genes are only present in one component.

The ability of these 492 genes to correctly classify the 104 samples, using k-nearest neighbors (knn,
majority vote among 3 nearest neighbors), and leave-one-out cross-validation (loocv), gives a classification
accuracy of 96% for the grade 1 and 3 samples. When classifying the remaining 59 samples (the training
set in [31] but used as the test set here) using knn and loocv, the classification accuracy is 93%. Out
of the 492 genes, 377 are also measured in another breast cancer study that included 295 patients [32].
These 377 genes allow a knn classification accuracy of 70% when using loocv. These accuracies compare
favorably to a similar recent study on the same data that used protein-protein interaction data to assist
in the selection of features [33]. The method presented here for identifying ICs and genes might therefore
be interesting from a classification point-of-view.

Discussion

Any expression matrix decomposition requires subsequent evaluation of the components identified. The
weighted scoring presented here provides a systematic framework for performing such an evaluation for
ICs identified by ICA.

The example with synthetic data demonstrates that ICA is able to identify and separate the underlying
transcriptional programs, even at high levels of noise, and that the weighted scoring assigns high ranks
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to ICs representing these programs. The three biological examples show that different scores highlight
different structures in the data. By weighting each score before summing the overall component score,
particular properties of the data can consequently be emphasized. A heuristic weighting may for example
focus on class comparison by having a high weight for sample separability. In a more unbiased manner,
a weighting based on the standard deviations of each score across samples, provides a means for judging
which scores differentiate the most between ICs.

The sample separability score assigns high scores to ICs that separate samples according to known
classes. The score is seen to clearly differentiate ICs in all data, but less markedly so in the inflammation
data, where most of the identified ICs correlate with inflammation to some degree.

The informative mixes score is intended as an unsupervised sample separability score. A component
that identifies a transcriptional program will exhibit mixes that are defined by some regulatory control
system. Such mixes will tend to be more ordered, having a lower entropy, than mixes for ICs not
under such control. The degree of non-normality of the distribution of mixes can be used as a measure
of this order [34]. The informative mixes score, as defined this way, works best for biological data.
For the beta cell data, component 2, correlating with PDX1, and being essentially binary, have a high
informative mixes score. In the same data, component 7, which has a much lower sample separability
score than the top six ICs, has a reasonably high informative mixes score, hinting that this component
represents a transcriptional program that is under control of something independent of PDX1 or IL-1β.
For the inflammation data, the informative mixes also contributes to the differentiation between ICs,
being generally highest for those ICs that are most ordered.

The informative loads score is based on the same idea as the informative mixes. The sharper the
distinction between genes with absolute high loads and genes with absolute low loads, the higher the
score. This tends to put emphasis on ICs representing smaller groups of genes and is seen to differentiate
ICs clearly in both the synthetic as well as the beta cell data. Accompanying this, the higher the
absolute loads of the group of genes primarily representing the IC, the more clearly the IC contributes
to the expression of these genes. ICs 1 and 2 in the beta cell data, and IC 10 in the inflammation data,
all display high absolute loads scores.

The stability score depends on the noise characteristics of the data as well as the number of active
transcriptional programs. In the synthetic data, the score is clearly highest for ICs representing tran-
scriptional programs. For the biological data, this score is not given much weight, reflecting that most
ICs identify stable structures in the data, these being either transcriptional programs or biological noise.

The biological concordance score reflects the fraction of significant genes in an IC that are annotated
with significantly overrepresented GO terms or KEGG pathways. For the beta cell data, only 15 out of
the 54 identified ICs have a non-zero biological concordance score, 8 of them being among the top ten
ranked ICs. Hence this score correlates with high values of the other scores. For the inflammation data,
the same trend is seen. Here however, about 2/3 of all ICs have non-zero scores, reflecting that there are
many more active transcriptional programs compared to the beta cell data. This is probably a general
difference between samples taken from cell lines and tissues. In the breast cancer data, about half of the
ICs have positive biological concordance scores, not obviously being correlated to the values of the other
scores. This again probably reflects characteristics of the patients in the study other than tumor grade
and estrogen receptor status..

Conclusion

The sample separability and biological concordance scores provides readily interpretable information with
respect to the experimental setup. The informative loads and overall highest loads provide additional
insight into the manner in which the governing transcriptional programs influence genes, showing high
scores for smaller, highly influenced, groups of genes. The informative mixes can in some cases help
identify ICs representing transcriptional programs governed by factors other than those representing the
experimental design. Finally, component stability provides a means for assessing the robustness of the
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identified ICs. Together, the six scores presented allows comprehensive identification of relevant ICs in
gene expression microarray data.
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Figure 1. Expression matrix for synthetic data. Genes in rows and samples in columns. The 668
genes affected by one or more transcriptional programs are shown, as well as a selection of 100
unaffected genes. The horizontal colorpanels at the top separate samples according to gender (black or
white) and effect of exposure (shades of grey or white). The six individual transcriptional programs are
shown in the vertical colorpanel on the left as red, light green, green, blue, purple, and magenta. The
combinations of transcriptional programs are shown as yellow and cyan. The number of genes in each
program or combination of programs are shown to the right. Within each transcriptional program, the
overall expression increases from top to bottom. A. True expressions. Red is high expression, blue is no
or low expression. B. Noisy, standardized expressions. Black is the row-mean expression, red/green is
the expression below/above row-mean in units of the standard deviation.
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Figure 2. Ranking of independent components in synthetic data. A. Standardized mixing
matrix highlighting changes across samples. Samples in columns, ICs in rows. The scores are weighted
equally and are shown as compound bars to the right. On top of the mixing matrix are shown the
sample types, as in Figure 1. B. Mixing matrix of the six top-ranking ICs. Actual mixes are shown to
highlight the contribution in each sample. C. Component matrix. Genes in columns, ICs one to six in
rows. Positive loads are green, negative red, and non- significant loads are black. The correspondence
between ICs and transcriptional programs are shown in the horizontal colorpanel at the top, same
colorcode as in Figure 1. The number of genes in each component are shown to the right.
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Figure 3. Ranking of independent components in beta cell data. Same layout as in Figure 2.
A and B. For PDX1 and IL-1β, black denotes presence and white absence. For time, white over grey to
black denotes, 2, 4, 6, 12, and 24h, respectively. C. The 2302 genes with significant loads in one or more
of the top six ICs are clustered hierarchically (Euclidean distance and average linkage).
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Figure 4. Ranking of independent components in inflammation data. Same layout as in
Figure 3. A and B. For treatment, black denotes bacterial endotoxin (inflammation) and white denotes
sodium chloride (control). For time, white over grey to black denotes, 0, 2, 4, 6, 9, and 24h, respectively.
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Figure 5. Ranking of independent components in breast cancer data. Same layout as in
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estrogen receptor status, white denotes positive and black negative.
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Abstract

Reliable microRNA (miRNA) target prediction methods, which can accurately reveal miRNA regulated
pathways are important for a better understanding of gene networks regulated by miRNAs. Particularly,
this is of interest for miRNA based diagnosis and the development of miRNA based treatment of various
cancers.

Here we study miRNA and mRNA expression profiles for ovarian cancer samples from the cancer
genome atlas (TCGA) project published by TCGA Research Network in Nature 2011. The expression
profiles are analyzed by independent component analysis (ICA) followed by pathway enrichment and
miRNA target analyses. The method described here links miRNA expressions to the deregulation of
pathways in ovarian cancer and is applied to a test set of mRNA expressions and the findings are then
validated by applying the method to a second set of mRNA expression profiles. With these methods,
we retrieved miRNA and pathway relations already proposed in the literature as well as new possible
relations.

We found that Wnt, mTOR and p53 pathways are highly enriched in both the test and validation data
sets. These three pathways are already known to be deregulated in ovarian cancer. In addition we have
linked these pathways to the differential expression of miR-29c, miR-100 and miR374a,b, respectively.
While miR-100 has been previously linked to ovarian cancer this is the first time that miR-29a and miR-
374a,b, which have been linked to other cancers, are linked to ovarian cancer. Furthermore, we identified
components, which might be under miRNA regulations. This adds to the general belief that independent
components map to biological pathways.

Author Summary

Ovarian cancer is the fifth leading cause of death among females in the US and is usually diagnosed in an
advanced stage [1, 2]. Therefore an early diagnose is of interest to increase the chance of survival. One
tool for diagnosis could be to evaluate the genetic signature that each of us inherits. There exist a class
of genes called microRNAs, which were discovered in 1993 [3] and since then has been found to regulate
over 60% of genes in the human genome [4]. They generally act to block the translation of mRNAs into
proteins by binding to the 3-untranslated regions of protein coding gene transcripts and then they either
cleave the transcript or obstruct translation [5]. miRNAs are commonly deregulated in many diseases,
including cancer, and will consequently result in the mis-expression of their targets, which contribute to
the development of diseases. The ability to correlate the regulation of microRNAs with the deregulation
of genes causing ovarian cancer is the goal of this paper. This is achieved by analyzing genetic signatures,
including miRNA and mRNA, of high-grade serous ovarian tumors by use of independent component
analysis. By this method we can ultimately unravel the huge network that underlies the development of
ovarian cancer.
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Introduction

Early diagnosis and targeted treatment are important for all types of cancer. Ovarian cancer (OVC)
is especially important because it is the fifth leading cause of death among females in the US and it
is usually diagnosed in a late stage [1, 2]. In the cancer genome atlas (TCGA) project, the expression
profiles of both messenger RNA (mRNA) and microRNA (miRNA) from normal ovary and high-grade
serous ovarian tumors are obtained, which can provide biosignatures for diagnosis and treatment targets
by using bioinformatics analysis [6].

The miRNAs were discovered in 1993 by Lee et al. [3] and are small non- coding RNAs consisting of
∼22 nucleotides in their mature form. They inhibits the translation of its target mRNAs by binding to
their 3-untranslated regions (3UTRs) and control the expression of 60% percent of the human genes [4,5].
In recent years, many publications demonstrate the important roles of miRNAs in the development of
different diseases, e.g., cancers [7], diabetes [8–10] cardiovascular diseases [11,12], infectious diseases [13].
In OVC, mir-9 has been shown to regulate the Nf-κB pathway [14] and miR-31 regulates the p53 pathway
[15]. Both pathways are deregulated in OVC.

The actual inhibition of a miRNA target commonly occurs through partial base pairing between the
miRNA and the target mRNA. The sequences that undergo base pairing to form a miRNA:mRNA duplex
are constrained to the 5’-seed region of the miRNA extending from nucleotides 2-8 and typically localized
to the sequences in the 3’UTRs of the mRNA target. A minimum of six consecutive nucleotides must
pair in order to form a productive miRNA:mRNA duplex, a seed match, that culminates in translational
inhibition.

Many miRNA target prediction methods have been published during the last couple of years. The
vast majority of them are based on finding seed matches between the miRNA and its targets. Others are
(additionally) based on gene expression profiling. Table 1 lists features commonly included in miRNA
target prediction methods. The list is curated from the reviews of Refs. [5, 16, 17]. Here we will use
seed match finding together with expression profiling to investigate the role of miRNAs in controlling
biological pathways related to OVC.

The most common use of expression profiles in miRNA target prediction methods is the search for
negative correlations between the miRNA and its targets. Since due to the inhibitory effect of miRNAs.
However, the anti-correlation between the miRNA and its target mRNA expression is not always sig-
nificant due to many factors, e.g., miRNA regulation, transcription factor binding and site accessibility,
et.al. [18]. Here we will apply independent component analysis to circumvent this and in order to find
biological pathways potentially under the influence of miRNAs.

ICA is a linear decomposition method [19] widely used for the analysis of microarray data [20, 21],
since it has proven been superior to both PCA and clustering analysis [20, 22, 23]. ICA decomposes the
expression matrix into independent components (ICs), which often can be mapped to biological processes
or pathways [21, 24, 25]. The expression matrix (E) has columns corresponding to expression profiles of
the samples s and rows corresponding to the profiled genes g.

The general mathematical formulation of ICA can be expressed as

E = CM or Egs =
N
∑

k=1

CgkMks , (1)

where g ∈ {1, . . . , G} and s ∈ {1, . . . , S} with G and S being the total number of genes and samples,
respectively. C is the G×N component matrix comprised of the N ICs in the columns. M is the N × S
mixing matrix. The ICs estimated from E will be weighted differentially across the samples according to
the component weights (Mks) in Eq. 1. These weights measure the level by which the ICs contributes
to the total expression profile of the samples. How much an IC contributes to the overall expression of
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a gene is measured by the quantity Cgk in Eq. 1. These entries of C are denoted the gene weights. A
given gene g will therefore have N gene weights and an IC will have S component weights.

A schematic illustration of ICA in relation to miRNA regulation is shown in Fig. 1. In Figure 1 the
expressions of miR1 and mRNA1 are differentially regulated in cancer versus control samples, and miR2
and mRNA2 are deregulated according to tumor grade. The component weights of IC 1 are negative
in cancer samples and positive in normal samples (yellow vs. blue) and the component weights of IC2
depend on tumor grade (shades of blue). Thus, these component weights are said to correlate with the
classification of the samples. They also (anti)-correlate with the expression patterns of mRNA1/miR1
and mRNA2/miR2, respectively. Therefore, the gene weights of mRNA1/miR1 lies at the extremes of
IC1 and the gene weights of mRNA1/miR2 lies at the extremes of IC2. IC1 and IC2 are informative,
because they correlate with the clinical classification scheme.

To measure the effect of a miRNA within an IC, enrichments of its targets are performed. For example,
if genes with a seed match for miR1 are significantly enriched in the positive end of IC1, miR1 is stated as
active in IC1. Because the targets are enriched oppositely to miR1, which lies in the negative end of IC1.
Additionally, if there is an enrichment of genes annotated with a biological pathway in the same end as
the miRNA targets, the miRNA can be assumed to regulate that biological pathway. The regulations of
course have to be put in the context of the weighting of the IC. Regarding miR2, the regulations of targets
and biological pathways will be dependent on the grade of tumor and for miR1 it will be dependent on the
disease state of the sample. This is the principles behind the miRNA target prediction method proposed
here and we call it miICA.

The use of ICA in the analysis of microarray data is not novel. However, the novelty of miICA is the
combination of ICA applied to the expression matrices of miRNAs and mRNAs together with enrichment
analysis of targets and biological pathways. Using ICA enables the investigation of miRNA and pathway
regulations across several conditions. This is a very important feature and will be used extensively in this
article to explore the changes of expressions according to tumor development and treatment. It is also
a feature distinguishing miICA from other miRNA target prediction tools using expression data [26,27].
To our knowledge miICA is the first miRNA target prediction method to use independent component
analysis to couple miRNA and pathway regulations with each other.

We have previously applied a version of miICA on a model for type 1 diabetes in order to explore
the effects of miRNA regulations on type 1 diabetes. The results from miICA were validated by com-
parison with published results on type 1 diabetes [9]. There the results from miICA were validated by
comparison with published results on type 1 diabetes. In this article we will also validate miICA by
comparing the findings of miICA with published observations on deregulated miRNAs and pathways in
OVC. Furthermore, since the TCGA data contains duplicate gene expression profiles, we can validate
miICA by directly comparing the results of miICA when it is applied on the test set of Agilent mRNAs
and the validation set of Affymetrix mRNA. The high degree of congruence we observe between these
results give us a high level of confidence in our method.

Results and Discussion

In TCGA ovarian cancer database, both mRNA and miRNA expressions of 537 samples (514 primary
cancers, 15 recurrent and 8 normal samples) are profiled using an Agilent microarray assay. The number of
mRNAs profiled is 17,282, which is greater than the number of samples. Therefore min(537, 17282) = 537
ICs are estimated. The primary task is to search for an IC with component weights that correlates with
clinical conditions. Furthermore, the IC must contain gene weights that are significantly high or low for
genes targeted by miRNAs and/or biological pathways. To find such an IC the following two analyses
are performed:

1. An ANOVA is applied to each row of M in order to test if the component weights for each IC
correlate with the clinical conditions.
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2. Two enrichment analyses are applied on the gene weights within each IC.

• One enrichment analysis searches for overrepresentation of putative miRNA targets with either
very high or very low gene weights in each IC. Here putative miRNA targets are mRNAs with
a six nucleotide seed match in their 3UTR.

• Another enrichment analysis is performed on each IC in order to find overrepresentation of
biological pathways among genes with either very high or very low gene weights.

In the Methods section a detailed description of the enrichment analyses is given.

In the following we present examples of such ICs, where we link the clinical conditions with the enrich-
ments of biological pathways and miRNA targets.

The expressions of all miRNAs and mRNAs mentioned within this paper are plotted in Supplementary
Figure 1 and 2, respectively. The ICs are simply named according to their order in C, e.g. IC 1 is the
first column of C.

Targets of the p53 pathway and miR-374a are enriched in IC 339

p53 acts as a tumor suppressor and the p53 pathway is deregulated in 50% of all cancers [28]. The
p53 pathway has been linked to high-grade serous OVC and about 96% of ovarian tumors from TCGA
database exhibited mutations in p53 [6]. Therefore it is very important that miICA can demonstrate a
p53 deregulation in OVC.

The most significant enrichment of the p53 pathway in any IC correlating with the samples being
either normal or cancerous is found in IC 339. Genes annotated by the p53 pathway are significantly
overrepresented among genes with negative gene weights in IC 339 (q = 1 ·10−3). Figure 2(top) shows the
cumulative distribution function (CDF) for the gene weights of genes with and without an annotation for
the p53 pathway. It is clear that the CDF for the gene weights of p53 annotated genes are shifted to the
left, which indicates that these gene weights are significantly lower. IC 339 is clearly weighted negatively
in normal samples and is non-present in cancerous samples (q = 1.1 · 10−6, see Fig. 4G). Hence, since
the p53 annotated genes have negative gene weights in IC 339 they are downregulated in cancer versus
normal samples. That is there expression pattern mirrors that of the component weights for IC 339. This
follows the general knowledge of p53 inhibiting cancer development. The next step is to link the p53
regulation mapped by IC 339 to some miRNA regulations.

In IC 339 miR-374a,b have targets enriched with negative gene weights (q = 9.4 · 10−6). This enables
a coupling of miR-374a,b to the regulation of genes in IC 339. To ensure that the coupling is biological
plausible the actual expressions of miR-374a,b need to be considered. The TCGA data shows an upreg-
ulation of miR-374a in cancerous samples (p = 9.17 · 10−7, 2.1-fold change, see Supplementary Figure
1). The component weights of IC 339 are also upregulated in cancerous samples. Thus the expression of
miR-374a correlates with the component weights of IC 339. This is not observed for miR-37b, because
miR-374b is upregulated in cancer samples and downregulated in recurrent samples (p = 0.00256). A
link between miR-374a and the p53 pathway can be created because two conditions are satisfied: (1) the
expression of miR-374a follows the pattern of component weights for IC 339, which consequently leads
to an overrepresentation of miR-374a targets among genes with negative gene weights in IC 339 and (2)
genes annotated with the p53 pathway are also among the most negatively weighted genes in IC 339.

IGF1 has been demonstrated to be involved in the development of OVC [29]. Considering genes that
are both targets of miR-374a and annotated by the p53 pathwayIGF1, IGF1 has the second most negative
gene weight in IC 339. Consequently it is expected that IGF1 is downregulated in cancer. The expression
of IGF1 actually tends to be downregulated in recurrent samples, shown in Supplementary Figure 2. This
observation of IC 339 significantly contributing to the expression profile of IGF1 underlines the plausible
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miR-374a mediated regulation of the p53 pathway. IGF1 is demonstrated to be one potential target of
miR-374a.

The expression of miR-374a was recently found to be strongly linked with overall survival in the
TCGA ovarian tumor set [30] (under revision in PlosONE). Furthermore, miR-374a has been reported
to be upregulated in colon cancer [31] and downregulated upon cisplatin treatment in squamous cell
carcinoma (SCC) [32] and in non-small cell lung cancer [33]. These findings support the strength of
miICA in being able to capture miRNA regulations that has just recently emerged in the literature.

A regulatory relationship between miR-374a and p63

Recently, there has been a lot of research on p63, a p53 family member, because its role in cancer seems
to be dual and very complex [34, 35]. p63 activates miR-374a transcription [32], which above was linked
to the p53 pathway. We are using the MSigDB annotation database for pathway enrichment analysis.
In MSgiDB p63 is not annotated with the p53 pathway. However, it is known that depending on the
isoform of p63 it can either activate or inhibit p53 target genes [35]. In IC 339 p63 lies among the 10%
most negatively weighted genes together with p53 annotated genes as described above. This indicates an
activating role of p63 on the p53 target genes. On the Agilent microarray chip the probe for p63 cannot
distinguish between the different isoforms of p63. By using miICA we are able to retrieve its activating
role on p53 targets.

In 2011, Huang et al., [32] reported that miR-374a and ∆Np63α, an isoform of p63, are downreg-
ulated upon cisplatin exposure of head and neck squamous cell carcinoma (HNSCC) cells. Cisplatin
is a chemotherapeutic agent. We want to explore if miICA is capable of demonstrating the regulatory
relationship between p63 and miR-374 and their mutual downregulation upon chemotherapy in OVC. To
demonstrate this we searched for ICs where p63 has a significant gene weight (Cp63,k). A gene weight of
gene g in the kth IC (Cgk) is assumed to be significant if |Cgk| > 2σ(|C.k|) [23], where σ is the standard
deviation and |Ck| are the absolute gene weights in the kth IC.

There are four ICs (ICs 22, 102, 231 and 425) with enrichments of miR-374a targets (p < 0.05), a
significant gene weight of p63 and component weights correlating with chemotherapy (p < 0.05). There
are two clinical conditions of the TCGA data related to chemotherapy. One is chemotherapy as the
primary treatment and a second is additional chemotherapy after the return of OVC after a period of
remission. Since p63 activates miR-374a transcription it is expected that the gene weights of miR-374a
targets and the gene weight of p63 are of opposite sign in the four ICs. Without requiring it, in all these
four ICs this is actually true.

The largest ratio of
|Cp63,k|
σ(|C.k|)

is found in IC 231 and therefore IC 231 is assumed to contribute most

significantly to the expression profile of p63 as compared to ICs 22, 102 and 425. Figure 4C shows the
component weights of IC 231 when the samples are grouped according to additional chemotherapy. IC
231 is weighted highest in patients not receiving additional chemotherapy, where IC 231 has an positive
average component weight. The gene weight of p63 in IC 231 is negative and consequently p63 is
upregulated upon chemotherapy. The targets of miR-374a have significantly higher gene weights in IC
231 than non targets (q = 0.048). The positive gene weights of miR-374a targets in IC 231 results in
them being downregulated upon chemotherapy. The significancy for the gene weight of p63 in the four
ICs together with the enrichment of miR-374a targets indicate a deregulation of miR-374a and p63 upon
chemotherapy. Interestingly, the results of miICA propose for an upregulation of miR-374a and p63 upon
chemotherapy treatment, which contradicts the findings of Huang et al. [32].

miR-933 is related to the recurrence of ovarian cancer

For 15 patients there exist paired cancer and recurrent samples. Considering only these 30 samples the
component weights of IC 79 are significantly higher in recurrent samples as compared to cancer samples



6

(paired t-test, p = 0.043), see Fig. 3A. In fact, IC 79 has the lowest q-value (q = 2.1 · 10−5) of all ICs
when testing the component weights between all cancer and recurrent samples.

In the negative end of IC 79 genes annotated with pathways in cancer are overrepresented and genes
annotated by stabilization of p53 are overrepresented in the positive end. Pathways in cancer is a collection
of pathways that are related to cancer, e.g., apoptosis (www.genome.jp/kegg/). When testing for the
difference in miRNA expressions between recurrent and cancerous samples miR-933 is most significantly
differentially expressed (q = 1.6·10−13). The expression of miR-933 follows the pattern for the component
weights of IC 79, i.e. miR-933 is upregulated in recurrent samples (see Fig. 3B and Supplementary
Figure 1). To follow the rationale from above the genes targeted by miR-933 must then be significantly
overrepresented among genes with negative gene weights in IC 79. If so, then a link between pathways in
cancer and the regulation of miR-933 can be proposed. In fact targets of miR-933 are significantly lower
weighted in IC 79 than non-targets (q = 0.0098) and therefore we propose a link between pathways in
cancer and miR-933 through the regulations of genes with negative gene weights in IC 79.

Among genes with positive gene weights in IC 79, genes annotated by oxidative phosphorylation are
significantly overrepresented (q < 10−16). This is an interesting observation, because their positive gene
weights propose for oxidative phosphorylation annotated genes being upregulated in recurrent samples.
Furthermore, it is the most significantly overrepresented pathway in the positive end of IC 79, as pathways
in cancer is the most significantly overrepresented pathway in the negative end. In most cancer cells the
energy production comes from utilization of glycolysis rather than oxidative phosphorylation. From IC
79 it seems that upon recurrence of OVC then oxidative phosphorylation becomes active.

IC 332 shows the most significant enrichment of oxidative phosphorylation annotated genes (q <
10−16). They have significantly lower gene weights than genes not annotated by oxidative phosphoryla-
tion. The component weights of IC 332 correlate with whether the tumor recurrence was first observed as
metastasis or locoregional, see Fig. 4F. IC 332 is weighted highest in metastatic samples and since target
genes of oxidative phosphorylation have negative gene weights they will downregulated in metastatic sam-
ples as compared to logo-regional samples. Thus, oxidative phosphorylation is most active in loco-regional
tumors as compared to metastatic tumors.

miR-9 relates to the recurrence of cancer and the p53 pathway

Through regulations of NF-κB1, miR-9 is a known inhibitor of OVC [14]. In the TCGA data miR-9 is
only significantly, differentially expressed when comparing deceased and living patients, but not when
comparing cancer and normal samples. By use of miICA, it might be possible to retrieve the inhibitory
effect of miR-9 in relation to the development of OVC.

To find the fingerprint of miR-9 in the TCGA data we searched for ICs with a significant gene weight

of miR-9. In 34 ICs the inequality
|CmiR−9,k|
σ(|C.k|)

> 2 is true and in these it is tested if targets of miR-9 have

gene weights that are significantly lower or higher than non-targets (requiring q < 0.05). At the same
time opposing signs of gene weights for miR-9 targets and miR-9 itself are needed to ensure an inhibitory
effect of miR-9 on its targets. This leaves six ICs for further investigations. Among these only one IC
is differentially weighted in cancerous and normal samples (q = 0.026). It is IC 96 and its component
weights are shown in Fig. 4B. The gene weight of miR-9 in IC 96 is negative, and because the component
weights of IC 96 are highest in cancer samples, miR-9 will be consequently be downregulated in OVC as
obverted experimentally.

Since miR-9 is an inhibitor of OVC its targets should be upregulated in cancer versus normal samples.
The targets of miR-9 are in fact overrepresented in the positive end of IC 96 and will consequently be
expressed in a way similar to the to component weights of IC 96. That is, miR-9 targets are upregulated
in cancer. Stabilization of p53 is one pathway with target genes overrepresented in the positive end of
IC 96. Therefore the pathways mapped by and genes in IC 96 might be regulated by miR-9 and a link
between IC 96 and destabilization of p53 in cancer is plausible.
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IC 501 maps to the mTOR pathway

The mTOR pathway is druggable [36] and thus is a relevant pathway to investigate in relation to the
treatment of OVC. The mTOR pathway is namely deregulated in OVC [37] and the expression of the
tumor suppressor miR-100 is related to the deregulation of the mTOR pathway in OVC [37]. We want
to investigate wether miICA is capable of documenting this regulatory relationship between the mTOR
pathway and miR-100 for the TCGA data. There are only two ICs where that have both an enrichment
of miR-100 targets and mTOR target genes. These are ICs 79 and 501. In both ICs the gene weights
of miR-100 target and mTOR target genes are significantly lower than non-target genes(q < 0.001 and
p < 0.03, respectively). For IC 79 this comes as no surprise, since it has already been linked to the
development of OVC by the results presented above.

Since miR-100 is a tumor suppressor gene it is downregulated in cancerous samples, see Supplementary
Figure 1. The component weights of IC 501 are lower in cancer samples compared to normal samples
(p = 4.2 · 10−4), see Fig. 4H. Since the targets of miR-100 are overrepresented in the negative end of IC
501 they will in general be upregulated in cancer, which complies with miR-100 being downregulated in
cancer. Thus, miICA is capable of documenting miR-100 as a tumor suppressor and also, since miR-100
and mTOR target genes both are enriched among genes with negative gene weights in IC 501 we propose
for this IC mapping to a miR-100 mediated regulation of the mTOR pathway.

A regulatory relationship between miR-31 and the p53 pathway

In cell lines where the p53 gene is dysfunctional or absent, miR-31 stops the cells from dividing wildly
and induces apoptosis [15]. We want for miICA to retrieve this tumor suppressing function of miR-31
in the TCGA data. There are 48 ICs with a significant enrichment of miR-31 targets (q < 0.05). For
these 48 ICs we seek for enrichments of targets of either the p53 pathway or stabilization of p53. In total
there are 7 ICs with an enrichment for p53 and miR-31 targets(q < 0.05), but only 3 of these ICs (Ics
53, 195 and 277) are differentially weighted between cancerous and normal samples (q < 0.05). Targets
of miR-31 should be upregulated in cancer samples, because miR-31 is the most downregulated miRNA
in OVC.

The target enrichment analysis in combination with the weighting of the ICs gives that targets of miR-
31 in general are upregulated according to ICs 195 and 277, which does not comply with the experimental
experimental findings. However, IC 53 is positively weighted in normal samples and is non-present in
cancerous samples (q = 0.0058, see Fig. 4A). For the miR-31 targets to be upregulated in cancerous
samples, they need to be enriched in the negative end of IC 53, which is actually the fact (q = 0.020).
Furthermore, in the positive end of IC 53 targets for the stabilization of p53 is enriched (q = 0.035)
meaning that they in general are downregulated in cancerous samples. This complies with the p53 being
destabilized in OVC. All this proposes for a connection of miR-31 to the stabilization of p53 through the
gene regulatory pathway mapped by IC 53.

Regulations of the Wnt pathway in ovarian cancer

There are two ICs (277 and 309) where gene weights for genes annotated by the Wnt pathway are enriched
in the positive ends of the ICs (q = 0.015 and q = 0.030, respectively). The component weights of IC 277
are highest and positive in normal samples (q < 10−16). For IC 309 the component weights are positive
in cancerous samples and negative in normal samples (q = 0.022), see Fig. 4(D,E). Thus the component
weights of ICs 277 and 309 anti-correlate, even though the Wnt pathway is enriched in the positive end
of both ICs. These two ICs may correspond to two different regulatory mechanisms of Wnt in OVC.

There are two known miRNAs targeting the Wnt pathway miR-29c [38] miR-130a,b [39]. miR-130a,b
have targets significantly enriched with positive gene weights in IC 277 (q = 2.2 · 10−5) and miR-29c
have targets enriched with positive gene weights in IC 309 (q = 0.0011). This complies with the Wnt
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pathway also being enriched with positive gene weights in these two ICs. Recently, it has been shown
that dickkopf-1 (Dkk1) an inhibitor of Wnt signalling [40, 41] is frequently overexpressed in OVC [42].
Dkk1 have negative and positive gene weights in ICs 277 and 309. Thus both these ICs contributes to
the Dkk1 expression profiles with an upregulation of Dkk1 in cancer. The fact that targets of known
Wnt related miRNAs are enriched in ICs 277 and 309 and the gene weights of Dkk1 in these two ICs
complies with its inhibitory effect on the Wnt pathway underlines the mapping of these two ICs to the
Wnt pathway.

Congruence between the results of Agilent and Affymetrix mRNAs

When applying an enrichment analysis for overrepresentation of miRNA targets and pathway annotations
on the component matrix obtained from the Affymetrix mRNA similar results are obtained as for the
Agilent mRNA.

• In IC 512 the p53 pathway and targets of miR-374a,b are overrepresented with positive gene weights.
The component weights of IC 512 are negative in cancerous samples and positive in normal samples
(p < 0.005, see Fig. 5C). This is the opposite as for the component weights of IC 339 and the
expression of miR-374a. In IC 339 the p53 pathway and targets of miR-374a were enriched with
negative gene weights, where for IC 512 the enrichment is for positive gene weights. Thus, IC 512
maps to the p53 pathway in the same way as IC 339 mapped to the p53 pathway for the Agilent
mRNAs.

• In ICs 355 and 516 there are enrichments of miR-100 targets (p = 0.048 and p = 0.0074, respectively)
and the mTOR pathway (p = 0.0075 and p = 0.029, respectively) with negative gene weights. They
both have negative component weights in all samples, but most negatively in cancerous samples
(p = 2.0 ·10−6 and p = 0.015, respectively, see Fig. 5A,D). Thus targets of miR-100 and the mTOR
pathway are upregulated in cancerous samples. This complies with the fact that miR-100 is a tumor
suppressor and is linked to the mTOR pathway as was observed for IC 501 regarding the Agilent
mRNAs.

• The Wnt pathway was represented by two ICs for the Agilent mRNAs. For the Affymetrix mRNAs
IC 385 have enrichments with positive gene weights of both miR-29c (p = 0.045) and miR-130a,b
(p = 0.019) targets together with and enrichment of the Wnt pathway (p = 0.010). IC 385 is
almost non-present in normal samples and weighted positively in cancerous samples (p = 0.027, see
Fig. 5B). These findings correspond to the finding of IC 309 mapping to the Wnt pathway for the
Agilent mRNAs.

We are therefore able to retrieve the findings from our test set in our validation set and consequently
we state that the results of miICA are reliable.

Independent components mapping to miRNA regulations

As mentioned in the beginning it might not only be biological pathways but also genes highly regulated
by miRNAs, which ICA identifies. IC 79 and IC 501 studied above could be such two ICs. They show
enrichment of targets for 99% and 96% of the miRNAs and the pathways enriched include several cancer
related pathways.

Thus from the results of miICA it is possible to retrieve genetic links between miRNA and mRNA
regulations in relation to OVC, and we believe that some ICs map to miRNA regulated pathways.
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Methods

Preprocessing of the mRNA and miRNA expression microarray data

The mRNA and miRNA expressions in OVC were downloaded from the TCGA database (http://
tcga-data.nci.nih.gov/tcga/). The mRNA expressions profiled using the Agilent array 244K were
downloaded as level 3 data, i.e. as a quantile normalized expression matrix, the mRNA expressions
profiled using the Affymetrix U133A array were downloaded as level 1, i.e. as raw CEL-files, and the
miRNA expressions profiled using the Agilent miRNA (v2) 8x15K array were downloaded as raw image
files (level 1).

All the CEL-files were preprocessed using the RMA package [43] in Bioconductor [44] with remapped
Ensembl build 50 gene probesets [45]. After quantile normalization of the mRNA expression matrix,
missing entries were estimated using a nearest neighbor averaging function with the ten nearest neighbors.
Only mRNAs with available 3’UTR sequences are included in the expression matrices for both Agilent and
Affymetrix mRNAs. To select these the biomaRt package (vs2.8.1) in R (v.2.13) was used. TThe Agilent
mRNAs were annotated with Agilent IDs and hgnc IDs were used to retrieve the 3UTR sequences. The
PubMed gene repository (www.ncbi.nlm.nih.gov) was used to map between the different annotations.
After exclusion of mRNAs without a 3’UTR sequence the Agilent mRNA expression matrix contains
15,466 genes and 537 samples and the Affymetrix mRNA expression matrix contains 11,869 genes and
584 samples.

The raw image files for the miRNA expressions were read using the AgiMicroRna package [46] in
R. After loading the image files the quality of the array data were checked by looking at the MA and
density plots for each array. Within each array a robust multichip analysis is performed to normalize the
expression values. The log-transformed of the total gene signal is centered on the modes of the density
distribution for each array. Then the standard deviation versus mean trend is removed before miRNAs
having invariant expressions across the samples are found [47]. After this normalization, the miRNA
expressions were filtered to only retain the miRNAs with a certain quality, e.g., the miRNA must be
detected in more then 20% of the samples within a group of samples. In total, it leaves 510 miRNAs for
further investigations. The mature sequences of these miRNAs were downloaded from miRBase (v18.0)
(www.mirbase.org/).

When performing a microarray experiment for the expressions of miRNAs, it is the levels of both the
active and precursor forms that are measured [48]. It is not possible to distinguish the mature sequence
of a miRNA from its pre-miRNA sequence on the microarray. Therefore the miRNA expression levels
from the microarray are only used quantitatively. Here we have set our results for the miRNA expressions
against expression profiles for miRNAs already published. Thus, we are not only relying our findings on
the miRNA microarray data.

ICA applied on the expression matrices

The maximum number N = min(S, G) of ICs is estimated to preserve the full information hidden in the
data [49, 50]. fastICA [51] is one implementation of ICA in R and it was used in this analysis. It is an
iterative algorithm based on the maximization of negentropy and it returns slightly different estimates of
C and M for each application on the expression matrices. To meet this, fastICA is applied 20 times on
the mRNA expression matrices and subsequently an average component matrix is calculated by taking
the mean of the most correlating ICs from each of the 20 runs. Knowing the average component matrix,
an average mixing matrix is easily calculated by the numerical solution to E = CM ⇒ M = C−1E. For
a detailed description of the fastICA algorithm see Ref. [51].

The miRNA expressions are higher compared to the Agilent mRNA levels. Thus a simple combination
of the mRNA and miRNA expression matrices would cause the miRNAs to show up in only one IC when
applying ICA to the combined matrices. ICA could in principle be applied on the two expression matrices
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separately, but there are fewer miRNAs than samples leading to a problem of over-learning [52]. A way to
apply ICA on the miRNA expression matrix EmiRNA is to use the mixing matrix for the mRNAs MmRNA

and then estimate a component matrix for the miRNAs CmiRNA by solving EmiRNA = CmiRNAMmRNA.
This is only possible for samples with both miRNA and Agilent mRNA expressions profiles. There are
584/537 samples with expression profiles for both miRNAs and Agilent/Affymetrix mRNAs.

Enrichment analyses

From the 3’UTR sequences a target matrix (T) is generated with miRNAs in the columns and genes in
the rows. The entries of the target matrix are the numbers of matches for the seed of a given miRNA in
the 3’UTR of a given gene, i.e. Tm,g = 5 corresponds to miRNA m having five seed matches in the 3’UTR
of gene g. A Wilcoxon rank sum test is then applied to test if the gene weights of genes with targets
are either significantly smaller or significantly larger then the gene weights of genes without targets for
a specific miRNA. The enrichment test is applied on all ICs and the p-values were FDR (false discovery
rate) corrected for multiple testing.

The same enrichment analysis was performed for the pathway annotation of the mRNA. Here we
used the pathway annotation from the Molecular Signatures Database v3.0, Broad Institute (www.
broadinstitute.org/gsea/msigdb). For a specific pathway, a Wilcoxon rank sum test was applied
to test if genes annotated with that pathway have significantly low/high gene weights compared to genes
not annotated by that pathway. The p-values were FDR corrected, as above, for multiple testing.
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Figure Legends
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Figure 1. Schematic illustration for the application of ICA on an expression matrix. E is decomposed
into two ICs and a mixing matrix (M). mRNAs and miRNAs are weighted by gene weights in ICs 1
and 2 (purple and magenta squares). IC 1 and 2 are weighted in the samples according to their
component weights in the rows of M. mRNA1 and miRNA1 are down/upregulated in cancer, therefore
the gene weights of these are very high/low in IC 1, which is weighted negatively in cancer and
positively in normal samples. mRNA2 and miRNA2 are down- and upregulated from high to low grade
tumors, therefore the gene weights are very low/high in IC 2, which is weighted most positively in low
grade tumors . The gene weights of miRNAs and mRNAs lies oppositely, since the expressions of these
anti-correlate.
Logarithmic expression: red-green. Component and gene weights: yellow-cyan. Black/white:
cancer/normal, grayscale: grade of tumor.
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Figure 2. The cumulative distribution function (CDF) of gene weights in IC 339. Top: genes with
(black) and without (grey) an annotation for the p53 pathway. Bottom: genes with (black) and without
(grey) a seed match for miR-374a.
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Figure 3. Component weights of IC 79 are highest in recurrent samples. (A) For 15 samples with both
a cancer and recurrent profile the component weights of IC 79 are plotted. A paired t-test on the 15
paired samples gives a p-value = 0.043. (B) Barplot for the component weights of IC 79 in all cancer
and recurrent samples. Bars are mean values and lines are ±σ2.
Filled bars: cancer, striped bars: recurrence.
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Figure 4. The mean of component weights in different ICs and for different classification schemes. The
samples are grouped based on disease state (A,B,D,E,G-H), additional chemotherapy (C), and site of
first tumor recurrence (F). In all panels the component weights significantly correlates with the
classification of samples with p-values < 0.05. The numbers in parenthesis are the number of samples
with a given classification. The bars are the mean values and the lines are ±σ2.
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Tables

Table 1. Features commonly included in miRNA target prediction methods

Feature Description

Seed match: The formation of miRNA:mRNA duplexes by complementary base pairing.

Favourable seeds: The secondary structure of the mRNA [53] and the flanking region around the
seed sites [54, 55] make some seed sites more favourable than others.

Gene expressions: A negative correlation between the expression of the miRNA and its target is
expected due to the inhibitory effect of the miRNA.

Conservation: The seed region of miRNAs and their targets are well conserved among related
species [4].

Cooperativity: Examine whether one or more seed sites resides within the miRNA targets.
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Supplementary Figure 2
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