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Identifying Bottom-Up and Top-Down Components of Attentional Weight
by Experimental Analysis and Computational Modeling

Maria Nordfang, Mads Dyrholm, and Claus Bundesen

University of Copenhagen

The attentional weight of a visual object depends on the contrast of the features of the object to its local
surroundings (feature contrast) and the relevance of the features to one’s goals (feature relevance). We
investigated the dependency in partial report experiments with briefly presented stimuli but unspeeded
responses. The task was to report the letters from a mixture of letters (targets) and digits (distractors).
Color was irrelevant to the task, but many stimulus displays contained an item (target or distractor) in a
deviant color (a color singleton). The results showed concurrent effects of feature contrast (color
singleton vs. nonsingleton) and relevance (target vs. distractor). A singleton target had a higher
probability of being reported than did a nonsingleton target, and a singleton distractor interfered more
strongly with report of targets than did a nonsingleton distractor. Measured by use of Bundesen’s (1990)
computational theory of visual attention, the attentional weight of a singleton object was nearly
proportional to the weight of an otherwise similar nonsingleton object, with a factor of proportionality
that increased with the strength of the feature contrast of the singleton. This result is explained by
generalizing the weight equation of Bundesen’s (1990) theory of visual attention such that the attentional
weight of an object becomes a product of a bottom-up (feature contrast) and a top-down (feature
relevance) component.

Keywords: visual attention, stimulus-driven, goal-driven, theory of visual attention, computational

modeling

Some of the things that meet our eyes are attended and enter our
mind; others go unnoticed. In complex natural scenes, a great
multitude of different objects might be noticed, and for each of
these objects, the likelihood that the object is noticed depends on
many different factors. Some factors are relatively objective, in the
sense that they depend strongly on the object but little on the
subject. For example, at the marketplace, a particular piece of fruit
may be noticed because it sticks out from its surroundings by
having a deviant color. Such factors can be regarded as bottom-up
components of the attentional weights (cf. Bundesen, 1990) of
objects. Other factors are more subjective, depending more
strongly on the subject. For example, at the marketplace, another
piece of fruit may be noticed because it is needed for a meal one
has planned to prepare. Such factors can be regarded as top-down
components of attentional weights. The two types of factors may
be subsumed under the headings of feature contrast and feature
relevance, respectively. Apparently, when an object differs from
its local surroundings (feature contrast), we tend to attend to the
object. When the features of an object are relevant to our goals
(feature relevance), we also tend to attend to the object. This article
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is a treatise of the two components of visual attentional weight: the
bottom-up, local feature contrast component and the top-down,
feature relevance component. The analysis we present is based on
psychological experiments with relatively simple stimuli (letters
and digits with differently colored local backgrounds), but the
principles we derive from our experiments should generalize to
visual perception of complex natural scenes.

It is widely accepted that both feature contrast and feature
relevance influence attentional selection, and many models of
visual attention entail both types of components (e.g., Duncan &
Humphreys, 1989; Miiller & Krummenacher, 2006; Theeuwes,
2010; Wolfe, Cave, & Franzel, 1989). However, these models
differ in their suggested relationship between the two components
(cf. Zehetleitner, Goschy, & Miiller, 2012). Some models propose
that feature contrast and feature relevance influence attention con-
secutively (Theeuwes, 2010), some models suggest qualitatively
different search modes (e.g., Bacon & Egeth, 1994), some argue
the two components influence attention interdependently (Folk,
Remington, & Johnston, 1992; Found & Miiller, 1996; Zehetleit-
ner et al., 2012), and some propose an additive relationship be-
tween the two components (Wolfe, 1994; Wolfe et al., 1989). A
central part of this debate has revolved around the initial process-
ing of new stimuli, often exemplified by the onset of a new display
on a computer screen or by the first few hundred milliseconds of
visual processing after a new fixation. One theoretical view states
that initial allocation of attention is determined solely by the
physical properties of the stimuli, such that stimuli that differ from
their surroundings automatically attract attention (Belopolsky,
Zwaan, Theeuwes, & Kramer, 2007; Theeuwes, 1991, 2004,
2010). Another theoretical view states that attention is directed
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according to our current goals, and by this view, the attentional
effect of contrast depends on the relevance of contrast to our goals
(e.g., Bacon & Egeth, 1994; Folk et al., 1992; also see Bundesen,
1990). This discussion has been going on for more than 20 years.

In this article, we investigate the roles of feature contrast and
feature relevance in initial visual selection by experimental anal-
ysis and computational modeling. Our experimental approach dif-
fers from the majority of studies in the previous literature on the
topic, as we used post-masked, briefly presented stimulus displays
with multiple, simultaneously presented targets, and the partici-
pants were not required to make speeded responses. We identified
the (bottom-up) feature contrast and the (top-down) feature rele-
vance components of attentional weight by analyzing our experi-
mental data by use of Bundesen’s (1990) computational theory of
visual attention (TVA). As we shall see, the results suggested a
far-reaching generalization of the weight equation of TVA and
provided insight into the mechanisms of top-down and bottom-up
components of attentional weight.

Previous Studies

Through the past decades, one of the most influential experi-
mental paradigms for investigating visual selectivity has been the
additional singleton paradigm, introduced by Theeuwes (1991). In
this paradigm, participants are requested to search for a particular
element that is specified as the odd-one-out within a defined
feature dimension (e.g., shape) and to respond to the orientation of
a line segment located inside this so-called target singleton ele-
ment. On some trials, an additional singleton is present. The
additional singleton is defined by another feature dimension than
the target feature dimension (e.g., color). When the contrast of the
additional singleton is sufficiently high, reaction times to the target
singleton are significantly prolonged (Theeuwes, 1992). These
results have been repeatedly replicated (Bacon & Egeth, 1994;
Ester & Awh, 2008; Theeuwes, 2004), but there is considerable
disagreement as to their interpretation.

On one side, it has been argued that data from the additional
singleton experiments support the view that local feature contrast
determines the initial allocation of attention. As a proponent of this
interpretation, Theeuwes (e.g., 1991, 2010) has argued that selec-
tion of visual information is done in two stages. At the first stage,
selection is driven only by feature contrast such that the element
with the highest contrast is the first to be selected, the element with
the second highest contrast is the second to be selected, and so on
(cf. Theeuwes, 1992; Theeuwes & Burger, 1998). According to
this view, relevance-directed allocation of attention is not possible
before the second stage, which supposedly corresponds to approx-
imately 150-175 ms after the stimuli have been presented (e.g.,
Theeuwes, 2010, p. 88). Thus, the time taken to find a target
element increases in the presence of elements with a higher con-
trast. A substantial amount of data collected using the additional
singleton paradigm has confirmed that search times to find a target
singleton increase when a distractor singleton with a sufficiently
high local contrast is present (e.g., Theeuwes, 1991, 1992, 2004,
2010).

On the other side, several researchers have opposed the view
that initial attentional selection is determined entirely by local
feature contrast. These researchers disagreed that the data from the
additional singleton experiments show that initial attention is con-

trast bound (Bacon & Egeth, 1994; Folk & Remington, 1998; Folk
et al., 1992; Folk, Remington, & Wright, 1994; Leber & Egeth,
2006). They argued that because the target in the additional sin-
gleton experiments is a singleton itself, it is contingent with the
task to pay attention to singletons. Hence, the additional nontarget
singleton is not irrelevant to the task (Bacon & Egeth, 1994; Folk
et al., 1992, 1994). It has been proposed that participants in the
additional singleton experiments are in a singleton detection mode
in which all singletons, irrespective of the feature dimension in
which they are unique, are prioritized (Bacon & Egeth, 1994;
Leber & Egeth, 2006). Such a strategy is likely to be fairly
effortless, and it allows the participant to locate the target. How-
ever, when objects with unique features are prioritized, the addi-
tional singleton will attract more attention than other nontargets
and thereby prolong the time taken to locate the target singleton.

In experiments in which the additional singleton task is modi-
fied such that participants can no longer perform the task by means
of singleton detection mode (e.g., when the target is a singleton on
only a few of the trials), the effect of the additional singleton seems
to vanish (Bacon & Egeth, 1994; Folk & Remington, 1998; Folk et
al., 1992; Leber & Egeth, 2006). Furthermore, several studies have
varied contrast and relevance independently (e.g., Folk & Annett,
1994; Jonides & Yantis, 1988; Yantis & Egeth, 1999) and under
these conditions found no effects of static feature singletons. These
results agree with the view that static local feature contrast influ-
ences initial allocation of attention if, and only if, the contrast
signal is relevant to the current task. More recently, the notion of
qualitatively different search modes, as proposed by Bacon and
Egeth (1994), has been questioned by studies showing gradual
top-down modulation of the effect of the additional singleton
(Miiller, Geyer, Zehetleitner, & Krummenacher, 2009; Zehetleit-
ner et al., 2012), which have argued that bottom-up and top-down
components influence visual attention continuously and interde-
pendently.

All of the above studies agree that the effect of the additional
singleton is modulated by top-down components. However, an-
other interpretation of Bacon, Egeth, Folk, Miiller, and colleagues’
data has been proposed. It has been suggested that the lacking
effect of the additional singleton in the above-mentioned studies is
due to the small size and the fast disengagement of a spatial
attentional window (e.g., Belopolsky & Theeuwes, 2010; Belopol-
sky et al., 2007; Theeuwes, 2010). According to this hypothesis,
the size of the attentional window depends on the difficulty of the
search task. When search becomes difficult, the size of the atten-
tional window is reduced. Thus, when the search task is hard (e.g.,
Bacon & Egeth, 1994, Experiments 2 and 3; Jonides & Yantis,
1988, Experiments 1 and 2), the distracting additional singleton
falls outside the narrow window and therefore has no effect on
attention (Belopolsky & Theeuwes, 2010; Belopolsky et al., 2007;
Theeuwes, 2004). Furthermore, when the additional singleton is
sufficiently different from the target, the attentional window can be
disengaged from the distracting singleton and reallocated to the
target location very quickly (Belopolsky et al., 2007; Theeuwes,
2010). The disengagement may happen so fast that the attentional
allocation to the distracting singleton is indiscernible in reaction
times when there is a 150-ms interval between the onset of the
distracting singleton and the target display, as in the study by Folk
et al. (1992; see Theeuwes, 2010). The validity of these hypothe-
sized mechanisms has been challenged (Folk & Remington, 2010;
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Miiller et al., 2009; Miiller, Tollner, Zehetleitner, Rangelov, &
Krummenacher, 2010), and the question of whether initial atten-
tional allocation is determined by relevance, contrast, or both,
remains unresolved.

In general, it is striking that the experiments finding support of
contrast-dependent attentional selection have tended to disregard
the relevance of the contrast, whereas the studies with results
consistent with a complete dependency on relevance largely have
neglected the strength of the feature contrast. Furthermore, most of
the above-mentioned studies have used relatively long, response-
terminated stimulus presentations and reaction time as the main
dependent variable (for reaction time experiments with fixed ex-
posure duration, see Folk et al., 1992; Theeuwes & Burger, 1998).
As emphasized by Santee and Egeth (1982) and Ester and Awh
(2008), performance in such resource-limited conditions reflects
not only perceptual but also postperceptual processing, including
response selection. By contrast, in a data-limited task in which
participants are instructed to make an unspeeded response to target
items presented for only a brief period of time, performance may
reflect the perceptual processing with higher fidelity (Ester &
Awh, 2008; Santee & Egeth, 1982). The brief exposures may
ensure that performance is limited by the initial encoding of the
stimulus display, and the use of unspeeded responses may reduce
the likelihood of errors in response selection (or other processes).
In view of these considerations, a new approach by use of data-
limited, unspeeded-response tasks seems warranted in order to
determine the roles of contrast and relevance in initial attentional
selection.

A New, Irrelevant-Singleton Paradigm

To disentangle effects of local feature contrast and relevance to
the observer’s goals, we need experiments that vary contrast and
relevance systematically and independently from each other, while
leaving little doubt on whether processing pertains to one or other
purported stage. For this purpose, we implemented a new experi-
mental method, introducing color singletons into a partial report
task in which color was irrelevant, stimulus displays were briefly
presented and post-masked, multiple targets were present, and the
dependent variable was accuracy of report. The task was to report
the letters from an array of letters (targets) and digits (distractors).
On some trials a singleton color was present. The singleton color
was the only singleton feature in the displays and as such presented
a strong local feature contrast. However, the visibility of the
element with the singleton color was the same as the visibility of
the remaining, nonsingleton elements. Furthermore, the singleton
color was entirely irrelevant to the task. The probability that a
color singleton was a target was exactly the same as the probability
that a nonsingleton was a target. In addition, targets could not be
located on the basis of any type of local feature contrast, so the
participants could not perform the task by searching for singletons
(cf. Bacon & Egeth, 1994). These manipulations led to an exper-
imental setup that allowed for disentanglement of effects of con-
trast from effects of relevance in processing of briefly exposed
displays. Importantly, the setup also made it possible to evaluate
whether the effect of the local feature contrast of an element (color
singleton vs. nonsingleton) depended on the relevance of the
element (target vs. distractor).

TVA-Based Predictions

We analyzed the results of our partial report experiments by use
of Bundesen’s (1990) theory of visual attention (TVA). At the core
of TVA are two equations: the rate equation and the weight
equation. The rate equation describes the rate (categorizations/s) at
which a specific categorization of an object in the visual field
(object x belongs to category i or, equivalently, object x has feature
i) is encoded into visual short term memory (VSTM). This rate is
given by Equation 1 of TVA,

v(x, i) =m(x, i)BiEL, (1

ZES W,

where m(x, i) is the strength of the sensory evidence that object x
belongs to category i, 3; is the perceptual bias associated with
category i (i.e., the inclination to categorize objects as members of
category i), and w,/ 2165 w, is the relative attentional weight of
object x (i.e., the ratio between the attentional weight allocated to
object x and the sum of attentional weights across all objects in the
visual field). The weight equation describes the amount of atten-
tional weight allocated to an object, and is given by Equation 2 of
TVA,

Wy = EJER T](x,j)‘rr~, ()

where m(x, j) is the strength of the sensory evidence that object x
belongs to category j, and ; is the pertinence of category j (i.e.,
the inclination to categorize objects that are members of category
J; for further details, see Bundesen, 1990; Bundesen, Habekost, &
Kyllingsbak, 2005, 2011). Taken together, the two equations
describe how v(x, i) is a function of m, 3, and  values.

TVA has proven to be a powerful tool in analyzing visual
attention and the mechanisms that underlie attentional selec-
tion, and the theory has been supported by a large body of
empirical evidence (Bundesen, 1990, 1998; Bundesen & Ha-
bekost, 2008; Bundesen et al., 2005, 2011; see also Logan,
1996, 2002; Logan & Gordon, 2001). By fitting behavioral data
with a mathematical model based on TVA, it is possible to
estimate many parameters of attention such as the attentional
weight (w) of each of the different types of items, minimum
effective exposure duration (f, ms), processing capacity (C
categorizations/s), and storage capacity of VSTM (K items;
Duncan et al.,, 1999; see Habekost & Starrfelt, 2009, for a
review of TVA-based patient studies). In the current study, we
fitted the data by a naive TVA-based model: a model that did
not impose any prior assumptions on how the attentional
weights of the different element types related to each other.
During the estimation process, we let attentional weights of all
types of elements in the experiments vary freely. Thus, it was
possible to investigate differences between the attentional
weights of targets and distractors and of singletons and nons-
ingletons without making prior assumptions on the way the
attentional weights of these elements would be related to each
other. Hence, via fitting the empirical data by a mathematical
model based on TVA, it was possible to analyze not only if
there were effects of relevance and contrast on initial allocation
of attention but also how relevance and contrast played to-
gether.
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Additive Model of Singleton Weights

According to traditional TVA, changes in local feature contrast
influence attentional selection via changes in m values. Consider a
simple example. Suppose a red object x becomes surrounded by
green objects in space or time. The color contrast between x and
the surrounding green objects increases both the strength of the
sensory evidence that x is red, m(x, red) and the strength of the
sensory evidence that x is an object with local contrast to its
surroundings, m(x, contrast). The increase in m(x, red) has two
immediate consequences: (a) an increase in v(x, red) if the bias
toward categorizing objects as red (f3,.4) is positive and (b) an
increase in the attentional weight of x (w,) if the pertinence of red
(1r,.q) is positive. Similarly, the increase in m(x, contrast) has two
immediate consequences: (a) an increase in v(x, contrast) if the
bias toward noticing contrast (B.onwas) 1S positive and (b) an
increase in the attentional weight of x (w,) if the pertinence of
contrast (T..,as) 1 POSsitive. A positive pertinence for contrast
corresponds to Bacon and Egeth’s (1994) proposed singleton de-
tection mode for visual search tasks.

Note that the increase in v(x, red) and v(x, contrast) increases the
probability that x is seen as a red object and as an object with local
contrast to its surroundings, respectively. Neither of these effects
would be expected to be important in a partial report experiment in
which color and contrast are task irrelevant. However, for any
feature i with a positive bias (3;), an increase in the attentional
weight of x (w,) increases the probability that x is seen as an object
with feature i (e.g., as a letter of a certain type, such as an A).
Given that color is irrelevant, .., would be expected to be 0, such
that changes in attentional weight due to changes in m(x, red) can
be ignored. But if m ..« = 0 in our partial report experiment, an
increase in m(x, contrast) by a certain amount, An(x, contrast),
should increase the attentional weight of x (w ) by An(x, contrast)
Teonwast (5€€ Equation 2). This increment should be the same
regardless of the prior size of w, and regardless of the feature
relevance of x (e.g., whether x is a target or a distractor). Thus, we
obtain an additive model of singleton weights. The model predicts
that, other things equal, changing the status of an object x from
nonsingleton to singleton increases the attentional weight of the
object, if T o pase = 0, by adding an increment, which is a constant
independent of the prior size of w,.

Experiment 1A

Our first aim was to test whether both contrast and relevance or
just one of the two factors determines the attentional weight
allocated to a stimulus in a briefly exposed display. Second, if we
found a joint influence of contrast and relevance on the attentional
weights, we wished to specify how the two factors contributed to
initial attentional selection.

Method

Participants. Twelve young adults, six women and six men,
participated as paid volunteers. Two participants were left out of
the analysis: one woman and one man. One of them was left out
due to excessive guessing,' and the other was omitted due to
misunderstanding of the task.? After exclusion of the two partic-
ipants, mean age was 26 years, with a range of 23 to 29. All

participants had normal or corrected to normal eyesight, and no
participants reported any history of color blindness or other visual
deficiencies.

Apparatus. The stimuli were presented on a 20-in. CRT
screen at a refresh rate of 100 Hz. The resolution was 1,024 X 768
pixels. The experiment was run on a ZITECH personal computer
using E-prime 1.1 (Psychology Software Tools) on Windows XP.
Participants were freely viewing the screen at a distance of ap-
proximately 80 cm in a dimly lit room. Responses were made
using a standard PC keyboard.

Stimuli. Participants reported as many letters as possible from
an array of six letters (number of targets, 7)) and zero, two, or four
digits (number of distractors, D). The six letters were randomly
drawn, without replacement, from the set of all the consonants
excluding ¥, which is a vowel in the Danish alphabet. The digits
were randomly drawn from the set of numerals from 1 to 9 without
replacement. All characters were written in Arial font.

The stimulus displays had a dark gray background color (cf.
Table 1 for RGB values and Weber contrasts). All stimulus char-
acters were white and framed by a white circular outline (see
Figure 1 for an example of a display). The background color within
the white character circle was the same as the display background
color (i.e., dark gray) for all stimuli except the color singletons. If
an element was a color singleton, the fill color of its character
circle differed from the background color of the display and the fill
color of the other stimulus elements. The singleton color was
randomly chosen from a set of six colors that had the same
luminance as the background color of the display and the nons-
ingleton elements (see Table 1), which made the luminance dif-
ference between the white character and the circle fill colors the
same for singleton as for nonsingleton elements. Thus, the read-
ability of the stimulus characters was assumed to be the same for
all background colors. This assumption was verified in Exper-
iment 1B.

The distribution of experimental trials with different types of
stimuli (different numbers of targets and distractors and different
occurrences of singletons) was kept constant in successive blocks
of 180 trials (see Table 2). On each trial, at most one color
singleton was present. The probability that a singleton element
contained a letter was 5/7, which was exactly the same as the
probability that a randomly chosen nonsingleton element con-
tained a letter. Furthermore, across all trials, both the probability
that a randomly chosen target was a singleton and the probability
that a randomly chosen distractor was a singleton were 1/12. Trials
without a singleton provided a baseline.

The stimulus elements were presented on the periphery of an
imaginary circle, with a radius of approximately 2 degrees of
visual angle, centered on a fixation cross. The character circles
subtended approximately 0.8 degrees of visual angle, and each
character approximately 0.4 X 0.3 degree. The stimulus elements
were presented on the imaginary circle in any of 12 positions,

! On 44.3% of the trials, the participant reported one or more letters that
had not been presented. Across all participants, the mean percentage of
trials with erroneous reports was 11.0%. The excluded participant deviated
by more than two standard deviations from this. All other participants were
well within one standard deviation.

2 The participant reported both letters and digits instead of only the
letters, as specified in both the written and oral instructions.
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Table 1

RGB Values for the Six Singleton Colors and the Gray
Background Color and Weber Contrasts for the White Stimulus
Characters, in Experiments 1A and 1B

Procedure. Participants were initially presented with a fixa-
tion cross, which remained on the screen for the whole stimulus
presentation until participants were to respond. Participants were
instructed to fixate before starting each trial and to stay fixated
throughout the trial. When the participants felt properly fixated and

Color R G B Weber contrast ready to start the trial, they initiated the trial by pressing enter.
Red 103 0 0 40.33 With a latency of 100 ms, the stimulus display was shown for 10,
Green 0 71 0 4033 20, 40, 70, 110, or 200 ms. The stimulus display was immediately
’?Higuoise 8 68 lgg iggg followed by a masking Qisplay, exposed for 500 ms (see Figure 1
Lilac 85 0 90 4033 for an example of the trial sequence).

Brown 85 55 0 40.33 Participants were instructed to accurately report as many letters
Gray 60 60 60 40.33 from the stimulus display as possible and to ignore the digits. The

Note. RGB = red/green/blue color coordinates.

resembling an analog clock. No positions were occupied by more
than one element at any one time, and the stimulus positions were
drawn at random for each trial.

Each stimulus display was followed by a masking display (see
Figure 1). In the masking display, a gray/white random dot noise
pattern equal in size to character circles was shown in each of the
12 positions, regardless of whether the position had been occupied
by an element in the preceding stimulus display. The masks were
identical for all stimuli and were drawn manually in Paint Shop
Pro 7.

Until participant presses "enter’
+100 ms

order of the reported letters was irrelevant, and the participants
could take as long time as desired when reporting the letters.
Reports were made by entering the letters on the keyboard. The
reported characters were presented on the screen on keypress.
When finished with their report, participants pressed space, and
the fixation cross reappeared. This indicated the start of a new trial
sequence, which the participants again initiated, when ready, by
pressing enter.

Each participant performed in four experimental sessions of 900
trials each (corresponding to approximately 45 minutes per ses-
sion). Each session consisted of five immediately successive
blocks of 180 trials. Each trial type was defined by its specific
combination of singleton presence, display size, and exposure

Until participant has responded
and presses 'space’

Figure 1. Flowchart of a trial in Experiment 1A. The stimulus display shows a singleton target (a letter on a
red background), five other targets (letters), and two distractors (digits).
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Table 2
Number Trials of Different Types at Each Exposure Duration in Each Block of 180 Trials in Experiment 1A
Singleton # #T #D
Display size condition trials #Ts singletons # Ds singletons P(singleton|T) P(singleton|D)

6 Ts and 0 Ds No 3 18 0 0 0 3/(18 + 18) = 1/12 Undefined
T 3 18 3 0 0

6 Ts and 2 Ds No 4 24 0 8 0 6/(24 + 36 + 12) = 1/12 2/(8 + 12 + 4) = 1/12
T 6 36 6 12 0
D 2 12 0 4 2

6 Ts and 4 Ds No 2 12 0 8 0 6/(12 + 36 + 24) = 1/12 4/(8 + 24 + 16) = 1/12
T 6 36 6 24 0
D 4 24 0 16 4

Total 180 15 72 6

P(Tlsingleton)
P(TI nonsingleton)

15/(15 + 6) = 5/7

(180 — 15)/[(180 — 15) + (72 — 6)] = 5/7

Note. # = number; T =

duration, and the order of the trial types was randomized within
each block.

There was as a minimum a 90-min break between sessions, and
no more than two sessions were performed by the same participant
on the same day. Each session began with a short training session,
consisting of 45 trials, in which participants were presented with
displays without singletons and without distractors at exposure
durations of 20, 40, 70, 110, and 200 ms. After each training trial,
participants were informed of the number of correctly reported
letters and the number of errors they had made on that trial. No
feedback was given on the experimental trials.

Results

Mean number of correctly reported targets. Each partici-
pant’s mean number of correctly reported targets was analyzed as
a function of exposure duration (10, 20, 40, 70, 110, or 200 ms) for

target; D = distractor; No = no singletons; P = probability.

each display size (zero, two, or four distractors) and each singleton
condition (no singleton, target singleton, or distractor singleton;
see Figure 2). The mean numbers of correctly reported targets were
examined by two repeated-measures analyses of variance
(ANOVAs). Here and elsewhere, we used a .05 level of signifi-
cance.

The displays with zero distractors were analyzed by a 6 X 2
ANOVA with factors of exposure duration and singleton condi-
tion. The ANOVA revealed a main effect of exposure duration,
F(5, 45) = 184.69, p < .001. Singleton condition had no signif-
icant effect on the mean scores; neither was the interaction Sin-
gleton Condition X Exposure Duration significant.

The displays with two and four distractors were analyzed by a
6 X 3 X 2 ANOVA with factors exposure duration, singleton
condition, and display size (two or four distractors). The ANOVA
revealed a main effect of exposure duration, F(5, 45) = 160.92,

T=6,D=0 T=6,D=2

2.0

1.5

Mean score
1.0

0.0
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—©— No singl
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I I I I I I I I
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150 200 0
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Figure 2. Group mean number of correctly reported targets, for each display size and singleton condition, as
a function of exposure duration in Experiment 1A. T = target; 7 = number of targets; D = distractor; D =

number of distractors; singl = singleton.
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p < .001, and display size, F(1, 9) = 102.58, p < .001. Again,
singleton condition had no significant effect on the mean scores,
and none of the interactions were significant.

The probability of correctly reporting different target types.
The probabilities of correctly reporting the different types of
targets were analyzed as functions of exposure duration, display
size, and target type (nonsingleton targets with no singleton pres-
ent in the display, nonsingleton targets with a target singleton
present in the display, nonsingleton targets with a distractor sin-
gleton present in the display, and target singletons; see Figure 3).
As with the mean scores, the probabilities of correctly reporting
the different target types were examined by two separate repeated-
measures ANOVAs: one 6 X 3 ANOVA with factors exposure
duration and target type for displays with zero distractors and one
6 X 4 X 2 repeated-measures ANOVA with factors exposure
duration, target type, and display size for displays with two and
four distractors. The significant effects of the two ANOVAs are
reported in Table 3. The ANOVAs were followed by simple
contrast analyses of the comparisons of primary interest, that is,
analyses of differences between the probability of correct report
for a baseline target (i.e., a target in a display without singletons)
and the probability of correct report for other target types.

Overall, the ANOVAs revealed that target type had a significant
effect on the probability of whether a given target was correctly
reported (cf. Table 3). Thus, the presence of a singleton color
significantly influenced the probability of correctly reporting a
target. The details of this influence were investigated through the
planned contrasts. The contrasts revealed that the singleton targets
had a higher probability of being correctly reported than the
baseline targets. Furthermore, when a singleton target was present,
the nonsingleton targets had a lower probability of being correctly
reported than baseline targets. For displays in which a singleton
distractor was present, the targets also had a lower probability of
being correctly reported than did baseline targets, but the detri-
mental effect of a singleton distractor was less than the detrimental
effect of a singleton target (cf. Table 4 for statistics on the
contrasts).

Fitting response probabilities by a naive model based on
TVA. The response probabilities for each participant were fitted
by a mathematical model based on TVA by use of a maximum
likelihood method (for details, see Dyrholm, Kyllingsbak, Espes-
eth, & Bundesen, 2011; also see Kyllingsbak, 2006; Shibuya &
Bundesen, 1988). For each participant, minimum effective expo-
sure duration (7,), processing capacity (C), and a distribution of
VSTM capacity (K distribution) with five free parameters were
estimated. The average VSTM capacity (K) for each participant
was estimated as the mean of the K distribution. In addition, for
each participant, attentional weights (w) for all element types
(singleton target, singleton distractor, nonsingleton target, nons-
ingleton distractor) were estimated at each of the 12 possible
stimulus locations. Thus, we estimated a high number of atten-
tional weights, without making any prior assumptions on the way
the weights were related to each other. That is, we estimated
separate weights for each of the smallest stimulus entities in the
displays (each of the four different element types on each of the 12
stimulus locations). In the following, we refer to this model as the
naive model. The naive model had 54 free parameters and, not
surprisingly, yielded fits that were close to the observed data.® The
squared correlations, 77, between the observed and predicted mean

scores for the 48 different types of trials ranged between .975 and
.994 for individual participants; all the correlations were highly
significant with p < .001. Figure 4 shows an example of observed
and predicted mean scores for an individual participant, and Table
5 shows the estimated distribution of K, mean K, #,, and C, for each
participant.

Estimates of attentional weight. The mean estimated atten-
tional weights for each stimulus type across all positions and
participants are shown in Figure 5. As can be seen, the mean
weight of singleton targets was higher than the weight of nons-
ingleton targets; the weight of singleton distractors was higher than
the weight of nonsingleton distractors; and the weights of singleton
and nonsingleton targets were higher than the weights of singleton
and nonsingleton distractors. Participants’ mean estimated weights
for each of the four stimulus types were entered into a 2 X 2
repeated-measures ANOVA with factors relevance (target, distrac-
tor) and contrast (singleton, nonsingleton). The analysis revealed a
main effect both of relevance, F(1,9) = 127.52, p < .001, and of
contrast, F(1, 9) = 26.68, p < .001. The interaction Relevance X
Contrast was also significant, F(1, 9) = 5.51, p = .043.

A graphic representation of all the estimated weights for one
participant is shown in Figure 6. The attentional weights varied
across positions, as can be seen from the individual example of
Participant 7 in Figure 6. The distribution of attention across the
12 positions was investigated by individual repeated-measures
ANOVAs for each participant across stimulus types with position
as factor. The ANOVAs revealed that the patterns of position-
related variation of attentional weights was consistent across stim-
ulus types; F(11, 33) ranged from 5.408 to 19.980 with all p values
< .001.

For each participant, all estimated singleton weights were plot-
ted against the weights of otherwise similar nonsingleton elements
(see Figure 7). As predicted by the additive model of singleton
weights, the plotted points fell approximately on a straight line, but
contrary to the predictions by the additive model, the slope of the
line seemed to be greater than 1. Fitting the points for individual
participants by straight lines with freely varying intercepts and
slopes (a two-parameter linear model of singleton weights) yielded
fairly good fits. The mean /> for the 10 fits was .86 (see the
leftmost columns of Table 6 for individual > values, fitted param-
eters, and root mean squared deviation [RMSD] for each partici-
pant). We also fitted the data by a straight line with a slope fixed
at one (a one-parameter additive model of singleton weights) and
a straight line with an intercept fixed at zero (a one-parameter
multiplicative model of singleton weights). The simple one-
parameter models were tested against the two-parameter model by
likelihood ratio tests (see Table 6). For six out of the 10 partici-
pants, the two-parameter linear model was significantly better than
the simple additive model; across all 10 participants, x*(10) =
129.29, p < .001. By contrast, the two-parameter linear model was
significantly better than the simple multiplicative model for just
one of the 10 participants. For this participant, x*(1) = 6.14, p <
.02; across the remaining nine participants, x*(9) = 15.21, p > .05;

3 A total of 48 weight estimates (12 positions X four element types) on
a ratio scale with arbitrary unit, one #, estimate, one distribution of K with
five free parameters, and one C estimate.
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Figure 3. Group mean proportion of correctly reported targets of different types, for each display size, as a
function of exposure duration in Experiment 1A. 7= number of targets; D = number of distractors; S:T singl =
the singleton in a display with a target singleton; NonS:no singl = nonsingleton target in a display without

singletons; NonS:T singl = nonsingleton target in a display with a target singleton; NonS: D singl =
nonsingleton target in a display with a distractor singleton.

however, in total across all 10 participants, XZ(IO) =2136,p =
.019.

Discussion

The results of Experiment 1A showed no significant effect of
the presence of a singleton on the mean number of correctly
reported targets. Nevertheless, the distribution of processing re-
sources seemed affected by local feature contrast. A singleton
target had a significantly higher probability of being correctly
reported than a baseline nonsingleton target, and when a nons-
ingleton target was replaced by a singleton target, the probability
of correctly reporting the nonsingleton targets in the same display
significantly decreased. Thus, singleton targets appeared to sum-
mon more processing resources than nonsingleton targets. The
singleton distractors had a similar effect, but it was weaker. When
a singleton distractor was present, there was a small but significant
tendency for the probability of correctly reporting the nonsingleton
targets in the same display to decrease. These results point toward

Table 3
Significant Effects by Analyses of Variance on Probabilities of
Correctly Reporting a Given Target in Experiment 1A

Display Source dfpum Aienom F
6TOD Exposure duration (ED) 5 45 175.92"*
Target type (TT) 2 18 52.74"
ED X TT 10 90 7.61°
6T2D and 6T4D ED 5 45 165.36"""
TT 3 27 11.36"
Display size (DS) 1 9 105.49
ED X TT 15 135 727
ED X DS 5 45 18.78"
Note. df = degrees of freedom; num = numerator of F ratio; denom =

denominator of F ratio; 6TOD = 6 targets and 0 distractors; 6T2D = 6
targets and 2 distractors; 6T4D = 6 targets and 4 distractors.
p < .001.

a joint influence of contrast and relevance. It appeared that the
magnitude of the influence of a strong color contrast depended on
the relevance of the element with the contrast.

Effects of contrast and relevance were also reflected in the
attentional weights that were estimated by the naive mathemat-
ical model based on TVA. The attentional weights for singleton
elements were consistently higher than the attentional weights
for nonsingletons. The weights also revealed an attentional
priority for targets compared with distractors. The estimated
attentional weights of the targets were significantly higher than
the weights of the distractors, reflecting selectivity consistent
with the relevance of the elements. Furthermore, there was a
significant interaction between effects of contrast and effects of
relevance on the attentional weights. Plotting the estimated
singleton weights against the weights of otherwise identical

Table 4

Within-Subject Comparisons of Probabilities of Reporting
Different Types of Targets in Various Types of Displays Against
the Probability of Reporting a Baseline Target in Experiment 1A

Type of Singleton type = Mean difference
target of display from baseline 19) )4
D=0
Nonsingleton Target —0.0093 =7.67 <.001"
Singleton Target 0.0267 796 <.001""
D =2or4
Nonsingleton Target —0.0047 —3.38 .004™*
Nonsingleton Distractor —0.0033 —1.97 .040"
Singleton Target 0.0026 3.28 .005™*
Note. Displays contained 6 targets and 0, 2, or 4 distractors. A baseline

target was a target in a display without any singletons. Directions of the
effects were predicted, so testing was one-tailed. D = number of distrac-
tors.

“p < .05.

=p < 0l *p < .00l
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Figure 4. Observed and predicted mean numbers of correctly reported targets for a representative participant
(Participant 5), for each display size and singleton condition, as functions of exposure duration in Experiment
1A. T = target; T = number of targets; D = distractor; D = number of distractors; singl = singleton.

nonsingletons produced points lying on approximately straight
lines with slopes greater than one. When we compared three
types of linear models—a two-parameter linear model, a one-
parameter multiplicative model, and a one-parameter additive
model—it was apparent from the likelihood ratio tests that the
simple additive model was inferior to the two-parameter linear
model. The two-parameter model also fitted significantly better
than the simple multiplicative model, but the difference in
goodness of fit between these two models was small, and the
difference was significant for just one of the 10 participants.

Experiment 1B

A control experiment was carried out, in order to ensure that the
increased probability of correctly reporting the singleton targets
compared with the baseline nonsingleton targets was not con-
founded by differences in readability between singleton and nons-
ingleton elements. In Experiment 1A, the singleton colors were

Table 5
Parameter Estimates for Each Participant in Experiment 1A

Probability distribution of K

Participant 1 2 3 4 5 6  Mean K to C
1 45 49 .04 01 .01 .01 1.65 8.76  38.06
2 31 .56 .12 .01 .00 .00 1.85 9.50 42.72
3 1 .68 .20 .00 .00 .00 2.12 18.40 45.63
4 3153 .14 .01 .01 .01 1.89 18.58 29.01
5 06 .64 28 .01 .00 .00 2.27 9.80 52.72
6 09 .69 21 .01 .00 .00 2.15 9.97 48.21
7 02 30 .60 .08 .00 .00 2.75 9.75 83.30
8 22 .58 .18 .01 .01 .01 2.01 9.32 52.99
9 A8 .62 .19 .00 .00 .00 2.04 7.95 70.04
10 34 44 19 01 .01 .01 1.94 9.80 53.06

Note. The estimates were derived from fits of the data by the naive
mathematical model based on the theory of visual attention. K = storage
capacity (number of characters); 7, = minimum effective exposure dura-
tion (in milliseconds); C = processing capacity (characters per second).

chosen to be equiluminant with the display background color (and
thus also with the background color of the nonsingleton elements).
Yet, candela values are not behavioral measures. We wanted to test
behaviorally that there was no difference in the readability of the
letters when they were presented on a local gray background
compared to when they were presented on a local colored back-
ground. In Experiment 1B we tested this by presenting the partic-
ipants with a single target and varying the local background color
of the element.

Method

Participants. The same 10 volunteers as in Experiment 1A
participated in the experiment.

Apparatus and stimuli. The apparatus and stimulus material
were similar to those used in Experiment 1A with the following

O Nonsingletons
B Singletons

Mean estimated weights

Distractors

Targets

Figure 5. Group means of estimated attentional weights for each stimulus
type across all spatial positions in Experiment 1A. Error bars represent
standard errors of the means. The weights were normalized so that the sum
of nonsingleton target weights equaled 1 for each participant; hence, the
error bars for nonsingleton targets equal zero.
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exception: Only a single target and no distractors were presented in
each display. The target was randomly chosen on each trial from
the same letter set as in Experiment 1A. The background color of
the presented stimulus varied. On half the trials, the local back-
ground color was the same as the display background color. On the
other half of the trials, the local background color varied randomly
between the same six colors as were used as singleton colors in
Experiment 1A (see Table 1). The target was shown in one of the
12 positions on an imaginary circle similar to the preceding ex-
periment. The position of the target was randomly chosen for each
trial.

Procedure. Participants were instructed to report the target as
accurately as possible. As in Experiment 1A, participants were
initially presented with a fixation cross, which remained on the
screen for the whole stimulus presentation until they were to

respond. The participants were instructed to fixate the cross before
starting each trial and to stay fixated throughout the trial. When
properly fixated, participants pressed enter. With a latency of 100
ms after the keypress, a location cue (a thin line 3/5 the length of
the radius of the imaginary circle) pointed toward the location of
the upcoming target for 100 ms. Just 300 ms after the presentation
of the location cue, the target appeared at the cued location for 10,
20, 30, 50, 70, 100, or 130 ms, followed by a 500-ms presentation
of a masking display similar to the one used in Experiment 1A. See
Figure 8 for an example of a trial sequence.

The participants carried out four sessions of 252 trials (i.e., a
total of 1,008 trials) equaling 72 observations per trial type (7
exposure durations X 2 stimulus types). The trials were presented
in random order within each session. There was a minimum of a
90-min break between successive sessions, and not more than two
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Figure 7. Estimated attentional weights of singleton targets and distractors at different spatial positions plotted
against the attentional weights of otherwise similar, nonsingleton targets and distractors at the same positions,
for each of the 10 participants in Experiment 1A. For each participant, the data were fitted by a least squares
straight line with freely varying slope and intercept (LS two-param. fit). The dashed reference line is y = x.

sessions were performed by one participant on the same day. Each
session began with a short training phase consisting of 21 trials, to
get the participants attuned to the short exposure durations. After
each trial in the training phase, participants received onscreen
feedback on their report (correct report, erroneous report, or no
report).

Results and Discussion

The mean number of correctly reported targets was analyzed
across participants for each stimulus type (gray local background
and colored local background) as a function of exposure duration
(10, 20, 30, 50, 70, 100, 130 ms; see Figure 9). The data were

Table 6

examined by a repeated-measures ANOVA with factors exposure
duration and stimulus type. The ANOVA revealed a significant
main effect of exposure duration, F(6, 54) = 124.33, p < .001.
There was no significant effect of stimulus type, F(1, 9) = 0.25,
p = .627. The interaction Exposure Duration X Stimulus Type
was not significant.

The mean number of correctly reported targets for the two different
stimulus types, colored and gray, did not differ significantly from each
other in the single target report. The data support the assumption that
the effects of contrast found in the main experiment were not con-
founded by differences in readability between singleton and nons-
ingleton characters. The characters were equally recognizable on the
gray and the colored backgrounds.

Best Fits of Each of the Three Linear Models for All Singleton Weights Against Corresponding Nonsingleton Weights for Each

Farticipant in Experiment 1A

Two-parameter model

One-parameter multiplicative model

One-parameter additive model

LRT LRT

Participant Intercept Slope r RMSD Slope RMSD (1) P Intercept RMSD x>(1) P

1 0.0198 1.209 .843 0.0463 1.320 0.0465 3.13 .077 0.0319 0.0470 3.56 .059

2 0.0201 0.960 761 0.0409 1.091 0.0436 3.05 .081 0.0174 0.0410 0.13 717

3 0.0027 1.321 925 0.0262 1.340 0.0263 0.15 .693 0.0210 0.0345 13.15 <.001"

4 0.0117 1.579 .601 0.0896 1.663 0.0900 0.22 .639 0.0492 0.0983 4.44 .035*

5 0.0131 1.211 938 0.0339 1.263 0.0357 2.55 .110 0.0262 0.0410 9.10 .002™

6 0.0182 1.047 .803 0.0452 1.142 0.0477 2.64 105 0.0208 0.0453 0.195 .689

7 —0.0014 1.294 957 0.0209 1.285 0.0210 0.08 784 0.0142 0.0307 18.37 <.001"

8 —0.0043 1.034 932 0.0285 1.016 0.0287 0.41 .520 —0.0024 0.0287 0.35 .553

9 0.0239 1.419 .858 0.0559 1.529 0.0595 2.98 .084 0.0490 0.0691 10.15 .001™

10 —0.0251 2.273 982 0.0434 2214 0.0493 6.14 013" 0.0442 0.1859 69.84 <.001"

Note. Root mean squared deviation (RMSD) is noted for comparisons between the models. The one-parameter models are tested against the two-parameter

model by likelihood ratio tests (LRT); for both comparisons, the nested model differs from the standard model by one degree of freedom; x* and p statistics

are provided for these tests.
p<.05 Tp<.0l "p<.001.
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Until participant presses 'enter’
+100 ms

10-130 ms

Until participant has responded
and presses 'space’

Figure 8. Flowchart of a trial in Experiment 1B. The stimulus display shows a condition with a gray local

background color.

Discussion of Experiments 1A and 1B

The results of Experiments 1A and 1B show that an element
with a uniquely colored local background attracts more attention
than a corresponding element that is not uniquely colored. This
difference cannot be ascribed to differences in readability of the
target letter dependent on the local background color. Nor has
the unique color any relation to the task at hand. Taken together,
the results are consistent with the notion that a color singleton
element receives higher attentional weight both when the element
is a target and when it is a distractor. At the same time, the data
suggest that attention is allocated consistent with feature relevance
(higher attentional weights on targets than distractors). Thus, ini-
tial visual selectivity appears to be determined by both components
of attentional weight: contrast and relevance.

We investigated how the strong contrast signal affected the atten-
tional weights in Experiment 1A. The data suggested a linear relation
between the attentional weight of a singleton and the weight of an
otherwise similar nonsingleton. Such a linear relation can be modeled
by a one-parameter additive model, a one-parameter multiplicative
model, or a full two-parameter linear model. The simple additive

model is the only one that is entirely consistent with the traditional
weight equation of TVA (Equation 2). A good fit by the additive
model would suggest that the pertinence of local feature contrast was
positive. However, the setup of Experiment 1A discouraged a positive
pertinence of contrast, and likelihood ratio tests revealed that the
simple additive model was inferior to the two-parameter linear model.
The two-parameter model also fitted significantly better than the
simple multiplicative model, but the difference in goodness of fit
between these two models was small, and the difference was signif-
icant for just one of the 10 participants.

New weight equation. In the two-parameter linear model of
singleton weights, the weight of a singleton element is related to
the weight of an otherwise similar nonsingleton element by both a
multiplicative and an additive constant. In order to account for
such a relationship we propose the following generalization of the
weight equation of TVA:

we =Kk, er (¥ /), 3)

where k. is the strength of the local feature contrast of object x, and
the summation across j subsumes m(x, contrast) which is

contrast?
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Figure 9. Group mean number of correctly reported targets for each
stimulus type as a function of exposure duration in Experiment 1B.

the product of the strength of the sensory evidence that object x
belongs to the category high local feature contrast and the perti-
nence of the category high local feature contrast. Without loss of
generality, we can assume that K, ., ngreon €quals one. Hence, by
Equation 3, attentional weights of singleton elements are given as
functions of the attentional weights of otherwise similar nonsingle-
ton elements by the linear equation

Wsingleton = m(wnonsingleton + a)7 (4)

where

m= Ksingleton (5)

and
a= n(singleton, contrast)ﬂrrContrast

- n(nonsingleton, contrast)frrcommst, (6)

n(singleton, contrast) being the strength of the sensory evidence
that a singleton element has a high local feature contrast, and
m(nonsingleton, contrast) being the strength of the sensory evi-
dence that a nonsingleton element has a high local feature contrast.

The one-parameter multiplicative model of singleton weights is
a special case of the two-parameter linear model. In the one-
parameter multiplicative model, the weight of a singleton element
is related to the weight of an otherwise similar nonsingleton
element by a single multiplicative constant. To account for such a
simple multiplicative relationship, we propose Equation 3 with the
constraint that, under the conditions of our experiment, the perti-
nence value of the category of high local feature contrast (7. as)
equals zero. Given that m_ .. = 0, Equation 6 implies that
Equation 4 holds with @ = 0 such that

w, mw,

singleton = nonsingleton»

where m = Kgingleton-

We devised two new mathematical models for the probability
distributions of correct responses based on TVA, models TVA
and TVA,,, by use of Equation 3 with =0and

contrast ~—

ma

contrast

0, respectively. Apart from the computation of the attentional
weights, both models were similar to the naive model. For Exper-
iment 1A, TVA,,, had 32 free parameters (one five-parameter
distribution of K, parameters #, and C, 12 nonsingleton target
weights whose sum was fixed at a value of 1, 12 nonsingleton
distractor weights, the multiplicative constant m, and the additive
constant a). TVA,, had 31 free parameters (same parameters as
TVA,,, but no additive constant). The two new models fitted the
data very well; correlations between each of the participants’
observed mean scores for the 48 experimental conditions and the
predicted mean scores for each of the two models ranged from
r* = .935 to r* = .994, with all p values < .001. By the likelihood
ratio tests reported in Table 7, TVA,,, did not fit the data signif-
icantly better than TVA,,, x*(10) = 17.10, p = .072. On the other
hand, let TVA,,,, — , be TVA,, with the added constraint that m =
1. Reassuringly, TVA,, fit the data significantly better than
TVA,,,,—.- The difference was highly significant, x*(10) =
214.49, p << .001 (see Table 7 for individual statistics).

In summary, the response probabilities observed in Experiment
1A were well fitted by mathematical models based on TVA using
our generalized weight equation (Equation 3) instead of the orig-
inal weight equation (Equation 2). Fits based on the assumption
that 7 . wase = 0 (model TVA,,) were pitted against fits based on
the more general assumption that ... = 0 (model TVA
Fits based on the assumption that 7 ...« = 0 were not signifi-
cantly better than fits based on the assumption that 7, . = O
(see Table 7), suggesting that in Experiment 1A, T, as Was close
to 0. However, across participants in Experiment 1A, the relation-
ship between the singleton versus nonsingleton weights estimated
by the naive model was significantly better fitted by the two-
parameter linear model than by the one-parameter multiplicative
model (see Table 6), suggesting that 7 ... > 0. Presumably,
T eonrase WaS positive for one or more participants in Experiment
1A but was not much greater than 0.

m

ma)‘

Experiment 2A

In Experiment 2A the singleton colors were manipulated so that
there were two distinct types of color singletons: weak color
singletons (with a unique color that was only slightly different

Table 7
Likelihood Ratio Comparisons of Fits by TVA,,, Versus TVA,,
and TVA,, Versus TVA for Experiment 1A

mlm=1

TVA,,, vs. TVA,, TVA,, vs. TVA,,,.—

Participant (1) P X>(1) P
1 0.00 1.00 82.11 <.001"

2 3.97 .05 0.70 40
3 2.73 .10 30.57 <.001"
4 0.00 .99 16.60 <.001"
5 0.34 .56 11.06 <.001"
6 0.17 .68 19.74 <.001"
7 0.18 .67 26.37 <.001"
8 3.48 .06 10.88 <.001"
9 4.26 04" 16.42 <.001"*

10 1.97 .16 0.03 .86

Note. TVA = theory of visual attention.
p<.05. Tp<.001.
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from the background color of the display) and strong color single-
tons (with a unique color that deviated strongly from the back-
ground color of the display). If the effects of the singletons we
found in Experiment 1A pertained to the strength of the local
feature contrasts, the weak color singletons would be expected to
have a smaller effect on initial attentional allocation than would
the strong singletons. Such an effect of the strength of local feature
contrast on attention has recently been demonstrated by salience
modulation of the latency and amplitude of the posterior-
contralateral negativity (PCN; Tollner, Zehetleitner, Gramann, &
Miiller, 2011). In setup, Experiment 2A was similar to Experiment
1A, but minor changes were made to accommodate for the new
color manipulation and to improve the experimental design by
presenting the stimuli equally spaced around the perimeter of the
circular display.

Method

Participants. Six young adults, four women and two men,
served as paid volunteers. Participants’ mean age was 23 years,
with a range of 21 to 26. All participants had normal or corrected
to normal eyesight, and no participants reported any history of
color blindness or other visual deficiencies.

Apparatus. The apparatus was the same as that used in Ex-
periment 1A.
Stimuli. The stimulus setup in Experiment 2A was compara-

ble to that used in Experiment 1A with the following exceptions.
The stimulus array always consisted of eight elements combined in
one of three ways: two targets and six distractors, four targets and
four distractors, or six targets and two distractors. Thus, the target—
distractor configuration was varied without varying the display
size. Summed across all displays, the total number of target ele-
ments equaled the total number of distractor elements. Thus,
contrary to Experiment 1A, no redundant trials were needed in
order to keep the probability that a singleton contained a target
equal to the probability that a singleton contained a distractor (cf.
Table 2). The probability that a nonsingleton element contained a
target was .5, which was exactly the same as the probability that a
singleton element contained a target. In total across all the dis-
plays, 1/10 of the elements were singletons. On some trials no
singleton was present. These trials were used as a baseline.

The stimuli were presented at eight evenly spaced positions on
the periphery of an imaginary circle with a radius of approximately
2.3 degrees of visual angle. All eight positions were occupied by
a stimulus element in all displays.

The stimuli used in Experiment 2A were similar but not iden-
tical to the stimuli used in Experiments 1A and 1B. The stimulus
displays had a light gray background color. All stimulus characters
were black and were framed by a black circular outline. The
background color inside the black character circle was the same as
the display background color (i.e., light gray) for all stimuli except
the color singleton elements.

Only two colors were used as singleton colors. The singleton
color could be either a strong, saturated red or a weak, unsaturated
red. All element fill colors were calibrated such that the perceptual
contrast between each of the three colors and the black character
color was the same based on a behavioral measure. See Experi-
ment 2B for the exact calibration procedure and Table 8 for RGB
values and Weber contrasts for all the used colors. The stimulus

characters subtended approximately 0.6 X 0.4 degree of visual
angle and the character circles subtended 1.2 degrees.

Each stimulus display was followed by a masking display con-
sisting of gray/black/red random dot noise patterns presented on
each of the eight stimulus positions in the display. The masks were
identical for all stimuli, and they were equal in size to the black
outlined character circles. The masks were drawn in Paint Shop
Pro 7.

Procedure. The individual trials followed the same trial se-
quence as in Experiment 1A, with the following exception: After
the participants had responded, a feedback screen with the number
of correctly reported letters and the number of erroneously re-
ported letters written in dark gray was presented for 500 ms.

Each participant served in 8,100 experimental trials equaling 90
observations per data point per participant (6 exposure durations X
3 target—distractor configurations X 5 singleton conditions). The
trials were presented in random order. The 8,100 trials were
divided into nine sessions of 900 trials each. Each session began
with a short training session of 30 trials, presenting all target—
distractor configurations and all singleton conditions at the two
longest exposure durations. After every 100 trials, participants
were encouraged to rest their eyes and take a little break. Partic-
ipants took part in at most two sessions per day, and two same-day
sessions were always separated by a break of at least 15 minutes.

Results and Discussion

Mean number of correctly reported targets. The mean
numbers of correctly reported targets were analyzed across partic-
ipants as a function of target—distractor configuration (6 targets
and 2 distractors; 4 targets and 4 distractors; 2 targets and 6
distractors), exposure duration (10, 20, 40, 70, 110, 200 ms), and
singleton condition (strong target singleton, weak target singleton,
strong distractor singleton, weak distractor singleton, or no single-
ton; see Figure 10) by a repeated-measures ANOVA. The ANOVA
revealed main effects of target—distractor configuration, F(2,
10) = 132.85, p < .001; exposure duration, F(5, 25) = 267.83,
p < .001; and singleton condition, F(4, 20) = 3.96, p = .016. All
the two-way interactions were significant; however, the three-way
interaction was not significant.

To investigate further the significant effect of the singletons on
the mean number of correctly reported targets, we compared the
four singleton conditions to the baseline condition in which there
was no singleton in the display. There was a significant difference
between the strong target singleton condition and the baseline, F(1,
5) = 12.245,p = .017, M, = 1.184, M, psctine =

trong target singleton

Table 8

RGB Values for the Two Singleton Colors and the Gray
Background Color and Weber Contrasts for the Black Stimulus
Characters, in Experiments 2A and 2B

Color R G B Weber contrast
Strong red 235 0 0 —0.981
Weak red 153 128 108 —-0.976
Gray 144 132 113 -0.977

Note. RGB = red/green/blue color coordinates.
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Figure 10. Group mean number of correctly reported targets, for each target—distractor configuration and
singleton condition, as a function of exposure duration in Experiment 2A. T = target; 7 = number of targets;
D = distractor; D = number of distractors; singl = singleton.

1.160. None of the other singleton conditions was significantly
different from the baseline.

The probability of correctly reporting different target types.
The probability of correctly reporting a target was analyzed for
each of the seven target types (nonsingleton targets with no sin-
gleton present in the display, nonsingleton targets with a strong
target singleton present in the display, nonsingleton targets with a
weak target singleton present in the display, targets with a strong
distractor singleton present in the display, targets with a weak
distractor singleton present in the display, strong target singletons,
and weak target singletons) as a function of target—distractor
configuration and exposure duration. Figure 11 shows the mean
proportion of times a target was correctly reported across par-
ticipants for the different target types. Individual participants’

probability to correctly report a target was examined by a
repeated-measures 6 (exposure durations) X 7 (target types) X 3
(target—distractor configurations) ANOVA. All significant effects
from this ANOVA are reported in the upper rows of Table 9. As
in Experiment 1A, the ANOVA revealed a significant main effect
of target type. Furthermore, the proportion of stimulus elements
that were targets, in these displays with constant set size, had a
significant influence on the probability to correctly report a given
target.

We repeated the ANOVA excluding exposure durations above
110 ms. The resulting 5 (exposure durations) X 7 (target types) X
3 (target—distractor configurations) ANOVA revealed a significant
main effect of both target type and target—distractor configuration
(see the middle rows of Table 9 for report of all significant effects).
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Figure 11. Group mean proportion of correctly reported targets of different types, for each target—distractor

configuration, as a function of exposure duration in Experiment 2A. 7 = number of targets; D = number of
distractors; S:T singl = the singleton in a display with a target singleton; NonS:no singl = nonsingleton target
in a display without singletons; NonS:T singl = nonsingleton target in a display with a target singleton; NonS:
D singl = nonsingleton target in a display with a distractor singleton.
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The proportion of correctly reported baseline targets (targets in
displays without singletons) was compared with the proportion of
correct report for all the other target types across all six exposure
durations. The contrasts revealed that the probability to report a
strong singleton target was higher than the baseline, #5) = 3.03,
P = 015, M one target singleton = 0-359, My, = 0.308, as was
the probability to report a weak singleton target, #(5) = 2.62, p =
024, M e arget singleton = 0-325. None of the other target types
was reported with a probability significantly different from the
baseline.

The difference between strong and weak singletons was further
investigated. The probability of correctly reporting singleton tar-
gets was analyzed separately, across all exposure durations, by a 6
(exposure durations) X 2 (target types) X 3 (target—distractor
configurations) ANOVA, excluding the five nonsingleton target
types. There was a significant main effect of target type (strong vs.
weak singleton). Also, the main effect of target—distractor config-
uration was again highly significant (see the lower rows of Table
9 for report of all significant effects).

Fitting response probabilities by a naive model based on
TVA. Asin Experiment 1A, the response probabilities observed
for each individual participant were fitted by a naive mathematical
model based on Bundesen’s (1990) TVA. For each participant, the
distribution of VSTM capacity (distribution of K), minimum ef-
fective exposure duration (f,), and speed of encoding (C) were
estimated. Also, attentional weights (w) for all element types
(strong singleton target, weak singleton target, nonsingleton target,
strong singleton distractor, weak singleton distractor, nonsingleton
distractor) were estimated at each of the eight stimulus positions,
resulting in a model with a total of 54 free parameters. The model
yielded close fits to the observed data. For the 90 different exper-
imental conditions, the correlations between the observed mean
scores and the predicted mean scores from the fits for each par-
ticipant ranged from 7 = .990 to r* = .996. All the correlations
were highly significant, with p < .001. See Figure 12 for an
example of observed and predicted mean scores for Participant 5
and Table 10 for K distribution, mean K, t, and C estimates for
each participant.

aseline
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Estimates of attentional weight. The mean estimated atten-
tional weights for each stimulus type averaged across all positions
and all participants are shown in Figure 13. As can be seen, the
mean weight of strong singleton targets was higher than the weight
of weak singleton targets, which in turn was higher than the weight
of nonsingleton targets. Also, the mean weight of strong singleton
distractors was higher than the weight of weak singleton distrac-
tors, which in turn was higher than the weight of nonsingleton
distractors. Furthermore, the weights of strong, weak, and nons-
ingleton targets were higher than the weights of strong, weak, and
nonsingleton distractors. The mean estimated weights for each
stimulus type for each participant were entered into a 2 X 3
repeated-measures ANOVA with the factors relevance (target,
distractor) and contrast (strong singleton, weak singleton, nons-
ingleton). The analysis revealed a significant main effect both of
relevance, F(1,5) = 115.91, p < .001, and of contrast, F(2, 10) =
5.95, p = .020. Also, the interaction Relevance X Contrast was
significant, F(2, 10) = 4.42, p = .042.

A graphic representation of all the estimated weights for one
participant (Participant 1) is shown in Figure 14. Repeated-
measures ANOVAs were carried out for each participant, across
stimulus types and with position as the factor. The ANOVAs
revealed that the pattern of position-related variation of attentional
weights was consistent across stimulus types; (7, 35) ranged from
6.327 to 20.521, with all p values < .001.

For each of the six participants, all estimated strong-singleton
weights (weights of targets and distractors at each of the eight
stimulus positions) were plotted against the estimates of the
weights of the corresponding nonsingletons. The same procedure
was followed for all estimated weak-singleton weights (see Figure
15). Fitting the points by straight lines yielded reasonably good fits
(the #* for the 12 fits ranged from .826 to .974; see Table 11 for
individual * values, fitted parameters, and RMSDs). We tested
whether the fits of the two-parameter linear model were driven by
either a simple multiplicative or a simple additive model. Hence,
we also fitted all the data by straight lines with intercepts fixed at
zero and by straight lines with slopes fixed at one. The one-
parameter fits were tested against the two-parameter fits by like-

Table 9
Significant Effects by Analyses of Variance on Probabilities of Correctly Reporting a Given Target in Experiment 2A
ANOVA Source dfum Aftenom F
6 (exposure durations) X 7 (target types) X 3 (target-distractor Exposure duration (ED) 5 25 4,947
configurations) Target type (TT) 6 30 7217
TD configuration 2 10 77.79"*
ED X TT 30 150 2.03*"
ED X TD 12 60 113
5 (exposure durations) X 7 (target types) X 3 (target—distractor ED 4 20 241.55"
configurations) TT 6 30 12.70™
TD 2 10 70"
ED X TT 24 120 1.88"
ED X TD 8 40 0.069™*
6 (exposure durations) X 2 (target types) X 3 (target-distractor ED 5 25 129.61°
configurations) TT 1 5 7.46*
TD 2 10 29.93"*
ED X TT 5 25 3.74*
ED X TD 10 50 19.76***
TT X TD 2 10 5.98"

Note.

p<.05 Tp<.0l. "p<.001

ANOVA = analysis of variance; df = degrees of freedom; num = numerator; denom = denominator; TD = target—distractor.



COMPONENTS OF ATTENTIONAL WEIGHT

3.0
3.0

-1 7=2D=6 | T=4D=4

No singl

- Strong T singl
- Weak T singl
Strong D singl
Weak D singl

Mean score

> (=)
! I I ! I I ! I I ! I I ! I I
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

Exposure duration (ms)
Figure 12. Observed and predicted mean numbers of correctly reported targets for a representative participant

(Participant 5), for each target—distractor configuration and singleton condition, as functions of exposure
duration in Experiment 2A. T = target; 7 = number of targets; D = distractor; D = number of distractors;

17

singl = singleton.

lihood ratio tests. None of the 12 two-parameter fits were signif-
icantly better than the corresponding multiplicative fit, whereas
five of the 12 two-parameter fits were significantly better than the
corresponding additive fits (see Table 11). The overall chi-square
tests showed that the two-parameter linear model fitted signifi-
cantly better than the additive model, x*(12) = 26.73, p < .001,
but not significantly better than the multiplicative model, x*(12) =
12.78, p = .386.

Fits by TVA,,, and TVA,,. We tested two nested models of
the response probabilities based on TVA: TVA,, , and TVA
which applied Equation 3 with 7, a = 0 and T o ase = 0,
respectively. For either model, two values of parameter m (i.e.,
Ksingleton) WeTE estimated— one value for the strong singletons and
one for the weak singletons. For TVA,,,, in which 7 . 0 = O,
parameter a was also estimated separately for weak and strong
singletons. Apart from the computation of the attentional weights,
the parameters of both models were similar to the naive model of
Experiment 2A. For Experiment 2A, TVA,,, had 26 free param-
eters (one five-parameter distribution of K, parameters #, and C,
eight nonsingleton target weights whose sum was fixed at a value

m>

Table 10
Parameter Estimates for Each Participant in Experiment 2A

Probability distribution of K

Participant 1 2 3 4 5 6 MeanK t, C
1 06 .66 28 .00 .00 .00 2.24 9.00  48.89
2 00 25 41 29 .02 .02 3.15 1.39  48.78
3 02 23 52 .19 .03 .01 2.00 8.95 100.46
4 05 45 39 05 .03 .02 2.63 891  45.84
5 00 25 41 26 .05 .04 3.23 6.06  80.84
6 01 .10 34 37 .09 .09 3.72 8.00  65.77

Note. The estimates were derived from fits by the naive mathematical
model based on the theory of visual attention. K = storage capacity
(number of characters); #, = minimum effective exposure duration (in
milliseconds); C = processing capacity (characters per second).

of 1, eight nonsingleton distractor weights, two values of m, and
two values of a). TVA,, had 24 free parameters (the same param-
eters as TVA,,, but no values of a). Chi-square tests of the
likelihood ratios, similar to the tests of the models for Experiment
1A, were carried out for each participant to investigate if the
models were significantly different in goodness of fit. The indi-
vidual participants’ test values are reported in Table 12. Both
models TVA,,, and TVA,, fitted the data very well; correlations
between observed and predicted mean scores for the two models
for each participant ranged from > = .989 to r* = .996, with all
p values < .001 and N = 90. Overall chi-square tests across
participants revealed that TVA,,, did not fit the data from Exper-
iment 2A significantly better than TVA , x*(12) = 13.89, p =
.308. As in the analysis of Experiment 1A, we tested the signifi-
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Figure 13. Group means of estimated attentional weights for each stim-
ulus type across all spatial positions in Experiment 2A. Error bars represent
standard errors of the means. The weights were normalized such that the
sum of nonsingleton target weights equaled 1 for each participant.
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cance of the multiplicative scaling of attentional weights with
increase in local contrast by testing TVA,,, against the same model
with the null hypothesis that m = 1 (TVA,,,,—,). The test con-
firmed that TVA,, fit the data significantly better than TVA,,,_,,
x2(12) = 305.51, p < .001 (see Table 12 for individual statis-
tics).

The result of the comparison between models TVA,,, and TVA,,
for response probabilities (the comparison reported in Table 12)
agrees with the result of the comparison we made (in Table 11)
between the two-parameter linear model and the one-parameter mul-
tiplicative model of the relationship between singleton and nonsingle-
ton weights, where we found that across participants, x*(12) = 12.78,
p = .386. Both comparisons support the assumption that in Experi-
ment 2A, (a) local contrast influenced relevance-based attentional
weights by multiplication of the weights by a constant that depended
on the strength of the local contrast, and (b) the pertinence of contrast
was zero.

The results of Experiment 2A are generally consistent with the
findings from Experiment 1A. Again, both contrast and relevance
influenced attentional allocation. The mean probability of correctly
reporting a singleton target was significantly higher than the prob-
ability for a nonsingleton target, revealing a significant effect of
contrast. However, there was also a significant effect of relevance,
as evident from the significant effect of target—distractor config-
uration on the probability of correctly reporting a given target. The
display size was constant in all three target—distractor configura-
tions, so the effect of the configuration would be hard to explain
without assuming that relevance influences initial attentional allo-
cation. Even when the trials with the longest exposure duration
(200 ms) were left out of the analysis, the effect of the target—
distractor configuration was still significant. Overall, the results of
Experiment 2A confirm that both contrast and relevance influence
initial attentional allocation. The attentional weights we estimated
by use of the naive model corroborated this conclusion.
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Figure 15. Estimated attentional weights of singleton targets (T) and distractors (D) at different spatial
positions plotted against the attentional weights of otherwise similar, nonsingleton targets and distractors at the
same positions, for each of the six participants in Experiment 2A. For each participant, the data were fitted by
two least squares (LS) straight lines, one for strong-singleton weights against nonsingleton weights and one for
weak-singleton weights against nonsingleton weights. The dashed reference line is y = x.

The two different singleton types—strong and weak single-
tons—both affected the attentional weights. As expected, the
strong singletons, which differed more strongly from the back-
ground color of the display and the color of the nonsingletons, had

Table 11

Best Fits of Each of Three Linear Models for All Singleton Weights Against Corresponding Nonsingleton Weights for Each

Participant in Experiment 2A

19

stronger effects than otherwise similar weak singletons. For both
strong and weak singletons, the relationship between their weights
and the weights of otherwise similar nonsingletons was reasonably
well accounted for by the simple multiplicative model.

Standard model

Multiplicative model
(zero intercept)

Additive model (unity slope)

(free slope and intercept) LRT LRT
Participant Singleton Intercept  Slope r RMSD Slope RMSD  x*(1) P Intercept RMSD X>(1) P
1 Weak —0.003 1.20 955 0.027 1.19 0.028 0.12 125 0.012 0.035 7.47 .006™
Strong 0.017 1.66 950 0.040 1.73 0.044 1.86 172 0.066 0.080 22.23 <.001"
2 Weak 0.005 1.210 .895 0.031 1.24 0.031 0.17 .678 0.020 0.035 3.65 .056
Strong —0.006  2.08 939 0.040 2.04 0.040 0.20 .651 0.074 0.091 26.25 <.001"
3 Weak —0.008  0.99 974 0.017 0.96 0.018 1.98 159 —0.008 0.017 0.03 .862
Strong —0.002  0.89 952 0.021 0.88 0.021 0.11 738 —0.011 0.024 4.12 042"
4 Weak 0.014 099 .944 0.028 1.05 0.030 2.50 114 0.013 0.028 0.01 931
Strong 0.001 1.38 .960 0.033 1.38 0.033 0.01 935 0.029 0.055 16.68 <.001"
5 Weak 0.006 0974 .956 0.019 1.01 0.020 1.09 298 0.005 0.019 0.24 .621
Strong 0.018  0.939 .874 0.032 1.03 0.035 2.60 107 0.013 0.033 0.46 498
6 Weak 0.012 099 916 0.028 1.05 0.030 1.58 209 0.011 0.028 0.04 .844
Strong 0.012 1.15 .826 0.050 1.21 0.051 0.55 457 0.025 0.052 1.12 264

Note. Root mean squared deviation (RMSD) is shown for comparisons between the models. The one-parameter models are tested against the
two-parameter model via likelihood ratio tests (LRT); for both comparisons, the nested model differs from the standard model by one degree of freedom;

x* and p statistics are provided for these tests.
p<.05 Tp<.0l "p<.001.
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Table 12
Likelihood Ratio Comparisons of Fits by TVA,,, Versus TVA,,
and TVA,, Versus TVA,,,,—1, for Experiment 2A
TVA,, vs. TVA,, TVA,, vs. TVA,,,,,
Participant X2(2) )4 X>(2) P
1 0.21 900 90.01 <.001"*
2 3.80 150 138.54 <.001""
3 1.06 .589 11.51 .003™
4 3.00 223 32.29 <.001""
5 1.48 477 11.38 .003™
6 4.34 114 21.78 <.001""

Note. TVA = theory of visual attention.
p<.0l. ""p <.001.

Experiment 2B

We attempted to choose the two singleton colors used in Ex-
periment 2A in such a way that the readability of stimulus char-
acters was the same whether the local background color was the
strong singleton color, the weak singleton color, or the light gray
background color of the display. Experiment 2B verified that this
goal had been reached. The experimental procedure was generally
similar to the procedure used in Experiment 1B.

Method

Participants. Six young adults, three men and three women,
volunteered as participants. The participants’ mean age was 30
years, with a range of 24 to 33. All participants had normal or
corrected to normal eyesight, and no participants reported any
history of color blindness or other visual deficiencies.

Apparatus and stimuli. The apparatus was similar to that
used in Experiments 1A, 1B, and 2A. The stimulus material was
similar to Experiment 2A with the following exception: Only a
single target and no distractors were presented. The target was
randomly chosen on each trial from the same letter set as in the
previous three experiments. On half the trials, the local back-
ground color of the character circle was the same as the display
background color. On the other half of the trials, the local back-
ground color was equally often one or the other one of the two
colors that were used as singleton colors in Experiment 2A (see
Table 8). The target was shown in one of eight possible positions
on an imaginary circle similar to the preceding experiment. The
position of the target was randomly chosen for each trial.

Procedure. Participants were instructed to report the target as
accurately as possible. When properly fixated, participants pressed
enter. With a latency of 100 ms after the keypress, the target
appeared for 10, 20, 30, 50, 70, or 100 ms. The target was followed
by a 500-ms presentation of a masking display similar to the one
used in Experiment 2A.

The participants served in two sessions of 360 trials, a total of
720 trials, yielding 40 observations per trial type (6 exposure
durations X 3 stimulus types). The trials were presented in random
order in each session. There was as a minimum a 90-min break
between sessions. Each session began with a short training session
consisting of 18 trials in which participants were presented with all
18 display types, to get them attuned to the short exposure dura-
tions. After each training trial, participants received onscreen vi-

sual feedback on their report (correct report, erroneous report, or
no report).

Results and Discussion

The mean number of correctly reported targets was analyzed
across participants for each stimulus type (gray, weak red, and
strong red local background) as a function of exposure duration
(see Figure 16). The mean scores were examined by a repeated-
measures ANOVA with factors exposure duration and stimulus
type. The ANOVA revealed a significant effect of exposure dura-
tion, F(5, 25) = 97.34, p < .001. There was no significant effect
of stimulus type (F < 1), and no significant interaction, F(10,
50) = 1.37, p = .221.

The three different element types, strong red, weak red, and
gray, did not differ significantly from each other in the single
target report. The results of the calibration experiment thus con-
firmed that any difference between the differently colored ele-
ments in the main experiment was not confounded by differences
in readability between singleton and nonsingleton stimulus char-
acters.

General Discussion

We set out to investigate whether both the contrast of the visual
features of an object to its local surroundings (feature contrast) and
the relevance of the features to the observer’s goals (feature
relevance) guide initial allocation of visual attention and, if so,
how the two factors interact. Building on previous studies, we
devised a new experimental method that seemed suited to answer
our questions: a partial-report paradigm with irrelevant color sin-
gletons. Feature contrast and feature relevance were varied inde-
pendently, exposures were brief and post-masked, and attentional
weights were estimated by use of Bundesen’s (1990) computa-
tional theory of visual attention. The results of our experiments
suggest three main conclusions: (a) An object with high local
feature contrast generally attracts more initial attention than an
otherwise similar object with low local feature contrast, even when
the feature contrast is irrelevant to the task at hand. (b) An object
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Figure 16. Group mean number of correctly reported targets for each
stimulus type as a function of exposure duration in Experiment 2B.
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that is relevant to current goals generally attracts more initial
attention than an object that is less relevant. (c) The attentional
weight of an object is a product of a bottom-up (feature contrast)
and a top-down (feature relevance) component. We elaborate these
points below.

Feature Contrast

The data from our experiments revealed a distinct effect of local
feature contrast on the initial allocation of attention. The proba-
bility of correctly reporting a target element was significantly
higher in both Experiments 1A and 2A if the target element had a
high local feature contrast. In accordance with this, the estimated
attentional weights were significantly higher for elements with a
high contrast (color singletons) than for elements with a low
contrast (nonsingletons). The main experiments (Experiments 1A
and 2A) were set up in such a way that the contrast was of no
relevance to the task. Furthermore, by the calibration experiments
(Experiments 1B and 2B), we ensured that the high local color
contrast did not influence the visibility (readability) of the target
letters, so that the effect of contrast in our experiments must be
considered an attentional effect.

A number of previous studies have varied static feature
contrast and feature relevance independently (e.g., Folk &
Annett, 1994; Jonides & Yantis, 1988; Theeuwes, 1990). Con-
trary to our findings, none of these studies has reported signif-
icant effects of task-irrelevant static contrast. We see three
differences between the present experiments and previous stud-
ies, which individually or collectively may explain why our
experimental method seemed more sensitive than previous
methods. First, as mentioned in the introduction, the previous
studies have been conducted in resource-limited conditions
(speeded responses and, most often, long stimulus exposures).
Our findings were obtained in data-limited conditions (un-
speeded responses to brief exposures), in which performance
may reflect the perceptual processing with higher fidelity (Ester
& Awh, 2008; Santee & Egeth, 1982).

Second, the singleton in our experiments was the only feature
singleton present among a relatively homogeneous set of nons-
ingletons. The background color was the same for all nonsingleton
elements, and the shape of the outer boundary of the elements was
always a circle. Thus, it seems likely that our color singleton was
more salient than were the singletons in the previous studies (see,
in particular, Bacon & Egeth, 1994, Experiments 2 and 3).

Third, in a more technical vein, it can be shown that an incre-
ment from w_ to w, + Aw, in the attentional weight of an element
X causes a percentage increase in the relative attentional weight of
x (i.e., a percentage increase in w, / Ezes w,), which increases
with the sum of the attentional weights of the remaining elements
in the visual field (see the Appendix for a proof). Thus, by the rate
equation of TVA (Equation 1), when many elements are present in
the visual field and when the elements have high attentional
weights, an increase in the attentional weight of a single element
will have a relatively larger effect on the processing rate of that
element compared to when there are few elements with low
attentional weight. As an example, in the experiments of Jonides
and Yantis (1988), there was never more than one target in a
display (as is characteristic of resource-limited experiments) and
between two and seven elements in the displays. By contrast, in

our Experiments 1A and 2A, there were between six and 10
elements in the displays and two to six of these elements were
targets. For this reason, too, our experimental measures may have
been more sensitive to the tested increases in feature contrast than
were measures yielded by previous methods.

Many researchers have argued that objects with high local
feature contrast receive attentional priority in the initial visual
processing (e.g., Itti & Koch, 2000; Theeuwes, 2010; Treisman,
1986; Wolfe, 1994). Some researchers have proposed that the
initial allocation of attention is determined entirely by properties of
the stimulus (e.g., Theeuwes, 2010). It is evident from our data that
the probability of encoding an element was significantly increased
if the element was a color singleton, even though neither the
specific color feature nor the contrast signal in itself could be used
to solve the task in our experiments. However, as discussed in the
next section, the attentional prioritization based on contrast in our
experiments did not preclude significant effects of goal relevance.
Rather, we found an interaction between the contrast of an object
and the relevance of that object. In our experiments, the magnitude
of the effect of task-irrelevant contrast was contingent on the
relevance of the object in question.

Feature Relevance

Just as local feature contrast affected allocation of attention, the
data from the present study also revealed a significant effect of
relevance. Two closely related findings suggested particularly
strongly that relevance influences initial attentional allocation.
First, in both Experiments 1A and 2A, target elements yielded
significantly higher estimates of attentional weight than did dis-
tractors. Second, in Experiment 2A, the observed probabilities of
correctly reporting the different target types decreased as the
number of targets in the displays increased while the total number
of elements in the displays was kept constant. Both results testify
that elements that were relevant to the current task seized more
processing resources than did less relevant elements.

The finding of an influence of relevance on initial attentional
allocation is in line with many other studies (e.g., Bacon & Egeth,
1994; Folk & Remington, 1998; Folk et al., 1992; Leber & Egeth,
2006; Miiller, Heller, & Ziegler, 1995; Remington, Folk, &
McLean, 2001; Wolfe et al., 1989). However, these studies have
been criticized for reporting results reflecting later stages of pro-
cessing rather than initial attentional allocation (Theeuwes, 2004,
2010). The above studies used reaction-time-based paradigms in
which the stimuli were presented until the participants responded,
typically between 400 and 900 ms after the stimuli came on, or in
which the distracting singleton was presented 150 ms prior to the
target stimulus display. These reaction-time-based studies leave
open the interpretation that effects of relevance in these studies
stem from later stages of the processing, that is, processing after
the first ~150 ms of stimulus presentation (Theeuwes, 2004,
2010). Our study responds to this criticism. As noted in the
introduction, the use of brief stimulus exposures and unspeeded
responses in our experiments argues against late-stage explana-
tions of the effects of relevance.

Relevance plays a major role in TVA, as in many other theories,
for instance, guided search by Wolfe (e.g., Wolfe, 1994,2006;
Wolfe et al., 1989), the contingent capture theory by Folk and
colleagues (e.g., Folk et al., 1992), and the dimension weighting
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account by Found, Miiller, and Krummenacher (Found & Miiller,
1996; Miiller & Krummenacher, 2006). The effect of relevance in
the present experiments is overall in line with these theories.
However, the target category we apply is relatively complex,
namely, letters, and the above theories disagree on the complexity
of the categories on which visual selection can be based. Although
the guided search model, the contingent capture theory, and the
dimension weighting account support relevance-based attentional
guidance, this guidance is thought to pertain to simple feature
categories such as red, steep, and small (Wolfe, 1994; Wolfe &
Horowitz, 2004) or feature dimensions such as color, orientation,
and size (Found & Miiller, 1996; Miiller & Krummenacher, 2006).
Our experiments provide new evidence that alphanumeric category
can guide attention, even with very brief stimulus presentations. In
this way our theoretical account is similar to the attentional en-
gagement theory of Duncan and Humphreys (1989, 1992) and the
biased competition theory of Desimone and Duncan (1995), in
which attention can be guided by more complex features. In this
connection, it is interesting to note that an increasing number of
studies using natural scenes and objects have found effects of task
relevance in visual searches for complex categories (e.g., Alexan-
der & Zelinsky, 2012), even at very short exposure durations
(Evans, Horowitz, & Wolfe, 2011; Thorpe, Fize, & Marlot, 1996).
However, these effects are typically interpreted as effects of effi-
cient feed-forward loops rather than top-down guidance by com-
plex categories. Our results show significant top-down effects for
categories of intermediate complexity. It remains for future studies
to test the validity of the principles we have derived in settings
with stimuli of higher complexity.

Joint Effects of Contrast and Relevance

Both feature contrast and feature relevance influence initial
attentional allocation. Interestingly, we found evidence that both
effects persist under the presence of the other. The probability of
correctly reporting a target singleton was significantly higher than
the probability of correctly reporting a target that was not a
singleton, demonstrating the significant influence of contrast. At
the same time, the probability of correctly reporting a target
singleton was significantly influenced by the target—distractor
configuration in displays of similar set size, bearing evidence that
relevance and contrast concurrently influence attention. The
weight estimates in Experiments 1A and 2A (see Figures 5 and 13)
also confirmed the simultaneous influence of contrast and rele-
vance. In each experiment, the estimated weights showed both
significant main effects of contrast and relevance and a significant
interaction between contrast and relevance.

Zehetleitner et al. (2012) have recently drawn a similar conclu-
sion, stressing that selection is based on a continuous weighting of
features and thus depends on the relative strength of top-down
settings and bottom-up salience. In line with this, a number of
studies have found evidence that both behavioral and electrophys-
iological effects of feature contrast can be modulated by top-down
settings (Kim & Cave, 1999; Leber & Egeth, 2006; Miiller et al.,
2009; Tollner, Miiller, & Zehetleitner, 2012; Tollner, Zehetleitner,
Gramann, & Miiller, 2010; Zehetleitner, Krummenacher, Geyer,
Hegenloh, & Miiller, 2011).

Models of Singleton Weights

As shown in the TVA-Based Predictions section, traditional
TVA suggests an additive model of singleton weights: By the
traditional weight equation (Equation 2), an increment in m(x,
contrast) by a certain amount, An(x, contrast), yields an increment
by An(x, contrast) .., as 10 W,, regardless of the prior size of w.
Thus, other things equal, changing the status of an object x from
nonsingleton to singleton increases the attentional weight of the
object by adding an increment, which is independent of the prior
size of w,.

We tested the additive model of singleton weights for each type
of singleton (one type in Experiment 1A, two types—strong and
weak—in Experiment 2A) by first estimating attentional weights
of singleton targets (two types in Experiment 2A), nonsingleton
targets, singleton distractors (two types in Experiment 2A), and
nonsingleton distractors at all possible locations in our stimulus
displays by fitting the data by TVA with the attentional weights as
free parameters (the naive model). We then plotted the estimated
weights of singleton objects against the estimated weights of
otherwise similar nonsingleton objects. According to the additive
model of singleton weights, the plotted points should lie on a
straight line with a slope of 1 and an intercept of Am(x, contrast)
Teonwase- Actually, the plotted points lay approximately on a
straight line, but the fit obtained by a linear model with two free
parameters (intercept and slope) was significantly better than the
fit by the additive model of singleton weights in which the inter-
cept was the only free parameter (p < .001 for both Experiment 1A
and Experiment 2A), so the additive model was inferior to the
two-parameter linear model of singleton weights.

Contrast and Relevance in Computation of Attentional
Weights

In the Discussion of Experiments 1A and 1B section, we ex-
plained the two-parameter linear model of singleton weights by
proposing a generalization (Equation 3) of the weight equation of
TVA, the generalization

Wy = K)czj(ER T](x’j)’n-j’

and deriving the two-parameter linear model of singleton weights
from this generalized weight equation. In the generalized weight
equation—the COntrast-RElevance (CORE) equation—«k, is the
strength of the local feature contrast of object x, and the summation
across j subsumes m(x, contrast)T.... .- 1he CORE equation
reduces to the traditional weight equation when the local feature
contrast, k,, is the same for every object x. Without loss of
generality, K, nsingleton €aN be set at a value of 1. In this case, the
slope of the two-parameter linear model of singleton weights
equals Kgqeon» Whereas the intercept equals the product of
Kgingleton» 1€ increment m(singleton, contrast) — m(nonsingleton,
contrast), and ...« (S€€ Equations 4-6). Thus, the intercept
should be positive if T, e = 0. If T = 0, the intercept
should also be 0. In this special case, the two-parameter linear
model of singleton weights reduces to a one-parameter multipli-
cative model, in which the weight of a singleton object is directly
proportional to the weight of an otherwise similar nonsingleton
object, K being the constant of proportionality.

contrast

singleton
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The results of Experiments 1A and 2A were well accounted for
by models based on TVA with the CORE equation. Fits to the
response probabilities based on the assumption that . . = O
were pitted against fits based on the more general assumption that
Teonwast = 0. For Experiment 1A, fits by TVA with the CORE
equation and the assumption that ... = 0 were not signifi-
cantly better than fits by TVA with the CORE equation and the
assumption that 7 ..« = O (see Table 7), suggesting that in
Experiment 1A, T, . Was close to 0. However, across partici-
pants in Experiment 1A, the relationship between the singleton
versus nonsingleton weights estimated by the naive model was
significantly better fitted by the two-parameter linear model com-
pared with the one-parameter multiplicative model (see Table 6),
suggesting that m . = 0. Presumably, 7 .. Was positive for
one or more participants in Experiment 1A but was not much
greater than 0.

As was the case for Experiment 1A, fits to the response prob-
abilities in Experiment 2A by TVA with the CORE equation and
the assumption that 7 ... = 0 were not significantly better than
fits by TVA with the CORE equation and the assumption that
Teonwast — O (see Table 12), suggesting that in Experiment 2A,
Teonrase Was close to 0. Furthermore, compared with the one-
parameter multiplicative model for singleton weights, the two-
parameter linear model for singleton weights did not provide
significantly better fits to the plots of singleton versus nonsingle-
ton weights estimated by the naive model (see Table 11, columns
9 and 10), again suggesting that m_ .. = 0. Presumably, 7., ast
was close to 0 for the participants in Experiment 2A.

Whereas the results lend support to TVA with the CORE equa-
tion, the implications concerning the pertinence of local feature
contrast are less certain. We speculate that in very many situations,
paying attention to singletons by letting ., .as = 0 is sound from
a biological point of view. Thus, ., . May be positive by
default. In special cases we may know that contrast is task irrel-
evant. In such cases, performance may be optimized by setting
Teonast — 0 SO that attentional weights reflect the requirements of
the task with maximum fidelity. In Experiments 1A and 2A,
contrast in color was known to be task irrelevant, so in both
experiments, participants may have attempted to set . close
to 0.

The k component presumably reflects the contrast between the
physical properties of the stimulus and its surroundings, akin to the
activation values computed in the saliency map models (e.g., Itti &
Koch, 2000; Koch & Ullman, 1985), the feature dissimilarities
described by Nothdurft (e.g., 1992, 1993), and the bottom-up
activations of Wolfe (1994). We speculate that the weight of the
singleton elements in the additional singleton experiments may
be influenced both by the k component and by a positive
pertinence of contrast, as contrast has a certain relevance to the
task in these experiments. Such a concurrent effect of k and
positive pertinence of contrast should increase the overall effect
of contrast, in line with the results reported in the previous
literature (e.g., Theeuwes, 1991, 1992).

The multiplicative nature of the CORE weight equation implies
that the effect of the contrast of an object depends on the relevance
of the object, and vice versa. If the relevance (i.e., the sum of n(x,
i)m, products) of an object approaches zero, then so does the total
attentional weight of that object, regardless of the contrast of the

contras;

object. Similarly, when the contrast approaches zero, so does the
weight, regardless of the relevance.

Whereas the CORE weight equation is derived from experi-
ments with relatively simple stimuli, the principles should gener-
alize to visual perception of complex stimuli, such as natural
scenes: The contribution from the feature contrast component
should be interdependent with the contribution from the feature
relevance component, and this interdependence should be well
described by a multiplicative relation. Although the components of
feature contrast and of feature relevance are harder to isolate in a
natural scene, it remains an important task for future studies to
confirm the generality of the CORE equation.

Other Models Relating Contrast and Relevance

Other models of visual attention have proposed that initial
selection depends on both a contrast- and a relevance-based com-
ponent (e.g., Miiller & Krummenacher, 2006; Navalpakkam & Itti,
2002; Wolfe, 1994), and recent studies have suggested that selec-
tion depends on the relative strength of the two components
(Zehetleitner et al., 2012). In the guided search model, Wolfe et al.
(1989) introduced the idea that attentional selection is based on
activations in an overall activation map that is computed by adding
relevance-based, top-down activations and contrast-based
bottom-up activations. In a way, our introduction of k in the
weight equation of TVA makes TVA more similar to guided
search and related models such as the dimension weighting ac-
count (Found & Miiller, 1996). However, in guided search, con-
trast and relevance activations are added together, whereas, in
TVA with the CORE equation, the attentional weight of an object
is a product of the contrast and the relevance of the object.

As noted, computation of k values may resemble the saliency
map activations described by Ullman, Koch, and Itti, among others
(Itti & Koch, 2000; Koch & Ullman, 1985). Interestingly, Naval-
pakkam and Itti (2002) have proposed a model of relevance- and
contrast-based attention guidance, building on the earlier models
of saliency maps. In the model of Navalpakkam and Itti (2002), the
attention guidance map consists of pointwise products of salience
and task relevance, similar to the products of contrast and rele-
vance proposed in the CORE equation. The data from the present
experiments and the equation we have derived from these data are
thus in line with trends in the literature on computer vision. Note,
however, that our k parameter pertains to objects, whereas the
above-mentioned models operate on a pixel-based level. Recent
developments in computer vision suggest that object-based com-
putation of contrast may be more efficient and may better reflect
qualitative aspects of human attention than does the pixel-based
approach (Aziz & Mertsching, 2008; Wischnewski, Belardinelli,
Schneider, & Steil, 2010). Our introduction of the k component is
in line with these new advances.

Concluding Remarks

We have attempted to settle the long debate on bottom-up
capture versus top-down control of visual attention by experimen-
tal analysis and computational modeling. Our studies seem to show
that both local feature contrast and relevance to the observer’s
goals affect initial allocation of attention. In particular, the results
suggest a generalization of the weight equation of TVA
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(Bundesen, 1990) such that the attentional weight of an object
equals a product of a bottom-up, local feature contrast component
and a top-down, feature relevance component.
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Appendix

Effect on Processing Speed Caused by an Increment in Attentional Weight

Consider the effect of incrementing the attentional weight of
element x from a value of w, to a value of w, + Aw,, where w, >
0 and Aw, > 0. Let w_,., be the sum of the attentional weights of
all other elements in the visual field. The increment in the atten-
tional weight of element x causes an increase in the relative
attentional weight of element x from a value of

Wy

Wy + Wother
to a value of

w, + Aw,

Wy + wa + Wmher’
corresponding to a multiplication by the factor

(Wx + AW);) (Wx + Wolher)

(Wx + wa + Wother)wx

or a percentage increase of

(Wx + wa) (Wx + wother)

- X .
(Wx + wa + Wolher)wx ! 100%

f(Wx’ wav Wother) = |:

(AD)

We shall prove that the percentage increase, f(w,, Aw,, Wyper) i
the relative attentional weight of x, caused by the increment from
w, to w, + Aw,_ in the attentional weight of element x, is a
monotonically increasing function of the sum of the attentional
weights of all other elements in the visual field, wyy,,. Clearly, for
given values of w, and Aw,, f(w,, Aw,, Wope) is a function of
Womer 1f We apply the rule for the derivative of the quotient of two
differentiable functions and reduce the result, the derivative of the
quotient in Equation A1 with respect to w,,., reduces to

(wx + AWX)WXAWX

2.2
(Wx + wa + Wolher) Wy

which is positive because w, > 0 and Aw_ > 0. Accordingly, for
any given values of w_and Aw,, f(w,, Aw,, Woper) 1S @ monoton-
ically increasing function of w_,.,, which was to be proved. By the
rate equation of TVA (Equation 1), the proof implies that the
percentage increase in the speed of encoding categorizations of x
into VSTM, caused by the increment from w, to w, + Aw_ in the
attentional weight of element x, is a monotonically increasing
function of the sum of the attentional weights of all other elements
in the visual field, wg,e,-
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