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ENGLISH SUMMARY 
 

Climate change is expected to affect terrestrial ecosystems across the globe 
with increased atmospheric CO2 concentration, higher temperatures and 
changes in precipitation patterns. These environmental factors are drivers of 
many important ecosystem processes, and changes in ecosystem function are 
therefore expected in the future. The aim of this PhD-thesis was to examine 
the effects of climate change on aboveground plant growth, plant composi-
tion and plant phenology in Danish heathland ecosystems. Two sites were 
investigated in large-scale field experiments: 1) the CLIMAITE site, 
‘Brandbjerg’ and 2) the INCREASE site at Mols. Field manipulations lasted 
years and included: Warming, summer drought and (CLIMAITE only) ele-
vated CO2 concentrations. The treatments were applied individually and in 
all possible combinations. Further, at Brandbjerg, but outside the treatment 
plots, a study was performed on the effects nitrogen and phosphorus addition 
on phenolgy, chemistry and growth of the dominant grass Deschampsia 
flexuosa (Wavy Hairgrass). 

In general, the aboveground vegetation responded less than expected to 
changing climatic conditions; even though Calluna vulgaris (Heather) in-
creased in biomass over the study period, the biomass was not affected by 
the manipulations, indicating that C. vulgaris, has a strong resistance to 
changes in climate. Also, the grass biomass (primarily D. flexuosa) was not 
affected and was relatively constant over the period. I argue that the resil-
ience of D. flexuosa towards the climatic treatments came from the plants 
ability to let the tissue die back, and then quickly recover once conditions 
again became favourable. That gave the plant a high resilience to changes in 
climatic factors. Calluna vulgaris, on the other hand, showed a resistance to 
changes by constantly maintaining the growth during the whole season, 
probably because of its evergreen status. Together, the two different strate-
gies made the heathland ecosystem more resilient to the climatic treatments 
than expected. We also found that the amount of flowering culms of D. 
flexuosa increased in response to increased CO2, whereas the seed germina-
tion success decreased. The bryophyte biomass and the nitrogen content de-
creased in response to nitrogen addition. Even such apparently minor 
changes might, given time, affect the plant composition and thereby possibly 
also the major ecosystem processes. Further, we observed changes in the 
aboveground plant composition in response to the climate manipulations at 
the Mols site, where C. vulgaris was regenerating after a disturbance. Here a 
decrease in biomass of the pioneer stage was seen, when subjected to the 
drought treatment compared to warmed and control treatments. I therefore 
conclude, that the stage of the C. vulgaris population as well as the magni-
tude and frequency of disturbances determine the effects of future climate 
change on the plant community in heathland ecosystems.  
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DANSK RESUMÉ 
 

Fremtidens klimaforandringer vil ændre forholdene for vores økosystemer. 
Højere atmosfæriske CO2-koncentrationer, varmere klima og ændrede ned-
børsmønstre er alle parametre, der vil påvirke biologiske processer og der-
med påvirke vores økosystemer på flere niveauer. Formålet med denne 
ph.d.-afhandling er at belyse effekterne af klimaforandringer på plantevækst, 
artssammensætning og fænologi i danske hedeøkosystemer. To lokaliteter 
blev undersøgt med storskala feltstudier: 1) CLIMAITE-lokaliteten, Brand-
bjerg og INCREASE-lokaliteten på Mols. Behandlinger i eksperimentet var: 
forhøjet temperatur, forlænget sommertørke samt (kun på CLIMATE lokali-
teten) forhøjet atmosfærisk CO2-koncentration. Alle behandlinger blev un-
dersøgt enkeltvis og i samtlige mulige kombinationer. Desuden blev der på 
Brandbjerg, men uden for behandlingsfelterne, udført et gødskningforsøg, 
der skulle undersøge effekten af øget nitrogen- og fosfortilførsel på fænolo-
gi, blad-kemi og vækst af Deschampsia flexuosa (Bølget Bunke). 

Generelt blev den overjordiske vegetation påvirket i mindre grad af kli-
mabehandlingerne end forventet. Selvom Calluna vulgaris (Alm. Hedelyng) 
forøgede sin biomasse hen over perioden, var der ingen effekt af behandlin-
gerne. Dette indikerede, at C. vulgaris var mere modstandsdygtigt over for 
ændringer i klimaet end forventet. Græsbiomassen af D. flexuosa blev heller 
ikke påvirket af klimabehandlingerne, og biomassen var forholdsvis ens alle 
årene. Jeg argumenterer for, at D. flexuosas modstandsdygtighed skyldes 
dens evne til at visne ned under en tørkeperiode og hurtigt skyde igen så 
snart vilkårene igen blev favorable. Denne evne til at visne ned og genskyde 
gjorde arten overlevelsesdygtig under de ændrede klimaforhold. Lyngen vis-
nede ikke på samme måde ned. Til gengæld kunne arten, formodentligt på 
grund af at den er stedsegrøn, opretholde en konstant, lav vækst gennem hele 
sæsonen, uanset klimabehandling. Tilsammen gjorde disse to plantestrategier 
heden som økosystem langt mere modstandsdygtigt over for forandringer i 
klimaet end forventet. Antallet af blomsterstande for D. flexuosa steg under 
forhøjet CO2-koncentration, mens spiringsevnen faldt.  Nitrogenkoncentrati-
oner i bryofytterne og bryofyt-biomassen faldt ved nitrogentilførsel. Selv så-
dan tilsyneladende små forandringer kan, med tiden, påvirke plantesamfun-
det og dermed muligvis også de væsentlige biologiske processer i økosyste-
met. Desuden viste eksperimentet på Mols, at regenerationen af C. vulgaris, 
efter et lyngbladbille angreb, blev påvirket af klimabehandlingerne. Her 
havde unge skud af C. vulgaris sværere ved at reetablere sig i felter, der hav-
de været udsat for tørke, end i felter der enten var kontrolfelter eller varme-
felter. Jeg konkluderer derfor, at både livs-stadiet af C. vulgaris-populatio-
nen samt omfanget og frekvensen af forstyrrelser er med til at bestemme ef-
fekten af fremtidens klimaforandringer på plantesamfundet i et hedeøko-
system.
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THE AIM OF THE PROJECT 
 
During the writing of these papers, one question remained in focus again and 
again. Will changes in climate alter plant communities over time? This 
question may seem simple and easy to answer, but as the following synthesis 
will hopefully show, simple questions are not always easy to answer – espe-
cially not when working with natural ecosystems. 
 
Changes in the climate will affect most biological processes and thereby in-
fluence both natural, semi-natural and cultural ecosystems. The challenge of 
coping with climate changes will increase in the future, and knowledge 
about the magnitude of the effects on ecosystems is therefore needed. 
The aim of the study was to examine the effects of climate changes on 
aboveground plant growth, plant composition and plant phenology in a Dan-
ish heathland.  

The thesis consists of data from two projects; the Danish Climate Centre 
of Excellence, CLIMAITE and the EU infrastructure INCREASE both in-
vestigating ecosystem responses to climate in large scale field experiments. 
Further, four scientific papers are included, all concerned with the relation-
ship between plant growth and climate change. The first paper investigates 
the effect of climate change on biomass production within a heathland eco-
system. The second paper is about growth and nutrient allocation within the 
plants in response to nutrient addition. It also deals with the interaction be-
tween climate and nutrient addition on the dominant grass species 
Deschampsia flexuosa. The third paper report changes in flower phenology 
brought about by climate change, based on studies of flowering and seed 
production of the grass D. flexuosa. Finally, the fourth paper is about regen-
eration of Calluna vulgaris after a heather beetle attack under warmer and 
drier climate conditions.  

As stated earlier, my thesis is part of the large climate change experiment 
CLIMAITE and therefore a part of a network of research covering most bio-
logical patterns and processes within the investigated heathland; below-
ground processes, gas exchanges, plant physiological parameters and plant 
responses both below- and aboveground. We have all been working at the 
same study site, with the common key words “climate change” and “heath-
land ecosystem”. This thesis focuses on the aboveground vegetation, but due 
to the unique opportunity of knowledge sharing, it is possible to discuss my 
findings within the findings of others PhD.-students and researchers at the 
site, and I thereby seek to understand and describe the plant responses in an 
ecosystem perspective. Finally, the results found in this thesis are discussed 
in relation to other threats identified for heathland ecosystems including ni-
trogen deposition, lack of management and land-use changes.  
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BACKGROUND 
 
Climate change scenarios  
 
Global atmospheric concentrations of greenhouse gasses have increased over 
the last century, primarily as a result of human activity. The carbon dioxide 
concentration has increased from a pre-industrial level of 270 ppm to 380 
ppm in 2005 (Christensen et al. 2007). This increase mainly owes to fossil 
fuel burning and land use changes and the CO2 concentration is expected to 
increase even further depending on the magnitude of future CO2 emissions.  

Several models have been developed to estimate the magnitude of future 
changes. Although the models show somewhat different output CO2 concen-
trations, there is nevertheless a consensus that the increase in CO2 will have 
consequences for other climatic parameters including increased temperature 
and changes in precipitation patterns with more heavy rain events and longer 
drought periods. Wind directions and wind speeds are also expected to 
change with more storms and hurricanes as a result. Most models agree that 
changes in climate will not be distributed evenly around the world; some ar-
eas will be flooded and others may experience severe drought.   

In Denmark the temperature is expected to increase with yearly average 
temperatures 2-3 oC higher in year 2100 compared to 1990. Night tempera-
tures are expected to increase more than day temperatures and winter tem-
peratures will increase more than summer temperatures (Danish Meteoro-
logical Institute http:// www.dmi.dk) (fig 1). Also, precipitation patterns are 
expected to change in the future. In Denmark, winter precipitation is ex-
pected to increase by 20-40 %. In summer, on the other hand, a reduction of 
85-90% of current precipitation is expected. Together with a higher fre-
quency of heavy rain falls, the reduction is expected to result in longer 
drought periods during the growing season (Danish Meteorological Institute 
http:// www.dmi.dk) (fig. 2). 

 
Dry Heathlands 
 
All studies within this thesis took place in dry inland heathlands. Heathlands 
are associated with dwarf shrub dominance, in Denmark mainly the ever-
green heather; Calluna vulgaris. The ecosystem is characterised by a low 
level of plant-available nutrients and there is often a strong competition for 
nutrients between plants, fungi and bacteria (Jonasson et al. 1996). Further it 
is, at least periodically, limited by water. The diversity of higher plants is 
low, and the vegetation is adapted to cope with stressful conditions. The sys-
tem depends on continuous management, since nutrients have to be removed 
to maintain the low levels. 
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Figure 1 Predicted changes in temperature (°C) in winter (top) and summer (bot-
tom) in the period 2071-2100 compared to the period 1961-1990 in Denmark (from 
www.DMI.dk). 
 

 
Figure 2 Predicted changes (%) in winter (left) and summer (right) precipitation in 
the period 2071-2100 compared to the period 1961-1990 (from www.DMI.dk). 
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The need for management has increased progressively with the industrializa-
tion since the nutrient load into the system has increased markedly during 
this period. The increased nutrient load together with the lack of manage-
ment has brought about changes in the plant species composition of heath-
lands. First of all by invasion of grasses, but also by invasion of trees and 
bushes, all resulting in higher decomposition rates, changes in soil structure 
and exclusion of previously present species (Terry et al. 2004). Climate 
changes could enhance these changes further by speeding up the processes.     
 

 
Deschampsia flexuosa                 Calluna vulgaris  
 
 
Climate change effects on aboveground vegetation 
 
Increased CO2 directly stimulate plant growth due to a higher CO2 assimila-
tion rate (de Graaff et al. 2006) and it has also been shown to increase the 
number of flowers or seeds per plant (Jablonski et al. 2002; Thurig et al. 
2003). Further, increased carbon assimilation may lead to higher rhizode-
position (Zak et al. 1993) and thereby stimulate belowground activity and 
the mineralization rate. However, nutrient and water limitation has been 
shown to quench the CO2-induced biomass increase, resulting in a more lim-
ited response in natural ecosystems compared to agricultural systems 
(Leakey et al. 2009). Studies on natural ecosystems that have reported in-
creased biomass production under elevated CO2, concluded that this increase 
mainly was due to an indirect effect on the hydrological cycle, because ele-
vated CO2 decreases the stomatal conductance, leading to improved water 
use efficiency (WUE) (Ainsworth and Long 2005).  

Increased CO2 has, on the other hand, been shown to increase C/N and 
C/P ratios in litter, which may decrease the mineralization rate (van 
Heerwaarden et al. 2005; Hovenden et al. 2008). A decreased mineralization 
rate could result in an increased immobilization of N and P, and thus a re-
duction in the plant-available N/P pools. However, since CO2 is expected to 
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increase the plant biomass production and thereby also the litter production 
this could compensate for the lower litter quality. 

Since C. vulgaris is abundant from the North of Norway down to Spain 
and Portugal, a direct effect of warming should probably not be expected 
within the short time scale of this study. However, warming may influence 
the abundance of C. vulgaris indirectly, for instance by influencing the num-
ber of heather beetles, since they are stimulated by a warm and dry spring 
(Penuelas et al. 2004). Further, warming has been demonstrated to stimulate 
N-mineralization and thereby increase N-availability (Aerts et al. 2006; 
Emmett et al. 2004; Rustad et al. 2001). Thus, warming may therefore in-
crease the aboveground biomass of especially the grass, since it is a weaker 
competitor for nutrients compared to the heather under nutrient deficient 
conditions.  

Lately, monitoring of the Danish heathlands has shown that the cover of 
the grass D. flexuosa is now relatively high in many of the Danish heath-
lands (Andersen et al. 2005). Grass invasion on heathlands has been linked 
to the relatively high levels of N-deposition (Barker et al. 2004; Terry et al. 
2004). If future warming increase the N-availability at the site, the grass 
could increase in cover at the expense of the slow growing C. vulgaris. The 
study site is at the 55°53’ N, and at this latitude, warming also prolongs the 
growing season (Cleland et al. 2006; Mikkelsen et al. 2008) and thereby in-
creases the biomass production in spring and autumn. Also, spring phenol-
ogy, such as leaf appearance and flowering time, has been shown to shift 
forward in response to a warmer climate, due to an earlier start of the growth 
season (Hovenden et al. 2008; Menzel et al. 2006).  

Drought has been shown to decrease plant biomass due to a slow down of 
most biological processes including photosynthesis (Gordon et al. 1999; 
Penuelas et al. 2007) mineralization, nutrient cycling and biomass produc-
tion (Emmett et al. 2004; Schmidt et al. 2004; Larsen et al. 2011). The frac-
tion of biomass found as litter has been shown to increase in response to se-
vere drought (Kongstad et al. 2011), whereas actual litter production may 
decrease due to lower biomass production (Penuelas et al. 2004). Further, it 
has been reported that repeated droughts can change soil compactness and 
water holding capacity even in wet ecosystems (Sowerby et al. 2008). In 
semi-natural and nutrient poor ecosystems such as heathlands, such altera-
tions can change the plant production and as a result also change plant-plant 
interactions (Damgaard 1999; Penuelas et al. 2007). However, heathland 
ecosystems are characterised by a low level of plant-available nutrients and 
the ecosystem is, at least periodically, limited by water. The vegetation is 
therefore adapted to cope with stressful conditions, and studies with heath-
lands similar to ours have recently shown an unexpected resistance towards 
changes in climate conditions including prolonged drought periods (Grime et 
al. 2008; Hudson and Henry 2010). 
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The climate change factors will interact. Recent studies on plant growth, 
phenology and plant composition have shown that changes in the main cli-
mate drivers, individually as well as interactions between increased CO2 and 
precipitation and temperature, have a significant impact on ecosystem func-
tions (Shaw et al. 2002; Beier 2004; Norby and Luo 2004; Luo et al. 2008). 
A higher CO2-assimilation rate theoretically increases WUE and CO2 en-
richment was thus expected to counterbalance any drought effects by stimu-
lating plant growth and thus also plant nutrient demands (Ainsworth and 
Long 2005). Drought may, as described above, decrease the biomass produc-
tion in mid-summer and thereby counteract the increased biomass production 
expected from increased CO2 concentration and from warming. Further, 
since this ecosystem periodically was limited by water, warming might add 
to the effect of drought, during drought periods in mid-summer 
(Beierkuhnlein et al. 2011; Penuelas et al. 2007).  
 
Changes in species composition  
 
The distribution of the North Western heathlands is highly linked to the dis-
tribution of the key species C. vulgaris. Heathlands are also native habitats 
for the grass D. flexuosa and the two species typically co-occurr with high 
cover of the grass after disturbances such as fire or clearances resulting in 
nutrient releases. Lately, D. flexuosa has increased in both cover and area of 
distribution in Denmark (Nielsen et al. 2011). The increase is assumed to be 
associated with previously high levels of nitrogen deposition and to the lack 
of management in nutrient poor areas. D. flexuosa and C. vulgaris belong to 
two different functional groups, graminoid and dwarf shrub respectively, and 
have highly different life strategies, with the grass being faster growing, 
more productive and having a lower nutrient turn-over time. Deschampsia 
flexuosa has AM- mycorrhiza which facilitates the uptake of especially 
phosphorus (Smith and Read 2008). Calluna vulgaris is, on the other hand, 
evergreen with a long leaf life span, it has a high content of complex com-
pounds in tissue that make the decomposition rate of the litter low. It has the 
ericoid mycorrhiza that provides nutrient uptake in organic form 
(Cornelissen et al. 2001). Calluna vulgaris has the so-called ‘s-strategy’ 
(Grime 2002); it is adapted to nutrient and water limitation, but on the other 
hand fails to compete when changes lead to a more productive ecosystem 
(Friedrich et al. 2011).  

If warming increases mineralisation and increased CO2 concentrations in-
creases root exudation, altered climate conditions may induce changes in the 
plant community similar to nitrogen deposition. For instance, changes in 
climate conditions may, as seen in the case of increased nitrogen availability, 
speed up the life cycle of C. vulgaris. Invasion by grasses often occur in 
openings of the C. vulgaris canopy, where D. flexuosa capture the water and 
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quickly create a close litter layer that prevents C. vulgaris seedlings to estab-
lish (Aerts 1993). Changes in climate therefore may result in an even faster 
spreading of D. flexuosa into heathlands.   

Grasses have been shown to respond more quickly to changes compared 
to heather (Aerts 1995; Chapin and Shaver 1996; Arft et al. 1999; Michelsen 
et al. 1999; Graglia et al. 2001) and the positive effect on biomass produc-
tion in response to elevated CO2 may therefore be more pronounced for the 
grass than for the heather. On the other hand, heather may be more tolerant 
than the grass towards drought and would suffer less from the higher C/N 
ratio in litter, due to the ericoid mycorrhiza that provides nutrient uptake in 
organic form (Cornelissen et al. 2001).   
 
Hypothesises 
 
Based on the above-mentioned I hypothesized that: 

● Elevated CO2 and warming would stimulate aboveground biomass 
production, but drought would decrease biomass.  

● Drought would increase the fraction of litter, but due to the lower 
production of biomass, the litter pool would decrease in response to 
drought.  

● The amount of flowering culms would increase under elevated CO2, 
whereas drought would lead to higher mortality before reaching the 
state of flowering.  

● The main climate drivers were expected to interact. Drought was 
expected to counterbalance the stimulation of both biomass and 
flowering culms by elevated CO2.  

● During drought episodes, warming was expected to enhance the in-
tensity of the drought.   

● Within the time scale of this thesis, I further expected the grass, D. 
flexuosa to be more responsive to the climate drivers and the nitro-
gen addition than the heather, C. vulgaris due to differences in life 
growth forms. 
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METHODS 
 
Study site 
 
CLIMAITE 
The experimental site for paper I-III is situated at Brandbjerg, Denmark 
(55º53'N; 11º58'E) on a hilly, nutrient poor, sandy moraine from the Weich-
sel glaciation surrounded by areas of elevated sea bed. The site is a heath-
land/grassland community co-dominated by the perennial grass Deschamp-
sia flexuosa and the evergreen dwarf shrub Calluna vulgaris. The soil con-
sists of 70 % sand, 20 % coarse sand, 6 % silt and 2 % clay. The pHCaCl2 is 
around 4.2 in the organic layer and 3.5 in the upper 10 cm of the mineral 
soil. The vegetation comprises 17 species of vascular plants, 10 mosses and 
9 lichens. Plant species are listed in table 1. Pretreatment analyses in 2004 
showed an aboveground biomass of approximately 700 g DW m-2, where C. 
vulgaris accounted for 40 %, D. flexuosa 32 %, mosses 26 % and herbs and 
other grasses only comprised 2 %. At the same time D. flexuosa covered 
76%, C. vulgaris 41 %, mosses 7%, herbs 1% and lichens < 1%. The vegeta-
tion can be classified as high light demanding, with relatively little need for 
nutrients (Ellenberg 1991). The annual bulk nitrogen deposition in 2006-
2007 was ~13 kg N ha-1 year-1 measured at the location (Larsen et al. 2011). 
The study site was fenced to exclude larger herbivores. 
 
Table 1 Species list and cover of species (%) in ambient plots in the study period of 
5 years at the CLIMAITE site. 
  2004 2006 2007 2008 2009 2010 
C. vulgaris 41 55 67 58 63 65 
D. flexuosa 76 56 66 42 42 38 
F. ovina 0.7 0.1 3 1 2 0 
S. decumbens 2 2 2 0.3 0 0.3 
A. stricta 0.6 0 0 0 0.3 0 
C. arenaria 3 2 1 0.3 0 0 
R. acetosella 0.3 0 0 0 0 0 
H. cupressiforme 1 2 3 2 2 - 
P. schreberi 5 8 6 13 13 - 
D. scoparium 0.6 0.3 0.3 1 1 - 
Brachythecium sp 0 0 0.3 0 0 - 
 
MOLS 
The experimental site for paper IV is located at Mols, Denmark (56º23′ N, 
10º57′E) and is generally similar to the Brandbjerg site. It is part of the inter-
European research projects VULCAN “Vulnerability assessment of shrub-
land ecosystems in Europe under climatic changes” (Beier 2004) and the 
European network of large scale climate change experimental sites IN-
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CREASE (www.increase-infrastructure.eu). The site is a semi-natural heath-
land/grassland ecosystem subjected to low-intensity grazing until 1992 and 
with no further management activities prior to the start of the experiment in 
1999. The soil at Mols is a sandy podzol with a shallow organic layer. Also 
here is the vegetation co-dominated by the evergreen ericaceous shrub C. 
vulgaris (45 %) and the perennial grass D. flexuosa (45 %) with low abun-
dances of other grasses, herbs and mosses associated with acidic heath-
land/grassland. When the experiment was initiated in 1999 the aboveground 
biomass was approx. 1050 g DW m-2.  
 
Experimental setup  
 
CLIMAITE - A CLIMATE CHANGE EXPERIMENT 
The CLIMAITE experiment was set up to study the climate change effects 
on biological processes in terrestrial ecosystems. It was initiated in 2004 
and the experimental treatment was initiated one year later. The manipula-
tions were chosen to match the climate scenarios for Denmark in the year 
2075; Increased CO2 concentration, warmer climate, and changes in precipi-
tation patterns. However, we had one important exception: precipitation is 
predicted to change with prolonged summer drought and increased winter 
precipitation. The CLIMAITE experiment focused on the summer drought 
only, because eventual responses would be difficult to interpret in a com-
bined summer removal and winter addition scenario. Fig. 3 shows a sche-
matic view of the plots. The treatments were: Untreated control (A), CO2-
enriched with a target concentration of 510 ppm (CO2), increased tempera-
ture of 1°C (T) and prolonged drought period of 4-6 weeks during 
spring/summer (D). Drought treatment was alleviated if soil water content 
was about 5% in the top 20 cm soil (Table 2). The treatments were applied 
alone and in all possible combinations: temperature×drought (TD), tempera-
ture×CO2 (TCO2), drought×CO2 (DCO2), and temperature×drought×CO2 
(TDCO2) replicated in 6 blocks. In each block, the 4 treatments with or 
without CO2 were grouped in an octagon in a split-plot design. Each plot 
was 9.1 m2. CO2 was enriched by FACE (free air carbon enrichment) as de-
scribed by others (Miglietta et al. 2001). Passive night-time warming in-
creased the air temperature 1 °C by covering the vegetation from dusk to 
dawn with reflective curtains all year around except during rain events. In 
the drought period curtains automatically covered the vegetation during rain 
events. The curtains were activated by a rain sensor and retracted again as 
soon as the rain stopped. The drought treatment removed 95% of the precipi-
tation during drought period (Table 2). The rest of the year, the curtains were 
inactive and the plots exposed to control conditions. Soil water contents 
were measured by TDR probes, air temperature and precipitation were 
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measured by two weather stations located at the site (Table 2). For further 
technical details see (Mikkelsen et al. 2008). 

Within each plot, two permanently marked vegetation subplots were 
placed with the size of 0.5 x 0.5 m. All CLIMAITE data collected in this 
thesis took place in these subplots. The vegetation plots remained untouched 
over the whole study period, and only non-destructive analyses were per-
formed here. 
      
FERTILIZER EXPERIMENT 
To examine the nutrient status of the heathland and to investigate the plant 
responses to increased nitrogen and phosphorus addition, a fertilizer experi-
ment was setup outside the CLIMAITE plots. Fertiliser was applied in plots 
of 1.2 × 1.2 m as three levels of nitrogen, 0, 25 (N) and 75 (NN) kg N ha-1yr-

1 and two levels of phosphorus, 0 and 10 (P) kg P ha-1yr-1 as well as two 
combinations of nitrogen and phosphorus (NP) and (NNP) in a 6 × 6 facto-
rial block design with six replicates. The nutrients were dissolved in 2 l dis-
tilled water and added monthly from April to June 2005 as NH4Cl and 
NaH2PO4 * 2H2O. The plots without nitrogen and phosphorus addition were 
control (C) plots, to which 2 l of distilled water were added.  
 
THE MOLS EXPERIMENT 
The field scale climate treatments were initiated in 1999 after one pre-
treatment year in order to identify variability between plots (Beier et al. 
2004). Three replicated blocks with field-scale night-time warming and ex-
tended summer drought treatments and an un-treated control were installed 
in 1998 and treatments were initiated spring 1999. A light-weight scaffold- 

 

Figure 3 Schematic presentation of a block at the CLIMAITE site with two separate 
octagons, ambient CO2 and receiving CO2 respectively, together hosting all eight 
treatment combinations with CO2 (CO2), warming (T) drought (D) and untreated 
control (A) (Redrawn from Mikkelsen (2008)) 
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ing was placed on each 4 x 5 m plot to carry the roof. The drought plots were 
subjected to a 1-2 months drought period in the spring/summer from 1999 to 
2010 by covering the vegetation with transparent PVC roofs but only during 
rain events to avoid influences on wind, temperature and light conditions.  
As at the CLIMAITE the site the roofs were retracted again as soon as the 
rain stopped. The curtains removed up to 95 % of incoming rain during the 
drought which equals 20 % (11-29%) of the annual precipitation. The tem-
perature treatment was designed to mimic an increased minimum tempera-
ture (night-time warming) rather than a general temperature increase. The 
warming plots were covered with a reflective aluminium curtain approxi-
mately 20 cm above the vegetation. The curtains reflect the major part of the 
infrared (IR) radiation (Beier et al. 2004). The curtains were controlled by a 
light sensor and automatically drawn over the vegetation to reduce the loss 
of IR radiation at dusk, and at sunrise the curtains were retracted to leave the 
plots open during the day. Further, a rain sensor over-ruled the night-time 
warming and the curtains were retracted during rain events to avoid major 
impact on the hydrological cycle. The curtains increased the mean tempera-
ture by 0.4°C in the air and by 1.2°C in the soil. The moderate increase in 
mean temperature increased the growing degree days by 112 % and de-
creased the number of days with frost by 44%. For further information on 
the field site and the experimental design, see (Beier et al. 2004).  
 
Vegetation analyses 
 
All the applied methods are described in detail in each paper, but in the fol-
lowing section I outline some of the considerations regarding the use of 
some of the different methods. Not all the methods that were applied during 
the work presented in this thesis are included, and those that are included are 
not described in detail – only some considerations and the rationale for 
choosing the methods that we did.  
 
PIN-POINT METHOD 
To measure plant cover, vegetation height and compactness we used the non-
destructive pin-point analysis (Jonasson 1988), as described in more detail in 
paper I and paper IV. The pin-point method allows conversion of the data 
into biomass estimates. When using such a model there will always be ad-
vantages and disadvantages. The advantages are first of all that the method is 
a non-destructive method. This was a necessity in this study, since the aim 
was to follow the vegetation responses to climate change over a period of 1-5 
years and the plots were far too small to do actual harvesting. Secondly, the 
method is relatively time-saving in the field, and to cover all 48 plots at 
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the site took about 2-3 weeks. However, data processing also takes time, and 
all together time will also be a disadvantage of the pin-point method since it 
only allows 1-3 analyses within a year, and therefore can only provide snap-
shots. Further 2-3 weeks is too long time when recording phenological pat-
terns such as leaf appearance and flowering. The most important disadvan-
tage, however, is the uncertainty of the model; the estimates are based on 
measurements from outside the CLIMAITE plots, and the model does not 
take into account differences between treatments that are not related to 
changes in cover or density. This could be thicker leaves, longer or thicker 
stems etc. Further, the method is useful in this ecosystem with only a few 
dominant species. It would be difficult to use in an ecosystem with a higher 
plant biodiversity. However, I do consider this method not only to be the best 
available option, but also overall a good tool for consistently estimating plant 
biomasses in this heathland ecosystem, with only a few dominant species.  
 
PLANT PHENOLOGY 
All measurements and observations related to plant phenology are time con-
suming. Counting flowers, observing flowering stages, collecting seeds and 
germination experiments all take time. Further, there is a discrepancy be-
tween the fact that flowering observations optimally should be performed 
every day or every second day and of the size of our experimental site (8 
treatments, 6 replicates and 2 sub-plots), which resulted in a labour intensive 
period during flowering. Additionally, the phenological pattern turned out to 
be very different from one year to the next, and this made it difficult to plan 
before the flowering started. These difficulties caused some compromises, 
including the fact that flowering in 2008 should ideally have been followed 
more closely, since the poor temporal resolution in the end blurred any dif-
ferences in flowering time between the treatments. Also, the study of flower-
ing development was only done in one season, and the same was true for 
seed weight and seed germination studies. Thus, despite the shortcomings of 
the data, I do believe we managed to cover at least some of the phenological 
patterns of D. flexuosa. As a supplement to the pin-point method I, each year 
(2007-2009) in September, harvested 3-5 C. vulgaris shoots in a 10 cm buff-
er zone around the permanent vegetation plots. I fractioned the material into 
leaves, flowers and wood and weighted the fractions to identify any changes 
in allocation of resources into flowering-, leaf- or woody tissue.     
 
NDVI 
NDVI (Normalized Difference Vegetation Index) measurements were done 
using a spectrometer with four sensors for simultaneous measurements of 
both intrinsic and reflected light within the PAR and NIR bands. The method 
was applied because we expected to identify phenological patterns such as 
leaf appearance, flowering time, and biomass peaks. The method is simple 
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and a good supplement to the time consuming observation method men-
tioned above. The NDVI turned out to be most efficient during spring when 
green grass vegetation did not fully cover the area. At that time, I could 
measure clear differences in leaf appearance (D. flexuosa) between warmed 
and non-warmed plots (Fig 4). Later during the season I observed a point of 
saturation and the method could not handle the dense vegetation cover. In 
order to apply the method to determine flowering time and leaf senescence, 
the method therefore has to be developed or automated cameras for daily 
image collection could be applied. Further, the phenology measurements 
have to be performed very often and access to both the instrument and to the 
field site should be easy.  
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Figure 4 Difference in NDVI (Normalized Difference Vegetations Index) in warmed 
plots (1 °C) compared to ambient plots at the CLIMIATE site. Measured in spring 
2007. *= p < 0.05. 
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RESULTS AND DISCUSSION 
 
Why climate change experiments? 
 
Models are a useful tool in ecology; they can predict changes in future cli-
mate conditions and predict future responses in ecosystems due to changes in 
climate. But all models need input (data), and that is (one reason) why we 
need experiments. Experiments, besides providing knowledge about ecosys-
tem processes and functions, feed models (Beier 2004). Experiments, both in 
laboratories and in the field, with effects of single climate factors on ecosys-
tems have been carried out for the last decades. However, interactions be-
tween the main drivers of climate change are not necessarily simply additive 
(Shaw et al. 2002). Interactions can also be synergistic or antagonistic 
(Larsen et al. 2011), implying that conclusions based on single factor ex-
periments could be insufficient, when trying to predict responses to climate 
change. Interactions are very difficult, if not impossible, to predict to some 
degree of certainty unless we have multi-factorial experiments to demon-
strate any synergies or antagonisms. Multifactorial experiments have of 
course many disadvantages; they are often costly and time consuming, and 
in a global context they will always be case studies (Norby and Luo 2004). 
However, multi-factorial experiments are crucial in our attempt to under-
stand ecosystem responses to a changing climate. They are needed to unravel 
the complexity of interactions between the main climate components, and to 
understand the responses on species level as well as on ecosystems level. 
Further, they are much needed if we are to identify site- and inter-annual 
variations, when attempting to extrapolate and upscale. To meet these re-
quirements we first of all need experiments around the world and further we 
need the experiments to last for more than a couple of years.    

 
Effects of climate change on vegetation at CLIMAITE 
 
In general the aboveground vegetation responded less than I had expected; 
even though C. vulgaris increased in biomass over the study period, the 
biomass was not affected by the manipulations indicating that C. vulgaris, 
have a strong resistance to changes in climate determined by its evergreen 
status. Also, the grass biomass was not affected and was relatively constant 
over the period. The lack of response for D. flexuosa to the climatic treat-
ments came from the plants ability to let the tissue dieback and then quickly 
recover once conditions again become favourable. It therefore showed a high 
resilience to changes in climate factors. Together the two strategies made the 
heathland ecosystem more resistant to the climatic treatments than I had ex-
pected. 
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In the following sections I describe the effects found in this thesis, and con-
sider them in context with some of the many other findings from the study 
site. 
 
ENHANCED CO2 
The photosynthetic rate measured at the site increased for both species in re-
sponse to enhanced CO2 concentration (Albert et al. 2011a; 2011c). How-
ever, this increase in carbon assimilation was not converted into above-
ground biomass (paper I), since I saw no treatment response in biomass for 
neither C. vulgaris nor D. flexuosa (fig 5) except for a increased biomass 
production (green biomass and litter) in 2008 for D. flexuosa.  

The question was therefore; where was the extra carbon then allocated to? 
Some of it was apparently allocated into grass reproduction since I saw an 
increase in the amount of flowering culms in response to increased CO2 (pa-
per III) (fig 6). But will this increase in flowering result in changes in the 
species composition? Since flowering is important for spreading and mainte-
nance of the population, I consider an increased reproduction success as an 
indicator of future growth. However, we saw a negative effect on the germi-
nation success, indicating a lower seed quality under elevated CO2 concen-
trations which has also been shown in other plants by (Andalo et al. 1996). It 
has been hypothesised that seed nitrogen content rather than seed weight de-
termines germination success (Hara and Toriyama 1998; Miyagi et al. 2007; 
Hikosaka et al. 2011) and since there is abundant evidence that nitrogen con-
centrations of seeds decreases due CO2 fertilisation (Jablonski et al. 2002; 
Thurig et al. 2003) this may be the reason for the lower germination in this 
study. Further the large inter annual variations in flowering, as described be-
low, must also be taken into account before making conclusion on future 
spreading from seeds.  

Allocation to reproduction also increased for C. vulgaris, the fraction of 
biomass from flowers was higher under elevated CO2 compared to ambient 
CO2. This was mainly at the expense of a decrease in the fraction of leaf 
biomass at that time. However, this pattern was only seen in one year (fig 7). 
D. flexuosa may also increase in cover by vegetative growth, and overall I 
therefore concluded that changes to the flowering pattern alone are not 
enough to positively identify changes in future interactions between D. 
flexuosa and C. vulgaris.  

Apart from reproductive tissue, the excess carbon was also allocated 
belowground since increases in root biomass (Arndal et al submitted), mi-
crobial biomass (von Oheimb et al. 2009) and enchytraeids biomass was re-
ported from the site in response to higher CO2 concentration (Maraldo and 
Holmstrup 2009a; Andresen et al. 2010b). This indicated that carbon from 
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Figure 5 A) Biomass of D. flexuosa (g m-2, mean±SE), B) biomass of C. vulgaris (g 
m-2, mean±SE) Ambient CO2 (White) and elevated CO2, 510 ppm (grey). Litter 
(hatched) and alive (unhatched) material. * =p<0.05.
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the increased photosynthetic assimilation was transported from the leaves 
and excreted as root exudates to stimulate the microbial activity. It was thus 
quickly incorporated into belowground biomass or the food web. This was 
further supported by both an increased microbial activity seen under elevated 
CO2 concentrations (Selsted et al. 2012) and by an isotope study done by 
Andresen et al. (2011) that showed traceable labeled C and N in the 
detritivores within a year from labeling in CO2 plots. The large allocation of 
carbon to belowground processes may reflect nutrient limitation of the plants 
and may explain why I did not observe any responses in biomass to the CO2 
fumigation (paper I). If the increased microbial activity released nutrients, I 
would expect a stimulation of plant growth with time, but immobilization of 
nutrients by microbes may prevent such a release at least in the short-term 
(Michelsen et al. 1999).  
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Figure 6 Number of D. flexuosa flowering culms (mean±SE) from 2006 to 2010 at 
the CLIMAITE site. There was an overall CO2 effect p=0.036; repeated measure-
ment. Treatments were: A-ambient, D-summer drought , T-warming 1-2°C, CO2- en-
riched CO2 concentration of 510 ppm, and all treatment combinations. 
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Some nutrients used for flowering were lost to the litter pool after flowering 
(paper III). Since grass has a less complex structure and a faster decomposi-
tion rate compared to C. vulgaris (Aerts 1995), an increased production of 
flowering culms in D. flexuosa, and thus of litter, could increase the rate of  
nutrient turn-over even further. However, the C:N ratio of both leaf tissue 
and of roots was found to increase in response to CO2 fumigation (Albert 
2011a; Arndal (submitted)). This was also reflected in litter chemistry 
(Larsen et al. 2011), and with time, this may result in a decreased minerali-
zation rate, increased nutrient immobilization by microbes and thus in a de-
creased amount of plant-available nutrients.  

I would expect the increase in C:N ratio, as described by Albert et al. 
(2011a; 2011b) and Larsen (2011), to be caused by an increase in plant bio-
mass in response to CO2 and thus a dilution of N, nevertheless I did not see 
an increase in the aboveground biomass within this experiment. But Arndal 
(pers. comm.) found an increase in belowground biomass and it is therefore 
plausible that nitrogen was allocated from the above ground part to below-
ground. The results could perhaps also be explained by an increase in car-
bon-based secondary metabolites or low molecular mass sugar compounds 
that increased the biomass, but was undetectable with the pin-point method 
used for biomass estimates. Unfortunately, presently, we have no data to 
document whether or not this was indeed the case. 

So, to answer the question whether the plant community will change over 
time: The results from the CO2 manipulation suggested that the system was a 
lot more resilient towards changes than expected. 
 
DROUGHT 
Drought influenced the aboveground vegetation directly by causing a de-
crease in biomass during midsummer (paper I) (Fig 8) and by increasing the 
amount of flower abortions (paper III) (Fig 9). However, the drought effect 
on plant biomass only lasted for a short period of time; just two months after 
the drought period, we observed a full recovery of both grass and heather bi-
omass. On the other hand, drought decreased the rate of most biological pro-
cesses studied at the site, at least periodically. This included photosynthesis, 
litter decomposition and gross mineralization (Albert et al. 2011a; Albert et 
al. 2011c; Larsen et al. 2011). Also, the enchytraid biomass (Maraldo et al. 
2010a) and the C:N ratio of plant tissue decreased (Albert et al. 2011b) in 
response to the drought treatment, and I therefore consider drought to be an 
important factor in changing the plant community in the future. Neverthe-
less, drought effects often last for a short period of time, and in many cases 
CO2 counteracted the effects. For instance, the photosynthetic rate, 
enchytraeid biomass and the C:N ratio all responded oppositely, when 
drought was combined with elevated CO2, indicating that short term drought 
periods may not be as important to these biological processes as previously  
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believed. However, results in this thesis indicate that the severity of the 
drought is very important. In order to avoid a major tissue dieback, the 
drought treatment was alleviated whenever the SWC fell below 5%, and we 
may therefore not see the full effect of the predicted future drought patterns. 
I expect the ecosystem would show long-lasting responses if future drought 
pushes heathland plants beyond their drought threshold and causes major tis-
sue death. Further, as seen for both enchytraeid biomass and photosynthetic 
activity of D. flexuosa, the magnitude of the rewetting after drought also has 
a large impact on the organisms’ opportunity to recover (Maraldo and 
Holmstrup 2009b; Albert et al. 2011c).  

At Brandbjerg, where C. vulgaris was in the building/mature stage 
(Gimingham 1972), we observed an increase in C. vulgaris biomass over the 
study period (paper I) but no response to the drought treatment. At the Mols 
site, on the other hand, where C. vulgaris was regenerating after a disturb-
ance, we observed a decrease in biomass of the pioneer stage, when subject-
ed to drought treatment compared to warmed and control treatments (paper 
IV) (fig 10). This drought-induced decrease in C. vulgaris was associated 
with an increase in grass biomass. We consider this a key finding to answer 
some of the unanswered questions regarding the CLIMAITE site, 
Brandbjerg. With this finding from Mols in mind, I expect C. vulgaris to be 
much more susceptible to drought damage after an intense disturbance event 
such as heather beetle attacks, but potentially also frost damage and severe 
drought. This is important to keep in mind, since heather beetle attacks are 
expected to increase in the future due to higher N-deposition (Sheppard et al. 
2008;Heil & Bobbink 1993). Also, frost damage events will properly be 
more frequent because of more frequent freeze-thaw cycles due to increased 
temperature and earlier snow melt (Walther et al. 2002). Furthermore, frost 
damage/winter desiccation will induce openings in the heather canopy and 
thus allow invasion of D. flexuosa (Bobbink et al. 1998). 
 
TEMPERATURE 
I did not observe any changes in aboveground vegetation in response to in-
creased temperature. Calluna vulgaris has a natural distribution from the 
North of Norway down to Portugal, and D. flexuosa is common in most of 
Europe. Both species are therefore able to compete successfully within a 
large temperature amplitude which may explain the lack of response to 
warming. However, observations of an earlier leaf appearance (NDVI meas-
urement) (fig 5) (paper I) and earlier appearance of inflorescences when sub-
jected to increased temperatures (paper III) were reported in this study. 
Warming also resulted in higher photosynthetic rates at the site (Albert et al. 
2011a), and together these changes are evidence of an earlier onset of the 
growing season in response to warming. Even so, these changes were neither 
transformed into increased biomass later during the season nor into more  
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Figure 8 A) Biomass of D. flexuosa (g m-2, mean±SE), B) biomass of C. vulgaris (g 
m-2, mean±SE). Ambient (White) and drought treatment (grey). Litter (hatched) and 
alive (unhatched) material. *=p<0.05. 
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Figure 9 Flowering in Deschampsia flexuosa. A) Flowers dead before flowering 
and fruit setting in 2008 and 2009. Treatments: A-ambient, D-summer drought for 
about 4-5 weeks, T-warming of 1-2°C, CO2- enriched CO2 concentration of 510 
ppm and all combinations. Means±SE.
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flowers. Thus, the changes should probably be seen only as a transient event, 
with limited ecological repercussions.  

Warming was also hypothesized to accelerate most biological processes 
and thereby have an indirect effect on the plant community. An increase in 
the mineralization rate and N-turnover were reported by Andresen et al. 
(2010a) and Larsen et al. (2011), but within the time frame of this thesis I 
did not observe any secondary effects on the aboveground biomass. How, 
and whether, the plant community will change under a future warmer cli-
mate depends on the outcome of those interactions, but it seems fair to ex-
pect that changes in belowground processes will result in effects on the 
aboveground plant community – at least given a longer time scale than our 
five year study period.  
 
INTERACTIONS 
In general I did not see many statistically significant interactions between the 
climate parameters. This indicates that interactions did not influence the ef-
fects of single manipulations on the aboveground vegetation. However, the 
experiment has so far lasted only five years, and effects of interactions 
 
 

2000 2001 2002 2003 2004 2005 2006

C
. v

ul
ga

ris
 (H

its
 p

er
 p

in
)

0.0

0.2

0.4

0.6

0.8

1.0 Control
Drought
Warming

 
 
Figure 10 Recruitment of new Calluna vulgaris plants after the heather beetle at-
tack in 1999 registered as hits per pin. Treatments: Control, Summer drought for 
about 4-5 weeks and Warming of 1-2°C. Values and bars are means ± SE. 
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between single factors may appear only after a longer period of climate ma-
nipulation. I had expected some of the single-factor effects to be either lev-
eled out or enhanced by interactions between climatic factors similar to the 
way reported by Larsen et al. (2011). They reported most interactions to be 
antagonistic and therefore the system to be more robust when more than one 
factor was changed. For instance C/N ratio in mosses increased in response 
to drought and to CO2, but not when these factors were combined.  
 
SEASONAL VARIATIONS 
We observed that several effects of the treatment were dependent on the sea-
sonal variation in natural climate –mainly the amount and timing of precipi-
tation within a year. Photosynthesis measured at the site was high in spring 
and autumn (Albert et al. 2011a), whereas a combination of tissue dieback in 
D. flexuosa, as shown in paper I and paper II, and a lower photosynthetic ca-
pacity resulted in lower carbon assimilation during midsummer (Albert et al 
2011 submitted). However, this dieback and reduction in carbon assimilation 
did not reduce the overall biomass – quite the contrary: Albert et al. (2011b) 
showed a higher photosynthetic rate following the prolonged drought period, 
and I observed that grass biomass had already recovered one month after the 
severe drought event (Paper I). Seasonal variations in microbial biomass 
may be essential for plants, since a microbial dieback could release nutrients 
and thus temporarily increase the N-availability. The fast recovery could 
have been due to such a nutrient release during re-wetting following the 
drought period (van Meeteren et al. 2008).  

There are many reports on nutrient immobilization by microbes (Jonasson 
et al. 1996; Schmidt et al. 1999). Andreasen et al. (2010a) concluded, based 
on a study from the same site, that microbes acquire glycine faster than 
plants, and therefore may be better competitors for nutrients. Immobilization 
of the nutrients and a nutrient limitation may therefore constitute at least 
some of the reason for the absent response of the plant biomass (paper I) to 
the climate change manipulations, despite the higher photosynthetic rate af-
ter re-wetting (Albert et al. 2011b). However, nutrients immobilized by mi-
crobes may periodically be released, and in general the microbial biomass is 
kept at the same level by the availability of carbon and by grazers. This was 
also seen at the site where enchytraeid biomass increased in response to ele-
vated CO2 depending on season, with the largest response during summer 
(Maraldo et al. 2010a). Further, Nielsen et al 2009 showed that there was a 
good correlation between nutrient availability and SWC at the site and this 
may reflect that microbial activity is controlled by the soil moisture (Nielsen 
et al. 2009). This indicates that the amount of nutrients that were available 
for the plants differed within the season, and that a potential microbe-plant 
interaction may explain the plant biomass to a higher degree than expected. 
This is of course important in order to understand the ecosystem, but it also 
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highlights the importance of incorporating such seasonal variations when 
planning studies and fieldwork. One sampling only provides a snapshot, and 
to understand the ecosystem processes, it is important not to make conclu-
sion about ecosystem responses, based upon short time drought effects dur-
ing e.g. midsummer. 
 
INTER-ANNUAL VARIATIONS 
Climate change is ongoing; in the period of 5 years where the study took 
place we observed large inter-annual variations in the climate. In addition to 
the climate manipulations within the two climate experiments, we can use 
this inter-annual variation in climate to describe and test the effects of cli-
mate change on the plant growth and phenology. 

Especially the precipitation pattern showed inter-annual variations. There 
were, for instance, large differences between years in the amount of rain fal-
ling from September to November (Table 2), and since autumn SWC was 
positively correlated with the number of inflorescences, this could poten-
tially explain the large inter-annual variation found in flowering (paper III).  

The growing season in 2007 was very wet compared to the last 30 years 
average in Denmark. The following season in 2008 was, on the other hand, 
very dry compared to normal. This inter-annual variation in precipitation re-
sulted in variations in the amount of precipitation that was excluded under 
the drought treatments (see table 2). Furthermore, we recorded months with 
precipitation far above average indicating heavy rain falls (July 2007 and 
June 2009).  

In all years from 2006 to 2009 the temperature in the warmest month was 
4-6 °C above the 30 year average for that month, and the coldest months 
were also mostly warmer than average, but with a larger variation, with 
some years close to average and others 5°C above average. By comparison, 
the warming curtains increased the temperature with 1°C in the soil surface 
all year round, and thus the increase caused by the temperature treatment 
was less than the natural variation between years. All this caused inter-
annual variations in many biological processes that out-scaled those seen in 
response to the treatments. The large climatic inter-annual variations also re-
sulted in different responses to the manipulations from year to year. For in-
stance, we saw an increase in the number of D. flexuosa inflorescences in re-
sponse to enhanced CO2, but only in 2 out of 5 years. Maraldo et al. (2010b) 
also reported that the observed drought effect on enchytraeid biomass was 
dependent on the amount of precipitation within that year, i.e. the drought 
treatment had a more pronounced impact on enchytraeids during the year 
with a dry summer and autumn (2006) compared to the wet year (2007). Fur-
ther, leaching and thus loss of nitrogen from the system was shown to vary 
between years, with 0.13 ±0.06 g N m-2 yr-2 in 2006 and 0.56 ±0.20 g N m-2 

yr-2 in 2007 (Larsen et al. 2011). These findings signify the importance of 
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long term studies, and emphasise that conclusions based on only one or two 
seasons should be drawn with outmost caution. 
 
Resilience to disturbances 
 
Results from this thesis showed that the vulnerability of the heathland eco-
systems depends on the phase of C. vulgaris. The ecosystem in the aggre-
gading to mature phase was a lot more resilient towards changes in climate 
than expected. So to the question whether the plant community will change 
due to climate change, the answer may be ‘yes, but not so much as we 
thought’. So, the next question followed: Why? In the following I will try to 
give some answers to this question. 

1) This study showed that D. flexuosa has a high resilience to changes in 
climatic factors determined by its ability  to let the tissue dieback and then 
quickly recover once conditions again become favourable, whereas C. vul-
garis shows a strong resistance determined by its evergreen status, at least 
when it is established. Overall this led to a general lack of response for this 
heathland ecosystem to the climatic treatments. The plant biomass recovered 
rapidly after drought events, and was not affected by an earlier onset of the 
growing season (paper I). Thus the manipulation did not directly affect the 
plant biomass production. However, other studies at the site have shown that 
changes do occur; photosynthesis, mineralization, litter quality and flower-
ing were all affected by the climate manipulations. Thus, it is possible that 
some of the observed changes in other ecosystem processes with time will 
affect the aboveground plant biomass, and this way the manipulations may 
still affect plant biomass, however in a more indirect way.  

2) The manipulations caused smaller variations than the natural climate 
conditions. The plants are thus adapted to changes in climate exceeding the 
manipulations applied. Further, they are adapted to nutrient- and water lim-
ited conditions, and the capability of the plants to use both nutrients and wa-
ter when available and then survive long periods without, may help to keep 
the ecosystem in balance.   

3) In general, the drought treatment affected most biological processes, 
but it was also the climate driver for which effects were most dependent 
upon the inter-annual natural variation; i.e. the drought treatment was only 
statistically significant if supplementing a naturally occurring drought. In 
CLIMAITE it was decided not to push the plants beyond the drought thresh-
old, in order to avoid a full dieback of any of the two species. This may ex-
plain the high resilience of the aboveground biomass. A stronger water limi-
tation could possibly also have shed light on the differences between the two 
life form strategies in their responses to drought.  

4) Results from this thesis indicate that the heather at Brandbjerg was in a 
state where it was very resistant towards changes. Although a number of es-
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pecially soil parameters responded to the treatment, the plant community re-
sponded neither to direct nor to indirect effects. Together with results from 
the regeneration of C. vulgaris at the Mols site (paper IV), this leads us to 
conclude that both the state of the C. vulgaris population and the magnitude 
and frequency of disturbances determine the effects of future climate change 
on the plant community.  
 
Carbon sequestration 
 
Changes in climate can not only influence plant species but may also change 
the ecosystem structure and ecosystem functioning (Aerts et al. 2006; Beier 
et al. 2009). Terrestrial ecosystems play an important role in regulating the 
atmospheric carbon concentration. Based on this thesis, the plant composi-
tion at Brandbjerg did not change, meaning that aboveground vegetation did 
not contribute to changes in the carbon pools. However, we expect changes 
in the plant community on a longer time scale, either due to indirect effects 
slowly altering the relations between the two species or due to sudden major 
events negatively affecting the heather vegetation and providing the grass 
with an opportunity to increase in cover (Aerts et al. 1990;Heil & Diemont 
1983;Heil & Bruggink 1987). If the vegetation changes from heather to 
grass, it would lead to a loss of organically bound carbon, simply because 
the standing biomass of a C. vulgaris vegetation is larger than that of a D. 
flexuosa vegetation (Kongstad et al. 2011). Since litter from D. flexuosa is 
more easily remineralized than C. vulgaris litter (Aerts 1995), a change to-
wards grass-dominance, would probably also cause the system to release 
more CO2, and thus increase the ‘source effect’ of the system compared to 
the ‘sink effect’. Whether coupled to changes in plant species composition or 
not, results from the site have indeed shown an increase in the release of CO2 
from the ecosystem due to increased microbial activity under full treatment 
combination (T×D×CO2) compared to ambient plots (Selsted et al. 2012). If 
carbon sequestration of the ecosystem is to remain unchanged in the future, 
this increased loss would have to be mirrored by an equal increase in photo-
synthetic assimilation.   

The future carbon sequestration will however depend on the level of fu-
ture management. Since heathlands are semi natural ecosystems lack of 
management will lead to invasions by bushes and trees and thus increase the 
vegetation carbon pool and change the source- and sink processes. 
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HEATHLANDS IN A FUTURE CLIMATE 
 
Several conditions have changed and will change heathland ecosystems in 
the future. In the following section I describe some of the expected interac-
tions between changes in climate conditions and other threats affecting 
heathland ecosystems, including land-use, nitrogen deposition and manage-
ment. It is an attempt to see the results from this thesis in a larger context 
and answer the question whether plant communities will change in the fu-
ture. Since most of the threats were not studied within this thesis, this part 
relies mostly on the literature. 
 
Land-use and fragmentation 
 
Lately, heathland research has focused on climate changes in order to under-
stand changes in functions and services of the ecosystem and to prepare for 
incorporation into management plans. But to venture into the future, we must 
first go back in time. Most heathlands are a result of human activity and 
land-use. Nutrients were removed from the heathlands by domesticated 
grassing animals or by harvesting of the heather for later use as winter fod-
der. The organic layer was used as fuel and the heather was burned to keep 
some areas in early succession phase and thereby ensure a high nutrient 
quality of the fodder. All together the ecosystem was kept in a nutrient poor 
state, where only species adapted to this condition would grow. 

Heathlands no longer provide services for human existence. Many heath-
lands were taken into formal agricultural use in the middle of the last cen-
tury, or were disturbed by infrastructural and urban expansion – a process 
that is still going on today. 

This results in a decrease in the total heathland area but also in a high 
fragmentation of heathlands. Fragmentation decrease genetic variation of 
both heathland plants and animals within an area, due to a prevented or de-
layed spreading and pollination from other populations (Assmann and 
Janssen 1999; Vergeer et al. 2003). This could, with time, make the vegeta-
tion less resistant to changes, both due to less genetic variation and due to a 
decrease in biodiversity - both of which may derease the stability of ecosys-
tems. Climate change will alter growth conditions further, and may result in 
suppression of some species and the introduction of others. Alien species are 
often characterised by high spreading ability and new growth conditions may 
lead them to germinate in sensitive habitats such as heathlands (Penuelas et 
al. 2010). Biodiversity is also threatened within heathland ecosystems. 
Heathlands are characterized by a low plant biodiversity, dominated by 
dwarf shrubs co-existing with a few graminoids and herbs. Disturbance of 
growth conditions by climate change or land-use may initially increase the 
plant biodiversity due to an introduction of new species (Bobbink et al. 
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1998). However, with time heathland species will disappear and plant biodi-
versity will decrease, and land-use changes is predicted to be the most severe 
driver of changes in biodiversity in grassland ecosystems (Sala et al. 2000).   
 
Distribution regimes 
 
Plant distribution is among other things determined by species-specific 
physiological thresholds of temperature and water requirements (Woodward 
and Williams 1987). Calluna vulgaris has a wide distribution in Europe. It is 
a drought tolerant species with xeromorphic leaves (Aerts 1995) and low, 
but constant, photosynthesis even under dry conditions (Albert et al. 2011c).  
Higher temperature and changes in precipitation may alter the plant distribu-
tion and may accelerate the transformation of heathland/grassland into tem-
perate forest. 

Crawford (2008) predicted the biomes of C. vulgaris to move either 
northward if summer temperature increases more than winter temperature, or 
eastward if winter temperature increases more than summer temperature. 
Fosaa et al. (2004) found C. vulgaris to be positively correlated to increased 
temperature whereas D. flexuosa was found to be negatively correlated. Fur-
ther, reports from Spain have shown that a replacement of C. vulgaris by oak 
(Quercus spp.) has already occurred due to a warmer climate and land use 
changes (Penuelas and Boada 2003).  

These findings indicate that increased temperature may change the plant 
community at our site with time. Calluna vulgaris seedlings are, however, 
susceptible to drought and require maintenance of high soil moisture levels 
and high air humidity (Miller and Cummins 1987) and the species is there-
fore often found near the coastline because of the higher amount of precipi-
tation here compared to continental climate. Results from paper IV indicate 
that a decrease in summer precipitation will have consequences for the 
spreading of C. vulgaris due to water limitation in the pioneer phase, and fu-
ture changes in precipitation may therefore be more important for the future 
distribution regime of this species than increased temperature.  

Besides changes in temperature and precipitation, competition with other 
present and new-coming species also has to be taken into account. Further, 
the genetic variation in the C. vulgaris population from this site may be very 
different from that of the C. vulgaris population in the boreal and subarctic 
region, where growing seasons are shorter and the climate is cooler, or from 
the Southern European populations where drought tolerance is a key element 
to survive. Changes due to climate change may therefore be different from 
site to site. 
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Nitrogen deposition 
 
Changing climatic conditions may interact with effects of the present high 
nitrogen deposition. Some changes will enhance the effects of the increased 
nitrogen load whereas others will counteract.  

Brandbjerg heathland was, as mentioned before, very resilient towards 
changes in climate and also towards nitrogen and phosphorus addition (paper 
II). There was no response in biomass when adding fertilizer, and already 
one year after the fertilizer addition, leaf nutrient concentrations were back 
to previous levels. This could be an effect of nutrient poor adapted plants be-
ing less efficient in translating an enhanced nutrient supply into a biomass 
increase – a strategy that could be important if the source is only temporarily 
available. In that case it would be advantageous to save the excess nutrients 
in storage organs or invest it in seed production (Falk et al. 2010). Further, 
other studies from the CLIMAITE experiment have indicated that the eco-
system seasonally was limited by water (Albert et al. 2012 in press; paper II) 
and since nutrient availability are correlated with SWC (Nielsen et al. 2009), 
the lack of response to nutrient addition may be caused by water limitation. 
However, the bryophytes responded negatively to nutrient addition by a de-
crease in biomass which may results in a decrease in biodiversity since 10 
species were mosses compared to 17 vascular plants and 9 lichens (the latter 
were not included in this study). 

Higher nitrogen availability has also been shown to increase C. vulgaris 
sensitivity towards drought (Gordon et al. 1999; Sheppard et al. 2008), and 
increased nitrogen deposition may therefore decrease the drought threshold 
and enhance the damage induced by future severe drought events. An in-
crease in nitrogen availability either due to increased mineralization or in-
creased nitrogen deposition may also accelerate the life cycle of C. vulgaris 
(Gimingham 1972). Since grasses are competitively superior in the early 
phase of heathland development, especially after exposure to drought as 
shown in paper IV, shortening of the C. vulgaris life cycle or more frequent 
heather beetle attacks or severe drought events may result in further domi-
nance of grasses. Heather beetle attacks are expected to be more frequent in 
a milder climate, where both larval and adult survival may be higher (Power 
et al. 1998) and where warming may increase nutrient levels in the leaves 
(Penuelas et al. 2004). All this indicate a shift from heather to grass in the 
future. On the other hand, Albert et al. (2011a) and Larsen et al. (2011) re-
ported an increased C:N ratio in leaf tissue in response to an enhanced CO2 
concentration and thereby a decrease in the nutrient quality of the leaves. 
That is opposed to the general effect of increased nitrogen deposition in 
heathlands which results in lower tissue C:N ratio and thus a better food 
quality for herbivores (Berdowski 1994). The increased C:N ratio in litter in 
response to increased CO2 consequently counterbalance the N induced in-
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crease in mineralization rate, and Larsen et al. (2011) concluded that the out-
come would be a decrease in nitrogen cycling. Warming is also expected to 
increase the mineralisation rate and thereby enhance the nitrogen effect mak-
ing more nutrients available for plants. However, the third environmental 
factor, precipitation, also plays a role in shaping the N-cycle: As seen in Lar-
sen et al. (2011), leaching of nitrogen was dependent on the precipitation 
pattern – a higher frequency of heavy rain falls is expected to increase nitro-
gen leaching and thereby the nitrogen output from the site. 

Finally, increased N deposition can have an impact on the carbon seques-
tration within the ecosystem (Wamelink et al. 2009). If plant growth is lim-
ited by nitrogen, increased nitrogen availability will increase growth and 
thereby the amount of carbon incorporated into plant biomass. However, De 
graff et al. (2006) concluded that increased C sequestration will only occur if 
nutrients are supplied. We assume the yearly nitrogen supply at Brandbjerg 
will not increase further, since it is used for military activities, but the cur-
rent level may already be too high to maintain the current vegetation compo-
sition. Time will show whether increased nitrogen availability will change 
vegetation composition from dwarf shrub dominance with a high, all year 
around, standing carbon pool to grass dominance with higher productivity 
but lower standing biomass, and thus less carbon storage in aboveground 
vegetation.  
  

CONCLUSION 
 
In conclusion, and to answer the question: Will changes in climate alter 
plant communities over time?  
 
This heathland ecosystem in the aggregating/mature phase was a lot more 
resilient towards changes in climate than expected. None of the applied ma-
nipulations resulted in long lasting changes in the aboveground biomass. The 
resilience was probably due to:  
 

● Calluna vulgaris had a strong resistance to changes in climate de-
termined by its evergreen status, maintaining the growth constantly 
over the season. 

 
● The lack of response for D. flexuosa to the climatic treatments came 

from the plants ability to let the tissue dieback and then quickly re-
cover once conditions again became favourable. It therefore showed 
a high resilience to changes in climate factors.  
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I conclude that this plant community was resilient to changes in climate – at 
least on a short time scale of a few years. On the other hand, the Mols study, 
where C. vulgaris was regenerating after a disturbance, showed a decrease in 
biomass of the pioneer stage, when subjected to drought treatment compared 
to warmed and control treatments. I therefore conclude that the vulnerability 
of the heathland ecosystems may depend on the growth phase of C. vulgaris, 
indicating that, in the long run, we may see effects at Brandbjerg as well.  

The increase in flowering culms in response to elevated CO2, the higher 
fraction of flower abortions in response to drought and the decrease in moss 
biomass in response to nitrogen addition indicate that changes do occur. 
This, together with findings from other studies at the Brandbjerg site, indi-
cated that the biomass production and plant composition may not be the first 
parameter to mirror effects of climate changes on the ecosystem. Thus, it is 
possible that some of the observed changes in other ecosystem processes 
with time will also affect the aboveground plant biomass, and this way the 
manipulations may still affect plant biomass but in a more indirect way. This 
confirms that studies on climate change and ecosystems should cover the en-
tire ecosystem. Further, it signifies the importance of longer term studies, 
and emphasises that conclusions based on only one or two seasons should be 
drawn with outmost caution. 

In general I did not see many statistically significant interactions between 
the climate parameters. This indicates that interactions did not influence the 
effects of single manipulations on the aboveground vegetation. However, we 
do have to keep in mind that the experiment has so far only lasted five years, 
and that effects of interactions between single factors may appear only after 
a longer period of climate manipulation. Further, we deliberately did not 
push the system above a certain drought threshold in order to avoid a full tis-
sue dieback, and we therefore may not see the full effects of the future 
drought patterns. I expect the ecosystem would show long-lasting responses 
if the drought period exceeds such a threshold. 

Together with results from the regeneration of C. vulgaris at the Mols 
site, this leads us to conclude that both the state of the C. vulgaris population 
and the magnitude and frequency of disturbances determine the effects of fu-
ture climate change on the plant community.  
 

FURTHER RESEARCH 
 
This thesis deals with the effects of climate change on the aboveground 
vegetation in a Danish heathland. However, the studies presented only lasted 
for 1- 5 years, which is a very short time in a climate change perspective. All 
results in this thesis are therefore short term responses and preliminary con-
clusions. Longer term studies are needed to overcome some of the differ-
ences between seasons and to survey a possible tipping point. Further, the 
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age of the vegetation was shown to be important and more time is needed to 
study responses and recovery from a disturbance in all stages of the C. vul-
garis life cycle.  

Changes in biodiversity, both new species and species that disappear, also 
need a longer time scale than 5 years before they become apparent. Further-
more, potentially invasive species are not dealt with in this thesis, but could, 
on a longer time scale, be extremely relevant to both the species composition 
and ecosystem functioning.  

Studies on flowering pattern, seed production and seed quality for both 
species all needs to be studied closer. For instance, a germination experiment 
within the climate manipulation should be implemented. Also methods (for 
instance NDVI) for observing phenological patterns has to be developed. 
Further, this thesis does not cover any genetic variation, acclimation or adap-
tion.      

Finally, possible interactions between climate change and other parame-
ters, including nitrogen deposition and management, are presently only as-
sumptions, and since this type of ecosystem is only maintained by manage-
ment actions, studies with a management perspective are needed. 
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