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Abstract. This paper proposes a method to extract the airway tree
from CT images by continually extending the tree with locally optimal
paths. This is in contrast to commonly used region growing based ap-
proaches that only search the space of the immediate neighbors. The
result is a much more robust method for tree extraction that can over-
come local occlusions. The cost function for obtaining the optimal paths
takes into account of an airway probability map as well as measures of
airway shape and orientation derived from multi-scale Hessian eigen anal-
ysis on the airway probability. Significant improvements were achieved
compared to a region growing based method, with up to 36% longer trees
at a slight increase of false positive rate.

1 Introduction

Analysis of the airways in computed tomography (CT) is crucial for the un-
derstanding of various lung diseases [1]. However due to the difficulties of the
extraction process, the airways remain among the least understood structures in
the lungs.

Most methods used for segmenting the airway tree from CT images are based
on the concept of region growing [2–5]. The main problem with the standard re-
gion growing approach is that the segmentation may “leak” to surrounding lung
parenchyma, if the contrast with the airway wall is low due to e.g. noise or
pathology. Various strategies have been used to solve this problem, e.g. using
geometric criteria to detect and remove leakage [2–4], or using improved appear-
ance models to avoid leakage [5].

In this paper, we propose a new method for airway tree extraction method
that continually extends the tree with locally optimal paths. The advantage of
using such a path search approach is that the algorithm is able to look further
ahead and can therefore overcome local occlusions. Occlusions may be caused
for instance by noise or pathologies such as mucus plugging. Using the trained
appearance model described in [5] as the basis for our cost function, the Dijkstra



algorithm is applied within a sphere centered at a seed point to obtain candi-
date airway paths. Candidate paths that satisfy various criteria based on airway
probability, shape, and orientation are retained, and potential bifurcation points
and new end points are stored and subsequently used as new seed points. This
process is repeated until no more valid candidate paths can be found.

The work is inspired by minimal path based approaches in vessel segmen-
tation and diffusion tensor imaging (DTI) tractography (see e.g. [6, 7]). These
approaches are however typically either limited to extracting a single optimal
path or require a user to specify the end points in advance. Another example
is [8], where a complete vessel tree is extracted as a collection of optimal paths
from a converged fast marching algorithm. In contrast to [8], we may be able to
extract also less salient branches and thus find a more complete tree by searching
for optimal paths locally and recursively. The notion of performing optimal path
extraction locally was recently also proposed in [9], where various examples are
shown in which a local approach outperforms the global approach. However, the
focus of that paper was on extracting single paths or contours and the method
is not capable of handling bifurcations.

Our work is similar in spirit to [10], which aims at reaching a more global solu-
tion for airway segmentation by detecting potential airway branches throughout
the lungs with a tube detection scheme, and subsequently connecting these using
a graph search method. However, our method is more flexible and can be cus-
tomized to other tree segmentation tasks by simply modifying the cost function
and the confidence measure.

2 Tracking locally optimal paths

This section explains how the Dijkstra algorithm is applied locally and how
the optimal paths are selected. We assume that a cost function F , a confidence
measure D, and a list of initial candidate points are provided. A candidate point
is a point that belongs to a previously extracted airway branch, and for which
the departing paths are not yet extracted. Each candidate point is associated
with the orientation and the average radius of the airway branch it belongs to.

At every iteration, a candidate point is taken from the list and evaluated.
New paths extending from the candidate points are generated through a process
of candidate path extraction and selection. Additional new candidate points from
these new paths will then be added into the list. The iterative process ends once
no more candidate points are available for evaluation.

2.1 Extracting candidate paths

Given a candidate point x0, with the branch orientation d0, optimal paths are
computed from x0 to every point within a sphere of radius rs using the Dijkstra
algorithm. We refer to these optimal paths as the candidate path from x0 to
x. The traveling cost between two neighboring voxels is computed using cost
function F .



Candidate paths are extracted for all points on the surface of the sphere that
satisfy the following conditions:
1) Local minima: End points should form a local minimum, in terms of minimal
cost from x0, on the surface of the sphere.
2) Departing angle: To limit the search to branches that do not deviate too
much from the initial direction, end points should satisfy 6 (x − x0), d0 ≤ α, as
shown in Fig. 1(c).

2.2 Evaluating the candidate paths

The most likely airway branches are selected from the extracted candidate paths
by the following three selection criteria in a low to high cost order:
1) Confidence: The majority of points on a path must have high confidence
measure D. Hence, we require the Nth percentile of the confidence measure of
a path to be greater than β in order to be selected.
2) Straightness: As airway branches are relatively straight in general, we re-
quire a path C to satisfy lpath(C) < γl(x0, x), where lpath(C) is the length of
the path C and l(x0, x) is the distance from x0 to x.
3) Non-overlap: Selected paths are not allowed to overlap each other and
should be at least δ mm apart. The distance between a candidate path and
the previously selected paths is measured as the minimum distance between the
end point of the candidate path and the points in the selected paths. We also
ensure that a selected candidate path will not intersect with other paths obtained
from previously evaluated candidate points. Prior to applying this criterion, an
additional trimming process is added to remove low confidence points at the end
of the path, which exist because of the used of fixed end points. The trimmed
path is stored if the path is selected.

A maximum of Nmax paths is retained.

2.3 Updating the list of candidate points

The end points of the newly selected paths are added to the list of candidate
points. All potential bifurcation points, defined as points where candidate paths
depart from a selected path, are also added to the list. The direction for each of
the new candidate points is the direction of the selected path it belongs to.

3 Cost function

Unlike most current airway segmentation methods [2–4, 10] that use only image
intensity, our proposed method operates on the soft classification resulting from
a voxel classification based appearance model [5].

The appearance model uses a K nearest neighbor (KNN) classifier that is
trained to differentiate between voxels from airway and non-airway classes using
various local image descriptors at different scales. To circumvent the requirement
for high-quality ground truth segmentations of the complete airway tree, we



follow the interactive training procedure described in [5]. A moderated KNN [11]
output is used, where the posterior probability of a feature vector f (x), obtained
at voxel position x, to belong to the airway class is defined as

PA(f(x)) =
KA(f (x)) + 1

K + 2
,

where KA(f (x)) is the number of nearest neighbors around f (x) that belong to
the airway class obtained from a total of K nearest neighbors.

The airway probability PA(f(x)) is used directly as the confidence measure
D in Section 2 to discard unlikely paths. The cost function F is designed such
that local paths are searched in the direction of probable airways, which appear
as bright, cylindrical structures in PA. The local orientation of the airways is de-
rived through multi-scale Hessian eigen analysis on the airway probability map.
The scale is selected for each voxel independently using the scale normalized [12]
Frobenius norm of the Hessian matrix ω(σi) = σ2

i

√

λ1(σi)2 + λ2(σi)2 + λ3(σi)2,
where |λ1| ≥ |λ2| ≥ |λ3| are the eigenvalues of the Hessian matrix. The local
scale, σl, is then obtained as the smallest scale that corresponds to a local max-
imum of ω(σi) across a list of scales {σmin, . . . , σmax}, where σmax is chosen
slightly larger than the current airway radius. A measure Mtube, indicating how
well the surrounding image structure fits the model of a solid bright tube, can
then be defined as

Mtube(x) =

{

0, λ1(σl) ≥ 0 or λ2(σl) ≥ 0,
|λ2(σl)|−|λ3(σl)|

|λ2(σl)|
, otherwise,

The orientation of the tube at x is given by v3(x), which is the eigenvector
corresponding to λ3(σl).

The cost function F combines the airway probability, tubeness measure, and
airway direction estimates as:

F (xs, xt) =
‖xs − xt‖2

| < xs−xt

‖xs−xt‖2

, v3(xt) > |PA(f (xt)(1 + Mtube(xt))
,

where xs and xt is the source and target location. The cost F (xs, xt) is low,
when both the local airway probability is high and the propagation direction is
parallel with the estimated airway orientation. The term with Mtube is used to
lower the cost further, when the local structure at xt resembles a solid bright
tube.

4 Experiment and results

Experiments were conducted on low-dose CT images from the Danish Lung
Cancer Screening Trial (DLCST) [13], where participants were current or for-
mer smokers at an age between 50-70 years. All images had a slice thickness
of 1 mm and in-plane voxel size ranging from 0.72 to 0.78 mm. A total of 32
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Fig. 1. (a) Example of a case where it is not possible to segment the correct part
(the largest part of the branch) from the leakage, with the branch segment highlighted
in yellow and an arrow indicating the leakage. (b) A scatter plot of the tree length
obtained by both methods for the 10 test cases. (c) A schematic of the search sphere.
(d) Surface rendering of the results from proposed method (left) and region growing
based method (right), with correct regions in blue, missing regions in yellow, partly
wrong regions in purple and false positives in red.

randomly selected images were used for the training of the voxel classification
based appearance model. The method was tested on an additional 10 randomly
selected CT scans from different subjects.

Results were compared to a region growing based method that uses a trained
airway appearance model and exploits the fact that orientation of airways and
vessels are similar [5]. Airways branches from the second up to and including the
third generation obtained by this method were used to initialize the proposed
method. Since extraction of these first few branches is relatively easy, simpler
methods such as intensity based region growing could be used for initialization
instead.

The centerlines of the initial segmentation were used as the initial set of
candidate points needed for the proposed method. A simplified version of the
segmentation algorithm presented in [2], without any leakage detection, were
used to extract the centerlines. The direction and radius associated to each



candidate point is derived from the branch they belong to. For newly added
candidate points, the radius is simply propagated directly from their parents.

4.1 Parameter and settings

For extracting the optimal paths, the radius of the search sphere was set to
rs = 20 mm and the maximum allowed angle to α = 100 degrees. In selection
of the optimal paths, at most N = 30 percent of points on the path may have a
confidence below β = 0.5, the straightness measure γ = 1.05, minimum required
distance between selected optimal paths δ = 3 mm. The maximum number of
selected paths from a single candidate point Nmax was set to 2.

For the appearance model, K = 21 was used for the KNN classifier and 7
scales distributed exponentially from 0.5 to 3.5 mm were used both to generate
the features (refer to [5] for details) and for the multi-scale Hessian eigen analysis.

To prevent paths from growing into border of the lungs, candidate points
that were within 3 mm of the lung surface were not evaluated.

4.2 Results

All results were evaluated manually by an experienced observer using the dedi-
cated airway segmentation evaluation tool developed for the EXACT’09 airway
extraction challenge [14]. The results were divided into individual branches us-
ing the simplified version of [2], without any leakage detection. Airway branches
are subsequently visually inspected and classified into the categories ‘correct’,
‘wrong’, or ‘partly wrong’ based on several views obtained from different cut
planes at different angles and positions. Branches are said to be correct, if there
is no leakage visible at all. A branch is said to be wrong, if the majority (more
than 50%) of it is leakage, and partly wrong, if the majority is correct.

As the evaluation tool was designed for evaluating segmentation and not
centerlines, results from the proposed method were dilated in order to make
them compatible with the evaluation tool.

As the evaluation process only separates branches at bifurcations, we are
unable to isolate leakage from a branch, if it extends from the endpoints and
does not bifurcate. This usually occurred at the end segments, where a whole
branch is classified as ‘partly wrong’ due to a small amount of leakage at the
end. Figure 1(a) shows an example of this situation. All partly wrong regions
were excluded from further evaluation.

Compared to the results from the region growing approach, we observe a
significant (p < 0.01) increase of 36% in total tree length for the results of the
proposed method, from an average of 192 cm tree length to 258 cm. The tree
length is defined as the sum of the lengths of all branches obtained, excluding
the trachea and main bronchi. The average false positive rate, computed as a
percentage of the total tree with the trachea and main bronchi excluded, was
3.79% for the proposed method, slightly larger than for the region growing based
method (1.35%). The total number of branches extracted was similar for both



methods, around 174 branches on average. A plot showing the tree length for
the 10 cases from the two methods are given in Fig. 1(b). Surface renderings of
a randomly selected case are given in Fig. 1(d).

Finally, a third segmentation was constructed as the union of the airway trees
extracted from the two methods. A comparison of the union against the result
from the region growing based method shows a significant (p < 0.01) increase of
9% in branch count. Results from the proposed method cover 96% of the tree
length in the union, while results from the region growing based method only
have 71% coverage.

5 Discussion and conclusions

The proposed method improves results significantly, especially in terms of tree
length, where an average improvement of 36% was observed. The branches missed
by the proposed method that were extracted correctly using the region growing
based method were very short, with an average length of 5 mm. Despite having
similar branch count when comparing the proposed method and the region grow-
ing based method, significant increase (9%) in branch count was observed when
comparing the results from the region growing based method against the union.
This indicates that the proposed method is capable of obtaining new branches,
and not only merely extending branches obtainable by the region growing based
method. It should be noted that the multi-scale version of the work from [5],
used for comparison, is a method that gives results comparable to other recent
state of the art methods such as [4].

In the current work, the estimate of the airway radius is propagated from old
to new candidate points unaltered. Although this estimate is only used to deter-
mine the upper bound in the scale selection of Section 3, more reliable estimates
of local tubeness and tube orientation may be found if the radius is updated with
each bifurcation to reflect the overall decrease in airway diameter towards the
higher generations. Alternatively, an airway wall segmentation algorithm such
as [15] could be used to obtain the radius, with the additional advantage that
the result can be directly used for airway dimension analysis.

Another potential improvement would be to introduce a “multi-radius” scheme,
which involves searching paths within multiple search spheres of different radii.
This might increase the number of new branches found, as shorter branches may
then be extracted using a smaller radius, while occlusions can still be overcome
using the larger radii.

In conclusion, an airway tree extraction method that is based on a recursive
search for locally optimal paths is presented. In contrast to common airway
tree segmentation methods that only consider the immediate neighbors of seed
points, our method considers both the appearance and structure of a whole
path. This enables the method to extend past local occlusions caused by noise or
pathologies such as mucus plugging. The proposed method handles bifurcations
automatically, which is a topic rarely touched upon by optimal path tracking
methods.
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8. Gülsün, M.A., Tek, H.: Robust vessel tree modeling. In: MICCAI. (2008) 602–611
9. Benmansour, F., Cohen, L.: Fast object segmentation by growing minimal paths

fromasingle point on 2D or 3D images. Journal of Mathematical Imaging and
Vision 33(2) (February 2009) 209–221

10. Graham, M.W., Gibbs, J.D., Higgins, W.E.: Robust system for human airway-tree
segmentation. In: SPIE Medical Imaging. Volume 6914., SPIE (2008) 69141J

11. Kittler, J., Alkoot, F.M.: Moderating k-NN classifiers. Pattern Analysis & Appli-
cations 5(3) (August 2002) 326–332

12. Lindeberg, T.: Feature detection with automatic scale selection. Int. J. Comput.
Vision 30(2) (1998) 79–116

13. Pedersen, J., Ashraf, H., Dirksen, A., Bach, K., Hansen, H., Toennesen, P.,
Thorsen, H., Brodersen, J., Skov, B., Døssing, M., Mortensen, J., Richter, K.,
Clementsen, P., Seersholm, N.: The Danish randomized lung cancer CT screen-
ing trial - overall design and results of the prevalence round. Journal of Thoracic
Oncology (April 2009)

14. Lo, P., van Ginneken, B., Reinhardt, J., de Bruijne., M.: Extraction of airways from
CT 2009 (EXACT’09). In: Proc. of Second International Workshop on Pulmonary
Image Analysis. (2009 under preparation)

15. Kiraly, A., Odry, B., Naidich, D., Novak, C.: Boundary-specific cost functions for
quantitative airway analysis. In: MICCAI. (2007) 784–791


