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1 INTRODUCTION

Metabolites are the end products of cellular regulatory processes, and their levels can be
regarded as the ultimate response of biological systems to genetic or environmental
changes. In parallel to the terms ‘transcriptome’ and ‘proteome’, the whole set of
metabolites synthesized by a biological system constitutes its ‘metabolome’.!

Conventionally, the analytical procedure can be restricted to the identification and
quantification of a selected number of pre-defined metabolites in a biological sample. This
process is called metabolite profiling (or, sometimes, metabolic profiling).? For example,
pre-defined metabolites may belong to a class of compounds (such as polar lipids,
isoprenoids, or carbohydrates), or be narrowed down to members of particular pathways.
The term metabolite profiling is frequently used in the specific context of drug research in
the description of catabolic degradation of an applied chemical.

Conversely, the approach revealing the comprehensive metabolome of the biological
system under investigation should be called metabolomics. Metabonomics is a further
specialization of the omics approach, which is based on the systematic profiling of
metabolite levels, but encompasses the systematic and temporal changes of the
metabolome in whole organisms occurring in response to diet, lifestyle, environment, etc.?
Metabonomics must aim at avoiding exclusion of any metabolite by using well conceived
sample preparation procedures and analytical techniques.

The resolving power of the chosen analytical method must be high enough to maintain
sensitivity, selectivity, matrix independence, and universal applicability. Since data sets for
metabonomics are complex by nature, adequate tools are needed to handle, store,
normalize, and evaluate the acquired data in order to describe the systemic response of the
biological system. Some tools can be adopted by classical structure analysis, such as mass
spectrometry (MS) and nuclear magnetic resonance (NMR).*

NMR and MS are mostly used to generate global metabolite profiles in
metabolomics.”®’ An advantage of NMR is that the samples normally do not require any
physical or chemical treatment prior to the analysis, whereas MS usually requires that the
metabolites be separated from the sample before detection by liquid chromatography.®
Although MS is more sensitive than NMR, the latter is a more attractive tool for
metabonomics studies because the non-destructive nature of NMR enables observation of
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the dynamics as well as separation of metabolites in biological samples; in contrast, MS
disrupts the structures and the interactions of molecular complexes. Chemometrics, e.g.
NMR spectroscopic analysis coupled with multivariate statistical methods, offer a
powerful new approach for assessing metabolic function.”!°

Pattern recognition and related multivariate statistical approaches can be used to
discern significant patterns in complex data sets with the aim of classifying objects by
identifying inherent patterns in a set of indirect measurements. Pattern recognition
methods, such as principal components analysis (PCA) and classification methods such as
partial least-squares discriminant analysis (PLS-DA) and orthogonal projection to latent
structures discriminant analysis (OPLS-DA), reduce the dimensionality of complex data
sets and thereby facilitate the visualization of inherent patterns in the data accelerating the
interpretation.

H NMR-based metabonomics has been applied in the food sciences,'' including
assessments of green tea,12 rosemary,13 honey,14 grape wine,15 16 crops,”’18 etc. Mainly, the
spectroscopic data 'H-NMR are analyzed by multivariate data analysis methods to extract
information about changes in distinct metabolites of examined samples.

The steps involved in the analysis of metabonomics are as follows:'** (a) post-
instrumental processing of acquired spectroscopic data, such as removal of offsets by
polynomial baseline correction, calculation of intensity values either on each data point, on
each peak, or summed over segmented regions (binning); (b) production of a data table
from the analytical measurements such that there are m rows (observations, samples) and n
columns (variables, frequencies, integrals); (c) normalization of the data or some related
adjustment to the spectral intensities (a row operation); (d) scaling of the data (a column
operation); (e) multivariate statistical modelling of the data.

The normalization step can is applied to the data from each sample and comprises
methods to make the data from all samples directly comparable with each other.”*! One of
its common applications is to remove or minimize the effects of variable dilution of the
samples. Dilution is defined as a process influencing the concentrations of all metabolites,
and thus all peak intensities of the corresponding spectrum, by the same factor
(coefficient), which can also be referred to as unspecific changes of metabolites.

In contrast, metabolic responses influence a few metabolites in the sample and,
consequently, only a few peaks of the corresponding spectrum. These specific changes are
visible as relative changes of concentrations of few metabolites related to the
concentrations of all other metabolites, which represent the overall concentration of the
sample. Usually these specific relative changes are of interest in metabonomics studies in
contrast to the overall concentration of the sample, and are only visible after an adequate
normalization of the spectra.

Normalization can also be necessary due to technical reasons. If spectra are recorded
using a different number of scans, or if spectra are recorded with different devices, the
absolute values of the spectra are different and rendering a joint analysis of spectra without
prior normalization is impossible.

The specific object of the present investigation was to find a new algorithm,
developed on a dataset of NMR spectra recorded on 20 mixtures of 10 different
metabolites, also exerting signal overlap, able to correct the dilution errors that have been
purposely and artificially introduced during sample preparation. The developed algorithm
was also applied on a “natural” spectral dataset of tomatoes extracts, for which both NMR
and HPLC techniques are applied in a non-hyphenated manner.
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2 METHOD AND RESULTS

2.1 Samples preparation

2.1.1 The mixtures. Twenty mixtures, each containing glutamic acid, p-OH-benzoic
acid, histidine, proline, valine, serine, imidazole, aspartic acid, adenosine 5’-triphosphate,
phenylalanine, were prepared in 50 mM phosphate buffer at pH 7, by mixing 10 ul of 50
mM solutions of the first 5 substances, and 5 to 25 pl of 50 mM solutions of the remaining
five chemicals. According to this procedure, half metabolites were initially kept at constant
concentration in all mixtures, whereas the concentration of the other half metabolites was
allowed to vary from 0.5 to 2.5 times the amount of those kept at constant concentration.
Subsequently, all mixtures were diluted adding different known volumes of water, from
0.87 to 2.80 ml. From each mixture 800 pl were transferred in a NMR tube for the
spectroscopic analysis.

2.1.2 Cherry tomatoes. Eleven different samples of cherry tomatoes have been
grinded, freeze-dried and stored under argon atmosphere. Before NMR analysis, 2 g of
freeze-dried powder have been extracted with 50 ml of CHCl;, for 48 hours, under
magnetic stirring. The suspension has been filtered and concentrated to 1 ml, by solvent
evaporation under N, flow. A 0.1 ml aliquot of this sample has been diluted to 0.5 ml with
CHCl3, for the HPLC analysis, whereas the remaining 0.9 ml aliquot has been completely
dried and re-solubilised in 1 ml of CDCl3 99,8 % + TMS 0.05% for the NMR analysis.

2.2 NMR acquisition parameters

2.2.1 Mixtures samples. 1D 'H- NMR spectra were recorded at 298 K on a Varian
Mercury Plus AS400 spectrometer operating at 400.097 MHz. The pulse sequence used
contains the presaturation step of the water signal, obtained by centring the spectral
window at 4.706 ppm and using a 2 s pulse with an attenuation of 5 dB. The spectral
window (SW) was 14 ppm, the number of points of the spectrum were 1 K and 90° proton
pulses (9.30 ps at 55 dB attenuation) with 6 s time delay were used. Each spectrum was
obtained over 512 scans and the FID, prior to Fourier transformation, was multiplied by an
exponential factor (line broadening) equal to 1.5 Hz. Phase and baseline corrections of
spectra were manually performed by using the software package MestRe-C 4.9.8.0
(www.mestrec.com, MestRe-C Research SL, Santiago de Compostela, Spain). This
software was also used to operate integration of each spectrum by selecting 30 integral
regions and to export data in ASCII. Afterwards data were statistically processed by using
the free software package R version 2.11.1.

2D 'H,'H TOCSY was registered with the standard “mlevphpr” pulse program, with
water presaturation during relaxation delay, a spectral width of 6 kHz in both dimensions, a
6 s relaxation delay, and 80 ms mixing time, 1 K data points in F2 and 512 increments in
F1. Also in this case, phasing of the two-dimensional spectrum was performed by using the
software package MestRe-C.

2.2.2 Cherry tomatoes samples. All 1D "H-NMR spectra have been recorded using a
Varian Mercury Plus AS400 spectrometer, operating at 400.097 MHz 'H Larmor
frequency. 1D "H-NMR experiments have been recorded at 298 K with a 30° pulse (2.1 ps)
over a spectral width of 5583.47 Hz (14 ppm), 16K complex data points, 1s relaxation
delay, 1024 scans, 20 Hz spinning. Each spectrum has been Fourier transformed using a
0.5 Hz Line Broadening apodization. The phase and baseline correction as well as the
chemical shift calibration have been accurately performed over all the spectra by using the
software MestRe-C. The same program has been used to export data in ASCII format with
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16K data points. Chemical shift referencing has been performed by setting at 7.26 ppm the
signal of the residual CHCl; solvent in all spectra.

A single 2D "H-'HTOCSY spectrum has been acquired using a Bruker spectrometer
operating at 800.1338 MHz equipped with a cryoprobe, under the following conditions:
298°K, TPPI phase sensitive mode, the standard mlevphpr pulse program, 0.213 s of
acquisition time, 1K data complex points in F2 and 512 increments in F1, spectral width of
9615.38 Hz, 80 ms mixing time and a relaxation delay of 2.5 s. In order to prevent errors
due to sample modifications during storage, a 1D "H-NMR spectrum of the same sample
has been acquired before and after the TOCSY experiment. A comparison of the 1D
spectra pre and post TOCSY experiment confirmed that no appreciable molecular
modifications happened during the acquisition time. Also the 2D TOCSY spectrum has
been processed with MestRe-C.

2.3 HPLC analysis

HPLC analyses have been carried out using an HP 1100 series instrument (Agilent
Technologies, Palo Alto, CA), equipped with a binary pump delivery system, a degasser,
an autosampler, and an HP diode array UV-vis detector (DAD). Chromatography has been
performed with a reverse-phase Luna C18 (Phenomenex, Torrance, CA) column of 5 pm
particle size and 25 cm x 3.00 mm i.d. The mobile phase flow rate has been chosen in 0.7
ml'min™’. The acquisition wavelength has been set at 455 nm. The injection volume was 10
uL, which is an aliquot withdrawn from the same samples utilized for the NMR analysis.
All of the analyses have been carried out at 303 °K using a thermostatic oven. The gradient
elution has been performed using a mobile phase of MetOH/H,O/ACN (80/10/10) pump
A; ACN pump B. Gradient profile: from 0% B up to 95% in 60 min, 95% B for 59 min,
down to 0% B in 10 min for a total of 129 min of elution time. All the HPLC
chromatograms have been processed with LC/MSD ChemStation Rev. A.08.03 (Agilent
Technologies) in order to perform a blank subtraction and a baseline correction. The same
program has been used to export chromatograms in ASCII format with 19350 data points
each one.

2.4 The TOCSY-filter normalization algorithm

The normalization algorithm, that has been developed and tested within this study,
executes the following steps (in italics)in the R-project programming environment:
1) Chose the cross-correlations to be included in the optimization process (3 false and 1
true)

2) Define the first false cross-correlation as the one between integral regions #16 and #21
alf <- 16; blf <- 21

3) Define the second false cross-correlation as the one between integral regions #21 and
#27

a2f <- 21; b2f <- 27

4) Define the third false cross-correlation as the one between integral regions #20 and #30
a3f <- 20; b3f <- 30

5) Define the true cross-peak as the one between integral regions #14 and #15

av <- 14; bV <- 15

6)'dil’ represents the vector of 20 dilution coefficients, initially set equal to 1

dil <- rep(1,20)

7) Define the optimization function ‘crosscorr’ (‘integrals’ represents the non-
normalized NMR integrals data matrix)
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Crosscorr <- function(dil)

{pl <- integrals[,alf] * dil

gl <- integrals[,blf] * dil

regress.fl <- Im(formula = pl~qgl)

rlf <- summary.lm(regress.fl)Sr.squared
p2 <- integrals[,a2f] * dil

g2 <- integrals[,b2f] * dil

regress.f2 <- Im(formula = p2~qg2)

r2f <- summary.lm(regress.f2)Sr.squared
p3 <- integrals[,a3f] * dil

g3 <- integrals[,b3f] * dil

regress.f3 <- Im(formula = p3~qg3)

r3f <- summary.lm(regress.f3)Sr.squared
pV <- integrals[,aV] * dil

qV <- integrals[,bV] * dil

regress.f6 <- Im(formula = pV~qgV)

rV <- summary.lm(regress.f6)Sr.squared
filter = rlf + r2f + r3f - rv
return(filter)}

‘rfilter’ is the objective function obtained by combination of the three false (rNf) and
one true (r'V) cross-correlation elements characterized by their regression coefficients, R?,
and undergoing minimization through the optimization of the ‘dil’ vector.

8) res<-optim(dil, crosscorr, control=list (maxit=20000))
‘resS$par’ isthe vector containing the calculated dilution coefficients returned from the
algorithm.

2.5  The TOCSY-filter normalization algorithm for "H-NMR metabonomics

The effect of the variable large amount of water in food samples is of paramount
importance in metabonomics study, since the consequent dilution errors concerning all
metabolites dissolved in their extracts affect the proper data processing. For this reason, the
samples are often pre-treated for preservation purposes, but not only, through freeze-drying
with quantitative elimination of water, which in most cases, being the main component,
can be as high as 90% of weight. An inconsistent and unreliable freeze-drying process, or a
bad conservation easily lead to a not reproducible application of the normalization step,
and then to a wrong and inconsistent pre-processing of data, which can vary even among
different replicates of the same sample.

2.5.1 Evaluation of the normalization algorithm on an artificial set of mixtures. In
order to develop an algorithm able to correct these dilutions errors on real matrices, at first
data were collected on 'H-NMR spectra acquired on an artificial trial set of twenty
mixtures, each one consisting of variable concentrations of the same ten molecules. In each
mixture, five substances were always kept at a constant concentration (glutamic acid, p-
OH-benzoic acid, histidine, proline, valine), while the remaining five chemicals (serine,
imidazole, aspartic acid, adenosine 5’-triphosphate, phenylalanine) were added at different
concentrations. The mixtures were then further diluted with appropriate additions of H,O
in order to have dilution coefficients, K, ranging between the maximum value of 5.8, for
the more diluted mixture, and the minimum value of 2.0, for the more concentrated one.

The "H-NMR spectra were calibrated with respect to the chemical shift of the valine
methyl signal falling at 0.99 ppm. In Table 1, the 36 signals assigned in the 'H-NMR
spectra of the trial mixtures are listed, giving rise to 30 integral regions generating a 20
rows/spectra x 30 columns/integrals data matrix. Six signals (namely 1, 5, 12, 13, 26, 28)
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are indeed overlapped to other six resonances (1°, 5°, 12°, 13, 26, 28’, respectively), and
each pair is included in the same integral region.

Table 1 Resonance assignments with chemical shift and multiplicity of the signals from all
metabolites present in the 30 integral regions selected in the 'H-NMR spectra (s
— singlet, d — doublet, t — triplet, m — multiplet, dd — double doublet, dt — double
triplet). Chemical shifts with the same signal number (still distinguished by the
prime sign) refer to signals belonging to different metabolites but falling in the
same integral region.

Signals H Shift Molecule Assigment  Multiplicity
(ppm)
1 8,357 adenosine 5’-triphosphate 2’-CH s
1 8,326 imidazole C2-H ring s
2 8,107 adenosine 5’-triphosphate 8’-CH s
3 7,997 histidine C2-H ring s
4 7,638 p-OH-benzoic acid a-CH d
5 7,231 phenylalanine C2-H ring m
5’ 7,153 imidazole C4-H ring s
6 7,012 histidine C4-Hring ]
7 6,760 p-OH-benzoic acid B-CH d
8 5,963 adenosine 5’-triphosphate 1’ ribose m
9 4,414 adenosine 5’-triphosphate 2’ ribose m
10 4,227 adenosine 5’-triphosphate 3’-4’ ribose m
11 4,070 adenosine 5’-triphosphate 5’ ribose m
12 3,961 proline o-CH t
12’ 3,945 phenylalanine o-CH dd
13 3,835 histidine a—-CH dd
13 3,804 serine B-CH dd
14 3,726 glutamic acid o-CH t
15 3,679 serine a-CH dd
16 3,585 aspartic acid a-CH dd
17 3,444 valine ao-CH d
18 3,210 proline §-CH t
19 3,163 proline §’-CH t
20 3,100 phenylalanine B-CH dd
21 3,037 histidine B-CH dd
22 2,959 histidine p’-CH dd
23 2,662 glutammic acid B-CH dt
24 2,615 glutammic acid p’-CH dt
25 2,521 glutammic acid v-CH t
26 2,177 proline B-CH m
26’ 2,177 aspartic acid B-CH, dd
27 2,099 valine B-CH m
28 1,848 proline v-CH m
28’ 1,911 aspartic acid p’-CH, dd
29 1,160 impurity ? s
30 0.990 valine Y,y —CH; d

The aim of the comparison between the STOCSY autocorrelation matrix and the
simplified TOCSY array is to verify whether only the signals belonging to the same
molecule are correlated with high values of R? in the autocorrelation matrix.

The NMR dataset was used to generate the corres;z)onding autocorrelation matrix,
whose cross-correlation elements possess coefficients R” resulting from the regression
analysis among all column pairs representing the 30 integral regions (Figure 1A). The
autocorrelation matrix is also known as the statistical total correlation spectroscopy
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analysis (STOCSY) 22 The highest correlations are represented by black and dark grey
dots, with R? greater than 0.8 and 0.7, respectlvely, while the least correlated integral
regions are coded in medium and light grey, with R* less than 0.5 and 0.4, respectively.
The autocorrelation matrix resulting from the original non-normalized spectra is then
compared with another array (Figure 1B) that is the simplified binned representation of the
2D-TOCSY spectrum acquired on the most concentrated mixture of metabolites (Figure 2),
in a way that the two matrices dimensionally fit. The off-diagonal dots in Figure 1B
represent true correlations among protons belonging to the same molecule. The TOCSY
spectrum, indeed, permits to identify all the signals of an entire spin system of the
molecules dissolved in the mixture. For example, by inspecting the valine signals, we can
assign the vicinal proton pairs in o— and p—CH, as well as the y, ¥’ methyl groups, with
respect to carboxyl group carbon, that fall, respectively, to 3.44, 2.09, and 0.99 ppm.

Q
3

Figure 1 A) Autocorrelation matrix obtained from the regression analysis among the 'H-
NMR integrals defined for the twenty non-normalized spectra. The integral region #30
originates many cross-correlations (circled with a black line), mostly unexpected. B) Data
matrix generated from the 2D-TOCSY spectrum. Cross-peak are due to scalar magnetic
coupling between signals and are represented by black dots.

While the 1D proton spectrum provides, through the chemical shift value, information
on the chemical nature of all metabolites present in the mixture, the 2D-TOCSY provides
also information on which are the signals belonging to the protons of the same molecule.
The two-dimensional spectrum can resolve signals of one molecule even though they are
overlapped in the 1D spectrum with others belonging to another molecule of the mixture.

Differently from the 2D-TOCSY, which gives only true correlations among signals of
the same metabolite, the STOCSY autocorrelation matrix originating from the non-
normalized spectra shows also false correlatlons between signals correctly assigned to
different molecules, even with high R? values (Figure 1A). For example, signal #30
assigned to valine correlates only with the signals 27 and 17 (having chemical shift 2.09
and 3.44 ppm, respectively), in the 2D-TOCSY (Figure 1B), whilst the same signal
correlates with a large number of integral regions, in the non-normalized autocorrelation
matrix (Figure 1A): 7 (black — very good correlation), 28, 27, 26, 21, 17, 16, 6 and 4 (dark
grey — good correlation), 19 and 20 (medium grey — acceptable correlation) and with
signals 18 and 3 (light grey — low correlation).
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Figure 2 2D-TOCSY spectrum acquired on the most concentrated mixture. Valine
correlations are traced with two lines crossing in correspondence of the off-diagonal peak
between the signal at 0,990 ppm assigned to y,y’-metyl protons and the signal at 2.099 ppm

Jfrom p-CH

In order to verify that the autocorrelation matrix calculated by the mathematical
regression would be more similar to the spectroscopic 2D-TOCSY matrix, if the spectra
were correctly normalized, each of all 20 spectra has been multiplied by the corresponding
known dilution factor K before proceeding with the calculation of the autocorrelation
matrix. In this way, the autocorrelation matrix shown in Figure 3A is obtained. By
comparing this matrix with the one obtained by using non-normalized spectra (Figure 1A),
it is possible to appreciate how the normalizing operation reduces the number of false
correlations among integrals.

Except for integrals 27 and 17 (true correlations) all the others are due to the artefacts
derived by a wrong dilution operation occurring during samples preparation.

In this case, only one correlation with the integral region #17 was obtained for integral
region #30. Thus, the new matrix is almost characterized by the presence of only true
correlations as in the 2D-TOCSY. Such a good result was achieved because the dilution
factors were previously known since they were intentionally obtained during samples
preparation. In true systems, the dilution factors for a correct normalization are unavailable
and a proper way to calculate them is desirable.

In order to calculate the actual dilution K-factors, an algorithm has been developed in
the R-project environment, namely the “TOCSY-filter algorithm”. This algorithm has the
purpose to minimize the number of false correlations that may be present in a non-
normalized matrix but not confirmed by the TOCSY spectrum To apply the algorithm,
three false and one true cross- correlatlons all with R? values higher than 0.8, were
selected. The algorithm minimize R? corresponding to the false cross-correlations and,
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simultaneously, maximize R? corresponding to the true cross-correlation, by multiplying
each spectrum by an opportune dilution K-factor. This operation is repeated several times,
with different pools of false and true cross-correlations, each trial providing a K-vector
consisting of 20 dilution coefficients.

Q
@

A

'e]
~

Figure 3 A) Autocorrelation matrix obtained by multiplying the spectra of all 20 mixtures
by the corresponding dilution factor K (normalization). The result is a decrease number of
Jalse correlations among integrals, as it can be seen from the number 30. B)
Autocorrelation matrix obtained by multiplying the spectra of all 20 mixtures by the
corresponding dilution factor found out by the algorithm developed in the present study.
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Figure 4 Correlation between the calculated K-dilution coefficients and the actual dilution
Sactors, that are known because artificially introduced during the preparation of the twenty
mixtures.
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At the end, a mean K-vector is calculated by averaging each term over all the dilution
vectors obtained by the different trials. Before calculating the mean calculated dilution
coefficients, all vectors are preliminarily normalized by dividing all terms in the K-vector
by the highest internal K value. In Figure 4 all the calculated K-coefficients (on the
average of 6 trials) were compared with the actual ones. The result is a good linear
correlation among the actual and the calculated K-factors.

The efficacy of the TOCSY-filter, is readily appreciable by looking at the new
autocorrelation matrix (Figure 3B) which is obtained by multiplying the 20 raw spectra by
the corresponding K-factors calculated by the algorithm.

Comparison among Figures 1A, 3A and 3B, demonstrates that the algorithm improves
the reliability of the autocorrelation matrix. In fact, by considering once again the signal
#30, it is possible to find the correlation dots with signals #17 and #27, that are considered
as true correlations on the basis of the 2D-TOCSY spectrum.

The algorithm, in some cases, has also shown the capability to work with overlapped
signals. For example, in the integral region #13 two signals are present (13 and 13°): at
3.835 ppm for histidine and at 3.804 ppm for serine (see Table 1). The serine correlates
with signal #15 at 3.679 ppm, whilst histidine is connected with signal #21 at 3.037 ppm
and signal #22 at 2.959 ppm. The algorithm did not fail to find correlations between
integral region #13 and signal #15 for serine and between integral region #13 and signal
#22 for histidine.

2.5.2 Application of the normalization algorithm on a real food system. A spectral
dataset processed with a wrong normalization method produces unreliable statistical
results, since the meaningful variance of the metabolite levels among all samples may be
hindered by large differences of solvent quantity. Such a variability of the solutes/solvent
proportions among the samples determines also the poor co-variance between the
observables of a molecule when measured by different analytical techniques on the same
samples set. The co-variance analysis is the basis of the statistical hetero-spectroscopy
(SHY), which is an extension of STOCSY.? In principle, a co-variance matrix between
NMR and HPLC data will show correlations among the chemical shift of NMR signals and
the retention times of the corresponding metabolite in the chromatogram (Figure 5).

For the biological extracts, the co-variance matrix has a large number of cross-
correlations between NMR signals and chromatographic peaks (Figure 5). The number is
however much higher than the expected and, as for STOCSY, this is diagnostic for the
presence of false correlations associated with a wrong normalization procedure. In the co-
variance matrix, false correlations are due to different dilutions of the samples, like those
generated by different amounts of residual water in the lyophilized samples' powders. Such
variations may also be induced by some inevitable sampling errors, especially in case of
non homogeneous food matrices. This is the case of freeze-dried cherry tomatoes powders,
where it is possible to collect, by chance, different anatomic parts of the fruit, such as
seeds, peel or pulp with different contents of extractable matter.

Consequently, in order to minimize the dilution effect on NMR spectra, the TOCSY-
filter algorithm has been applied on the "H-NMR autocorrelation matrix obtained from
spectra acquired on 11 cherry tomatoes extracts. The resulting STOCSY matrix (Figure
6A) has been compared with a 2D 'H-TOCSY spectrum acquired on a single chloroform
extract of cherry tomato (Figure 6B), in order to identify true and false cross-peaks in the
autocorrelation matrix.

The comparison of the two matrices points out the presence of false cross peaks, for
example those circled with a red line in Figure 7. The application of the TOCSY-filter
algorithm minimizes the presence of false cross peaks in the autocorrelation matrix (data
not shown), by applying 11 dilution K-factors, one for each mixture.
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Representative HPLC chromatogram 455 nm
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Figure 5 HPLC-NMR co-variance matrix calculated for non-normalized spectra and
chromatograms of natural samples, consisting of chloroform extracts from cherry
tomatoes
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Figure 6 A) Non-normalized autocorrelation array "H-NMR (1700 x 1 700) showing cross-
correlations with R*> 0.8. B) 2D-'H-TOCSY, acquired at 800 MHz, on a cherry tomato
sample chosen .
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Figure 7 Superimposition between non-normalized autocorrelation array with only true
correlation, in grey, and 'H-TOCSY acquired on a cherry tomato sample, in black. Some

false cross peaks are circled.
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Figure 8 SHY NMR-HPLC co-variance matrix between the 'H-NMR signals and the
chromatogram recorded at 455 nm on the same sample set, showing a minimized number
of false cross peaks. The optimization has been performed by applying the TOCSY-filter

algorithm.

Once the dilution K-factors are calculated, they have been used as normalization
coefficients for the NMR spectra, as well as for all chromatograms. The resulting SHY co-
variance matrix shows the capability of the algorithm to clean out the false cross-
correlation, thus improving the reliability of a non-hyphenated HPLC-NMR coupling, that
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can be used to assign a structure to a molecule whose peak is eluted at the corresponding
retention time (Figure 8). It is worth noting that the TOCSY -filter algorithm minimizes the
R? of artefacts whilst does not affect or maximizes the regression coefficients of true cross-
correlations. Thus, the filtering out of a large number of “signals” in the 2D covariance
matrix, is not corresponding to the simple cut off procedure obtained by increasing the
threshold for the elements to be shown in the image.

Although several resonances are readily observed between 6 and 7 ppm, consistent with
the presence of lycopenes in the tomato extracts, not all the main chromatographic peaks,
neither all the main NMR signals, shows co-variance between the two techniques. This is
easily explained by the assumption that not all the peaks and the signals are resolved, and
the overlap among signals and, more frequent, among peaks, is critical for the obtainment
of clear covariance. The enhancement of the SHY matrix relies on the improvement of the
HPLC separation and of the NMR resolution. However, whilst the latter parameter is
constant for a given magnetic field, and can be increased at a larger cost, the first technique
can be easily improved by changing the elution gradients and the column performances.

3 CONCLUSION

The TOCSY-filter algorithm, at first developed on a training dataset consisting of NMR
spectra acquired on 20 mixtures of 10 different metabolites, has been shown to be able to
correct the dilution errors that have been artificially and purposely introduced during
sample preparation. Dilution errors is proven to lead to an incorrect normalization of the
proton spectra, which is a necessary step prior the multivariate analysis.

The algorithm requires the acquisition of a two-dimensional 'H- TOCSY spectrum on
a single sample, chosen among the whole set that will undergo the chemometric analysis.
The TOCSY-filter is a simple algorithm, suitable for a future inclusion in the standard
procedures so far adopted in metabonomics, as a preliminary step before statistical
analysis. The resulting elimination of the effects of incorrect dilution procedures as source
of errors, determines an improvement in the discovery of the biological source of variance,
which is the main goal in metabonomics, including the applications in foodomics science.

In this field, further information can be gained from covariance analysis of data
obtained by two different techniques, either spectroscopic and chromatographic, on the
same sample set, in the so called SHY applications. However, when dilution errors are
larger than, or comparable to, the biological variance of metabolites concentrations, the co-
variance information is poor and the SHY approach is vain. The elimination, or reduction,
of the dilution errors, obtained by application of the TOCSY-filter algorithm, may improve
the SHY applications, rendering the approach a valid alternative to the hyphenated HPLC-
NMR analysis.
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