UNIVERSITY OF COPENHAGEN

Emergy signature as a basis for sustainability valuation of agro-ecosystems

Ghaley, Bhim Bahadur; Montesino San Martin, Manuel; Porter, John Roy

Publication date: 2011

Document version Early version, also known as pre-print

Citation for published version (APA): Ghaley, B. B., Montesino San Martin, M., & Porter, J. R. (2011). *Emergy signature as a basis for sustainability* valuation of agro-ecosystems. Poster session presented at Ecosystem Services Partnership, Wageningen , Netherlands.

Emergy signature as a basis for sustainability valuation of agro-ecosystems

Bhim Bahadur Ghaley¹⁾, Manuel Montesino San Martin²⁾, John Roy Porter³⁾

1.2.3 Department of Agriculture and Ecology, Højbakkegård Allé 30, 2630 Taastrup, University of Copenhagen, Denmark ¹⁾Email:

1. Background

- Humans depend on the ecological resources for the inevitable needs of food, feed and energy
- Human 'engineered' ecosystems have resulted in adverse impacts on the ecosystems
- Agro-ecosystems constitute over 37% of the earth's surface (Porter et al., 2009)
- Agro-ecosystems are biggest contributor to the worsening ecosystem service provision
- Reduction in the capacity of the ecosystems for provision of ecosystem services (MEA, 2005)

2. Problem formulation

- Ecosystem services are integral to the ecological sustainability and the economic prosperity
- A renewed perspective towards a sustainable society (Rvdberg & Haden, 2006)
- Need for holistic accounting procedures to account for economic, social and ecological costs
- Emergy analysis (Odum & Odum, 2006) takes account of the environment and the economic inputs

3. Objective

- Assess emergy input in a novel food and energy production (CFE) system compared with conventional wheat production system in Denmark
- To evaluate the sustainability of the two production systems based on emergy indices

Fig.1: Layout of combined food and energy production system (CFE) in Taastrup in Denmark

Fig.2: Side view of biomass belts of CFE in Taastrup in Denmark

4. Materials and methods

- Emergy analysis steps (Odum & Odum, 2000; Brown et al. 2004)
 - 4 Setting up system boundary after which inputs and outputs crossing the boundary are quantified
 - Inputs are converted into a common currency of solar emioules based on transformity coefficients
 - # Assessment of the fraction of renewable, non-renewable, purchased resources
 - # Use of emergy indices (EYR, EIR, ELR, ESI, EFR) for sustainability valuation

Fig.3: Illustration of main emergy flows and their interactions in combined food and energy system (CFE) in Taastrup in Denmark

5. Results

Table 1: Comparative emergy indices in conventional wheat and combined food and energy systems of production

Emergy Indices	Parameters	Conventional wheat	CFE
Total exported emergy (J ha ⁻¹ year ⁻¹)	Т	1.76E+11	2.80E+11
Transformity (Sej J ⁻¹)	Y/T	1.67E+04	3.42E+03
Yield (Sej ha ⁻¹ year ⁻¹)	Y	2.93E+15	9.55E+14
Total renewable (Sej ha ⁻¹ year ⁻¹)	R	2.07E+14	2.07E+14
Total non -renewable (Sej ha ⁻¹ year ⁻¹)	Ν	3.31E+13	1.79E+13
Total purchased (Sej ha ⁻¹ yea r ⁻¹)	F	2.69E+15	7.30E+14
Renewable fraction	R/(R+N+F)	0.07	0.22
Emergy yield ratio (EYR)	Y/F	1.09	1.31
Environment loading ratio (ELR	(F+N)/R	13.17	3.61
Emergy sustainability index (ESI)	EYR/ELR	0.08	0.36
Emergy investment ratio (EIR)	F/R+N	11.22	3.25
Emergy footprint ratio (EFR)	R+N+F/R	14.17	4.61

References

Porter J. Costanza R. Sandhu H. Sigsgaard L & Wratten S (2009). The Value of Producing Food. Energy. and Ecosystem Services within an Agro-Ecosystem. Ambio 38:186-193.

Rydberg T & Haden AC (2006). Emergy evaluations of Denmark and Danish agriculture: Assessing the influence of changing esource availability on the organization of agriculture and society. Agriculture Ecosystems & Environment 117:145-158 Odum HT & Odum EC (2006). The prosperous way down. Energy 31:21-32. Odum HT & Odum EP (2000). The energetic basis for valuation of ecosystem services. Ecosystems 3:21-23

MEA (2005). Millenium Ecosystem Assessment. In Ecosystems and human well-being: Biodiversity synthesis. World Resources

Institute. 2005. Washington. DC. Brown MT, Odum HT & Jorgensen SE (2004) Energy hierarchy and transformity in the universe. Ecol. Modelling 178:17-28.