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Preface

The present material has been developed for the course Stochastic Processes
at Department of Mathematical Sciences, University of Copenhagen during
the teaching years 2010/2011 and 2011/2012. The topics covered are mainly
Markov chains in discrete and continuous time on finite or countable state
spaces.

The back bone of this work is the collection of exercises in Chapters 2 and
3. Hopefully, all of the theoretical results required to solve the exercises are
contained in the first Section of Chapters 2 and 3. The manuscript was never
intended to provide complete mathematical proofs of the main results since
these may be found elsewhere in the literature. It is my intention to spend
part of the lectures on (sketches of) proofs in order to illustrate how to work
with Markov chains in a formally correct way. Some exercises in Chapter
4.2 are formulated as step-by-step instructions on how to construct formal
proofs of selected theoretical results. It is definitely advisable (and probably
necessary) to consult other textbooks on Markov chains in order to be able
to solve all of the exercises given here. However, it is my strong belief that
you should postpone the more theoretical exercises until you feel familiar
with most of the exercises in Chapter 2 and 3. For further reading I can
recommend selected Chapters of the books by Asmussen (2003), Brémaud
(1999) and Lawler (2006). My own introduction to the topic was the lecture
notes (in Danish) by Jacobsen & Keiding (1985).

A number of the exercises presented here are greatly inspired by examples
in Ragner Nordberg’s lecture notes on Basic Life Insurance Mathematics
(Version: September 2002). The paragraphs presenting theoretical results
on Markov chains are greatly inspired by various lecture notes by Jacobsen
& Keiding (1985), M., by Nielsen, S. F., and by Jensen, S. T.

Part of this material has been used for the course Stochastic Processes 2010/2011
at University of Copenhagen and I thank Massimiliano Tamborrino, Ketil
Biering Tvermosegaard, and the students for many useful comments to this
revised version.

Copenhagen, November 2011
Anders Tolver
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10 CHAPTER 1. INTRODUCTION

1.1 About these lecture notes

The main purpose of developping the present manuscript has been to collect a
number of problems providing an easy introduction to the most basic theory
of Markov chains on finite or countable state spaces. The exposition differs
from most textbooks on Markov chains in that the problems take up most of
the space while only a limited number of pages are devoted to the presentation
of the mathematical results. This reflects my personal point of view that you
should learn the stuff by working with the problems.

The lecture notes are divided into two main parts: Chapter 2 deals with
Markov chains in discrete time and Chapter 3 is about Markov chains in
continuous time. Each chapter is subdivided into sections of which the first
(i.e. Sections 2.0 and 3.0) contains a short summary of relevant definitions
and theoretical results. The purpose of these sections is to give you an easy
overview of the theory that you need to solve the problems. No proofs of
the results are given in the lecture notes. To get the whole story behind the
mathematical results you will need to consult other textbooks on Markov
chains. During the lectures some time will be spend on mathematical proofs
of selected results because this may help you building up your intuition about
Markov chains. The problems in Chapter 4.2 explains how to construct
mathematical proofs of certain theorems and might be used for some of the
lectures.

The remaining sections of Chapter 2 and 3 present the problems divided into
various subsections according to the size of the state space for the Markov
chain. Whenever possible we have tried to put the exercises into a practi-
cal context if they deal with models that have reasonable interpretations in
the real world. As the present course preceeds a course on life insurance a
great number of the exercises are motivated by this particular application.
However, other important examples from the vast area of applications of
Markov chains have found their way to the present collection of problem,
most notably from the field of queueing theory.

Clearly, the exercises vary in their difficulty and probably also in their rele-
vance to a student just wanting to pass the course. We have made an effort
to ensure that most exercises contains a mixture of (very) simple and more
complicated questions. This is done because we know how frustrating it feels
not to be able to get anywhere when trying to do the exercises at home.
On the other hand this also implies that everyone should be able to prepare
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something before the exercise classes. If you show up at the exercise classes
without having prepared any question for any exercise then the teaching as-
sistant will not believe that you gave it a try. It is more likely that you will
be seen as a lazy and unambitious student ;-) If I am mistaken on this point
please let me know.

I want you to remember that you are supposed to do a written exam to
pass this course. Therefore my general advice to you is to use one of the
problems as offset anytime you work with the course. Use the questions in
the problems to figure out what part of Chapters 2.0 or 3.0 that might be
relevant to answer the question. Use the problems to find relevant pages
from the slides used for the lectures. Do not expect it to work the other way
around. It will probably take you a lot of time to read and understand the
definitions and theorems of Chapters 2.0 or 3.0 and every little mathematical
argument presented at the lectures. Even if you do manage to digest all the
mathematics you will probably not find it straigh-forward to apply it to
solve the problems. There is a huge discrepancy between reading (about)
probability theory and being able to solve problems on probability theory.
In my opinion this is the main reason why courses on Markov chains have a
reputation for being very difficult.

Work with the problems if you want to do well at the exam!

Finally, we have decided to include a Chapter 5 that contains some mathe-
matical tools that we think might be useful for solving the problems in these
lecture notes.

1.2 Transition diagrams

We advocate for visualising the dynamics of a Markov chain whenever pos-
sible. This will be done using socalled transition graphs with nodes (or
vertices) representing the states of the Markov chains and edges representing
transitions.

For a discrete time Markov chain (at least on a finite state space) the dy-
namics of the chain is given by the matrix of transitions probabilities. On
the graph the transition probabilities are given as labels to the arrow rep-
resenting the individual transitions. Usually, we use the convention that an
edge corresponding to a zero of the transition matrix need not be drawn on
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the graph. Remember that a discrete-time Markov chain need not jump to
another new state at every time period. This is represented by a circular
arrow on the transition diagram. As the transition probabilities for arrows
pointing out from a state should always sum to one we will sometimes be a
bit lazy and omit the arrows from a state pointing to itself putting our faith
in the readers ability to add the remaining arrows to the transition diagram.
To illustrate the points above complete and lazy examples of transition di-
agrams for the same three state discrete-time Markov chain are displayed
below.

1
1/3

���������
1/3

��=======

2
1/2 // 3

1

1/3

��

1/3

���������
1/3

��=======

21/2
%% 1/2 // 3 1ee

Figure 1.1: Two different versions of a transition diagram for the same dis-
crete time Markov chain with three states.

For a continuous-time Markov chain the dynamics is given by the time spent
in each state and the distribution of the jumps whenever they occur. For a
finite state space Markov chain everything is summarized in the transtion in-
tensity matrix with non-negative off diagonal entries and diagonals adjusted
to make all rows sum to zero. The chain may be visualized by a transition
diagram with nodes representing individual states and edges representing
transitions. The correspondence between the transition intensity matrix and
the transition diagram is obtained by labeling edges by the corresponding
entry of the transition intensity matrix. In contrast to the discrete time case
we (always!) omit edges of transition intensity zero. Further, there are no
circular arrows from any state pointing to itself. An example of a transition
diagram for a continuous-time Markov chain is given below.
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1
1

���������
3

��=======

2
2 // 3

1
1/4

���������
3/4

��=======

2
1 // 3

Figure 1.2: Transition diagram for a continuous time Markov chain with
three states (left) and transition diagram for the corresponding discrete time
Markov chain of jumps (right).

1.3 Overview of exercises

Below we have listed some important topics related to Markov chains and
numbers of relevant problems dealing with the particular topic. Note that
the list may incomplete, in particular if a problem deals with several topics.

Communication classes
Exercises: 2.2.1, 2.3.1, 2.3.7, 3.4.2

Transience or recurrence
Exercises: 2.2.1, 2.3.7

Null-recurrence or positive recurrence
Exercises: 2.4.2, 2.4.3, 2.4.4, 2.4.6, 3.2.4, 3.4.2, 3.4.4

Periodicity
Exercises: 2.3.2, 2.3.7

Absorption probabilities
Exercises: 2.3.7, 2.3.8, 3.2.4

Invariant distribution
Exercises: 2.2.2, 2.2.4, 2.3.3, 2.3.4, 2.3.7, 2.4.1, 3.2.1, 3.2.5, 3.3.4, 3.4.3

Recurrence (=return) time
Exercises: 2.1.2, 2.3.2, 2.4.6

Markov property
Exercises: 2.2.4, 2.3.6, 3.3.1

Kolmogorov’s differential equation
Exerices: 3.2.2, 3.2.3, 3.3.3

Transition probabilities
Exercises: 2.1.4, 2.3.4, 3.1.3, 3.2.1



14 CHAPTER 1. INTRODUCTION

Poisson process
Exercises: 3.1.2, 3.2.4, 3.2.6, 3.4.1, 3.5.1, 3.5.2



Chapter 2

Discrete-time Markov chains
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16 CHAPTER 2. DISCRETE-TIME MARKOV CHAINS

2.0 Results for discrete-time Markov chains

2.0.1 Definition of Markov chains

It all begins with a probability measure P. You may think of a probability
measure, P, on a set Ω as a function assigning a number P (A) ∈ [0, 1] to
subsets A ⊂ Ω. If you are familiar with measure theory you may correctly
insist that a probability measure only assigns a probability to subsets A ∈ F
in a σ-algebra F on Ω but this point of view is not crucial for the story
to come. Subsets of Ω are referred to as events. For two events A,B with
P (B) > 0 we define the elementary conditional probability, P (A|B), of A
given B as

P (A|B) =
P (A ∩B)

P (B)
.

A stochastic process in discrete-time is a family, {X(n)}n∈N0 , of random
variables indexed by N0. The possible values, S, of X(n) are referred to
as the state space of the process. In this course we consider only stochastic
processes with values in a finite or countable state space. The mathematician
may then think of a random variable, X, on S as a measurable map

X : (Ω,F)→ (S,P(S))

where P(S) is the family of all subsets of S.

The distribution of a discrete-time stochastic process with at most countable
state space, S, is characterized by the point probabilities

P (X(n) = in, X(n− 1) = in−1, . . . , X(0) = i0)

for in, in−1, . . . , i0 ∈ S and n ∈ N0. From the definition of elementary condi-
tional probabilities it follows that

P (X(n) = in, . . . , X(0) = i0)

= P (X(n) = in|X(n− 1) = in−1, . . . , X(0) = i0)

× P (X(n− 1) = in−1|X(n− 2) = in−2, . . . , X(0) = i0)

× . . .

× P (X(1) = i1|X(0) = i0)× P (X(0) = i0).

This is a general identity that holds for any discrete-time stochastic process
on a countable state space, but we are only going to consider the class of
Markov chains.
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A discrete-time Markov chain on a countable set, S, is a stochastic process
satisfying the Markov property

P (X(n) = in|X(n− 1) = in−1, . . . , X(0) = i0)

= P (X(n) = in|X(n− 1) = in−1)

for any in, . . . , i0 ∈ S and n ∈ N0. Introducing the notation

Pi,j(n− 1) = P (X(n) = j|X(n− 1) = i)

we immediately observe that for a Markov chain the formula for the point
probabilities simplifies to

P (X(n) = in, X(n− 1) = in−1, . . . , X(0) = i0)

= Pin−1,in(n− 1) · Pin−2,in−1(n− 2) · . . . · Pi0,i1(0) · P (X(0) = i0).

We shall make a final simplification by considering only time-homogeneous
Markov chains for which the transition probabilities Pi,j(n) = Pi,j do not
depend on the time index n ∈ N0. For a discrete-time and time-homogeneous
Markov chain on S we thus have that

P (X(n) = in, . . . , X(0) = i0) = Pin−1,in · . . . · Pi0,i1 · φ(i0) (2.1)

where we use the notation

φ(i0) = P (X(0) = i0)

for the initial distribution of X(0).

Definition 1 (Homogeneous Markov chain in discrete-time) A time-
homogeneous Markov chain on a finite or countable set S is a family of ran-
dom variables, {X(n)}n∈N0, on a probability space (Ω,F , P ) such that

P (X(n+ 1) = j|X(n) = i,X(n− 1) = in−1, . . . , X(0) = i0) = Pi,j

for j, i, in−1, . . . , i0 ∈ S and n ∈ N0. The distribution of the Markov chain is
uniquely determined by the initial distribution and the transition probabilities

φ(i) = P (X(0) = i) ← initial distribution

Pi,j = P (X(n+ 1) = j|X(n) = i) ← transition probabilities.

�
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From a practical point of view any probability vector φ = (φ(i))i∈S and array
of probabilities P = (Pi,j)i,j∈S with

∑
j∈S Pi,j = 1 for all i ∈ S defines the

distribution of a time-homogeneous Markov chain on S through the identity
(2.1). When the state space is finite we speak of the transition matrix P =
(Pi,j)i,j∈S. As we will consider only time-homogeneous Markov chains we
will throughout these lecture notes omit the phrase time-homogeneous by
referring to the process simply as a Markov chain.

The dynamics of a discrete-time Markov chain with state space S is given by
the matrix, P, of transition probabilities. A similar representation is given
by a directed graph (the transition diagram) with nodes representing the
individual states of the chain and directed edges labeled by the probability
of possible transitions.

1

1/3

��

1/3

���������
1/3

��=======

21/2
%% 1/2 // 3 1ee

Figure 2.1: Transition diagram for a discrete-time Markov chain with three
states.

The probability of any event involving the observations X(0), . . . , X(n) from
a Markov chain may be obtained by splitting the event into disjoints sets of
the form

(X(0) = i0, . . . , X(n) = in)

and summing up point probabilities of the form given by (2.1). For finite state
space Markov chains the computation of the probability of certain events have
simple representations in terms of matrix multiplication.

Theorem 1 (n-step transition probabilities) For a Markov chain on a
finite state space, S = {1, . . . , N}, with transition probability matrix P and
initial distribution φ = (φ(1), . . . , φ(N)) (row vector) then the distribution of
X(n) is given by

(P (X(n) = 1), . . . , P (X(n) = N)) = φP n.

�
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2.0.2 Classification of states

For a discrete-time Markov chain on S with transition probabilities P =
(Pi,j)i,j∈S we say that there is a possible path from state i to state j if there
is a sequence of states i0, i1, . . . , in ∈ S with i = i0, j = in and all Pil−1,il > 0,
l = 1, . . . , n. We say that two states i, j ∈ S communicate if there is a possible
path from i to j and from j to i. We use the notation i ↔ j when the two
states i and j communicate. If we use the convention that i ↔ i then the
relation↔ partitions the state space, S, into disjoint communication classes.
A Markov chain is said to be irreducible if there is only one communication
class.

To understand and describe the dynamics and the long-run behaviour of
a Markov chain we introduce the concepts of a transient and a recurrent
communication class. For any state i ∈ S we define the return time or the
recurrence time to i by

Ti = inf{n > 0|X(n) = i}.

Definition 2 (Recurrence and transience) For a discrete-time Markov
chain on S we say that a state i ∈ S is recurrent if and only if

P (Ti < +∞|X(0) = i) = 1.

If P (Ti < +∞|X(0) = i) < 1 then i is said to be a transient state. �

The interpretation of recurrence is very important: if the Markov chain is
started in a recurrent state i then with probability 1 it will eventually return
to state i. On the contrary, if a Markov chain starts in a transient state i
then the probability of returning to state i is strictly less than 1.

It is very important to emphasize the difference between a Markov chain
being irreducible and being recurrent. For an irreducible Markov chain there
is a positive probability of a transition between any two states i 6= j while
(as we shall see) for a recurrent Markov chain there will eventually be a
transition between any two states i 6= j with probability 1!

As stated in the following two results it is possible to extract a bit more
information from the definition of recurrence.
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Theorem 2 (Number of visits to state i) For a discrete-time Markov chain
on S with initial distribution P (X(0) = i) = 1 consider the total number of
visits to state i

Ni =
∞∑
n=1

1(X(n) = i).

If i is a recurrent state then Ni = +∞ with probability 1. If i is a transient
state then Ni follows a geometric distribution

P (Ni = k) = (1− q)kq, k ∈ N0

where q = P (Ti = +∞|X(0) = i). �

Theorem 3 (Recurrence is a class property) All states in a communi-
cation class are either all recurrent or all transient. �

The result above suggests that we first find the communication classes and
then consider only one representative of each class for classification into either
recurrent or transient states. Unfortunately, it is rarely possible to apply
directly Definition 2 to verify that a state is recurrent. The following two
results may be more useful for practical purposes.

Theorem 4 (Recurrence criterion 1) For a discrete-time Markov chain
with n-step transition probabilities P n = (P n)i,j∈S then state i is recurrent if
and only if

∑∞
n=1(P

n)i,i = +∞. �

In many cases it is not possible to get explicit formulaes for the n-step tran-
sition probability, (P n)i,i, allowing us to evaluate the sum from Theorem 4.
However, it might be possible to bound (P n)i,i from below (or above) by
elements of a divergent (or convergent) series

∑∞
n=1 an allowing us to deduce

that state i is recurrent (or transient).

The following result gives another way to demonstrate recurrence of a state
without reference to n-step transition probabilities.

Theorem 5 (Recurrence criterion 2) Let {X(n)}n≥0 be an irreducible
Markov chain on S with transition proabability P = (Pi,j)i,j∈S. Consider
the system of equations

α(j) =
∑
k 6=i

Pj,kα(k), j ∈ S, j 6= i, (2.2)
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where i ∈ S is a fixed (but arbitrary) state.

The Markov chain is recurrent if and only if the only bounded solution to
(2.2) is given by α(j) = 0, j 6= i. �

Remark 1 Let us try to explore a little further the result of Theorem 5. For
fixed (but arbitrary) i ∈ S define

α(j) = P (Ti = +∞|X(0) = j) where Ti = inf{n ≥ 0|X(n) = i}.

Note that α(j) is the probability of never visiting state i given that the Markov
chain starts in state j. Then it is straight-forward to show that (α(j))j∈S,j 6=i
is a bounded solution to (2.2). One deduces that if α(j) = 0 is the only
bounded solution then we must have for all j 6= i that

P (Ti <∞|X(0) = j) = 1.

In particular, state i is recurrent since we have by the Markov property that

P (Ti <∞|X(0) = i) = Pi,i +
∑
j 6=i

Pi,j · P (Ti <∞|X(0) = j)

= Pi,i +
∑
j 6=i

Pi,j · 1 = 1!

The non-trivial part of Theorem 5 is show that if any non-zero solution to
(2.2) exists then we must also have P (Ti = +∞|X(0) = j) > 0 for at
least one j 6= i implying (trivally) that the irreducible Markov chain is not
recurrent. �

For communication classes with only finitely many elements things are con-
siderably easier as explained in the following result.

Theorem 6 (Closed communication classes) A communication class, C,
is said to be closed if the submatrix of transition probabilities restricted to C
has all row sums equal to 1.

A finite communication class, C, is recurrent if and only if it is closed. In
general, closed communication classes with a countable number of states can
be either recurrent or transient.

The restriction of a Markov chain to a closed communication class is an
irreducible Markov chain. �
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In order to discuss the long-run behavior of a Markov chain we need to
introduce the period of a state. The period of a state i ∈ S is the greatest
common divisor of the length of all possible loops starting and ending in
state i.

Definition 3 (Period of a Markov chain) For a discrete-time Markov chain
on S a loop of length n is a sequence of states i0, i1, . . . , in ∈ S with i0 = in.
We will speak of a possible loop if

Pi0,i1 · Pi1,i2 · . . . · Pin−1,in > 0.

Introduce

Di = {n ∈ N| there exists a possible loop of length n with i0 = in = i}

and define the period of state i as the largest number dividing all numbers in
the set Di. All states of a communication class will have the same period and
we shall use the phrase aperiodic about a class of period 1. An irreducible,
aperiodic Markov chain is a Markov-chain with one communication class of
period 1. �

2.0.3 Invariant distributions and absorption

We have previously considered the return time

Ti = inf{n > 0|X(n) = i}

to state i. For a transient state i there is (by definition!) a positive probability
that the chain never returns to state i

P (Ti = +∞|X(0) = i) > 0

hence trivally E[Ti|X(0) = i] = +∞. If i belongs to a recurrent communica-
tion class then we know that

P (Ti < +∞|X(0) = i) = 1

that is we are sure to get back to state i. We may, however, also consider the
mean return time

E[Ti|X(0) = i]

which may or may not be finite.
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Definition 4 (Positive recurrence and null-recurrence) A recurrent state
i is said to be positive recurrent if and only if the mean return time to state
i is finite

E[Ti|X(0) = i] < +∞.

Otherwise the recurrent state is said to be null-recurrent. It can be shown that
all states belonging to the same recurrent class are either positive recurrent
or null-recurrent. �

The main results concerning the long-run behaviour of a discrete-time Markov
chain are formulated below. You may think that the exposition here differs
from the literature on Markov chains. However, we believe that the present
formulation is suitable for students who should learn to apply the results for
solving problems. Clearly, we would use another exposition if the intention
was to present the mathematical theory underlying the results.

Theorem 7 For an irreducible, aperiodic discrete-time Markov chain then
for any state i and any initial distribution, φ, it holds that

lim
n→∞

P (X(n) = i) = 1
E[Ti|X(0)=i]

.

If E[Ti|X(0) = i] = +∞ the limit on the right hand side is defined to be 0.
�

Note that by choosing the initial distribution P (X(0) = i) = 1 we conclude
from Theorem 7 that the n-step transition probabilities

(P n)i,j = P (X(n) = j|X(0) = i)

have a limit as n→∞. Using the identity

P (X(n+ 1) = j|X(0) = i)

=
∑
l∈S

P (X(n+ 1) = j,X(n) = l|X(0) = i)

=
∑
l∈S

P (X(n+ 1) = j|X(n) = l) · P (X(n) = l|X(0) = i)

=
∑
l∈S

P (X(n) = l|X(0) = i) · Pl,j



24 CHAPTER 2. DISCRETE-TIME MARKOV CHAINS

it follows by formal mathematical arguments (dominated convergence!) that

π(j) = lim
n→∞

P (X(n+ 1) = j|X(0) = i)

=
∑
l∈S

{
lim
n→∞

P (X(n) = l|X(0) = i)
}
· Pl,j =

∑
l∈S

π(l)Pl,j. (2.3)

A non-negative vector, π = (π(j))j∈S, solving the system of equations (2.3)
for all j ∈ S is called an invariant measure for the transition probabilities,
P = (Pi,j)i,j∈S. If π is a probability (i.e. π(j) ≥ 0,

∑
j∈S π(j) = 1) we will

speak of an invariant distribution for P .

The following result states that an invariant probability exists exactly if the
irreducible Markov chain is positive recurrent.

Theorem 8 For an irreducible, recurrent Markov chain, {X(n)}n≥0, there
is a unique (up to multiplication!) invariant measure solving the equations

ν(j) =
∑
i∈S

ν(i)Pi,j, j ∈ S. (2.4)

The unique solution (up to mulitiplication) is given by

ν(j) = E

[
Ti−1∑
n=0

1(X(n) = j)|X(0) = i

]

where i ∈ S is any fixed state. The solution can be normalized into an
invariant probability if and only if E[Ti|X(0) = i] < +∞. �

Corollary 1 From Theorem 7 and 8 above we conclude that for an irre-
ducible Markov chain there is an invariant distribution solving (2.4) if and
only if the Markov chain is positive recurrent. The invariant distribution is
given by the inverse of the mean return times

π(i) =
1

E[Ti|X(0) = i]
.

If the Markov chain is aperiodic it further holds that

lim
n→∞

P (X(n) = j) = π(j)
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for any initial distribution φ = (φ(i))i∈S.

If we use the invariant distribution as initial distribution (i.e. P (X(0) =
j) = π(j)) then it holds that

P (X(n) = j) = π(j)

for all n ≥ 0, and we will say that the Markov chain is stationary. For that
reason we will also refer to π as the stationary distribution. �

Remark 2 (Positive recurrence and null-recurrence) It follows from
Corollary 1 that a recurrent communication class is positive recurrent if and
only if there exists an invariant distribution. If there does not exist an in-
variant distribution on a recurrent class then the class is null-recurrent.

One can show that only communication classes with a countable number of
states can be null-recurrent. All recurrent communication classes with a finite
number of elements are positive recurrent. �

The results above are formulated for irreducible Markov chains and the main
focus has been on aperiodic communication classes. We end this section by
discussing what happens if we relax these two assumptions.

Corollary 2 (Irreducible, periodic Markov chains) For an irreducible
Markov chain with period d > 1 the limit limn→∞ P (X(n) = i) does not exist
for an arbitrary initial distribution. However, the average over a period of
length d has a limit

π(i) := lim
n→∞

P (X(n) = i) + P (X(n+ 1) = i) + . . .+ P (X(n+ d− 1) = i)

d
.

If this limit is a probability distribution (i.e. if
∑

i∈S π(i) = 1) then π =
(π(i))i∈S is a unique invariant distribution for the Markov chain. �

If the Markov chain is not irreducible then one must apply Corollaries 1 and
2 to each communication class. For each of the positive recurrent classes
there exists a unique invariant distribution with positive probabilities only
for the states in the class. However, any convex combination of the invari-
ant distribution for the positive recurrent subclasses constitutes an invariant
probability on the entire state space of the Markov chain. In particular, the
invariant probability distribution is no longer unique.
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Recurrent classes are closed in the sense that once the Markov chain enters
the class it stays there forever. On the contrary, a Markov chain may leave
a transient class sooner or later by entering a recurrent class. If a Markov
chain is not irreducible it may consist of several transient and recurrent
classes. This naturally raises the following questions: if the Markov chain is
started in a transient state i, how many times will it visit state i before it
leaves the state for good, and what is the probability that it will end up in
each of the recurrent classes?

Theorem 9 (Absorption probabilities - finite state space) Consider a
finite state Markov chain with transition matrix P. Suppose that the states
are ordered such that P can be decomposed as a block matrix

P =

(
P̃ 0
S Q

)
where P̃ is the transition matrix restricted to the recurrent states. Similarly,
Q is the submatrix of P restricted to the transient states, and S describes
transition probabilities from transient to recurrent states. The 0 block in
the upper right part of P reflects the fact that transitions from recurrent to
transients states are not possible.

The ij-th entry of the matrix M = (I −Q)−1 describes the excepted number
of visits to the transient state j before the Markov chain reaches one of the
recurrent states under the assumption that the Markov chain starts in the
transient state i (i.e. P (X(0) = i) = 1). Here, I denotes the identity matrix
with zero off-diagonal and a diagonal of ones.

The ij-th entry of
A = (I −Q)−1S

is the probability that j is the first recurrent state reached by the Markov
chain when started in the transient state i (i.e. P (X(0) = i) = 1).

�

A common application of Theorem 9 is the case where all recurrent classes
are sets with only one element. In this situation we have P̃ = I and the
recurrent states are simply the absorbing states. The result then gives us the
absorption probabilities for each of the absorbing states.

If the Markov chain contains more than one recurrent class then Theorem 9
may be used to compute the probability that the Markov chain will end its life
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in each of the recurrent classes. Note that in the long-run the total probability
of being absorbed in a particular recurrent class will be redistributed on
individual states according to the invariant distribution restricted to the
relevant class.

Theorem 9 is stated in terms of matrix operations and are therefore restricted
to Markov chains on a finite state space. For Markov chains on a countable
state space absorption probabilities may be found by solving a countably
infinite system of equations.

Theorem 10 (Absorption probabilities - general case) For a Markov
chain on S let C be a recurrent class. The probabilities

α(j) = P (X(n) ∈ C for some n ≥ 0|X(0) = j), j ∈ C ′ ← transient states

that the chain will ever visit class C (and stay there forever) then solves the
system of equations

α(j) =
∑
l∈C′

Pj,lα(l) +
∑
l∈C

Pj,l. (2.5)

The absorption probability (α(j))j∈C′ is the smallest non-negative solution to
(2.5). There is a unique bounded solution to (2.5) if and only if there is zero
probability that the Markov chains stays in the transient states forever. �
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2.1 Markov chains with two states

2.1.1 General two state Markov chain

We consider a Markov chain on S = {1, 2} with transition diagram

1
1/3

((
2

1/2

hh

Figure 2.2: Transition diagram for Markov chain in Exercise 2.1.1 and 2.1.2.

Assume that X(0) = 1.

1. Write down the transition matrix P of the Markov chain.

2. Compute P (X(1) = 1) and P (X(1) = 2).

3. Find the distribution of X(2) and X(3).

4. Compute P 2 and P 3 and compare with the results of questions 2.-3.

5. Compute also P 10.

Assume in the following that the initial distribution of X(0) is given by
φ(1) = φ(2) = 1/2.

6. Compute the distribution of X(1).

7. Let φ = (φ(1), φ(2)) and compute φP, φP 2, and φP 3. What did you
actually compute?

8. Find the distribution of X(5).

9. Find the invariant probability vector π = (π1, π2) of the Markov chain
by solving the matrix equation πP = π that may be written out as

π1P11 + π2P21 = π1 and π1P12 + π2P22 = π2.

10. Compare the results of questions 5., 8., and 9.
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2.1.2 Recurrence times

We consider again the Markov chain of Exercise 2.1.1 given by Figure 2.2.
Assume that X(0) = 1 and define the recurrence time to state 1 by

T1 = inf{n > 0|X(n) = 1}.

The purpose of this exercise is to study the distribution of the recurrence
time and its relation to the invariant probability vector of the Markov chain.

1. Find P (T1 = 1).

2. Compute P (T1 = 2), P (T1 = 3) and find the general expression for
P (T1 = n), n ≥ 2.

3. Find the mean recurrence time µ1 = E[T1] to state 1.

Assume that X(0) = 2 and define the recurrence time to state 2 by

T2 = inf{n > 0|X(n) = 2}.

4. Compute P (T2 = n), n ≥ n and the mean µ2 = E[T2].

5. Find 1/µ1 and 1/µ2.

6. Compare the results of question 5. with the invariant probability vector
π found in question 9. of exercise 2.1.1.

2.1.3 Two state absorbing Markov chain

We consider in this exercise the two-state Markov chain, {X(n)}n≥0, given
by the transition diagram

1
p //1−p

%%
0

When discussing the Markov chain further we refer to the states through the
following recoding: 1=alive,0=dead.

1. Write down the transition matrix for the Markov chain.
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2. Assuming that X(0) = alive find the probabilities P (X(n) = alive) for
n ≥ 1.

Define the survival time, T, as the time of absorption in the state dead

T = inf{n > 0|X(n) = dead}.

3. Argue that P (T ≤ n) = P (X(n) = dead).

4. Find the distribution of T, i.e. P (T = n) for n ≥ 1. What is the name
of the distribution of T?

5. Compute the expected survival time E[T ].

2.1.4 Transition probabilities for the two-state chain

Consider the general two-state Markov chain given by transition matrix

P =

(
1− p p
q 1− q

)
for p, q ∈ [0, 1]. The purpose of the exercise is to derive closed form expres-
sions for the n step transition probabilities given by the matrix P n.

1. Draw the transition diagram for the Markov chain.

2. Compute the characteristic polynomial for P given by

g(λ) = det(P − λI)

where I is the 2× 2 identity matrix.

3. Argue that the equation g(λ) = 0 has two solutions

λ1 = 1 and λ2 = 1− p− q.

4. Find a (left) eigenvector v = (v1, v2) for P associated with the eigen-
value λ2.

5. Show that u = (u1, u2) = (q, p) is an eigenvector for P with eigenvalue
1.
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6. Verify that the matrix

O =

(
u1 u2
v1 v2

)
satisfies the matrix equation

OP =

(
λ1 0
0 λ2

)
︸ ︷︷ ︸

=D

O.

7. Find the inverse matrix O−1.

8. Use that P = O−1DO to find a closed form expression for P n and
discuss the result.

2.2 Markov chains with three states

The general three-state Markov chain has transition matrix

P =

 P1,1 P1,2 P1,3

P2,1 P2,2 P2,3

P3,1 P3,2 P3,3


corresponding to the transition diagram on Figure 2.3

1p11
%%

p12
,,

p13

��

2
p21

ll

p23

zz

p22ee

3

p32

::

p31

YY

p33

FF

Figure 2.3: Transition diagram of a general three state Markov chain.
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2.2.1 Classification of states

Consider a general three-state Markov chain as given by the transition dia-
gram of Figure 2.3.

1. Argue that the chain is irreducible if Pi,j > 0, for all i 6= j.

2. Give examples of irreducible three-state Markov chains for which Pi,j =
0 for at least one pair (i, j) of states.

3. Give examples of a three-state Markov chain with two communication
classes.

4. Describe the relation between zero entries of the transition matrix P
and the communication classes of the Markov chain. In each case de-
termine if the communication classes are transient or recurrent.
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2.2.2 General three state Markov chain

Consider a Markov chain given by the transition diagram

11/2
%%

1/4
,,

1/4

��

2
1/3

ll

1/3

zz

1/3ee

3

1/4

::

1/2

YY

1/4

FF

Assume that X(0) = 1 and let

τ = inf{n > 0|X(n) 6= 1}

be the time of the first jump away from state 1.

1. Find the transition matrix, P, of the chain.

2. Compute P (X(1) = 1) and P (X(2) = 1).

3. Use P 3, P 4, P 5 to find P (X(n) = 1) for n = 3, 4, 5.

4. Find P (τ = 1), P (τ = 2), and P (τ = 3). What is the name of the
distribution of τ − 1?

5. Write down the system of equations for the invariant distribution π and
find π.

2.2.3 The one-way Markov chain

We consider in this exercise a Markov chain given by transition diagram

1
p1 //1−p1

%%
2

p2 //

1−p2

FF 3

Assume that X(0) = 1.
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1. Find the probabilities P (X(1) = j) for j = 1, 2, 3.

2. Find the probabilities P (X(2) = j) for j = 1, 2, 3.

Denote by
τ1 := inf{n > 0|X(n) = 2}

the time of the jump between states 1 and 2. Similarly let

τ2 = inf{n > τ1|X(n) = 3}

between the time of the jump from state 2 to state 3.

3. Find the probabilities P (τ1 = k) for k ≥ 1. What is the name of the
distribution of τ1?

4. Find the probabilities P (τ2 = k) for k = 1, 2, 3.

5. Try to find the general formula for P (τ2 = k) for k ≥ 1.

6. Assuming that p1 = p2 verify that τ2 − 2 follows a negative binomial
distribution.

2.2.4 Markov property under aggregation of states

Consider a Markov chain given by the transition diagram

A0
'' 1

,,

0

��

B
1/3

mm

1/3

zz

1/3ff

2

1/4

::

1/2

YY

1/4

FF

1. Find the transition matrix, P, for the Markov chain.

2. Write down the system of equations for the invariant distribution π and
find π.
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Assume that the initial distribution is given by

P (X(0) = A) = P (X(0) = B) = P (X(0) = 2) = 1/3.

Use the transition matrix, P, of the chain to compute the following proba-
bilities

3. P (X(1) = A,X(0) = i) for i ∈ {A,B, 2}.

4. P (X(1) = B,X(0) = i) for i ∈ {A,B, 2}.

5. P (X(2) = 2, X(1) = A,X(0) = i) for i ∈ {A,B, 2}.

6. P (X(2) = 2, X(1) = B,X(0) = i) for i ∈ {A,B, 2}.

Suppose that for some reason we are not able to distinguish between states
A and B such that we only observe the process defined by

Y (n) =

{
2 , X(n) = 2
1 , X(n) ∈ {A,B}

with state space S = {1, 2}

7. Use questions 3.-6. to compute P (Y (2) = 2|Y (1) = 1, Y (0) = 1).

8. Use questions 3.-6. to compute P (Y (2) = 2|Y (1) = 1, Y (0) = 2).

9. Argue that {Y (n)} is not a Markov chain.

10. Show by an example that for certain choices of the transition proba-
bilities for {X(n)}n≥0 it holds that {Y (n)}n≥0 is a Markov chain on
S = {1, 2}.
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2.3 Markov chains with finite state space

2.3.1 Find the communication classes

7

1/2

��

1/2

��>>>>>>>>>>>>>>>>

9

1/3

��>>>>>>>>>>>>>>>>

1/3

��

1/3
** 8

1/3 //

1/3

JJ

1/3

jj 6
1

** 5
1

jj

1

1

KK

2
1/2

oo
1/2

** 3
1/3

jj

1/3

??���������������� 1/3
** 4

1/2

jj

1/2

OO

1. Argue that 7 and 8 belong to the same communication class.

2. Show that P 2
2,9 > 0 and argue that 2 and 9 belong to the same commu-

nication class.

3. Find out if states 3 and 7 communicate.

4. Determine the communication class containing state 5.

5. Find all communication classes and determine if each class is recurrent
or transient.

6. Is the chain irreducible?

The loop trick is a useful observation to speed up the process of determining
the communication classes of a Markov chain. The basic observation is that
if we can find a closed path of states

i0 → i1 → . . .→ ik → i0

such that all transition probabilities along the path are positive then all states
in the path belong to the same communication class.
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7. Use the loop trick to find the communication classes of the Markov
chain.

8. Argue that there does exist an invariant probability vector, π, for the
chain and find it.

9. Suppose that we change the transition probabilities such that

P7,6 = 0, P7,8 = 1, P2,3 = 0, P2,1 = 1, P8,7 = 1/2, P8,9 = 1/2, P8,6 = 0.

Show that the modified version of the Markov chain has two recurrent
subclasses.

10. Find an invariant probability vector, π, for the Markov chain described
in question 9. and discuss if π is uniquely determined.

2.3.2 A numeric example

Consider the Markov chain given by the transition diagram

1
1

��=======

3
1/2

((

1/2���������
4

1/2
((

1/2

hh 5
1

hh

2

1

OO

and assume that X(0) = 3.

1. Write down the transition matrix, P, of the Markov chain.

2. Find P (X(k) = 3) for k = 1, 2, 3, 4.

3. What is the period of all recurrent communication classes of the Markov
chain?

4. Compute P 2, P 4, P 8, and P 16.

5. Argue that the Markov chain has an invariant distribution, π, and find
this.
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6. Let T3 := inf{k ≥ 1|X(k) = 3} be the first time the Markov chain
visits state 3. Compute P (T3 = k), k = 1, 2, 3, 4 and try to find the
entire distribution of T3.

7. Compute the mean, E[T3], of the return time to state 3 and compare
with the invariant distribution π of question 5.

2.3.3 Two component repair system

Consider a technical device with two states broken and functioning. Suppose
that every day there is a fixed probability p that the device breaks down.
Every morning the state of the device is inspected and if it is broken it is
replaced the following morning. Denote by X(n) the state of the device on
day n. Clearly, the process {X(n)}n≥0 is a Markov chain.

1. Find the state space and the transition matrix P and draw the transi-
tion diagram.

2. Compute the invariant probability distribution π and find the long term
fraction of time where the device is broken.

Consider now a system consisiting of two devices (working independently of
each other) that can both take the values broken and functioning. Every
day there is probability p1 and p2 of the individual devices breaking down.
Every morning the system is inspected and the following morning the broken
devices (if any) are replaced. The state of the system on the morning of day
n can be described by a Markov chain with the four states

(broken,broken),(broken,funct.),(funct.,broken),(funct.,funct.)

Assume throughout the exercise that no device is broken on the morn-
ing of day n = 0. To ease notation we recode the state space as 0=bro-
ken,1=functioning.

3. Find the possible transitions of the four state Markov chain and draw
the transition diagram of the chain without transition probabilities.

4. Compute the distribution of X(1) i.e. find P (X(1) = (i, j)), i, j = 0, 1.

5. Find the transition matrix of the Markov chain.
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6. Let πi,j = limn→∞ P (X(n) = (i, j)), i, j = 0, 1, be the limiting distribu-
tion of X(n). Show that

π0,0 = p1p2π1,1.

7. Write down a similar equation as the one in question 6. for each of the
probabilities π1,0, π0,1, π1,1.

8. Show that the solution to the system of equations in question 6.-7. is
given by

πi,j =
p1−i
1 p1−j

2

(1+p1)(1+p2)
, i, j = 0, 1.

9. Suppose that it is criticial to a production company that at least one
of the individual devices is functioning since otherwise the production
of the company ceases and all workers are sent home. What is the long
run probability that the production must be stopped and how often
does it happen (on average) that both devices break down and workers
are sent home?

The company now changes its policy and decides no longer to replace a
broken device as long as the other is still working.

10. Draw the transition diagram (with transition probabilities) correspond-
ing to the new replacement strategy.

11. Write down an equation for the invariant probability π1,1 and show that
π0,0 = (p1 + p2 − p1p2)π1,1.

12. Write down a similar equation as the one in question 11. for each of
the probabilities π0,0, π1,0, π0,1.

13. Solve the system of equations in question 11.-12.

14. Answer question 9. for the Markov chain corresponding to the new
replacement strategy of the company.

15. Compare the results of question 9. and 14. and discuss how large a
fraction of the production is lost when the company only replaces a
broken device if the other is broken too.

[Warning: maybe the formulaes get too complicated to conclude any-
thing for in general. In that case try to answer the question for different
values of p1 and p2 for instance p1 = p2 = p.]
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16. Assume that the maintenance costs for the two devices are proportional
to 1

p1
+ 1
p2

. Try to say something about what choices of p1 and p2 that are

the best for the company under the boundary condition that 1
p1

+ 1
p2

= c

(constant). The question should be discussed for each of the suggested
replacement strategies.

2.3.4 Random walk reflected at two barriers

In this exercise we consider a Markov chain, {X(n)}, on the state space
{0, 1, . . . , N} where only transitions between neighbouring states i and i+ 1
or i and i− 1 are possible. When the Markov chain reaches the boundary 0
it stays there with probability 1− p and is otherwise reflected to state 1. At
the upper boundary N the chain stays with probability p as is reflected to
state N − 1 with probability 1− p. The transition diagram is given by

0
p

((
1−p

%%
1

p
((

1−p
hh 2

1−p
hh

p
)). . .

1−p
hh

p
++
N-1

1−p
jj

p
))
N

1−p
kk pgg

and we assume that X(0) = 0.

1. Find the transition matrix, P, of the Markov chain.

2. Compute P (X(1) = 0) and P (X(1) = 1). What is the name of the
distribution of X(1)?

3. Compute P (X(2) = k), for k = 0, 1, . . . , N.

4. Argue that there exists an invariant probability vector, π, and write
down the system of equations that should be satisfied by π = (π0, π1, . . . , πN).

5. Argue that a vector of the form

πi = c

(
p

1− p

)i
, i = 0, 1, . . . , N,

satisfies the system of equations from question 4. and find the constant
c that turns π into a probability.
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The purpose of the following questions is to find a simple expression for the
n step transition matrix P n for the case of N = 2 where the state space is
S = {0, 1, 2}. For this particular case the transition matrix takes the form

P =

 1− p p 0
1− p 0 p

0 1− p p

 .

It might be that you can guess the formula for P n by looking at the ex-
pressions for P 2, P 3, and P 4. Another possibility is to follow the strategy
outlined below.

6. Compute the characteristic polynomial g(λ) = det(P − λI) of P.

7. Verify that g(λ) = 0 has three real valued solutions λ1, λ2, and λ3.

8. For each of the eigenvalues λk, k = 1, 2, 3, above find an eigenvector,
vk, for P with eigenvalue λk.

9. Let O be the 3× 3 matrix with rows v1, v2, v3 and verify that

OP =

 λ1 0 0
0 λ2 0
0 0 λ3


︸ ︷︷ ︸

=D

O.

10. Show that P n = O−1DnO and try to get a closed form expression of
P (X(n) = k) for k ≥ 1 under the initial condition that P (X(0) = 0) =
1.

[Warning: maybe it is not worth spending too much time finding a
closed form expression for O−1.]

2.3.5 Yahtzee

Yathzee is a dice game. The object of the game is to score the most points
by rolling five dice to make certain combinations. The dice can be rolled up
to three times in a turn. After the first two rolls the player can save any dice
that are needed to complete a combination and then re-roll the other dice.
A Yahtzee is five-of-a-kind and holds the game’s highest point value of 50.



42 CHAPTER 2. DISCRETE-TIME MARKOV CHAINS

The purpose of the present exercise is to compute the probability of ending up
with a Yahtzee given that we use the strategy that maximizes the number-
of-a-kind after each roll. To simplify the problem we consider initially in
questions 1.-8. the probability of obtaining a Yathzee of five sixes. We deal
with the general problem in questions 9.-17.

The problem may be put into the framework of Markov chains by defining a
stochastic process as follows

• Let X(0) = 0, i.e. P (X(0) = 0) = 1.

• Roll five dice and let X(1) denote the number of sixes.

• Define X(n+ 1) recursively by the following rule.

– If X(n) = 5 then X(n+ 1) = 5.

– If X(n) < 5 then we let Y be the number of sixes after re-rolling
the 5−X(n) dice and the value at time n+1 is given as X(n+1) =
X(n) + Y.

1. Argue briefly that {X(n)} is a Markov chain and write down the set,
S, of possible states for the chain.

2. Find the distribution of X(1) and explain which entries of the transition
matrix P that correspond to the probabilities P (X(1) = k), k ∈ S.

3. Find the distribution of X(2) given that X(1) = 4.

4. Find the distribution of X(2) given that X(1) = 3.

5. Write down the entire transition matrix, P, of the Markov chain.

6. Compute P 2 and the probability P (X(2) = 5).

7. Find the probability P (X(3) = 5).

8. Use P, P 2, P 3, . . . to compute a numerical approximation to the ex-
pected number of rolls, Eτ5, where

τ5 = inf{n > 0|X(n) = 5}

denotes the time before the Markov chain is absorbed in state 5.
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The solve the original problem posed above not restricting our selves to a
Yathzee of sixes we need to modify the definition of the Markov chain above.
More precisely after each roll we need to allow the player to switch from
saving only dice with face six to dice with another number of eyes if this
is more favorable. For example if we have two-of-a-kind after n rolls (i.e.
X(n) = 2) and the next roll results in 5− 2 = 3 three dice of a different kind
then we let X(n+ 1) = 3 and only 2 dice are re-rolled.

The purpose of the following questions is to compute the transition matrix
for the modified version, P̃ , of the game. For all questions below compare the
result to the relevant entry of the transition matrix for the original version
of the game. Questions 13.-15. below are probably the most difficult.

9. Find the probabilities P (X(1) = k), k = 3, 4, 5.

10. Find the probabilities P (X(2) = k|X(1) = j), k ∈ S, for j = 3, 4, 5.

11. Find the probabilities P (X(2) = k|X(1) = 2), k = 4, 5.

12. Find the probabilities P (X(2) = 5|X(1) = 1).

13. Find the probabilities P (X(1) = k), k = 0, 1, 2.

14. Find the probabilities P (X(2) = k|X(1) = 2), k = 2, 3.

15. Find the probabilities P (X(2) = k|X(1) = 1), k = 1, 2, 3, 4.

16. Write down the entire transition matrix P̃ and compute P̃ 2 and P̃ 3.

17. Find P (X(2) = 5), P (X(3) = 5), and the mean Eτ5 and compare with
the results in questions 6.-8.

2.3.6 Markov chain with two regimes

Consider the 5 state Markov chain with transition matrix

A1
pA // A2

pA // A3

pA

��

Regime A

B2

pB

``BBBBBBBB

B1pB
oo Regime B
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where pA, pB ∈ (0, 1).

We further define the stochastic process {Y (n)} defined by

Y (n) =

{
A , X(n) = A1,A2,A3
B , X(n) = B1,B2.

In the following we will study the properties of the stochastic process {Y (n)}
on the state space S = {A,B}.

1. Find the conditional distribution of Y (n+ 1) given that Y (n) = B and
Y (n− 1) = A.

2. Argue that the conditional distribtuion of Y (n+ 1) given that Y (n) =
Y (n− 1) = B is different from the result of question 1.

Assume that we know that P (Y (0) = A) = 1. Clearly

P (Y (0) = A) = P (X(0) = A1)︸ ︷︷ ︸
=φA1

+P (X(0) = A2)︸ ︷︷ ︸
=φA2

+P (X(0) = A3)︸ ︷︷ ︸
=φA3

but if we only observe {Y (n)} we do not know φA1, φA2, φA3.

3. Let

τB = inf{n > 0|Y (n) = B}

be the time of the first jump to state B. Express the probabilities
P (τB = k) for k = 1, 2, 3 in terms of pA, pB and φA1, φA2, φA3.

4. What should be the distribution of τB if {Y (n)} was a Markov chain
on {A,B} with initial distribution P (Y (0) = A) = 1 and transition
matrix

P =

(
1− qA qA
qB 1− qB

)
?

5. Use questions 1.-4. to discuss whether {Y (n)} is a Markov chain on
S = {A,B}.
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Figure 2.4: Transition diagram for exercise 2.3.7: left diagram should be used
for questions 1.-11. and right diagram for the remaining questions 12.-16. of
the exercise.

2.3.7 Periodicity of a Markov chain

1. Show that states 1-3 belong to the same communication class.

2. Show that states 10-12 belong to the same communication class.

3. Determine the communication class containing state 12.

4. Argue that states 1 and 6 do not belong to the same communication
class.

5. Find all the disjoint communication classes in the partition of the state
space. For each class determine whether the class is recurrent or tran-
sient.

6. Find the period of the Markov chain.
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7. How would the communication classes be and what would be the period
of the chain under the following changes: P12,11 = 1/2 = P12,12

8. How would the communication classes be and what would be the period
of the chain under the following changes: P9,8 = 1/2 = P9,6

10. How would the communication classes be and what would be the period
of the chain under the following changes: P8,5 = P8,7 = P8,11 = 1/3

11. Does there exist a unique invariant probability distribution for the orig-
inal version of the chain of the left part of Figure 2.4?

For the rest of the exercise we make the following changes of the transition
probabilities (-see also Figure 2.4):

P1,1 = P1,3 = 1/2 = P12,11 = P12,12.

12. Argue that with the modified transition probabilities then all recurrent
subclasses are aperiodic.

13. Find an invariant probability vector that is concentrated on each of the
recurrent subclasses.

14. Assuming that the initial distribution of the chain is given by P (X(0) =
1) = 1 find the limiting distribution of X(n) that is find

lim
n→∞

P (X(n) = i), i = 1, . . . , 12.

15. Find the limiting distribution ofX(n) for the initial distribution P (X(0) =
12) = 1.

16. Find the limiting distribution ofX(n) for the initial distribution P (X(0) =
6) = 1. [Hint: start by computing the probability that the first jump
from state 4 to 3 occurs before the first jump between states 5 and 7.]
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2.3.8 More about absorption probabilities

Consider a Markov chain on S = {0, 1, 2, 3, 4, 5, 6} with transition probabili-
ties

P0,0 = 3/4, P0,1 = 1/4

P1,0 = 1/2, P1,1 = P1,2 = 1/4

Pj,0 = Pj,j−1 = Pj,j = Pj,j+1 = 1/4, j = 2, 3, 4, 5

P6,0 = 1/4, P6,5 = 1/4, P6,6 = 1/2

1. Is the Markov chain irreducible?

2. Is the Markov chain aperiodic?

3. What is the long-run probability of observing the sequence of states
4→ 5→ 0?

4. For X(0) = 1 what is the probability of reaching state 6 before state
0?

5. For X(0) = 3 what is the expected number of steps until the chain is
in state 3 again?

6. For X(0) = 0 what is the expected number of steps until the chain is
in state 6?

2.4 Markov chains on countable state spaces

For Markov chains on a countable state space S things get a little more
complicated by the fact that for a recurrent communication class it can take
infinitely long time to get back to the starting point.

Concepts like perodicity as well as transience and recurrence of the commu-
nication classes carry over unchanged from the case of a finite state space.
But unlike in the finite case it may happen that the chain is irreducible and
recurrent yet still all n step transition probabilities tend to zero, i.e.

lim
n→∞

P n
i,j = 0, i, j ∈ S. (2.6)
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An irreducible, recurrent Markov chain on a countable state space is said to
be null recurrent if (2.6) holds. Otherwise we say that the chain is positive
recurrent.

For an irreducible, positive recurrent Markov chain there exists a unique
invariant probability distribution π = {π(i)}i∈S such that for any j ∈ S∑

i∈S

π(i)Pi,j = π(j).

For an irreducible, aperiodic, positive recurrent Markov chain the n step
transition probabilities converge to the invariant probabilities

lim
n→∞

P n
i,j = π(j)

and relates to the recurrence times

Tj = inf{n > 0|X(n) = j}

through the identity

π(j) = 1
E[Tj |X(0)=j]

where the expectation is computed under the assumption that the Markov
chain starts in state j.

2.4.1 Queueing system

Markov chains are very popular as models for the number of customers in
a queueing system. In this exercise we consider the socalled single server
queue. Assume that no customers are present in the queue at time 0 i.e.
P (X(0) = 0) = 1. In each time period (=step) there is probability p ∈ (0, 1)
that a new customer arrives and probability q ∈ (0, 1) that the service of
the customer at the service desk is completed. We denote by X(n) the total
number of customers in the queueing system at time n and note that this is
a Markov chain on N0. The transition probabilities of the chain is given by
the infinite transition matrix P = (Pi,j)i,j≥0.

1. Find P0,1 and P0,0.

2. Argue that P1,1 = pq + (1− p)(1− q) and find P1,0, P1,2.
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3. Use question 2. to find Pi,i−1, Pi,i, Pi,i+1 for i > 1 and draw the transi-
tion diagram of the Markov chain.

4. Find the communication classes.

5. For a vector π = (π0, π1, π2, . . .) to be an invariant distribution it must
satisfy the system of equations πj =

∑∞
i=0 πiPi,j, j ≥ 0. Write out the

equation for j = 0 and deduce that π1 = p
q(1−p)π0.

6. Write down the equations for πj, j ≥ 1.

In the following questions 7.-10. we assume that p = q.

7. Show that for p = q then πj = c0 + c1 · j, j ≥ 1, (c0, c1 constants) solves
the system of equations from question 6 (for j ≥ 2). [One may show
that any solution takes this form.]

8. Find a condition on the constants c0, c1 that ensures that the solution
πj from question 7. is bounded for j ≥ 1.

9. Does there exist an invariant probability vector for the chain if p = q?

10. Discuss whether we have showed that the chain is positive recurrent,
null recurrent, or transient for p = q?

For the remaining part of the exercise we consider the general case where
p 6= q.

11. Argue that πj = c0 + c1 ·
(
p(1−q)
q(1−p)

)j
, j ≥ 1, solve the system of equations

from question 6. (for j ≥ 2) for any choice of the constants c0, c1.

12. Use the equation from question 5. to express π0 in terms of p, q, and
the two constants c0, c1.

13. Determine when the chain is positive recurrent and find the invariant
probability vector π.

14. Compute the (long run) average number of customers in the system for
the case where the chain is positive recurrent.

15. Give a complete description of when (i.e. for what conditions on p and
q) the chain is transient, null recurrent, or positive recurrent.

[Warning: this probably requires a little work!]
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2.4.2 Random walk on Z
Consider the random walk,{X(n)}n≥0, on Z = {. . . ,−2,−1, 0, 1, 2, . . .} given
by the transition diagram

. . . -2
p

))

1−p
ii -1

p
((

1−p
ii 0

p
((

1−p
ii 1

p
((

1−p
hh 2

p
))

1−p
hh . . .

Assume that X(0) = 0.

1. What is the period of the chain?

2. Find the distribution of X(1) and X(2).

3. Compute P (X(2) = 0), P (X(3) = 0), and P (X(4) = 0).

Note that (X(2k) = 0) if and only if there is exactly k upward jumps and k
downward jumps among the first 2k jumps.

4. Argue that P (X(2k) = 0) =
(
2k
k

)
pk(1− p)k, k ≥ 1.

5. Determine if
∑∞

n=1 P (X(n) = 0) is convergent and use this to decide if
the random walk on Z is recurrent or transient.

2.4.3 Random walk on Z2

We now generalise Exercise 2.4.2 above and consider the symmetric random
walk on the pairs of integers Z × Z. More precisely, if the chain is in state
(i, j) at time n then it jumps to either of the states

(i, j + 1), (i, j − 1), (i− 1, j), (i+ 1, j)

with equal probabilities (= 1/4) in step n+ 1.

1. Draw (a part of) the transition diagram.

2. Argue that state (0, 0) communicates with any other state and deduce
that there is only one communication class.

3. Assuming that P (X(0) = (0, 0)) = 1 compute P (X(n) = (0, 0)) for
n = 1, 2, 3, 4.
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4. What is the period of the Markov chain.

5. Still assuming that P (X(0) = (0, 0)) = 1 argue that P (X(2n) = 0) =∑n
k=0

(2n)!
(n−k)!·(n−k)!·k!·k!4

−2n.

6. Use question 5. to determine if
∑∞

n=0 P (X(2n) = 0) is convergent and
deduce if the random walk on Z× Z is recurrent or transient.

2.4.4 Random walk on Zd

It is a challenging exercise to determine if the extension of the random walk
in the previous exercise to Zd is recurrent or transient. The dynamics of the
d−dimensional random walk is desribed by the fact that the process moves
from state (i1, . . . , id) to any of the 2d neighbouring states given by

(i1, . . . , il−1, il + j, il+1, . . . , id)

where j ∈ {−1, 1} with equal probability (= 1/(2d)).

1. Argue that the symmetric random walk on Zd has period 2.

2. Assuming that the random walk starts in state (0, . . . , 0) at time 0
argue that

P (X(2n) = (0, . . . , 0)) =
∑

k1,...,kd∈N0:k1+...+kd=n

(2n)!

(k1! · . . . · kd!)2
(2d)−2n.

3. Show that
∑∞

n=1 P (X(n) = (0, . . . , 0)) <∞ for d > 2.

4. Deduce from question 3. that the symmetric random walk on Zd is
transient for d > 2.

2.4.5 Brancing processes

In this exercise we consider a model for the number, X(n), of individuals in a
population at time n. During each time interval (generation) each individual
(independently of each other) produces a number, Z, of offsprings described
by a probability distribution on N0 = {0, 1, 2, . . .} with density P (Z = k) =
pk. Note that it is also possible for an individual to die without giving birth
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to any offspring if Z = 0. The total number of individuals born in n−th
generation, {X(n)}n≥0, is a Markov chain on N0

The important parameter for the large-time term behaviour of a branching
process is the mean number of offsprings produced by an individual

µ =
∞∑
k=0

kpk =
∞∑
k=1

kpk.

Not surprisingly one can prove that if µ > 1 then the expected population
size increases to infinity and that µ < 1 implies that the population will
eventually die out.

In this exercise we consider the (rather trivial) branching process with off-
spring distribution given by

p1 = p, p0 = 1− p,

with probability parameter p ∈ (0, 1). The interpretation is that each individ-
ual gives birth to one offspring with probability p while there is a probability
of 1 − p that no offspring is generated. Assume that we start out with a
population of size X(0) = N > 0.

1. Find the probability P (X(1) = N) and P (X(1) = N − 1).

2. Argue that X(1) follows a binomial distribution and find the integral
parameter and the probability parameter.

3. Use 1.-2. to find the transition probabilities

PN,j = P (X(n+ 1) = j|X(n) = N), j = 0, 1, . . . , N.

4. Find an expression for the general transition probability Pi,j, i, j ∈ N0.

5. Compute EX(1) and give a (heuristic) argument that the population
will eventually die out.

6. Show that
∑∞

n=1(P
n)i,i < +∞ for i = 1, . . . , n, and deduce that

limn→∞ P (X(n) = 0) = 1.

[Hint: Find the communication classes and conclude that state i, i =
1, . . . , n, (and its communication class) is transient.]
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2.4.6 Positive recurrence and null-recurrence

The following exercise is greatly inspired by Exercise 2.2 in Lawler (2006).
We consider a Markov chain, {X(n)}n≥0, on S = {0, 1, 2, . . .} with transition
probabilities

P0,i = pi > 0, i > 0, Pi+1,i = 1, i ≥ 0, Pi,j = 0 otherwise

where (pi)i∈S is probability vector (i.e.
∑

i pi = 1). Define the return time to
state 0

T = inf{n > 0|X(n) = 0}.

1. Draw the transition diagram of the Markov chain.

2. Find the communication classes. Is the chain irreducible?

3. Compute
P (T = k|X(0) = 0), k ≥ 0

and argue that the Markov chain is recurrent.

4. What is the condition for the Markov chain to be null-recurrent or
positive recurrent?

5. Find the invariant probability vector assuming that the Markov chain
is positive recurrent.

6. Consider the time of the first visit to state 10

T10 = inf{n > 0|X(n) = 10}.

What is the expected return time to state 10

E[T10|X(0) = 10]

given that the Markov chain starts in state 10?
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3.0 Results for continuous-time Markov chains

3.0.1 Definition of Markov chains

A stochastic process in continuous time is a family, {X(t)}t≥0, of random
variables indexed by the positive real line [0,∞). The possible values of
{X(t)}t≥0, are referred to as the state space, S, of the process. On the
course Stochastic Processes we shall only consider continuous-time processes
on finite or countable state spaces. Further, we consider only processes with
piecewise constant sample paths composed of sequences of the times, τn, of
the jumps and the target states, Y (n), of the following jump as visualized in
Figure 3.1. The student who wants to dig deeper into the topic will at some
point experience that there are Markov chains that may not be viewed as a
sequence of waiting times and jumps.

Definition 5 (Homogeneous Markov chain in continuous-time) A -
continuous-time Markov chain on a finite or countable set, S, is a family of
random variables {X(t)}t≥0 on a probability space (Ω,F , P ) such that

P (X(tn+1) = j|X(tn) = i,X(tn−1) = in−1, . . . , X(t0) = i0)

= P (X(tn+1) = j|X(tn) = i) = Pi,j(tn+1 − tn)

for j, i, in−1, . . . , i0 ∈ S and tn+1 ≥ tn ≥ . . . ≥ t0 ≥ 0. The distribution of the
Markov chain is determined by

φ(i) = P (X(0) = i) ← initial distribution

Pi,j(t) = P (X(t+ s) = j|X(s) = i) ← transition probabilities

through the identity

P (X(tn+1) = j,X(tn) = i,X(tn−1) = in−1, . . . , X(t0) = i0)

= Pi,j(tn+1 − tn) · Pin−1,i(tn − tn−1) · . . . · Pi0,i1(t1 − t0) · φ(i0) (3.1)

�

To characterize the distribution of a continuous-time Markov chain we there-
fore need a probability vector, φ = (φ(i))i∈S, of initial probabilities and a
family of transition probabilities (Pi,j(t))i,j∈S for any t ≥ 0. For any fixed
t ≥ 0 then (Pi,j(t))i,j∈S must be a transition probability as introduced for
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discrete-time Markov chains. However, the transition probabilities for dif-
ferent time arguments must fit together in accordance with the Chapman-
Kolmogorov equations given below.

Definition 6 (Chapman-Kolmogorov equations) The transition prob-
abilities for a homogeneous continuous-time Markov chain satisfy the Chapman-
Kolmogorov equations

∀0 ≤ s ≤ t, i, j ∈ S : Pi,j(t+ s) =
∑
l∈S

Pi,l(t) · Pl,j(s).

For finite state space, S, then {Pi,j(t)}i,j∈S may be treated as a matrix for
any fixed t ≥ 0 and the Chapman-Kolmogorov equations may be written as a
matrix equation

P (t+ s) = P (t) · P (s).

�

As mentioned earlier we shall in this course consider only Markov chain with
a pure jump structure. Intuitively, these are stochastic processes where a
plot of the sample-path (=function)

t→ X(t)

is piecewise constant (-see Figure 3.1). In turns out that homogeneous
continuous-time Markov jump processes are uniquely determined by its tran-
sition intensities Q = (qi,j)i,j∈S as described in Theorem 12. Conversely, any
transition intensity, Q, satisfying the conditions in Definition 7 defines to
a homogeneous continuous-time Markov jump process. Thus on this course
continuous-time Markov chains are in a one-to-one correspondence with their
transition intensity.

Definition 7 (Continuous-time MCs on Stochastic Processes) Any -
Markov chain may be defined from a vector of initial probabilities φ = (φ(i))i∈S
and a transition intensity matrix Q = (qi,j)i,j∈S, with the following properties

qi,j ≥ 0 i 6= j, i, j ∈ S
qi,i = −

∑
j 6=i

qi,j.

Note that qi,i ≤ 0. We will use the notation qi = −qi,i for the diagonal
element with opposite sign. In the literature Q is often referred to as the
infinitesimal generator. �
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Definition 7 introduces in a rather non-informative way the ingredients needed
to define a continuous-time Markov chain. The formal relation between the
transition intensity of Definition 7 and the transition probabilities in Defini-
tion 5 is explained in Theorem 12. We shall now try to link the transition
intensity, Q, and the initial distribution, φ, of Definition 7 to the dynamics
of a continuous-time Markov chain.

For a continuous-time Markov jump process, {X(t)}t≥0, with transition in-
tensity, Q, we may consider the sequence of states

Y (0), Y (1), Y (2), . . .

visited along the sample path while ignoring the waiting times between
jumps. If {X(t)}t≥0 can be absorbed there is a positive probability that
only finitely many jumps Y (0), Y (1), . . . , Y (m) are observed. For technical
reasons we then introduce an extra state ∆ in the state space and let

Y (m+ 1) = Y (m+ 2) = . . . = ∆.

This construction ensures that any continuous-time Markov chain {X(t)}t≥0
on S defines a discrete-time process {Y (n)}n≥0 on a possibly extended state
space S ∪∆.

Theorem 11 (Embedded Markov chain of jumps) For a continuous-
time Markov chain {X(t)}t≥0 on S let

A = {i ∈ S|qi,i = 0}

be the subset of absorbing states. Let {Y (n)}n≥0 be the sequence of states
visited by {X(t)}t≥0 with the convention that

Y (k) = ∆, k > m,

if Y (m) ∈ A is an absorbing state. Then {Y (n)}n≥0 is a discrete-time Markov
chain on the extended state space S = S ∪ ∆. The transition probabilities,
P = (Pi,j)i∈S, of the embedded Markov chain of jumps, {Y (n)}n≥0, with state
space S = S ∪∆ are then given by

Pi,j =



− qi,j
qi,i

=
qi,j
qi

i ∈ S\A, j /∈ {i,∆}
0 i ∈ S\A, j ∈ {i,∆}
0 i ∈ A, j 6= ∆
1 i ∈ A, j = ∆
0 i, j 6= ∆
1 i, j = ∆
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If no absorbing states exist (A = ∅) then the embedded Markov chain of jumps
has state space S and the transition probabilities are given by the first two
lines above. �

We are now ready to describe the dynamics of a continuous-time Markov
chain with transition intensity Q and initial distribution φ = (φ(i))i∈S. The
initial value, Y (0), of X(0) is drawn (at random) according to the initial
probability distribution φ = (φ(i))i∈S. The Markov chain then stays in the
initial state for a random amount of time, τ1, given by an exponential dis-
tribution with rate parameter qY (0) depending on the initial state Y (0). At
the time of the jump the chain jumps to a new state, Y (1), according to
the transition probabilities from state Y (0) corresponding to the embedded
Markov chain of jumps in Theorem 11. The Markov chain then stays in state
Y (1) for an exponentially distributed amount of time, τ2 − τ1, with rate pa-
rameter qY (1) and the following state, Y (2), is drawn according to transition
probabilities of the embedded jump process etc.

The construction described above is referred to as the minimal construction
of a Markov jump process. There is a potential problem that there may be
infinitely many jumps in finite time such that the random variable τ∞ :=
limn→∞ τn may have a positive probability

P (τ∞ < +∞) > 0

of not defining a stochastic process {X(t)}t≥0 for t > τ∞. For technical we
will then introduce an extra state ∆ and let X(t) = ∆ for t ≥ τ∞. We will
discuss explosion a little further i Section 3.0.4.

In short, the sequence of states visited by a continuous-time Markov chain
evolves as a (discrete-time) Markov chain with transition probabilities given
by Theorem 11. The waiting time spent in state i ∈ S follows an exponential
distribution with rate parameter qi =

∑
j 6=i qi,j, i.e. the sum of the transition

intensities corresponding to row i (or pointing away from state i).

3.0.2 Properties of the transition probabilities

On this course Markov chains are usually defined in terms of the transition
intensity (or the infinitesimal generator), Q, from Definition 7. However, for
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Figure 3.1: Sample path of a continuous-time Markov chain with three states.
The sequence of states, {Y (n)}n≥0, is a discrete-time Markov chain with
transition probabilities given by Theorem 11. The waiting time τn+1 − τn
between jump n and n + 1 follows an exponential distribution with rate
parameter qY (n).

applications we are often more interested in the transtion probabilities

P (X(t+ s) = j|X(s) = i) := Pi,j(t), i, j ∈ S, t ≥ 0

In this section we discuss the relation between the transition intensity, Q,
of a continuous-time Markov chain and the transition probabilities P (t) =
(Pi,j(t))i,j∈S.

Theorem 12 (Infinitesimal generator of a Markov chain) For a con-
- tinuous-time Markov chain, {X(t)}t≥0, the transition intensities may be
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obtained from transition probabilities P (t) = (Pi,j(t))i,j∈Sas the limits

lim
t→0+

Pi,i(t)− 1

t
= qi,i (3.2)

lim
t→0+

Pi,j(t)

t
= qi,j, i 6= j. (3.3)

�

More generally, the transition probabilities and the transition intensities are
related through the backward differential equations (or Kolmogorov’s differ-
ential equation).

Theorem 13 (Backward differential equations) For a continuous-time
Markov chain, {X(t)}t≥0, with transition intensity, Q = (qi,j)i,j∈S, and tran-
sition probabilities {Pi,j(t)}i,j∈S it always holds that

DPi,j(t) = P ′i,j(t) = qi,iPi,j(t) +
∑
k 6=i

qi,kPk,j(t) (3.4)

�

Remark 3 (Backward integral equations) An intermediate step in de-
riving the backward differential equations of Theorem 13 is the set of backward
integral equations which may be of interest in itself

Pi,j(t) = δi,j exp(qi,it) +

∫ t

0

∑
k 6=i

qi,k exp(qi,i(t− s))Pk,j(s)ds, (3.5)

where δi,j = 0, i 6= j, and δi,i = 1. �

There also exist sets of forward differential and integral equations for continuous-
time Markov chains.

Theorem 14 (Forward differential equations) For a continuous-time
Markov chain, {X(t)}t≥0, with transition intensities, Q = (qi,j)i,j∈S, and
transition probabilities P (t) = (Pi,j(t))i,j∈S it holds that

DPi,j(t) = qj,jPi,j(t) +
∑
l 6=j

Pi,l(t)ql,j. (3.6)

�
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The proof of the forward differential equations is not trivial. It is often
claimed in the literature that a sufficient condition for the forward differential
equations to hold is that ∑

j∈S

pi,j(t)(−qj,j) <∞,

and that the forward equations do not always hold. You are allowed to use
the correct version of the result which says that the forward equations hold
for any Markov jump process on a finite or countable state space.

Remark 4 In Section 3.0.4 we discuss continuous-time Markov chains where
explosion may occur. Explosion refers to the fact that there may be infinitely
many jumps in finite time. One can show that explosion does not happen if
the condition above is satisfied, i.e. if∑

j∈S

pi,j(t)(−qj,j) <∞.

It is true that if explosion is not possible then the differential equations of
Theorems 13 and 14 uniquely determines the transition probabilities P (t) =
(Pi,j(t))i,j∈S subject to the initial conditions P (0) = I. If explosion is possible
then there is no unique solution to the differential equations. The minimal
solution will give the transition probabilities corresponding to the process de-
scribed by the minimal construction of a Markov jump process. �

Theorem 15 (Transition probabilities for finite dimensional chains)
For a continuous-time Markov chain on a finite state space the backward dif-
ferential equation may be expressed in matrix form as

DP (t) = P ′(t) = QP (t)

where P (t) = (Pi,j(t))i,j∈S. Using the boundary condition P (0) = I it turns
out that the transition probabilities may expressed in terms of exponential
matrices as

P (t) = exp(Qt), t ≥ 0.

�
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3.0.3 Invariant distributions and absorption

The state space of a continuous-time Markov chain is partitioned into com-
munication classes. Two states i and j communicate if it is possible to move
forth and back between them.

Definition 8 (Communication classes and irreducibility) Two states
i, j ∈ S are said to communicate if there exists s, t > 0 such that

Pi,j(s) > 0 and Pj,i(t) > 0.

This definition partitions the state space, S, into (disjoint) communication
classes. A continuous-time Markov chain is irreducible if there is only one
communication class. For an irreducible Markov chain it holds that

∀i, j ∈ S,∀t > 0 : Pi,j(t) > 0.

�

From a practical point of view you are allowed to use that for a continuous-
time Markov chain two states i 6= j, i, j ∈ S communicate, if there exists a
sequence of states i1, i2, . . . , in ∈ S containing state j such that

qi,i1 · qi1,i2 · . . . · qin−1,in · qin,i > 0.

Since Pi,i(t) > 0 we always have that i communicate with itself.

Definition 9 (Recurrence and transience) An irreducible continuous-time
Markov chain is recurrent if and only if the embedded discrete-time process
of jumps (-see Theorem 11) is recurrent. It is transient if and only if the
embedded discrete-time process of jumps is transient. If the continuous-time
Markov chain is not irreducible the definitions of recurrence and transience
apply seperately to each communication class. Note that an absorbing state
will always be transient. �

As a consequence of Definition 9 to determine if a continuous-time Markov
chain is recurrent or transient you should study the embedded discrete-time
Markov chain of jumps and use the criterions for recurrence given in Def-
inition 2, Theorem 4, and Theorem 5 of the Chapter 2.0 on discrete-time
Markov chains.
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Definition 10 (Invariant distribution) A probability, π = (π(i))i∈S, is
an invariant (or stationary) distribution for a continuous-time Markov chain
if for all t ≥ 0 and j ∈ S

π(j) =
∑
i∈S

π(i)Pi,j(t).

�

We state the following result concerning uniqueness of invariant distributions.

Theorem 16 (Uniqueness of invariant distribution) For an irreducible
continuous-time Markov chain the stationary distribution is unique if it ex-
ists.

If for some t0 > 0 there is a probability π = (π(i))i∈S such that

∀j ∈ S : π(j) =
∑
i∈S

π(i)Pi,j(t0)

then we may conclude that

1. ∀i ∈ S : π(i) > 0

2. P (t0) is a transition probability, i.e.

∀i ∈ S :
∑
j∈S

Pi,j(t0) = 1

3. π is an invariant distribution for the Markov chain, i.e.

∀t ≥ 0,∀j ∈ S : π(j) =
∑
i∈S

π(i)Pi,j(t).

�

Since Markov chains are usually specified in terms of the transition intensities
we can rarely apply Definition 10 directly to find the stationary distribution.
The following result give a necessary condition for a stationary distribution
expressed in terms of the transition intensity.
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Theorem 17 (Necessary condition for a stationary distribution) For
a continuous-time Markov chain with transition intensity, Q, an invariant
probability, π = (π(i))i∈S, must satisfy the system of equations

∀j ∈ S :
∑
i∈S

π(i)qi,j = 0 (3.7)

or written in another form

∀j ∈ S :
∑
i 6=j

π(i)qi,j = π(j)(−qj,j) = π(j)qj.

Thinking of π as a row vector and Q as a matrix the system of equations has
a more compact formulation as

πQ = 0.

�

From a practical point of view to find an invariant distribution for a continuous-
time Markov chain it is advisable to start by solving the system of equations
from Theorem 17. If a solution exists that is not zero in all coordinates
there will always be infinitely many non-zero solutions since multiplication
by a constant does not alter the system of equations (3.7). Therefore, an
important step is to check the existence of a solution that can be normalized
into a probability vector of non-negative coordinates with sum 1. It is very
common that the coordinates of any non-zero solution sum to +∞ so that
no normalized solution may be found.

A probability distribution solving the system of equations from Theorem 17
will be a good candidate for an invariant distribution. However, it turns
out that for Markov chains with an infinite state space additional conditions
are required to ensure that we have indeed found an invariant probability.
Note that the condition of the following Theorem 18 is trivially satisfied for
Markov chains on a finite state space.

Theorem 18 (Sufficient condition for a stationary distribution) If π =
(π(i))i∈S is a probability satisfying the condition

∀j ∈ S :
∑
i 6=j

π(i)qi,j = π(j)(−qj,j) = π(j)qj.



66 CHAPTER 3. CONTINUOUS-TIME MARKOV CHAINS

of Theorem 17 and furthermore∑
j∈S

π(j)(−qj,j) <∞

then π = (π(i))i∈S is a unique stationary distribution for an irreducible
Markov chain. �

Remark 5 (Invariant distributions for non-irreducible chains) If a continuous-
time Markov chain is not irreducible (i.e. has more than one communication
class) an invariant distribution might not be unique. However, the results
of Theorems 17 and 18 are still necessary and sufficient conditions for any
invariant distribution. �

It might be a bit difficult to understand the role of the additional sufficient
condition given in Theorem 18. Why don’t we give a necessery and sufficient
condition for a probability π = (π(i))i∈S to be an invariant distribution for
a continuous-time Markov chain? The main reason is that this can only be
done with reference to the embedded discrete-time Markov chain of jumps.

Theorem 19 (Invariant distribution) The continuous-time irreducible Markov
chain {X(t)}t≥0 has an invariant (or stationary) distribution if and only if
the embedded discrete-time Markov chain of jumps is recurrent and there ex-
ists a probability vector π = (π(i))i∈S such that (3.7) holds or written in a
more compact notation such that πQ = 0. �

Theorem 20 (Limit results for transition probabilities) For an irre-
ducible Markov chain, {X(t)}t≥0, with invariant distribution π = (π(i))i∈S it
holds for all i, j ∈ S that

lim
t→∞

Pi,j(t) = π(j).

Further, for any initial distribution φ = (φ(i))i∈S and j ∈ S it holds that

lim
t→∞

P (X(t) = j) = π(j).

If no invariant distribution exists then

lim
t→∞

Pi,j(t) = 0.

�
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Figure 3.2: Interpretation of invariant distribution of continuous-time
Markov chain. The invariant probability at state i is the average fraction
of time spend in state i between two succesive jumps to state i.

For an irreducible continuous-time Markov chain there is a nice interpreta-
tion of the invariant distribution as the long-run fraction of time spend in
individual states.

Theorem 21 (Interpretation of invariant distribution and positive recurrence)
For an irreducible continuous-time Markov chain {X(t)}t≥0 define the escape
time from state i

Wi = inf{t ≥ 0|X(t) 6= i}

and the return time to state i

Ri = inf{t > Wi|X(t) = i}.



68 CHAPTER 3. CONTINUOUS-TIME MARKOV CHAINS

Then the invariant probability π = (π(i))i∈S is given by

π(i) =
E[Wi|X(0) = i]

E[Ri|X(0) = i]
=

1

qiE[Ri|X(0) = i]
.

The result is also valid when all expectations E[Ri|X(0) = i] = +∞ if we
take π(i) = 0 to mean that no invariant distribution exists.

We say that a communication class is positive recurrent if E[Ri|X(0) = i] <
∞ and note that this is equivalent to existence of an invariant distribution.
�

From Definition 9 we know that recurrence of a continuous-time Markov
chain is (by definition!) equivalent to recurrence of the embedded Markov
chain of jumps. This is not true when it comes to positive recurrence and
existence of invariant distributions. For a discrete-time Markov chain an
invariant distribution is a probability π = (π(i))i∈S solving the system of
equations

∀j ∈ S : π(j) =
∑
i∈S

π(i)Pi,j.

For continuous-time Markov chains a little more is required to verify the
existence of an invariant distribution. Here we must both find a solution to
the system of equations

∀j ∈ S :
∑
i 6=j

π(i)qj,i = π(j)(−qj,j) = π(j)qj.

and verify that the Markov chain is recurrent! The invariant distribution
for a continuous-time Markov chain and the invariant distribution for the
embedded Markov chain of jumps are not identical (if they exist!).

Theorem 22 (Time-invariant vs. event-invariant distribution) Consider
a continous-time Markov chain with transition intensity Q and assume that
the invariant distribution ν = (ν(i))i∈S exists. Suppose that we have also ver-
ified the existence of an invariant distribution π = (π(i))i∈S for the embedded
Markov chain of jumps. Then the following relation holds

π(i) =
ν(i)qi∑
j∈S ν(j)qj

, i ∈ S. (3.8)

�
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An absorbing state is a state from where the Markov chain cannot escape.
State i ∈ S is absorbing if qi,i = 0 or equivalently if

∑
j 6=i qi,j = 0. A number

of interesting questions are related to an absorbing state. First of all we
might want to compute the probability that the Markov chain is eventually
absorbed in state i. Secondly, one could be interested in the behavior of the
Markov chain until absorption for example the average time spend in any
other state j 6= i before being caught in state i.

Theorem 23 (Time spent in state j before absorption) For a continuous-
time Markov chain the average number of periods (visits) spent in state j
before reaching an absorbing state i (i.e. with qi,i = 0) may be found by
studying the transition probabilities of the embedded discrete-time Markov
chain of jumps. For finite state space Markov chains this computation may
be carried out using Theorem 9 while you may use Theorem 10 for Markov
chains on countably infinite state spaces.
If Nj is the mean number of visits to state j before absorption in state i then

the average time spend in state j before absorption is given by
Nj

qj
. �

3.0.4 Birth-and-death processes

In this section we discuss an important class of continuous-time Markov
chains on a coutable state space. A birth-and-death process is a Markov
chain on S = N0 that allows only jumps (upwards or downwards) of size one.
Referring to our usual specification of Markov chains in terms of transition
intensities this means that we assume that

qi,j = 0, i, j ∈ N0, |i− j| > 1

while the only non-zero intensities (except for the diagonal) are

qi,i+1 = βi, i ∈ N0 ← birth intensities

qi,i−1 = δi, i ∈ N ← death intensities.

The dynamics of a birth-and-death process is very simple. If the process
is currently in state i then the waiting time to the next jump follows an
exponential distribution with rate βi + δi (i.e. mean 1

βi+δi
). At the time of

the jump the process moves one step up with probability βi/(βi+δi) and one
step down with probability δi/(βi + δi).
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Consider the time, τn, of the n−th jump for a birth-and-death process. If
the process is absorbed before the n-th jump then we let τn = +∞. Clearly,
(τn)n≥0 is increasing

τ1 ≤ τ2 ≤ . . . ≤ τn

and we may define the variable

τ∞ = lim
n→∞

τn

with values in [0,+∞]. From a mathematical point of view it is easy to give
examples of birth intensities, (βi)i∈N0 , and death intensities, (δi)i∈N, such that

P (τ∞ = +∞) < 1

or in other words such that there is a strictly positive probability of observing
an infinite number of jumps in finite time. In this situation we will say that
explosion is possible or that the transition intensities allow for explosion.

Example 1 (Pure birth process with explosion) A Markov chain {X(t)}t≥0
on N0 with transition intensities

qi,i+1 = −qi,i = βi > 0, i ∈ N0 and qi,j = 0, otherwise

is called a pure birth process. Assuming that P (X(0) = 1) = 1 then we know
that the n−th jump will go from state n to n+1 with an average waiting time
of 1/βi. The expected time of the n−th jump will hence be

E[τn|X(0) = 1] =
n∑
i=1

1/βi

and by monotone convergence

E[τ∞|X(0) = 1] = lim
n→∞

E[τn|X(0) = 1] = lim
n→∞

n∑
i=1

1/βi.

In particular, if
∑∞

i=1 1/βi < ∞ then τ∞ has finite mean and we conclude
that

P (τ∞ = +∞|X(0) = 1) = 0.

We conclude that for a pure birth process then
∑∞

i=1 1/βi < ∞ implies that
there will be infinitely many jumps in finite time (=explosion) with probability
1! �
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Using the recurrence criterion given in Theorem 5 we get a simple character-
ization of recurrent birth-and-death processes.

Theorem 24 (Birth-and-death processes: recurrence) A birth-and-death
process is recurrent if and only if

∞∑
i=1

δi · . . . · δ1
βi · . . . · β1

= ∞. (3.9)

Equivalently, a birth-and-death process is transient if and only if

∞∑
i=1

δi · . . . · δ1
βi · . . . · β1

< ∞. (3.10)

�

Theorem 25 (Birth-and-death processes: positive recurrence) A birth-
and-death process is positive recurrent if and only if

∞∑
i=1

βi−1 · . . . · β0
δi · . . . · δ1

<∞ and
∞∑
i=1

δi · . . . · δ1
βi · . . . · β1

=∞ (3.11)

�

Remark 6 We know from equation (3.7) of Theorem 17 that the invariant
distribution of a continuous-time Markov chain must satisfy the system of
equations

∀j ∈ S :
∑
i 6=j

π(i)qj,i = π(j)(−qj,j) = π(j)qj.

For a birth-and-death process the system of equations takes the form

∀j ∈ N : π(j − 1)βj−1 + π(j + 1)δj+1 = π(j)(βj + δj)

which turns out to have a solution that can be normalized into a probability
vector provided that

∞∑
i=1

βi−1 · . . . · β0
δi · . . . · δ1

<∞.

You are reminded of Theorem 19 which tells us that positive recurrence of a
continuous-time Markov chain requires both a solution to (3.7) and that the
Markov chain is demonstrated to be recurrent. This is the reason that two
conditions must be given in Theorem 25. �
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From Example 1 we know that a pure birth process can have infinitely many
jumps on a finite time interval (i.e. explosion may occur!). It is not possible
to give a simple condition on the transition intensities for a continuous-time
Markov chain that determines exactly when explosion is possible. For birth-
and-death processes things are little easier as we have the following result.

Theorem 26 (Explosion for a birth-and-death processes) For a birth-
and-death process with intensities

qi,i+1 = βi, qi+1,i = δi+1, qi,i = −(δi+βi), qi,j = 0 otherwise, i, j ∈ N0

then explosion is possible if and only if

∞∑
i=1

(
1

βi
+

δi
βiβi−1

+ . . .+
δi · . . . · δ1
βi · . . . · β0

)
< +∞. (3.12)

The inequality (3.12) is often referred to as Reuter’s criterion for explosion.
�
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3.1 Markov chains with two states

A continuous time Markov chain, {X(t)}t≥0, with two states is given by the
transition diagram

0
λ0

((
1

λ1

hh

For any initial distribution and any choice of the jump intensities λ0, λ1
closed form expressions for the distribution of X(t) can be given. There are
essentially two types of two-state Markov chains: the absorbing chain and
the recurrent chain.

3.1.1 Two-state absorbing Markov chain

In life insurance mathematics a two state Markov chain with one absorbing
state is often used to model a single life with one cause of death. This
corresponds to the following transition diagram where the states are labelled
as alive or dead

alive
λ // dead

Let {X(t)}t≥0 be the Markov chain given by the diagram above, and assume
that the person is alive at time t = 0.

1. What is (by definition) the distribution of the first (and only) jump
time, τ1?

2. Use the general formula for conditional probabilities

P (A|B) = P (A ∩B)/P (B)

to compute P (τ1 > s + t|τ1 > t) for s, t > 0. Give an interpretation of
the result.
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3. Assuming that this is a reasonable model for the life time of a Danish
woman and that the mean life duration is 80 years what is then the
probability of surpassing the age of 100 years given that one has already
passed the age of 80 years?

4. Find the distribution of X(t).

5. Consider n single lifes given by the absorping two-state Markov chain
above. Let N(t) =

∑n
i=1 1(Xi(t) = alive) be the number of individuals

alive at time t (i.e. Xi(t) is the state of i-th person at time t). Find
E(N(t)) and discuss what could be the distribution of N(t).

3.1.2 Two-state Markov chain with equal intensities

Let {X(t)}t≥0 be the Markov chain given by the transition diagram

1
λ

((
2

λ

hh

and assume that the initial distribution is given by P (X(0) = 1) = 1. Note
that we assume that the transition intensities are the same in both states.

1. Find the distribution of the jump times τ1, τ2, τ3 . . . , by referring to
results from other exercises or from Chapter 5.

2. Let N(t) denote the total number of jumps of the chain on the time
interval [0, t]. Express the distribution of X(t) (i.e. the probabilities
P (X(t) = 1) and P (X(t) = 2)) in terms of N(t).

3. Find the distribution of N(t) by referring to results from other exercises
or from Chapter 5 and use this to obtain a formula for the distribution
of X(t).

4. Find the distribution of X(t) under an arbitrary initial distribution
given by P (X(0) = 1) = p ∈ [0, 1]. Does the distribution of X(t)
depend on t?



3.1. MARKOV CHAINS WITH TWO STATES 75

5. Show that for any initial distribution then the limits

ν1 := lim
t→∞

P (X(t) = 1) and ν2 := lim
t→∞

P (X(t) = 2)

exist. Do ν1 and ν2 depend on the initial distribution?

6. Discuss what you can conclude from questions 4.-5.

3.1.3 Transition probabilities for a two-state chain

Consider the general two-state Markov chain, {X(t)}t≥0, given by transition
diagram

1
λ1

((
2

λ2

hh

The corresponding transition matrix becomes

Q =

(
−λ1 λ1
λ2 −λ2

)
.

The general result says that for i, j ∈ {1, 2} then the transition probabilities

Pi,j(s) := P (X(t+ s) = j|X(t) = i), t, s ≥ 0,

are given by the entries of the exponential matrix

exp(Qt) =
∞∑
n=0

(Qt)n

n!
,

where Qt is the matrix obtained by multiplying each entry of Q by t. The
purpose of this exercise is to find closed form expressions for Pi,j(s) for the
general two-state Markov chain.

1. Suppose that we can find an invertible matrix U and a diagonal matrix

D =

(
δ1 0
0 δ2

)
such that Q = UDU−1. Argue that (Qt)n = U(Dntn)U−1 and deduce
that

exp(Qt) = U

(
exp(δ1t) 0

0 exp(δ2t)

)
U−1.
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2. If U has entries uij and U−1 has entries u−1ij , i, j ∈ {1, 2} write down the
formula for Pi,j(t) which is given as the ij−th entry of exp(Qt) from
question 1. above.

The last two questions 3.-4. show that it is always possible to obtain the
representation Q = UDU−1 given in question 1. above. This implies that
for a two-state Markov chain then the transition probabilities

P (X(t+ s) = j|X(t) = i)

are given as linear combinations of two exponential functions exp(δis), i =
1, 2.

3. Find expressions for δ1, δ2 (given as the eigenvalues of Q) by solving
the equation

0 = det(Q− δI) = det

(
−λ1 − δ λ2
λ2 −λ2 − δ

)
.

4. For each of the eigenvalues δ1, δ2 find the coordinates u1j, u2j, j = 1, 2,
of (right) eigenvectors for Q with eigenvalues δj, by solving the system
of equations

Q

(
u1j
u2j

)
= ρj

(
u1j
u2j

)
and verify that Q = UDU−1.
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3.2 Markov chains with three states

The general three-state Markov chain corresponds to the transition diagram

1

q1,2
,,

q1,3

��

2
q2,1

ll

q2,3

zz
3

q3,2

::

q3,1

YY

and the transition matrix

Q =

 q11 q12 q13
q21 q22 q23
q31 q32 q33

 ,

where the diagonal elements are given by qii := −
∑

j 6=i qij such that all row
sums equal zero.

3.2.1 Model for interest rates

In this exercise we consider the three-state Markov chain with q1,3 = q3,1 = 0
given by the transition diagram

1

q1,2
** 2

q2,1

jj
q2,3

** 3
q3,2

jj

Note that the model does not allow jumps between states 1 and 3. The model
may for instance be used to describe an interest rate that may jump between
three different levels but where direct jumps from lowest to highest level do
not occur.

1. Write down the transition matrix, Q, for the Markov chain.
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2. Find the limit distribution, π(j) = limn→∞ P (X(t) = j), for the Markov
chain.

3. Write down the matrix of transition probabilities, P, for the discrete-
time Markov chain describing the jumps of the chain.

4. Find the invariant distribution for the discrete-time Markov chain given
by P, and discuss when the probabilities of questions 2. and 4. coincide.

Assume in the following that X(0) = 2 and that all non-zero entries of Q are
the same, i.e. q1,2 = q2,1 = q2,3 = q3,2 = q. Denote by τn, n ≥ 1, the time of
the n-th jump of the Markov chain and let N(t) be the number of jumps of
the Markov chain on the interval [0, t].

5. Argue that the distributions of τ1 and τ2 − τ1 are exponential and find
the rate parameters.

6. Using that τ2 is the sum of the two independent random variables τ1
and τ2 − τ1 show by applying the formula of Exercise 3.5.1 that τ2 has
density

g2(t) = 2q(exp(−qt)− exp(−2qt)), t ≥ 0.

7. Express the event (X(t) = 2) in terms of events of the form (N(t) = n).

8. Find a formula for the probabilities P (X(t) = 1), P (X(t) = 2), and
P (X(t) = 3) in terms of the (unknown) probabilities

pn = P (N(t) = n), n ∈ N0.

Assume in the following that X(0) = 1 and that all non-zero entries of Q are
the same, i.e. q1,2 = q2,1 = q2,3 = q3,2 = q.

9. Use the ideas from questions 5.-8. to express P (X(t) = 2) in terms of
pn from question 8.

The computations above give us expressions for

Pi,j(s) = P (X(t+ s) = j|X(t) = i)

for certain values of i, j ∈ S = {1, 2, 3}. Remember that in general the
transition probability Pi,j(s) is given as the ij-th entry of the exponential
matrix exp(Qs).
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10. For what values of i, j ∈ S did we obtain expressions for Pi,j(s) in terms
of Pn = P (N(t) = n) by the results of questions 7.-9?

11. Argue that v1 = (1, 1, 1)T , v2 = (1, 0,−1)T , and v3 = (1,−2, 1)T are
right eigenvectors for Q and find the corresponding eigenvalues λ1, λ2,
and λ3.

12. Find a matrix, O, and a diagonal matrix D such that

QO = OD.

13. Find the transition probabilites Pi,j(s) by computing exp(Qs).

[Hint: Argue first that exp(Qs) = O exp(Ds)O−1.]

3.2.2 Model with two states of health and death

The present model may be used to analyse insurances with payments de-
pending on the state of the insured. In this exercise we assume that the
insured starts in state 0 (=active0 ). After a while the insured enters a more
favorable state 1 (=active1 )where she or he stays until death represented by
state 2 (=dead). To put the model into a more practical setting we might
label the states as active0, active1, and dead.

active0
λ // active1

µ // dead

Assume that X(0) = 0 and denote by

T1 = inf{t > 0|X(t) = 1}

the time of the jump to state 1. Further, let

Pi,j(t) = P (X(t+ s) = j|X(s) = i), s, t ≥ 0,

be the transition probabilities of the Markov chain.

1. Find the matrix, Q, of transition intensities and explain for what i, j ∈
S = {0, 1, 2} it holds that Pi,j(t) = 0, t ≥ 0.
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2. Write down the backward differential equation for P0,0(t) and determine

P (X(t) = 0).

3. What is P (T1 > t) and the expectation E[T1] (Don’t do the formal
computations!).

4. Find P2,2(t).

5. Write down the backward differential equation for P1,1(t) and determine
P (X(t+ s) = 1|X(s) = 1).

6. Find P1,2(t).

7. Argue that P ′0,2(t) = −λP0,2(t) + λP1,2(t).

8. Define the function
h(t) = exp(λt)P0,2(t)

and deduce from question 7. that

h′(t) = λ exp(λt)P1,2(t).

9. Use the expression for P1,2(t) from question 6. and the boundary con-
dition h(0) = 0 to solve the differential equation from question 8. to
get a formula for h(t).

10. Find a closed form expression for P0,2(t).

3.2.3 Model for disabilities, recoveries, and death

A model suitable for analysing insurances with payments depending on the
state of health of the insured may be given by the three state Markov chain
with transition matrix

Consider a portfolio for a person with initial state X(0) = active and denote
by

τ = inf{t > 0|X(t) = dead}

the life length. To the insurance company it is important to know the dis-
tribution of τ. Further, if the payments depend on the state of the insured
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(active/invalid) it is important to study the duration of the time spend in
each of the states before absorption in the final state dead.

To simplify the notation below we relabel the states such that 0 = active,
1 = invalid, and 2 = dead. As usual we denote by

Pi,j(s) = P (X(t+ s) = j|X(t) = i), s, t ≥ 0,

the transition probabilities of the Markov chain.

1. Write down the transition matrix, Q.

2. For what i, j does it hold that Pi,j(s) = 0?

3. Write down the forward differential equations for the transition proba-
bilities Pi,j(s) for i = 0 (=active).

Assume in the following questions 4.-9. that ν = µ.

4. Use question 3. and the fact that P0,0(t)+P0,1(t)+P0,2(t) = 1 to obtain
a simplified differential equation for P0,2(t) for ν = µ.

5. Find the distribution of the survival time, τ, for ν = µ.

[Hint: First note that P (τ ≤ t) = P0,2(t) and then find (or guess!) the
solution to the differential equation of question 4.]

6. Use question 3.+5. and that P0,0(t) + P0,1(t) + P0,2(t) = 1 to obtain
an equation for P ′0,1(t) that involves P0,1(t) but no other transition
probabilities Pi,j(t). Solve the differential equation and find P0,1(t).

The total time spend in the active state (=0) may formally be expressed as

S0 =

∫ ∞
0

1(X(t) = 0)dt.
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In a similar way we define

S1 =

∫ ∞
0

1(X(t) = 1)dt

that is the time spend in state 1 (=invalid). Note that we have the following
formula

E[Si] = E
[∫ ∞

0

1(X(t) = i)dt

]
=

∫ ∞
0

P0,i(t)dt

that may be useful for computing E[Si] when the transition probabilities are
known.

7. Use the results of questions 4.-6. to obtain an expression for E[Si], i =
0, 1, (-still assuming that µ = ν).

8. Compute P (S1 = 0).

9. Use question 5. and 8. to obtain an expression for P (S1 = 0, τ ≤ t)
and compute the conditional probability

P (S1 = 0|τ ≤ t)

that a person dying before time t did not spend any time in the state
1 =invalid.

3.2.4 Model for single life with 2 causes of death

dead 1 alive
λ1

oo λ2 // dead 2

In the following questions let Pi,j(t) = P (X(t + s) = j|X(s) = i) denote
the transition probabilities and assume that X(0) = alive. For simplicity we
recode the state space, S, such that: 0 = alive, 1 = dead 1, 2 = dead 2.

1. Find the intensity matrix of the chain.

2. Determine the communication classes of the chain and argue for each
class whether it is recurrent or transient.
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3. For which i, j ∈ S does it hold that Pi,j(t) = 0 or Pi,j(t) = 1?

4. Write down the backward equations for the non-constant transition
probabilities.

5. Determine P0,0(t) (i.e. the probability of being alive at time t).

6. Find expressions for the remaining transition probabilities.

7. Assuming that X(0) = alive find the probability that the process will
eventually be absorbed in state dead1.

3.2.5 Model with one zero in the transition matrix

We consider a Markov chain {X(t)}t≥0 with transition diagram given by
Figure 3.3 and assume that P (X(0) = 3) = 1.

1
2

,,

4

��>>>>>>>>>>>>>>>> 2
1

ll

4

zz
3

1

::

Figure 3.3: Transition diagram for Exercise 3.2.5

To solve questions 6.+7. you might find it useful to know that the equation

f ′(t) = αf(t) + β exp(γt) + δ

has a solution of the form

f(t) = c1 · exp(γt) + c2 · exp(αt) + c3

for γ 6= α and c1, c2, c3 suitable constants.

1. Find the infinitesimal generator, Q, (=intensity matrix) for the chain.

2. Find the transition probability matrix for the Markov chain of jumps.

3. Write down the system of equations for the invariant probability π.
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4. Compute π.

5. Write down the forward differential equations for P3,j(t), j = 1, 2, 3.

6. Use that P3,1(t) + P3,2(t) + P3,3(t) = 1 to find P3,3(t).

7. Find P3,1(t) and P3,2(t).

8. Let τ1 = inf{t > 0|X(t) = 1} be the time of the first visit to state 1.
Determine Eτ1.

3.2.6 A numerical example
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1. Suppose that the chain starts in state 1 and let

τ1 = inf{t > 0|X(t) 6= 1}

be the time of the first jump. What is the mean Eτ1 of τ1?

2. Find the matrix, Q, of transition intensities and the transition matrix,
P, for the jumps.

3. Argue (briefly) that P (X(τ1) = 2) = 1/2.

4. What is the distribution of the time between the first, τ1, and the
second, τ2, jump if X(τ1) = 2.

5. What is the distribution of the time between the first and the second
jump if X(τ1) = 3.

6. What is the distribution of τ2?
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7. Give an argument that the time, τn, of the n-th jump follows a Γ−distribution
and find the parameters.

8. Find the equilibrium distribution π of the Markov chain.

The transition probabilities, P (t), are given as the entries of the exponential
matrix exp(Qt).

9. Find the characteristic polynomial g(λ) = det(Q− λI) and show that
g has one real root (= 0 of course!) and two complex roots (=−6± i).

Remark We might continue to find a matrix O of linearly independent
(column) eigenvectors for Q and compute the transition probabilities as

P (t) = O

 1 0 0
0 e−6t exp(it) 0
0 0 e−6t exp(−it)

O−1.

The eigenvectors will contain complex numbers but since we know that Pi,j(t)
are probabilities (in particular real numbers) all complex coefficients must
cancel when we compute the matrix products. Consequently, since by defi-
nition

exp(it) = cos(t) + i · sin(t)

we can immediately conclude that all transition probabilities take the form

Pi,j(t) = ai,j + bi,j exp(−6t) · cos(t) + ci,j exp(−6t) · sin(t),

for suitable real constants ai,j, bi,j, ci,j. We can actually use the fact that
Pi,j(t)→ πj for t→∞ to conclude that ai,j = πj. Further, we have that

1 = Pi,i(0) = ai,i + bi,i + ci,i = πi + bi,i + ci,i ⇒ bi,i = 1− πi − ci,i
0 = Pi,j(0) = ai,j + bi,j + ci,j = πj + bi,j + ci,j ⇒ bi,j = −πj − ci,j, i 6= j,

showing that only the constants ci,j need to be determined. Finally, using
that

∑
j Pi,j(t) = 1 we get the additional constraint

∑
j ci,j = 0 for any i. A

system of equations for the remaining (6!) undetermined constants, ci,j, may
be obtained by the forward or backward differential equations for P (t).
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3.3 Markov chains with finite state space

3.3.1 Model for two lifes

Consider a Markov chain, {X(t)}t≥0, with four states given by transition
diagram

both alive

ν2
��

µ2 // husband dead

ν1
��

wife dead
µ1 // both dead

One may think of the model as a description of the two lifes of a married
couple that wants to buy a combined life insurance and widow’s pension
policy.

In the following we assume that at both persons are alive at time t = 0.

1. Write down the transition matrix of the Markov chain and find the
distribution of the first jump time, τ1.

2. Find the probability that the husband dies before the wife.

3. Find the expected time before the last person dies.

4. Write down the backward differential equations for the transition prob-
abilities needed to find the distribution of X(t).

Consider now the stochastic process obtained by collapsing the states where
one person of the couple is alive, i.e. define {X̃(t)}t≥0 by

X̃(t) =


0, X(t) = both alive
1, X(t) ∈ {husband dead,wife dead}
2, X(t) = both dead

In general {X̃(t)}t≥0 is not a Markov chain and we shall try to argue why.

5. Compute

P (X(3t) = both dead, X(2t) = wife dead, X(t) = wife dead)
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and

P (X(3t) = both dead, X(2t) = husband dead, X(t) = husband dead)

using the formula

P (X(3t) = k,X(2t) = j,X(t) = i)

= P (X(t) = i) · P (X(2t) = j|X(t) = i) · P (X(3t) = k|X(2t) = j).

6. Compute P (X̃(3t) = 2, X̃(2t) = 1, X̃(t) = 1) by writing the event as a
disjoint union of the sets in question 5.

7. Use a similar trick as in questions 5.-6. to compute

P (X̃(3t) = 2, X̃(2t) = 1, X̃(t) = 0).

8. Write the set (X̃(2t) = 1, X̃(t) = 1) as a disjoint union of events
involving {X(t)} and use question 6. to compute

P (X̃(3t) = 2|X̃(2t) = 1, X̃(t) = 1).

9. Use question 7. and the ideas of question 8. to compute

P (X̃(3t) = 2|X̃(2t) = 1, X̃(t) = 0).

10. Argue that in general {X̃(t)}t≥0 is not a Markov chain on {0, 1, 2}.

11. Under what restriction of the model parameters does it hold that
{X̃(t)}t≥0 is a Markov chain.

3.3.2 Single life with r causes of death

We consider in this exercise a stochastic model for a single life with r possible
causes of death. We assume that X(0) = alive and that the waiting time,
Wi, to death by cause i has density fi, i = 1, . . . , r.

Clearly, the life duration of the person is given by

W = min(W1, . . . ,Wr).
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dead 1 dead 2 dead r-1 dead r

We assume that the waiting times W1, . . . ,Wr are independent. The de-
scription above leads to a stochastic process {X(t)}t≥0 with state space
S = {alive, dead 1, dead 2, . . . , dead r} through the definition

X(t) =

{
alive , t < W
dead i , t ≥ W and Wi = W = min(W1, . . . ,Wr)

The purpose of the exercise is to examine for what conditions on the densities
fi, for Wi that the process {X(t)}t≥0 becomes a Markov chain.

Remember that the Markov property writes out as

P (X(tn) = in|X(tn−1) = in−1, . . . , X(t1) = i1) = P (X(tn) = in|X(tn−1) = in−1),

for any choice of 0 ≤ t1 < . . . < tn and i1, . . . , in ∈ S.

1. Argue that when considering the Markov property for {X(t)}t≥ we only
need to consider sets of the form above with all i1 = . . . = in = alive
or

i1 = . . . = ij = alive, ij+1 = . . . = in = dead i

for some j = 1, . . . , n− 1 and i = 1, . . . , r.

2. Explain why the probabilitiy of an event of the form given in question
1. above may be expressed as

P (tj < Wi ≤ tj+1,Wi ≤ W = min(W1, . . . ,Wr)),

for some j = 1, . . . , n (for j = n interpret tn+1 as +∞).

3. Use the independence of W1, . . . ,Wr to argue that

P (tj < Wi ≤ tj+1,Wi = W = min(W1, . . . ,Wr)

=

∫ tj+1

tj

fi(w)
r∏

j=1:j 6=i

[∫ ∞
w

fj(wj)dwj

]
dw.
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We assume in the following that the waiting times Wi are exponentially
distributed with rate λi > 0, i = 1, . . . , r, i.e. that

fi(t) = λi exp(−λit), t ≥ 0.

4. Use questions 1.-3. to show that for 0 ≤ t1 < . . . < tn, n ∈ N then

P (X(tn) = . . . = X(tj+1) = dead i,X(tj) = . . . = X(t1) = alive)

=
λi
λ

((exp(−tjλ)− exp(−tj+1λ)) ,

for j = 1, . . . , n (with tn+1 = +∞) where we let λ =
∑r

j=1 λj.

5. Use question 4. to compute P (X(t) = dead i), i = 1, . . . , r.

6. Use question 4. to compute P (X(t) = alive). What is the probability
P (τ1 > t) that the first (and only) jump, τ2, occurs after time t.

7. Based on the result in question 4. compute the conditional probability

P (X(tn) = in|X(tn−1) = in−1, . . . , X(t1) = i1)

for the three cases

• i1 = . . . = in = alive

• i1 = . . . = in−1 = alive, in = dead i

• i1 = . . . = ij = alive, ij+1 = . . . = in−1 = in = dead i, j ≤ n− 2

and show the result only depends on i1, . . . , in−2. This demonstrates
that {X(t)}t≥0 is a Markov chain.

8. Find the transition diagram for the Markov chain in the usual repre-
sentation in terms of the matrix of transition intensities.

Remark The exercise gives an alternative interpretation of the time dynam-
ics for a (finite state) Markov chain. Suppose that we are at state i ∈ S at
time t. For each state j 6= i that can be reached from i (i.e. qij > 0) generate
independent exponentially distributed random variables (alarm clocks!) Wj

with rate qij. The time when the first bell rings, W = min{Wj}, determines
the time and the target of the next jump. It can be shown that the wait-
ing time to the jump is exponentially distributed with rate qi =

∑
j∈S qij

and that the probability of the jump being directed to state j is given by
qij/qi, j 6= i.
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3.3.3 Forward differential equations for four state chain
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Figure 3.4: Transition diagram of four state Markov chain of Exercise 3.3.3.

Consider the Markov chain on Figure 3.4 with state space S = {1, 2, 3, 4},
where the initial distribution is given by P (X(0) = 1)1.

1. Find the intensity matrix Q of the chain.

2. Write down the system of equations for the invariant probability, π, of
the chain and find π.

3. Find the transition matrix P for the jumps of the chain.

4. Find the distribution of the first jump time and use this to find an
expression for P1,1(t).

5. Write down the forward differential equation, P ′(t) = P (t)Q, for the
transition probability P1,2(t) = P (X(t) = 2|X(0) = 1).

6. Solve the differential equation from question 5. by using the result from
question 4. and that by symmetry we must have P1,2(t) = P1,3(t) =
P1,4(t). Try also to give an even simpler derivation of P1,2(t) refering
only to symmetry but without using the differential equation.

7. Write down the forward differential equation for P2,2(t).
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8. Using that P2,1(t) = 0 and
∑

j∈S P2,j(t) = 1 show that the equation
from question 7. has a solution of the form

P2,2(t) = c1 + c2 exp(−3λt)

and determine the constants c1, c2.

9. Find the remaining transition probabilities.

[Hint: For an easy solution to this question start by listing transition
probabilities that are zero and transition probabilities that must be
the same due to symmetry. You will probably also find it useful to
remember that the rows of P (t) sum to one.]

3.3.4 Time to absorption
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Figure 3.5: Transition diagram for Exercise 3.3.4: left diagram should be
used for questions 1.-4. and right diagram for the remaining questions 5.-13.

Suppose that the chain starts in state 1, i.e. P (X(0) = 1).

1. Find the intensity matrix, Q, of the chain.

2. Write down the system of equations for the invariant probability π of
the chain and find π.

3. What is the distribution and the mean of the time to the first jump.
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4. Find the transition matrix, P, for the jumps of the chain.

In the rest of the exercise we exclude the possibility that the chain can jump
from state 0 to state 1. This situation corresponds to the transition diagram
on the right of Figure 3.5.

5. Write down the transition matrix for the jumps of the modified version
of the chain. By convention for an absorbing state i let us make the
convention that Pi,i = 1.

6. Considering only the Markov chain of jumps compute (using a com-
puter) the expected number of times the chain will visit state 2 before
absorption in state 0. Answer the same question for state 3.

7. Write down the matrix, Q, of transition intensities for the modified
version of the continuous-time Markov chain.

8. Verify that v1 = (1, 1, 1, 1)T and v2 = (0, 7/3, 2, 1)T are (right) eigen-
vectors for Q with eigenvalues λ1 = 0 and λ2 = −3.

9. Verify that v3 = (0, 1, 0, 0)T and v4 = (0, 1,−2, 1)T are (right) eigen-
vectors for Q and find the corresponding eigenvalues λ3 and λ4.

10. LetO be the 4×4 matrix with columns given by vi (i.e. O = (v1, v2, v3, v4)).
Use the fact that the transition probabilities, P (t) = (Pi,j(t))i,j∈S, are
given by the exponential matrix

exp(Qt) = O


exp(λ1t) 0 0 0

0 exp(λ2t) 0 0
0 0 exp(λ3t) 0
0 0 0 exp(λ4t)

O−1

to compute the probability P1,0(t).

Hint: You can use without proof that

O−1 =


1 0 0 0
−3/4 0 1/4 1/2

1 1 −1/3 −5/3
−1/4 0 −1/4 1/2

 .
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11. Define the time of the first visit to state 0

T = inf{t > 0|X(t) = 0}

and argue that P (T ≤ t) = P (X(t) = 0).

12. Use (without proof) that the expectation of the nonnegative random
variable T may be expressed as

E[T ] =

∫ ∞
0

P (T > t)dt

to compute the expected time to absorption in state 0 when the chain
is started at state 1 (i.e. P (X(0) = 1) = 1).

13. Use the following heuristic argument to compute the expected time to
absorption in state 0 : First compute the expected number of the time
periods where the chain visits states 1, 2, and 3. Then multiply the
expected number of visits in each state with the average waiting time
before the chain jump to another state. This gives you the expected
time spend in each state.

[Hint: You already computed many of the necessary quantities in pre-
vious questions.]

3.4 Markov chains on countable state spaces

3.4.1 Pure death process with constant intensity

A birth-and-death process is a continuous time Markov chain on N0 =
{0, 1, 2, . . .} that moves only in jumps of size one. The process may describe
the size of a population and a jump between states i and i+ 1 is interpreted
as a birth whereas jumps from i to i− 1 corresponds to a death.

Denoting by qi,j the transition intensities from state i to state j the birth-
and.death process has the following structure

qij =


βi , j = i+ 1, i ≥ 0
δi , j = i− 1, i ≥ 1
0 , otherwise
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for suitable nonnegative birth- and death intensities βi, δi ≥ 0. Many im-
portant stochastic processes belong to the class of birth-and-death processes
and may be obtained by imposing various restrictions on the birth- and death
intensities.

Assume that the Markov chain {X(t)}t≥0 is a birth- and death process with
initial distribution ρi = P (X(0) = i).

1. Draw a part of the transition diagram for the Markov chain under the
assumption that all βi, δi > 0.

2. Find under the assumption of question 1. the transition probabili-
ties for the corresponding discrete time Markov chain of jumps for
{X(t)}t≥0.

3. What choice of initial distribution and birth- and death intensities im-
plies that {X(t)}t≥0 is a Poisson process?

The pure death process is characterized by all the birth intensities, βi, being
equal to zero. In the following we consider a pure death process with δk >
0, k ≥ 1, and initial distribution P (X(0) = k) = 1 for some k ≥ 2.

4. What is the distribution of the first jump time

τ1 = inf{t > 0|X(t) 6= k}?

5. Find P (X(t) = k).

6. Assuming that all death intensities are the same, δi = δ > 0, what is
then the distribution of the time, τ2, of the second jump of the chain?

7. Under the assumption of question 6. one may argue that {X(t)}t≥0 be-
haves like a modified Poisson process {N(t)}t≥0 with downward jumps
of intensity δ > 0 until the time of the k−th jump. Use this to compute
P (X(t) = j), j = 1, 2, . . . , k − 1.

8. Find P (X(t) = 0) under the assumption of question 6.
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3.4.2 Linear birth-and-death process

The linear birth-and-death process is a continuous-time Markov process on
N0 with birth intensities βi = iβ and death intensities δi = iδ. It may be
thought of as a model for a population where at any time an individual dies
with intensity δ > 0 and gives rise to a birth with intensity β > 0.

1. Find the communicating classes of the linear birth-and-death process.

2. Assume that P (X(0) = 1) = 1 and let τ1 = inf{t > 0|X(t) 6= 1} be
the time of the first jump. Find the probability P (τ1 > 1) and the
distribution, P (X(τ1) = i), i ≥ 0, of the chain observed just after the
first jump.

3. Let T = inf{t > τ1|X(t) = 1) be the time of the first return to state
1. Use the result of question 2. to get an upper bound for the proba-
bility P (T < +∞|X(0) = 1). Discuss what you can conclude from this
observation.

4. Still assuming that P (X(0) = 1) = 1 argue that

P (X(1) = 0) > δ
δ+β

(1− exp(−(δ + β))).

For the rest of the exercise we modify the birth intensities such that βi =
iβ + λ for some β, λ > 0. The resulting model has a very nice interpretation
as a linear birth-and-death process with immigration intensity λ.

5. Argue that the linear birth-and-death process with immigration is ir-
reducible.

6. Let {Y (n)}n≥0 be the discrete-time Markov chain of jumps. Find the
transition probabilities of {Y (n)}n≥0.

The following questions seek to clarify for what values of the parameters that
a linear birth-and-death process is transient, null-recurrent and positive re-
current. A the written exam you should directly apply the results in Chapter
3.0.4 to answer questions 8., 11. and 12. below. Questions 7., 9. and 10. are
only relevant for those of you who want to understand better how to arrive
at the main results in Chapter 3.0.4.

7. Write down the system of equations in Theorem 5 of Chapter 3.0 where
you use i = 0 as fixed state.
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It is rather technical to write down a complete solution to questions 8. and
11.-12. below covering all choices of the parameters β, δ, λ. To make things
a bit more easy try to consider first the cases β > δ and β < δ.

8. Use the system of equations from question 7. (or some other argument)
to determine for what choices of β, δ, λ > 0 that the linear birth-and-
death process with immigration is recurrent or transient.

[Hint: Use the system of equations from question 7. to deduce that

α(j + 1) = α(1)

{
1 +

j∑
k=1

kδ · . . . · δ1
(λ+ kβ) · . . . · 1β

}
, j ≥ 1.

A simpler approach is just to apply a suitable result in Chapter 3.0.4.]

9. Show that an invariant probability vector π = (πi)i∈N0 for the linear
birth-and-death process with immigration must satisfy the following
system of equations

0 = δπ1 − λπ0
0 = ((i− 1)β + λ)πi−1 + (i+ 1)δπi+1 − (iβ + iδ + λ)πi, i ≥ 1.

10. Verify that the vector ν = (νi)i∈N0 where

νi = ν0 ·
i∏

k=1

(k−1)β+λ
kδ

, i ≥ 1,

solves the system of equations from question 9.

11. Determine for what values of β, δ, λ > 0 that the solution , ν, of question
10. can be normalized into a probability vector π.

12. For what choice of the parameters β, δ, λ is the birth-and-death process
with immigration null-recurrent?

[Hint: If we already know that the chain is recurrent then the chain is
positive recurrent if and only if there exists a probability vector solving
the system of equations from question 10.]

Answer the following two questions 13.-14. for the three cases λ = β = 2δ,
λ = β = δ, and λ = β = δ/2.

13. Find limt→∞ P (X(t) = i) for i ≥ 0 assuming that P (X(0) = 1) = 1.

14. What is the long run average population size?
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3.4.3 Queueing systems

There is an entire branch of applied probability that deals with mathematical
modeling of queueing systems. In this exercise we show by an example how
continuous-time Markov chains may be used to model the number of cus-
tomers in a queueing system. Throughout the exercise we assume that new
customers arrive to the system according to a Poisson process with intensity
β > 0 independently of the state of the system.

We consider initially the single server queue where customers are served
according to the first-come-first-served queueing discipline. Upon arrival at
the service desk the service time distribution is assumed to be exponential
with rate δ > 0 no matter how many customers are waiting in line. One can
show (but you are not supposed to do so!) that under the given assumptions
then the number, {X(t)}t≥0, of customers present in the system constitutes
a continuous-time Markov chain on N0 with transition intensities

qi,j =


β , j = i+ 1, i ≥ 0
δ , j = i− 1, i ≥ 1
0 , otherwise

1. Argue that the chain is a birth-and-death process.

2. Write down the system of equations that must be satisfied for an in-
variant probability vector π = (πi)i∈N0 . Find the invariant distribution,
π, of the chain for the case where β < δ.

3. Assuming that β < δ compute the (long run) average number of cus-
tomers in the queue.

4. What is the distribution of the waiting time before arrival to the service
desk if 4 customers are waiting in front of you when you arrive to the
queueing system? (You are not expected to do any computations here!)

We now assume that the customers are served in their order of arrival by two
servers with exponentially distributed service time distributions of (possibly
different) rates δ1, δ2 > 0. If a customer arrives at an empty system she or
he is by default served at service desk number 1. With some effort one can
show that the system may be regarded as a continuous-time Markov chain
on the state space

S = {0, 1 : 0, 0 : 1, 2, 3, 4, . . .}.
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This needs a little more explanation: state 0 means that no customers are
present, state 0 : 1 means that one customer is being served at service desk 2
while service desk 1 is vacant. Similarly, state 1 : 0 represents the situation
where service desk 1 is occupied and desk 2 is vacant. States 2, 3, 4, . . .
refer to situations where at least two customers are present of which two are
currently being served at service desks 1 and 2.

The transition diagram (without transition intensities) is given on Figure 3.6.
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Figure 3.6: Transition diagram for the Markov chain considered in questions
5.-14. of Exercise 3.4.3.

5. What is the intensity q0:1,0 of a jump from state 0 : 1 to 0?

6. What is the intensity q1:0,0 of a jump from state 1 : 0 to 0?

7. Find the intensities q0:1,2, q1:0,2, q0,0:1.

8. Argue that the intensity of a jump from state 3 to 2 equals δ1 + δ2.

9. Draw the transition diagram of the Markov chain with all intensities.

10. Argue very carefully that an invariant probability vector π = (πi)i∈S
must satisfy the system of equations

0 = δ1π1:0 + δ2π0:1 − βπ0
0 = βπ0 + δ2π2 − (β + δ1)π1:0

0 = δ1π2 − (β + δ2)π0:1

0 = βπ1:0 + βπ0:1 + (δ1 + δ2)π3 − (δ1 + δ2 + β)π2

0 = (δ1 + δ2)πi+1 + βπi−1 − (β + δ1 + δ2)πi, i ≥ 3.
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11. Show that for any constant c there is a vector, π = (πi)i∈S, with

πi = c
(

β
δ1+δ2

)i−2
, i ≥ 2

that solves the system of equations from 10 and derive expressions for
π0:1, π1:0, and π0.

12. For what values of the parameters β, δ1, δ2 can the solution in question
11. be normalized into an invariant probability vector? (You don’t
need to find a closed form expression for c to answer this question!)

13. Consider the case where δ1 = δ2 = δ and β = δ/2. Find the invariant
probability vector from questions 11.-12. and compute the (long run)
average number of customers for the two-server queue.

[Hint: You can use (or verify) that c = 3/40.]

14. Still assuming that δ1 = δ2 = δ and β = δ/2 discuss how much the
(long run) average queue length decreased by the introduction of the
second server compared to the single server system (question 1.-4.).

We finally consider the case where arriving customers physically lines up in
two different queues. Upon arrival a customer enters the shortest of the two
lines. If there are the same number of customers in each queue any customer
by default enters the queue nearest to the entrance of the building (let us call
this queue number 1). If at any time the difference between the length of two
queues is two the last customer in the longest queue will instantly switch to
the last position in the shorter queue. The purpose of the following questions
is to study the differences between the two-line queueing disciplin and the
one line first-come-first-served disciplin considered in questions 5.-14.

It is possible to show that the joint number of customers, {(X1(t), X2(t))}t≥0,
in the two queues is a continuous-time Markov chain on N0 × N0.

15. Technically speaking the state space of the chain is much smaller than
N0 × N0 because a large number of the states will never be visited by
the chain. What is the trimmed version, S, of the state space that
represents the truly possible states of the queueing system?



100 CHAPTER 3. CONTINUOUS-TIME MARKOV CHAINS

16. Draw the transition diagram (with transition intensities) of the Markov
chain that displays only the trimmed state space, S, from question 15.
You probably need to be careful to get all the transition intensities right
in particular for jumps between states (i, i + 1) and (i, i) or between
states (i+ 1, i) and (i, i).

17. Argue that an invariant probability vector π = (πi,j)(i,j)∈S must satisfy
the following system of equations

0 = δ2π0,1 + δ1π1,0 − βπ0,0
0 = βπ0,0 + δ2π1,1 − (δ1 + β)π1,0

0 = δ1π1,1 − (δ2 + β)π0,1

0 = β(πi−1,i + πi,i−1) + (δ1 + δ2)(πi+1,i + πi,i+1)− (β + δ1 + δ2)πi,i, i ≥ 1,

0 = βπi,i + δ2πi+1,i+1 − (β + δ1 + δ2)πi+1,i, i ≥ 1,

0 = δ1πi+1,i+1 − (β + δ1 + δ2)πi,i+1, i ≥ 1.

18. Verify that for any constant c there is a vector, π = (πi)i∈S, with

πi,i = c
(

β2

(δ1+δ2)2

)i
, i ≥ 1,

that solves the system of equations from question 17 and derive expres-
sions for the remaining coordinates of π.

[Hint: Start by plugging in to the last equation of question 17. to get
an expression for πi,i+1 and do not try to find the constant c.]

19. For what values of the parameters β, δ1, δ2 can the solution of 18. be
normalized into an invariant probability vector? (You don’t need to
find a closed for expression for c to answer this question!)

20. Consider the case where δ1 = δ2 = δ and β = δ/2. Find the invariant
probability vector from questions 17.-18. and compute the (long run)
average number of customers present in the queueing system.

21. Are there any reason to prefer one of the two suggested two-server
queueing disciplines to the other from the customers point-of-view? To
answer the question you may find it useful to include a discussion of
your results from questions 13. and 20.
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22. The total service capacity (per time unit) of a queueing system with
two servers is given by the sum δ1 + δ2. Which of the queueing systems
with two servers exploit the service capacity in the must efficient way?
(Don’t do any computations!)

23. Try to do some numerical computations to examine if there are any
differences betweeen the two suggested two-server queueing systems
when δ1 6= δ2. Look at the problemer from the customers point-of-view.

Comments: The results of this exercise do not carry over to real life queue-
ing systems for several reasons of which we shall mention a few: the unrealis-
tic assumption of exponentially (=memoryless) distributed service times and
intervals between arriving customers, the assumption of customers arriving
at the same rate at all times, and the independence of the service distribu-
tions on both time and on the number of customers already present in the
queueing system.

It is trival that queues build up if the (average) service capacity is lower
than the average rate of arriving customers. Another important lecture you
may learn by digging further into the field of queueing theory is that even
for a sufficient average service capacity queues are caused by variation in
interarrival times and service times. The generel message is that inducing
more variation deteriorates the performance of a queueing system.

3.4.4 Positive recurrence and null-recurrence

We consider a Markov chain, {X(t)}t≥0, on S = {0, 1, 2, . . .} with transition
intensities

q0,n = pn > 0, qn,n−1 = δn > 0, n > 0, qi,j = 0 for any other i 6= j

where
∑

n pn = 1.

1. Find the transition probabilities for the embedded Markov chain of
jumps.

2. Argue that {X(t)}t≥0 is recurrent.

So far we have demonstrated that the Markov chain {X(t)}t≥0 and the em-
bedded Markov chain of jumps are always recurrent no matter the values of
pn > 0 and δn > 0. The purpose of the following is to show that all four
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combinations of positive recurrence and null-recurrence for {X(t)}t≥0 and
the embedded jump chain may occur.

NN {X(t)}t≥0 and the embedded jump chain are null-recurrent.

NP {X(t)}t≥0 is null-recurrent and the embedded jump chain is postive
recurrent.

PN {X(t)}t≥0 is positive recurrent and the embedded jump chain is null-
recurrent.

PP {X(t)}t≥0 and the embedded jump chain are positive recurrent.

Find out how the four cases listed above correspond to the four sets of pa-
rameters described in questions 3.-6. below.

3. pn = (1− p)pn−1, 0 < p < 1, and δn = δ > 0

4. pn = c/n2 and δn = δ > 0

5. pn = (1− p)pn−1 and δn = (1− p/2)−1(p/2)n where 0 < p < 1

6. pn = c/n2 and δn = n(n+ 1)

[Hint: We did already study the embedded Markov chain of jumps in
Exercise 2.4.6.]

3.4.5 More examples of birth-and-death processes

We consider in this exercise four different birth-and-death processes. The
purpose of this exercise is to get some experience using the results stated in
Section 3.0.4.

1. Show that the birth-and-death process with intensities

qi,i+1 = βi = i+ 1, qi+1,i = δi+1 = 1, i ≥ 0

is transient.

2. Show that the birth-and-death process with intensities

qi,i+1 = βi = i+ 1, qi+1,i = δi+1 = i+ 1, i ≥ 0

is null-recurrent.
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3. Show that the birth-and-death process with intensities

qi,i+1 = βi = i+ 1, qi+1,i = δi+1 = i+ 3, i ≥ 0

is positive recurrent.

4. Show that for q < p < cq then the birth-and-death process with inten-
sities

qi,i+1 = βi = cip, qi+1,i = δi+1 = ci+1q, i ≥ 0

is transient and there exists a probability vector π = (π(i))i∈S solving
the system ∑

i∈S

π(i)qi,j = 0, j ∈ S.

[Hint: Use Section 5.6 on linear recurrence equations.]

Remark Question 4. shows that there exists a probability vector satisfying
the necessary condition of Theorem 17 for an invariant distribution. However,
since the Markov chain is transient the invariant distribution does not exist.
One can show using Reuter’s criterion from Theorem 26 that explosion may
occur for the birth-and-death process given in Question 4.
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3.5 The Poisson process

0
λ // 1

λ // 2
λ // 3

λ // 4
λ // 5

λ // 6
λ // . . .

Let {X(t)} be the stochastic process given by the diagram above. The process
takes values in the state space N0 = {0, 1, 2, . . .}, it starts at state zero,
X(0) = 0, and it moves in upward jumps of size 1. A stochastic process with
this property is commonly refered to as a counting process. The Poisson
proces is the counting process with independent identically exponentially
distributed waiting times between jumps. The rate, λ, of the exponential
distribution is called the intensity of the Poisson process.

3.5.1 Basic properties of the Poisson process

The Poisson process with intensity λ is the continuous-time and time-homogeneous
Markov chain on N0, given by the following transition diagram

0
λ // 1

λ // 2
λ // 3

λ // 4
λ // 5

λ // 6
λ // . . .

In particular the times between jumps are independent and exponentially
distributed with density function

f(s) = λ exp(−λs), s ≥ 0.

Further, we denote by τ1, τ2, . . . the jump times of {X(t)}.

1. Compute E[τ1], P (X(t) = 0), and P (X(t) ≥ 1).

2. For 0 < s < t compute P (X(s) = 0, X(t) = 0)

For non-negative independent random variables V with density g and W
with density h then the density of the sum Y = V +W has density given by

k(y) := h ∗ g(y) :=

∫ y

0

h(y − v)g(v)dv, y ≥ 0.
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3. Find the distribution (=density) of τ2 by using that τ2 is the sum of
two independent exponential distributions with rate parameter λ.

4. Compute P (X(t) ≥ 2).

5. Verify by induction that the time, τn, of the jump to state n follows a
distribution with density

fn(s) =
λ(λs)n−1

(n− 1)!
exp(−λs), s ≥ 0.

6. Compute P (X(t) ≥ n) and P (X(t) = n).

[Hint: Use without proof that

P (τn ≤ t) = 1−
n−1∑
k=0

(λt)k

k!
exp(−λt)

or you may even try to prove the formula by induction.]

7. What is the name of the distribution of τn and X(t)?

3.5.2 Advanced exercise involving the Poisson process

In this exercise we consider a Poisson process {X(t)} with intensity λ. You
may use that from Exercise 3.5.1 we know the distribution of X(t) i.e. the
probabilities P (X(t) = n), n ∈ N.
The purpose of this exercise is to study further the times of the jumps of
the Poisson process which we will denote by τ1, τ2, τ3, . . . . From the previous
Exercise 3.5.1 we know the distribution of τn. In this exercise we consider
what can be said about the distribution (=location) of the n first jumps
times given that we know that X(1) = n i.e. that exactly n jumps occured
on the time interval [0, 1].

For simplicity we consider only the distribution of τ1 by asking the following
question: given that we know that exactly one jump happened before time
1 (i.e. X(1) = 1) when was the must likely time on [0, 1] for the jump, τ1,
to happen? Clearly, the conditional distribution of the first jump time, τ1,
given that X(1) = 1 is a distribution on the interval [0, 1]. The purpose of
the following questions 1.-8. is to compute P (a < τ1 ≤ b|X(1) = 1) for
0 ≤ a ≤ b ≤ 1.
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1. Try to argue, for instance on a suitable figure, that

(τ1 ≤ b,X(1) = 1) = (X(b) = 1, X(1) = 1), for 0 ≤ b ≤ 1.

2. Find the probability that P (X(a) = 1), a ≥ 0.

3. Explain how it follows from the Markov property (and the stationarity)
of the Poisson process that for s, t ≥ 0 and i, j ∈ N0 then

P (X(t+ s) = i+ j|X(s) = i) =
(λt)j

j!
exp(−λt).

4. Find the probability that P (X(b) = 1, X(1) = 1), for 0 ≤ b ≤ 1.

5. Compute P (τ1 ≤ b|X(1) = 1) using questions 1.-4.

6. Argue that for 0 ≤ a ≤ b ≤ 1 then

(a < τ1 ≤ b,X(1) = 1) = (X(a) = 0, X(b) = 1, X(1) = 1).

7. Write P (a < τ1 ≤ b,X(1) = 1) as a product of three probabilities that
are known from questions 1.-6. above.

8. Compute the conditional probability P (a < τ1 ≤ b|X(1) = 1).

Remark The result shows that if exactly one jump of a Poisson process
occurs on the interval [0, 1] then the (conditional) distribution of the jump
follows a uniform distribution on [0, 1]. The result generalises to the case
where we consider the conditional distribution of the n first jumps given that
exactly n jumps occured on the interval [0, t]. The location of the n jumps
will behave as if they had been uniformly scattered over the interval [0, t]
independently of each other. For that reason the event times of a Poisson
process is often said to describe a completely random pattern of points.
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4.1 Assignments
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4.1.1 Assignment 1 from 2010/2011

5 7 9

4 6 8 10

15 13

3 16 14 12 11

17 18

19 21

20

2 1

Consider a Markov chain on S = {1, . . . , 21} with transition matrix given by

1 = p1,2 = p2,1 = p13,14 = p18,14 = p15,16 = p16,3 = p17,16

1/2 = p5,5 = p5,7 = p9,7 = p9,9 = p12,13 = p12,18, 1/3 = p7,5 = p7,7 = p7,9

p = p3,2 = p4,5 = p10,9 = p11,1 = p14,20

p/2 = p6,5 = p6,7 = p8,7 = p8,9

1− p = p3,4 = p4,6 = p6,8 = p8,10 = p10,11 = p11,12

(1− p)/2 = p14,15 = p14,17

1/2 = p19,19 = p19,20 = p20,19 = p20,21 = p21,21 = p21,20

1. Use this page to draw the transition diagram for the Markov chain.
You are strongly encouraged to check your answer to this question
with other groups as you may otherwise go wrong on the remaining
questions.
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2. Simulate and make a plot of two sample paths from the Markov chain
with initial distribution P (X(0) = 21) = 1. Your plot must be handed
in as part of your solution.

3. Compute the distribution of X(5) when the initial distribution is given
by P (X(0) = 20) = P (X(0) = 21) = 1/2.

4. Find the communication classes and determine for each class if they
are recurrent or transient.

5. Find an invariant probability for each (if any!) aperiodic and recurrent
class.

6. Does there exist an invariant probability vector, π = (π1, . . . , π21), for
the Markov chain with π1 = 0.5?

7. Does there exist an invariant probability vector, π = (π1, . . . , π21), for
the Markov chain with π7 = 0.15 and π20 = 0.2?

In the last part of the exercise we shall study the limiting probabilities

lim
n→∞

P (X(n) = j)

under the assumption that P (X(0) = i) = 1 for some i ∈ S. You are expected
to argue both that the limit exists (or does not exist) and for the value of
the limit.

8. Find
lim
n→∞

P (X(n) = j), j ∈ S,

when the initial state i belong to any recurrent communication class.

9. Find
lim
n→∞

P (X(n) = 20),

for initial distribution given by P (X(0) = 14) = 1.

[Hint: you may start by considering the distribution of the time

τ20 = inf{n > 0|X(n) = 20}

of the first jump to state 20.]
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The following question 10. is optional and not a requirement for passing the
assignment.

10. Give a complete characterisation of the limiting probabilities

lim
n→∞

P (X(n) = j), j ∈ S,

for P (X(0) = i) where i is any state in a transient communication
class.
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4.1.2 Assignment 2 from 2010/2011
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Figure 4.1: Transition diagram of Markov chain in questions 1.-7.

We consider in questions 1.-7. the continuous-time Markov chain on

S = {0, A1, B1, C1, D1, E1, F1, A2, B2, C2, D2, E2, F2}

with transition diagram given by Figure 4.1 where we assume that all βi, δi >
0, i ∈ A = {A,B,C,D,E, F}. In questions 1.-4. we consider only the
discrete-time Markov chain of jumps.

1. Write down the transition matrix, P, for the jumps of the chain.

2. Write down the submatrix, P0, of transition probabilities corresponding
to the transient states.
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3. Compute the first row of (I − P0)
−1 where I is the identity matrix.

[Hint: Express the first row of (I − P0)
−1 as

(I − P0)
−1 =

(
x0 xA xB . . . xF

?

)
and write out the entries of the first row of the matrix product

(I − P0)
−1(I − P0)

in terms of x0, xA, . . . , xF . Now use that the first row equals (1, 0, . . . , 0)
to get the (very simple!) formula for x0, xA, . . . , xF . Another possibility
is to use a computer to find (I − P0)

−1.]

4. Assuming that P (X(0) = 0) = 1 find the expected number of times
the continuous-time Markov chain jumps to state D1 before absorption.
Answer the same question for state B1.

We now consider the continuous-time Markov chain. We assume throughout
the exercise that P (X(0) = 0) = 1 and denote by

P0,j(t) := P (X(t) = j), j ∈ S,

the transition probabilities from state 0.

5. Find the expected amount of time spend in state D1 before absorption.
Answer the same question for state B1.

6. Find the absorption probabilities limt→∞ P (X(t) = j) for all of the
absorbing states, j ∈ S.

7. Write down the forward differential equations for P0,A2(t), P0,A1(t), and
P0,0(t).

For the remaining questions 8.-14. we consider the continuous-time Markov
chain on the countable state space

S = {0} ∪ {(i, j)|i = A,B,C,E,D, F, j ∈ N} = {0} ∪ A × N.

We assume that the transition intensities are given by

q(i,j),(i,j+1) = j · βi, j ∈ N, i ∈ A,
q(i,j),(i,j−1) = j · δi, j ≥ 2, i ∈ A,

q(i,1),0 = δi, i ∈ A,
q0,(i,1) = 1, i ∈ A.
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8. Draw a transition diagram for the Markov chain on the countable state
S by entending the diagram on Figure 4.1 in a suitable way. Argue
that the chain is irreducible.

The dynamics of the chain can be interpreted in the following way. Given
that X(0) = 0 then (after an exponentially distributed time) there will be a
jump to one of the states

(A, 1), (B, 1), (C, 1), (D, 1), (E, 1), (F, 1).

Then the Markov chain evolves as a birth-and-death process with intensities
βi, δi (where i ∈ A) along the relevant branch of the transition diagram. The
process is restarted any time the Markov chain returns to state 0 (-but we
are not sure that this will ever happen!).

9. Try to give a heuristic argument that explosion does not occur for
instance by giving a lower bound on the expected time of the n-th
jump of the Markov chain.

In the following questions we examine for what choices of the parameters
that the chain is recurrent. Remember that recurrence for a continuous-time
Markov chain is defined in terms of the discrete-time Markov chain of jumps.
Denote by τn the time of the n-th jump of the Markov chain and consider
the Markov chain, {Y (n)}n≥0 = {X(τn)}n≥0, of jumps. We further consider
the return time to state 0

T = inf{n ≥ 0|Y (n) = X(τn) = 0}.

10. Find the transition probabilities for the Markov chain of jumps.

11. Let α(0) = 1 and define

α(i, j) = P (T < +∞|Y (0) = (i, j)), (i, j) ∈ A× N.

Write down the system of equations for α(A, j), j ≥ 2 as given on page
49 of the textbook by Gregory F. Lawler.

12. Use without proof that any solution to the system of equations from
question 11. can be written on the form

α(A, j) =

{
cA + dA

(
δA
βA

)j
, j ≥ 1, δA 6= βA

cA + dA · j , j ≥ 1, δA = βA
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and find a solution α(A, j), j ≥ 1, with 0 ≤ α(A, j) ≤ 1, j ≥ 1, that
also satisfies the equation for α(A, 1) given by

α(A, 1) = δA
βA+δA

α(0) + βA
βA+δA

α(A, 2).

Note that the answer depends on the value of the parameters βA, δA.

13. Use the ideas from questions 11.-12. to determine for what values of
the parameters that the chain is recurrent or transient.

[Hint: Combine the results from questions 11.-12. and the transience
criterion on page 50 of the textbook by Gregory F. Lawler.]

In the final question we examine for what values of the parameters that the
chain is positive recurrent.

14. Under what conditions does there exist an invariant distribution, π,
and what is the formula for π in case it exists?

[Some help: Start by writing down the equations for π(A, j), j ≥ 2.
Then show that for certain values of the parameters the vector

π(A, j) = kA · 1j (βA/δA)j , j ≥ 1,

solves the system of equations for π(A, j), j ≥ 2. Next, write down the
equation for π(A, 1) to get an expression for the constant kA. Repeat
the exercise for the remaining i ∈ A and end up by adjusting π(0)
such that you get a probability vector. Then try to see how much you
can say about the cases not covered by the solution strategy outlined
above.]
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4.1.3 Assignment 1 from 2011/2012

To be handed out during the course.

4.1.4 Assignment 2 from 2011/2012

To be handed out during the course.
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4.2 Mathematical proofs of selected results

4.2.1 Strong Markov property

To be included next year

4.2.2 Recurrence criterion 1

In this exercise we outline a strategy for proving the recurrence criterion given
in Theorem 4 of Section 2.0. The complete proof may be found on page 35-
36 in Jacobsen & Keiding (1985). We consider a discrete-time Markov chain
{X(n)}n≥0 on S and define the time of the first visit to state j

Tj = inf{n > 0|X(n) = j}.

We further introduce the probability

f
(n)
ij = P (X(n) = j,X(n− 1), . . . , X(1) 6= j|X(0) = i)

that the first visit to state j happens at time n given that P (X(0) = i) = 1.
The quantity

fij =
∞∑
n=1

f
(n)
ij

then describes the probability of ever reaching state j if P (X(0) = i) = 1
and you are reminded that state i is recurrent if and only if fii = 1.

1. By splitting the event (X(n) = j) according to the time of the first
visit to state j show that

(P n)i,j =
n∑

m=1

(P n−m)j,jf
(m)
ij .

2. Summing the expression of question 1. over n = 1, . . . , N verify the
following upper bound

N∑
n=1

(P n)i,j ≤
N∑
m=1

f
(m)
ij ·

N∑
k=0

(P k)j,j

for N > 0.
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3. Show that for any M < N then we have a lower bound

N∑
n=1

(P n)i,j ≥
M∑
m=1

f
(m)
ij ·

N−M∑
k=0

(P k)j,j.

4. KeepingM < N fixed divide the inequalities of 2. and 3. by
∑N

n=0(P
nn)jj

to show that

M∑
m=1

f
(m)
ij ·

(
1−

∑N
n=N−M+1(P

n)j,j∑N
n=0(P

n)j,j

)
≤

∑N
n=1(P

n)i,j

1 +
∑N

n=1(P
n)j,j

≤
N∑
m=1

f
(m)
ij .

5. Let N →∞ in the expression of question 4. to get that for any M > 0
then

M∑
m=1

f
(m)
ij ≤ lim inf

N→∞

∑N
n=1(P

n)i,j

1 +
∑N

n=1(P
n)j,j

≤ lim sup
N→∞

∑N
n=1(P

n)i,j

1 +
∑N

n=1(P
n)j,j

≤
∞∑
m=1

f
(k)
ij = fij.

6. Finally, let M →∞ to get that

fij =

∑∞
n=1(P

n)i,j
1 +

∑∞
n=1(P

n)j,j
.

7. Consider the case i = j to get the result in Theorem 4 of Section 2.0.

4.2.3 Number of visits to state j

In this exercise we give a proof of Theorem 2 from Section 2.0. We study the
total number of visits to state j defined as

Nj =
∞∑
n=1

1(X(n) = j).

More precisely, we show that

P (Nj = n|X(0) = j) = fnjj(1− fjj), n ≥ 0, (4.1)

where we refer to Exercise 4.2.2 for an explanation of the notation.
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1. Split the event (Nj ≥ n + 1) into the time of the first visit to state j
and use the Markov property to obtain

P (Nj ≥ n+ 1|X(0) = i)

=
∞∑
k=1

P (Nj ≥ n|X(0) = j)P (Tj = k|X(0) = i)

= P (Nj ≥ n|X(0) = j)fij, n ≥ 1.

2. Use question 1., the identity

P (Nj = n|X(0) = j) = P (Nj ≥ n|X(0) = j)−P (Nj ≥ n+1|X(0) = j),

and the initial condition P (Nj ≥ 1|X(0) = j) = fjj to verify that

P (Nj = n|X(0) = j) = fnjj(1− fjj), n ≥ 1.

If the following questions we discuss the implication of (4.1) a little further.
Remember that (by definition!) state j is recurrent if and only if fjj = 1.

3. Argue that P (Nj = 0|X(0) = j) = 1− fjj.

4. Argue that if state j is transient then the numbers of visits to state
j follows a geometric distribution. Write down an expression for the
expected number, E[Nj|X(0) = j], of visits to state j.

5. Argue that if state j is recurrent then

P (Nj = +∞|X(0) = j) = 1.

6. Give a heuristic argument that for any initial state i 6= j it holds that

P (Nj = 0|X(0) = i) = 1− fij
P (Nj = n|X(0) = i) = fn−1jj (1− fjj)fij , n ∈ N

P (Nj = +∞|X(0) = i) = fij · 1(fjj = 1).

Comment From questions 6. and 7. of Exercise 4.2.2 it follows easily that
for a transient state j then

∞∑
n=0

(P n)jj =
1

1− fjj
and

∞∑
n=0

(P n)ij =
fij

1− fjj
.
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Since it is trivial to see that

E[Nj|X(0) = i] =
∞∑
n=0

(P n)ij

this gives us an expression for the expected number of visits to state j. The
present exercise, however, gives a complete description of the distribution of
Nj providing us with an expression for the density

P (Nj = n|X(0) = i).

4.2.4 Recurrence is a class property

In this exercise we give a proof of Theorem 3 from Section 2.0.

1. Use Theorem 4 of Section 2.0 to show that if i is recurrent and if P n
i,j > 0

for some j ∈ S and n > 0 then there is an m > 0 such that Pm
j,i > 0.

In particular, from a recurrent state i it is only possible to reach state
j if if i and j belong to the same communication class.

2. Use question 1. and Theorem 4 of Section 2.0 to show that if i is
recurrent and if P n

i,j > 0 for some n > 0 then j is also recurrent.

3. Deduce from question 2. that states in the same communication class
are either all recurrent or all transient.

4.2.5 Recurrence criterion 2

To be included next year

4.2.6 Invariant distribution - finite state space

In this exercise we discuss various steps in a formal proof for the existence
of an invariant distribution for a discrete-time Markov chain with N states
and transition matrix P .

1. Argue that 1 is always a (right) eigenvalue of P .

2. Show that 1 is always a (left) eigenvalue of P .
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3. Argue that if v = (v(i))i∈S is a (left) eigenvector for P with eigenvalue
1 and if v(i) ≥ 0, i ∈ S, then there exists an invariant distribution,
π = (π(i))i∈S, for the Markov chain.

4. Show that if there are N − 1 distinct (right) eigenvalues with | · | < 1
then (P n)i,j converges to a number a(j) that is independent of i.

5. Show that if the assumptions of questions 3. and 4. hold then we must
have that (P n)i,j → π(j) as n→∞.

Comment The Perron-Frobenius theorem may be used to verify the exis-
tence of a unique version of the eigenvector in question 3. and a slightly
weaker condition than the one given in queston 4. above. The proof is valid
in the case where all entries of Pm are strictly positive for m > 0 sufficiently
large. The last condition holds for irreducible and aperiodic Markov chains.

4.2.7 Invariant distribution

In this exercise we sketch the proof of Theorem 8 and Corollary 1 in Section
2.0. We consider an irreducible, recurrent Markov chain on S and we shall
discuss the existence of solutions to the system of equations

ν(j) =
∑
i∈S

ν(i)Pi,j, j ∈ S. (4.2)

For any i ∈ S we introduce the return time to any fixed state i

Ti = inf{n > 0|X(n) = i}

and the expected number of visits to state j before first visit to state i

ν(i)(j) = E

[
Ti−1∑
n=0

1(X(n) = j)|X(0) = i

]
.

1. Argue that ν(i)(i) = 1 and by recurrence of state i then that

ν(i)(j) = E

[
Ti−1∑
n=0

1(X(n) = j)|X(0) = i

]

= E

[
Ti∑
n=1

1(X(n) = j)|X(0) = i

]
.
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2. Verify that

E

[
Ti∑
n=1

1(X(n) = j)|X(0) = i

]

= E

[
∞∑
n=1

1(X(n) = j,X(n− 1), . . . , X(1) 6= i|X(0) = i

]
.

3. Use the Markov property to show that for n ≥ 2 then

P (X(n) = j,X(n− 1), . . . , X(1) 6= i|X(0) = i)

=
∑
l 6=i

P (X(n) = j,X(n− 1) = l, X(n− 2), . . . , X(1) 6= i|X(0) = i)

=
∑
l 6=i

Pl,j · P (X(n− 1) = l, X(n− 2), . . . , X(1) 6= i|X(0) = i)

=
∑
l 6=i

Pl,j · E[1(X(n− 1) = l, X(n− 2), . . . , X(1) 6= i)|X(0) = i].

4. Use questions 1.-3. to show that

ν(i)(j)

= P (X(1) = j|X(0) = i)

+
∞∑
n=2

P (X(n) = j,X(n− 1), . . . , X(1) 6= i|X(0) = i)

= Pi,j +
∑
l 6=i

Pl,j ·
∞∑
n=2

P (X(n− 1) = l, X(n− 2), . . . , X(1) 6= i|X(0) = i)

= Pi,j +
∑
l 6=i

Pl,j ·
∞∑
n=2

E[1(X(n− 1) = l, X(n− 2), . . . , X(1) 6= i)|X(0) = i]

= Pi,j +
∑
l 6=i

Pl,j · E[

Ti∑
n=1

1(X(n) = l)|X(0) = i]

=
∑
l∈S

Pl,j · E[

Ti∑
n=1

1(X(n) = l)|X(0) = i]

=
∑
l∈S

ν(i)(l)Pl,j.
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In questions 1.-4. we have demonstrated that for any i ∈ S then the vector
(ν(i)(j))j∈S solves (4.2). Trivially, ν(i)(j) ≥ 0 and we shall discuss when the
total mass

∑
j∈S ν

(i)(j) is finite.

5. Show that
∑

j∈S ν
(i)(j) = E[Ti|X(0) = i] and argue that (νi(j))j∈S may

be normalized into an invariant distribution (=probability) exactly if
state i is positive recurrent.

We have now showed the existence of an invariant distribution for any irre-
ducible, positive recurrent Markov chain in discrete time. An almost com-
plete proof of the uniqueness part of Theorem 8 in Section 2.0 may be con-
structed along the lines given in the following questions 6.-10.

6. Show that for any solution to (4.2) it holds for m ≥ 1 and any l ∈ S
that

ν(j) =
∑
i∈S

ν(i)(Pm)i,j ≥ ν(l)(Pm)l,j.

Deduce that for any non-negative solution (different from zero!) we
have that ν(j) > 0 for all j ∈ S.

7. Let ν = (ν(j))j∈S be any non-zero solution to (4.2). Argue from ques-
tion 6. that we may assume that ν(i) = 1 where i is any fixed state
i ∈ S.

8. Use (without proof!) that for any solution to (4.2) with ν(i) = 1 it
holds that for all j ∈ S

ν(j) ≥ ν(i)(j).

9. Use question 1., 7. and 8. to argue that the vector µ = (µ(j))j∈S
defined by µ(j) = ν(j)− ν(i)(j) is a non-negative solution to (4.2)

10. Use question 6. and 9. to deduce that for all j ∈ S then

µ(j) = 0

and conclude that (ν(i)(j))j∈S is the unique solution to (4.2) with i-th
coordinate equal to 1.

Note that once we have showed the uniqueness (up to multiplication!) of
solutions to (4.2) then it follows from question 5. that if for some i0 ∈ S
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E[Ti0|X(0) = i0] < +∞ for some i0 ∈ S then for any i ∈ S it holds that
E[Ti|X(0) = i] < +∞. In particular, the states in a recurrent are either all
positive recurrent or all null-recurrent. This was postulated in Remark 2.

Since the solution to (4.2) is unique (up to multiplication) we further conclude
that there is a unique solution, π = (π(j))j∈S, to (4.2)) with

∑
j∈S π(j) = 1

and that the solution may be represented as

π(j) =
ν(i)(j)

E[Ti|X(0) = i]
=

E[
∑Ti−1

n=0 1(X(n) = j)|X(0) = i]

E[Ti|X(0) = i]

for any fixed i ∈ S. Choosing j = i above we conclude that

π(j) =
1

E[Ti|X(0) = i]

hence the invariant probability mass in state j equals the inverse mean return
time to state j.

4.2.8 Absorption probabilities - finite state space

To be included next year!

4.2.9 Absorption probabilities - countable state space

To be included next year!

4.2.10 Backward equations

To be included next year!

4.2.11 Uniqueness of invariant distribution (cont)

In this exercise we consider the proof of Theorem 16 in Section 3.0. Let
{X(t)}t≥0 be an irreducible continuous-time Markov chain on S and let π =
(π(i))i∈S be a probability. Assume that for some t0 > 0 then

∀j ∈ S : π(j) =
∑
i∈S

π(i)Pi,j(t0). (4.3)
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1. Use that π(i0) > 0 and that for irreducible Markov chain then Pi0,j(t0) >
0 to verify from (4.3) that

∀j ∈ S : π(j) > 0.

2. Sum (4.3) over j ∈ S to obtain∑
j∈S

π(j) =
∑
j∈S

∑
i∈S

π(i)Pi,j(t0) =
∑
i∈S

π(i)
∑
j∈S

Pi,j(t0) ≤
∑
i∈S

π(i)

and conclude that

∀i ∈ S :
∑
j∈S

Pi,j(t0) = 1.

3. Argue that π is the unique invariant distribution for the discrete-time
Markov chain on S with transition probabilities P (t0) = {Pi,j(t0)}i,j∈S.

4. For an arbitrary t > 0 find n such that t < nt0. Use that P (nt0) =
(P (t0))

n to deduce that P (t) is a transition matrix, i.e. that

∀i ∈ S :
∑
j∈S

Pi,j(t) = 1.

5. Verify that
πP (t)P (t0) = πP (t0)P (t) = πP (t)

and show that πP (t) is an invariant distribution for P (t0). Use question
3. to conclude that π = πP (t).
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This short chapter contains some mathematical results that might be useful
to solve the exercises on Markov chains from Chapters 2 and 3.

5.1 Elementary conditional probabilities

For two events (=sets) A,B with P (B) > 0 the conditional probability of
A|B is defined by the formula

P (A|B) = P (A∩B)
P (B)

.

When working with Markov chains the events will often be expressed by
random variables for example as A = (X(2) = j) and B = (X(1) = i). One
may show that for three sets A,B,C with P (B ∩ C) > 0 then

P (A ∩B ∩ C) = P (A|B ∩ C)P (B|C)P (C).

For Markov chains with three set given as A = (X(2) = k), B = (X(1) = j),
and C = P (X(0) = i) this may be written out as

P (X(2) = k,X(1) = j,X(0) = i)

= P (X(2) = k|X(1) = j,X(0) = i) · P (X(1) = j|X(0) = i) · P (X(0) = i)

= P (X(2) = k|X(1) = j)P (X(1) = j|X(0) = i)P (X(0) = i)

= PjkPijφi,

where φ = (φi) is the initial distribution and P = (Pij) the matrix of transi-
tion probabilities for the Markov chain. Note that only the second equality
above explicitly makes use of the fact that {X(n)} is a Markov chain.

5.2 Some important probability distributions

5.2.1 The binomial distribution

The binomial distribution with integral parameter n and probability param-
eter p has support on the set {0, 1, . . . , n} and the density is given by

pj =

(
n

j

)
pj(1− p)n−j, j = 0, 1, . . . , n.
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The binomial distribution has mean np and variance np(1− p).
The binomial distribution describes the distribution of the number of suc-
cesses in n independent replications of an experiment with two possible out-
comes (success/failure) with probability of success equal to p.

5.2.2 The Poisson distribution

The Poisson distribution with parameter λ has support on the set N0 =
{0, 1, 2, . . .} and the density is given by

pj =
λj

j!
e−λ, j ≥ 0.

The Poisson distribution has mean λ and variance λ.

5.2.3 The geometric distribution

The geometric distribution with probability parameter p has support on the
set N0 = {0, 1, 2, . . .} and the density is given by

pj = (1− p)jp, j = 0, 1, 2, . . . .

The geometric distribution has mean 1−p
p

and variance 1−p
p2
.

The geometric distribution describes the number of failures before the first
success in a sequence of experiments with two possible outcomes (success/failure)
with probability of success equal to p.

5.2.4 The negative binomial distribution

The negative binomial distribution with integral parameter r and probability
parameter p has support on the set N0 = {0, 1, 2, . . .} and the density is given
by

pj =

(
r + j − 1

j

)
pr(1− p)j, j ≥ 0.

The negative binomial distribution has mean r(1−p)
p

and variance r(1−p)
p2

.

The negative binomial disribution with probability parameter p and integer-
valued integral parameter r ∈ N describes the distribution of the sum of
r independent geometrically distributed random variables with probability
parameter p.
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5.2.5 The exponential distribution

The exponential distribution with rate parameter µ > 0 is a continuous
distribution on [0,∞) with density

f(t) = µ exp(−µt), t > 0,

and cumulative distribution function

F (t) =

∫ t

0

f(s)ds = 1− exp(−µt), t > 0.

The exponential distribution has mean 1/µ and variance 1/µ2.

For a continuous time Markov chain the distribution of the waiting time to
the next jump follows an exponential distribution.

5.2.6 The gamma distribution

The gamma distribution with shape parameter λ and rate parameter µ > 0
is a continuous distribution on [0,∞) with density

f(t) =
tλ−1µλ

Γ(λ)
exp(−µt), t > 0,

and cumulative distribution function

F (t) =

∫ t

0

f(s)ds, t > 0.

The normalising constant in the density for the gamma distribution is given
by the gamma integral

Γ(λ) =

∫ ∞
0

sλ−1 exp(−s)ds

and for integer-valued shape parameter λ it holds that Γ(λ) = (λ− 1)! The
gamma distribution has mean λ/µ and variance λ/µ2.

The gamma distribution with rate parameter µ and integer-valued shape
parameter λ ∈ N is the distribution of the sum of λ independent exponentially
distributed random variables with rate parameter µ.
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5.3 Useful formulaes for sums and series

In many of the exercises you are asked to compute the mean of the invariant
distribution for Markov chains on a finite or countable state space, S. If the
invariant probability vector is given as π = (πi) then the mean is given as

µ =
∑
i∈S

iπi.

For other exercises you have an unnormalized version ν = (νi) of an invariant
vector and you need to find out if

∑
i∈S νi <∞ such that you can define the

invariant probability as

πj =
νj∑
i∈S νi

.

Some of the frequently occuring sums or series in this connection are

N∑
i=0

αβi = α 1−βN+1

1−β , α ∈ R, β 6= 1

∞∑
i=0

αβi = α 1
1−β , α ∈ R, |β| < 1

∞∑
i=0

αiβi = α β
(1−β)2 , α ∈ R, |β| < 1

∞∑
i=0

αβ
i

i!
= α exp(β), α, β ∈ R

∞∑
i=0

αiβ
i

i!
= αβ exp(β), α, β ∈ R.

5.4 Some results for matrices

5.4.1 Determinants of a square matrix

For a 2× 2 matrix

A =

(
a11 a12
a21 a22

)
the determinant is defined as det(A) = a11a22 − a12a21. For a higher order
square matrix A of dimension k the determinant may be defined recursively
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as

detA =
k∑
j=1

(−1)1+ja1j detA∗1j, ← expansion by first row

where

A∗1j =


a21 a22 . . . a2j−1 a2j+1 . . . a2k−1 a2k
a31 a32 . . . a3j−1 a3j+1 . . . a3k−1 a3k
...

...
...

...
...

. . .
...

...
ak1 ak2 . . . akj−1 akj+1 . . . akk−1 akk


is the (k− 1)× (k− 1) matrix obtained by removing from A all entries from
row 1 or column j.

For a 3× 3 matrix

A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33


the definition leads to the following formula for the determinant

detA = a11a22a33 + a12a23a31 + a13a21a32 − a13a22a31 − a23a32a11 − a33a12a21.

5.4.2 Diagonalisation of matrices

Let A be a k× k matrix. An eigenvalue for A is a (real or complex) number
λ such that there exists a nonzero eigenvector v with

Av = λv.

The eigenvalues of A are exactly the zeroes of the characteristic polynomial

g(λ) = det(A− λI).

If λ1, . . . , λk are the k roots of the characteristic polynomial P and v1, . . . , vk
are corresponding eigenvectors then

A
(
v1 . . . vk

)︸ ︷︷ ︸
:=O

=
(
v1 . . . vk

)︸ ︷︷ ︸
:=O


λ1 0 . . . 0
0 λ2 . . . 0
... 0

. . .
...

0 0 . . . λk


︸ ︷︷ ︸

:=D

.
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If O is invertible then we get the useful identity

A = ODO−1.

Note that above we consider socalled right eigenvectors. Similarly one may
consider left eigenvectors defined as row vectors v 6= 0 solving the equation

vA = λv.

For some of the exercises in Chapters 2 and 3 we consider right eigenvectors.

5.4.3 Exponential matrices

For any k×k matrix A consider the matrices obtained by raising A to higher
powers An. It turns out that the finite sums

N∑
n=0

An

n!
= I +

A

1!
+
A2

2!
+ . . .+

AN

N !

converge as N →∞ (entry-by-entry). This allows us to define the exponen-
tial matrix exp(A) as the limit

exp(A) :=
∞∑
n=0

An

n!
.

Note that for convenience we use the notation A0 for the identity matrix.

It is very important to note that the exponential matrix does not satisfy the
same rules as the usual exponential function. In particular, except for very
special cases it holds that

exp(A+B) 6= exp(A) · exp(B).

Closed form expressions for exponential matrices are rarely available. One
important exception is the case where we can find an invertible matrix O
such that

O−1AO = D =


d1 0 0 . . . 0
0 d2 0 . . . 0
0 0 d3 . . . 0
...

...
...

. . .
...

0 0 0 . . . dk


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is a diagonal matrix. Using that A = ODO−1 direct computations show that

exp(A) = O−1


exp(d1) 0 0 . . . 0

0 exp(d2) 0 . . . 0
0 0 exp(d3) . . . 0
...

...
...

. . .
...

0 0 0 . . . exp(dk)

O.

5.5 First order differential equations

For a continuous-time Markov chain on S with transition intensities Q =
(qi,j)i,j∈S, the transition probabilties

Pi,j(t) = P (X(s+ t) = j|X(s) = i), i, j ∈ S,

always satisfy the backward differential equations

P ′i,j(t) =
∑
l∈S

qi,l · Pl,j(t), j ∈ S

with the boundary condition that Pi,j(0) = 0, i 6= j, and Pi,i(0) = 1.

The solution has an explicit solution given as

P (t) = exp(Qt), t ≥ 0,

when the state space, S, is finite but computation of the exponential matrix
may be infeasible. For Markov chains on countable state spaces no closed
form formula for the transition probabilities exist. Sometimes we can get nice
explicit formulas for some of the transition probabilities, Pi,j(t), by solving
some of the backward or forward differential equations. Remember that the
forward differential equations take the form

P ′i,j(t) =
∑
l∈S

Pi,l(t) · ql,j, j ∈ S.

To solve the differential equations you might find it useful to know that

f ′(t) = α exp(βt) ⇒ f(t) = α
β

exp(βt) + c

f ′(t) = βf(t) ⇒ f(t) = c exp(βt)

f ′(t) = αf(t) + β exp(γt) + δ ⇒ f(t) = β
γ−α exp(γt)− δ

α
+ c exp(αt)

where c is a constant. Note that the last expression is only valid for γ 6= α.
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5.6 Second order linear recurrence equations

Many of the results in Sections 2.0 and 3.0 are stated in terms of the solution
to a system of equations. For Markov chains allowing only jumps of size one
the system of equations will often take the following form

azi−1 + bzi+1 = zi, l < i < u, (5.1)

where l or u can be −∞ or +∞. It is clear that if we know zj, zj+1 for some
time index j (and if a, b 6= 0) then we may recursively determine the values
of zi for the remaining indicies i. In mathematical terms one can formally
show that the solution to (5.1) is a vector space of dimension 2 and we shall
below describe two linearly independent solutions.

We express the solution in terms of the roots

α1 =
1 +
√

1− 4ab

2b
, α2 =

1−
√

1− 4ab

2b

to the characteristic equation for (5.1), which is given as

α = a+ bα2.

We give the solution for the two cases depending on whether there are two
distinct roots.

(α1 6= α2) Any solution to (5.1) can be written on the form

zi = c1α
i
1 + c2α

i
2, l ≤ i ≤ u

(α1 = α2) Any solution to (5.1) can be written on the form

zi = c1
(

1
2b

)i
+ c2i

(
1
2b

)i
, l ≤ i ≤ u

The constants c1, c2 can be found from boundary conditions imposed by the
relevant model.
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5.7 R stuff for dealing with Markov chains

5.7.1 Matrices

The following code defines a 4× 4 matrix P of transition probabilities for a
discrete time Markov chain.

> P<-matrix(nrow=4,ncol=4)

> P[1,]<-c(0,4/6,1/6,1/6)

> P[2,]<-c(0,0,5/7,2/7)

> P[3,]<-c(0,3/5,0,2/5)

> P[4,]<-c(0,1/2,1/2,0)

> P

[,1] [,2] [,3] [,4]

[1,] 0 0.6666667 0.1666667 0.1666667

[2,] 0 0.0000000 0.7142857 0.2857143

[3,] 0 0.6000000 0.0000000 0.4000000

[4,] 0 0.5000000 0.5000000 0.0000000

To compute the n step probabilities given by P n you need to know how to do
matrix multiplication. Below we demonstrate how to compute P 2, P 4, and
P 8.

> P2<-P%*%P

> P2

[,1] [,2] [,3] [,4]

[1,] 0 0.1833333 0.5595238 0.2571429

[2,] 0 0.5714286 0.1428571 0.2857143

[3,] 0 0.2000000 0.6285714 0.1714286

[4,] 0 0.3000000 0.3571429 0.3428571

> P4<-P2%*%P2

> P4

[,1] [,2] [,3] [,4]

[1,] 0 0.2938095 0.4697279 0.2364626

[2,] 0 0.4408163 0.2734694 0.2857143

[3,] 0 0.2914286 0.4848980 0.2236735

[4,] 0 0.3457143 0.3897959 0.2644898

> P8<-P4%*%P4

> P8
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[,1] [,2] [,3] [,4]

[1,] 0 0.3481567 0.4002902 0.2515532

[2,] 0 0.3727913 0.3645248 0.2626839

[3,] 0 0.3471067 0.4020098 0.2508835

[4,] 0 0.3574321 0.3866506 0.2559174

The invariant distribution π = (π1, π2, π3, π4) for the Markov chain must solve
the equation πP = π. In other words the invariant probability is a normalized
left eigenvector of P associated with eigenvalue 1. Below we demonstrate how
to find left eigenvectors and extract a normalized version of the eigenvector
with eigenvalue 1.

> lefteigen<-eigen(t(P))

> lefteigen

$values

[1] 1.000000 -0.646385 -0.353615 0.000000

$vectors

[,1] [,2] [,3] [,4]

[1,] 0.0000000 0.0000000 0.0000000 0.7467709

[2,] 0.6133511 -0.5457060 -0.3294501 0.1633561

[3,] 0.6571619 0.7988318 -0.4822656 -0.4278375

[4,] 0.4381080 -0.2531258 0.8117158 -0.4822895

> normInv<-lefteigen$vectors[,1]/sum(lefteigen$vectors[,1])

> normInv

[1] 0.0000000 0.3589744 0.3846154 0.2564103

Note that (in accordance with theory) the colums of P n approaches the
invariant probability vector computed above as n→∞.
In Section 5.7.2 below we define a transition matrix Q of a continuous time
Markov chain on four states. An invariant distribution π for the this chain
must satisfy the matrix equation πQ = 0 as well as the condition

∑
i∈S πi = 1.

One way to compute the invariant distribution in R is to define the matrix
Q obtained by adding to Q a column of ones and then solve the equation
πQ = (0, 0, 0, 0, 1). The code below works to find the invariant distribution in
any case where only one recurrent class of states exist such that π is unique.

> Q1<-cbind(Q,1)
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> Q1

[,1] [,2] [,3] [,4] [,5]

[1,] -6 4.0 1.0 1 1

[2,] 0 -7.0 5.0 2 1

[3,] 0 3.0 -5.0 2 1

[4,] 0 0.5 0.5 -1 1

> lm.fit(t(Q1),c(0,0,0,0,1))$coefficients

x1 x2 x3 x4

-3.552509e-18 1.333333e-01 2.000000e-01 6.666667e-01

> round(lm.fit(t(Q1),c(0,0,0,0,1))$coefficients,digits=6)

x1 x2 x3 x4

0.000000 0.133333 0.200000 0.666667

Note that the last line of code rounds the solution down to 6 significant digits
showing that the invariant probability is given by π = (0, 2/15, 1/5, 2/3).

5.7.2 Computing exponential matrices

For a continuous time Markov chain on a finite state space the transition
probabilities

Pij(t) = P (X(t+ s) = j|X(s) = i)

is given as the entries of the matrix exp(Qt), where Q is the intensity matrix
of the Markov chain. The MatrixExp function of the msm-package may be
used to compute exponential matrices in R. Below we demonstrate how to
compute the transition probabilities of the four state Markov chain with
transition intensity matrix

Q =


−6 4 1 1
0 −7 5 2
0 3 −5 2
0 0.5 0.5 −1

 .

Note that before running the following code on your computer you must
install the msm package. Initially we define the intensity matrix Q.

> library(msm)

> Q<-matrix(nrow=4,ncol=4)

> Q[1,]<-c(-6,4,1,1)

> Q[2,]<-c(0,-7,5,2)
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> Q[3,]<-c(0,3,-5,2)

> Q[4,]<-c(0,0.5,0.5,-1)

> Q

[,1] [,2] [,3] [,4]

[1,] -6 4.0 1.0 1

[2,] 0 -7.0 5.0 2

[3,] 0 3.0 -5.0 2

[4,] 0 0.5 0.5 -1

Then we compute the matrix of transition probabilities at time t = 0.1.

> P_1<-MatrixExp(Q,0.1)

> P_1

[,1] [,2] [,3] [,4]

[1,] 0.5488116 0.22501400 0.11738870 0.1087857

[2,] 0.0000000 0.54095713 0.28625502 0.1727879

[3,] 0.0000000 0.17307769 0.65413446 0.1727879

[4,] 0.0000000 0.03988527 0.04650866 0.9136061

You will often need to find the transition probabilities at several values of
the time argument for instance if you want to visualize the development
of the transtion probabilities over time. Below we compute the transition
probabilities at all time points between 0 and 1 at a density of 0.01. The
result is stored as a three dimensional array and we demonstrate how to plot
the function t→ P12(t).

> timearg<-seq(0,1,by=0.01)

> res<-lapply(timearg,function(t){MatrixExp(Q,t)})

> trprob<-array(unlist(res),dim=c(dim(res[[1]]),length(res)))

> plot(timearg,trprob[1,2,],lwd=2,col="blue",type=’l’

,xlab="Time",ylab="Probability")

5.7.3 Simulation of Markov chains

A simple way to simulate the sample path of a Markov chain is to stick to the
description of the dynamics given by the transition diagram. The following
code defines a function that can simulate sample paths for both discrete and
continous time Markov chains.
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Figure 5.1: Simulated sample path of Markov chain (left) and transiton
probability, P12 (right).

simMC<-function(tr,nJump=10,phi0=NULL){

nStates<-dim(tr)[1]

cont<-(sum(tr)==0)

if(cont){pJump<-matrix(data=0,nrow=nStates,ncol=nStates)

for(i in 1:nStates){pJump[i,-i]<-(-tr[i,-i]/tr[i,i])}}

else{pJump<-tr}

if(is.null(phi0)){phi0<-c(1,rep(0,nStates-1))}

states<-rep(0,nStates+1)

jumps<-rep(0,nStates+1)

states[1]<-sample(nStates,1,prob=phi0)

tmax<-0

for(i in 1:nJump){

if(cont){jumps[i+1]<-(-rexp(1)/tr[states[i],states[i]])+max(jumps)}

else{jumps[i+1]<-i}

states[i+1]<-sample(nStates,1,prob=pJump[states[i],])

}

return(list(y=states,t=jumps))

}
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The following code simulates and displays the sample path up to step 25 for
the discrete time Markov chain with transition matrix P of Section 5.7.1 and
initial distribution φ = (1/4, 1/4, 1/4, 1/4).

> mcDisc<-simMC(P,nJump=25,phi0=c(0.25,0.25,0.25,0.25))

> mcDisc$y

[1] 3 2 3 4 2 4 3 2 3 2 4 3 2 3 2 3 4 3 2 4 2 3 4 3 2 3

Below we simulate and plot the sample path for the first 10 jumps of the
continuous time Markov chain with intensity matrix Q of Section 5.7.2 for
initial distribution given by φ = (1, 0, 0, 0).

> mcCont<-simMC(Q,nJump=10,phi0=c(1,0,0,0))

> plot(mcCont$t,mcCont$y,type=’s’,xlab="Time",ylab="State"

,axes=F,col="blue",lwd=2)

> axis(side=1)

> axis(side=2,at=1:4)

The function simMC does not apply for simulation of Markov chains on count-
able state spaces. However, for the most common examples discussed in this
collection of exercises it should be easy (or at least possible) to write simple
functions for simulation of the sample paths based on the transition diagram
of the chain.

The Poisson process is a continuous time Markov chain on N0 moving only
in jumps of size 1 hence everything simplifies a great deal as we only need to
simulate the jump times. The waiting times between jumps are independent
and identically distributed exponential variables with rate λ (-the intensity
of the Poisson process). Below we show how to simulate the first 50 jump
times of a Poisson process with intensity 1 and plot the resulting sample
path.

wait<-rexp(50,rate=1)

t<-cumsum(c(0,wait))

plot(0:50,t,type=’s’,lwd=2,col="blue",xlab="Time"

,ylab="Number of jumps")
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Figure 5.2: Simulated sample path of a Poisson process with intensity 1.
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