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1. INTRODUCTION

The k-nearest-neighbors (k-NN) algorithm has been widely used as one of the simplest and model-free supervised
classifier. It requires a distance function in feature space in order to identify the k nearest neighbors, and its
performance is expected to be highly influenced by the specific choice of metric. The metric used is often chosen
as the standard Euclidean metric, reflecting the absence of any specific prior on the data. However, especially
for high-dimensional data, this choice can contribute to the deterioration of the classifier, as it assumes that
the data points are distributed in a hyperspherical manner in feature space and independent of the class labels,
which might not always be optimal in terms of class-label discrimination.

In recent years, it has been shown that using an appropriate metric can yield significant improvements when
compared to the Euclidean metric.1 In this work, we studied some special metrics, all from the simple class of
generalized Euclidean ones, defined by a symmetric (semi) positive definite (SPD or SSPD) matrix M on the
feature space

dM (x, y)2 = (x− y)tM(x− y). (1)

The metrics under investigation are three Mahalanobis distance based metrics and a metric obtained through
supervised learning. The first ones reflect typically some knowledge or a priori on the distribution of unlabeled
data, while the last one takes explicitly into account labeled data.

2. ADAPTIVE METRIC k-NN

2.1 Brownian Image Model

A well studied family of models for natural images are the so called Fractional Brownian Image Models introduced
by Mandelbrot.2 According to Brownian Image Model theory, all the partial derivatives of a Brownian image
at any given location (x, y) are Gaussian distributed. Covariance of the outcome of the different filters can be
computed analytically:

E[〈∂xm1yn1Gs1 ∗ I, ∂xm2yn2Gs2 ∗ I〉] = (−1)
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whenever both m = m1 + m2 and n = n1 + n2 are even, otherwise the covariance is 0. The resulting metric
defined by Eq. (1) is with matrix MBIM = Σ−1

BIM and we will refer to it as the “theoretical metric”.

2.2 Normalized metric

The normalized metric situation is a very commonly used one, where one assumes that features are statistically
independent. The covariance matrix ΣN reduces to the diagonal matrix of variances of individual features. These
variances are computed empirically: (ΣN )ii = Var(xi), i = 1, . . . , N, where xi denotes the i-th component of the
N -dimensional feature vector x. The resulting metric, as defined by Eq. (1), will be denoted as MN = Σ−1

N . We
will refer it as the “normalized metric” or “standardized metric”.

2.3 Empirical metric

With Gaussian assumptions on data set, the covariance can be estimated via the classical empirical formula:

ΣEMP =
1

U

U∑
i=u

(xu − µ)(xu − µ)T , (3)

where xu, u = 1, ..., U are sample points in the data set, U is the number of sample points, and µ is the empirical
mean of the data set. The resulting metric is referred as “empirical metric”, which reflects the structure of the
unlabeled training data.
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Euclidean metric:     0.8252
Theoretical metric:   0.9135
Empirical metric:     0.8984
Normalized metric:  0.9220
Optimized metric:    0.9313
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Euclidean metric:    0.7926
Empirical metric:     0.8751
Normalized metric:  0.9191
Optimized metric:    0.9203

Figure 1: The ROC curves and area under ROC curves of classification results using the standard Euclidean
metric and four adaptive metric (left: only using Gaussian derivative features; right: using all the features).

2.4 Optimized metric

As opposed to the previous discussed cases, this section introduces a metric obtained through minimization of a
cost-functional corresponding to the weighted Leave-One-Group-Out (LOGO) error of k-NN.

Given a sample set D, we assume it is naturally partitioned via “group” p, and let Dp denote the subset of

samples that “belong to group” p and D̂p its complement D\Dp. The u-th sample for group p is denoted x(u,p),
and its label is denoted by l(u,p). The weighted k-NN LOGO error as:

E(M ;D, k) =
∑
(u,p)

k∑
n=1

wnδ
(

NNn(x(u,p), D̂p), l(u,p)

)
, (4)

where NNn(x, S) is the label of n-th nearest neighbor of x, and wn is defined by
∑k

j=1 C
j
Uξ

j(1 − ξ)U−j , where
ξ = n

U and U is the cardinality of the data set. The error is approximated by a differentiable smooth functional
and optimized using a stochastic version of the gradient descend algorithm.

3. EXPERIMENT & RESULT

We applied the proposed methods on cardiovascular disease (CVD) data for detecting calcifications in the lumbar
section of the aorta in X-ray images. The data set consists of 14 images, and a total of 52 features at each of
5000 points were extracted from each image: the image intensity, gradient magnitude, Hessian based features,
and Gaussian derivatives at total order up to 3 at three different scales.

Figure 1 shows the classification results of the Receiver Operating Characteristic (ROC) curves and the area
under the ROC curves (numbers in the bottom boxes). As observed from the figure, all the proposed methods
perform better than the standard Euclidean metric. The optimized metric outperforms the rest. Among the rest
three methods, which method performs the best depends on the training data.

4. CONCLUSION

We discussed adaptive metric k-NN for classification based on different prior knowledge: three Mahalanobis
distance based metrics and a optimized metric obtained via minimizing a k-NN specific classification error.
Experiment on CVD data showed that k-NN classifier benefited greatly from the proposed metrics as compared
to the standard Euclidean one. The adaptive metric can be also applied to other distance based classifiers.
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