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Weighted Overlap Dominance - A Procedure for Interactive

Selection on Multidimensional Interval Data∗

Jens Leth Hougaard and Kurt Nielsen†

September 21, 2011

Abstract

We present an outranking procedure that supports selection of alternatives represented by multiple

attributes with interval valued data. The procedure is interactive in the sense that the decision

maker direct the search for preferred alternatives by providing weights of the different attributes as

well as parameters related to risk attitude and weighted dominance. The outranking relation builds

on pairwise comparisons between optimistic and pessimistic weighted values as well as weighted

dominance relations supported by volume based measures. The suggested procedure is referred to

as the Weighted Overlap Dominance procedure (WOD).

Keywords

Interactive decision making, interval data, outranking procedures, multi criteria decision mak-

ing.

1 Introduction

In the present paper we suggest to use an interactive outranking procedure designed for situ-

ations where a decision maker wishes to rank a set of alternatives, each described by multiple

attributes with interval data. The suggested procedure will be dubbed the Weighted Overlap

Dominance procedure (WOD).
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By now there is a substantial literature on multicriteria outranking methods, see e.g., Chen

and Hwang (1992). Best known are: ELECTRE (Roy (1972)), VIKOR (Opricovic and Tzeng

(2007), where Sayadi et al. (2009) extends to interval data), PROMETHEE (e.g. Brans and

Vincke (1985). Téno and Mareschal (1998) extents to interval data) and TOPSIS (Chen and

Hwang (1992)). Jahanshahloo et al. (2006) and Jahanshahloo et al. (2009) extends to interval

data).

Whilst these methods can be extended to incorporate interval data, the suggested WOD proce-

dure is directly constructed for pairwise comparisons of alternatives represented by multidimen-

sional interval data and this is an important difference between WOD and the approaches of

ELECTRE, VIKOR, PROMETHEE and TOPSIS - a difference which will be further discussed

in Section 2 below. Loosely speaking, the outranking in WOD is based on weighted overlap be-

tween the alternatives represented as data cubes. The decision maker specifies criteria weights

as well as a number of decision parameters relating to overlap size as measured by volume ratios.

The WOD method is intended as an integrated part of a decision support system. We imagine a

situation with an analyst providing the initial set of alternatives and a decision maker providing

preference information concerning the size of the various choice parameters of WOD. The analyst

then provides the resulting ranking and the decision maker further consider revising his choice

of parameters and so forth in an ongoing iterative process until an acceptable result is obtained.

Consequently, the decision support system may be divided into: 1) a pre-analysis and processing

of data by the analyst and 2) communication and interaction between the decision maker and

the analyst concerning choice parameters as well as intermediate results.

As input to the system, the analyst provides one or more sets of interval data for each criteria

and alternative. In cases where data can be seen as realizations of some underlying random

variable, the interval representation can be constructed as a simplification of the true underlying

data distribution. In this case multiple sets of interval data will collectively provide an improved

approximation. The first set of interval data may, for example, represent the boundaries con-

taining 95 % of all likely outcomes, the second set 85 % etc. Clearly, the nature of the decision

problem is crucial for the number of relevant sets.

With interval data in place for each alternative, the WOD method provides a sorted list of

alternatives as a function of the user’s stated choice parameters. To ease the communication

we suggest two different user interfaces: A) one that presents a single sorted list of alternatives

(in equivalence classes) given the choice of interval data (e.g. the boundary including 95 % of

all likely outcomes) and B) one that presents multiple sorted lists of alternatives, one for each

set of interval data. Option A) provides room for presenting actual numbers of the different

criteria for each alternative and option B) provides an overview of how the ranking changes

according to the other sets of interval data (data uncertainty). In either case the user can state

his preferences in terms of weights, risk attitude and weighted dominance. The system produces

new sorted lists of alternatives as these preferences change.

The potential field of applications is to some extend similar to that of the related methods

ELECTRE, PROMETHEE, TOPSIS and VIKOR. For instance, in connection with variant of
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the TOPSIS method, Sun (2010) lists a number of actual applications ranging from ”ranking

hotels based on evaluation information” to ”selecting orders in make-to-order basis when orders

exceed production capacity”. Particularly relevant areas of application for the suggested WOD

procedure are characterized by a significant data uncertain making interval data representation

appropriate.

The outline of the paper is as follows. Section 2 motivates the suggested WOD method and

relate WOD to other well-known outranking methods. Section 3 defines the WOD procedure in

detail. Section 4 provides an illustrative application comparing WOD to an interval version of

TOPSIS. Section 5 suggests how to imbed WOD into an interactive decision support framework

and 6 concludes with a few remarks on potential real world applications.

2 WOD: Motivation and Relation to Other Methods

The WOD procedure concerns pairwise outranking of alternatives. As such, it primarily relates

to four other well-known approaches: ELECTRE, PROMETHEE, TOPSIS and VIKOR. These

methods have been compared in several papers, e.g. Opricovic and Tzeng (2007, 2004). In the

following we shall briefly discuss differences and similarities between these methods and WOD.

In short, the idea of the ELECTRE method (Roy (1972), Roy (1996)) is to define a set of criteria

supporting and rejecting respectively a given outranking relation. The supporting criteria are

then associated with an aggregate weight whereas criteria for which the outranking relation is

rejected are associated with individual scores. One alternative is now said to outrank another if

the total weight supporting the outranking relation is above a certain threshold and no criterion

is rejected with a score above a certain level. Concerning the details of the method, it should

be noted that four different versions of the approach exists.

The PROMETHEE method, see e.g. Brans and Vincke (1985) introduces ‘net preferences

flows’ as aggregating functions. In short, user determined preference functions and weights are

associated to each criterion and outranking degrees are determined for each pairwise comparison

of alternatives leading to leaving, entering and net ‘flows’ (average outranking degrees) for each

alternative. Téno and Mareschal (1998) provides one way of extending this approach to include

interval data.

In the TOPSIS method, see e.g. Chen and Hwang (1992), user determined weights are used

to score the alternatives and a ranking is based on the relative (normed) closeness to an ideal

solution (the hypothetical alternative having maximal score in each criterion) and (normed)

distance to an anti-ideal solution (the hypothetical alternative having minimal score in each

criterion). Jahanshahloo et al. (2006) and Jahanshahloo et al. (2009) extends this approach to

interval data.

The VIKOR method, see e.g. Opricovic (1998), is also based on distances to an ideal and

anti-ideal solution respectively. These distances are weighted and normed and a compromise
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solution is determined. See Opricovic and Tzeng (2004) for a detailed comparison of VIKOR

and TOPSIS. Sayadi et al. (2009) provide an extension to interval data.

As mentioned in the introduction, the WOD method is constructed to handle pairwise com-

parisons of alternatives represented by interval data. The fact that it is directly constructed

for interval data is a first important aspect distinguishing WOD from the other methods. For

example, in case of substantial data uncertainty we find it crucial that the outranking relation

between any pair of alternatives is independent of the presence of other alternatives in the choice

set. If this is not the case then the uncertainty of (irrelevant) alternatives may influence the

outranking relation between the pair of alternatives in question. Such independence of ”irrele-

vant” alternatives is satisfied by WOD (by construction) but not by methods like TOPSIS and

VIKOR even these can be extended to handle interval data. Based on distances to an ideal

and anti-ideal defined over the entire choice set, the resulting ranking of these methods depend

on data from all alternatives. We find this a significant drawback of the TOPSIS and VIKOR

methods when handling alternatives that are characterized by highly uncertain data.

It is not obvious how methods like ELECTRE and PROMETEE can be extended to handle

interval data. For PROMETEE one idea is found in Téno and Mareschal (1998). Compared

to the suggested WOD procedure the decision maker has to be much more specific in defining

when alternatives are preferred to other alternatives since PROMETEE builds on (user defined)

criteria specific preference functions for each pair of alternatives. Setting up such preference

functions is quite demanding in terms of information from the decision maker and introducing

uncertainty in the form of interval data does not add to a simplification. Moreover, depending

on how the extension to interval data is done, it is far from clear how the uncertainty of one

alternative will influence the outranking relation between two other alternatives.

As in the vast majority of multicriteria methods the suggested WOD procedure will rely on

quantitative criteria weights in order to reflect the relative importance of each criterion. Given

such weights each alternative, represented by its data cube (multidimensional interval data),

possesses a maximum and a minimum weighted value. Compared to the alternative that obtains

the highest maximum weighted value all dominated alternatives are disregarded. Then, based

on weighted values, the ‘overlap’ between pairs of remaining alternatives are considered and

an outranking relation is defined according to how likely (value) dominance occur as well as

according to the decision makers risk attitude. Whether value dominance occurs or not is a

judgement based on volume measures. Consider Figure 1 and 2 below, representing two types

of situations of pairwise comparisons (in a two-dimensional model).

In case of Figure 1 it is clear that the respective maximum and minimum weighted value of

alternative A is larger than that of alternative B. Hence, from the outset it seems reasonable

to conclude that B can never outrank A from a value maximizing perspective. However, if the

size of the marked area for alternative B is sufficiently large, the decision maker may feel that

A and B are equally desirable. Using WOD, B can never outrank A, but with suitable choice of
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Figure 1: Pairwise comparison type 1
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β

Figure 2: Pairwise comparison type 2

parameters, A and B may end up in the same equivalence class. Note that (interval extensions

of) methods like TOPSIS may actually result in situations where B strictly outranks A.

The case of Figure 2 is more ambiguous. Here, there is no evident dominance relation since

even though the maximum weighted value of A is larger than that of B, the minimum weighted

value of B is larger than that of A. In this case it seems reasonable to consider the relative size

of the areas α and β, where α is a proxy for the part of A being better than B while β is a

proxy for the part of B being better than A. In fact, it is tempting to consider the ratio between

these volumes as measuring the risk attitude of the decision maker, which is done in WOD.

Using (interval extensions of) methods like TOPSIS may result in A outranking B, while a risk

averse decision maker might well find B more desirable than A as would indeed be the result

of WOD. At least in the interval versions of TOPSIS presented in Jahanshahloo et al. (2006)

and Jahanshahloo et al. (2009) there is no parameter that represents the risk attitude of the

decision maker - another drawback in case of uncertain alternatives.

3 The WOD Procedure

Consider a set N = {1, . . . , n} of potential alternatives, each characterized by a set M =

{1, . . . , m} of different criteria. Let data be interval valued [xL
ij , x

U
ij ] and consider the normalized

score of alternative i ∈ N with respect to criteria j ∈ M given by yij = [yL
ij , y

U
ij ], where

yL
ij =

xL
ij

√

(xL
ij)

2 + (xU
ij)

2

and

yU
ij =

xU
ij

√

(xL
ij)

2 + (xU
ij)

2

.
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For each alternative i ∈ N, (normalized) data hence consists of the m-dimensional cube ci =

[yL
ij , y

U
ij ]

m.

We say that one cube ci dominates another cube cz if yL
i = (yL

i1, . . . , y
L
im) > (yU

z1, . . . , y
U
zm) = yU

z ,

i.e. if the minimal values of ci all are larger than the maximal values of cz .

Let w ∈ Rm
+ be a vector of criteria weights (as expressed by the decision maker) and consider

an alternative io in the set determined by solutions to,

io = argmax
i∈N

w · yU
i ,

i.e. an alternative for which the maximal weighted value is obtained.

Relative to the alternative io we now define an index Iio
(z) measuring the weighted overlap

between io an all other alternatives z ∈ N as follows:

Iio
(z) =

V (cz |io)

V (cz)
∈ [0, 1], (1)

where

cz |io = {x ∈ [yL
zj , y

U
zj ]

m | w · x ≥ w · yL
io

}

and V (·) is the volume operator with V (∅) = 0. Note that cz|io is empty if cz is dominated by

io implying that Iio
(z) = V (∅)/V (cz) = 0 in this case. See Figure 3 for an illustration.

j1

j2

yU
io

yU
z

yL
z

yL
io

V (cz|io)

Figure 3: Initial exclusion of alternatives.
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Let Z = {z ∈ N | Iio
(z) ≥ α, α ∈ [0, 1]} ⊆ N be the set of alternatives with α percentage

weighted overlap relative to io (note that Z contains io itself since Iio
(io) = 1 and hence is

non-empty). The parameter α can be considered as exogenously chosen by the decision maker

in order to reduce the initial set of relevant alternatives (or by the analyst for the same purpose).

Note that if Z = {io} then io will be the natural selection.

Hence, assume that Z 6= {io} and consider all

|Z|!

2!(|Z| − 2)!

pairs z, z′ ∈ Z.

For each pair z, z′ ∈ Z assume that w · yU
z ≥ w · yU

z′ (otherwise relabel). Define the sets,

Ẑ = {x ∈ [yL
zj , y

U
zj]

m | w · x > w · yU
z′}, (2)

Ž = {x ∈ [yL
zj , y

U
zj]

m | w · x < w · yL
z′}, (3)

and

Z̃ ′ = {x ∈ [yL
z′j , y

U
z′j ]

m | w · x > w · yL
z }. (4)

See Figure 4 and 5 below for an illustration of the three sets Ẑ, Ž and Z̃ ′ (as volumes). Note

that Ẑ is empty if and only if w · yU
z = w · yU

z′ , Ž is empty if and only if w · yL
z′ ≤ w · yL

z and Z̃ ′

is empty if and only if w · yU
z′ ≤ w · yL

z .

We now define the outranking relation ≻ on Z as follows:

If Z̃ ′ = ∅ then z outranks z′ (written z ≻ z′).

If Ž = ∅ then

z ≻ z′ ⇔ P (z > z′) > β,

where

P (z > z′) =
V (Ẑ)

V (cz)
+

V (cz \ Ẑ)

V (cz)

V (cz′ \ Z̃ ′)

V (cz′)

and β ∈ [0, 1] is a parameter chosen by the decision maker. Otherwise the two alternatives are

considered equivalent, i.e., z ∼ z′ .

If Ž 6= ∅ then

z ≻ z′ ⇔
V (Ẑ)

V (Ž)
> γ,

z ∼ z′ ⇔
V (Ẑ)

V (Ž)
= γ,

and

z′ ≻ z ⇔
V (Ẑ)

V (Ž)
< γ,

where γ ∈ R+ is a parameter chosen by the decision maker. The different components in the

indexes are illustrated in Figure 4 and 5 below.
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j1

j2

yU
z

yU
z′

yL
z′

yL
z

V (Ẑ)

V (Ž)

Figure 4: Outranking in case of two-sided overlap: Ž 6= ∅.

j1

j2

yU
z

yU
z′

yL
z′

yL
z

V (Ẑ)

V (cz \ Ẑ)

V (cz′ \ Z̃ ′)

V (Z̃ ′)

Figure 5: Outranking in case of one-sided overlap: Ž = ∅.
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The first part is straightforward since in case Z̃ ′ = ∅ we have that lowest value of z is greater

than the highest value of z′ and hence z outranks z′ given the chosen weights w. The second

part relates to the case where the value intervals of z and z′ overlap. The scoring P (z > z′)

can be interpreted as how likely it is that z is having a higher value than z′. If the scoring is

high enough we say that z outranks z′, otherwise the two alternatives are considered equivalent.

Finally, the last part deals with the case where the value interval of z′ is a subset of the value

interval of z and choice between them therefore becomes a matter of risk attitude. The ratio

V (Ẑ)/V (Ž) reflects the probability of z having a higher value than the maximal value of z′

to the probability of z having a lower value than the minimal value of z′. Thus, if γ = 1 the

decision maker can be seen as risk neutral, if γ > 1 as risk averse, and if γ < 1, as risk loving.

If the ratio V (Ẑ)/V (Ž) < γ we conclude (reversely) that z′ outranks z.

As straightforward consequences of the definition of the WOD procedure we record that:

Proposition 1. Given the decision makers choice of parameters w, β and γ, then for any pair

of alternatives the WOD procedure results in either an outranking relation ≻ or an equivalence

relation ∼.

and

Proposition 2. Given the decision makers choice of parameters w, β and γ, the WOD procedure

is affine invariant, i.e., it produces the same ranking if data is transformed by xi → aixi + bi

for ai, bi ∈ R+.

Remark: For fixed criteria weights w the result follows from normalization of data. However,

the result also holds for non-normalized data if w is allowed to be changed in accordance with

the re-scaling of data, i.e., if wi → wi/ai.

We can further show:

Proposition 3. Given the decision makers choice of parameters w, β and γ, the WOD out-

ranking relation ≻ on Z is semi-transitive, i.e.

z ≻ z′, z′ ≻ z′′ 6⇒ z′′ ≻ z.

Proof: Fix an alternative z and consider another alternative z′, where z ≻ z′.

If Z̃ ′ = ∅ and z′ ≻ z′′ for a third alternative z′′ then clearly z ≻ z′′.

If Ž = ∅ we have P (z ≻ z′) > β. Now, consider a third alternative z′′ where z′ ≻ z′′. If Z̃ ′′ = ∅

it is clear that z ≻ z′′. If Ž ′ = ∅ we have P (z′ ≻ z′′) > β implying that w · yU
z′′ ≤ w · yU

z′
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and w · yL
z′′ ≤ w · yL

z′ , which further implies that P (z > z′′) > β. Thus, z ≻ z′′. If Ž ′ 6= ∅ we

have V (Ẑ ′)/V (Ž ′) > γ. In case w · yL
z′′ ≥ w · yL

z we clearly have that (the volume ratio on the

relation between z and z′′) V (Ẑ)/V (Ž) ≥ V (Ẑ ′)/V (Ž ′) > γ and consequently z ≻ z′′. In case

w · yL
z′′ < w · yL

z the particular choice of β can render z equivalent with z′′ (but we can never

have z′′ ≻ z).

If Ž 6= ∅ we have V (Ẑ)/V (Ž) > γ. Now, consider a third alternative z′′ where z′ ≻ z′′. If

Z̃ ′′ = ∅ two cases may occur: i) If w · yU
z′′ < w · yL

z then obviously z ≻ z′′, ii) If w · yU
z′′ ≥ w · yL

z

then the particular choice of β may result in z ∼ z′′ (but we can never have z′′ ≻ z). If Ž ′ = ∅

two cases may occur: i) If w · yL
z′′ > w · yL

z in which case the ratio V (Ẑ)/V (Ž) on the relation

between z and z′′ becomes less than the ratio V (Ẑ)/V (Ž) on the relation between z and z′, i.e.,

V (Ẑ)/V (Ž) > γ, and thereby we have z ≻ z′′, ii) If w · yL
z′′ < w · yL

z we are in a situation where

z ≻ z′′ or z ∼ z′′ (but we can never have z′′ ≻ z). Finally, if Ž ′ 6= ∅ then V (Ẑ ′)/V (Ž ′) > γ

which implies that the ratio V (Ẑ)/V (Ž) on the relation between z and z′′ is larger than γ too,

which in turn implies that z ≻ z′′. Q.E.D.

We finally add the following straightforward observation:

Observation 4. Looking at the cases Ž = ∅ and Ž 6= ∅ respectively,

1. An increase in β tends to increase the size of the equivalence classes.

2. An increase in γ lowers the likelihood that the alternative with maximal value outranks

other alternatives.

4 A Comparative Data Analysis

To provide an illustration of the suggested WOD procedure we will make a comparison with an

interval version of TOPSIS. Thus, we apply the same data set as originally used in Jahanshahloo

et al. (2006) to illustrate their interval extension of TOPSIS .

As mentioned earlier, the two procedures differ significantly. TOPSIS rank all alternatives by

distances to the same constructed ideal and anti-ideal reference points. These reference points

are not actually existing alternatives but infeasible goals made up by the extreme values across

all alternatives. In contrast, WOD compare the alternatives two and two and then rank them

accordingly.

In both procedures the ranking is influenced by user given criteria weights. However, the WOD

procedure involves further decision variables to be settled by the user or the analyst.

The parameter α is introduced in order to limit the set of relevant alternatives. It is a form of

pre-screening device: If α = 0 all options are considered. With increasing α those alternatives

which have only small value overlap are gradually excluded.
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The parameters β and γ are introduced in order to provide a more nuanced ranking among the

remaining alternatives.

The parameter β is used in case of one-sided overlap, as illustrated in Figure 3, where the worst

and best outcome of alternative A both dominates those of alternative B. Here, β is used to

define when the decision maker will find alternative B indifferent to A. If β = 0 there will be

no equivalence classes and WOD provides a complete and strict ranking. With increasing β we

get increasing equivalence classes.

Finally, the parameter γ is used in situations of two-sided overlap as illustrated in Figure 4,

where the worst outcome of alternative B dominates the worst outcome in alternative A but

where the best outcome of alternative A is dominates the best outcome of alternative B. γ

reflects the user’s risk attitude: γ = 1 can be viewed as risk neutrality while γ > 1 and γ < 1

can be viewed as risk aversion and risk attraction respectively.

Below, we shall illustrate how the three choice parameters in WOD provide a more flexible

ranking procedure than that of TOPSIS. The applied data set covers 15 bank branches each

represented by four financial ratios. Data is taken from Table 1 in Jahanshahloo et al. (2006)

and contains four sets of interval data for each branch. No further information is provided

concerning the nature of the data besides that the first criteria is a cost criteria (where less is

better than more) and the remaining three criteria are benefit criteria (where more is better

than less). The WOD procedure is constructed to handle only benefit criteria like a traditional

MCDM method. Therefore the sign is changed on all values representing the first criteria. Also,

to make it directly comparable data are normalized, see Table 3 in the appendix for the data

set.

Analyzing a reduced set of alternatives

For the purpose of illustrating the WOD procedure and the differences between WOD and

TOPSIS graphically, we will initially consider only the two first criteria C1 and C2 and the 6

bank branches (alternatives): A7, A9, A10, A11, A12 and A14. The data is taken from Table 3

in the appendix and illustrated in Figure 6. Later we apply the WOD procedure on the full

data set.

Table 1 provides rankings of the 6 alternatives with different values of the choice parameters in

WOD. The criteria weights are the same in all rankings and they are chosen such that criteria

1 is twice as important as criteria 2. The first four rankings represent WOD with four different

sets of choice parameters and the last ranking represents that of TOPSIS. Each of the four

WOD rankings demonstrate differences between the way WOD and TOPSIS rank alternatives.

In WOD 1-3, α = 0 meaning that no alternatives are excluded a priori. This makes it easy to

compare WOD to TOPSIS directly. In WOD 4, α is strictly positive, which exclude alternatives

that are de facto dominated by A9, the top ranking alternative with the chosen criteria weights.

First, we notice that for a risk neutral decision maker the ranking of WOD and TOPSIS are

not the same (comparing WOD 1 and TOPSIS in Table 1).
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Table 1: Different rankings with same criteria weights

Ranking WOD 1 WOD 2 WOD 3 WOD 4 TOPSIS

W1 2 2 2 2 2

W2 1 1 1 1 1

α 0 0 0 0.0001 n/a

β 0 0 0.25 0.25 n/a

γ 1 13,9 13,9 13,9 n/a

Rank 1 A9 A9 A9 ∼ A7 A9 ∼ A7 A7

Rank 2 A7 A7 A12 A12 A9

Rank 3 A14 A12 A14 A14 A12

Rank 4 A12 A14 A11 A14

Rank 5 A11 A11 A10 A11

Rank 6 A10 A10 A10

With the chosen criteria weights WOD will never rank A7 as the single best alternative unlike

TOPSIS. Figure 6 illustrates that both the worst and the best outcome of A9 dominates that

of A7. Hence, according to WOD, A7 can never outrank A9. At best they can be considered

equivalent. In WOD 3, β is set to 0.25, which is the threshold for which A7 and A9 fall into

the same equivalent class.

The role of the choice parameter γ is illustrated in Figure 7. While TOPSIS rank A12 above

A14, WOD requires γ to be larger than or equal to 13.9 in order to produce the same ranking

(see WOD 2, 3 and 4 in Table 1). A value of γ = 13.9 indicates that the decision maker should

be highly risk loving to justify the ranking of TOPSIS.

Requiring that α must be strictly positive, as in WOD 4, makes alternatives A10 and A11

irrelevant. From Figure 6 and 7 it is clear that relative to A9, these alternatives are dominated.

Analyzing the full set of alternatives

Consider the full data set. Initially we put equal weights on all four criteria as in the example

in Jahanshahloo et al. (2006). Table 2 shows five different rankings of the 15 alternatives with

different choice parameters. The first four rankings represent WOD with four different sets of

choice parameter values and the last ranking represents that of TOPSIS from Jahanshahloo

et al. (2006). Each of the four rankings by WOD represent differences between the way WOD

and TOPSIS rank alternatives.

In WOD 1 and 2, no alternatives are excluded a priori. The two procedures rank the alternatives

almost in the same way. Comparing WOD 1 and TOPSIS, the only differences come from A7

and A3 as well as A11 and A15, which in both cases reverse the ranking. However, if A1 (the top

ranking alternative) is removed from the set of alternatives, A7 will also outrank A3 according

to TOPSIS. This illustrates that the ranking in TOPSIS between any two alternatives depends

on the presence of a third alternative as discussed in Section 2.
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A11

C1

C2

A7

A9
A10

A12

A14

Figure 6: WOD can not rank A7 above A9

A11

C1

C2

A7

A9
A10

A12

A14

Figure 7: WOD rarely rank A12 above A14

In WOD 2, β = 0.5 which does not change the ranking as such, but creates two equivalent classes.

It becomes clear that separating the alternatives A14, A3, A7, A2 and A12 is less obvious. This

is also the case for A13 and A10.

In WOD 3 and 4, α is strictly positive, which exclude alternatives that are de facto dominated

by A1 (the top ranking alternative with the chosen criteria weights). This significantly reduces

the set of alternatives. Only four undominated alternatives are left. Compared to TOPSIS, the

ranking of the three top ranking alternatives A1, A6 and A14 is the same. However, the fourth

ranking alternative, A2, rank sixth in TOPSIS. This means that the two alternatives (A3 and

A7) that outrank A2 in TOPSIS, are in fact dominated by A1 and hence considered irrelevant

in WOD. Setting β = 0.5 as in WOD 4, only makes A14 and A2 equivalent.

5 The WOD Procedure as Decision Support

By definition (and as illustrated above) the WOD procedure relies on various choice parameters.

The field of Multi Criteria Decision Making (MCDM) provides a rich framework for handling

the required interaction to settle these choice parameters, for a survey see e.g., Korhonen et al.

(1992), Bogetoft and Pruzan (1997) or the more recently Figueira et al. (2005).

Lessons from the MCDM literature are that preferences cannot be expressed in a vacuum and

that the focus on more specific alternatives helps defining the preferences in an interactive fash-

ion. Typically, interactive MCDM procedures rely on a progressive articulation of the decision

makers preferences. In many MCDM systems such as for instance Pareto Race (Korhonen and

Wallenius (1988)), the idea is therefore to let the user gradually learn about best alternatives.

Typically, the decision maker interacts with a computer program (the analyst) in order to select

the preferred alternative. The approach is illustrated in Figure 8.
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Table 2: Different rankings with same criteria weights

Ranking WOD 1 WOD 2 WOD 3 WOD 4 TOPSIS

W1 1 1 1 1 1

W2 1 1 1 1 1

W3 1 1 1 1 1

W4 1 1 1 1 1

α 0 0 0.000001 0.000001 n/a

β 0 0.5 0 0.5 n/a

γ 1 1 1 1 n/a

Rank 1 A1 A1 A1 A1 A1

Rank 2 A6 A6 A6 A6 A6

Rank 3 A14 A14 ∼ A3 ∼ A7 ∼ A2 ∼ A12 A14 A14 ∼ A2 A14

Rank 4 A7 A9 A2 A3

Rank 5 A3 A5 A7

Rank 6 A2 A11 A2

Rank 7 A12 A15 A12

Rank 8 A9 A13 ∼ A10 A9

Rank 9 A5 A4 A5

Rank 10 A11 A8 A15

Rank 11 A15 A11

Rank 12 A13 A13

Rank 13 A10 A10

Rank 14 A4 A4

Rank 15 A8 A8

User

Selection Tool

Rankings
Weights

Risk attitude

(Decision Maker)

(Analyst)

Figure 8: Progressive articulation of preferences
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Figure 9: With one set of interval data per

criteria

Figure 10: With more sets of interval data per

criteria

As such, the WOD procedure can naturally be imbedded in an iterative process where the

decision maker expresses his preferences through choice of the various parameters used in the

WOD procedure and the analyst replies with a new ranking of the alternatives. Hereby, the

procedure allows the user a considerable flexibility and learning support. The user can change

his preferences (choice parameters) as he goes along and his implicit articulation of preferences

is facilitated by the gradual ranking of alternatives.

Even with as few as 15 alternatives, as in the applied data set, a well-designed interface is crucial

for a successful interaction between the user and the WOD procedure. Below, we discuss how

to ease the communication with the user.

First, we consider the situation with a single set of interval data for each decision criteria, as in

all of the examples above. Second, we consider situations with two or more sets of interval data

for each decision criteria, i.e. a situation with more detailed information about the underlying

data distribution as discussed in Section 1. From the user’s point of view WOD returns simple

ordered rankings of the most relevant alternatives given the selected choice parameters and

interval data. We illustrate how this simplicity can be reflected in the user interface.

Consider the situation with a single set of interval data for each decision criteria–a situation

where the result is a single ranking of all non-excluded alternatives. Figure 9 provides a simple

user interface, where the alternatives are ranked in equivalence classes and where the user may

change the most relevant choice parameters. The user is given the opportunity to change the

weights (w), the risk attitude (γ) and the weighted dominance (β) by simply dragging the bars

in the screen interface. Hereby, the user makes sure that the ranking is consistent with the

user’s risk preferences by adjusting the ”Risk” bar and the ”Prudent” bar allows the user to

control how sensitive the ranking should be by introducing equivalent classes.

Now, consider the situation with multiple sets of interval data for each decision criteria–a

situation where the WOD procedure is applied to each set of interval data and the aggregated
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result consists of multiple rankings of all non-dominated alternatives. Figure 10 provides a

simple user interface, where the resulting rankings of alternatives are presented side by side. As

in Figure 9 the user may change the most relevant choice parameter by dragging a bar. Figure 10

illustrates how the ranking of alternatives can change when applied to different levels of interval

data. Here ”interval 2” represents the one from Figure 9 and interval 1 and 3 are respectively a

more narrow and a broader interval. As the interval becomes broader the outranking procedure

tends to select more alternatives and cluster them into larger equivalence classes, as illustrated

in Figure 10. Marking the changes in the ranking for the top search results provides an easy

overview of sensibility with respect to data uncertainty.

6 Final Remarks

To sum up, we introduced a new outranking method for interval data, dubbed WOD. We fur-

ther argued that WOD have several advantages over existing methods in case of high data

uncertainty. For instance, WOD makes pairwise comparisons where the ranking between two

alternatives is independent of the presence (and thereby also the uncertainty) of other alterna-

tives in the choice set, and WOD explicitly includes a decision parameter reflecting the decision

makers risk attitude. We suggest that WOD is imbedded in a decision support framework en-

abling a progressive articulation of the decision makers preferences through a sequential choice

of parameters and intermediary solutions.

Finally, a few remarks on potential real world application of WOD. As mentioned, the most

relevant field of application for WOD is connected with high data uncertainty. Lack of precise

information may come from the nature of the problem itself or it may come from lack of time

and resources to collect and analyze data. A good example of a potential application for

WOD could therefore be decision support for investors looking for investment opportunities

for placing early seed capital in new Startup companies. Investing seed capital in a Startup

is particularly uncertain and the available data is typically available in the form of interval

data e.g., as the range between pessimistic and optimistic estimates of budgets and various key

numbers. In particular, the emerging market for ”crowdfunding”, where many investors invest

small amounts, is a relevant field of application. The investors in such a market are typically

little experienced and little informed about the details of the individual Startups. Therefore, a

systematic and intuitive way of selecting good alternatives is required. One example of a such

a market is www.growvc.com.

References

Bogetoft, P. and Pruzan, P.: 1997, Planning with Multiple Criteria, Copenhagen Business School

Press.

Brans, J. and Vincke, P.: 1985, A preference ranking organisation method: (the promethee

method for multiple criteria decision-making), Management Science 31(6), 647–656.

Page 16 of 18



Institute of Food and Resource Economics University of Copenhagen
This is a post-print version of an article published in Applied Mathematical Modelling

Chen, S.-J. and Hwang, C.-L.: 1992, Fuzzy multiple attribute decision making. Methods and

applications, Springer-Verlag.

Figueira, J., Greco, S. and Ehrgott, M.: 2005, Multiple criteria decision analysis: state of the

art surveys, Springer.

Jahanshahloo, G., Lotfi, F. H. and Davoodi, A.: 2009, Extension of topsis for decision-making

problems with interval data: Interval efficiency, Mathematical and Computer Modelling

49, 1137–1142.

Jahanshahloo, G., Lotfi, F. and Izadikhah, M.: 2006, An algorithmic method to extend top-

sis for decision-making problems with interval data, Applied Mathematics and Computation

175, 1375–1384.

Korhonen, P., Moskowitz, H. and Wallenius, J.: 1992, Multiple criteria desicion support - a

review, European Journal of Operational Research 63, 361–375.

Korhonen, P. and Wallenius, J.: 1988, A pareto race, Naval Research Logistics 35, 615–623.

Opricovic, S. and Tzeng, G.: 2004, Compromise solution by mcdm methods: A comparative

analysis of vikor and topsis, European Journal of Operational Research 156(2), 445–455.

Opricovic, S. and Tzeng, G.: 2007, Extended vikor method in comparison with outranking

methods, European Journal of Operational Research 178(2), 514–529.

Roy, B.: 1972, La method electre ii, sixieme conference international de rechearche operationelle,

Dublin.

Roy, B.: 1996, Multicriteria methodology for decision aiding, Kluwer Academic Publishers.

Sayadi, M. K., Heydari, M. and Shahanaghi, K.: 2009, Extension of vikor method for decision

making problem with interval numbers, Applied Mathematical Modelling 33, 2257–2262.

Sun, C.-C.: 2010, A performance evaluation model by integrating fuzzy AHP and fuzzy TOPSIS

methods, Expert Systems with Applications 37(12), 7745–7754.
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7 Appendix

The applied data is given in Table 1 in Jahanshahloo et al. (2006) and covers 15 bank branches

each represented by four financial ratios (criteria C1 to C4). Each criteria is represented by

a single set of interval data (Upper and Lower values). Table 3 below, provides the applied

normalized data where the sign is changed on the first criteria, such that all four criteria can

be treated as benefit criteria (where more is better than less).
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Table 3: The applied data set. Source: Jahanshahloo et al. (2006).

Bank branch C1 C2 C3 C4

A1 Upper – 0.164534481 0.600187091 0.286550607 0.508665906

A1 Lower – 0.085636246 0.517686651 0.197485759 0.07062422

A2 Upper – 0.303869448 0.203708251 0.376843937 0.232058216

A2 Lower – 0.149530125 0.197236868 0.028397379 0.167063637

A3 Upper – 0.033611332 0.232938502 0.201096293 0.037355231

A3 Lower – 0.016418021 0.219827204 0.172017257 0.015205881

A4 Upper – 0.299960477 0.075866284 0.009086263 0.006748259

A4 Lower – 0.145143657 0.075033416 0.003685442 0.004629466

A5 Upper – 0.02061794 0.03182867 0.135290179 0.027110746

A5 Lower – 0.01004455 0.027814624 0.135230253 0.012910157

A6 Upper – 0.163548681 0.079930813 0.364371861 0.430084882

A6 Lower – 0.079478419 0.078346655 0.303666939 0.340316225

A7 Upper – 0.058684199 0.078781228 0.336581232 0.183268232

A7 Lower – 0.026577238 0.064316495 0.253164398 0.040961858

A8 Upper – 0.62118069 0.147530988 0.011378428 0.006350528

A8 Lower – 0.299900576 0.134526222 0.010764187 0.004305579

A9 Upper – 0.084850687 0.133661682 0.180586659 0.166921068

A9 Lower – 0.041817776 0.12317011 0.085529221 0.078289306

A10 Upper – 0.242532488 0.092508684 0.022135124 0.040931882

A10 Lower – 0.124982676 0.086985723 0.020367311 0.027422204

A11 Upper – 0.159377857 0.065761491 0.019603256 0.107361653

A11 Lower – 0.077828573 0.05944098 0.015101323 0.068478376

A12 Upper – 0.107823594 0.060883672 0.202774218 0.316959061

A12 Lower – 0.051956456 0.054926137 0.111746797 0.08801177

A13 Upper – 0.230290426 0.066769225 0.060262969 0.029230269

A13 Lower – 0.112752594 0.061699265 0.049558708 0.014648766

A14 Upper – 0.147320632 0.160438819 0.303052698 0.333056911

A14 Lower – 0.071912061 0.118644902 0.182961222 0.203342656

A15 Upper – 0.050000259 0.023073857 0.013101297 0.034451945

A15 Lower – 0.024761381 0.02302395 0.011191159 0.020671021
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