

Identification of two putative QTL regions with influence on susceptibility to helminth infections in pigs

Nejsum, Peter; Thamsborg, Stig Milan; Göring, H.H.H.; Karlskov-Mortensen, Peter; Archibald, A.L.; Roepstorff, Allan Knud; Anderson, T.J.C.; Fredholm, Merete; Jørgensen, Claus Bøttcher

Published in: Congress handbook

Publication date: 2010

Document version Early version, also known as pre-print

Citation for published version (APA):
Nejsum, P., Thamsborg, S. M., Göring, H. H. H., Karlskov-Mortensen, P., Archibald, A. L., Roepstorff, A. K., ...
Jørgensen, C. B. (2010). Identification of two putative QTL regions with influence on susceptibility to helminth infections in pigs. In Congress handbook: the XIIth international congress of parasitology: Australia, 2010 Australian Society for Parasitology.

Download date: 07. Apr. 2020

IDENTIFICATION OF TWO PUTATIVE QTL REGIONS WITH INFLUENCE ON SUSCEPTIBILITY TO HELMINTH INFECTIONS IN PIGS

¹Nejsum, P.; ¹Thamsborg, S. M.; ²Göring, H. H. H.; ³Karlskov-Mortensen, P.; ⁴Archibald, A. L.; ¹Roepstorff, A.; ²Anderson, T. J. C.; Fredholm³, M. and ³Jørgensen, C. B.

¹⁾ Parasitology, Health and Development, Department of Veterinary Disease Biology, Faculty of Life Sciences, University of Copenhagen, Dyrlægevej 100, DK-1870 Frederiksberg C, Denmark. Southwest Foundation for Biomedical Research, Genetics, 7620 NW Loop 410, San Antonio, TX 78245-0549, USA. ³⁾ Basic Animal and Veterinary Sciences/Genetics & Bioinformatics, Faculty of Life Sciences, University of Copenhagen, Grønnegårdsvej 3, 1870 Frederiksberg C, Denmark. ⁴⁾ The Roslin Institute, University of Edinburgh, Genetics and Genomics, Roslin, Midlothian EH25 9PS, United Kingdom

Abstract

Intestinal helminth infections are causing health and welfare problems in both human and animal populations. A family with individuals infected with *Ascaris* (large round worm) and *Trichuris*, (whipworm), was constructed, comprising a total of 194 pigs from 19 full-sib litters. Our data demonstrate that genetic components are responsible for approximately 45% and 70% of the variation in *Ascaris* and *Trichuris* parasite loads, respectively. A genome scan using a Illumina 7K poircine SNP-chip has been performed in order to locate genomic regions controlling susceptibility. A total of 2304 informative SNPs were used to perform additive measured genotype association analysis, using a random effects heritability model to account for family relationships. For *Trichuris* parasite load (faecal egg excretion) 4 and 8 out of 14 SNPs located within a 2.4 Mb region on SSC13 obtained P values less than 0.01 and 0.05, respectively. For *Ascaris* worm load 3 of 8 SNPs in a 8 Mb region on SSC4 achieve a P < 0.001, with 27 of 50 SNPs giving a P < 0.05. Even though none of the SNPs obtained genome wide significance after Bonferroni correction (P < 0.0002), we consider these regions as candidate QTLs due to the finding of multiple SNPs with low P-values within a narrow region. The candidate QTLs will be verified in unrelated pig material.

The XIIth International Congress of Parasitology

Melbourne, Australia 15th – 20th August 2010

