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Søren Johansen y and Theis Langez
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Abstract

The purpose of the present paper is to analyse a simple bubble model suggested
by Blanchard and Watson. The model is de�ned by yt = st�yt�1 + "t; t = 1; : : : ; n;
where st is an i.i.d. binary variable with p = P (st = 1); independent of "t i.i.d. with
mean zero and �nite variance. We take � > 1 so the process is explosive for a period
and collapses when st = 0: We apply the drift criterion for non-linear time series to
show that the process is geometrically ergodic when p < 1, because of the recurrent
collapse. It has a �nite mean if p� < 1; and a �nite variance if p�2 < 1: The question
we discuss is whether a bubble model with in�nite variance can create the long swings,
or persistence, which are observed in many macro variables. We say that a variable is
persistent if its autoregressive coe¢ cient �̂n of yt on yt�1; is close to one. We show that

�̂n
P! �p if the variance is �nite, but if the variance of yt is in�nite, we prove the curious

result that �̂n
P! ��1. The proof applies the notion of a tail index of sums of positive

random variables with in�nite variance to �nd the order of magnitude of
Pn
t=1 y

2
t�1 andPn

t=1 ytyt�1 and hence the limit of �̂n:

Keywords: Time series, explosive processes, bubble models

JEL Classi�cation: C32.

1 Introduction

The paper by Blanchard and Watson (1982) investigates the nature and the presence of
bubbles in �nancial markets and whether the presence of bubbles in a particular market can
be detected statistically.

�We are grateful to Roman Frydman and Michael Goldberg for suggesting the problem and the Center
for Research in Econometric Analysis of Time Series (CREATES, funded by the Danish National Research
Foundation) for �nancial support.
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They suggested the model de�ned by "t i.i.d. (0; �2) and independent binary variables st
for which

P (s = 1) = p;P (s = 0) = 1� p = q:
The process is generated by

yt = st�yt�1 + "t; t = 1; : : : ; n;

where we assume for notational reasons that s0 = 0 and y0 = "0. Throughout we consider
the distribution of the data conditional on y0 and denote the probability measure P; the
expectation E; and the variance V ar. The process yt is explosive in the periods where st = 1
and creates a bubble which busts when st = 0; an event that has probability q = 1� p:
We de�ne persistence of yt as a value close to one of the limit of the autoregressive estimator

�̂n =

Pn
t=1 ytyt�1Pn
t=1 y

2
t�1

: (1)

Frydman and Goldberg (2007) raised the question if such a bubble model with in�nite
variance model could create the long swings, or persistence, which is typical of macro variables.
In order to discuss this problem we �rst prove that if p < 1 the process yt is geometrically

ergodic with an invariant distribution P�:We denote mean and variance with repect to P� by
E� and V ar�: Then, if p� < 1; E�(yt) = 0 and if p�2 < 1; V ar�(yt) <1.
We show that if p�2 < 1 and E"2t < 1; then �̂n

P! p� and under the further condition
p�4+� < 1 and E("4+�t ) <1; �̂n is asymptotically Gaussian, whereas if p�2 > 1; we prove the
curious result that �̂n

P! ��1: Thus, in this sense the bubble model cannot create the long
swings that are characteristic for unit root processes, because the only way �̂n can converge
to one is if � = 1; and then the variance is �nite because p < 1.

2 A condition for stationarity and �nite variance

The Blanchard Watson model is a special case of the autoregressive conditional root (ACR)
model, see Bec, Rahbek, and Shepard (2008) and we use the methods developed there in this
section.

Lemma 1 Let p < 1 < �: Then yt is a geometrically ergodic Markov chain and there exists
an invariant distribution, P�; so that yt becomes stationary. If p�d < 1; for some d � 1 and
Ej"tjd <1 then E�(jytjd) <1.

Proof. We �rst note that yt is a Markov chain with transition density

h(ytjyt�1 = y) =
1

�
�(
yt � �y
�

)p+
1

�
�(
yt
�
)q > 0;

where � is the density function for the Gaussian distribution. Thus the transition kernel for the
Markov chain yt has a density with respect to the Lebesgue measure, which is strictly positive
and bounded away from zero on compact sets. This establishes that the Markov chain is
irreducible, aperiodic, and that compact sets are small, see Bec, Rahbek, and Shepard (2008)
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for similar results for general ACR models. Next we establish that the Markov chain satis�es
a drift criterion for a drift function, D(:) de�ned below, which by Theorem 15.0.1 (iii) of Meyn
and Tweedie (1993) implies that the chain is geometrically ergodic with invariant distribution
P� and E�D(yt) <1. The condition we have to check for a continuous function D(y) > 0 is
that

E(D(yt)jyt�1 = y)
D(y)

< 1 for jyj � A; (2)

for some constant A > 0 and D(y) is bounded for jyj � A:
If p�d < 1 we can take D(y) = 1 + jyjd and �nd from yt = st�yt�1 + "t; that

E(D(yt)jyt�1 = y)
D(y)

=
1 + Ejst�y + "tjd

1 + jyjd � 1 + [(p�djyjd)1=d + (Ej"tjd)1=d]d
1 + jyjd ! p�d < 1;

for jyj ! 1 which shows that (2) is satis�ed. We have used the Minkowsky inequality in the
form EjV1+V1jd � [E(jV1jd)1=d+E(jV2jd)1=d]d for two random variables V1 and V2 with �nite
d0th moment.
Thus, although the process is explosive in the intervals where st = 1; it collapses to "t if

st = 0; and the bubble busts. It is this repeated collapse that creates a stationary process,
which starts each period in a new ".

3 Asymptotic properties of the autoregressive estima-
tor when the variance is �nite

In this section we analyse the estimator �̂n if p�2 < 1 so the variance of yt is �nite and show
that �̂n

P! p� and that n1=2(�̂n � p�) is asymptotically Gaussian.

Theorem 2 Assume that p < 1 < � and that p�2 < 1 and E"2t <1; then

�̂n
P! p�: (3)

If, furthermore, there exists a constant � > 0 such that p�4+� < 1 and Ej"tj4+� <1; then

n1=2(�̂n � p�)
d! N(0;

pq�2E�(y
4
t�1) + �

2E�(y
2
t�1)

E�(y2t�1)
2

): (4)

Proof. If p�2 < 1 and E("2t ) < 1; then by Lemma 1 for d = 2, V ar�(yt) < 1; and by the
law of large numbers for ergodic processes

�̂n
P! E�(ytyt�1)

E�(y2t�1)
= p�;

because E�(ytyt�1) = E�[(st�yt�1 + "t)yt�1] = p�E�(y2t ); which shows (3).
Next we de�ne from

n1=2(�̂� p�) = n�1=2
Pn

t=1[(st � p)�yt�1 + "t]yt�1
n�1

Pn
t=1 y

2
t�1

3



the martingale di¤erence sequence

Xnt = n
�1=2[(st � p)�yt�1 + "t]yt�1;

which satis�es
nX
t=1

V art�1(Xnt) = n
�1

nX
t=1

[pq�2y2t�1 + �
2]y2t�1

P! [pq�2E�(y
4
t�1) + �

2E�(y
2
t�1)] > 0;

by the law of large numbers because E�y4t <1, by Lemma 1 for d = 4. Finally we check the
Lindeberg condition:

nX
t=1

X2
nt1fjXntj��g � ���=2

nX
t=1

jXntj2+�=2

= n��=4���=2n�1
nX
t=1

j(st � p)�yt�1 + "tj2+�=2y2+�=2t�1
P! 0;

as Ej"tj4+� < 1; and Ejyt�1j4+� is �nite by Lemma 1 and the assumption p�4+� < 1. The
central limit theorem for martingales, see Hall and Heyde (1980), now gives the result.

4 The probability limit of the autoregressive estimator
when the variance is in�nite

In this section we �nd an approximation to the autoregressive estimator and bound the
remainder terms in the conditional distribution given the variables fstg1t=0: We then apply
this result to prove the main result about the limit of the autoregressive coe¢ cient.
Let Nn =

Pn
t=1(1� st) be the number of busts before or at n; and let the times of bust,

when st = 0; be T �i ; i = 0; : : : ; Nn + 1: These satisfy

0 = T �0 < T
�
1 < T

�
2 < � � � < T �Nn � n < T

�
Nn+1;

and we let Ti = T �i �T �i�1 be the length of the periods, i = 1; 2; : : : The last period before n is
of length n�T �Nn : The variables Ti are independent and have the same geometric distribution

P (Ti = m) = p
m�1q;m = 1; 2; : : :

We now construct a double array of i.i.d. (0; �2) random variables "it; i = 1; 2; : : : ; t =
0; 1; : : : and construct the process yt as follows. In the �rst period we use "1t; t = 0; 1; : : : and
�nd for t = 1; : : : ; T1 � 1 that, starting at y0 = "10; we get because s1 = � � � = sT1�1 = 1; that

yt =
tX

v=0

�t�v"1v = �
t

1X
v=0

��v"1v � ��1
1X
v=0

��v"1;v+t+1 = �
tZ1 � ��1Z1t; (5)

where Z1t has the same distribution as Z1 with E(Z1) = 0 and V ar(Z1) = �2=(1� ��2): The
last observation of the �rst period, yT1 ; has sT1 = 0; and we de�ne

yT1 = "20;
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which acts as initial value for the second bust, where "2t; t = 0; 1; : : : are used to construct
the process.
Similar expressions can be found for the i0th period, t = T �i�1 + 1; : : : ; T

�
i � 1

yt =

t�T �i�1X
v=0

�t�T
�
i�1�v"iv = �

t�T �i�1
1X
v=0

��v"iv���1
1X
v=0

��v"i;v+t�T �i�1+1 = �
t�T �i�1Zi���1Zit; (6)

and de�ne yT �i = "i+1;0: Note that by using a double array f"itg we have made sure that Ti
and Zi are independent and i.i.d. We next apply this representation to �nd an approximation
to the autoregressive estimator.

Lemma 3 The product moments have the representation

nX
t=1

y2t�1 =
1

�2 � 1[
NnX
i=1

�2TiZ2i +
Nn+1X
i=1

Ai];

nX
t=1

yt�1yt =
��1

�2 � 1[
NnX
i=1

�2TiZ2i +
Nn+1X
i=1

Bi];

where the remainder terms satisfy

E(jAij� + jBij�jTi) � c��Ti ; i = 1; : : : ; Nn + 1: (7)

It follows that the estimator based on yt; t = 0; 1; : : : ; n; has the representation

�̂n =

Pn
t=1 ytyt�1Pn
t=1 y

2
t�1

= ��1
PNn

i=1 �
2TiZ2i +

PNn+1
i=1 BiPNn

i=1 �
2TiZ2i +

PNn+1
i=1 Ai

: (8)

Proof. We �nd from (5) that

T1X
t=1

y2t�1 =

T1X
t=1

(�t�1Z1 � ��1Z1t�1)2 =
�2T1

�2 � 1Z
2
1 + A1

A1 =
�1
�2 � 1Z

2
1 + �

�2
T1X
t=1

Z21t�1 � 2Z1
T1X
t=1

�t�2Z1t�1:

We need the inequality valid for a � 0 and b � 0

(a+ b)� = b� + �

Z a

0

(b+ x)��1dx � b� + �
Z a

0

x��1dx = b� + a�; 0 < � � 1: (9)

This implies that

E(jA1j�jT1) � a1E(Z2�1 ) + a1T1E(Z
2�
1 ) + a2�

�T1E(Z2�1 ) � c��T1 ;

which shows (7) for A1. The same proof can be used for Ai; i = 2; : : : ; Nn; and it is seen
that the bound c does not depend on i: For i = Nn + 1; we have ANn+1 =

Pn
t=T �Nn+1

y2t�1 �PT �Nn+1
t=T �Nn+1

y2t�1 and the same proof works.
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Next we �nd, noting that yT1 = "20; that

T1X
t=1

yt�1yt =

T1�1X
t=1

(�t�1Z1 � ��1Z1t�1)(�tZ1 � ��1Z1t) + (�T1�1Z1 � ��1Z1T1�1)"20

=
�2(T1�1)

�2 � 1 �Z
2
1 +B1

B1 =
��Z21
�2 � 1 + �

�2
T1�1X
t=1

[Z1t�1Z1t � �t+1Z1t�1Z1 � �tZ1Z1t] + ��1(�T1Z1 � Z1T1�1)"20:

The same proof shows that E(jB1j�jT1) satis�es (7). The terms Bi; i = 2; : : : ; Nn + 1 can be
handled similarly.
In the following we assume that p�2 > 1 so that the variance of yt is in�nite: We want

to �nd the limit of the regression estimator given in (8) and for that we need the order of
magnitude of the main term

PNn
i=1 �

2TiZ2i and bounds on the remainder terms.
We �nd the order of magnitude of these terms using the theory of sums of positive random

variables with in�nite variance, see for instance Feller (1971, Chapter IX, Section 8). It
turns out that it is not possible to normalize the main term to convergence; because of the
discrete nature of the geometric distribution, but instead we bound Ti using an exponentially
distributed variable Ui; for which

PNn
i=1 �

2UiZ2i can be normalized to convergence.
Let Ui be i.i.d. exponentially distributed variables with parameter � = � log p; and

represent the waiting times as one plus the integer part of Ui :

Ti = [Ui] + 1:

Then
P (Ti = m) = P (m� 1 � Ui < m) = e��(m�1) � e��m = pm�1q:

We have the evaluations
Ui � Ti � Ui + 1;

and hence the bounds for any �nite m

mX
i=1

�2UiZ2i �
mX
i=1

�2TiZ2i � �2
mX
i=1

�2UiZ2i : (10)

This shows that it is enough to �nd the order of magnitude of
Pm

i=1 �
2UiZ2i , and for this

we need the so-called tail index of a positive random variable. We �nd from

P (�2U > x) = P (U � log x

2 log �
) = e�

� log x
2 log � = x

log p
2 log � = x��=2; � = � log p

log �
;

that
P (�2UZ2 > x) = E[P (�2UZ2 > x)jZ)] = E(xZ�2)��=2 = x��=2E(Z�):

Thus the tails of the distributions of �2U and �2UZ2 decrease as x��=2; and we say that the
tail index of �2U and �2UZ2 is �=2. Note that p < 1 < p�2 implies 0 < � < 2:
With these tools we can now prove the main result.
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Theorem 4 For p < 1 < p�2; and E("2t ) <1; it holds that

m�2=�
mX
i=1

�2UiZ2i
d! U�=2;m!1; (11)

where Zi =
P1

v=0 �
�v"iv is given by (6) and U�=2 is a stable distribution of index �=2. This

implies that

�̂n =

Pn
t=1 ytyt�1Pn
t=1 y

2
t�1

P! ��1: (12)

Proof. Proof of (11): By construction �2UiZ2i ; i = 1; : : : ;m are i.i.d. and Zi is independent of
Ui; so the tail index of �2UiZ2i is �=2: The result (11) now follows from Feller (1971, Theorem
2 p. 305, and (8.14)).
Proof of (12): We use the representation (8) for �̂n but �rst replace the stochastic Nn by

the nonstochastic m and show that

Rm =
m�2=�Pm

i=1 �
2TiZ2i +m

�2=�Pm+1
i=1 Bi

m�2=�Pm
i=1 �

2TiZ2i +m
�2=�Pm+1

i=1 Ai

P! 1; m!1:

From the bounds (10) and (11) it follows that it is enough to show that

m�2=�
m+1X
i=1

(jAij+ jBij))
P! 0; m!1:

The expectation of this need not be �nite when � > 1, but because 0 < � < 2 we can choose
� so that �=2 < � < min(1; �): Then p�� < 1 and E(��T1) =

P1
m=0(�

�p)mp�1q < 1: From
(7) and (9) we �nd

E(m�2=�
m+1X
i=1

(jAij+ jBij))� � m�2�=�(m+ 1)E(jA1j� + jB1j�) � cm1�2�=�E(��T1)! 0;

because �=2 < � and E(��Ti) <1 when � < �:
Next we want to prove that we can replace m by Nn =

Pn
t=1(1� st): By the law of large

numbers we have n�1Nn
P! q so that for given " > 0; � > 0 we can choose an n0 so that for

n � n0 we have with probability greater than 1� �

� [n(q � ")] � Nn � [n(q + ")]

� ( [n(q+")]
[n(q�")])

2=� � 1 + "

� [n(q + ")]�2=�
P[n(q+")]+1

i=1 (jAij+ jBij) � "=(1 + "):

Then it follows that with probability greater than 1� �

N�2=�
n

Nn+1X
i=1

(jAij+ jBij) � (
[n(q + ")]

[n(q � ")])
2=�[n(q + ")]�2=�

[n(q+")]+1X
i=1

(jAij+ jBij) � ";
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so that N�2=�
n

PNn+1
i=1 (jAij+ jBij)

P! 0: This proves (12).
We conclude this section with a small simulation. Figure 1 shows the simulated values

of the median (and 2.5% and 97.5% quantiles) of 1000 simulations of �̂n for n = 10:000 and
� = 1:032: It is seen that for p < ��2 = 0:939 (the �nite variance case) the limit is almost
proportional to p with slope � and for p > ��2 = 0:939 (the in�nite variance case) the limit is

almost constantly equal to ��1 = 0:969; which illustrates the result that �̂n
P! min(p�; ��1):

Figure 1: The �gure shows the result of 1:000 simulations for n = 10:000 of �̂n for � = 1:032
and 0:9 < p < 1: We have plotted the median and the 2:5% and 97:5% quantiles of the
simulations.
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