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The World Agroforestry Centre, an autonomous, non-profit research organization, 
aims to bring about a rural transformation in the developing world by encouraging 
and enabling smallholders to increase their use of trees in agricultural landscapes. 
This will help to improve food security, nutrition, income and health; provide shelter 
and energy; and lead to greater environmental sustainability.

We are one of the 15 centres of the Consultative Group on International 
Agricultural Research (CGIAR). Headquartered in Nairobi, Kenya, we operate six 
regional offices located in Brazil, Cameroon, India, Indonesia, Kenya, and Malawi, and 
conduct research in eighteen other countries around the developing world.

We receive our funding from over 50 different investors. Our current top ten 
investors are Canada, the European Union, Finland, Ireland, the Netherlands, Norway, 
Denmark, the United Kingdom, the United States of America and the World Bank. 
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Introduction • Why a guide, and for whom?

Purpose and audience
In the last fifteen years, there has been an enormous increase worldwide in the use 
of molecular markers to assess genetic diversity in trees.  These approaches are able 
to tell us how genetic variation is structured in natural, managed and cultivated tree 
stands, and they can provide significant insights into the defining features of different 
species. 

Molecular techniques can provide more detailed information than phenotypic 
studies of genetic variation are able to do, knowledge that can then, in theory, be 
applied to devise more optimal management strategies for trees within natural and 
human landscapes, in order to benefit users and the environment. Proper genetic 
management is crucial as trees are planted to combat poverty, fight malnutrition, 
provide medicines and fulfil other needs, such as the mitigation of climate change 
and the prevention of soil degradation.  As very little information has been available 
on how genetic variation is structured in the majority of tropical trees, modern 
molecular methods provide clear opportunities for the quantification of diversity.

Despite evident potential, a survey of the literature indicates that the implementation 
of practical, more optimal management strategies based on results from molecular 
marker research is to date very limited for tropical trees, both in farmland and forest 
settings. To explore why this is the case, in 2006 the World Agroforestry Centre 
(ICRAF) undertook a survey of molecular laboratories in low-income countries in 
the tropics. Problems in application highlighted by surveyed scientists included a lack 
of knowledge on the different procedures available for molecular genetic studies, 
and the absence of guidance on how best to apply methods specifically to tropical 
trees. 

To help meet these needs, in 2008 ICRAF published a practical protocol guide on 
molecular marker methods for tropical trees (Muchugi et al. 2008a; available for 
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download from ICRAF’s web site and from the CD-ROM on which this statistical 
guide is provided).  This practical protocol guide addresses the basics of population 
genetics (e.g., the processes of mutation, migration, recombination, selection and drift), 
the issues to consider before embarking on molecular marker studies, the design 
of field sampling strategies for tree species, and the strengths and disadvantages of 
different laboratory techniques.  The guide also provides detailed practical protocols 
for various marker methods. 

To help further in addressing identified needs, in 2008 ICRAF developed a one week 
‘training of trainers’ course for African scientists titled Agroforestry and Tree Genetics: 
Making Markers Meaningful.  This course was designed to explore the links between 
molecular marker methods and global production and conservation challenges for 
trees in the context of smallholder agroforestry systems.  The materials developed 
for this course are available as a CD-ROM from ICRAF’s training unit (see ICRAF’s 
contact address at the start of this guide), and we encourage all those interested in 
the practical application of markers on trees to make use of these resources.

Another constraint that ICRAF’s 2006 survey identified for the proper application 
of molecular markers is the effective handling and analysis of data sets once they 
have been generated. This current guide has been designed to address this need. 
It has been created especially for students (MSc, PhD) and other researchers in 
developing countries that find themselves isolated from their peers and – when 
faced with an apparently bewildering array of options – find it difficult to settle on 
appropriate methods for analysis. Most benefit will be obtained from this guide if 
it is used together with the companion volume on practical protocols, and so we 
recommend that scientists read both before proceeding further.

What this guide does, and does not, cover
This guide deals with the ‘population genetic’ analysis of dominant markers and does 
not consider how to analyse information from co-dominant methods (although we 
intend that this will be the subject of a later publication).  The meanings of the terms 
‘co-dominant’ and ‘dominant’ were addressed in the practical protocol guide and so 
we provide only a brief explanation below. 
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For co-dominant markers – and when dealing with a diploid organism – each individual’s 
score at a particular locus consists of two numbers or characters, one for each 
chromosome state. Complete genotypic information, including on heterozygosity, is 
available, and allele frequency distributions among sampled individuals are provided 
directly. Dominant markers are however different. In this case, each locus (or band 
position, we use the terms interchangeably here) is scored in a ‘binary’ fashion, as 
‘product presence’ [�] or ‘product absence’ [0]. For a diploid individual, only one 
number can be recorded at a locus, even though heterozygote ‘present-absent’ 
[�, 0] states may well be present, as these heterozygotes are indistinguishable from 
homozygote ‘present-present’ [�,�] conditions. Full genotypic information is clearly 
not available from dominant markers: instead, population allele frequencies must be 
estimated indirectly, based on assumptions described in this guide. 

The inability to score heterozygotes restricts the types of data analysis that are 
possible for dominant markers. As trees are generally highly heterozygous, out-
crossed organisms, the inability to directly observe heterozygote conditions would 
therefore appear to be a distinct disadvantage. Certainly, in an ideal world, co-
dominant markers would be the method of choice for assessing genetic variation 
in tree species. However, many of the molecular marker methods most used 
on tropical trees, especially in laboratories in low income-nations, are dominant 
approaches. One reason for this apparent discrepancy is that, unlike co-dominant 
techniques, dominant methods do not normally require prior sequence knowledge 
on the organism being tested, information that is often not available for tropical 
trees. In addition, dominant marker techniques are often cheaper and easier to 
apply than co-dominant approaches.  They can reveal data at many positions of the 
genome and on many individuals quickly. 

A strong reliance on dominant markers in laboratory analysis – especially currently 
the use of the amplified fragment length polymorphism (AFLP) technique – explains 
the focus of this guide. Often, analysis of co-dominant data will be possible with the 
same software packages referred to in this publication, but extra or alternative steps 
in analysis will frequently be required, in addition to those described here.

Analysis of data involves describing the variation revealed by molecular markers 
at individual, population and other levels of geographic or taxonomic structure. 
It involves calculating the relationships between different levels of structure and 
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expressing these in ways that are clear – numerically and, ideally, visually – to other 
researchers and (if data are to be used practically) to field managers. Fundamental 
to analysis are calculations of genetic diversity and genetic differentiation, and both 
are addressed here. Methods such as cluster analysis and ordination are also key to 
visualise results, and, again, both of these approaches are covered in this guide.

As subsequent sections of the guide will show, there are a multitude of software 
packages available for analysis.  These packages tend to have a mix of common and 
unique functions. When functions are in common, which software to use can be a 
question of user preference – users will tend to use the package they were first 
introduced to, unless there is good reason for change.  We however encourage users 
to evaluate the assumptions behind the approaches used to make calculations in 
different packages, to determine whether they are really appropriate for addressing 
the question at hand. Of the packages discussed here, for newcomers we would 
suggest that GenAlEx (Peakall and Smouse 2006) provides a good starting point 
for building skills and confidence. Users can then move on to other programs with 
more sophisticated methods. 

Whatever the software used, there is no substitute for understanding the basic 
procedures involved in analysis. Furthermore, rather than the complexity of the 
analysis, it is the interpretation of results in the context of the biological processes 
shaping variation that is fundamental in determining the relevance of molecular 
marker studies. 

Quality issues
The old adage ‘garbage in, garbage out’ most definitely applies during the analysis 
of molecular marker data, and adoption of the most sophisticated approaches to 
analysis will not provide meaningful results if the initial quality of data is low. Molecular 
genetic studies can only ever be as good as the collection strategy adopted during 
field sampling.  A poor sampling strategy will mean that it is impossible to say anything 
meaningful about the biology of the species in question.  Worse, conclusions that are 
inaccurate and possibly misleading may be the result.
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Based on this concern and the observation that molecular genetic differentiation 
between natural populations of most tree species is low, various scientists have 
suggested sampling a minimum of �0 individuals to represent a tree population. 
While we would not be this prescriptive – sample numbers will depend on the 
question being addressed, and it is often not practically possible to include so many 
individuals when assessing a range of stands – we raise this issue to illustrate the 
importance of comprehensive sampling. This topic was addressed in the practical 
protocol guide, where further information can be found.

A second element of quality relates to how genetic variation is first identified 
in the laboratory, as if this is done incorrectly it can lead to problems in later 
interpretation. In laboratory studies, researchers will almost always first carry out 
preliminary screens for variation on a ‘test panel’ of their samples (often, 8 or �6 
individuals).  This is in order to identify those primers (in polymerase chain reaction 
[PCR] studies) that will work well in revealing variation in wider collections of 
material.  While this is a useful approach, it does create potential for bias.  This can be 
understood by considering a situation where primers are screened for variation in 
only one of many populations. Naturally enough, this will select for those primers that 
reveal high variation in the particular tested stand. Due to population differentiation, 
however, there is no guarantee that the same primers will respond equally well in 
revealing variation in other stands, even though, intrinsically, these are as diverse as 
the first population. In this instance, screening (or ascertainment) bias will result in 
one particular stand artificially appearing more polymorphic than others, and a false 
picture of the structuring of diversity will be the result. To prevent bias, the test 
panel must be properly constructed to be representative of the entire collection 
being studied.  Again, further information on this topic can be found in the practical 
protocol guide.

Finally, data quality also depends on how well the laboratory protocol has been 
optimised for the species being tested. Researchers familiar with different marker 
techniques know well how the quality of results can vary between species and even 
between different experiments or ‘runs’ on the same species. It is important then 
to invest time in optimising laboratory approaches so that the results obtained are 
as clear as possible, with polymorphisms well resolved from each other and easy to 
score.  Attention to this may be of more importance than the details of the methods 
that are subsequently used to analyse results.
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How this guide is structured
This guide is divided into four main sections, as described below.  The meanings of 
the terms used in the below descriptions will become evident in the main body of 
the guide.

Part 1 (Chapter �) describes the steps involved in preparing data for analysis. 
Covered in this section are the basics of scoring, storing and handling data, including 
getting data into the right format for subsequent analyses. 

Part 2 (Chapters 2 to �) relates different methods for analysis at the population 
level. It considers the measurement of diversity at each individual locus and across 
loci. It explains how to calculate genetic distances between populations, and how 
to visualise distances in summary form by clustering and ordination techniques. It 
assumes that the organism being analysed is diploid.

Part 3 (Chapters 6 and 7) considers different methods for analysis at the individual 
level. Included here is the measurement of genetic distances between individuals and 
the expression of these distances through ordination.

Part 4 (Chapters 8 and 9) relates some additional and more modern techniques for 
analysis not described in previous sections. Included here is the analysis of molecular 
variance approach (known as AMOVA) and the STRUCTURE method.

Appendix I provides a range of mathematical formulae that – in order to make the 
body of the guide more readable – are not included in the main text.

Appendix II provides detailed information on how to install the various software 
packages referred to in this guide and how to format data for analysis in them. It also 
gives similar information for some others programs that are not considered in detail 
in the guide, but which users’ may want to explore further.

Appendix III gives step-by-step instructions on how to do analyses in particular 
software packages. Instructions are given following the same layout of chapters as in 
the main body of the guide.
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The CD-ROM accompanying this guide provides a collection of input data 
spreadsheets formatted for different software packages and types of analysis.  Also 
included here are the corresponding results files produced by different programs. 
The purpose of these files is to allow users of this guide to experiment directly with 
different approaches to analysis. These input files can be modified through cutting 
and pasting to include users’ own data sets. For each of the subsequent sections of 
this guide, the content of the CD-ROM should be investigated to see if it contains 
relevant files for further exploration.  As with Appendix III, the folder structure on 
the CD-ROM follows the layout of the chapters of the main body of the guide.

Throughout this guide, we base test analyses on an example AFLP data set from 
the African medicinal tree Warburgia ugandensis. This data was collected by one of 
the authors (Alice Muchugi) during her PhD studies, as part of a wider study on 
Warburgia species (as reported in Muchugi et al. 2008b).

We assume that users of this guide will have access to Microsoft Excel for the initial 
input and formatting of data.

References
Muchugi A, Kadu C, Kindt R, Kipruto H, Lemurt S, Olale K, Nyadoi P, Dawson 

I, Jamnadass R (eds. Dawson I, Jamnadass R) (2008a) Molecular Markers for 
Tropical Trees: A Practical Guide to Principles and Procedures. ICRAF Technical 
Manual No. 9.  The World Agroforestry Centre, Nairobi, Kenya.

Muchugi A, Muluvi GM, Kindt R, Kadu CAC, Simons AJ, Jamnadass RH (2008b) 
Genetic structuring of important medicinal species of genus Warburgia as 
revealed by AFLP analysis. Tree Genetics and Genomes �: 787-79�.

Peakall R, Smouse PE (2006) GenAlEx 6: genetic analysis in Excel. Population 
genetic software for teaching and research. Molecular Ecology Notes 6: 288-29�.





9

Chapter 1 • Getting data ready for analysis

Part 1

Data preparation

Chapter 1. Getting data ready for analysis 11
�.�. Scoring and storing data �2
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Key points

This section describes the steps involved in preparing data 
for analysis. Topics covered are the basics of scoring and 
storing data, including getting information into the right 
format for use.

We suggest that data spreadsheets should be generated 
using a standard format, with rows representing 
individuals and columns representing loci. Rows can 
also contain geographic data on individuals, such as the 
populations and/or regions that they come from.

An illustration of data formatting is based on an AFLP data 
set collected on the African medicinal tree W. ugandensis. 
Appendix II shows how this data set can be imported into 
the various software packages used in this guide.

Data spreadsheets should be printed and kept in paper 
format for archiving purposes.

Chapter 1. Getting data ready for analysis
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1.1. Scoring and storing data
For dominant data, each locus is scored for an individual in a ‘binary’ way, as [�] or 
[0] (presence or absence of a product, respectively). If an observation is missing 
because, e.g., a PCR amplification has not worked well, then that data point should 
be recorded in some other way than as [0], e.g., as [NA] (not available). Such missing 
scores will need to be treated differently from product absences in analysis, as we 
describe in subsequent sections.

Usually, the best way to deal with data is to input it straight into an electronic 
spreadsheet. This spreadsheet should have been set up in advance by the user and 
should contain all the relevant column and row labels that describe data points. 
Labels should give information on the population�/location that an individual comes 
from, and provide a unique sample identifier for each tested accession (‘geographic 
data’).  Additional geographic data could include higher level groupings of populations, 
e.g., the regions and/or countries that they come from. On the same axis, additional 
labels could, if multiple species are being tested, divide data into taxonomic groups. 
These extra levels of stratification can be useful in hierarchical analyses such as the 
analysis of molecular variance (AMOVA, see Chapter 8). On the alternative axis of 
the spreadsheet, labels should provide information on the particular locus that is 
being scored – generally the name of the primer/primers used to reveal that band 
and a unique locus identifier (‘molecular data’). 

In generating spreadsheets, we suggest that a common format is used in which 
rows always represent ‘geographic data’ (unique sample identifier, population, region, 
species, etc.) and columns always represent ‘molecular data’ (unique locus identifier, 
primer[s], etc.). Each row thus represents the overall profile of a particular individual 
for all loci, and each column corresponds to the genetic scores for all individuals 
at a given locus. The number of rows therefore corresponds to the number of 
individuals tested, and the number of columns to the number of loci scored. An 
example of what a spreadsheet looks like is given in section �.2 below. Once this 
matrix has been generated, the scores of individual accessions at individual loci can 
be inserted.  The use of Microsoft Excel is ideal for data entry and links seamlessly 
with the ‘bolt on’ GenAlEx package for basic data analysis. 

1 Throughout  the  gu ide ,  we use  the  te rm popu la t ion  to  re fe r  to  a  co l lec t ion  o f  ind iv idua ls  f rom the 
same loca t ion .
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Data spreadsheets are the basic building blocks for all subsequent analyses of results. 
In addition, they are essential for ‘archiving’ information. For this last purpose, as well 
as being backed up electronically, spreadsheets should be printed out and stored 
in a safe place. Ideally, a more detailed description of the experiment from which 
data were collected should also be printed and attached to the hard copy of the 
spreadsheet. This annex can give much more information on the experiment in 
question.  This might include information on the purpose of the study, the locations 
of populations on a map, and the geographic coordinates of individual trees. It may 
also include data on human management of populations, information on the gender 
of individual trees (if a dioecious species), and measurements on diameter, fruiting, 
phenotype, etc. 

The proper archiving of data allows information to be returned to in the future, 
perhaps when more data become available or new ways of interpretation are 
possible.

1.2.  An example data set
Throughout this guide, we base test analyses on an example AFLP data set from the 
African medicinal tree Warburgia ugandensis.  The bark extract of this species is used 
as an anti-malarial treatment. It has been suggested that the chemical composition 
of the active components in the bark may be different in different stands, and certain 
populations are also subject to conservation threats because of over-exploitation. 
Warburgia ugandensis is one of the key medicinal tree species that ICRAF is interested 
in, and has therefore merited molecular marker investigation.

The test Warburgia data set is based on 20 individuals sampled from each of five
different populations.These populations are Kibale (in Uganda),Kitale (Kenya),Laikipia
(Kenya), Lushoto (Tanzania) and Masai Mara (Kenya).  Two of these populations were 
collected to the west of the Rift Valley (Kibale and Kitale) and three to the east 
(Laikipia, Lushoto and Masai Mara), creating a regional hierarchy between standsLushoto a  
that is important for some but not all analyses. Data were collected for �8� AFLP. 
loci or bands. Data are therefore represented by a matrix of �00 individuals (rows) 
by �8� loci (columns), equaling �8,�00 points of information in total (for further 
information on sampling, laboratory methods and data collection on Warburgia, see 
Muchugi et al. 2008b).
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A subset of this data – for the first �� individuals tested and the first five loci scored 
– is shown in the spreadsheet below (Table �.�). In this instance, there was no 
missing data at loci and so the code [NA] was not required during scoring.  As can 
be seen, the first column of the data is a unique identifier for each individual that also 
includes a population abbreviation, the second column gives the population, and the 
third the region from which a population came. 

It is worth noting that for unique identifiers it is better to use the labels ‘0�’, ‘02’, 
‘0�’ (or ‘00�’, ‘002’, ‘00�’) rather than ‘�’, ‘2’, ‘�’, etc., since this allows proper ordering 
of samples when more than nine individuals are present in a population. Otherwise, 
when sorting data in spreadsheet manipulations, ‘�0’ will order after ‘�’ rather than 
after ‘9’. (The same applies when labelling loci.) By including a population reference 
in the unique individual identifier, it is easier to keep track of geographic origins in 
subsequent analyses based on individuals. Note that, in this instance, locus identifiers 
are given as single numbers only and do not extend to include the combination of 
primers used to detect the AFLP (this would have been another option).

The entire Warburgia data set is provided in various formats on the CD-ROM that 
accompanies this guide (basic data set as warburgiabase.xls or warburgiabase.txt). 
Guidelines for formatting data for different software packages are provided in 
Appendix II.
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Table 1.1. A subset of AFLP data (for 45 individuals and 5 loci) collected for Warburgia ugandensis, showing 
the appropriate format for inputting results into a spreadsheet. [1] represents product presence and [0] product 
absence during scoring.

Individual Population Region Locus001 Locus002 Locus003 Locus004 Locus005
Kit01 Kitale west 0 0 0 0 0
Kit02 Kitale west 0 1 0 1 0
Kit03 Kitale west 0 0 0 1 0
Kit04 Kitale west 0 0 0 1 0
Kit05 Kitale west 0 0 0 1 0
Kit06 Kitale west 0 0 0 1 0
Kit07 Kitale west 0 1 0 1 0
Kit08 Kitale west 0 0 0 1 0
Kit09 Kitale west 0 0 0 0 0
Kit10 Kitale west 0 0 0 1 0
Kit11 Kitale west 0 0 0 1 0
Kit12 Kitale west 0 0 0 1 0
Kit13 Kitale west 0 0 0 0 0
Kit14 Kitale west 0 0 0 0 0
Kit15 Kitale west 0 0 0 0 0
Kit16 Kitale west 0 0 0 0 0
Kit17 Kitale west 0 0 0 0 0
Kit18 Kitale west 0 0 0 0 0
Kit19 Kitale west 0 0 0 0 0
Kit20 Kitale west 0 0 0 0 0
Kib01 Kibale west 0 0 0 0 0
Kib02 Kibale west 0 0 0 0 0
Kib03 Kibale west 0 0 0 0 0
Kib04 Kibale west 0 0 0 1 0
Kib05 Kibale west 0 0 0 0 0
Kib06 Kibale west 0 0 0 0 0
Kib07 Kibale west 0 1 0 1 0
Kib08 Kibale west 0 0 0 1 0
Kib09 Kibale west 0 0 0 1 0
Kib10 Kibale west 0 1 0 1 0
Kib11 Kibale west 0 0 0 0 0
Kib12 Kibale west 0 0 0 0 0
Kib13 Kibale west 0 0 0 0 0
Kib14 Kibale west 0 0 0 1 0
Kib15 Kibale west 0 0 0 0 0
Kib16 Kibale west 0 0 0 0 0
Kib17 Kibale west 0 1 0 1 0
Kib18 Kibale west 0 0 1 1 0
Kib19 Kibale west 1 0 0 0 0
Kib20 Kibale west 1 0 0 1 0
Lai01 Laikipia east 0 1 0 1 0
Lai02 Laikipia east 0 1 0 1 0
Lai03 Laikipia east 0 0 0 0 0
Lai04 Laikipia east 0 0 0 0 0
Lai05 Laikipia east 0 0 0 1 0



�6

Part 1 • Data preparation

1.3. References
Muchugi A, Muluvi GM, Kindt R, Kadu CAC, Simons AJ, Jamnadass RH (2008b) 

Genetic structuring of important medicinal species of genus Warburgia as 
revealed by AFLP analysis. Tree Genetics and Genomes �: 787-79�.
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Key points

This section considers the measurement of genetic diversity 
for individual loci in populations, and then how information is 
summed across loci.

For dominant markers, the standard methods for calculating 
diversity rely on estimating allele frequency distributions 
from product frequency distributions. This involves making 
assumptions about genetic structure within populations. 
There are a number of ways in which this can be done.  We 
recommend using a Bayesian approach.

Once allele frequencies have been estimated for populations, 
Nei’s unbiased diversity statistic (H) is the standard way 
to express the level of variation. Once estimates have 
been calculated for individual loci, the arithmetic mean of 
these values provides an overall estimate of diversity for a 
population.

Chapter 2. Measuring diversity



20

Part 2 • Analysing data at the population level

2.1. Estimating allele frequencies from product frequencies
Genetic diversity can be quantified in terms of the richness and evenness of distribution 
of molecular marker variation within populations (or, indeed, within other defined 
groups of individuals). Estimating the genetic diversity of a population from a dominant 
marker normally involves first converting product frequencies to allele frequencies 
before further analysis is undertaken. Remembering that dominant markers are 
unable to give complete genotypic information (as they do not discriminate between 
heterozygote ‘present-absent’ [�, 0] and homozygote ‘present-present’ [�, �] states; 
see the Introduction), this means making assumptions about the structure of genetic 
variation within populations.

To estimate allele frequencies from product frequencies, it is often assumed that 
populations are at Hardy-Weinberg equilibrium, which means that they function as 
groups of individuals that mate completely randomly with each other (we discuss 
this assumption further below). In this case, allele frequencies for a diploid organism 
are determined by the equation � = p2 + 2pq + q2, where p and q are the frequencies 
of the presence and absence alleles (rather than products), respectively. Because 
q2 is the frequency of occurrence of product absence in a population, the value 
for q and then p (� – q) can be generated accordingly.  This approach, known as 
the ‘square-root’ method, can be illustrated with our example Warburgia data set 
(Table 2.�; see further information in Chapter �).

Table 2.1. Allele frequencies for the first 10 AFLP loci for the Kitale population, estimated from 
marker frequencies using the square-root method (N = number of individuals sampled from the 
population). Results were obtained with the GenAlEx 6.2 software.

Locus N

Product 
frequency

(f)

p, presence allele 
frequency
(p = 1 - q)

q, absence allele 
frequency

(q = √ (1 - f))
Locus001 20 0.0 0.000 1.000
Locus002 20 0.1 0.051 0.949
Locus003 20 0.0 0.000 1.000
Locus004 20 0.5 0.293 0.707
Locus005 20 0.0 0.000 1.000
Locus006 20 0.2 0.106 0.894
Locus007 20 0.0 0.000 1.000
Locus008 20 0.0 0.000 1.000
Locus009 20 0.0 0.000 1.000
Locus010 20 0.3 0.163 0.837
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Table 2.2. Allele frequencies for the first 10 AFLP loci for the Kitale population, estimated from 
marker frequencies using a Bayesian method with non-uniform priors (N = number of individuals 
sampled from the population). Results were obtained with the AFLP-SURV 1.0 software.

1 Bayes ian  methods  genera te  poster ior  probabi l i t ies tha t  ind ica te  the  p robab i l i t y  tha t  a  cer ta in 
hypothes is  i s  t rue .  Bayes ’ ru le  i s  used to  combine  pr ior probabi l i t ies  w i th  the  in fo rmat ion 
con ta ined  in  da ta  to  genera te  the  pos te r io r  p red ic t ions .  Zh ivo tovsky  (1999)  deve loped Bayes ian 
es t imat ion  methods  fo r  d i f fe ren t  t ypes  o f  p r io r  p robab i l i t i es  fo r  the  d is t r ibu t ion  o f  a l le le  f requenc ies : 
( i )  a  method based on  uniform  p r io r  d is t r ibu t ion  o f  a l le le  f requenc ies  and  ( i i )  methods  based on 
non-uni form  p r io r  d is t r ibu t ion  o f  a l le le  f requenc ies  (see  Append ix  I ) .  Approaches  based on  non-
un i fo rm pr io rs  a re  expec ted  to  p rov ide  the  most  re l iab le  es t imates . 

Locus N
Product 

frequency
p, presence allele 

frequency
q, absence allele 

frequency
Locus001 20 0.0 0.003 0.997
Locus002 20 0.1 0.054 0.946
Locus003 20 0.0 0.003 0.997
Locus004 20 0.5 0.293 0.707
Locus005 20 0.0 0.003 0.997
Locus006 20 0.2 0.108 0.892
Locus007 20 0.0 0.003 0.997
Locus008 20 0.0 0.003 0.997
Locus009 20 0.0 0.003 0.997
Locus010 20 0.3 0.165 0.835

Because trees are generally out-crossing they are more likely to mate randomly 
within a population than other types of plants are, and the assumption of Hardy-
Weinberg equilibrium is therefore more valid. In practice, however, few populations 
are likely to be fully at Hardy-Weinberg equilibrium, and this approximation will 
therefore result in some bias in allele frequency estimation. Other approaches have 
been developed in efforts to minimise this bias, and one such method is based on 
Bayesian estimation techniques (Zhivotovsky �999). A Bayesian method that uses 
non-uniform priors� can produce good estimates of allele frequencies (Bonin et 
al. 2007). This therefore is the approach that we recommend. Results based on 
estimating allele frequencies in this manner are shown in Table 2.2. Comparing the 
results shown in Tables 2.� and 2.2, it can be seen that values are similar in magnitude, 
although with the Bayesian method estimates are never zero.



22

Part 2 • Analysing data at the population level

Alternative methods to estimate allele frequencies based on some degree of 
inbreeding (selfing) are also available (see Box 2.�). For interested readers, these and 
other more sophisticated methods for estimating allelic frequency can be explored 
in the references at the end of this chapter and through the electronic files on the 
CD-ROM accompanying this guide. For example, methods that include only the 
most informative markers (that have product frequencies within a certain range 
of values) have been developed (Nybom 200�). These methods are of potential 
value and we encourage their further consideration, even though they have not 
been applied widely in the analysis of data (perhaps because of a perception of 
complexity).

2.2. Calculating diversity from allele frequencies
Once allele frequencies have been estimated, the normal means by which to express 
diversity is through calculating H, the Nei diversity statistic (Nei �978). Either the 
standard statistic, or an unbiased estimate that corrects for small population sizes, 
can be used (Nei developed one method of correction, Lynch and Milligan [�99�] an 
alternative; see Appendix I). We recommend that the unbiased estimate is used. In 
practice it makes little difference if sample sizes for all populations are �0 or more 
(see more below).  The standard and unbiased values of H for the same loci listed in 
Table 2.2 are given in Table 2.�.

Table 2.3. Standard and unbiased Nei diversity (H) estimates for the first 10 AFLP loci from 
the Kitale population, based on allele frequencies estimated using a Bayesian method (see Table 
2.2). Allele frequencies were obtained with the AFLP-SURV 1.0 software.

Locus
p, presence allele 

frequency
q, absence allele 

frequency Standard H Unbiased H

Locus001 0.003 0.997 0.006 0.006

Locus002 0.054 0.946 0.102 0.105
Locus003 0.003 0.997 0.006 0.006
Locus004 0.293 0.707 0.414 0.425
Locus005 0.003 0.997 0.006 0.006
Locus006 0.108 0.892 0.192 0.197
Locus007 0.003 0.997 0.006 0.006
Locus008 0.003 0.997 0.006 0.006
Locus009 0.003 0.997 0.006 0.006
Locus010 0.165 0.835 0.275 0.283
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As can be seen from Table 2.�, the more balanced the allele frequencies at a locus, 
then the greater the value of H, up to a maximum of 0.� for a dominant marker 
with equal frequencies of the two allele states. The relationship between H and 
allele frequency is shown in Fig. 2.�.  The differences between standard and unbiased 
estimates as a function of population size are also shown (the difference between 
the two estimates is low for larger populations). Other methods of calculating 
diversity can be explored in Appendix I and through the electronic files on the CD-
ROM. Again, we encourage the users of this guide to consider the application of 
these other approaches.

0.6

2.3. Summarising diversity across loci
Once individual locus estimates of diversity have been obtained, normal practice 
(unless interested in specific markers for some reason, perhaps because selection is 
expected in a known mapped region of the genome) is to summarise information 
across a group of loci. This then gives an overall picture of the level of genetic 

Figure 2.1. The relationship between H and allele frequency, and the effect of varying 
populations sizes on estimates of diversity, using Nei’s methods. H is at its maximum value 
when allele frequencies are balanced. The larger the number of individuals sampled then the 
less difference it makes when correcting for population size in unbiased estimates. The data and 
figure were created in Microsoft Excel.
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Table 2.4. Standard and unbiased Nei diversity (H) estimates for all 185 AFLP loci for each of five 
W. ugandensis populations, based on allele frequencies estimated using a Bayesian method. Allele 
frequencies were obtained with the AFLP-SURV 1.0 software.

Method Kitale Kibale Laikipia Mara Lushoto

Standard H 0.147 0.140 0.151 0.132 0.117

Unbiased H 0.155 0.148 0.159 0.138 0.123

variation within a population. Data can be summarised simply by calculating the 
arithmetic mean of standard H or unbiased H values. In the case of the loci listed in 
Table 2.�, this provides mean standard H and unbiased H values of 0.�02 and 0.�0�, 
respectively. Because the number of individuals sampled for analysis is relatively high 
(N = 20), the difference between the two estimates is only marginal. 

It is obvious from our Warburgia example that individual locus estimates can vary 
greatly, and so a relatively large number of loci – certainly more than the �0 used in 
our test analysis – are required to provide a reasonable overall estimate of diversity. 
Estimates based on all �8� AFLP loci scored for the five W. ugandensis populations 
that constitute our example data set (this number of loci is likely to be more than 
sufficient to provide good overall estimates) are given in Table 2.�. Note that the 
difference in estimates between certain populations (e.g., Kitale and Laikipia) is small 
and is unlikely to be statistically significant (a method to test for this is given in 
Box III.� of Appendix III).

An alternative means to summarise population diversity across loci would simply 
be to estimate the fraction or percentage of markers that are polymorphic. In such 
summations, researchers will sometimes set certain criteria for considering whether 
a locus is polymorphic or not (e.g., a product must have a minimum frequency 
of 0.0� or 0.0� before being considered polymorphic). We however prefer not to 
specify limits, but rather to score any level of product variation within a population 
as polymorphic during summations. (Note that in this instance we are referring to 
product rather than allele frequencies. The issue of Bayesian procedures providing 
non-zero allele frequencies from zero value product frequencies in populations is 
therefore not relevant.) 
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As noted above, different methods are available for estimating allele frequencies and 
diversity at individual loci, and of course this influences the results then obtained 
when summing information across loci. We encourage readers to explore this 
further through the equations in Appendix I and the electronic files on the CD-
ROM. If the results from different calculation methods do not cause rank differences 
between populations in diversity estimates, then the approach used is unlikely to be 
of significant concern. If different methods give significant rank differences, however, 
then more thought to the most appropriate approach needs to be given. 

2.4. References
Bonin A, Ehrich D, Manel S (2007) Statistical analysis of amplified fragment length 

polymorphism data: a toolbox for molecular ecologists and evolutionists. 
Molecular Ecology �6: �7�7-�7�8.

Kremer A, Caron H, Cavers S, Colpaert N, Gheysen G, Gribel R, Lemes M, Lowe 
AJ, Margis R, Navarro C, Salgueiro F (200�) Monitoring genetic diversity in 
tropical trees with multilocus dominant markers. Heredity 9�: 27�-280.

Lynch M, Milligan BG (�99�) Analysis of population genetic structure with RAPD 
markers. Molecular Ecology �: 9�-99.

Nei M (�978) Estimation of average heterozygosity and genetic distance from a 
small number of individuals. Genetics 89: �8�-�90.

Nybom H (200�) Comparison of different nuclear DNA markers for estimating 
intraspecific genetic diversity in plants. Molecular Ecology ��: ����-����.

Zhivotovsky LA (�999) Estimating population structure in diploids with multilocus 
dominant DNA markers. Molecular Ecology 8: 907-9��.

2.5. Suggested software
A wide range of software packages produce diversity estimates (e.g., GenAlEx, 
PopGene, AFLP-SURV, FAMD, TFPGA), but we recommend using AFLP-SURV 
or FAMD since these packages allow Bayesian estimations methods for allele 
frequencies and should therefore provide the most reliable results (see Appendix III).
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Box 2.1.   Estimating allele frequencies and diversity based on a 
degree of selfing

Kremer et al. (200�) suggested undertaking sensitivity analyses on dominant data diversity 
estimates assuming a degree of inbreeding in tested populations when calculating allele 
frequencies (that is, when FIS, the inbreeding coefficient, > 0).

They suggested that results be compared for FIS = 0 (the standard estimate) and  
FIS = 0.�.  If population diversity estimates rank the same for both values of FIS, then 
more confidence can be assigned to results.

Using our example Warburgia data set, we therefore calculated diversity for populations 
according to different values of FIS, as shown in Table 2.�. 

Table 2.5. Unbiased Nei diversity (Unbiased Nei diversity (H) estimates for all 185 AFLP loci for each of five W. ugandensis 
populations, based on ‘square-root’ and Bayesian allele frequency estimation methods and different 
levels of inbreeding (FIS). Results were obtained with the AFLP-SURV 1.0 software.

Our results show that for both ‘square-root’ and Bayesian estimation methods, the 
ranking of population diversity is not always the same when FIS > 0: rather, the ranking of 
Kitale and Kibale as second or third depends both on the method used and assumptions 
of inbreeding (see values in bold where Kibale is more diverse than Kitale). Based on this 
difference in ranking, we conclude that caution should be exercised when comparing 
estimates.

Method to 
estimate allele 
frequencies Assumed FIS Laikipia Kitale Kibale Mara Lushoto

Bayesian 0.0 0.15570 0.15305 0.14457 0.13618 0.12112

0.1 0.15308 0.14790 0.14360 0.13245 0.11767

0.5 0.16258 0.14116 0.15544 0.13453 0.12028

Square-root 0.0 0.14535 0.14005 0.13715 0.12343 0.11140

0.1 0.14744 0.13869 0.13944 0.12448 0.11182

0.5 0.15523 0.13347 0.14829 0.12772 0.11447



27

Chapter 3. Measuring genetic distance between populations

Key points

This chapter explains how to calculate genetic distances 
between pairs of populations.

For dominant markers, the calculation of distances normally 
relies, as when calculating genetic diversity, on estimates 
of allele frequency distributions from population product 
frequencies.

Once allele frequencies have been estimated, we suggest the 
use of Nei’s unbiased measure to calculate genetic distances 
between populations. 

Once obtained, genetic distances can be visualised by 
clustering and ordination analyses, as explained in Chapters � 
and �.
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3.1. Calculating genetic distances from allele frequencies
Once allele frequencies have been calculated at loci (see Chapter 2), these can 
be compared between pairs of populations to generate a genetic distance matrix 
among stands. Nei’s (�978) measure of genetic distance is one of the most used 
methods, and this can be calculated as a standard or unbiased value (just as Nei’s 
diversity estimate can; see Chapter 2), depending on whether small population sizes 
are corrected for.  We recommend that the unbiased method be generally adopted. 
Unbiased values for Nei’s genetic distance for the five W. ugandensis populations 
of our example data set, for all �8� AFLP loci scored (see further information in 
Chapter �), are given in Table �.�.

As can be seen from this matrix, the distance of a population to itself is always zero 
and each matrix is symmetrical: that is, the values above a diagonal from top left to 
bottom right through the matrix correspond with the values in the lower part of the 
matrix.  As a result, the matrix shown in Table �.� can be expressed in the triangular 
format shown in Table �.2, in which only four columns and rows represent results.

Table 3.1. Unbiased Nei distance estimates (calculated according to Lynch and Milligan 1994) 
between five populations of W. ugandensis, based on allele frequencies estimated using a 
Bayesian method. Results were obtained with the AFLP-SURV 1.0 software.

Unbiased Nei distance Kitale Kibale Laikipia Mara Lushoto

Kitale 0.0000 0.0428 0.0920 0.1002 0.1071

Kibale 0.0428 0.0000 0.0539 0.0676 0.0594

Laikipia 0.0920 0.0539 0.0000 0.0062 0.0104

Mara 0.1002 0.0676 0.0062 0.0000 0.0060

Lushoto 0.1071 0.0594 0.0104 0.0060 0.0000

Table 3.2. Unbiased Nei distance estimates taken from Table 3.1 but expressed as a diagonal 
matrix only. 

Unbiased Nei distance Kitale Kibale Laikipia Mara

Kibale 0.0428 - - -

Laikipia 0.0920 0.0539 - -

Mara 0.1002 0.0676 0.0062 -

Lushoto 0.1071 0.0594 0.0104 0.0060
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As noted in Chapter 2, different methods are available for estimating allele frequencies 
at loci (we recommended a Bayesian approach), and of course this influences the 
results then obtained when calculating genetic distances. Furthermore, a whole 
range of other distance measures in addition to Nei’s coefficient can be calculated, 
using a range of software packages (see more in Box �.�).  We encourage readers to 
investigate these methods further through the references at the end of this chapter 
(Kosman and Leonard 2007, Nagamine and Higuchi 200�, Reif et al. 200�).  Among 
these alternative measures, Wright’s F-statistics are the most important (we refer to 
these later in Chapter 8).  The formulae for a range of distance measures are given 
in Appendix I and the use of these can be explored further through the electronic 
files on the CD-ROM.

Because of the number of methods available, when writing up results it is always 
advisable to specify which distance measure was adopted and which software 
package was used to calculate it. In practice, it is only if the results from different 
methods cause large differences in how populations place (when the relationships 
among stands are visualised through, e.g., clustering or ordination; see Chapters � 
and �) that the measure used becomes a matter of significant concern.  As always in 
these matters, the greater challenge lies not in the methods used, but in the sensible 
interpretation of data in a biological context. 

3.2. References
Kosman E, Leonard KJ (2007) Conceptual analysis of methods applied to 

assessment of diversity within and distance between populations with asexual or 
mixed mode of reproduction. New Phytologist �7�: 68�-696.

Lynch M, Milligan BG (�99�) Analysis of population genetic structure with RAPD 
markers. Molecular Ecology �: 9�-99.

Nagamine Y, Higuchi M (200�) Genetic distance and classification of domestic animals 
using genetic markers. Journal of Animal Breeding and Genetics ��8: �0�-�09.

Nei M (�978) Estimation of average heterozygosity and genetic distance from a 
small number of individuals. Genetics 89: �8�-�90.

Reif JC, Melchinger AE, Frisch M (200�) Genetical and mathematical properties of 
similarity and dissimilarity coefficients applied in plant breeding and seed bank 
management. Crop Science ��: �-7.
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Characteristics of molecular methods and practical 

procedures

3.3. Suggested software
A wide range of software packages produce genetic distance matrices (e.g., GenAlEx, 
PopGene, AFLP-SURV, TFPGA and FAMD), but we recommend using AFLP-SURV 
since this packages allows estimation of allele frequencies by Bayesian methods, and 

then provides distance matrices based on Nei’s genetic distance (see Appendix III). 
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Box 3.1.   Comparing results from different coefficients used to 
calculate distance matrices

Figure 3.1. Plot of Nei’s standard genetic distances against pairwise coancestry distances for 
five W. ugandensis populations. Nei’s genetic distances were calculated with the AFLP-SURV 
1.0 package, coancestry distances by the TFPGA 1.3 package. The figure was created with the 
BiodiversityR package.

Methods are available to graphically compare the genetic distances produced by 
different distance measures, to see how closely they correspond (see also Box III.2 
in Appendix III). Based on our example Warburgia data set, Fig �.� shows Nei’s genetic 
distances between pairs of populations plotted against the pairwise coancestry 
distance between populations.  The �0 data points represent the number of pairwise 
comparisons between populations that are possible for each measure.  As expected, 
estimates increase together, although the relationship is not entirely linear, showing 
that the method used can influence relative estimates among stands.
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Key points

This section explains how to visualise genetic distances between 
populations by cluster analysis. It relies on having first calculated 
a distance matrix (see Chapter �).

In interpreting the results of cluster analysis, it is important to 
remember that it only provides an incomplete overview of the 
relationships between populations.

The most common approach to cluster analysis is to use an 
unweighted pair group method with arithmetic averaging 
(UPGMA).
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4.1. Cluster analysis of genetic distances
Once genetic distances have been determined (see Chapter �), the relationships 
between populations can be summarised visually through cluster analysis or 
ordination. In this chapter we describe the first option, while Chapter � relates 
the second approach. With both methods, it is important to remember that the 
techniques used are unable to fully express the relationships among populations. 
They therefore provide an overview of structure only.  This is an important point to 
remember in interpretation, as not all significant features of data may be evident. 

The most common approach in cluster analysis is to use an unweighted pair group 
method with arithmetic averaging (known as UPGMA).  This means that the distance 
at which a cluster is formed corresponds to the average of all the pair-wise distances 
between populations that are joined together in that particular step (thus not 
including pair-wise differences of populations that had already been joined in earlier 
steps). An example of a genetic distance matrix from our Warburgia data set (see 
information in Chapter �) was shown in Tables �.� and �.2 (see Chapter �). The 
result of a UPGMA cluster analysis based on this matrix, known as a phenogram, is 
shown in Fig. �.�.

Figure 4.1. A phenogram showing cluster analysis of five W. ugandensis populations, based 
on the UPGMA clustering method and Nei’s unbiased genetic distances (distances taken from 
Table 3.2). The vertical axis shows the genetic distance at which populations cluster. The figure 
was created with the BiodiversityR package.
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Our example shows that the first clustering step is between Mara (Masai Mara) and 
Lushoto populations (at a distance of about 0.00�).  This is followed by a second step 
that joins the Laikipia population to these two populations (at a distance of about 
0.0�). Kitale and Kibale populations join in a separate cluster (at a distance of about 
0.0��). Finally, the two clusters (of [Kitale + Kibale] and [Laikipia + Mara + Lushoto]) 
join into a single large cluster.  The pattern revealed corresponds with the regional 
distribution of populations, with Laikipia, Lushoto and Masai Mara on the east side 
of the Rift Valley, and Kibale and Kitale on the west (see Chapter �). However, the 
populations on the east side are genetically much closer to each other than those 
on the west side are. 

It is important to note that spinning the dendrogram around any vertical branch 
provides an equally valid representation of cluster memberships. For example, the 
positions of Kitale and Kibale could be interchanged on the vertical axis, as could 
Masai Mara and Lushoto. In other words, it should not be concluded from Fig. �.� 
that, e.g., Lushoto and Kitale populations are more similar to each other than 
Lushoto and Kibale are. 

Cluster analysis can be undertaken in a variety of other ways using a range of software 
packages.  We encourage users of this guide to explore methods further by reading 
the manual of Kindt and Coe (200�), which is given on the accompanying CD-ROM. 
The use of alternative approaches can also be tested through the electronic files on 
the CD-ROM. It makes sense to test a range of methods and see if these generate 
the same pattern of results. If they do not, more thought needs to be given to what 
is the best approach. We tested our Warburgia data set with a range of clustering 
methods and, although these approaches resulted in some changes in branch lengths, 
the overall pattern of differentiation revealed among populations was the same (see 
Fig. �.2). Because of the range of approaches available, when writing up results it is 
advisable to specify which method or methods were applied, and which software 
package was used.
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Figure 4.2. Phenograms showing cluster analysis of five W. ugandensis populations using 
three different methods. All are based on Nei’s unbiased genetic distances (distances taken 
from Table 3.2). The vertical axis shows the genetic distance at which populations cluster. In this 
example, the method used makes no difference to the pattern observed in clustering. The figure 
was created with the BiodiversityR package.
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4.2.  Assigning levels of significance to relationships by bootstrap 
analysis
Using bootstrap analysis, it is possible to obtain information about the influence 
of the number of loci scored in data sets on the pattern of clustering observed 
(a method to do this is given in Appendix III). Bootstrapping is based on sampling 
collections of loci at random from data and calculating how often the same 
phenograms are obtained. This allows confidence to be assigned to the ‘overall’ 
pattern of relationships (e.g., as in Figs. �.� and �.2) observed among populations. 
A method of selection-with-replacement is used to construct many new molecular 
data sets from scored loci with the same dimensions as the original data set.  A locus 
can be included more than once or not at all when a new data set is generated. 

A bootstrap analysis based on �0,000 random data sets generated from our 
Warburgia example demonstrated that we can be confident that Kibale and Kitale 
cluster uniquely. On the other hand, least confidence is assigned to the positioning 
of Mara and Lushoto into a group, as in only �2% of cases did these populations 
cluster first with each other rather than with another population. 

4.3. References
Kindt R, Coe R (200�) Tree Diversity Analysis: A Manual and Software for 

Common Statistical Methods for Ecological and Biodiversity Studies. The World 
Agroforestry Centre, Nairobi, Kenya.  Available from the CD-ROM and at:  
www.worldagroforestry.org/treesandmarkets/tree_diversity_analysis.asp

4.4. Suggested software
A wide range of software packages provide cluster results (e.g., PopGene, TFPGA, 
FAMD, BiodiversityR and AFLP-SURV, the last in combination with PHYLIP). The 
combination of AFLP-SURV with PHYLIP allows estimation of allele frequencies by 
Bayesian methods, provides distance matrices based on Nei’s measure, and allows 
bootstrap analysis of cluster relationships (see Appendix III). 

http://www.worldagroforestry.org/treesandmarkets/tree_diversity_analysis.asp
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Key points

This chapter explains how to visualise genetic distances between 
populations by ordination. It relies on having first calculated a distance 
matrix (see Chapter �).

In interpreting the results of ordination, it is important to remember 
that it only provides an incomplete overview of the relationships 
between populations. 

It is possible to superimpose onto ordination diagrams further 
information such as clustering data that can aid in interpretation.

The most common approach to ordination is principal coordinate 
analysis (PCoA).
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5.1. Ordination of genetic distances
Once genetic distances between populations have been determined, relationships 
among populations can be summarised visualised through cluster analysis or 
ordination. In Chapter � we described the first option and here we relate the second 
approach. As with cluster analysis, it is important to remember that ordination is 
unable to fully express the relationships that exist among populations and it provides 
an overview only (how good an overview can be tested, see Box �.�).  The ordination 
approach works best when comparing relationships between populations that are 
rather different from each other, and when assessing the possibilities for interaction 
between different genetic entities. For example, ordination is a good approach for 
detecting hybrid stands, as in analysis such stands may well locate intermediately 
between aggregations of ‘pure’ populations.

During ordination, a pairwise distance matrix is subjected to an analysis that 
expresses observed differences in terms of different positions along a small number 
of principal axes of variation, positions that can then be visually compared in two- 
or three-dimensional diagrams. Several ordination techniques, such as principal 
coordinate analysis (PCoA) and non-metric multidimensional scaling, are appropriate 
for molecular data. The most common approach used is PCoA. An example of a 
genetic distance matrix from our Warburgia data set (see information in Chapter �) 
was shown in Tables �.� and �.2 (see Chapter �) and the results of a PCoA based 
on this matrix are shown in Fig. �.� (Box �.2 at the end of this chapter explains how 
variation is assigned to principal axes).

Our example shows that Laikipia, Lushoto and Mara (Masai Mara) are well separated 
from Kibale and Kitale on the first principal axis of variation, consistent with 
clustering (see Chapter �) that defined two distinct groups of populations based on 
their regional location (Laikipia, Lushoto and Masai Mara sampled from the east side 
of the Rift Valley, Kibale and Kitale from the west). 

It is important to note that rotating Fig. �.� around its horizontal or vertical axis 
makes no difference to the relationships observed among populations. If different 
software packages produce mirror images of relationships this is therefore not an 
issue of concern. Such figures can also be rotated for presentation purposes if this 
is convenient, e.g., if it makes comparison with a geographic map of sample locations 
easier.
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Figure 5.1. PCoA of five W. ugandensis populations, based on Nei’s unbiased genetic 
distances (distances taken from Table 3.2). Horizontal and vertical scales represent the first 
and second principal axes of variation respectively (the two axes that explain the most variation 
among populations). In this instance, the 1st principal axis represents a large 92.7% of variation, 
the 2nd a much smaller 6.9%. The figure was created with the BiodiversityR package.
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In Fig. �.�, only the first two principal axes of variation are shown, and these unusually 
explain the vast majority of overall variation detected in analysis.  When the first two 
axes explain less of the overall variation, however, �-dimensional figures that provide 
the �rd principal axis (into the page) can be generated and are useful.  Alternatively, 
2-dimensional figures that represent the �st and �rd axes, or 2nd and �rd axes, can also 
be created and displayed alongside a figure showing the �st and 2nd axes. 

Other ways to assist in interpretation of analysis are also available, such as 
superimposing a cluster analysis over ordination figures.  An example is shown in 
Fig. �.2 for ourour Warburgia data set (same PCoA as Fig. �.�).

When superimposing cluster information in this way, the closer relationship between 
the Lushoto and Masai Mara (Mara) populations with each other than with Laikipia 
is more clearly represented than by ordination alone.  This illustrates the point made 
at the beginning of this chapter about the positioning of populations in ordination 
diagrams only approximating the distance matrices used as inputs for analysis.
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We encourage users of this guide to explore the other methods available for 
ordination by reading Kindt and Coe (200�).  The use of alternative approaches can 
also be tested through the electronic files on the CD-ROM. Just as with other 
methods described in this guide, it makes sense to test a range of approaches and 
see if these generate similar results. Because of the range of approaches available, 
when writing up results it is important to specify which method was used and to 
indicate which software package was applied.

Figure 5.2. PCoA of five W. ugandensis populations (PCoA taken from Fig 5.1) with 
clustering positions superimposed. Clustering was based on the nearest neighbour method (there 
are statistical reasons why this is the best method to use when superimposing onto ordination 
diagrams, see Legendre and Legendre 1998). The figure was created with the BiodiversityR 
package.
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5.2. References
Kindt R, Coe R (200�) Tree Diversity Analysis: A Manual and Software for 

Common Statistical Methods for Ecological and Biodiversity Studies.  The World 
Agroforestry Centre, Nairobi, Kenya (�96 pages).  Available from the CD-ROM 
and at: www.worldagroforestry.org/treesandmarkets/tree_diversity_analysis.asp

Legendre P, Legendre L (�998) Numerical Ecology. Developments in Ecological
Modelling 20. Elsevier, Amsterdam, The Netherlands, 8�� pp.

5.3. Suggested software
Various software packages provide ordination results (e.g., GenAlEx, FAMD and 
BiodiversityR).  We recommend use of the BiodiversityR package as it allows cluster 
information to be superimposed onto ordination diagrams and has other features 
that provide added value in analysis (see Appendix III).

http://www.worldagroforestry.org/treesandmarkets/tree_diversity_analysis.asp
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Box 5.1.   Comparing the results of ordination with genetic 
distance matrices

Figure 5.3. Plot of ordination distances (vertical axis) against Nei’s unbiased genetic 
distances (horizontal axis) for five W. ugandensis populations. The figure was created 
with the BiodiversityR package.

Ordination can only provide a summary of the relationships between populations 
that are more fully expressed in distance matrices. How good a summary is 
provided by ordination can be explored by plotting distances shown in ordination 
diagrams against original distances. The results for our test Warburgia data set 
(with a trend-line added) are shown in Fig 5.3.  The 10 data points represent the 
number of pairwise comparisons between populations that are possible for each 
distance measure.

For our example, it is evident that there is a generally good relationship between 
ordination results and original distances.  The exception is at low genetic distances. 
This suggests that when populations are genetically quite similar ordination 
results should be interpreted cautiously.
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Assigning levels of variation to the principal axes of 
ordination

Ordination expresses variation in terms of positions along a small number of 
principal axes of variation. In order to understand what percentage of variation 
is explained by each axis, the eigenvalue obtained from analysis that corresponds 
to a particular axis must be divided by the total sum of all eigenvalues (from all 
axes, the number of which usually corresponds to the number of populations 
minus one; in the case of our test data set of Warburgia [� populations], there 
are four eigenvalues). 

Negative eigenvalues are sometimes obtained in analysis. This indicates that 
the results of ordination do not exactly match distances in the original input 
matrix used for analysis (see Kindt and Coe 200�).  The occurrence of negative 
eigenvalues can be used to tell us something fundamental about the distance 
matrix.  When estimating the percentage of variation explained by different axes, 
there are different ways of dealing with negative eigenvalues: they can simply 
be ignored in calculations, or (better) absolute values can be used (i.e., multiply 
negative values by -�).

A similar procedure for estimating the percentage of variation explained by 
principal axes can be used when dealing with individuals (see Chapter 7).  The 
only difference is that the total number of axes involved is generally much higher 
(usually the number of individuals minus �).

Box 5.2.   
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Chapter 6. Measuring genetic distance between individuals

Key points

This chapter explains how to calculate genetic distances between pairs 
of individuals.

For dominant markers, incomplete information at loci means that it 
is not possible to define the full genotypes of individuals. Distance 
measures must thus rely on comparing the occurrence of product 
presences and absences between individuals, without considering 
whether or not individuals are heterozygous.

Common approaches for measuring genetic distances between pairs of 
individuals include simple mismatching, Jaccard’s and Dice’s coefficients. 

Once genetic distances between pairs of individuals have been estimated, 
the relationships between individuals can (as for populations) be 
visualised by other approaches, with ordination being especially useful 
(see Chapter 7).
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6.1. Calculating genetic distances from product distributions
Chapter � of this guide described how dominant markers could be used to measure 
genetic distances between populations. Because dominant markers are unable 
to directly reveal heterozygous ‘present-absent’ [�, 0] conditions, this required 
assumptions in converting product frequencies to allele frequencies.  The calculation 
of genetic distances between pairs of individuals is clearly also compromised by 
the inability to identify heterozygotes. In this instance, calculations must simply 
be based on the presence or absence of products without reference to possible 
heterozygosity.  This is a significant assumption when dealing with organisms that are 
highly heterozygous, as outcrossing trees species generally are.

There are a whole range of measures for calculating genetic distances between pairs 
of individuals based on dominant markers, but the three most common ones are: 
(�) simple mismatching (the same as � – simple matching!), (2) Jaccard’s measure; 
and (�) Dice’s distance. Distance measures like these have been used widely in 
ecology and as a result the same formulae have frequently been given different 
names. For example, simple mismatching is sometimes referred to as Hamming’s 
distance, while the Dice distance is also known as the Sørenson coefficient and as 
the Bray-Curtis measure. Legendre and Legendre (�998) provide an overview of 
the different measures available and explain some of the ‘overlaps’ in the naming of 
approaches. On a practical level, it is always important to report both the name of 
the measure applied and the software package used in your calculations.

The formulae for different measures are given in Appendix I and we encourage 
readers to explore the use of these further through the electronic files on the 
CD-ROM accompanying this guide. Once calculated, distances can be presented in 
a triangular matrix, as shown in Tables 6.�, 6.2 and 6.� (each based on one of the 
three common distance methods described above) for the first five individuals of 
our example W. ugandensis data set (see further information in Chapter �; values 
based on all �8� AFLP loci scored).
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6.2. Choosing between distance measures
As can be seen from the above three tables, the coefficient chosen can make a big 
difference to the absolute values of the pairwise distances generated.  This is because 
these coefficients are calculated in quite different ways. Of particular note, simple 
mismatching includes shared product absences when making calculations, whereas 
Jaccard’s and Dice’s measures do not. 

The relationship between the three measures for our total Warburgia data set is 
illustrated in Figure 6.�.  As can be seen, the distribution of points is wide along a 
diagonal both for simple mismatching compared to Jaccard’s measure and for simple 

Table 6.1. Distance estimates between five individuals of W. ugandensis, based on the 
simple mismatching coefficient. Results were obtained with the BiodiversityR software package.

Simple mismatching Kit01 Kit02 Kit03 Kit04
Kit02 0.141

Kit03 0.162 0.108

Kit04 0.205 0.173 0.119

Kit05 0.108 0.108 0.097 0.141

Table 6.2. Distance estimates between five individuals of W. ugandensis, based on Jaccard’s 
distance. Results were obtained with the BiodiversityR software package..

Jaccard’s distance Kit01 Kit02 Kit03 Kit04
Kit02 0.406

Kit03 0.448 0.294

Kit04 0.535 0.432 0.314

Kit05 0.357 0.323 0.290 0.394

Table 6.3. Distance estimates between five individuals of W. ugandensis, based on Dice’s 
distance. Results were obtained with the BiodiversityR software package.

Dice’s distance Kit01 Kit02 Kit03 Kit04
Kit02 0.255

Kit03 0.288 0.172

Kit04 0.365 0.276 0.186

Kit05 0.217 0.192 0.170 0.245
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mismatching compared to Dice’s measure.  This indicates that the measures do not 
compare well in the common ranking of distances between pairs of individuals. On 
the other hand, when comparing Jaccard’s and Dice’s measure with each other, a 
single curve is observed that indicates direct correspondence.

Knowing which distance measure is best to use depends on understanding 
something about both the technicalities of the laboratory method that is used to 
reveal variation and the biology of the material being researched.  When considering 
PCR approaches such as AFLP analysis or the random amplified polymorphic DNA 
(RAPD) procedure, the shared presence of a product between two individuals can 
generally be assumed to indicate that they are identical at that point in the genome. 
The shared absence of a product does not however necessarily indicate the same 
thing, as a whole range of different mutations could lead to product absence. 

For this reason, the greater the expected biological differences within the range 
of material under study, the more emphasis should be placed on using measures 
that ignore shared absences. For example, when examining different species more 
credence should be give to results obtained with Jaccard’s or Dice’s measure than 
simple mismatching. We suggest reading Kosman and Leonard (200�) for a more 
thorough discussion on this topic. Of course, if different measures indicate the same 
basic relationships between individuals when distances are visualised by methods 
such as ordination (see Chapter 7), then the greater the certainty that can be placed 
on results.

6.3. Dealing with missing data
When dealing with individual- rather than population-level data, it is often the case 
that no information will be available for a particular pairwise comparison because 
of missing [NA] data points.  This is especially likely when laboratory analysis uses 
a technique that is less reliable, e.g., if PCR often fails. For example, the RAPD 
method tends to fail frequently and therefore leaves more gaps in data sets than 
AFLP analysis does. Most software packages can handle missing data by excluding 
particular pairwise comparisons in analysis. We would however suggest that those 
individuals or loci that have a high proportion of missing data (e.g., when more 
than �0% of data points are not able to be scored) be completely excluded from 
individual-level analyses.
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Figure 6.1. Comparisons of simple mismatching, Jaccard and Dice distance estimates 
between pairs of W. ugandensis individuals (100 individuals in total). Each circle 
represents a single comparison, with the number of comparisons made corresponding to 
the size of the distance matrix. Comparisons were undertaken and figures generated in 
the BiodiversityR software package.
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6.4. References
Legendre P, Legendre L (�998) Numerical Ecology. Developments in Ecological

Modelling 20. Elsevier, Amsterdam, The Netherlands, 8�� pp.

Kosman E, Leonard KJ (200�) Similarity coefficients for molecular markers in 
studies of genetic relationships between individuals for haploid, diploid, and 
polyploid species. Molecular Ecology ��: ���-�2�.

6.5. Suggested software
A wide range of software packages can calculate genetic distances between pairs of 
individuals and generate distance matrices (e.g., GenAlEx, FAMD, BiodiversityR and 
AFLP-SURV). We recommend the use of the BiodiversityR package as it provides 
the most options for subsequent ordination analysis, as described in Chapter 7 (see 
Appendix III). 
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Key points

This section explains how to visualise genetic distances between 
individuals by ordination. This relies on having first calculated a distance 
matrix (see Chapter 6).

In interpreting the results of ordination, it is important to remember 
that the technique only provides an incomplete overview of the 
relationships between individuals. 

By assessing the spread of distributions of individuals within populations, 
further insights into species biology are provided.

The most common approach to ordination is principal coordinate 
analysis (PCoA)
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7.1. Ordination of genetic distances
Just as we showed earlier for populations (Chapters � and �), once genetic distances 
between individuals have been determined, the relationships between them can be 
summarised visually through cluster analysis or ordination. In the case of tree species, 
which normally express high genetic variation within populations and relatively low 
diversity among stands, cluster analysis at the level of individuals is generally not 
very informative (although there are exceptions, see Jamnadass et al. 200� for a clear 
case). More useful is to visualise differences by ordination, and we therefore focus 
on this approach here.  As we related earlier with reference to populations (Chapter 
�), it is important to remember that ordination can provide only a summary of 
the relationships between individuals (how good a summary can be tested, as was 
shown in Box �.� for populations; the same approach can be applied to individuals). 
Ordination expresses variation in terms of a small number of principal axes in two- 
or three-dimensional diagrams, and works well when comparing relationships among 
individuals that are rather different from each other. 

As noted in Chapter �, several ordination techniques can be applied to molecular 
data, such as principal coordinate analysis (PCoA) and non-metric multidimensional 
scaling.  We encourage users of this guide to explore the additional use of methods 
such as distance-based redundancy analysis, which combines an ‘analysis of variance’ 
with ordination and allows for tests of significance of relationships by randomisation 
procedures, through reading Kindt and Coe (200�).  The use of alternative approaches 
can also be tested through the electronic files on the CD-ROM. Just as with other 
methods described in this guide, it makes sense to test a range of approaches. 
Because of the range of methods available, when writing up results it is important 
to specify which technique was used and to indicate which software package was 
applied.

Here, we demonstrate the use of the standard PCoA approach on our test Warburgia 
data set (see information in Chapter �).  The results of a PCoA based on a pairwise 
genetic distance matrix calculated according to Jaccard’s measure (see Chapter 6; 
based on all �8� AFLP loci scored) is shown in Fig 7.�. (Note that Box �.2 in Chapter 
� explained how variation is assigned to principal axes during the ordination analysis 
of populations; the same approach applies for the ordination of individuals).
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Our example shows that individuals from Laikipia, Lushoto and Mara (Masai Mara) 
overlap in distribution but are generally well separated from individuals from Kibale 
and Kitale on the first principal axis. This separation is consistent with previous 
cluster and ordination analyses of populations (see Chapters � and �), which defined 
two distinct groups of populations that corresponded with regional location (Laikipia,
Lushoto and Masai Mara stands on the east side of the RiftValley,Kibale and Kitale on 
the west).  As noted in Chapter �, rotating an ordination graph such as Fig 7.� around
its horizontal or vertical axis makes no difference to the relationships observed 
(meaning that, if convenient, figures can be rotated for presentation purposes). As 
also noted previously, �-dimensional figures that provide the �rd principal axis (into 
the page) of an ordination analysis can be generated, or 2-dimensional figures that 
also represent the �st and �rd axes, or 2nd and �rd axes.

Figure 7.1. PCoA of 100 W. ugandensis individuals taken from five populations, based on 
genetic distances calculated according to Jaccard’s method. Individuals from different populations 
are labelled with different symbols. Four individuals that position unusually in ordination are indicated. 
Horizontal and vertical scales represent the first and second principal axes of variation, respectively 
(the two axes that explain the most variation among individuals). In this instance, the 1st principal axis 
represents 28% of variation, the 2nd 9%. The figure was created with the BiodiversityR package.
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Our example shows that an ordination of individuals provides some additional 
information compared to an analysis of populations, as it provides an overview of 
the spread of variation within stands, which in this instance is considerable. It is 
also able to identify particular individuals in certain populations that place unusually 
and that may merit further investigation – in this case, two individuals from Kibale 
(Kib�0 and Kib�8), and two from Kitale (Kit07 and Kit�0). 

Further analysis of our Warburgia example could involve undertaking ordination 
for pairs of populations only. In addition, the identity of the four unusual individuals 
identified above could be explored in more detail using only those markers that are 
diagnostic (e.g., that have a ‘product presence’ frequency difference of 0.8 or more) 
between the two geographic regions covered by the study. Might these individuals 
represent recent introductions into stands? Or, could they be the products of 
hybridisation between populations, or even with alternate species in the Warburgia 
genus (see Muchugi et al. 2008b for a description of other Warburgia species local to 
the region)? It is clear that further interpretation requires an understanding of the 
taxonomy and biology of the genus.

Other ways to assist the interpretation of ordination diagrams are also available 
(e.g., using BiodiversityR). For example, individuals can be connected to the centroid 
positions (the multivariate average) of their respective populations to generate 
‘spider’ diagrams, as illustrated for our Warburgia example in Fig. 7.2. The shorter 
the ‘legs’ of the spider are, the smaller the variance within a population is (e.g., in 
our example, legs are shorter on average in Kitale than Kibale), while the greater 
the distance between centroids then the more different two populations are. ‘Odd’ 
individuals can be identified that plot toward the centroids of populations from 
which they were not collected (in our example, only one individual, from Kitale 
[Kit07], is thereby identified).  Alternatively, arrows can be superimposed between 
the most related individuals according to the original distance matrix.
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7.2. References
Jamnadass R, Hanson J, Poole J, Hanotte O, Simons TJ, Dawson IK (2005) High 

differentiation among populations of the woody legume Sesbania sesban in sub-
Saharan Africa: implications for conservation and cultivation during germplasm 
introduction into agroforestry systems. Forest Ecology and Management 210: 225-
238.

Kindt R, Coe R (2005) Tree Diversity Analysis: A Manual and Software for 
Common Statistical Methods for Ecological and Biodiversity Studies.  The World 
Agroforestry Centre, Nairobi, Kenya.  Available from the CD-ROM and at:  
www.worldagroforestry.org/treesandmarkets/tree_diversity_analysis.asp

Muchugi A, Muluvi GM, Kindt R, Kadu CAC, Simons AJ, Jamnadass RH (2008b) 
Genetic structuring of important medicinal species of genus Warburgia as 
revealed by AFLP analysis. Tree Genetics and Genomes 4: 787-795. 
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Figure 7.2. PCoA of 100 W. ugandensis individuals taken from five populations (PCoA taken from 
Fig 7.1) with a spider diagram linking individuals to population centroid positions (labelled by name of 
population) superimposed. The figure was created with the BiodiversityR package.

http://www.worldagroforestry.org/treesandmarkets/tree_diversity_analysis.asp
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7.3. Suggested software
Various software packages allow for ordination of individuals (e.g., GenAlEx, FAMD 
and BiodiversityR). We recommend use of the BiodiversityR package as it allows 
additional information to be superimposed onto ordination diagrams and has other 
features that provide added value in analysis (see Appendix III).
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Chapter 8.  Analysis of molecular variance (AMOVA) 

Key points

This section explains how to carry out an analysis of molecular variance 
(AMOVA).

AMOVA is a particular approach that partitions genetic variation among 
individuals within populations and among populations. It can also be used 
to partition variation at higher levels of structure in nested analyses 
(e.g., by geographic region or species).

As is the case with other analyses based on dominant markers, 
incomplete information at loci means assumptions during analysis. 
AMOVA of dominant data relies on treating individuals as haploids.

The AMOVA approach has been widely adopted because it is a simple 
way of expressing variation and it makes comparisons with other studies 
straightforward.



6�

Part 4 • Further methods

8.1. Partitioning variation within and among populations
The AMOVA approach as described by Excoffier et al. (�992) generates squared 
Euclidean distances between pairs of individuals and then partitions this variation at 
different levels of structure – within and among populations, among regions, among 
species, etc. – depending on the hierarchy that is available for testing. As noted 
earlier in this guide (Chapter 6), the calculation with dominant markers of genetic 
distances between pairs of individuals is compromised by the inability to identify 
heterozygotes.  AMOVA, therefore, estimates distances between pairs of individuals 
based simply on the presence or absence of products. It can be demonstrated 
that using the Euclidean distance corresponds to treating individuals as completely 
inbred (with the same allele frequencies as if the dominant markers were obtained 
from haploid organisms), which is clearly not realistic for outbreeding trees (see 
Appendix III).

A powerful feature of AMOVA is that it can accept a number of levels of structure 
within a single analysis, allowing variance to be ‘nested’ across levels.  As implemented 
in packages such as GenAlEx and Arlequin, significance values can then be ascribed 
by permutation tests to the variance which partitions at different levels of structure. 
Permutation tests compare given results with a situation where no genetic structure 
in material is assumed, and estimate how often the actual results exceed expectations 
on this basis. 

An AMOVA for our example W. ugandensis data set (see further information in 
Chapter �; values based on all �8� AFLP loci scored) is shown in Table 8.�. The table 
expresses the proportion of variance within and among populations based on an 
analysis nested into two regions, as defined by the locations of stands with respect 
to the Rift Valley (Laikipia, Lushoto and Masai Mara to the east of the Rift, Kibale 
and Kitale to the west). For our example, it is evident that a significant proportion 
of variance (��%) partitions between regions, consistent with earlier illustrations 
of analyses in this guide (see Parts 2 and �). The variance partitioning between 
populations within regions (�0%) is less than between regions but is still significant, 
and this may be accounted for primarily by the difference observed earlier between 
Kibale and Kitale stands from west of the Rift Valley.  A large fraction of variance 
(�6%) is found within stands, consistent with the scatter of individuals within 
populations in ordination diagrams (see Chapter 7).
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The AMOVA approach also generates FST values (one of the F-statistics such as Weir 
and Cockerham’s �98� measure, see Appendices I and III).  This parameter is calculated 
as diversity among populations / total diversity. Values close to zero indicate little 
differentiation among populations (that is, most genetic diversity is within populations), 
while values close to one indicate high differentiation (that is, most diversity is among 
populations). Generally, FST values in the range of 0 to 0.0� are considered low, 0.0� to 
0.�� moderate, 0.�� to 0.2� large, and 0.2� to �.0 very large.

AMOVA can also generate genetic distance values between pairs of populations, 
thus providing an alternative approach to those methods described in Chapter � 
of this guide. Pairwise distances are calculated by subsequent AMOVA analyses for 
each pair of populations, interpreting the resulting FST values as a measure of genetic 
distance. Results for our example W. ugandensis data set are shown in Table 8.2. In 
our analysis, distance values between Laikipia, Lushoto and Masai Mara (Mara) were 
lowest, consistent with previous findings (Part 2; see especially Chapters � and �). 
All pairwise distances between populations were considered to be significant, even 
for Laikipia versus Lushoto, Lushoto versus Masai Mara and Laikipia versus Masai 
Mara.  The significance values revealed by AMOVA should however be treated with 
caution because, as noted above, the method used to estimate distances between 
populations in this case relied on product distributions rather than estimated allelic 
frequencies. (AMOVA is thus best used for looking at ‘relative’ rather than ‘absolute’ 
differences between stands.)

Table 8.1. A nested AMOVA (by region) for five populations of W. ugandensis. The percentage 
of variance partitioning at different levels of structure and associated significance values are 
shown, as are degrees of freedom (d.f.), mean squared deviations (MSD) and the values of the 
variance components. Results were obtained with the GenAlEx 6.2 software package.

Source of variation d.f. MSD
Variance 

component
% of 
total P-value*

Between regions 1 442.4 7.90 33 < 0.001

Among populations within regions 3 63.3 2.49 10 < 0.001

Among individuals within populations 95 13.5 13.49 56 < 0.001

* In the GenAlEx output, P-values are given in relationship to Phi values of genetic structure. In this 
instance, significance values were assigned to partitioned variation by 9,999 permutations (one of 
the given values to choose from in GenAlEx) of genetic structure. 
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8.2. References
Excoffier L, Smouse PE, Quattro JM (�992) Analysis of molecular variance 

inferred from metric distances among DNA haplotypes: application to human 
mitochondrial DNA restriction data. Genetics ���: �79-�9�.

Weir BS, Cockerham C (�98�) Estimating F-statistics for the analysis of population 
structure. Evolution �8: ���8-��70.

8.3. Suggested software
AMOVA can be undertaken in GenAlEx, Arlequin (similar approach to GenAlEx) 
and FAMD (see Appendix III). GenAlEx calculates squared Euclidean distances and
then uses these for further analysis.  Although FAMD can provide AMOVA statistics 
for a wider range of genetic distance measures than GenAlEx, it does not provide 
tests for statistical significance.

Table 8.2. Pairwise genetic distances (FST) values from AMOVA for five populations of 
W. ugandensis. Results were obtained with the GenAlEx 6.2 software package. Levels of 
significance were assigned to values by 9,999 permutations (one of the given values to choose 
from in GenAlEx) of genetic structure. All pairwise distance values were considered significant 
(P < 0.001).

AMOVA distances Kitale Kibale Laikipia Mara

Kibale 0.265

Laikipia 0.447 0.356

Mara 0.495 0.405 0.069

Lushoto 0.526 0.393 0.109 0.077
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Key points

This section explains how to carry out analysis of data in the software 
package STRUCTURE.

STRUCTURE analyses genetic differentiation by assigning individuals to a 
number of assumed groups (K), where K is set by the user.

STRUCTURE provides useful graphical outputs that allow the genetic 
composition of an individual to be compared with its given population 
identity.
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9.1.  The basis of STRUCTURE
The STRUCTURE approach as described by Falush et al. (2007) infers genetic 
structure by assigning individuals probabilistically to one or more of a number of 
assumed groups in analysis (K), where K is set by the user.  Analysis assigns a group 
membership coefficient profile (Q) for each individual. As with other methods in 
this guide, analysis using dominant markers is based on an approximation, since 
heterozygotes are unable to be identified. STRUCTURE however includes a Bayesian 
method for calculating allele frequencies, which should provide reasonable estimates 
(see Chapter 2). 

In Fig. 9.�, we show the results of STRUCTURE for our example W. ugandensis data 
set (see further information in Chapter �; values based on all �8� AFLP loci scored), 
setting values of K from 2 to � (the same information can be obtained from the 
results file under the heading of “inferred ancestry of individuals”). In our example, 
setting K = 2 divides samples into regions of collection in a manner consistent 
with previous clustering (Chapter �), ordination (Chapters � and 7) and AMOVA 
results (Chapter 8). In the figure, Laikipia, Mara (Masai Mara) and Lushoto individuals 
collected from east of the Rift Valley are indicated predominantly in green, while 
Kitale and Kibale individuals from the west of the Rift Valley are coloured primarily 
red. Setting K = � indicates that the next most significant level of structuring is 
between Kitale (predominantly in green) and Kibale (predominantly in blue), as was 
also evident in previous ordination (e.g., see Fig. 7.� in Chapter 7). Setting K = � 
indicates a degree of structure within material collected from east of the Rift Valley, 
but no clear pattern is evident since each eastern population contains ‘green’ and 
‘yellow’ elements. The case is similar when K = �. The main difference between 
results with K = � and K = � is that some individuals from Kibale (see blue element) 
are discriminated from other stands.

An important part of STRUCTURE analysis is to settle on the ‘correct’ K value to 
use.  The suggested approach (Falush et al. 2007) is to adopt the lowest value for K 
for which the LN P(D) values calculated by the package have begun to plateau, and 
for which results appear biologically meaningful. On this basis, in our example we 
would settle on either K = �, which explains the main disjunctions in data revealed 
by other analyses, or K = �, when the LN P(D) values appear to have plateaued.
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Figure 9.1. STRUCTURE analysis showing Q profiles (on the y axis, components of Q represented 
by different colours) for 100 W. ugandensis individuals taken from five populations, based on different 
values of K (the number of assumed groups in analysis). Individuals are arranged by the population 
they belong to (1 = Kitale, 2 = Kibale, 3 = Laikipia, 4 = Masai Mara, 5 = Lushoto). LN P(D) values are 
also shown. Analysis used the admixture ancestry model, the correlated allele frequencies model, and 
100,000 steps during burnin, with 100,000 subsequent MCMC steps. Analysis was carried out in the 
STRUCTURE 2.3.2 software package.

K=2; LN P(D) = -6607.3

K=3; LN P(D) = -6244.6

K=4; LN P(D) = -5950.2

K=5; LN P(D) = -6100.4
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Also important for obtaining meaningful results in STRUCTURE is to decide how 
long to run the program for, in terms of the number of steps to use in the ‘burnin’ 
period and then the number of steps to use in subsequent analysis.  The authors of 
STRUCTURE suggest using between �0,000 and �00,000 steps in both phases.  The 
more steps that are used then the longer analysis will take, and so users may want to 
minimise the number of steps employed to still obtain accurate results.  The number 
of steps required can be tested by repeating analysis with different number of steps 
and checking to see when values become stable. 

In Fig. 9.2, we show STRUCTURE estimates by iteration (�00,000 steps for each 
of the burnin and subsequent analysis phases) for our example Warburgia data set, 
setting values of K at � and �.  The figure helps us in concluding that stability was 
reached well before the burnin phase was completed and suggests that lower values 
for repetitions could have been employed. 

Figure 9.2. STRUCTURE analysis showing Ln Likelihood values as a function of the number of 
iterations in analysis, based on different values of K (the number of assumed groups in analysis). 
Analysis was carried out in the STRUCTURE 2.3.2 software package.

K=3

K=4
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9.2. Identifying unusual individuals in data sets
STRUCTURE allows separate labels to be assigned to individuals in Q profile 
plots and this approach can be used to identify unusual individuals in analysis that 
are strongly admixtured (mixed Q profiles) or have completely different profiles 
(apparently ‘misplaced’ to a population). Fig. 9.� shows the previous STRUCTURE 
analysis of our example Warburgia data set (Fig. 9.�) with individual labels assigned 
(K set at �).

Fig. 9.� identifies three individuals with strong admixture (not belonging mainly to 
a single group) as Kit07 (individual 7 in the figure; admixture of each group), Kit�0 
(individual �0; admixture of ‘green’ typical of Kitale and ‘red’ typical of the east of 
the Rift Valley) and Kib�0 (individual �0; admixture of ‘blue’ typical of Kibale and ‘red’ 
typical of the east of the Rift Valley).  These three individuals were also detected as 
unusual in previous ordination (see Chapter 7).  The correspondence of STRUCTURE 
with ordination means that we can be more confident about conclusions that these 
individuals are indeed genetically distinct.

Figure 9.3. STRUCTURE analysis showing Q profiles (on the y axis, components of Q represented by 
different colours) for 100 W. ugandensis individuals taken from five populations, based on K = 3 (see 
Fig. 9.1) and labelling by individual (1 to 20 = Kitale, 21 to 40 = Kibale, 41 to 60 = Laikipia, 61 to 80 = Masai 
Mara, 81 to 100 = Lushoto). Analysis used the admixture ancestry model, the correlated allele frequencies 
model, and 100,000 steps during burnin, with 100,000 subsequent MCMC steps. Analysis was carried out 
in the STRUCTURE 2.3.2 software package.
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9.3. References
Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using 

multilocus genotype data: dominant markers and null alleles. Molecular Ecology 
Notes 7: �7�-�78.

9.4. Suggested software
Analysis is conducted in the software package STRUCTURE (see Appendix III).
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Appendix 1

Key points

We here list a range of mathematical formulae that were not included in 
the main body of the chapters of this guide.

Knowing how a statistic is calculated is important for knowing how results 
should be interpreted.

Worked examples are provided in associated Microsoft Excel workbooks 
on the CD-ROM that accompanies this guide.

Mathematical formulae
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I.1. Formulae relevant to Part 2 of the guide     

I.1.1.  Allele frequencies, non-Bayesian methods

Formula References

0fqi =
(the square-root method)
Kraus 2000, Kremer et al. 2005

0fqi =
(the phenotypic diversity method)
Kraus 2000, Kremer et al. 2005

ii qp −= 1 (frequency of the plus-allele)

N
Nf 0

0 = (frequency of the recessive phenotypes)

Formulae are based on the following parameters:

i locus identification number
N the number of individuals with information on locus i
N0 the number of individuals that do not show the marker for locus i
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 Formula References

(uniform priors)
Zhivotovsky 1999 (eq. 9)

(uniform priors, alternative calculation 
method)
Zhivotovsky 1999 (eq. 10)

(non-uniform priors)
Zhivotovsky 1999 (eq. 5)

(non-uniform priors, alternative 
calculation method)
Zhivotovsky 1999 (eq. 10)

(parameter of beta or gamma 
distribution)
Zhivotovsky 1999 (eq. 13)

(parameter of beta or gamma 
distribution)
Zhivotovsky 1999 (eq. 13)

∑
=

=
L

i i

i

L

i

N
N

N
NR

1

0
(average frequency of recessive 
phenotype over loci)
Zhivotovsky 1999 (eq. 12 and note 4)

(variance in frequencies of recessive 
phenotype over loci)
Zhivotovsky 1999 (eq. 12 and note 4)

∑
=

=
L

i
iL NN

1

Formulae are based on the following parameters:

i locus identification number
N0 the number of individuals that do not show the marker for locus i
N1 the number of individuals that show the marker for locus i
N the total number of individuals with information for locus i
Ni the number of individuals with information on locus i
Ni0 the number of individuals that do not show the marker for locus i
L the number of loci

I.1.2.  Allele frequencies, Bayesian methods

( ))2(ln)5.0(ln)5.1(ln)1(lnexp 00 +Γ−+Γ−+Γ++Γ= NNNNqi

( ))5.0(ln)(ln)(ln)5.0(lnexp 00 +++Γ−+Γ−++Γ+++Γ= baNaNbaNaNqi

)1,5.0(
)1,1(

10

10

++
++

=
NN

NNqi β
β

),(
),5.0(

10

10

bNaN
bNaNqi ++

+++
=

β
β
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I.1.3. Diversity statistics

Formula References

221 iie qpH −−= (Nei diversity = expected heterozygosity)
Nei 1978, Bonin et al. 2007

(unbiased Nei diversity)
Nei 1978, Bonin et al. 2007

N
fqqH iiij 4

2)1(2ˆ 1
)( +−=

(unbiased Nei diversity, alternative calculation 
method)
Lynch and Milligan 1994 (eqs. 2b, 4a)

22
1

ii
e qp

N
+

= (number of effective alleles)
Peakall and Smouse 2006 (GenAlEx results)

( ))ln()ln( iiii qqppI +−= (Shannon diversity index)
Bonin et al. 2007

Formulae are based on the following parameters:

i locus identification number
pi the frequency of the plus-allele of locus i
qi the frequency of the null-allele of locus i
N the number of individuals
j population number
f1 the frequency of the dominant phenotype

( )221
12

2
iie qp

N
NUH −−
−

=



77

Appendix I • Mathematical formulae

I.1.4. Summing diversity across loci

Formula Reference

L

qp
H

L

i
ii

e

)1(
1

22∑
=

−−
=

(average Nei diversity)
Nei 1978, Bonin et al. 2007

(average unbiased Nei diversity)
Nei 1978, Bonin et al. 2007

L

H
H

L

i
ij

j

∑
== 1

)(
ˆ

ˆ
(average unbiased Nei diversity, alternative 
calculation method)
Lynch and Milligan 1994 (eq. 5)

N
fqqH iiij 4

2)1(2ˆ 1
)( +−=

(unbiased Nei diversity, alternative 
calculation method)
Lynch and Milligan 1994 (eqs. 2b, 4a)

Formulae are based on the following parameters:

i locus identification number
pi the frequency of the plus-allele for locus i
qi the frequency of the null-allele for locus i
N the number of individuals
L the number of loci
j population number
f1 the frequency of the dominant phenotype for locus i

L

qp

N
NUH

L

i
ii

e

)1(

12
2 1

22∑
=

−−

−
=
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I.1.5. Genetic distances between populations

Formula Reference

(Standard Nei)
Nei 1978 (eq. 4), Reif et al. 2005

(Unbiased estimation of standard 
Nei)
Nei 1978 (eq. 6)

( ) ( )
( )∑

∑∑
=

== +−+=
L

i
iiii

L

i
ii

L

i
ii

m qqpp
qpqp

Nei
1

2121
1

2
2

2
2

1

2
1

2
1

22

(Minimum Nei)
Nei 1978

(Unbiased estimation of minimum 
Nei)
Nei 1978 (eq. 12)

Takezaki and Nei 1996

L

qqpp

Rogers

L

i

iiii

o

∑
=








 −+−

=
1

2
21

2
21

2
)()(

(Original Rogers)
Rogers 1972, Reif et al. 2005

L
qqpp

Rogers iiii
m 2

)()( 2
21

2
21 −+−

=
(Modified Rogers)
Wright 1978, Reif et al. 2005

Formulae are based on the following parameters:

i locus identification number
L the number of loci
pi1 the frequency of the plus-allele for locus i in the first population
qi1 the frequency of the null-allele for locus i in the first population
pi2 the frequency of the plus-allele for locus i in the second population
qi2 the frequency of the null-allele for locus i in the second population
N1 the number of individuals in the first population
N2 the number of individuals in the second population

( ) ( )∑∑

∑

==

=

+
−=

L

i
ii

L

i
ii

L

i
iiii

s

qpqp

qqpp
Nei

1

2
2

2
2

1

2
1

2
1

1
2121

ln

( ) ( )∑∑

∑

=
−

=
−

=

+
−=

L

i
iiN

N
L

i
iiN

N

L

i
iiii

us

qpqp

qqpp
Nei

1

2
2

2
212

2

1

2
1

2
112

2

1
2121

2

2

1

1

ln

( ) ( )
( )∑

∑∑
=

=
−

=
−

+−+=
L

i
iiii

L

i
iiN

N
L

i
iiN

N

um qqpp
qpqp

Nei
1

2121
1

2
2

2
212

2

1

2
1

2
112

2

22

2

2

1

1

( )∑
=

−−
Π

=
L

i
iiii qqpp

L
iTakezakiNe

1
2121122
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I.2. Formulae relevant to Part 3 of the guide  

Formula References

Jaccard 1908, Kosman and Leonard 2005, Reif et al. 2005, 
Bonin et al. 2007

Dice 1945, Sørenson 1948 , Kosman and Leonard 2005, 
Reif et al. 2005, Bonin et al. 2007

Sokal and Michener 1958, Kosman and Leonard 2005, Reif 
et al. 2005, Bonin et al. 2007

Legendre and Legendre 1998

Legendre and Legendre 1998

Formulae are based on the following parameters:

N11 the number of loci with shared presences for both individuals
N10 the number of loci with presence for the first individual and absence for the second individual
N01 the number of loci with absence for the first individual and presence for the second individual
N00 the number of loci with shared absences for both individuals

011011

0110.
NNN

NNDistJaccard
++

+
=

011011

0110

2
.

NNN
NNDistDice
++

+
=

00011011

0110..
NNNN

NNDistMatchSimple
+++

+
=

0110. NNDistEuclidean +=

0110.. NNDistEuclideanSquared +=
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I.3. Formulae relevant to Part 4 of the guide

I.3.1.  Analysis of molecular variance (AMOVA)

Formula Reference

(F-statistic)
Excoffier et al. 1992

(the estimated variance for the among population level)

(the mean square and estimated variance for the within 
population level)

1−
=

P
SSAPMSAP (the mean square for the among population level)

SSWPSSTOTSSAP −= (the total sum of squared distances among populations)

(the total sum of squared distances)

∑
=

=
P

i
iPSSDSSWP

1
)( (the sum of squared distances within all populations)

(the sum of squared distances within population X)

Formulae are based on the following parameters:

Dia-jb the Euclidean distance between individual a of population i and individual b of population j
Ni the number of individuals in population i
N the number of individuals in all populations
P the number of populations

1
1

2

−

−
=

∑
=

P
N
NN

n

P

i

i

22

2

wa

a

σσ
σ
+

=Φ

n
MSWPMSAP

a
−

=2σ

PN
SSWPMSWPw −

==2σ

∑∑∑∑
= = = =

−=
P

i

P

j

N

a

N

b
jbia

i j

DSSTOT
1 1 1 1

2

∑∑
= =

−=
i iN

a

N

b
ibiai DPSSD

1 1

2)(



8�

Appendix I • Mathematical formulae

I.3.2. G-statistics

Formula Reference

(F-statistic)
Nei 1973

n

H
H

n

j
j

W

∑
== 1 (Average diversity of the populations)

(See formula for He in section 2.2)

(Average frequency of the plus-allele of the 
populations at the locus)

(Average frequency of the null-allele of the 
populations at the locus)

(See formula for He in section 2.2)

Formulae are based on the following parameters:

j population identification number
n number of populations
i locus identification number
L the number of loci
pij the frequency of the plus-allele for locus i in population j
qi1 the frequency of the null-allele for locus i in population j

T

WT
ST H

HHG −
=

L

qp
H

L

i
ijij

j

)1(
1

22∑
=

−−
=

n

p
p

n

j
ij

ia

∑
== 1

n

q
q

n

j
ij

ia

∑
== 1

L

qp
H

L

i
iaia

T

)1(
1

22∑
=

−−
=
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I.3.3. θ-statistics

Formula Reference

(F-statistic)
Weir and Cockerham 1984 (top 
of page 1363)
(this is the formula for random 
mating within populations)

(nominator part of the formula 
on page 1363 of the Weir and 
Cockerham article)

(denominator part of the formula 
on page 1363 of the Weir and 
Cockerham article)

N
NStDev

C j )(
=

(the coefficient of variation for 
the number of individuals in 
each population)

Nn

ppN
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Key points

We here describe how to download and install nine different data analysis 
packages that are available for free on the internet.  Also described is how 
to format data for analysis in each of them.

Formatted input files for different software packages based on our  
W. ugandensis example data set are included in folders on the CD-ROM.   
Typical output files are also included. 

How to carry out analyses in a subset of the packages presented here is 
described in Appendix III. 

Software packages are continually being updated. We recommend that 
users always install the latest version available (using any new installation 
methods). Check the guides of new software versions for any new features 
and procedures for analysis.

Installing software and formatting data 
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II.1. General formatting
For basic information on formatting, please refer to Chapter � of this guide.  Table II.� 
provides again the information given there for the first �� individuals tested and the 
first five loci scored for our example Warburgia ugandensis data set.  This spreadsheet 
can be used as the initial input file to prepare data for a range of software packages, as 
illustrated in Fig. II.�. Our basic data spreadsheet can be found as warburgiabase.xls or 
warburgiabase.txt on the CD-ROM accompanying this guide.
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Table II.1. A subset of AFLP data (45 individuals and 5 loci) collected for Warburgia ugandensis, showing 
the appropriate format for inputting results into a spreadsheet.

Individual Population Region Locus001 Locus002 Locus003 Locus004 Locus005

Kit01 Kitale west 0 0 0 0 0
Kit02 Kitale west 0 1 0 1 0
Kit03 Kitale west 0 0 0 1 0
Kit04 Kitale west 0 0 0 1 0
Kit05 Kitale west 0 0 0 1 0
Kit06 Kitale west 0 0 0 1 0
Kit07 Kitale west 0 1 0 1 0
Kit08 Kitale west 0 0 0 1 0
Kit09 Kitale west 0 0 0 0 0
Kit10 Kitale west 0 0 0 1 0
Kit11 Kitale west 0 0 0 1 0
Kit12 Kitale west 0 0 0 1 0
Kit13 Kitale west 0 0 0 0 0
Kit14 Kitale west 0 0 0 0 0
Kit15 Kitale west 0 0 0 0 0
Kit16 Kitale west 0 0 0 0 0
Kit17 Kitale west 0 0 0 0 0
Kit18 Kitale west 0 0 0 0 0
Kit19 Kitale west 0 0 0 0 0
Kit20 Kitale west 0 0 0 0 0
Kib01 Kibale west 0 0 0 0 0
Kib02 Kibale west 0 0 0 0 0
Kib03 Kibale west 0 0 0 0 0
Kib04 Kibale west 0 0 0 1 0
Kib05 Kibale west 0 0 0 0 0
Kib06 Kibale west 0 0 0 0 0
Kib07 Kibale west 0 1 0 1 0
Kib08 Kibale west 0 0 0 1 0
Kib09 Kibale west 0 0 0 1 0
Kib10 Kibale west 0 1 0 1 0
Kib11 Kibale west 0 0 0 0 0
Kib12 Kibale west 0 0 0 0 0
Kib13 Kibale west 0 0 0 0 0
Kib14 Kibale west 0 0 0 1 0
Kib15 Kibale west 0 0 0 0 0
Kib16 Kibale west 0 0 0 0 0
Kib17 Kibale west 0 1 0 1 0
Kib18 Kibale west 0 0 1 1 0
Kib19 Kibale west 1 0 0 0 0
Kib20 Kibale west 1 0 0 1 0
Lai01 Laikipia east 0 1 0 1 0
Lai02 Laikipia east 0 1 0 1 0
Lai03 Laikipia east 0 0 0 0 0
Lai04 Laikipia east 0 0 0 0 0
Lai05 Laikipia east 0 0 0 1 0
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Figure II.1. Suggested pathways for preparing input data files for various software packages. Green 
arrows indicate where one software package can prepare data in the right format for input into another 
package. For two packages, GenAlEx and BiodiversityR, start with the base worksheet format.

Base format

GenAlEx
(Section II.2)

FAMD
(Section II.3)

BiodiversityR
(Section II.4)

PopGene
(Section II.7)

STRUCTURE
(Section II.9)

Phylip
(Section II.10)

Hickory
(Section II.8)

TFPGA
(Section II.6)

AFLP- SURV
(Section II.5)
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II.2. GenAlEx (Genetic Analysis in Excel) (version 6.2)

II.2.1. Installation
GenAlEx can be obtained from the following website:  
http://www.anu.edu.au/BoZo/GenAIEx/ 

You will obtain a zip archive named “GenAlEx 6.2.zip”. Extract all the files of the zip 
archive to the same folder (e.g., “C:\Program Files\GenAlEx 6.2”). 

One of the extracted files is named “GenAlEx 6.2.xla”, which is an Add-In for 
Microsoft Excel. Install this Add-In after launching Excel using the menu option: 
Tools > Add-Ins… Click on the <browse> button and point to the location of the 
“GenAlEx 6.2.xla” file.

The default option is that the GenAlEx start screen is shown every time Excel is 
started.  To prevent this, use the following option: GenAlEx > Options > Generic > 
Hide Splash Screen on Startup.

If you are using Microsoft Excel 2007, please check the guidelines provided in the zip 
archive “Read Me File GenAlEx 6.�.pdf”.

The suggested citation for the software is: Peakall R, Smouse PE (2006) GENALEX 
6: genetic analysis in Excel. Population genetic software for teaching and research. 
Molecular Ecology Notes 6: 288-29�.

http://www.anu.edu.au/BoZo/GenAIEx
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II.2.2. Preparing input data
The data set must be sorted by regions and then by populations. Regions cannot be 
mixed down the order of rows – that is, all of the populations from the first region 
must come first, then populations from the second region, etc.

Follow these steps to prepare input data.

•	 Make a copy of the base data set (“warburgiabase.xls”), such as  
(“warburgiaGenAlEx.xls”)

•	 Open the copied data set in Microsoft Excel.

•	 Delete the third column (column C with “Rift” in the top cell). 

•	 Insert two rows at the top of the sheet. 

•	 Select the menu option of GenAlEx > Parameters > Pops from Col2.

•	 Complete information about the number of loci using the menu option  
GenAlEx > No. Loci.

•	 Complete information about regional structure (cells I�, J�-2 and K�-2) as shown 
in Fig. II.2.

•	 Save this data set.

The Warburgia spreadsheet does not contain missing data. If this were the case, then 
a value of “-�” should be given for missing data points.

II.2.3. Exporting data from GenAlEx
GenAlEx allows data to be exported in the correct input formats for the following 
software packages described here: FAMD, AFLP-SURV, TFPGA and PopGene. 

To access output options, the worksheet with the raw input data should be active. 
Export options are accessed via the menu option: GenAlEx > Export Data. 
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Figure II.2. The required header for an Excel worksheet containing input data for the GenAlEx software 
package. Cell A1 contains the number of loci (185), cell B1 the number of individuals (100), cell C1 the 
number of populations (5), cells D1-H1 the number of individuals in each population (20), cells D2-H2 the 
names of the populations in the same order as data are input (Kitale, Kibale, Laikipia, Mara and Lushoto), 
cell I1 the number of regions (2), cells J1-K1 the number of individuals in each region (40, 60) and cells 
J2-K2 the names of the regions (west, east).
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II.3. FAMD (Fingerprint Analysis with Missing Data) 
(version �.2� beta)

II.3.1. Installation
FAMD can be downloaded from: http://www.famd.me.uk/famd.html

Extract the three files from the zip archive “FAMD�2�.zip” into the same directory 
(e.g., C:\Program Files\FAMD). 

The program does not need to be further installed but executes directly by clicking 
on famd.exe 

The suggested citation for the software is: Schlüter PM, Harris SA (2006) Analysis of 
multilocus fingerprinting data sets containing missing data. Molecular Ecology Notes 
6: �69-�72.

II.3.2. Preparing input data
Prepare input files via GenAlEx (section II.2) and give the export file an extension of 
“.txt” (e.g., “warburgiaFAMD.txt”).

Load this input file into FAMD via the menu option: file > import. 

Provide information on the format of the input file, as shown in Fig. II.�.

Next, provide information on the population and structure of the Warburgia stands. 
The group manager of FAMD adds information on group structure to the input data 
and is accessed via the menu option: DataMatrix > Group manager. 

http://www.famd.me.uk/famd.html
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Follow these steps:

• Select all the individuals of the same population (click on the first individual and 
scroll to the last individual and then SHIFT-click on it) and move these to the 
Data subset window using the >> button. Give the name of the population and 
then click <Accept subset> (Fig. II.�).

• Repeat for all populations and then click <OK>. 

• As the final step, save the changed input file by the menu option: File > Save 
DataMatrix. 

Figure II.3. Required parameters for importing the input file generated by GenAlEx into FAMD. State 
that individuals are provided in rows, that header presence is provided for individuals (but not for loci) 
and that the data is delimited.
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Figure II.5. After using the group manager, information on population structure is added to the input 
data.

Figure II.4. Use the group manager to assign individuals to populations.
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The group manager will have added information on group structure at the end of 
the data (Fig. II.�). The next time that you import data, make sure that you specify 
that group structure is provided (tick “include groups”, see Fig. II.�).

The Warburgia spreadsheet does not contain missing data. If this were the case, 
then a value of “?” could be used and indicated as such in the Ambiguity box (see 
Fig. II.�).

II.3.3. Exporting data from FAMD
FAMD allows data to be exported in the correct input formats for the following 
software packages described here: Hickory and STRUCTURE. 

Export options are accessed via the menu option: File > Export. 
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II.4. BiodiversityR (version �.�)

II.4.1. Installation
BiodiversityR is available at the following website: www.cran.r-project.org 

The CD-ROM accompanying our guide contains the installation software for 
BiodiversityR. It can be found in the folder: Software BiodiversityR \ Installation.

BiodiversityR is a package that was developed for the R statistical environment and 
this needs to be installed first.

Follow these steps for installing BiodiversityR (or check the guidelines provided 
with the installation files on the CD-ROM):

• Download the installation file for the R statistical environment (e.g., R-2.�0.0-
win�2.exe) from the R website (http://cran.r-project.org/bin/windows/base/), 
preferably from one of the mirror sites (http://cran.r-project.org/mirrors/html).

• Download all the packages that BiodiversityR builds on, from the website for 
‘additional packages’ (http://cran.r-project.org/bin/windows/contrib/2.�0/, or via 
the mirror sites at http://cran.r-project.org/mirrors/html): abind, akima, aplpack, 
BiodiversityR, car, colorspace, effects, ellipse, Hmisc, leaps, lmtest, maptree, mgcv, 
multcomp, mvtnorm, Rcmdr, relimp, rgl, RODBC, sp, splancs and vegan.

• Download all these packages to the same folder. Do not click on these zip files 
as they can only be installed from within the R system (see next step).

• Click on the installation file for R (close all other programs first).

• Follow the instructions for installation. Make sure to select the option of including 
the support files for tcltk (Components installation window), the option for a 
customised startup (Startup options installation window) and the option for the 
SDI (separate windows) display (Display mode window).

• Launch R.

http://www.cran.r-project.org
http://cran.r-project.org/bin/windows/base
http://cran.r-project.org/mirrors/html
http://cran.r-project.org/bin/windows/contrib/2.10
http://cran.r-project.org/mirrors/html):
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• Select the menu option: Packages > Install packages(s) from local zip files… 

• The final installation step is to select all the downloaded zip archives for the 
packages (use CTRL-click or CTRL-A) and click on <Open>.

Type the following commands to access BiodiversityR and its graphical user interface 
(note that R is case-sensitive):

library(BiodiversityR)
BiodiversityRGUI()

The suggested citation for the software is: Kindt R, Coe R (200�) Tree Diversity 
Analysis: A Manual and Software for Common Statistical Methods for Ecological 
and Biodiversity Studies.  The World Agroforestry Centre, Nairobi, Kenya.  
URL www.worldagroforestry.org/treesandmarkets/tree_diversity_analysis.asp

BiodiversityR was initially developed as a package for community ecology and is 
accompanied by a manual for ecological data analysis. This manual explains various 
methods that are illustrated in our current guide, such as clustering and ordination.

The BiodiversityR manual is included on the CD-ROM accompanying our current 
guide in the folder: Software BiodiversityR \ Manual.

II.4.2. Preparing input data
The package uses two data sets simultaneously during analysis: a ‘community’ data 
set and an ‘environmental’ data set.  These names refer to the origins of the package 
in analysing ecological data. In such analysis, the ‘community’ data set contains 
information about species composition for analysed sites, while the ‘environmental’ 
data set contains information on the environmental characteristics of sites. The 
package assumes that the rows of the community and environmental data sets 
contain information on the same sample units. 

http://www.worldagroforestry.org/treesandmarkets/tree_diversity_analysis.asp
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For the analysis of molecular data, marker scores are placed in the community data 
set and elements of ‘geographical’ information (population, region, etc.) are provided 
in the environmental data set. Unlike some other packages, it is not necessary that 
individuals are entered sequentially by regions and populations (but they must be in 
the same order for the two data sets).

Starting from the base data set of our Warburgia example, follow the below steps:

• Make a copy of the base data set and label it, e.g., as “WarburgiaBiodiversityR.xls”.

• Open the copy of the data set in Microsoft Excel.

• Insert a new worksheet: Insert > Worksheet…

• Copy the information from the first three columns of the first worksheet (column 
A with “Individual” as the top entry, column B with “Population” as the top entry, 
and column C with “Region” as the top entry) to the first three columns of the 
second worksheet.

• Delete column B (with “Population” as the top entry) and column C (with 
“Region” as the top entry) from the first worksheet.

• Rename the first worksheet (this is the worksheet containing the molecular 
results) as “community” by double-clicking on the name of the sheet. Do not use 
capital letters.  The final format of the worksheet should be as shown in Fig. II.6. 
The Warburgia spreadsheet does not contain missing data. If this were the case, 
then cells would simply have been left empty (blank).

• Rename the second worksheet (this is the worksheet containing the ‘geographical’ 
information) as “environmental” by double-clicking on the name of the sheet. Do 
not use capital letters.  The final format of the worksheet should be as shown in 
Fig. II.7.

• Save the file.
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Figure II.6. Format for the “community” worksheet that contains molecular data for input into 
BiodiversityR.
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If importing distance matrices (pairwise differences between populations 
or individuals) for analysis in BiodiversityR, the format for “community” and 
“environmental” worksheets would be as shown in Figs. II.8 and II.9, respectively. 
Note that a square rather than a diagonal distance matrix is used in the “community” 
worksheet.  Also note the same order for populations in both worksheets.

Figure II.7. Format for the “environmental” worksheet that contains ‘geographical’ data for input into 
BiodiversityR.
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Figure II.8. Format for the “community” worksheet that contains a genetic distance matrix for input into 
BiodiversityR.
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Figure II.9. Format for the “environmental” worksheet that contains ‘geographical’ data on populations 
for input into BiodiversityR. 
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II.5.  AFLP-SURV (version �.0)

II.5.1. Installation
AFLP-SURV can be downloaded from: http://www.ulb.ac.be/sciences/lagev/aflp-surv.html 

Download the files named “AFLPsurv.exe” and “manual_AFLPsurv.pdf”. 

The software does not require further installation, as all features are available by 
clicking on “AFLPsurv.exe”. 

The easiest way to use the software is to copy input datasets into the same folder 
as where the “AFLPsurv.exe” file resides.

The suggested citation for the software is: Vekemans X (2002) AFLP-SURV version 
�.0. Laboratoire de Génétique et Ecologie Végétale, Université Libre de Bruxelles, 
Belgium. URL http://www.ulb.ac.be/sciences/lagev/aflp-surv.html

II.5.2. Preparing input data
Prepare input files via GenAlEx (section II.2) and give the export file an extension of 
“.txt” (e.g., “warburgiaaflpsurvdata.txt”).

Fig. II.�0 provides the format of the input file.

The Warburgia spreadsheet does not contain missing data. If this were the case, then 
a value of “9” should be given for missing data points.

http://www.ulb.ac.be/sciences/lagev/aflp-surv.html
http://www.ulb.ac.be/sciences/lagev/aflp-surv.html
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Figure II.10. Format for the input file for AFLP-SURV, showing the required header and footer. Cell 
A1 contains the number of populations (5), cell B1 the number of loci (185) and cell A102 indicates the 
end of the data (“END”).
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II.6.  TFPGA (Tools for population genetic 
analyses) (version �.�)

II.6.1. Installation
TFPGA can be downloaded from: http://www.marksgeneticsoftware.net/tfpga.htm 

Download the zip archive “TFPGAPRG.ZIP” and extract all files to the same folder 
(e.g., C:\Program Files > TFPGA). 

Click on the file “Setup.exe” and follow the given instructions.

The suggested citation for the software is: Miller MP (�997) Tools for population genetic 
analyses (TFPGA) �.�.  A Windows program for the analysis of allozyme and molecular 
population genetic data. URL http://www.marksgeneticsoftware.net/tfpga.htm

II.6.2. Preparing input data
Prepare input files via GenAlEx (section II.2) and give the export file an extension 
of “.csv”. Limit the file name to a maximum of eight more characters (the maximum 
that TFPGA can read (e.g., “warTFPGA.csv”). 

Data need to be entered into TFPGA in two sequential steps. The second step 
requires that the user provide information such as the number of loci being tested, 
the number of alleles per locus (2 for dominant data) and the number of populations 
under study. A ‘reminder’ of these parameters can be entered below the data 
constituting the ‘initial’ input, as shown in Fig. II.��.

The Warburgia spreadsheet does not contain missing data. If this were the case, then 
a value of “0” should be given for missing data points.

http://www.marksgeneticsoftware.net/tfpga.htm
http://www.marksgeneticsoftware.net/tfpga.htm
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Figure II.11. Input file for TFPGA. Product presence is coded as “1”, Product absence as “2”. Populations 
are coded as “1”, “2”, “3”, “4” or “5” (column A). A row of zeroes (row 101) indicates the end of the data. Further 
information on data is provided below this row.
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II.7. PopGene (version �.�2)

II.7.1. Installation
PopGene can be downloaded from: http://www.ualberta.ca/~fyeh/index.htm 

Click on the file “pop�2.exe”and follow the given instructions. 

The suggested citation for the software is: Yeh FC, Yang R-C, Boyle T (�999) PopGene 
version �.�2. Microsoft Windows-based freeware for population genetic analysis. 
URL http://www.ualberta.ca/~fyeh/index.htm

II.7.2. Preparing input data
Prepare input files via GenAlEx (section II.2) and give the export file an extension 
of “.txt” (e.g., “warburgiaPopgene.txt”).  The input file for PopGene will have a format 
as shown in Fig. II.�2.

If known, information on the level of Hardy-Weinberg disequilibrium (the inbreeding 
coefficient, or FIS value) can be provided in the data input file immediately below 
the name of a population. This information needs to be inserted manually after 
preparing the input file through GenAlEx. 

The PopGene manual gives an example of a diploid dominant marker data set.

The Warburgia spreadsheet does not contain missing data. If this were the case, then 
a value of “.” should be given for missing data points.

http://www.ualberta.ca/~fyeh/index.htm
http://www.ualberta.ca/~fyeh/index.htm
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Figure II.12. Input file for PopGene. 
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II.8. Hickory (version �.�)

II.8.1. Installation
Hickory can be downloaded from: http://darwin.eeb.uconn.edu/hickory/software.html  

Click on the file “hickory-setup-v�.�.exe” and follow the given instructions.

The suggested citation for the software is: Holsinger KE, Lewis PO (2007) Hickory 
v�.�: a package for analysis of population genetic data.  
URL http://darwin.eeb.uconn.edu/hickory/software.html  

II.8.2. Preparing input data
We suggest that input files are prepared via FAMD (section II.�). Give the export file 
an extension of “.nex” (e.g., “warburgiaHickory.nex”).  The input file for Hickory will 
have a format as shown in Figure II.��.

The Warburgia spreadsheet does not contain missing data. If this were the case, then 
any specified character such as “?” can be used for missing data points.

http://darwin.eeb.uconn.edu/hickory/software.html
http://darwin.eeb.uconn.edu/hickory/software.html
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Figure II.13. Part of the input file for Hickory.
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II.9. STRUCTURE (version 2.�.�)

II.9.1. Installation
STRUCTURE can be downloaded from: http://pritch.bsd.uchicago.edu/software.html

Click on the file “structure2.�.�.win.exe” and follow the given instructions.

If problems are encountered in opening the program (e.g., as can occur in Windows 
Vista), then start STRUCTURE from the “structure_start.bat” file. 

The suggested citation for the software is: Falush D, Stephens M, Pritchard JK (2007) 
Inference of population structure using multilocus genotype data: dominant markers 
and null alleles. Molecular Ecology Notes 7: �7�-�78.

II.9.2. Preparing input data
We suggest that input files are prepared via FAMD (section II.�). Give the export file 
an extension of “.txt” (e.g., “warburgiaStructure.txt”).  The input file for Structure will 
have a format as shown in Figure II.��.

The Warburgia spreadsheet does not contain missing data. If it did, then any specified 
integer such as “-9” can be used for missing data points.

The data set can be imported into STRUCTURE through the menu option:  
File > New Project. 

Then follow the steps given in Figs.II.�� and II.�6.

http://pritch.bsd.uchicago.edu/software.html
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Figure II.14. Part of the input file for Structure.
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Figure II.15. Steps 1 and 2 to specify a new project in STRUCTURE.
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Figure II.16. Steps 3 and 4 to specify a new project in STRUCTURE.
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After these steps, the screen depicted in Fig. II.�7 will appear.

Save the project (e.g., as “warburgia.spj”) by the menu option: File > Save Project. 

After having imported the data for a project once, the project (data and any previous 
calculations) can be accessed from the menu option: File > Open Project...

Figure II.17. Screen view after successfully importing data into STRUCTURE. Data are now ready 
for analysis.
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II.10. PHYLIP (Phylogeny Inference Package) 
(version �.69)

II.10.1. Installation
PHYLIP consists of various programs that can be together downloaded from:  
http://evolution.genetics.washington.edu/phylip.html

Click on the zip archive “phylip-�.69.exe” and extract all files to the same folder 
(e.g., C:\Program Files\phylip�.69). 

Programs are run by clicking on the appropriate icon in the ‘exe’ folder of PHYLIP 
(e.g., C:\Program Files \phylip�.69\exe\consense.exe).  

The suggested citation for PHYLIP is: Felsenstein J (2009) Phylogeny Inference Package 
(PHYLIP). Version �.69. URL http://evolution.genetics.washington.edu/phylip.html 

II.10.2. Preparing input data
We are interested in using PHYLIP to analyse input files generated by AFLP-SURV 
(section II.�), which prepares appropriate input files automatically (“aflp_fst.txt”, 
“aflp_nei.txt” and “aflp_reyn.txt”). 

These files can be analysed by the neighbor.exe program of PHYLIP.

FAMD (section II.�) also generates input files in a format that can be read by the neigbor.
exe program. FAMD also generates tree files that can be analysed with the consense.
exe program, or that can be plotted with the drawtree.exe and drawgram.exe programs.

http://evolution.genetics.washington.edu/phylip.html
http://evolution.genetics.washington.edu/phylip.html
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Key points

We here give step-by-step instructions on how to analyse molecular 
data in particular software packages. Instructions are given following the 
same layout of chapters as in the main body of the guide. We give some 
recommendations on preferred packages but also include descriptions of 
methods as conducted in other software suites.

Please refer to Appendix II for detailed information on how to 
install the various software packages referred to here, and on how 
to format data for analysis in them.

The CD-ROM accompanying this guide provides a collection of input 
data spreadsheets formatted for different software packages and types 
of analysis.  Also included are the corresponding results files produced by 
different programs. 

The test analyses referred to in this guide are based on an example AFLP 
data set from the African medicinal tree Warburgia ugandensis.

Undertaking analysis in different software packages  
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Chapter 2. Measuring diversity

2.1.  Analysis in AFLP-SURV 1.0
We recommend the use of AFLP-SURV as it provides for Bayesian estimates of allele 
frequencies, as well as providing ‘classical’ frequency calculations such as the ‘square-root’ 
method.

Input data needs to be in the same directory as the software. The software has 
no menu interface, so the user needs to type in the following after launching the 
program:

Input file: warburgiaaflpdata <RETURN> 
Output file: <RETURN>
Subset file: <RETURN>
Choose a method of computation of allelic frequencies: � <RETURN>
If you assume Hardy-Weinberg genotypic proportions: <RETURN>
Enter the number of permutations for test on Fst: <RETURN>
Enter the number of bootstraps for genetic distances: <RETURN>
Press Return to close the window: <RETURN>

Various text files will have been generated in the folder where the program resides. 
Give these files different names (for example, “Warburgia aflpout Bayesian.txt”) so 
that future runs of the program do not overwrite these files. 

The program gives unbiased estimates for diversity based on the formulae developed 
by Lynch and Milligan (�99�). 

The AFLP-SURV software allows the inbreeding coefficient to be specified, making 
more advanced analyses possible.
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2.2.  Analysis in FAMD 1.23 beta
We recommend the use of FAMD as it provides Bayesian estimates of allele frequencies, 
as well as providing ‘classical’ estimates such as based on the ‘square-root’ method. FAMD 
also allows for different approaches to handling missing data.

First import the data by following the menu option: File > Load 

State that individuals are provided in rows, header presence is available for individuals, 
it is delimited data and that groups should be included.

Use the following menu option to estimate allele frequencies using various methods: 
Analysis > Null Allele Frequencies

The software may request whether data should be appended to a previously 
generated results file or whether all previous results should be deleted first.

Results can be accessed via the menu option: View > Analysis File

Alternatively, open the analysis file (“analysis.txt”) that was generated in the same 
directory as where the input file was located.

FAMD has three Bayesian estimation methods: uniform priors, non-uniform priors 
based on differences in frequencies among populations, and non-uniform priors 
based on differences in frequencies among loci.
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2.3.  Analysis in GenAlEx 6.2
GenAlEx does not apply Bayesian approaches to allele frequency estimation and uses 
the ‘square-root’ method only, with Hardy-Weinberg assumptions. For formal analysis we 
therefore prefer the use of AFLP-SURV or FAMD.

GenAlEx provides estimates of standard and unbiased H.  These are referred to in 
the package as expected heterozygosity, He (and mean He), and unbiased expected 
heterozygosity, UHe (and mean UHe), respectively. GenAlEx also calculates the 
percentage of polymorphic loci in populations (referred to as %P).

Open the Excel worksheet that contains the data.

To estimate diversity for each individual locus and across loci in populations, use the 
following menu options:

GenAlEx > Frequency…
 Data Format: Binary (Diploid) <OK>
 Frequency & Heterozygosity by Pop: Yes (ticked)
 Frequency & Heterozygosity by Locus: Yes (ticked)
 Allelic Patterns: Yes (ticked) <OK>

Results are presented in Excel worksheets “AFP”, “AFL” and “APT”.
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2.4.  Analysis in PopGene 1.32
PopGene does not apply Bayesian approaches to allele frequency estimation and uses the 
‘square-root’ method only. It does however allow the inbreeding coefficient to be specified 
for each population.

After launching the program, use the following menu option to import data:  
File > Load Data > Dominant Marker Data

To estimate diversity at the locus level, use the following menu options:

Dominant > Diploid data…
 Data Format: Variable as column
 Hierarchical structure: Single populations
 Estimation: gene frequency, allele number, effective allele number,  
polymorphic loci, gene diversity, Shannon index <OK>
 Do you want to retain all loci for further analysis? <Yes>
 Do you want to retain all populations for further analysis? <Yes>
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2.5.  Analysis in TFPGA 1.3
TFPGA does not apply Bayesian approaches to allele frequency estimation. We therefore 
prefer the use of AFLP-SURV or FAMD.

First import data by following the menu option: File > Open Data File

Next describe the data set. First scroll to the bottom of the input data. Choose the 
menu option of: 

Describe Data > Populations
 �8� # loci examined
 2 Max. # of alleles at a locus
 � # of populations studied
 Organism type: Diploid (ticked)
 Marker type: Dominant
 Diploid/Dominant Options: Square Root of the frequency of recessive genotype 
<OK> <OK>

Follow these menu options to estimate diversity at the locus level:

Analyze > Descriptive statistics > Options
 Calculate statistics for: Populations
 Options: Calculate Allele and Heterozygote Frequencies, Calculate Per Locus 
Heterozygosities <OK>
Analyze > Descriptive statistics > Start Analysis
 The results file from your last analysis is too big: <Rename>  
(e.g., “Warresult.txt”; limit the name of the file to 8 characters)
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Box III.1.  Comparison of diversity values in BiodiversityR

In Chapter 2 we mentioned that statistical significance could be ascribed to differences 
in diversity estimates between populations. This box explains how this can be done using 
BiodiversityR and the paired t-test, using the Rcmdr (“R-commander”) graphical user 
interface (GUI) of the package. We illustrate the approach using two of our Warburgia 
example populations, Laikipia and Lushoto (the most and least diverse populations of our 
data set, respectively).

Data need to be prepared in a different format from normal, whereby rows 
correspond to information from particular loci and columns correspond to the 
diversity of different populations (e.g., Nei’s diversity measure).  

Use the following menu options to import the data:

Data > Import data > From Excel,  Access or dBase data set…
 Enter name of data set: paireddata <click OK button>
 Select the “Multiple comparisons Rcmdr data.xls” dataset <OK>
 Select the “input data” data <OK>

Use the following menu options for multiple comparisons:

Statistics > Means > Paired t-Test…
 First variable: Laikipia.UH
 Second variable: Lushoto.UH
 Alternative Hypothesis: Two-sided (click to select)
 Confidence level: 0.99� <OK>

When we investigated for the difference in unbiased H between Laikipia and Lushoto, 
the following results were obtained:
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Box III.1.  continued

Since the 99.�% confidence interval does not span zero but has the limits of 
0.0��� and 0.0�98, we have a statistical basis for a true difference between 
Laikipia and Lushoto. Note that a 99.�% rather than the more common 9�% 
confidence interval is used as �0 comparisons can theoretically be made 
between the five populations, so the “type-I error” of �% is divided by �0.  This 
is called the Bonferroni correction method and is used to choose the final 
desired significance level in multiple comparisons.

The same analysis of diversity for other pairs of stands (which are closer in 
diversity) result in ranges that span zero, meaning that there is no support 
statistically for estimates being different.

Paired t-test

data:  paireddata$Laikipia.UH and paireddata$Lushoto.UH 

t = 4.1965, df = 184, p-value = 4.214e-05

alternative hypothesis: true difference in means is not equal to 0 

99.5 percent confidence interval:

 0.01151555 0.05980176 

sample estimates:

mean of the differences 

             0.03565866
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Chapter 3. Measuring genetic distance between 
populations

3.1.  Analysis in AFLP-SURV 1.0
We recommend the use of AFLP-SURV as it can calculate Nei’s genetic distance based on 
Bayesian and ‘classical’ estimates of allele frequencies (Bayesian estimates are better, see 
Chapter 2).

Input data needs to be in the same directory as the software. The software has 
no menu interface, so the user needs to type in the following after launching the 
program:

Input file: warburgiaaflpdata <RETURN>
Output file: <RETURN>
Subset file: <RETURN>
Choose a method of computation of allelic frequencies: � <RETURN>
If you assume Hardy-Weinberg genotypic proportions: <RETURN>
Enter the number of permutations for test on Fst: <RETURN>
Enter the number of bootstraps for genetic distances: <RETURN>
Press Return to close the window: <RETURN>

Various text files will have been generated in the folder where the program resides. 
Give these files different names so that future runs of the program do not overwrite 
these files. 

The program provides the Nei genetic distance between populations based on the 
formulae developed by Lynch and Milligan (�99�). 
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3.2.  Analysis in FAMD 1.23 beta
Although FAMD provides Bayesian estimates of allele frequencies it does not calculate 
matrices for the commonly used Nei genetic distance (it uses chord distance). 

First import data by the menu option: File > Load

State that individuals are provided in rows, header presence is available for individuals, 
it is delimited data and that groups should be included.

Use the following menu option to estimate the chord distance between populations: 
Analysis > Population Distance

The program will ask you to specify the method of estimating allele frequencies.  The 
software will request whether data needs to be appended to a previously generated 
results file or whether all previous results should be deleted first.

Results can be accessed via menu option: View > Analysis File 

Alternatively, open the analysis file (“analysis.txt”) that was generated in the same 
directory as where the input file is located. 

Another alternative for viewing results is available via menu option: File > Export > 
Phylip Distance Matrix

After calculating the distance matrix, the data needs to be imported again by the 
menu option: File > Load or via menu option: DataMatrix > Restore Original 
Matrix



�27

Appendix III • Undertaking analysis in different software packages 

3.3.  Analysis in GenAlEx 6.2
GenAlEx does not apply Bayesian approaches to allele frequency estimation and uses the 
‘square-root’ method only, with Hardy-Weinberg assumptions. It does not therefore provide
the best estimates for genetic distances. For formal analysis we therefore prefer the use of 
AFLP-SURV.

GenAlEx provides estimates of standard and unbiased Nei genetic distances (referred 
to in the package as Nei distance and Nei unbiased distance, respectively).

Open the Excel worksheet that contains the data.

To calculate genetic distance matrices between populations using Nei’s measures, 
use the following menu options:

GenAlEx > Frequency…
 Data Format: Binary (Diploid) <OK>
 Multiple pop options: Nei distance, Nei unbiased distance <OK>

Results are presented in Excel worksheets “NeiP” (for standard distances) and 
“UNeiP” (for unbiased distances).
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3.4.  Analysis in PopGene 1.32
PopGene does not apply Bayesian approaches to allele frequency estimation and uses the 
‘square-root’ method only (although it does allow the inbreeding coefficient to be specified 
for each population). It therefore does not provide the best estimates for genetic distances 
and for formal analysis we prefer the use of AFLP-SURV.

After launching the program, use the following menu option to import data:  
File > Load Data > Dominant Marker Data

To calculate the biased and unbiased standard Nei distances, use the following 
options:

Dominant > Diploid data…
 Data format: Variable as column
 Assumption: Hardy-Weinberg equilibrium
 Hierarchical structure: Multiple populations
 Estimation: Genetic distance <OK>
 Do you want to retain all loci for further analysis? <Yes>
 Do you want to retain all populations for further analysis? <Yes>
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3.5.  Analysis in TFPGA 1.3
TFPGA does not apply Bayesian approaches to allele frequency estimation and therefore 
does not provide the best estimates of genetic distance.  The software does however provide 
a wide range of distance measures, including the standard Nei distance (with unbiased 
version), the minimum Nei distance (with unbiased version), and the Reynolds and Rogers 
(standard and modified versions) distances.

First import data by following the menu option: File > Open Data File

Next describe the data set. First scroll to the bottom of the input data. Choose the 
menu option of: 

Describe Data > Populations
 �8� # loci examined
 2 Max. # of alleles at a locus
 � # of populations studied
 Organism type: Diploid (ticked)
 Marker type: Dominant
 Diploid/Dominant Options: Square Root of the frequency of recessive genotype 
<OK> <OK>

The following menu options estimate genetic distances:

Analyze > Genetic distance > Options
 Select distance measure: Nei (�972, �978)
 Show distances in matrix format: Yes (ticked) <OK>
Analyze > Genetic distance > Start Analysis
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Comparison of distance matrices in BiodiversityR

As we explained in Chapter 3 (Box 3.1), methods are available to graphically compare the 
genetic distances provided by different measures to see how closely they correspond. Here 
we describe how the BiodiversityR package can be used for this purpose. For the analysis 
shown below, Nei distances were obtained from AFLP-SURV and coancestry distances from 
TFPGA.

First import the data set of Nei distances through the following menu option: 

BiodiversityR > Community dataset > Import datasets from Excel…
 Enter name for community data set: NeiDistance
 Enter name for environmental data set: PopEnv
 Enter name for variable with sites: populations <OK>
 Select the “warburgiaNeiBiodiversityR.xls” dataset

Next import the data set of coancestry distances through the following menu option: 

BiodiversityR > Community dataset > Import datasets from Excel…
 Enter name for community data set: CoancestryDistance
 Enter name for environmental data set: PopEnv
 Enter name for variable with sites: populations <OK>
 Select the “warburgiaCoancestryBiodiversityR.xls” dataset

Plotting one distance matrix against another is not a standard option within the 
BiodiversityR graphical user interface.  Therefore, copy and submit the following 
commands in the Rcmdr window (or, alternatively, in the R GUI window) to obtain a graph:

Nei <- as.dist(NeiDistance)

Coancestry <- as.dist(CoancestryDistance)

plot(Nei,Coancestry,xlab=”standard Nei distance”,ylab=”Coancestry 

distance (Reynolds et al.)”,cex=2)

Be careful not to change the case of any of the commands shown above, as 
BiodiversityR is case-sensitive.

Box III.2.  
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Chapter 4. Visualising genetic distances by cluster 
analysis

4.1.  Analysis in AFLP-SURV 1.0 with PHYLIP 3.69
The combination of AFLP-SURV with PHYLIP allows estimation of allele frequencies by 
Bayesian methods, provides distance matrices based on Nei’s measure, and allows bootstrap 
analysis.  We recommend use for bootstrap analysis, but suggest that BiodiversityR is 
otherwise better for carrying out clustering.

Input data needs to be in the same directory as the software. The software has 
no menu interface, so the user needs to type in the following after launching the 
program:

Input file: warburgiaaflpdata <RETURN>
Output file: <RETURN>
Subset file: <RETURN>
Choose a method of computation of allelic frequencies: � <RETURN>
If you assume Hardy-Weinberg genotypic proportions: <RETURN>
Enter the number of permutations for test on Fst: <RETURN>
Enter the number of bootstraps for genetic distances: �0000 <RETURN> 
Press Return to close the window: <RETURN>

In the folder where the AFLP-SURV software resides, three files will have been 
created: “aflp_nei.txt”, “aflp_fst.txt” and “aflp_reyn.txt”.  These files need to be copied 
into the exe folder of the PHYLIP package. It is also useful to change the names of 
files to indicate more specifically what they contain, since AFLP-SURV always uses the 
same names to export distance matrices. For example, use “aflpBayesian_Nei.txt” for 
results based on Bayesian estimations of allele frequencies. 

From the exe folder of PHYLIP, click on the program Neighbor.exe. Next provide the 
following parameters:
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•	 Please enter a new file name: aflpBayesian_nei.txt <ENTER>

•	 (Except if using the software for the first time) The file “outfile” that you wanted 
already exists: F <ENTER>

•	 (Except if using the software for the first time) Please enter a new file name: 
BayesianNei_result.txt <ENTER>

•	 N <ENTER> (to get UPGMA)

•	 M <ENTER> (to analyse multiple data sets)

•	 How many data sets: �0000 <ENTER>

•	 Random number seed: � <ENTER>

•	 J <ENTER> (to get the input order of species)

•	 Y <ENTER> (to accept settings)

•	 (Except if using the software for the first time) The file “outtree” already exists: 
F <ENTER>

•	 (Except if using the software for the first time) Please enter a new file name: 
NeighbourBayesianNei_tree.txt

The results needed for the next step will now be available in the file  
“BayesianNeiNeighbourtree.txt”. Bootstrap analysis is completed by the  
consense.exe program. Click on this program and provide the following parameters:

•	 Please enter a new file name: BayesianNeiNeighbourtree.txt <ENTER>

•	 The file “outfile” already exists: F <ENTER>

•	 Please enter a new file name: ConsensusBayesianNei_result.txt <ENTER>

•	 R <ENTER> (To treat the trees as being rooted)

•	 Settings for this run: Y <ENTER>

•	 The file “outtree” already exists: F <ENTER>

•	 Please enter a new file name: ConsensusBayesianNei_tree.txt <ENTER>

Results can be viewed by opening the file “neicons.txt” in the exe folder of PHYLIP 
(see Box III.�)
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Interpreting the output from the PHYLIP Consensus 
tree program

The Consensus tree program provides the following output:

Consensus tree program, version 3.69

Species in order: 

  1. Kitale

  2. Kibale

  3. Laikipia

  4. Mara

  5. Lushoto

Sets included in the consensus tree

Set (species in order)     How many times out of 10000.00

..***                      10000.00

**...                      9178.00

...**                      5239.00

Sets NOT included in consensus tree:

Set (species in order)     How many times out of 10000.00

..**.                      4745.00

.****                      822.00

..*.*                      16.00

Box III.3.  
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continued

The output first gives the identification number and names of the different populations 
(the software assumes that input data were for different species, but the fact that we 
investigate populations does not change the interpretation of results).

Next, information on the “consensus tree” is provided.  This contains the clustering 
structure that was most frequently encountered for the �0,000 bootstrapped data 
sets. Information on the clusters (“sets”) of the consensus tree are provided in 
a somewhat cryptic matrix format whereby the rows correspond to a specific 
clustering level and the columns to a population; a star at the position of the 
population indicates that the population was included in the cluster formed at that 
clustering level.  The first cluster of the consensus tree included Laikipia (“species �”), 
Mara (“species �”) and Lushoto (“species �”).  This cluster was formed for �0,000 
out of �0,000 bootstrapped data sets.

The bootstrap results further show that we can be reasonably confident about the 
clustering of Kibale (“species �”) and Kitale (“species 2”) as 9�78 random data sets 
(9�.8% of bootstraps) formed a cluster that included only these two populations. 
The results suggest that we should be less confident about the clustering of Mara 
(“species �”) and Lushoto (“species �”), since in only �2.�% of random data sets was 
a cluster formed that included only these two populations. 

Since Mara, Lushoto and Laikipia clustered together in each of the �0,000 bootstraps, 
there is no statistical evidence to conclude that Mara is more similar to Lushoto 
than to Laikipia (in �7.�% of random data sets, Mara clustered with Laikipia first).

Box III.3.  
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4.2.  Analysis in BiodiversityR
Except for the case of bootstrapping (see use of AFLP-SURV with PHYLIP), we recommend 
the use of BiodiversityR for clustering since it offers a wide range of algorithms and graphical 
outputs.

Genetic distances between populations need to be calculated in another software 
package such as AFLP-SURV and then imported into BiodiversityR.

Use the following menu options to import the distance matrix:

BiodiversityR > Community dataset > Import datasets from Excel…
 Enter name for community data set: neidist
 Enter name for environmental data set: warpop
 Enter name for variable with sites: populations <OK>
 Select the “WarburgiaNeiBiodiversityR.xls” dataset

Use the following menu options to calculate and plot agglomerative clustering 
results:

Biodiversity > Analysis of ecological distance > Clustering…
 Cluster method: hclust or agnes
 as.dist(Community): yes (ticked)
 cophenetic correlation: yes (ticked; this is an advanced option)
 Cluster options: average, single, complete or ward <OK>
 Plot options: dendrogram� <Plot>
 Plot options: cophenetic  <Plot> (this is an advanced option, see Box III.�)

Use the following menu options to calculate and plot divisive clustering results:

Biodiversity > Analysis of ecological distance > Clustering…
 Cluster method: agnes
 as.dist(Community): yes (ticked)
 cophenetic correlation: yes (ticked; this is an advanced option) <OK>
 Plot options: dendrogram� <Plot>
 Plot options: cophenetic (this is an advanced option) <Plot>
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Interpreting cophenetic distances

Table �.2 and Fig. �.� in Part 2 of this guide are both repeated below for the purposes 
of this exercise:

Box III.4.  

Table 3.2 Unbiased Nei distance (Lynch and Milligan 1994) between five populations of 
Warburgia ugandensis. These results were obtained with the AFLP-SURV package with the 
Bayesian estimation method with non-uniform priors to estimate allele frequencies.

Nei’s unbiased 
genetic distance Kitale Kibale Laikipia Mara
Kibale 0.0428

Laikipia 0.0920 0.0539

Mara 0.1002 0.0676 0.0062

Lushoto 0.1071 0.0594 0.0104 0.0060

Figure 4.1. A phenogram showing cluster analysis of five Warburgia populations, based on 
the UPGMA clustering method and Nei’s unbiased genetic distances (Table 3.2). The vertical 
axis shows the genetic distance at which populations cluster. The figure was created with the 
BiodiversityR package.

As we saw in Chapter �,  phenograms join clusters based on a summary statistic 
(such as the average for the UPGMA method). As a result, a cluster diagram only 
provides a summary of pairwise distances. For example, the phenogram of Fig. �.� 
suggests that the distance of Laikipia to the Mara or Lushoto populations is about 
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continuedBox III.4.  

Table III.1 Cophenetic distances corresponding to the phenogram depicted in Fig. 4.1.

Cophenetic distance Kitale Kibale Laikipia Mara

Kibale 0.0428

Laikipia 0.0800 0.0800

Mara 0.0800 0.0800 0.0083

Lushoto 0.0800 0.0800 0.0083 0.0060

It is now possible to plot the cophenetic distances against the original distances (the 
distances from the distance matrix) as in Fig. III.�.

Figure III.1 Plot of pairwise genetic distances between populations (as shown in Table 3.2) on 
the horizontal axis against pairwise cophenetic distances between populations as suggested by 
the cluster algorithm on the vertical axis (as shown in Table III.1). The line shows where values on 
the horizontal axis are equal to values on the vertical axis (when genetic distance = cophenetic 
distance). The figure was created with the BiodiversityR package.
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0.0�, but does not indicate what the actual distances between populations Laikipia 
and Mara, or Laikipia and Lushoto, are. The cophenetic distances between 
populations, which are defined as the pairwise distances that are suggested by the 
phenogram, are shown in Table III.�.
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Box III.4.  continued

Fig. III.� is a graphical representation of what happens during the clustering process. 
Checking against the original distance matrix, we can infer that the lower left circle 
in the figure shows the merger of the Mara and Lushoto populations (at a distance 
of 0.0060). As the cluster was formed between these two populations only, the 
average is the same as the actual distance, and the circle is drawn on top of the 
identity line. The two circles directly above the first circle show the merger of the 
cluster of [Mara+Lushoto] with the Laikipia population, at a distance of 0.008�. 
The cluster analysis summarises the distances between Mara and Laikipia (0.0062) 
and Lushoto and Laikipia (0.0�0�) by the average of both these distances. The 
next circle we observe when scanning the diagram from bottom to top shows the 
merger of Kitale and Kibale at a distance of 0.0�28, the actual distance between 
these two populations.  The remaining six circles at the top of the diagram show the 
merger of the two clusters ([Mara, Laikipia and Lushoto] and [Kitale and Kibale]) 
at a cophenetic distance of 0.0800.  This cophenetic distance now summarizes the 6 
pairwise differences between Kitale and Laikipia (0.0920), Kitale and Mara (0.�002), 
Kitale and Lushoto (0.�07�), Kibale and Laikipia (0.0��9), Kibale and Mara (0.0676) 
and Kibale and Lushoto (0.0�9�). 

The more circles on a horizontal belt in a graph such as Fig. III.�, the greater the 
number of pairwise distances that were summarised in the corresponding cophenetic 
distance matrix. The shorter the horizontal belts are, the closer are the actual 
genetic distances between populations to the cophenetic distances, and therefore 
the better the summary the cluster diagram represents.
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4.3.  Analysis in FAMD 1.23 beta
Although FAMD provides Bayesian estimates of allele frequencies it does not calculate 
distance matrices for the commonly used Nei measure and so we do not favour its use for 
clustering. It does however allow bootstrapping.

First import data by the menu option: File > Load

State that individuals are provided in rows, header presence is available for individuals, 
it is delimited data and that groups should be included.

To undertake bootstrap analysis, first select the number of bootstraps (parameter BS) 
from the menu via: Options > Bootstrapping and Replicate

Next generate all bootstrapped cluster results via the menu option: Replicate 
Analyses > Bootstrap Population Tree

Finally, analyse consensus among bootstrapped trees via the menu option:  
Trees > Majority Rule Consensus or Trees > Strict Consensus

Bootstrap results can be accessed via the menu option: View > Analysis File 

Alternatively, open the analysis file (“analysis.txt”) that was generated in the same 
directory as where the input file is located. 

An output file in the Newick standard (default: “constree.ph”) will also be available 
in the same directory as the input file.  This file can be read by PHYLIP to generate 
dendrograms with the drawgram or drawtree programs.
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4.4.  Analysis in TFPGA 1.3
TFPGA does not apply Bayesian approaches to allele frequency estimation and therefore 
does not provide the best estimates of genetic distance upon which cluster analysis is 
then based.  The software does however allow for clustering for a wide range of distance 
measures.

First import data by following the menu option: File > Open Data File

Next describe the data set. First scroll to the bottom of the input data. Choose the 
menu option of: 

Describe Data > Populations
 �8� # loci examined
 2 Max. # of alleles at a locus
 � # of populations studied
 Organism type: Diploid (ticked)
 Marker type: Dominant
 Diploid/Dominant Options: Square Root of the frequency of recessive genotype 
<OK> <OK>

The following menu options provide for average linkage clustering between 
populations and carry out a bootstrap analysis:

Analyze > UPGMA > Options
 Base tree on: Populations
 Distance measure: Nei (�978)
 Bootstrap over loci: Yes (ticked)
 # of permutations: �0000 <OK>
Analyze > Descriptive statistics > Start Analysis
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4.5.  Analysis in PopGene 1.32
PopGene does not apply Bayesian approaches to allele frequency estimation and uses 
the ‘square-root’ method only (although it does allow the inbreeding coefficient to be 
specified for each population). It therefore does not provide the best estimates for the 
genetic distances that are used for clustering. In addition, graphical outputs do not provide 
clustering distances.

After launching the program, use the following menu option to import data:  
File > Load Data > Dominant Marker Data

The following menu options provide average linkage results for standard and unbiased 
Nei’s genetic distances (referred to in the package as Nei’s original measure and 
Nei’s unbiased measure, respectively):

Dominant > Diploid data…
 Data Format: Variable as column
 Assumption: Hardy-Weinberg equilibrium
 Hierarchical structure: Multiple populations
 Estimation: dendrogram <OK>
 Do you want to retain all loci for further analysis? <Yes>
 Do you want to retain all populations for further analysis? <Yes>

Output files are generated in the same folder that contained input data.  They can be 
inserted directly into word processors packages such as Microsoft Word.
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Chapter 5. Visualising genetic distances by 
ordination

5.1.  Analysis in BiodiversityR
We recommend use of the BiodiversityR package as it allows cluster information to be 
superimposed onto ordination diagrams and has other features that provide added value 
in ordination analysis.

Genetic distances between populations need to be calculated first by another 
package.

Use the following menu options to import the distance matrix:

BiodiversityR > Community dataset > Import datasets from Excel…
 Enter name for community data set: warneidist
 Enter name for environmental data set: warpop
 Enter name for variable with sites: populations <OK>
 Select the “WarburgiaNeiBiodiversityR.xls” dataset

Use the following options to calculate and plot principal coordinate analysis 
results:

Biodiversity > Analysis of ecological distance > Unconstrained ordination…
 Ordination method: PCoA
 PCoA/NMS axes: �
 as.dist(Community): yes (ticked) <OK>
 Plot method: ordiplot empty <Plot>
 Plot method: points sites <Plot>
 cex: 2 (this is a way of changing the size of plotting)
 Plot method: identify sites <Plot; click next to symbols>
 Plot method: origin axes <Plot>
 Plot options: ordicluster <Plot>
 Plot options: distance displayed <Plot>
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5.2.  Analysis in GenAlEx 6.2
GenAlEx does not apply Bayesian approaches to allele frequency estimation. It therefore 
does not provide the best estimates for the genetic distances that are used for ordination. 
For formal analysis we therefore prefer the use of the more powerful BiodiversityR.

GenAlEx undertakes PCoA but not other methods of ordination. It can undertake 
analysis based on estimates of standard and unbiased Nei genetic distances (referred 
to in the package as Nei distance and Nei unbiased distance, respectively). In the 
example below, we use the unbiased distance option.

Open the Excel worksheet that contains the data.

To undertake PCoA, use the following menu options:

GenAlEx > Frequency…
 Data format: One column/Locus: Binary (Diploid) <OK>
 Multiple Pop options: Nei unbiased distance (ticked) <OK>

Continue from the worksheet named “UNeiP” with the following menu options:

GenAlEx > PCA…
 Input Data Type: Tri Distance Matrix (ticked)
 PCA Method: Distance - Not standardized <OK>
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5.3.  Analysis in FAMD 1.23 beta
Although FAMD provides Bayesian estimates of allele frequencies, it does not calculate 
matrices for the commonly used Nei genetic distance and so we do not favour its use for 
ordination.

First import data by the menu option: File > Load

Import the data without information on regional structure.

State that individuals are provided in rows, header presence is available for individuals, 
data is delimited and that groups should be included.

Use the following menu option to estimate the chord distance between populations: 
Analysis > Population Distance

The program will ask you to specify the method of estimating allele frequencies.  The 
software will request whether data needs to be appended to a previously generated 
results file or whether all previous results should be deleted first.

After calculating the distance matrix, principal coordinate analysis results can be 
obtained via menu option: Trees > Principal Coordinates Analysis
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Chapter 6. Measuring genetic distance between 
individuals

6.1.  Analysis in BiodiversityR
We recommend use of BiodiversityR because it offers a wide range of genetic distance 
measures to compare pairs of individuals, and it provides a number of options for subsequent 
ordination analysis.

Using the following menu options, import the Warburgia data:

BiodiversityR > Community dataset > Import datasets from Excel…
 Enter name for community data set: warcom
 Enter name for environmental data set: warenv
 Enter name for variable with sites: Individual <OK>
 Select the “WarburgiaBiodiversityR.xls” dataset

Using the following menu options, calculate genetic distances between pairs of 
individuals:

 Save data as: jaccard.matrix
 Distance: Jaccard (or use other measures)
 Make community dataset: no (not ticked) <OK>

If ‘yes’ had been selected for the last option above, then the distance matrix will also 
be interpreted as a ‘community’ data set.  This then allows clustering or ordination 
from the distance matrix directly. However, it is not necessary to follow this approach 
to obtain results.

When selecting the genetic distance measure in BiodiversityR, users should be 
aware of the follow synonyms:

•	 Gower distance (sensu BiodiversityR) = simple mismatching distance
•	 Bray distance (sensu BiodiversityR) = Dice distance
•	 Manhattan distance (sensu BiodiversityR) = squared Euclidean distance
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Plotting different pairwise distance measures against each other (as in Chapter 6, 
Fig. 6.�) is not an option in the BiodiversityR graphical user interface.  To do so, copy 
and submit the following commands in the Rcmdr window (or, alternatively, in the 
R GUI window):

jaccard.matrix <- vegdist(warcom,method=’jaccard’, na.rm=T)

simplematch.matrix <- vegdist(warcom,method=’gower’, na.rm=T)

dice.matrix <- vegdist(warcom,method=’bray’, na.rm=T)

plot(simplematch.matrix,jaccard.matrix,xlab=”simple matching 

distance”,ylab=”Jaccard distance”,cex=2)

plot(simplematch.matrix,dice.matrix,xlab=”simple matching 

distance”,ylab=”Dice distance”,cex=2)

plot(jaccard.matrix,dice.matrix,xlab=”Jaccard 

distance”,ylab=”Dice distance”,cex=2)

Be careful not to change the case of any of the above commands, as BiodiversityR 
is case-sensitive.
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6.2.  Analysis in FAMD 1.23 beta
FAMD offers an even wider range of genetic distance measures than BiodiversityR and has 
several methods for dealing with missing data. However, the package offers fewer options 
for subsequent analysis of distance matrices.

First import data by the menu option: File > Load

State that individuals are provided in rows, header presence is available for individuals, 
data is delimited and that groups should be included.

Use the following menu option to select the genetic distance measure:  
Options > (Dis)Similarity Coefficients

Next use the following menu option to obtain the distance matrix:  
Analysis > Standard Similarity.

If your data set contains missing values, the option of Standard Similarity ignores 
them, while the option of Minimum Similarity estimates the theoretical maximum 
distance (different allelic states assumed for missing comparisons), the option of 
Maximum Similarity estimates the theoretical minimum distance (the same allelic 
states assumed for missing comparisons), and the option of Average Similarity is 
based on randomly replacing missing values. 

Results can be accessed via the menu option: View > Analysis File

Alternatively, open the file “analysis.txt” that was generated in the same directory 
as the input file.
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6.3.  Analysis in GenAlEx 6.2
GenAlEx calculates squared Euclidean distances among individuals. For formal analysis we 
prefer to use other coefficients (e.g., simple mismatching, Dice, Jaccard) such as provided 
for by BiodiversityR or FAMD.

Open the Excel worksheet that contains the data.

To calculate a genetic distance matrix between individuals, use the following menu 
options:

GenAlEx > Distance > Genetic…
 Distance Calculation: Binary (Diploid)
 Label matrix: Sample <OK>
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Chapter 7. Visualising genetic distances by 
ordination

7.1.  Analysis in BiodiversityR
We recommend use of BiodiversityR because it offers a wide range of genetic 
distance measures to compare pairs of individuals and it provides for a large number 
of options in ordination.

Using the following menu options, import the Warburgia data:

BiodiversityR > Community dataset > Import datasets from Excel…
 Enter name for community data set: warcom
 Enter name for environmental data set: warenv
 Enter name for variable with sites: Individual <OK>
 Select the “WarburgiaBiodiversityR.xls” dataset

Using the following menu options, calculate principal coordinate analysis results:

BiodiversityR > Analysis of ecological distance > Unconstrained ordination…
 Ordination method: PCoA (PCoA [Caillez] allows for an alternative analysis)
 Distance: Jaccard (or another measure)
 model summary: Yes (ticked) <OK>
 Plot method: ordiplot empty <Plot>
 Plot method: ordisymbol
 Plot variable: Population [Factor] <Plot>
 Plot method: identify sites <Plot; click next to symbols>
 Plot method: ordispider <Plot>

Using the following menu options, undertake a constrained analysis of principal 
coordinates (this is an advanced analysis method that provides results that are 
similar to those provided by an analysis of molecular variance [AMOVA, Chapter 8]; 
these options will also generate results based on a non-parametric multivariate 
analysis of variance):
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Biodiversity > Analysis of ecological distance > Constrained ordination…
 Ordination method: capscale
 Distance: Jaccard (or another measure)
 model summary: Yes (ticked)
 permutations: 999
 Explanatory: Region + Population <OK> (choose by double-clicking)
 Scaling: 2
 Plot method: ordiplot empty <Plot>
 Plot variable: population
 Plot method: ordispider <Plot>
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7.2.  Analysis in FAMD 1.23 beta
FAMD offers an even wider range of genetic distance measures than BiodiversityR and has 
several methods for dealing with missing data. It is however more limited than BiodiversityR 
in ordination options.

First import data by the menu option: File > Load

State that individuals are provided in rows, header presence is available for individuals, 
data is delimited and that groups should be included.

Use the following menu option to select the genetic distance measure:  
Options > (Dis)Similarity Coefficients

Next use the following menu option to obtain the distance matrix:  
Analysis > Standard Similarity (see previous section [FAMD analysis for Chapter 6] 
for more information)

Use the following menu option to obtain the results of principal coordinate analysis: 
Trees > Principal Coordinates Analysis

Results can be accessed via the menu option: View > Analysis File

Alternatively, open the file “analysis.txt” that was generated in the same directory 
as the input file.



��2

Appendix III • Undertaking analysis in different software packages 

7.3.  Analysis in GenAlEx 6.2
Ordination in GenAlEx is based on Euclidean distances among individuals and for formal 
analysis we prefer to use other coefficients (e.g., simple mismatching, Dice, Jaccard) such as 
provided for by BiodiversityR or FAMD. GenAlEx undertakes PCoA but not other methods 
of ordination.

Open the Excel worksheet that contains the data.

To first calculate a genetic distance matrix between individuals, use the following 
menu options:

GenAlEx > Distance > Genetic…
 Distance Calculation: Binary (Diploid)
 Label matrix: Sample <OK>

Continue from the worksheet named “GD” (which represents squared Euclidean 
distances, although ordination is actually based on Euclidean distances) with the 
following menu options:

GenAlEx > PCA…
 Input Data Type: Tri Distance Matrix (ticked)
 PCA Method: Covariance – Not Standardized <OK>
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Chapter 8.  Analysis of molecular variance 
(AMOVA) 

8.1.  Analysis in GenAlEx 6.2
We recommend using GenAlEx for the nested AMOVA approach.  We suggest that analysis 
be undertaken with (e.g., populations within regions within total) and without (e.g., 
populations within total) nesting and that both sets of results are reported.  Analysis is 
based on squared Euclidean distances.

Open the Excel worksheet that contains the data.

To undertake AMOVA, use the following menu options:

GenAlEx > AMOVA…
 Input data type: raw data <OK>
 Distance Calculation: Binary (Diploid)
 Output: none <OK>
 Total dataset options: permutations = 9999
 Pairwise population options: Output Pairwise PhiPT Matrix
 Pairwise population options: permutations = 9999 <OK>

Results are presented in Excel worksheets “PhiPT” and “PhiPTP”. Included is a visual 
representation of the percentage of variation among populations as a pie chart.
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8.2.  Analysis in FAMD 1.23 beta
FAMD provides AMOVA statistics for a wider range of genetic distance measures than 
GenAlEx but it does not provide tests for statistical significance. 

First import data by the menu option: File > Load

State that individuals are provided in rows, header presence is available for individuals, 
data is delimited and that groups should be included.

To obtain nested AMOVA results, you need to first assign individuals to regional 
levels and subsequently assign individuals to population levels that are nested within 
the regional levels.

Use the following menu option: Analysis > AMOVA

Results can be accessed via the menu option: View > Analysis File
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8.3.  Analysis in Hickory 1.1
Hickory uses a Bayesian estimation method specifically developed for dominant markers to 
calculate F-statistics.  Among the different options that the software provides, we recommend 
the “f free model” and the “theta-II” parameter.

First import data by the following menu option: Data > Load from file...

Select one of the following menu options to start analysis: Analyses > Run full model; 
Analyses > Run f=0 model; or Analyses > Run f free model 
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8.4.  Analysis in PopGene 1.32
PopGene applies a version of F-statistics (“G-statistics”, see Appendix I) that assumes all 
populations were sampled rather than treating populations as random samples from a 
larger set of populations.  This is not a realistic assumption.

After launching the program, use the following menu option to import data:  
File > Load Data > Dominant Marker Data

To estimate G-statistics, use the following menu options:

Dominant > Diploid data…
 Data Format: Variable as column
 Assumption: Hardy-Weinberg equilibrium
 Hierarchical structure: Single populations, Multiple populations
 Estimation: F-statistics <OK>
 Do you want to retain all loci for further analysis? <Yes>
 Do you want to retain all populations for further analysis? <Yes>
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8.5.  Analysis in AFLP-SURV 1.0
AFLP-SURV applies a version of F-statistics (“G-statistics”) that assumes all populations 
were sampled rather than treating populations as random samples from a larger set of 
populations.  This is not a realistic assumption. 

Input data needs to be in the same directory as the software. The software has 
no menu interface, so the user needs to type in the following after launching the 
program:

Input file: warburgiaaflpdata <RETURN>
Output file: <RETURN>
Subset file: <RETURN>
Choose a method of computation of allelic frequencies: � <RETURN>
If you assume Hardy-Weinberg genotypic proportions: <RETURN>
Enter the number of permutations for test on Fst: �0000 <RETURN>
Enter the number of bootstraps for genetic distances: <RETURN>
Press Return to close the window: <RETURN>

Various text files will have been generated in the folder where the program resides. 
Give these files different names so that future runs of the program do not overwrite 
them. 
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8.6.  Analysis in TFPGA 1.3
As in Hickory and GenAlEx, TFPGA calculates F-statistics that treat populations as random 
samples from a larger set of populations.  TFPGA does not base calculations on Bayesian 
estimates of allele frequencies as in Hickory.

First import data by following the menu option: File > Open Data File

Next describe the data set. First scroll to the bottom of the input data. Choose the 
menu option of: 

Describe Data > Populations
 �8� # loci examined
 2 Max. # of alleles at a locus
 � # of populations studied
 Organism type: Diploid (ticked)
 Marker type: Dominant
 Diploid/Dominant Options: Square Root of the frequency of recessive genotype 
<OK> <OK>

Follow these menu options to estimate FST ( ) values:

Analyze > F-statistics > Options
 Show results for each locus: Yes (ticked)
 Bootstrap over loci: �000 reps, 9�% Confidence Interval <OK>
Analyze > F-statistics > Start Analysis
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Box III.5.  CA comparison of different methods of obtaining  
F-statistics

Table III.2  provides results of F-statistics obtained by different approaches (see 
Chapter 8 and Appendix I). F-statistics should be interpreted as the ratio of diversity 
among populations / total diversity, whereby total diversity = diversity within 
populations + diversity among populations.

Table III.2. Results for different methods of F-statistics provided by different software packages.

Software F-statistic Type of analysis Result
Percentage diversity  

among populations

GenAlEx Phi nested PhiPT = 0.4350 43.5%

not nested PhiPT = 0.3489 34.9%

TFPGA Theta Diploid, nested thetaS = 0.3751 37.5%

Diploid, not nested theta = 0.2973 29.8%

Haploid, nested thetaS = 0.4350 43.5%

Haploid, not nested theta = 0.3489 34.9%

Hickory Bayesian Theta Not nested, free f theta-II = 0.3317 33.2%

Not nested, full model theta-II = 0.3506 35.1%

Not nested, f=0 theta-II = 0.2633 26.3%

Table III.2 shows that the method of estimating F-statistics and whether or not nesting 
is considered sometimes influences the results obtained.  We therefore recommend 
presenting these differences during formal reporting, especially if results relate to 
treating populations as random samples from a larger set of populations, as is the 
case for Theta and Phi. 
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Box III.5.  continued

Although the algorithms for obtaining F-statistics via AMOVA (as in GenAlEx) or via 
Theta-statistics based on allele frequencies for haploid organisms (as in TFPGA) are 
different (see Appendix I), both these approaches result in exactly the same estimate 
of ��.�% of diversity among populations in nested analysis and ��.9% in non-nested 
analysis. 

Allele frequencies for haploid organisms are the same as those in completely inbred 
diploid organisms, and AMOVA based on Euclidean distances therefore corresponds 
to treating individuals as completely inbred.
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Chapter 9. STRUCTURE analysis

9.1.  Analysis in Structure 2.3.2
The number of steps to use during ‘burnin’ and afterwards (MCMC steps) is set by 
the user: start with a relatively low number to get a feel for the analysis, as large 
numbers of steps can take a long time to run. In the below example, we set K = 2, 
but analysis should be run at a range of values and results compared (starting with 
K = 2 and increasing in steps of one).

After launching the program, import data using the menu option: File > Open 
Project... 

Next, specify the steps to be used in analysis in the menu option:  
Parameter Set > New... 

Run length TAB:
Length of Burnin Period: �0000 (more steps will likely be needed for ‘formal’ 
analysis, perhaps up to �00,000)
Number of MCMC Reps after Burnin: �0000 <OK> (more steps will likely be 
needed for ‘formal’ analysis, perhaps up to �00,000)

(All other parameters under ‘Parameter set’ can be kept as default options)

Please name the new parameter set: �0000 �0000 (this example of naming is based 
on the number of replications at different steps, but any unique identifier can be 
used to describe the parameter set) <OK>

Parameter set > Run
Set number of populations assumed (this is K): 2

Then click on the results file with the appropriate parameter set and value of K. 
To see bar plots of results (where different options are available for how to order 
individuals in graphical representations), use the following commands: Bar plot > Show

To view the LN P(D) value for a run, use the following menu option:   
View > Simulation Summary
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