
u n i ve r s i t y  o f  co pe n h ag e n  

Multi-way based calibration transfer between two Raman spectrometers

Kompany Zareh, Mohsen; van der Berg, Franciscus Winfried J

Published in:
Analyst

DOI:
10.1039/b927501k

Publication date:
2010

Document version
Early version, also known as pre-print

Citation for published version (APA):
Kompany Zareh, M., & van der Berg, F. W. J. (2010). Multi-way based calibration transfer between two Raman
spectrometers. Analyst, 135(6), 1382-1388. https://doi.org/10.1039/b927501k

Download date: 07. Apr. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Copenhagen University Research Information System

https://core.ac.uk/display/269200319?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1039/b927501k
https://doi.org/10.1039/b927501k


PAPER www.rsc.org/analyst | Analyst
Multi-way based calibration transfer between two Raman spectrometers

Mohsen Kompany-Zareh*ab and Frans van den Bergb

Received 6th January 2010, Accepted 1st April 2010

First published as an Advance Article on the web 19th April 2010

DOI: 10.1039/b927501k
A standardization algorithm based on the application of Tucker3 models on the tensorized

measurement signals is proposed to transfer calibration information between two Raman

spectrometers. The secondary instrument in this study is a low cost and portable CCD based unit

employing an efficient 532 nm green laser. The primary instrument is a high performance Fourier-

transform based laboratory instrument using a low efficiency NIR laser at 1064 nm, albeit with very

limited sample fluorescence interference. This work is a first investigation of calibration transfer on

Raman spectral data which include different values of fluorescent background from one instrument to

the other. The spectra of a small set of calibration samples are measured on both spectrometers. Using

the ability of Tucker3 to estimate missing values in tensorized data, we reconstruct the spectrum of

a new sample on the primary instrument based on its measured response of the secondary instrument

without the need for constructing an explicit transfer model. This way spectra of a prediction sample

measured on one spectrometer can be successfully transferred to another spectrometer as if it has been

measured directly on the latter. Hence, the task of calibration transfer among instruments is posed as

a missing data problem. A discrete wavelet transform is performed to improve the predictive ability.

Performance criteria for judging the success of the calibration transfer are reported as the standard

error of prediction for estimation of samples in a prediction set. By comparison, the proposed Tucker3

based standardization method shows a better performance as compared to piecewise direct

standardization. The method is expected to be applicable for performing calibration transfer using data

from instruments other than Raman spectrometers.
1. Introduction

Raman spectroscopy is an established method for both quanti-

tative and qualitative determination of chemical composition

and physical properties in e.g. food stuffs, pharmaceutical

products and many other areas.1 It is fast and nondestructive,

and requires little or no sample preparation.1–4 Development of

a proper multivariate calibration model is a critical step when

employing Raman spectroscopy for quantitative purposes and

this normally requires considerable time and effort for prepara-

tion and measurement. Because of differences between the

instrumental responses and variation of experimental conditions

a practical problem in multivariate calibration occurs when an

existing model (called ‘primary’ in our work) is applied to spectra

measured under new conditions or on a different instrument

(secondary).5–9 The traditional solution to this problem consists

of performing a full (re)calibration in the new situation

(secondary instrument). This is obviously time and money

demanding, and sometimes an experimentally burden, especially

when the calibration samples are numerous, chemically unstable,

hazardous, etc.
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An alternative consists of performing a standardization, which

is based on correcting the spectral difference between primary

and secondary instrumental and measurement conditions.

Standardization results in predicting the responses of new

samples without performing recalibration, and is thus more cost-

effective. Generally, the term ‘standardization’ encompasses

several approaches such as calibration transfer, enhancement of

the calibration robustness, model updating or response upgrad-

ing; this paper deals with calibration transfer. To perform the

transfer of spectroscopic data, several methods for calibration

transfer have been proposed in the literature. A patented algo-

rithm proposed by Shenk and Westerhaus,10,11 direct standardi-

zation (DS) and piecewise direct standardization (PDS)

algorithms proposed by Wang et al.,12–17 a two-block PLS

approach suggested by Shenk et al.,18 an orthogonal projection

algorithm proposed by Andrew and Fearn,19 a neural network-

based approach,20 a Fourier-based standardization method21 and

wavelet transform-based standardization techniques22,23 are

among the reported studies. In a recent study wavelet packet

transform and an entropy criterion have been applied for the

application of calibration transfer between two NIR instru-

ments.24 Zhang and Small used so-called Guided Model Re-

optimization as a modification to PDS.25 Xie and Hopke were the

first to use missing values for performing calibration transfer;26

they used the ability of the Positive Matrix Factorization

algorithm in dealing with missing values.

In the present work, discrete wavelet transformation (DWT)

for data compression is utilized as pre-processing method.
This journal is ª The Royal Society of Chemistry 2010



Spectral data for both the primary and secondary instruments

are compressed to the same level by carrying out a DWT,

reconstructing the signal to the same vector length. The

compressed reconstructed data form the standardization

matrices for primary and secondary instruments, and a predic-

tion matrix for secondary instrument with measured spectra.

Then, applying Tucker3 on the data cube where primary and

secondary matrices form the slabs, spectra measured on the

secondary instrument are transferred to the primary instrument

data by imputation of missing values. Calibration models are

formed from the loadings in the sample direction of the Tucker3

decomposition using the known concentrations of the analytes in

the sample set and loadings from the primary instrument slab.

This model is then applied to predict the analytes in unknown

samples using the estimated scores for the unknown samples. The

full operation—decomposition of the (possibly compressed)

tensor and calibration plus prediction from imputed values—will

be abbreviated as T3S.

An attractive application of calibration transfer is improve-

ment of the prediction results obtained from an ordinary

instrument by using the calibration model from a high perfor-

mance instrument. This is especially challenging in calibration

transfer on Raman spectral data with potentially considerable

differences in fluorescent backgrounds from one instrument to

another. In this study, utilizing the calibration model from an

FT-Raman (the high performance primary instrument) and

utilizing a multi-way calibration standardization approach,

prediction results from a portable CCD based instrument (the

less expensive secondary instrument) were improved. Applica-

tion of DWT resulted in a similar performance improvement

with much less time spend in the computation step. We will

compare the results with piecewise direct standardization, with

and without wavelet compression. It seems that this tensorization

based calibration transfer approach is applicable on other types

of spectral data.
2. Theory and algorithm

2.1. Discrete wavelet transform

A transformation that uses a set of wavelet functions, localized in

both spectral wavenumber axis and frequency, forms the

DWT.27,28 Stretching out the mother wavelet to fit different scales

of the signal generates the wavelet basis, which is then moved to

cover all parts of the signal. The wavelet transform thus provides

an estimate of the local frequency content of a signal by repre-

senting the data using a family of wavelet functions that vary in

scale and position. An efficient implementation of the DWT is

similar to Mallet’s pyramid algorithm. It performs the analysis

by repeated filtering of the signal.29 The frequency domain is cut

in the middle using a pair of matched filters in each filter step.

The low-frequency part is usually referred to as an approxima-

tion, the other as a detail (noise). The low-frequency components

are kept in each following step, and the same matched filters are

used to further subdivide the low frequency part until a given

level. In this pyramid like algorithm, as described above, the

details are not further analyzed and only the low frequency

components are used. DWT is employed to reduce the noise and

volume (vector lengths) of the data before standardization.
This journal is ª The Royal Society of Chemistry 2010
In this work we will first augment a measurement vector to the

nearest higher power of two, and then compress the signal in

power-of-two steps e.g. the FT-Raman signal compressed to four

levels would be of length 3401 / 4096 and 4096 / 2048 /

1024 / 512 / 256.

2.2. Transfer subsets

In order to transfer spectra from the secondary to the primary

instrument, spectra of twenty mixture samples (solutions) of

three sugars recorded from the two instruments were considered

and a transfer functional description was built. A representative

sample subset, which provided the most information about the

response differences between the primary and the secondary

instruments, was selected. To evaluate the effect of the number of

standardization samples on the quality of the transformation

three probes with a different number of samples in standardi-

zation subset were selected. The 20 samples were divided into

a transfer set and a prediction set, according to Table 1. In the

T3S method the prediction samples are analyzed one at a time

where the calibration tensor is augmented by one single spectrum

from the secondary instrument and one vector (tuple in a cube)

with missing values. In this context, the number of samples in the

prediction set is not important from a computational point of

view when using T3S. However, the number of samples in the

transfer part is crucial because it affects the information content

and thus the quality of a model.

2.3. Piecewise direct standardization

Direct standardization creates a correction matrix to establish

a mathematical relationship between the spectra from different

instruments, where the response of the standardization sample

on the primary instrument is directly related to the signals

measured on the secondary instrument:

Xi ¼ WiBi (1)

where Wi is the response matrix of standardization samples from

the secondary instrument and Bi is the regression coefficient

matrix, which can e.g. be calculated by means of Moore–Penrose

pseudo-inverse.5 Eqn (1) can also represent piecewise direct

standardization where Xi is the estimated response vector of the

primary instrument using a window i from the secondary

instrument. The estimated primary responses in successive

windows are then assembled to form a total estimated response

matrix for the primary instrument:

X ¼ [X1 X2 . XI] (2)

B1 B2 . BI can be used to transfer a new spectrum collected on

the secondary instrument, e.g. samples in a prediction set, as if

they have been measured on the primary instrument. Using

pseudo-inverse as a factor based method, PDS can solve ill-

conditioned problems with high correlation between variables or

when there are more variables than samples, both very common

in spectral applications. PDS can correct intensity differences,

background differences, wavelength shifts, and peak broadening,

and it is therefore one of the most widely used transfer methods.

To obtain an optimal transfer matrix, applying a leave-one-out
Analyst, 2010, 135, 1382–1388 | 1383



Table 1 Concentration in % (w/w) of three sugars in sample mixtures (C¼ calibration/transfer set, P¼ prediction/test set) and organizational structure
for the three different probes. N is the calibration/transfer set size, 20 � N is the prediction set size

Probe I (N ¼ 13) Probe I (N ¼ 13) Probe I (N ¼ 13) Sucrose Trehalose Glucose

1 C C C 10.00 0.00 0.00 Stocks
2 C C C 0.00 9.58 0.00
3 C C C 0.00 0.00 9.99
4 C C C 0.50 0.00 0.00 Diluted stocks
5 C C C 0.00 0.50 0.00
6 C C C 0.00 0.00 0.50
7 P P P 0.51 0.49 0.50 Center-point mixture
8 C C P 7.98 0.98 0.00 Two component mixtures
9 P P P 4.96 3.87 0.00

10 C P P 2.50 2.41 0.00
11 P P P 0.99 1.43 0.00
12 C C C 1.98 6.73 0.00
13 P P P 4.49 1.46 0.00
14 C P P 2.99 0.00 2.02 Three component mixtures
15 P P P 0.99 1.46 3.52
16 C C P 0.00 1.93 5.99
17 P P P 1.97 4.35 2.99
18 C P P 3.99 2.89 2.99
19 P P P 1.51 0.97 1.99
20 C C C 2.51 1.94 0.99
cross-validation, different window sizes ranging from 11 to 161

datapoints for the compressed data and from 51 to 1601 for un-

compressed data have been evaluated using calibration transfer

samples.

2.4. Tucker3 standardization

Standardization samples were measured on both the primary and

secondary instruments and spectral data of prediction samples

were measured only on the secondary instrument (see Fig. 1).

Then, utilizing the ability of the Tucker3 algorithm to deal with

missing values in the tensorized data, the prediction set spectra

measured on the secondary instrument are transferred to the

primary instrument conditions. Calculated sample loadings are

representative of both secondary and primary instruments. The

number of elements in each loading vector in the first mode (A) is

equal to the number of samples in standardization plus predic-

tion (one sample at the time), as shown in Fig. 1; the number of

loading vectors in all three directions is determined by the size of

the core-array G. The core structure/dimensionality is deter-

mined using leave-one-out cross-validation on the calibration

transfer samples. A calibration model is developed on the stan-

dardization part of the sample loadings in the first mode, and
Fig. 1 T3S concept, with N standardization and 1 prediction sample at

each stage.
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sub-sequentially applied to estimate the concentration of the

unknown analytes in the prediction sample. In this work we

apply the Moore–Penrose pseudo-inverse to solve the multiple

linear regression equation between sample loadings and reference

values. This was sufficient to make the model insensitive to

applied dimensionality of the core (and hence the number of

vectors in loading matrix A). If a factor based regression, such as

PLS, had been used there would have been a need for deter-

mining the optimum number of factors.

In order to measure the model-transfer performance of various

methods, the standard error of prediction (SEP), as relative

expression of error, was employed:

SEP ¼ SiSj(cij � ĉij)
2/Scij

2 (3)

where cij and ĉij are the actual and estimated concentration of

analyte j (j¼ 1,.,3) in the ith sample in the prediction set. In case

of cross-validation we will call this unit SECV, and for the cali-

bration (or fit) error we will use the term SEC. The values will

always be summed over all of the analytes unless stated other-

wise. As the considered analytes in this study are three sugars, the

sums are over their concentrations.
3. Experimental

3.1. Stock and standard solutions

A simple system of sugars (sucrose [C12H22O11 342.30 g mol�1]

(Aldrich Chemical Co., Inc., Milwaukee, WI), trehalose

[C12H22O11$H2O 378.30 g mol�1] (Aldrich Chemical Co., Inc.,

Milwaukee, WI) and glucose [C6H12O6 180.16 g mol�1] (Aldrich

Chemical Co., Inc., Milwaukee, WI)) in aqueous solutions with

no closure (thus the three sugars do not add up to a constant

value) was used. Stock 10% (w/w) aqueous solutions of each

sugar were prepared using a balance (�0.0001 g precision).

Seventeen standard solutions of sucrose, trehalose and glucose

were prepared according to Table 1 by weighted portions of
This journal is ª The Royal Society of Chemistry 2010



Fig. 2 Spectra of 20 samples measured on primary (a) and secondary (b)

instrument.
stock solutions and water. Standards were prepared in sample

tubes with a maximum weight of 7.0000 g.

3.3. Raman spectra

The 20 samples of sugars were measured on two different Raman

spectrometers: the secondary instrument, a portable and inex-

pensive CCD based system (Ocean Optics, Dunedin, Florida,

USA) and the primary instrument, a high performance

FT-Raman spectrometer (Perkin Elmer System 2000, Waltham,

Massachusetts, USA). The CCD based spectrometer included

a probe laser with wavelength 532 nm (green), 2048 pixels,

interfaced with a notebook for control and data acquisition.

Maximum power of laser and liquid tip (L) of laser probe was

utilized (�20 mW). Source of the FT-Raman was in the NIR

region with a Nd:YAG laser line at 1064 nm. The Raman shift

wavenumber range is 3600–200 cm�1 at 1 cm�1 interval. Fig. 2

shows the spectra of the samples measured on both systems.

3.4. Software

All computations were performed in MATLAB (The Math-

Works, Inc., Natick, MA, USA), version 7.0. The discrete

wavelet transform algorithm was written at our lab; in this work

we use a db6 mother wavelet. The Tucker3 algorithm was from

the PLSToolbox 4.1 (Eigenvector Research, Manson, WA).

All of the other routines, such as calibration model establish-

ment, PDS and performance evaluation, were performed with

our own programs in the MATLAB 7.0 environment.

4. Results and discussion

4.1. Compression and multivariate calibration models

Spectra from the primary and secondary instruments are shown

in Fig. 2; the amount of fluorescence background and noise are

very different in the two systems as expected. In case of no

compression the secondary instrument measurements were

interpolated and adjusted to 3401 wavenumber values to match

the primary instrument as close as possible (but without an

algorithmic alignment/shift operation). In case of compression

the median absolute deviation (MAD) statistic was applied to

determine an acceptable level of compression. In the presence of

a significant change in the singular values as a result of

compression there would be sharp change in the MAD plot.30,31

After converting the length of the data vectors to the closest

power of two (4096 ¼ 212), the datasets were evaluated at

different levels where 5 and 7 were found as acceptable levels of
This journal is ª The Royal Society of Chemistry 2010
compression for the primary and secondary instruments,

respectively. Based on this 4 levels of compression (from vector

length 3401 to 256) were selected for both sets to ensure that there

was no significant change in the data structure.

Using spectral data from sugar mixtures as the independent

variable (X) and matrix of concentrations of three sugars in

20 samples as dependent variable (y), without any preprocessing,

PLS1 calibration models for each of the three sugars were made

and leave-one-out cross-validation of calibration samples was

applied to determine the optimal number of latent variables.

A considerable point is that in this part the PLS regression was

used to reduce the 256 variables to a limited number of latent

variables in the model, however, when using limited number of

loadings from Tucker3 (in the standardization stage) a simple

multiple linear regression method was sufficient to form a proper

regression model. Fig. 3 shows the SEP, SECV and SEC for both

instruments with and without compression, using different

probes. The employed regression method was PLS1 and each

plot due to sum of error values for the three analytes. As it is

observed from the figure, for probe III with a small number of

calibration samples the SECV values are much higher than the

SEP values. This is due to large differences between the samples

in the small calibration set. The results show that for both

instruments the optimal calibration models using any probe

contained 4 latent variables (Table 2). Predictions are judged

satisfactory for the primary instrument but not so for the

secondary instrument, especially when the number of samples in

the calibration set is reduced. The results in Table 2 also indicate

that there is no significant drop in the predictive ability as a result

of compression. Note that due to the lack of closure in the data

and the nature of Raman measurements three separate PLS1

models (one for each sugar) with possibly different model

complexities would be more sensible in practice. But, for ease of

discussion, we prefer to use one model only.
4.2. Piecewise direct standardization

A piecewise direct standardization was utilized to transform the

data of the secondary to the primary instrument. After the

prediction sample spectra from the secondary instrument were

transferred to the primary instrument, the calibration models

built on the primary instrument (using 4 latent variables) were

applied to the transferred spectra. The obtained prediction errors

using the PDS method are given in Table 2. As expected, a lower

number of samples in the calibration transfer set (going from

probe I to probe III) increases the prediction errors. However,

for both un-compressed and compressed datasets a considerable

reduction in the prediction error was obtained using PDS. In this

way, using both un-compressed and compressed data, an

increase in predictive ability was observed.
4.3. Tucker3 standardization

The spectra of the prediction samples are regarded as totally

missing on the primary instrument where the calibration models

were built. The data from the two instruments were tensorized

and a 3401 � (N + 1) � 2 array was obtained (or 256 � (N + 1)

� 2 in the case of compression), where N is the number of

transfer samples measured on both instruments. For the
Analyst, 2010, 135, 1382–1388 | 1385



Fig. 3 Standard errors as a function of number of latent variables. SECV, SEP and SEC are assigned by circles, squares and stars, respectively.

Table 2 Standard error of prediction (SEP) values from application of PLS1 on un-compressed and compressed data from the primary and secondary
instrument using the three different probes (see Table 1) and SEP values from PDS and T3S for the data from the secondary instrument. SEP values are
the sum of error values for the three sugars

Probe Sucrose Trehalose Glucose SEPa

Primary instrument Un-compressed I 0.0394 0.0068 0.0094 0.0556
II 0.0774 0.0078 0.0082 0.0934
III 0.1190 0.0595 0.0327 0.2112

Compressed I 0.0403 0.0073 0.0090 0.0566
II 0.0785 0.0073 0.0064 0.0922
III 0.1226 0.0663 0.0327 0.2216

Secondary instrument Un-compressed I 0.1136 0.0575 0.2472 0.4183
II 0.1538 0.0700 0.3737 0.5975
III 0.2366 0.3076 0.1579 0.7021

Compressed I 0.1233 0.0696 0.2583 0.4512
II 0.1596 0.0891 0.4220 0.6707
III 0.2390 0.3468 0.1901 0.7759

PDS Un-compressed I 0.0299 0.1116 0.1234 0.2650(721)b

II 0.0374 0.1115 0.1339 0.2828(721)
III 0.0482 0.1859 0.0677 0.3018(721)

Compressed I 0.0369 0.1218 0.2333 0.3920(71)
II 0.0289 0.1300 0.0852 0.2441(91)
III 0.0892 0.2320 0.0518 0.3730(101)

T3S Un-compressed I 0.0683 0.0588 0.0464 0.1735(7,7)c

II 0.0276 0.0450 0.0481 0.1207(6,6)
III 0.4450 0.6792 0.0671 1.1913(6,7)

Compressed I 0.0633 0.1221 0.0685 0.2539(7,6)
II 0.0313 0.0602 0.0627 0.1542(6,6)
III 0.1822 0.3276 0.0642 0.5740(7,7)

a 4 latent variables in all PLS predictions. b Applied window size in transfer step. c Number of factors in the mode 1 and 2 of the Tucker3 model,
determined by cross-validation.

1386 | Analyst, 2010, 135, 1382–1388 This journal is ª The Royal Society of Chemistry 2010



Fig. 4 SECV values (z-axis, scaled and truncated from 0 to 0.5) for the

three sugars summed as a function of number of factors in mode 1 (x-axis,

varying from 5 to 10) and 2 (y-axis, varying from 4 to 8) in T3S: (a) probe

II no compression (min SECV ¼ 0.1238, at (6,6) factors), (b) compressed

probe II (min SECV ¼ 0.1228 at (6,6)), (c) compression probe III

(min SECV¼ 0.2190, at (7,7)) and (d) compression probe I (min SECV¼
0.0946, at (7,6)).

Fig. 5 Probe II compressed data with T3S estimation: (a) difference

between spectra from primary instrument and estimates for secondary

instrument, (b) estimated spectra for secondary instrument. Estimated

versus reference concentration in calibration (*) and test (B) set separated

by sugar for (c) un-compressed probe II data of secondary instrument

(SEP ¼ 0.5975) and (d) compressed probe II plus T3S (SEP ¼ 0.1542).
N calibration transfer samples, a multivariate least squares

regression was applied between the loadings in the second mode

(upper part of A matrix in Fig. 1) and concentration of the

compounds. Next, the estimated regression coefficients were

applied to estimate the concentration of the three compounds in

the unknown sample. During the Tucker3 decomposition an

acceptable dimensionality of the core array in the first and

second (number of loading vectors in A and B in Fig. 1) mode has

to be decided. To investigate this choice further Fig. 4 shows the

SECV for different selections. The number of factors in the third

mode is two, which is equal to the number of slices. As can be

deducted from the figure there is a relative large plateau of

combinations with comparable, low SECV values. For the more

challenging probe III the plateau is not very wide and the choice

of the Tucker3 core is critical. It is worth noting that the time

spent for running Tucker3 on the compressed data is consider-

ably lower than the time required for un-compressed data due to

the imputation step. SEP values at the optimum number of

factors obtained from SECV values (using a leave-one-out cross-

validation) are listed in Table 2.

To evaluate the T3S procedure Fig. 5 presents the difference

between the transformed and measured spectra on both primary

and secondary instruments (probe II). It can be seen from Fig. 5a

that the spectral differences between primary and secondary data

are considerably reduced after standardization and are both

positive and negative, largely concentrated below �900 cm�1.

Higher values of residuals are in the regions with less spectral

similarity between secondary and primary instruments. The

predicted concentrations were plotted against the reference

values for some example situations (Fig. 5c and d); after the

application of T3S calibration transfer good correlation was

observed.
This journal is ª The Royal Society of Chemistry 2010
5. Conclusion

In this investigation the problem of calibration transfer is

considered as a missing data problem. All spectra of the

prediction samples on the primary instrument were taken as

missing values. These missing spectra were then predicted by the

proposed Tucker3 based approach and calibration models built

on the loading from the calibration part could be applied.

Employing the proposed Tucker3 based method no explicit

transfer matrix is calculated. The transferred spectra were esti-

mated through a data matrix reconstruction by Tucker3; the

combined steps are called T3S. The results demonstrated the

feasibility of using T3S for instrument standardization. An

improved performance of the T3S algorithm over a PDS method

on two Raman spectrometers of highly different quality was

illustrated. A compression of the data by discrete wavelet

transform did not result into a better prediction, but reduced the

time consumption for calculations by imputation considerably

without loss of performance (going from�30 seconds to less then

5 seconds on a process computer, enabling ‘‘real-time’’ process

monitoring). When the number of times of measurements and

computations are very large this reduction in processing time

becomes remarkable.
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