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Abstract The quantitative influence of the choice of

energy evaluation method used in the geometry optimization

step prior to the calculation of molecular descriptors in

QSAR and QSPR models was investigated. A total of 11

energy evaluation methods on three molecular datasets

(toxicological compounds, aromatic compounds and PPARc
agonists) were studied. The methods employed were:

MMFF94 s, MM3* with er (relative dielectric constant) =

1, MM3* with er = 80, AM1, PM3, HF/STO-3G, HF/6-31G,

HF/6-31G(d,p), B3LYP/STO-3G, B3LYP/6-31G, and

B3LYP/6-31G(d,p). The 3D-descriptors used in the QSAR/

QSPR models were calculated with commercially available

molecular descriptor programs primarily directed toward

pharmaceutical research. In order to evaluate the uncer-

tainties involved in the QSAR/QSPR predictions boot-

strapping was used to validate all models using 1,000

drawings for each data set. The scale free error-term, q2, was

used to compare the relative quality of the models resulting

from different optimization methods on the same set of

molecules. Depending on the dataset, the average 0.632

bootstrap estimated q2 varies from 0.55 to 0.57 for the tox-

icological compounds, from 0.58 to 0.62 for the aromatic

compounds, and from 0.69 to 0.75 for the PPARc agonists.

The B3LYP/6-31G(d,p) provided the best overall results,

albeit the increase in q2 was small in all cases. The results

clearly indicate that the choice of the energy evaluation

method has very limited impact. This study suggests that

QSAR or QSPR studies might benefit from the choice of a

rapid optimization method with little or no loss in model

accuracy.

Keywords QSAR � QSPR � Energy evaluation �
PLS regression � Quantum mechanics � Semi-empirical �
Molecular mechanics

Abbreviations

QSPR Quantitative structure property relationship

QSAR Quantitative structure activity relationship

MM3* Allinger’s molecular mechanics

AM1 Austin model 1

PM3 Parameterized model 3, HF, Hartree–Fock

B3LYP The hybrid exchange–correlation functional

based on work from Becke, Lee, Yang and Par

PLS Partial least squares

RMSD Root mean square distance

MCMM Monte Carlo multiple minimum

Introduction

QSAR and QSPR methods are becoming more and more

attractive for screening purposes in pharmaceutical [1],

toxicological [2], nutritional sciences [3] and health sciences

[4]. In QSPR and QSAR a wide variety of computational

methods for calculating the potential energy surface of the

molecules, and thus affecting the geometry optimization of

the molecular structures, may be chosen prior to the calcu-

lation of molecular descriptors and the subsequent regres-

sion step. The computational time increases manifold when
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going from the more pragmatic to the more sophisticated

energy evaluation methods. For typical small drug-sized

molecules, molecular mechanics methods can generate an

optimized structure in seconds while quantum mechanical

methods may require hours or days on present-day com-

puters. Considering that QSPR and QSAR applications often

involve datasets with tens, hundreds or even thousands of

molecules, the choice of energy evaluation method becomes

a real concern when contrasted with the demands for rapid

development. While accurate results in computational

chemistry often necessitate calculations at a high level of

theory, it has also been demonstrated that the geometry

obtained using energy evaluations at the highest level of

theory does not always lead to the best results in subsequent

calculations of molecular properties [5]. This suggests that

any presumption about the relationship of the energy eval-

uation method and the quality of a particular type of results

should be carefully examined. Nevertheless, only few

attempts have been made to elucidate how the choice of

energy evaluation method affects QSAR and QSPR models

[6–8]. The most commonly employed energy evaluation

methods in QSAR/QSPR studies are AM1 [9], PM3 [10],

and HF [11], and B3LYP [12–15] with the 6-31G(d) basis set

[16–20]. However, rarely is any rationale given for using a

particular method and almost never are several methods

compared within the same study. In a surprisingly high

percentage (about 25%) of the published works in litera-

ture, any description of the energy evaluation method used

during geometry optimization is absent. Such widespread

omission of information suggests that the matter in ques-

tion is either firmly established or irrelevant. In this study

the influence of the choice of energy evaluation method

used in the geometry optimization step upon the final

QSAR/QSPR prediction model is investigated for three

diverse datasets selected from the literature. A series of

QSAR/QSPR models for the prediction of the measured

quantity were built using structures from each of the energy

evaluation schemes and the relative quality of these models

was compared using q2.

The authors have chosen to use the phrase ‘‘energy

evaluation’’ regarding the methods investigated in this

manuscript as we do not investigate the effect of energy

minimization algorithms such as conjugate gradients [21],

BFGS, DFP [22] or quasi-Newton [23] in conjunction with

an energy evaluation method such as B3LYP [12–15], HF

[11] or PM3 [10]. The conjunction between the two could

be referred to as geometry optimization.

Methods

Figure 1 shows how the work of this paper was designed.

The grey circle with the molecule depicts the geometry

optimization step wherein the energy evaluation method

used was changed. These optimizations are then used for

two purposes: to calculate the difference in the geometries

(RMSD) and to make prediction models. The black squares

to the right of the molecules are the data-matrices used for

the subsequent prediction models. A total of 1,000 boot-

strap drawings were performed for each energy evaluation

method and the samples left out by the bootstrap drawing

were used as the validation set. The q2-values of these

validation sets where subsequently used in order to com-

pare the importance of the choice of the energy evaluation

method. This whole process was repeated for each of

the energy evaluation methods, i.e. 11 times in total. The

number and names of both the compounds and the descriptors

were kept constant for all repetitions in order to be able to

compare the effect of the energy evaluation methods on the

subsequent regression model. Further description of each of

the steps follows below.

Datasets

This study investigates three datasets already published and

discussed in earlier papers, all showing good predictive

power. Although the datasets used in this study are some-

what reduced from these original studies, the subsets of

molecules should still lead to acceptable models.

The three sample sets are diverse: 290 compounds

exhibiting acute aquatic toxicity in fathead minnow [24]—

named toxicological compounds, 80 compounds with

various degrees of penetration of a polydimethylsiloxane

membrane [25]—named aromatic compounds, and 12

PPARc agonists [26] with different pKi-values for PPARc.

Further details about these datasets are given in Supple-

mentary Material—Part I.

The last dataset contains 12 molecules, but this low

number is justified by the goal of this project: investigating

the perturbation effect the energy evaluation method has on

the subsequent regression analysis,

Geometry optimization

All structures were built with GaussView [27] and sub-

jected to 5,000 steps of MCMM conformational searching

in MacroModel [28] using the MMFF94 s force-field [29]

and the PRCG optimization algorithm [30]. Only the

lowest conformer was selected for further use in the study.

The conformational search was included to remove human

bias from the initially generated structures.

The lowest conformer of each molecule was geometry

optimized further using 10 energy evaluation methods:

MM3* [31] with er = 1, MM3* with er = 80, AM1, PM3,

HF with STO-3G [32], HF/6-31G, HF/6-31G(d,p), B3LYP/

STO-3G, B3LYP/6-31G, and B3LYP/6-31G(d,p). For the

18 J Comput Aided Mol Des (2010) 24:17–22
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MM3* method the PRCG optimization algorithm were

used, while the Berny optimization algorithm [33] was

used for the remaining methods. It is assumed that the

choice of the optimization algorithm is insignificant com-

pared to the choice of energy evaluation method. Thus a

total of 11 energy evaluation methods were evaluated. In

the remainder of the text we use the shorthand notations

MM3*-1 and MM3*-80 for MM3* with er = 1 and MM3*

with er = 80, respectively.

Prediction models

VAMP [34] was employed to calculate the total energy,

electronic energy, nuclear energy, surface area, mean polar-

izability, heat of formation, ionization potential, LUMO/

HOMO energies, total dipole, and partial charges for all

molecules at the AM1 level. DRAGON [35] provided addi-

tional 3D descriptors in the categories: Randic molecular

profiles, geometrical descriptors, RDF descriptors,

3D-MoRSE (3D-Molecule Representation of Structures

based on Electron diffraction) descriptors [36], WHIM

(Weighted Holistic Invariant Molecular descriptors) descrip-

tors [37], GETAWAY (GEometry, Topology, and Atom-

Weights AssemblY) descriptors [38], and charge descriptors

(using VAMP charges). Thus all the descriptors used in this

study are geometry sensitive descriptors, capturing variations

due to the choice of energy evaluation method. Descriptors

with no variance in at least one of the molecules of the data set

across the optimization methods studied were excluded, in

order to focus the study on the geometry sensitive descriptors

(the toxicological compounds thus included 293 variables, the

aromatic compounds 464 variables and PPARc agonists

included 661 variables, as also can be seen from Fig. 1). This

was furthermore done because the prediction models includ-

ing all 681 descriptors are in general worse and less consistent.

Furthermore, our focus is not on how to make the best

PLS-model, but rather on the differences between comparable

PLS-models. Auto-scaling was used in order to give all

descriptors the same chance of influencing the model. The

prediction models were all PLS-models [39]. In order to

estimate the uncertainty of the models, 1,000 bootstrap [40]

drawings were performed for each dataset (the number of

samples in each bootstrap drawing equals the number of

samples in the original dataset under investigation). The same

set of bootstrap drawings were performed on all energy

evaluation methods, ensuring that the selection of which

samples goes in the calibration or the validation set does not

influence the quality of the final model. The resulting RMSE-

values were used to calculate the 0.632 bootstrap estimates of

the mean error and of the standard error of the error. The

number 0.632 is approximately the probability that any one

sample is in a bootstrap drawing [40]. Bootstrapping was

performed instead of simple cross-validation, as bootstrap-

ping also provides an estimate of the uncertainty of the pre-

diction error [40, 41], which leads to options to test for

significance between two sets of datasets (two different energy

evaluation methods in this particular case). The 0.632 boot-

strap RMSE estimates were transformed into q2-values by the

formula shown in Equation 1.

q2 ¼ 1�
P
ðy� ŷÞ2

P
ðy� �yÞ2

¼ 1� RMSE

sy

� �2
n� 1

n
ð1Þ

Here y is the reference value, ŷ is the predicted value, �y is

the mean reference value, sy is the standard deviation of

the reference values and n is the number of samples in the

dataset. All the numbers in the equation refers to the

samples in the validation set, i.e. different for each boot-

strap drawing, similar to formula 2 in the work by Con-

sonni et al. [42].

The difference in the 0.632 bootstrap estimate of the q2

was tested using a Games-Howell comparison of mean test

[43]. This test was performed on the basis of the 0.632

bootstrap estimates of the q2 values and the uncertainty

of these, i.e. using the results from the 1,000 bootstrap

Fig. 1 Design of the analysis
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drawings. The p-values were corrected according the Bon-

ferroni correction, stating that pcorr ¼ 1� p1=k, where p is the

normal significance value (e.g. 0.05), k is the number of

comparisons and pcorr is the corrected significance value. For

a comparison of n different groups k ¼ nðn�1Þ
2
:

Variations in geometry

To quantify geometrical differences, the optimized struc-

tures of all methods were superimposed on the structure

obtained at the highest level of theory (B3LYP/6-31G(d,p))

using all heavy atoms. The RMS distance (RMSD) was

calculated for the superposition between equivalent atoms

excluding hydrogens, as several of the hydrogens have

rotational freedom, for example in a methyl group. The

RMSD is defined as shown in Equation 2.

RMSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

i¼1

ðri;1 � ri;2Þ2

N
:

s

ð2Þ

Here ri,1 and ri,2 are the positions of atom i in structure 1

and 2, respectively and N is the total number of atoms in

the molecule. Furthermore, the number of close contacts

were counted; defined as two atoms joined through at least

three covalent bonds and separated by less than 75% of the

sum of their van der Waals radii. Hydrogen bonds were

counted using the following criteria: The H—A-R angle

had to be larger than 90 �, the H-A distance had to be

smaller than 2.5 Å, and the D-H—A angle had to be larger

than 120 � (H = Hydrogen, A = Acceptor, D = Donor,

R = Remainder of molecule).

Software

Molecular structures were created with GaussView [27].

The MM3* optimizations were carried out with Macro-

Model [28]. All other optimizations were performed with

Gaussian 03 [44]. RMSD values were calculated with

Maestro [28]. The prediction models were made in Matlab

7.6 [45] with in-house functions.

Results and discussion

All molecules in this study were geometry optimized in the

isolated state neglecting intermolecular interactions which

may induce geometry changes important for QSAR/QSPR

models.

Influence of energy evaluation method on geometry

For the toxicological compounds, 42 (about 1%) of the

optimized structures had close contacts. These structures

were all produced with PM3, HF/STO-3G, or B3LYP/

STO-3G. PM3 and B3LYP/STO-3G gave several bad

contacts for the same compound. Ten compounds in

this dataset allow for internal hydrogen bonds. All methods

reproduced the hydrogen bonds, except in case of

MM3*-80 for four structures. The reluctant capability of

creating hydrogen bonds in the latter case is a natural

consequence of large separation between hydrogen bond

donors and acceptors for the five compounds and high

relative dielectric constant used for MM3*.

For the aromatic compounds, a close contact was found

in 13 structures (11 different compounds) optimized with

B3LYP/STO-3G, HF/STO-3G or PM3. All optimization

methods reproduced intramolecular hydrogen bonds in the

four structures where they were expected. B3LYP/STO-3G

and HF/STO-3G, and MM3*-1 produced a false hydrogen

bond in one structure.

In the PPARc agonists a single close contact was found for

13 optimized structures, five structures had two close con-

tacts, and 3 close contacts were found for one compound. The

close contacts were in all cases produced with PM3 or

B3LYP/STO-3G. One structure is expected to have two

hydrogen bonds which were reproduced with most methods,

except AM1 and the force field methods, which produce only

one hydrogen bond.

A simple comparison of the three datasets indicates that

the toxicological compounds and the aromatic compounds

generally have low (max median 0.06 Å) and comparable

RMSD values, see Fig. 2. The RMSDs (max median 1.3 Å)

for the PPARc agonists are larger reflecting the increased

flexibility of the larger molecules. A more detailed exami-

nation reveals that the median RMSD values for the toxi-

cological compounds and the aromatic compounds follow

the same behavior for DFT and Hartree–Fock methods,

although median RMSD values are slightly but consistently

lower for the toxicological compounds. For both datasets the

lowest median RMSDs are produced with HF/6-31G(d,p),

but the difference between this method and B3LYP/6-31G

or HF/STO-3G is marginal. B3LYP/STO-3G gives rela-

tively large RMSDs, as evident from medians and 95-per-

centile values. Visual inspection of the optimized

geometries reveals that the energy evaluation methods do

not in general introduce any prominent structural distortions

when applied to the toxicological compounds or the aro-

matic compounds. Comparison of the 95-percentiles for

these two datasets (Fig. 2a, b) shows that the evaluation

methods give roughly the same pattern of relative deviations

from B3LYP/6-31G(d,p). The significant flexibility of the

molecules of the PPARc agonists is reflected in the generally

high values of RMSD medians (max 1.26 Å) and other

statistics. B3LYP/6-31G gives the lowest median, but not

the smallest spread in RMSD.

20 J Comput Aided Mol Des (2010) 24:17–22
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Prediction results

The datasets in this study give mediocre models for the

toxicological compounds and aromatic compounds

(q2 [ [0.55, 0.57] and q2 [ [0.58, 0.62] respectively), and

satisfactory models for the PPARc agonists (q2 [ [0.69,

0.75]). The variation in the q2-values is largest for the

PPARc agonists, and smallest for the toxicological com-

pounds, which is consistent with the RMSD values calcu-

lated above, indicating that the differences in the prediction

models are due to differences in 3D structure of the mol-

ecules. Figure 3 shows the % deviation in the mean q2 of

the 11 energy evaluation methods compared to the best

method (see Eq. 3), including the standard error of the q2.

The smallest average deviation is found for the most

expensive method—B3LYP/6-31G(d,p). Furthermore, in

two of the three datasets this method either has the highest

q2 or there is no significant difference (p [ 0.05) between

B3LYP/6-31G(d,p) and the best model (see Tables 4–6 in

Supplementary Material—Part II). For the last dataset

(the aromatic compounds) it is only significantly worse

than B3LYP/6-31G (best model) and B3LYP/STO-3G

(p \ 0.001), but only by a decrease in q2 by 0.03 and 0.02

respectively. However, more pragmatic methods such as

B3LYP/6-31G, B3LYP/STO-3G, HF/6-31G and even PM3

show similar results. From these observations it becomes

evident that the choice of basis set is not so important for

the B3LYP method. Taking into account the discussion of

the close contacts above, it becomes clear that B3LYP with

6-31G or 6-31G(d,p) are the best choices. From a time

perspective B3LYP/6-31G(d,p) is approximately 3, 10, and

100 times more expensive than B3LYP/6-31G, HF/6-31G

and PM3 respectively. This study indicates that if a larger

QSAR/QSPR screening is to be performed, cheaper

methods such as HF/6-31G or PM3 may be employed with

success. This is in accordance to the conclusion in the

paper by Puzyn et al. [46], where they state that it is better

to use the semi-empirical methods PM6 (a new version of

PM3) [47] or RM1 (a new version of AM1) [48] instead of

the more expensive DFT methods.

Deviation ¼ q2
best � q2

current

q2
best

� 100%: ð3Þ

Conclusions

The influence of the choice of energy evaluation method in

the geometry optimization step on the predictive quality of

QSAR/QSPR models for three different molecular datasets

has been investigated. The lowest energy conformer in

each dataset was optimized with 11 different methods and

Fig. 2 RMSD values for the three QSAR/QSPR datasets. a Toxico-

logical compounds, b aromatic compounds, and c PPARc agonists.

Minimum and maximum values are indicated by whiskers. The boxes
are vertically limited by the 5 and 95 percentile in (a) and (b) and by

the second lowest and second highest value in (c). Median values are

indicated with black bars in the interior of the boxes

Fig. 3 Deviation from the maximum 0.632 bootstrap estimate of the

mean q2 given in %, with the standard error showed by whiskers
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subsequently 3D molecular descriptors were calculated

with VAMP and DRAGON. The results show that the

energy evaluation methods only to a small extent influence

the QSAR/QSPR prediction model. The most time

consuming method—B3LYP/6-31G(d,p)—is the method

which in general gives the best prediction models, albeit

the increase in q2 is rather small. This further suggests that

the usage of more pragmatic methods such as HF/6-31G

and PM3 can be used, especially in larger screening anal-

yses with little or no loss in model accuracy.
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