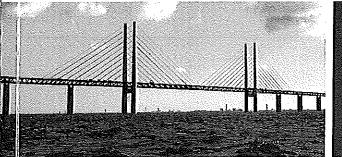
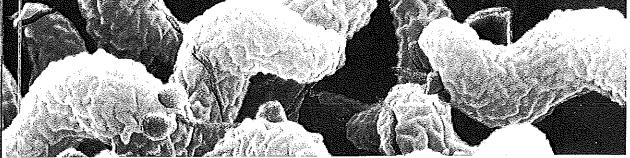

brought to you by CORE

UNIVERSITY OF COPENHAGEN

Nubariene, Ling; Hansen, A.S.; Jespersen, Lene; Arneborg, Nils


Published in: 22nd International ICFMH Symposium Food Micro 2010

Publication date: 2010


Document version Early version, also known as pre-print

Citation for published version (APA): Nubariene, L., Hansen, A. S., Jespersen, L., & Arneborg, N. (2010). Phytase activity in yeast. In 22nd International ICFMH Symposium Food Micro 2010 Copenhagen.

22nd International ICFMH Symposium Food Micro 2010

Final Programme & Abstract Book

www.foodmicro.dk

Hinenoya A	PEC1.77	Ingmer H	PEB1.21		PED2.04	Kanno S
Hinrichs J	PEA1.16		PEB1.23	Javier Y	PED2.01	Kantikova M
Hiraga Chidchom	PED2.11		PEC1.62	Jensen AN	PED1.33	Kapetanakou A
Hocking A 👌	PEB2.56		PEC1.68	Jensen Annette N	PED1.23	
Hojberg Ole	PEB1.30		PEB2.21	Jensen BB	PEE2.22	Kapetanakou, Ana
Holck A.	PEB2.52		PED2.16	Jensen LB	PEB2.45	Karamad Dina
Holvoet, K	PSD1.01	Iñiguez C	PED1.05	Jensen, Annette Nygaard	PSE1.02	Karbancýglu-Gule
Holzapfel W	PEE2.21		PED2.09	Jeong A-R	PED1.34	Karbancýoglu-Gül
Holzapfel Wilhelm	PEE2.20	Inoue H	PEC1.77	Jeršek B	PED2.52	· Karbassi A
Hondrodimou O	PED2.28	Irkin Reyhan	PED2.60	⊁Jespersen L	PEA1.36	Karlsen H
Hoorfar J	PEC1.07	Irkin Reyhan	PEE2.01		PEA1.37	
	PEC1.08	Irlinger F	PEA2.04		PEA1.40	Karpiskova R
	PEC1.11	Irmler Stefan	PEA1.19	4	¥ PEA1.41	
	PEC1.57	irmler, S	PSA1.03		PEB1.32	
	PEC2.01	Isaks A	PED2.13		PEE2.15	Kashi Y
	PEC2.06	Islam Mohammad	PEA1.77		PEE2.24	Kashi Yechezkel
	PED1.03	Ivanova Iskra	PEA2.17	Jespersen Lene	PEA1.10	
	PSC1.06, PSC1.04	Jacobsen T	PEC1.66	Jespersen, L	PSD1.03	
Hoornstra D	PEA1.72		PEC1.67	, Yil	PEE2.21	Kasimoglu Dogru /
Horry H	PEC2.62	Jaexsens L	PEC2.07	JI Yosep	PEE2.20	Katz T
Hoshino K	PEE2.13		PEC2.18	Jo MJ	PED1.34	Katz T
Houard E	PED1.08		PEC2.33	Jofré Anna	PEB2.40	Keller D
Houard E	PED1.22		PEC2.34	Johannessen Gro Skøien	PEC1.56	Kentish S
Houf, K	PSC1.05		PED1.24	Johannessen GS	PEC1.86	Khamisse Elissa
Houndenoukon M	PEA1.42	Jacxsens Liesbeth	PEC2.35	Johansson T	PEB1.26	Khan Nazer AH
Houngouigan J	PEA1.38	Jucoch Lesten	PEC2.36	Jongerius-Gortemaker BGN		Khen B
noungouigans	PEA1.42	Jacxsens, L	PSD1.01	Jonkman J	PEA1.55	,
Hounhouigan JD	PEA1.14	Jafari Fereshteh	PEB1.27	Jonkuviene Dovile	PEB2.57	Killer J
nounnourgan JD	PEA1.55	Jaime I	PEC1.54	Jooste P	PEB2.16	Kim D-H
Hovda Maria Befrin		Sumer	PEC2.20	Jordan K	PEC2.06	KIM H-n
Hradecka Helena	PEE2.12		PEC2.20	Joris Maria-Adelheid 💈	PED1.29	Kim H-n
Hrušková V	PEB1.20		PEC2.26	John Maria Machicia -	PED 1.37	Kim H-Y
Huang Yanyan	PEB2.36		PED2.22	Josefsen M	PEC2.01	Kim Hyun Jung
Huang, Q	PSA2.06		PED2.32	Josefsen Mathilde	PEC1.11	Kim Y
Huber Ingrid	PEE2.11		PED2.43	Joseffen maannae	PSC1.06,	Kim YG
Hudecova A	PEC1.04		PED2.44	Juliana Cunha, A	PSA1.04	Kim Y-G
MUUCCOVA A	PEC1.15	Jain R	PEB1.17	Jung BY	PEB2.10	Kim Yungyeong
Hudson, A	PSD2.06	Jakobsen AN	PED1.31	Juodeikiene G	PEA1.61	Kinèiè A
Huehn S	PEC1.08	Jakobsen Anita N	PEA1.57	Kabaðinskienë A	PEC2.52	Kirezieva K
Hughes S	PEE2.26	Jakobsen M	PEA1.14	Kabanova Natalja	PEC1.24	Kirilov N
Hultman J	PEA2.28	Jakousen m	PEA1.42	Kabisch Jan	PEA2.12	Kita T
Humblot C	PEA1.44		PEA1.70	Kaesbohrer A	PED2.05	Kjeldgaard Jette
Huynh S	PEB2.46		PEB2.45	Kagkli D	PEA2.19	Klanènik A
Hwang I	PEC1.38		PED2.50	Kahraman O	PEA1.47	Klinder A
Hwang IG	PEC1.38		PEE2.14	Kakouri A	PEA1.52	Killidel A
Hyeon J	PEC1.38		PSA1.01	Kalamaki M	PEA1.60	Klinder Annett
Hyeon Ji-Yeon	PEC1.39	Jaloustre Séverine	PEC1.50	Kallipolittis BH	PEB2.33	Klinder, A
Hyun JY	PEC1.39	Jan G	PEE1.01	Kalmykova Galina	PEA2.33	Knauder E
	PEC1.07	Jans C	PEA1.23	Kamata Y	PEB1.02	Kneifel W
Häggblom P			PEC1.47	Kamata Yoichi	PEB1.13	Kneifel W
Højberg O	PEE2.22	Janssens K Jaros D	PEA2.32	Kampmann Y	PEC1.26	Knockaert D
Ignatova T Iliev I	PEA2.17		PEC1.40	Kaneti G	PEA1.67	Knudsen,, GM
lliev l Iliev M	PEA2.17 PEC1.91	Jasick A	PEC1.40	Kang Min-Su	PEB2.10	Knøchel S
lliopoulos V		Jasson V	PEC1.41 PEC2.15	Kang Mili-Su Kankare M	PEB1.26	
in 't Veld Paul	PEA2.19 PEB1.26	Javanmard Majid	PEC2.15 PEA2.01	Kan-King-Yu, D	PSC1.01	Kocevski D
IIF L VCIU FAUI	1 CD 1.20	2949UIU9IU Wajiu	1 [72.0]	Non-Inng-Tu, D	, 501.01	ROCCY3N D

22nd International ICFMH Symposium · Food Micro 2010

PEA1.41 Phytase activity in yeast

<u>Lina Nuobariene</u> (1), AS Hansen (1), L Jespersen (1), N Arneborg (1) (1) University of Copenhagen, Denmark

The low absorption of minerals from cereal based food, such as bread, was attributed to the high content of phytic acid salts (phytates) in cereals. Phytic acid (IP6; *myo*-inositol hexaphosphate) is the principal storage of phosphorus in plants, particularly in cereal grains and legumes. It is highly charged with six phosphate groups extending from the central *myo*-inositol ring and binds minerals, such as Zn²⁺, Fe²⁺, Ca²⁺, Mg²⁺. Formed phytate are insoluble at psychological pH, and, therefore, minerals and phosphate is degraded. Characterized phytases, are enzymes, that catalyses the stepwise dephosphorylation of phytate to *myo*-inositol and phosphate to mono- phosphates. This enzymatic activity produces available phosphate and non-chelated minerals for human absorption.

Mineral bioavailability in bread can be increased, using high phytase active yeasts, in addition to native cereals phytase. There are no yeast strains with high phytase activity available for bread industry today, so the potential of identification of yeast strains to be used for bread making with high content of bioavailable minerals is of outstanding importance.

The objective of this study was to screen phytase activity in yeasts, isolated from food and drinks. Screening of phytase positive yeast strains was carried out at conditions, optimal for bread making: pH 5.5 and 30 °C, in order to identify strains which could be used for baking industry.

A total of 41 yeast strains, belonging to Saccharomyces cerevisiae, S. pastorianus, S. bayanus, S. exiguus, Candida krusei, and Arxula adeninivorans species, were screened for their ability to grow in minimal liquid and on solid media, supplemented with phytic acid dipotassium salt, as the only phosphorus source. Eleven yeast strains were selected for further determination of phytase activity due to their rapid growth in liquid and on solid minimal media. Two yeast strains were selected for further determination of phytase activity due to their very slow growth in liquid minimal medium, in order to check the trustiness of primary screening – growth test in liquid medium.

PEA1.42 Evaluation of yanyanku processing, an additive used as starter cultures to produce condiments in Benin

<u>Paulin Azokpota</u> (1), M Houndenoukon (2), J Hounhouigan (1), M Nago (1), M Jakobsen (3) (1) Department of Nutrion and Food Sciences, Foculty of Agricultural Sciences-University of Abomey-Calavi, Benin

(2) Department of Vetetal Biology, Faculty of Technics and Sciences, University of Abomey-Calavi, Benin (3) Department of Food Science, Food Microbiology, Faculty of Life Sciences, University of Copenhagen, Rolighedsvej, Frederiksberg C, Denmark

Yanyanku is produced by natural fermentation of *Hibiscus sabdariffa* beans. The product is used as an inoculum or an additive-like starter culture for the fermentation of African locust bean seeds (*Parkia biglo*bosa) to produce *Sonru* which is one of the most important food condiments consumed by the rural poor as well as high-income urban families in Benin. Three variants of *Yanyanku* processing have been identified: the *Yanyanku* var. 1 (pH = 9.95 ± 0.06) involved adding of potash to the beans before cooking, two steps of 72h and 24h of fermentation and one step of sun drying; the *Yanyanku* var. 2 (pH = 8.23 ± 0.04) required adding of ash solution after cooking the beans, one step of 72h of fermentation, and two steps of crushing and sun drying; the *Yanyanku* var. 3 (pH = 10.14 ± 0.02) involved adding of potash before cooking the beans and one step of 7 days of fermentation. *Bacillus* spores dominated in the three variants. Spores concentrations (log₁₀ CFU/g) were 8.95; 8.22; and 9.55 in *Yanyanku* var. 1, *Yanyanku* var. 2 and *Yanyanku* var. 3, respectively. Proteins, lipids and carbohydrates decreased during the processing, particularly in *Yanyanku* var. 2 and 3.

Key-words: Yanyanku processing; Additive; Hibiscus sabdariffa beans; Starter cultures; Condiments; Bacillus spores; Ash; Potash, Sonru, Fermentation.

PEA1.43

Monitoring of (must from Botr <u>Giuseppe Blaiott</u> (1) University of

In this study 3 strains of Sace tion during fermentation of ferment must from botrytizec spontaneous (control), were p total acidity) and yeast micrc different phases of the winer acid concentrations of musts flavans and anthocyanins of was performed by SPME-GC/I Results obtained by analysin oculated strains dominated tl interdelta patterns different tions (0.279±0.030 ppb, 0.19 (0.619±0.052 ppb). Further sig from starter inoculated ferme the other hand, colour inten particular, wine produced by significant higher quantities aldehyde and linalool than th This work was supported byp parietal adsorption activity"

PEA1.44

Molecular map tial for vitamir <u>Williams Turpin</u> (1) IRD, Nutritio

Lactobacilli species have bee bind to the epithelium of th recognized. Most of the rese lows a new strategy to look f in probiotics function in a c Ouagadougou (Burkina Fasc acidilactici, and P. pentosace to the folate and riboflavin s genetic screening of the col of strains carry genes encod traditional fermented food I fermented pearl millet slurri tial with a moderate variabil

22nd International ICFMH Symposium · Food Micro 2010