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Abstract

This PhD-thesis investigates the directional effects in land surface temperature (LST)

estimates from the SEVIRI sensor onboard the Meteosat Second Generation (MSG)

satellites. The directional effects are caused by the land surface structure (i.e. tree

size and shape) interacting with the changing sun-target-sensor geometry. The di-

rectional effects occur because the different surface components, e.g. tree canopies

and bare soil surfaces, will in many cases have significantly different temperatures.

Depending on the viewing angle, different fractions of each of the components will be

viewed by the sensor. This is further complicated by temperature differences between

the sunlit and shaded parts of each of the components, controlled by the exposure

of the components to direct sunlight. As the SEVIRI sensor is onboard a geostation-

ary platform, the viewing geometry is fixed (for each pixel), while the illumination

geometry changes both over the course of the day and with the seasons.

In the present study, the directional effects are assessed at different scales using

a modeling approach. The model applied, the Modified Geometry Projection (MGP)

model, represents the surface as a composite of four components; shaded and sunlit

canopy and background, respectively. Given data on vegetation structure and density,

the model estimates the fractions of the four components as well as the directional

composite temperature in the view of a sensor, given the illumination and viewing

geometry.

The modeling results show that the magnitude of the directional effects mainly

depends on the tree cover, with moderate tree covers (20-40 %) causing the largest

directional effects but with significant effects also at much sparser tree cover. The

magnitude is also highly dependent on the temperature difference between the surface

components, which is often largest in semi-arid areas that have relatively cool tree

canopies and relatively hot soil/grass background. The largest amplitude in the

directional effects occurs at “hot spot” geometry, which for geostationary sensors is

at the equinoxes. Furthermore, the directional effects have varying magnitude and

sign on both diurnal and seasonal scales, which will have implications if using LST

products in downstream applications like hydrological or soil vegetation atmosphere

transfer (SVAT) models. The directional effects will cause uncertainties in LST
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estimates that are different in terms of timing than the uncertainties in data from

polar orbiting sensors, which will cause discrepancies between measurements from

the two types of sensors.

An assessment of the performance of current LST algorithms from MSG SEVIRI

for semi-arid West Africa was carried out, using data from two field sites in Senegal

and Mali. The agreement between the satellite and ground data for the rainy season

was generally discouraging with biases exceeding 5 K, while there were indications

that performance is much better during the dry season. The large discrepancies are

thought to be caused by insufficient correction for the influence of the very moist

atmosphere. For the period studied, the uncertainties found in the current LST

products are likely to make it infeasible to identify the directional effects in the

satellite data, as the uncertainties will mask the directional effects.



Resumé

Denne Ph.D.-afhandling omhandler vinkelafhængigheder i estimering af jordover-

fladens temperatur fra SEVIRI-sensoren ombord p̊aMeteosat Second Generation (MSG)

satellitterne. Vinkelafhængighederne opst̊ar som en konsekvens af en kombination af

vegetationens struktur (træstørrelse og form), vinklen mellem overfladen og solen

samt sensorens observationsvinkel. Desuden afhænger de af, om der er forskel i

temperatur imellem de forskellige jordoverfladekomponenter, f.eks. trækroner og en

græsflade. Afhængig af fra hvilken vinkel man observerer jordoverfladen, vil man se

forskellige andele af hver af overfladekomponenterne. Dette bliver yderligere kom-

pliceret af at der som regel er forskel p̊a komponenternes temperatur, afhængig af

hvorvidt de er eksponeret i forhold til solen. Da MSG-satellitterne er placeret i geosta-

tionær bane, vil observationsvinklen for SEVIRI-sensoren for hver pixel i billedet være

konstant, hvorimod solvinklen vil ændre sig b̊ade i løbet af dagen og efter sæsonerne.

Denne afhandling kvantificerer vinkelafhængighederne via modellering p̊a forskel-

lige rumlige skala. Den anvendte model, “Modified Geometric Projection” (MGP)

modellen, estimerer hvor stor del af en pixel dækket af hver af fire overflade kompo-

nenter, ud fra information om overfladens sammensætning samt solens og sensorens

position. Modellen skelner imellem vegetationskroner (træer og store buske) og “bag-

grund” (en jordoverflade der kan være dækket af græs). Hver af disse komponenter

kan enten være i skyggen eller eksponeret mod solen.

Modelleringsresultaterne viser at vinkelafhængighederne er størst i omr̊ader med

moderat trædække (20-40%), men at disse ogs̊akan være betydelige i omr̊ader med

sparsomt vegetationsdække. Vinkelafhængighedernes størrelse afhænger ogs̊a i høj

grad af temperaturforskellen mellem de enkelte komponenter, hvilke i mange tilfælde

kan være store i semi-aride omr̊ader. Trækroner er relativt kølige p̊agrund af for-

dampning, hvorimod jordoverfladen kan blive meget varm især hvis der ikke er nogen

vegetation. Tidsligt opst̊ar de største vinkelafhængigheder i tilfælde, hvor geometrien

er tæt p̊a det s̊akaldte “hot spot”. “Hot spot” refererer til situationen hvor sensoren

er placeret direkte imellem solen og jorden. Dette vil for geostationære satellitter ske

omkring jævndøgn hvor solens bane følger ækvator. Denne “hot spot” i kombination

med temperaturforskellene mellem komponenterne, gør at vinkelafhængighederne vil
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variere b̊ade i løbet af døgnet og i løbet af året. Disse tidslige variationer kan have

stor betydning for anvendelser af overfladetemperaturdata, f.eks. som input til hy-

drologiske og “soil-vegetation-atmosphere transfer” modeller, der udnytter SEVIRI’s

høje tidslige opløsning (der giver mulighed for estimering af overfladetemperaturen

hvert kvarter, døgnet rundt). Vinkelafhængigheder i data fra geostationære satellit-

ter vil desuden være forskellige fra vinkelafhængighederne i data fra polar-orbiterende

sensorer, hvilket komplicerer sammenligning af data fra de to typer satellitter.

Afhandlingen omfatter ogs̊a et studie af kvaliteten af eksisterende metoder til es-

timering af landoverfladens temperatur over et omr̊ade i Vestafrika, ved hjælp af

data fra to målestationer i Senegal og Mali. Overensstemmelsen imellem satel-

litdata og feltobservationer var generelt d̊arlig, med systematiske forskelle p̊a mere

end 5 K i løbet af regntiden, mens forskellene generelt var noget mindre i tørtiden.

Årsagen til de store forskelle formodes at være problemer med korrektionen for at-

mosfærens relativt høje indhold af blandt andet vanddamp i regntiden. De store

temperaturforskelle mellem satellit-baserede estimater af overfladetemperaturer og

feltmålingerne umuliggør en direkte identifikation af vinkelafhængighederne i satellit-

dataene.
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Chapter 1

Introduction and research

objectives

Surface temperature is a key diagnostic parameter of land surface conditions. It is

used in many modeling applications including hydrological models, soil vegetation

atmosphere transfer (SVAT) models as well as regional and global climate models.

Furthermore, it can be used in conjunction with other information for the estimation

of soil moisture, evapotranspiration and detection of crop stress at a wide range of

scales.

Remote sensing provides a unique method for retrieving spatially distributed esti-

mates of surface temperature over large areas almost instantaneously. This has been

possible from satellite borne instruments since the late seventies at different scales.

In general, a choice has to be made between high spatial resolution and high temporal

resolution. High resolution thermal data (60 meter from LANDSAT-7 and 90 me-

ter from ASTER) is available, but only with a minimum time between observations

of 16 days. Coarser data with a spatial resolution of approximately 1 kilometer is

available twice a day (from the MODIS and AVHRR instruments) for most locations

on Earth, while the geostationary meteorological satellites provide even coarser data

with a spatial resolution of 3-4 kilometers every 15 or 30 minutes.

The Meteosat Second Generation (MSG) series of satellites that has been op-

erational since January 2004 carry an improved series of sensors compared to the

first generation Meteosat sensors, that provide new opportunities for the estimation

of surface temperature from geostationary satellites. The Spinning Enhanced Visible

and Infrared Imager (SEVIRI) instrument onboard the MSG-satellites provides data

in 11 spectral bands at a spatial resolution of 3 kilometers every 15 minutes (the

actual resolution of the sensor is 4.8 km, but the data is sampled into a 3 km grid).

This, combined with the presence of two thermal infrared bands located within at-
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2 CHAPTER 1. INTRODUCTION AND RESEARCH OBJECTIVES

mospheric windows (typically referred to as split-window bands), is unprecedented

for geostationary sensors covering Europe and Africa. Although designed for meteo-

rological purposes, the presence of split-window bands allows for relatively easy and

precise estimation of land surface temperature on a continental scale every 15 min-

utes, a total 96 observations a day. Previously, split-window bands were only available

from polar-orbiting moderate spatial resolution sensors with a limited number of daily

overpasses (maximum 4 for MODIS Terra and Aqua combined, and a similar number

from the NOAA AVHRR sensors). As the data availability for a given point on the

ground is further limited by the presence of clouds, the increase in potential number

daily observation from a maximum of 4 to 96, opens up new applications of temper-

ature data. In particular it allows reconstruction of the diurnal variation in surface

temperatures, which is important for many modeling applications.

All satellite products contain errors stemming from a wide range of sources includ-

ing sensors noise, calibration inaccuracies, atmospheric attenuation and scattering of

thermal radiation by the atmospheric constituents, errors in the applied algorithms for

converting the measurements into values of physical parameters and in the ancillary

data required for these. Some of these errors are constant in time or vary only slowly,

while others vary from image to image, due to the diurnal variation in radiation input.

When applying a satellite derived product in models, the errors in the product will

propagate through to the model results, limiting the accuracy and applicability of the

model results. Therefore it is important to investigate, document and, if possible,

reduce the different sources of errors in the satellite products.

This thesis investigate one of the sources or error in land surface temperature

products from the MSG SEVIRI instrument, namely the errors introduced by the

vegetation structure and properties in combination with the illumination and viewing

geometry. This is not necessarily the largest source of error present, but only limited

research has previously been carried on the subject. The spatial focus is on Africa,

with emphasis on the semi-arid West Africa region where savanna landscapes dom-

inate. This is a data-sparse region where other sources of data is hard to come by,

and is at the same time the land area where MSG SEVIRI has the most advantageous

conditions in terms of viewing geometry.

The specific research objectives are:

• To investigate the influence of vegetation density and structure and illumina-

tion/viewing geometry on the land surface temperature estimated from the

MSG SEVIRI sensors.

• To quantify these “directional effects”, in order to assess under what circum-

stances they constitute a significant problem for the use of LST-data derived

from geostationary satellite sensors.

This is investigated mainly through modeling of the directional effects using a

model developed specifically for this purpose. Attempts are made to quantify the
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effects on both the local scale, through comparison with in situ measurements at a

savanna site, and on the continental scale.





Thermal infrared remote sensing

of structured canopies from

geostationary orbit

2.1 Introduction

Satellite measurements of surface temperature from geostationary orbit have been

available since the seventies for Europe and North America, and later for the entire

globe. Today, a large number of sensors onboard meteorological satellites provide at

least hourly data on temperature for most of the globe (data coverage for the polar

regions is limited as the geostationary orbit requires the satellites to be located over

the Equator). The sensors have been developed mainly for meteorological purposes

which generally means that the temporal resolution has been prioritized over the spa-

tial resolution. This means that the normal pixel size vary between three kilometers

(for the European Meteosat Second Generation satellites (Schmetz et al., 2002)), to

4, 5 and even 8 kilometers for the Indian Insat 3A system. On the other hand, most

systems provide data every half hour with three spectral bands usually located in the

visible, mid-infrared and thermal infrared to provide information on cloud cover, at-

mospheric water vapour content and temperature. Some of the sensors provide data

in more spectral bands, and of special interest with regard to the estimation of land

surface temperature (LST) is the availability of at least two thermal infrared bands

in the 10 to 13 µm region allowing for the use of so-called split-window algorithms

(Price, 1984). The split-window algorithms perform corrections for atmospheric ef-

fects based on the difference in absorption between adjacent thermal infrared bands.

Estimation of LST from single band temperature measurements is also possible, but

requires more detailed information on the vertical distribution of water vapour and

temperature in the atmosphere. This data is hard to obtain for large areas, thus

limiting the applicability of single thermal-band sensor for accurate LST estimation

(Dash et al., 2002). Currently, the European MSG SEVIRI systems, the Chinese
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6 CHAPTER 1. INTRODUCTION AND RESEARCH OBJECTIVES

Fengyun IVISSR and the Japanese MTSAT-2 systems all feature two bands suitable

for LST estimation, while the current generation of the Indian Insat, the Eumetsat

Indian Ocean Data Coverage mission and the American GOES-satellites do not. Of

these satellites, the MSG SEVIRI provides both the highest spatial resolution of 3

kilometers and the highest temporal resolution with scans of the Earth disk every

15 minutes in a total of 11 spectral bands. This makes the MSG SEVIRI system

the best current operational satellite for monitoring land surface temperature from

geostationary orbit.

Despite the relatively good quality of LST estimates from split-window algorithms,

as compared to the single band algorithms, errors are still present in the data. These

can come from many different sources including: (1) sensor noise, (2) insufficient

sensor calibration, (3) inaccuracies in the atmospheric correction, and (4) errors

stemming from the input data on surface emissivity and atmospheric water vapor

content required by split-window algorithms.

The Land Surface Analysis Satellite Applications Facility (LSA SAF) produces a

freely available LST-product at full spatial and temporal resolution based on the MSG

SEVIRI data (EUMETSAT et al., 2009). It is a traditional split-window algorithm,

based on the method originally proposed by Becker and Li (1990) and later simplified

for use with the polar-orbiting MODIS instruments by Wan and Dozier (1996). The

coefficients of the algorithm were calculated based on radiative transfer model sim-

ulations using an extensive database of atmospheric temperature and water vapour

profiles (EUMETSAT et al., 2009). Along with the estimates of LST, the product

also contains two data layers containing information on the uncertainties for each

pixel in the product (Freitas et al., 2010). These are computed through a scheme

classifying the pixels into three levels of confidence depending on the expected uncer-

tainty. This information for each pixel is passed to the user both as a layer containing

flag values and as a layer containing a numerical value describing the uncertainty.

In addition, the geometric configuration of the illumination and viewing conditions

and the structure surface cover also influences the LST-estimates. These “directional

effects” stem both from the anisotropy of the individual surface components, and from

a “composite” surface anisotropy caused by shading effects between the different

components. These possible sources of error will be described in more detail below

in section 2.2. The quality assessment (QA) layers of the LSA SAF LST-product

consider most of the sources of error mentioned above, including errors stemming

from uncertain estimates of emissivity and water vapor data, but they do not explicitly

address “directional effects”. This means that the uncertainty estimate given by the

QA-layers is to be considered as a “best case”-scenario, as the effects of surface

anisotropy are not included. Previous studies for the polar-orbiting NOAA AVHRR

sensors showed directional effects of up to ± 5 K, with the largest effects occurring in

areas with moderate tree cover (Pinheiro et al., 2004). To our knowledge, a similar

assessment has, to date, not been made for geostationary sensors with the exception
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of the study on the differences between LST from three GOES systems across the

overlap region in the United States by Minnis and Khaiyer (2000)

This thesis attempts to bridge this gap in knowledge by investigating the magni-

tude, timing and location of the directional effects.

2.2 Directional effects

The geometric effects that are the subject of this thesis, are actually a combination of

several individual effects of the interaction between incoming radiation (both short-

wave and longwave), the atmosphere, the land surface and the viewing geometry

of the sensor in question. In addition, some of the effects are due to the specific

properties of the land surface components, while others arise as a consequence of

the interaction between the different surface components and the radiation. The lat-

ter is particularly important when considering medium and coarse resolution satellite

sensors, as these will inevitably mainly be measuring pixels containing a mix of dif-

ferent surface covers. This means that the signal measured by the sensor for a given

pixel contains a signal from each of the surface components present within the pixel,

which might also be affected by interaction between the signals from the different

components.

If considering the directional effects on the scale of the individual surface com-

ponents, e.g. a soil surface or a vegetation canopy, the main source of directional

effects is the anisotropy of the emissivity. The emissivity of most materials vary

with the view zenith angle, with the highest emissivities occurring at nadir and de-

creasing as the view zenith angle increases. This has been shown both through field

measurements and through modelling (Cuenca and Sobrino, 2004; Labed and Stoll,

1991; Snyder et al., 1997; Sobrino and Cuenca, 1999; Sobrino et al., 2005). These

effects are significant, and can reach more than 5% depending on the surface material

at high view zenith angles. This will especially introduce errors in the LST-estimates

in cases where the emissivity is not derived from measurements with the same ge-

ometry as the measurements used for the LST estimation. This could e.g. be when

using laboratory estimates of emissivity (usually at nadir) of a given material, for

LST-estimation using a sensor at off-nadir angles, which is most often the case. Fur-

thermore, the emissivity of materials tends to vary slightly, but not uniformly, with

wavelength (da Luz and Crowley, 2007; Labed and Stoll, 1991; Snyder et al., 1997).

This means that the directional effect can differ depending on the wavelength.

The other type of directional effects occur due to the structure and location of

the surface components in relation to each other and the specific illumination and

viewing geometry. An example of this is shown in figure 2.1 for a case with a landscape

consisting of patches with forest and patches with bare soil in between. Depending

on the view angle (nadir or off-nadir), the fractions of the soil and forest components

of the surface as seen by the sensors vary considerably. For the nadir case, the
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Figure 2.1: A schematic example of the difference between nadir and off-nadir
view for areas with mixed land cover. Source: Jia (2004); Menenti et al. (2008)

signal from the soil fraction that reaches the sensor is about a third of the total,

while the off-nadir sensor almost exclusively measures the signal from the forest. The

forest and the soil surface will in many cases have different temperatures, which will

lead to differences in the measured temperatures solely caused by the difference in the

viewing angle. The difference in temperature between the two surface covers depends

on the specific properties of the cover and on the availability of water for transpiration

(for the vegetation) or evaporation. The abundance of water will generally limit the

temperature differences. Furthermore, the temperature measured by a satellite sensor

will also depend on whether the sunlit part or the shaded parts of the components

are in view of the sensor, as the sunlit parts will in many cases be warmer than the

shaded part. This is especially true for soil surfaces that might get very warm if

no water is available, while vegetation show less differences in temperature between

the sunlit and shaded parts. Cases where the sun and the sensor are aligned will

therefore appear warmer than cases where the illumination and viewing angles are

very different, everything else being equal.

Many modeling studies have been performed to investigate either the angular

dependency of the emissivity, the effects of the canopy geometry or the combined

effects (Coret et al., 2004; Jia, 2004; Jia et al., 2002; Li et al., 1999; Pinheiro et al.,

2006, 2004; Pinheiro, 2003; Smith et al., 1997; Sobrino et al., 2005; Yan et al., 2001;

Yu et al., 2006). Many of them simulate the directional effects for specific (polar or-

biting) sensors and for one or more specific land covers, but none of them treat

the case of a geostationary sensor explicitly. These effects have also been measured

both in the laboratory and in the field (Caselles et al., 1992; Cuenca and Sobrino,
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2004; Kimes et al., 1980; Kimes, 1981; Lagouarde et al., 1995; Snyder et al., 1997;

Sobrino and Cuenca, 1999) and identified in analysis of satellite data (Minnis and Khaiyer,

2000; Trigo et al., 2008). Some of the most severe effects were found by Lagouarde et al.

(1995) which found differences between nadir view and other view angles ranging be-

tween -4 K and +3.5 K, and argued that these effects should be larger from satellite

sensors that generally have narrower field of views compared to instruments used for

in situ measurements.

2.3 The potential of the MSG SEVIRI sensor

The MSG SEVIRI sensor provide novel opportunities for monitoring diurnal changes

in the land surface temperature through the combination of 15 minute temporal

resolution and the presence of two appropriate thermal channels as described above.

However, along with these new opportunities comes additional potential sources of

error that are not well understood for the case of geostationary satellites. As the above

section shows, some work has been done on the directional effects, but these mainly

treat the case of in situ measurements or data from polar-orbiting satellites sensors.

These are usually positioned in sun-synchronous orbits, meaning that they always

follow the sun, resulting in overpass times over the equator at approximately the same

(local sun-) time at each overpass. This means that the illumination geometry will

be more or less the same for each overpass, while the viewing geometry for a specific

place on the ground will change according to the exact orbit (in a pattern which

depending on the orbit, usually repeats within approximately two weeks). Although

there will still be seasonal changes in the illumination geometry, the almost constant

local overpass times will limit the difference between the directional effects between

two subsequent overpasses.

The case is different for geostationary satellites with high temporal resolution, as

the illumination geometry will change from one image to the next throughout the

day as the suns footprint moves west. The viewing geometry on the other hand

is fixed, which will limit the directional effects in the LST estimation between two

subsequent estimates, but still might influence the absolute values. The magnitude of

the directional effects can also be expected to change, as the difference between the

component temperatures changes as the sun heats up some components more than

others. This should lead to a diurnal pattern in the temperature differences between

the components and therefore also a diurnal pattern in the directional effects. Polar-

orbiting sensors do not have this problem, as the overpass time is more or less the

same everyday, leaving only the seasonal changes (and the effects of changing viewing

geometry).

A previous study (Pinheiro et al., 2004) indicates that the directional effects are

largest at moderate tree cover. Considering the case shown in figure 2.1, this makes

sense. If no or very few trees were present, the effects of monitoring the areas at



10 CHAPTER 1. INTRODUCTION AND RESEARCH OBJECTIVES

##

Figure 2.2: A map showing areas with between 10% and 40% tree cover according
to the MODIS Vegetation Continuous Fields product (collection 3, continental
version for the year 2001) (Hansen et al., 2003). The black triangles indicate the
position of the two in situ sites used for comparison and validation.

an off-nadir angle would not change much as there are no (or almost no) trees to

shadow for the soil surface. At the other end of the scale, very densely vegetated

areas show small directional effects as all the energy will be emitted from a dense and

more or less homogeneous layer of the canopy. Furthermore, densely vegetated areas

will show little difference in component temperatures and uniform emissivity values,

effectively limiting the directional effects.

This leaves areas with moderate tree cover, which are expected to show the

most severe directional effects. Figure 2.2 show the areas in Africa and Southern

Europe with between 10 and 40 % tree cover according to the MODIS vegetation

continuous fields product (Hansen et al., 2003). Although areas with slightly more

tree cover will also show significant directional effects, the areas with sparser cover

are generally drier areas, and thus can be expected to have larger differences between

the component temperatures. The areas shown in the figure cover large parts of

sub-Saharan Africa including parts of the Sahel-Sudan zone and the semi-arid parts

of Eastern and Southern Africa. In total, approximately 20 % of the land surface of



2.4. INTRODUCTION TO THE MGP MODEL 11

Africa falls within this range of tree cover.

The Sahel-Sudan region that will be the main geographical area of interest in

this thesis, is dominated by savanna and agricultural landscapes. Parts of it falls

within the areas highlighted in figure 2.2 while other parts have less tree cover. The

vegetation within the region is limited by the precipitation, which is highly variable in

both space and time. This makes the population vulnerable to drought which causes

problems for both agriculture and transhumance. Monitoring of the land surface

temperature and biophysical properties of the land surface from Earth Observation

data provides important input data to early warning systems and climate models that

can aid in the early discovery of droughts as well as evaluate the severity and spatial

extent when they occur. This naturally requires timely and accurate data to drive

the models, such as that provided by the SEVIRI sensor.

2.4 Introduction to the MGP model

One of the main tools for investigating the directional effects in this thesis is the

Modified Geometric Projection (MGP) model developed by Ana Pinheiro and co-

workers (Pinheiro et al., 2006, 2004; Pinheiro, 2003). It was developed especially for

investigating the directional effects for the NOAA AVHRR sensors over the African

continent. Below, a general introduction will be given to the underlying principles, to

the different model approaches and to the MGP-model in particular. A full physical

representation of the problem and the different modeling approaches is beyond the

scope of this work.

Modeling of directional effects is a subject than has been explored extensively, but

mainly in the visible domain. The surface anisotropy is often described in terms of the

“bidirectional reflectance distribution function” (BRDF). The BRDF describes how

much incoming light is reflected depending on illumination and viewing geometry and

the surface properties. In the thermal domain, the reflectance is of less importance

compared to the thermal emittance (disregarding reflected solar radiation present

during daytime in the MSG channel centered around 3.9 µm), but the underlying

principles are the same.

There are several possible approaches on how to model the directional emittance

of a discontinuous canopies:

• Geometric models that consider the size and location of the individual trees

or shrubs as well as the emissivity temperatures of each of the components.

The vegetation canopies are treated as opaque solids, with no within-crown

gaps. The composite temperature is assumed to be a linear combination of

the emittance of each of the components weighted by their relative abundance

according to the specific viewing geometry. Each of the components is assumed

to be isotropic. This approach treats the canopy as one homogeneous layer,

ignoring the difference in canopy density and structure at different levels in the
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Figure 2.3: Edited after Snyder and Wan (1998)

canopy. These models are deterministic and some apply ray-tracing methods

to model the interaction between the incoming radiation and the surface.

• Radiative Transfer (RT) models. These include a much more rigorous treatment

of the interactions between the incoming radiation and leaves, branches and

trunks at different layers in the canopy (volumetric representation). For this

purpose, detailed information on vegetation structure such as crown density,

leaf area index (LAI) and leaf angle distribution is required. This limits the

applicability of these models to small scale studies as the required input data

is hard to obtain on larger scale.

The approaches are exemplified in figure 2.3 which schematically shows how the

surface is described in the two cases. In the geometric models, the crowns are de-

scribed as opaque solids with a well defined shape (which is also depicted in figure

2.1), while the RT-models describe crowns as one or more layers of statistically dis-

tributed objects (leafs, branches and stems), also called a volumetric approach. The

interaction between the incoming radiation and the canopy is treated through prob-

abilities of the radiation being intercepted in a given layer. The ground is considered

an opaque surface and controls the interaction with the land surface.

The approach applied in this thesis belongs to the geometric type of model,

but accounts for some of the shortcomings of this type of model. It uses the ge-

ometric approach for describing the composition of the pixel, e.g. using spheroids
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to represent trees. In the case of the Modified Geometric Projection (MGP)-model

applied within this thesis (Pinheiro et al., 2006, 2004; Pinheiro, 2003), this is done

using the Geometric Optics part of the Geometric Optic - Radiative Transfer model

(Li and Strahler, 1992; Ni et al., 1999). This allows for estimating the fractional

cover of four surface components within a given area. The four components used

within the model are sunlit and shaded canopy, and sunlit and shaded background.

The canopy components refer to tree and tall shrub canopies while the background

consists of bare soil and low vegetation. For the canopy components, the within-

crown gaps are accounted for by first estimating the gap probability (the probability

of a beam passing through the canopy layer). Then the crown radius is adjusted,

effectively removing the gaps from the canopy, so that the rest of the canopy can be

described as one homogeneous layer of vegetation.

The above described MGP-model was chosen to provide the optimal trade off

between simplicity, not requiring extensive information on vegetation properties and

being relatively computationally efficient to allow large scale application, while tak-

ing the most important factors into account. Other models like the DART model

(Gastellu-Etchegorry et al., 1996; Guillevic et al., 2003), a 3D radiative transfer model,

provides a more realistic representation of the canopy, but require more detailed input

data, and is much more computationally demanding, effectively making it impossible

to apply on a continental scale.





Chapter 3

Introduction to thesis papers

The four papers constituting the main part of this thesis all contribute to answering

the research questions stated in Chapter 1. Their contributions may be illustrated

by placing them in a coordinate system with three axes, one representing the spatial

scale, from plot to continental, one representing the level of detail in the description

of the land surface, and one representing the spectrum from a purely empirical to a

purely theoretical analysis.

As outlined in figure 3.1, Paper I is mainly theoretical in orientation, focusing on

modelling of the directional effects. It addresses the continental scale, and is based

on a relatively crude description of the land surface - and the tree cover specifically.

Building on this, Paper II applies the model at the finer scale of the West African

Sahelian-Sudanian savanna landscape, and validates the model outputs against field

observation at micro-scale in Dahra, Senegal. Thus it is far more empirical in scope,

and uses a more detailed parameterization of the tree cover. Paper III focuses on the

key input data for the MGP model, the tree cover. As shown in Paper I and II, the

size of the directional effects depends critically on tree cover, and may amount to as

much as 3 K in cases with mid-range tree cover (20-40 % crown cover). Therefore,

methods for estimating tree cover percentage and tree height at a scale relevant to

the use of MSG SEVIRI data are required, and Paper III addresses this by presenting

a method for local to meso-scale tree cover estimation in savanna and woodland

environments on the basis of high resolution satellite images. The parameterization

of the tree cover is, however, relatively simplistic. Finally, Paper IV seeks to place the

directional effects in perspective by comparing the standard LST estimates from MSG

SEVIRI, with estimates from MODIS, and from in situ measurements in Dahra as well

as from the Agoufou site in Mali. Thus the fourth paper addresses the sub-continental

scale, it is empirically based and does not involve any particular parameterization of

the tree cover (and therefore it can not be placed on the second axis).

The continental modeling paper (Paper I) allows an assessment of the order of

15
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Figure 3.1: Illustration of the contribution of each of the four papers contained
within this thesis on three axes. To the right, the position of each paper projected
onto three 2D plots.

magnitude of the directional effects, and provides information on under which cir-

cumstances, in regards tree cover, time of day and year, and in what parts of Africa

these effects may cause substantial errors in LST-estimates from MSG SEVIRI. Pa-

per II applies the model to examine, for the savanna landscapes of the West African

Sahel-Sudan zone, the likely errors in LST-estimation, which may be caused by direc-

tional effects. Since the MGP-model and its practical uses imply that information on

tree cover (tree height, crown cover percentage, crown dimensions and density) is re-

quired, Paper III studies the possibilities of deriving this information from high spatial

resolution satellite images. Finally, paper IV assesses the uncertainty associated with

the LST-data presently available from SEVIRI, which do not take directional effects

into account, by comparison to MODIS-based estimates and field measurements.

This serves to show that directional effects are, under most circumstances, smaller

than the uncertainties caused by other factors, yet in cases of medium-level crown

cover, e.g. in savanna woodlands, and under specific illumination and observation

geometries, bidirectional effects may dominate and need to be compensated for.
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3.1 Paper I

Modeling Angular Dependences in Land Surface Temperatures From

the SEVIRI Instrument Onboard the Geostationary Meteosat Second

Generation Satellites

The paper investigates the directional effects on the continental scale using a mod-

eling approach considering three cases that represent the annual angular variation.

This is done using the MGP-model which requires the emissivities and temperatures

of the four surface components to be known. As this is not possible on a continental

scale, it was chosen to prescribe a fixed set of component emissivities and tempera-

tures and to keep these constant over time. Although this is not representative of the

real conditions, it reduces the number of parameters that can influence the results.

Thus, it allows for an all-other-factors-being-equal estimation of the magnitude and

timing of the directional effects on the continental scale.

The analysis is carried out for three days: spring equinox, summer solstice and

fall equinox. The results show that the difference between the LST observed and

that which would have been observed at nadir amounts to less than 1 K under most

conditions, which is within the expected uncertainty of LST-products. The greatest

differences observed are at tree cover percentages between 30 and 40 % and at

“hot spot situations” where the sun is just behind the sensor. In the worst case,

autumn equinox, 7 % of the pixels have differences greater than 1 K. The highest

values amount to more than 3 K, yet such differences are rare. The difference varies

significantly though the day, which might be critical in applications relying on an

accurate representation of the diurnal cycle in LST-temperatures.

3.2 Paper II

Directional effects on land surface temperature estimation from Me-

teosat Second Generation for savanna landscapes

For a savanna site at Dahra in northern Senegal, directional effects in LST-estimates

from MSG SEVIRI are modeled using the Modified Geometric Project (MGP) model.

The required input data on scene component temperatures are derived from in situ

measurements. While the “errors” caused by directional effects, the difference be-

tween observed LST and what would have been observed at nadir, are generally

small, the main problem is associated with the diurnal cycle of LST: The amplitude

of LST-variation might be significantly affected. In order to represent other parts of

the Sahel-Sudan zone, the MGP model has been used to assess directional effects for

crown cover percentages of 4 %, corresponding to the Dahra region, 8, 12, 18, 25

and 35 % and for four different tree cover structures. Maximum differences generally

increase with crown cover up to 25 %. Further the paper compares the modeled
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LST-values with the LST-estimates from the LSA-SAF LST product, and the results

show that overall, the match between the modeled and measured LST is discour-

aging. Toward the end of the study period (and rainy season) the match is much

better, reaching r2 of more than 0.9.

3.3 Paper III

Tree survey and allometric models for Tiger Bush in Northern Sene-

gal and comparison with tree parameters derived from high resolution

satellite data

The paper describes and validates an Earth Observation-based method for estimating

tree cover and woody biomass for a 10 by 10 km area close to Dahra in northern

Senegal. The purpose is (1) to provide input to the work on modeling the direc-

tional effects in MSG SEVIRI, (2) to demonstrate the feasibility of estimating woody

biomass (and with that also the carbon storage) by use of high resolution satellite

images, and (3) to develop and test methods for upscaling results to the scales rel-

evant in relation to MODIS and MSG, by relying on a correlation between NDVI

(greenness) and tree cover. The results showed very good agreement between field

observations of the tree cover, tree height and crown diameter, which provided the

necessary inputs both to modeling directional effects in MSG SEVIRI-data and to

estimating biomass. Attempts to upscale to larger areas/scales were unsuccessful,

since the NDVI-signal from the tree crowns was masked by variations in background

NDVI.

3.4 Paper IV

Intercomparison of LST products from MSG SEVIRI and comparison

with MODIS data and in situ measurements in West Africa

This paper examines the accuracy of current available MSG SEVIRI and MODIS LST

products by comparison with in situ observations in Dahra in northern Senegal and

from Gouma, Mali. The contribution to the thesis lies in the information provided

on the accuracy obtained in LST-products and possible alternative LST-algorithms

without correction for directional effects. The results show significant inaccuracies

in LST-estimates from all MSG SEVIRI derived products in the rainy season, while

estimates are more reliable in the dry season. MODIS-estimates display greater

uncertainties compared to the MSG-SEVIRI estimates. The implications of the study

are that other problems in SEVIRI-based LST-estimates dominate in the rainy season,

while directional effects may well play a significant role in the dry season.



Chapter 4

Conclusion and perspectives on

future research

4.1 Conclusions

The directional effects in LST estimates from MSG SEVIRI were explored, mainly

through modeling with the MGP-model. The analysis was carried out at different

scales ranging from local scale at the Dahra test site through to the continental scale

presented in Paper I. The continental scale study showed that the three main fac-

tors controlling the magnitude of the directional effects are the difference between

the surface component temperatures, the tree crown cover and the sun-target-sensor

geometry. Furthermore, tree and crown size, shape and density also affect the mag-

nitude of the directional effects.

• Difference between component temperatures. Without a significant tempera-

ture difference between the different surface components, the surface will not

show any directional effects. Furthermore, the larger the difference, the larger

the directional effects can potentially be, but the magnitude will then be de-

termined by the other factors described below.

• Tree crown cover. The continental study (Paper I) found that the largest

directional effects were found in areas with between 30 and 40 % tree crown

cover. This neglects any dependence the tree crown cover might have on

the temperature difference between the different surface components, as these

were assigned uniformly across the continent in Paper I. Assuming that the

tree crown cover depends on the availability of water, which also to some

extent controls the temperature difference between the surface components, it

could be assumed that the difference between surface components would be

higher for areas with less tree crown cover. This would mean that the largest

19
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directional effects would occur at slightly lower values of tree crown cover than

otherwise expected. Paper II generally confirms the findings from Paper I, but

also highlights that even in areas with considerably lower tree crown cover (e.g.

8%), significant directional effects occur.

• Sun Zenith angle. The potential directional effect increase as the sun zenith

angles gets closer to nadir view (0 degrees sun zenith). This is mainly caused

by the fact that nadir view is used as a reference. In cases with sun zenith

angles close to nadir, nadir view will be at hot spot geometry, meaning that

only the sunlit components will be in view of the sensor causing high composite

temperature for nadir view. So rather than being a true dependence on sun

zenith angle, this is more a dependence on the nadir-view having hot spot

geometry.

• Relative azimuth angle (RAA). As above, the main influence of the relative

azimuth (the angle between the sun and the sensor as seen from the point

on the ground) stems from the occurrence of hot spot or close-to hot spot

geometries. This means that the largest (in this case negative) temperature

differences between nadir and MSG SEVIRI view occur at RAA values close to

0 and 360. These are the cases with principal plane conditions AND where the

sun and the sensor are located at the same side of the target. This excludes

the cases with principal plane conditions where the sun and sensor are located

on opposite sites of the sensor. It will still mean that in general, the largest

directional effects are found in the principal plane compared to cross principal

plane conditions, but this is only caused by the high differences for the same-

side cases.

In summary for the two angular dependencies discussed above, the magnitude of

the directional effects depend largely on whether one of the two views are close to

hot spot geometry. In these cases, the potential directional effects will be largest

compared to cases where none of the two views are close to hot spot geometry.

Furthermore, the sign of the directional effect will depend, at least partly, on which

of the views is close to hot spot geometry.

In addition to the above mentioned factors influencing the magnitude of the

directional effects, the tree size, shape and crown density are also important. But

the exact influence of these parameters is not independent of the above mentioned

factors, making it impossible to make general rules about their influence. For example,

the crown density (expressed through the Leaf Area Index (LAI)) will increase the

magnitude of the directional effects in areas with sparse tree cover, while it will

decrease the magnitude in areas with more dense tree cover.

A finding that will be important for many applications of LST data, is that the

directional effects can be expected to change both in terms of magnitude and sign

over the course of the day, as well as with season. This is illustrated in figure 4.1 taken
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Figure 4.1: Examples of the diurnal changes in the temperature difference be-
tween nadir and MSG-view as modeled with the MGP-model for an area with
35% tree crown cover. Figure from Paper II.

from Paper II. It shows the diurnal and seasonal change in the modeled temperature

difference between nadir and SERIVI-view for a case with 35% tree cover at the

Dahra site (the true tree crown cover is 4%). On the daily scale, both the sign and

the amplitude of the directional effects change significantly. The amplitude is more

than one degree in three out of four cases, and in two cases the sign of the directional

effect change during the day. On the seasonal scale, it is not uncommon to observe

a difference of more than one degree if comparing the directional effects in summer

to the effects in the fall. If this is not considered in applications of the LST data, it

equals introducing a (for the user) “random error” of at least 1 K. In many cases, the

directional effects will then be at the same order of magnitude as the quoted overall

uncertainty estimate of the LST product itself.

Considering the magnitude of the (modeled) geometric effects found in Papers

I and II, it should be possible to identify these effects in LST data, at least in

the most affected areas. The assessment of whether it is feasible to identify the

directional effects in SEVIRI-based estimates of LST is based on the assumption,

that the performance of the LST products follows the estimates of uncertainty given

by the data provider. A test of LST-estimation performance was carried out in Paper

IV, by intercomparing different SEVIRI-based LST products as well as comparing the

satellite data to in situ measurements from two field sites in semi-arid West Africa.

Performance of all the satellite based LST-estimates were found to be discouraging

when comparing with the ground data, with discrepancies exceeding 5 degrees in the

majority of cases. The inadequate performance was found especially during the rainy

season, while the results for the dry season were better. The large discrepancies,

which by far exceeds the expected uncertainties in the LSA-SAF LST product, makes

it infeasible to identify directional effects in the satellite data, as other sources of

uncertainty will mask out the directional effects. At least this is true during the rainy
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season, while it might be possible in the dry season, although ground data from more

densely vegetated areas than the Dahra site will be required. As mentioned above,

the directional effects depend on the temperature difference between the surface

components, which can be expected to be larger during the dry season. This should

make the identification of the directional effects easier during the dry season, further

enhancing the possibilities of identifying these effects in the satellite data.

4.2 Perspectives on how to operationally correct for di-

rectional effects

The directional effects identified in this study are in many cases significant and should

ideally be accounted for. This is especially the case if using long time series of data for

applications benefiting from the capabilities of the SEVIRI sensor for monitoring the

diurnal cycle. But setting up a correction scheme is not a simple task. Two spectral

measurements are available (one from each of the two thermal SEVIRI channels)

at each time step, and ideally the influence of the atmosphere, the emissivity and

temperatures of the four components, a total of 7 unknowns should be solved for (not

counting the vegetation structure parameters). This is obviously an ill-posed problem

which can not be solved numerically. Alternatives therefore have to be sought, in

order to reduce the number of unknowns to be solved for, or increase the number of

independent measurements available.

Several attempts have previously been made to invert radiative transfer models

using bi- or multi-angular thermal infrared data to estimate component temperatures

(Francois et al., 1997; Menenti et al., 2008; Timmermans et al., 2009; Verhoef et al.,

2007). Common for these studies is that none of the studies succeed in developing

a inversion-algorithm capable of producing stable results from satellite data on a

broad scale, although the forward simulations show evidence of significant directional

effects. Some limit themselves to try to invert for two component temperatures

(ignoring the difference between sunlit and shaded sub-components), while acknowl-

edging that this might very well be too crude an assumption when the temperature

difference between these components are large (Menenti et al., 2008; Verhoef et al.,

2007). In all studies, information on the vegetation structure (with varying degrees

of detail) is required in order to carry out the inversion. This could be in the form

of information on the Leaf Area Index alone, while other approaches require exten-

sive information on leaf inclination distribution and the structural arrangement of the

leaves. The requirement of detailed input data on vegetation properties limits the

applicability of these methods on the broader scale, as it is unlikely that this infor-

mation would be available. For the simpler methods, this could be dealt with, which

is also suggested by the authors (Menenti et al., 2008; Timmermans et al., 2009;

Verhoef et al., 2007), by combining the thermal measurements with data from the

visible part of the spectrum from which information on e.g. the canopy structure can
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be derived. Using BRDF-models for inferring vegetation structure has already been

a subject of some research (e.g. Diner et al. (2005); Gao et al. (2003)), and results

look promising. The main issue with this is, that the best estimates of these struc-

tural parameters, require multi-angular input data from sensors like the MISR-sensor,

that monitor the surface quasi-instantaneously at 9 different angles (VIS only). This

further stresses the point, which is also evident from the inversion-studies discussed

above: Multi-angular data is almost a requirement if a correction scheme is to be set

up successfully, but is not necessarily enough on its own. This has previously been

attempted for data from the ATSR and AATSR-sensors that measured the surface

at two angles - nadir and 53 degrees forward (Francois et al., 1997; Menenti et al.,

2008) with some success. A sensor setup like the (A)ATSR is obviously not possible

from a geostationary orbit as it requires the sensor to move across the land sur-

face, and would thus require more sensors in orbit at the same time with appropriate

angular spacing (more than the current 9.5 degrees between MSG-1 and MSG-2).

The question is if the fixed viewing geometry from two geostationary satellites would

provide sufficient angular variation to allow for inversion across large areas (e.g. the

Africa continent), which have proved to be a challenge in the case of BRDF-modeling

(Proud, 2010). But even with measurements in two bands at two different angles

from two SEVIRI sensors, inversion will not be straight forward as the system of

equations will still be underdetermined.
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Modeling Angular Dependences in Land Surface
Temperatures From the SEVIRI Instrument
Onboard the Geostationary Meteosat

Second Generation Satellites
Mads Olander Rasmussen, Ana C. Pinheiro, Simon R. Proud, and Inge Sandholt, Member, IEEE

Abstract—Satellite-based estimates of land surface temperature
(LST) are widely applied as an input to models. A model output
is often very sensitive to error in the input data, and high-quality
inputs are therefore essential. One of the main sources of errors
in LST estimates is the dependence on vegetation structure and
viewing and illumination geometry. Despite this, these effects
are not considered in current operational LST products from
neither polar-orbiting nor geostationary satellites. In this paper,
we simulate the angular dependence that can be expected when
estimating LST with the viewing geometry of the geostationary
Meteosat Second Generation Spinning Enhanced Visible and In-
frared Imager sensor across the African continent and compare
it to a normalized view geometry. We use the modified geometric
projection model that estimates the scene thermal infrared radi-
ance from a surface covered by different land covers. The results
show that the sun–target-sensor geometry plays a significant role
in the estimated temperature, with variations strictly due to the
angular configuration of more than ±3 ◦C in some cases. On the
continental scale, the average error is small except in hot-spot
conditions, but large variations occur both geographically and
temporally. The sun zenith angle, the amount of vegetation, and
the vegetation structure are all shown to affect the magnitude of
the errors. The findings highlight the need for taking the angular
effects into account when applying LST estimates in models and
when comparing LST estimates from different sensors or from
different times, both on the daily and seasonal scale.

Index Terms—Angular effects, anisotropy, land surface tem-
perature (LST), Meteosat Second Generation (MSG) Spinning
Enhanced Visible and Infrared Imager (SEVIRI).

I. INTRODUCTION

LAND surface temperature (LST) is a key parameter in the
land surface energy budget, and it is directly dependent

on the local-scale conditions at the surface, as well as on larger
scale atmospheric conditions. Therefore, it is also an important
input parameter to many models, including soil-vegetation–
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atmosphere transfer (SVAT) models, hydrological models, and
climate models. Geostationary satellites like the Meteosat
Second Generation (MSG) series provide a way of obtaining
LST on a regional or even continental scale at a temporal
resolution of 15 min with a pixel spacing of 3 km. Observations
of LST from space are restricted to cloud-free conditions, so
the high temporal resolution makes geostationary satellite data
the best option for monitoring LST. The capability of, e.g.,
SVAT models to simulate the energy partitioning at the surface
depends to a large degree on the quality of the input data.
Relative errors of 1 ◦C have been shown to severely affect
model performance on a regional scale, and local fluxes can
be influenced even more severely with 1 ◦C–3 ◦C, giving an
uncertainty in flux estimation of up to 150 W ·m−1 [1], [2].
LST as measured from medium- and coarse-resolution satel-

lite sensors is generally not observed over a homogenous and
horizontal surface consisting of just one material. It is rather
a mixture of different land covers or pixel components, each
with their own separate temperature and emissivity contributing
to the measured signal depending on how much of the pixel
each component covers. Furthermore, the angular configuration
of the sun, the sensor, and the areas being measured plays an
important role, as sunlit and shaded areas of the same land cover
will have different temperatures. The sunlit portions of a certain
land cover will, in general, be warmer than the shaded portion,
but the difference between the two temperatures depends on the
specific land cover and the availability of moisture.
Current algorithms for LST estimation from the MSG Spin-

ning Enhanced Visible and Infrared Imager (SEVIRI), e.g.,
[3]–[6] do not take this angular dependence into account. The
only angular component in, for example, [5] is a simple depen-
dence on the view zenith angle, not taking the structure of the
surface or the scene geometry into account. This problem has
previously been investigated for polar-orbiting satellites [7], [8]
but has not been investigated systematically for geostationary
satellites, although Minnis and Khaiyer [9] found large differ-
ences between LST estimates from three Geostationary Oper-
ational Environmental Satellite (GOES) satellites for a number
of test areas. Polar-orbiting satellites monitor the surface at the
same local sun time on consecutive orbits, except for effects
caused by sensor drift and time differences across the swath,
but with large variation in the viewing geometry across the
scene. Geostationary satellites, on the other hand, have a fixed

0196-2892/$26.00 © 2010 IEEE
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viewing geometry, while the illumination geometry changes for
each recorded image. Both sensor types will be influenced by
seasonal variations in the illumination geometry.
This study simulates the angular dependence of LST as seen

by the MSG SEVIRI sensor, by using the modified geometric
projection (MGP) model [7]. The model enables studies of the
influence of vegetation cover and structure on the LST as mea-
sured from a satellite sensor given the illumination and viewing
geometry. Two cases are modeled: one for the actual MSG
SEVIRI viewing geometry (with the sensor located at 0◦ E over
the equator) and one at nadir. This enables one to examine the
magnitude of the angular dependence and its spatial and tempo-
ral distribution. Nadir geometry is used as a reference geometry,
even though it will never be possible to monitor all pixels at
nadir from a geostationary platform. The study is limited to
only modeling continental Africa and Madagascar, although the
angular dependence can be expected to be even more severe in
Europe due to the high view and sun zenith angles (SZAs).

II. BACKGROUND

The angular dependence of LST, particularly for structured
canopies, has been known for a long time. Balick and Hutchin-
son [10] found up to 5 ◦C change in measured temperature
per 10◦ change in view angle over a leafless deciduous forest.
In their review paper, they [11] also stressed the need for
taking the temperature of the different scene components into
account when considering the directional infrared temperature
measured by a sensor. They only considered two components,
namely, soil and vegetation, and thus did not treat the shadow-
ing effects occurring when considering structured canopies.
Coret et al. [12] did a simulation study of the view angle ef-

fects of surface heterogeneity on measured LST. They modeled
a surface composed by two homogenous scene components,
namely, bare soil and vegetation, and did therefore not consider
structured canopies and the related shadowing effects. On the
other hand, their model did take the angular dependence of the
emissivity into account. They showed that the sensor configu-
ration makes a strong impact in the retrieved scene composite
temperatures. They make a distinction between sensors that
measure a constant solid angle and sensors that are designed
to measure the same area independently of the view angle. The
latter ones show a much more distinct angular dependence,
which can potentially be applied to describe the scene structure
from remotely sensed data. They also find that the anisotropy
of the land surface in terms of emissivity has a significant
influence on measured brightness temperatures and that these
effects should ideally be taken into account, particularly for data
measured at high view zenith angles.
As mentioned previously, the problem of angular depen-

dences of structured canopies has been addressed for the
National Oceanic and Atmospheric Administration Advanced
Very High Resolution Radiometer polar-orbiting satellites by
Pinheiro et al. [7]. They investigated the directional dependence
of LST induced by the changing geometry due to both the
sensor drift and the changing season. They accomplished this
by modeling how much of each pixel is covered by four
(isothermal) endmembers (or pixel components) for a given
sun-target-sensor geometry, using a geometric optics model

called theMGPmodel [8]. They then assume that the composite
pixel radiance is a linear combination of the emitted radiances
of the four endmembers, weighted by the abundances. For an
area with moderate tree cover, they found the LST to be closely
related to the fraction of the sunlit background component,
which is to be expected as this component has, in general, the
highest temperature. They also identified the occurrence of a
thermal hot-spot effect for situations where the sun is right
behind the sensor. The geographical pattern of the occurrence of
these hot-spot effects depends largely on the seasonal variation
in the position of the sun. Overall, they found differences in
simulated LSTs of ±5 K and up to 9 K strictly due to the
sun-target-sensor geometry variation. Their results showed that
the change in scene component fractions and, thus, tempera-
ture dependence is largest in the principal plane. The MGP
model applied in the study was evaluated against the discrete
anisotropic radiative transfer (DART) model. A more complex
layer-based radiative transfer model [13] also used DART for
simulating scenes of open tree orchards as would be seen from
the Advanced Spaceborne Thermal Emission and Reflection
Radiometer sensor, considering the effects of different leaf area
index (LAI), tree cover fractions, and temperature differences
between tree canopy and soil background, as well as shadows.
They successfully used this to distinguish between irrigated and
rain-fed olive orchards monitored over a six-year period. They
also used DART for estimating the difference between crown
and composite pixel temperatures and found differences of up
to 20 K depending on the vegetation cover percentage.
Li et al. [14] developed a conceptual model for estimating the

directional emissivity of nonisothermal heterogeneous surfaces.
They also examined the 3-D effects of structured canopies
through geometric optics considerations. This is a similar ap-
proach to the one adopted in [8], but it treats the emissivity and
not LST, although the two problems are closely related.
Trigo et al. [15] investigated differences between MSG-

SEVIRI- and Moderate Resolution Imaging Spectroradiometer
(MODIS)-derived LSTs over three areas across the Earth disk.
They also compared these to in situ measurements from a
site in Portugal. They attributed the large differences between
the MSG SEVIRI and MODIS LST values during the day
to a number of factors, including the MODIS view zenith
angle, time of day, sun scene view geometry, terrain orography,
and surface type. They found that the MODIS view zenith
angle played a significant role for the morning overpass, with
temperature differences between MODIS and MSG SEVIRI
reaching more than 6 ◦C in some cases. They attributed this to
the fact that, whenMODIS is observing a surface from the west,
it views more shaded areas than does MSG SEVIRI, leading
to the higher temperature difference at this time of the day.
During nighttime, this dependence was absent, confirming that
the dependence is related to the position of the sun in relation to
the sensors. They also found a seasonal dependence that they at-
tributed partly not only to changes in the fractions of sunlit and
shadowed components over the year but also to changes in the
vegetation. The largest differences occurred in the drier summer
months, where the temperature difference between canopies
and the soil/grass surfaces is largest. Trigo et al. [15] and Stisen
et al. [16] found larger differences between LST estimates from
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MODIS and MSG SEVIRI during daytime compared to night-
time. This indicates that solar heating causes a wider span in
component temperatures and that the different viewing geome-
tries influence the temperature differences between the two.
In a study examining LST estimates from three GOES

satellites, Minnis and Khaiyer [9] also considered the angular
dependencies. They examined a number of test areas mainly
located in the Western and Central U.S. For these areas,
estimates of LST were available from three different GOES
satellites located at 75◦, 105◦, and 135◦ west. Their results show
significant discrepancies in the temperature estimates from the
three satellites and attribute this to the differences in SZA,
view zenith angle, relative azimuth angle (RAA), vegetation
cover type, and, particularly, the topography of the areas. They
found temperature differences between two of the sensors of
more than 10 K for some areas and found the magnitude of the
differences to depend mainly on the topography of the areas and
the vegetation cover.

III. METHOD

This study is designed to investigate the magnitude of the
angular dependence of LST estimates from the MSG SEVIRI
instrument in a number of worst case scenarios. This is done
by modeling the LSTs that MSG SEVIRI would record for
each pixel over the African continent in two cases: for the
actual SEVIRI view geometry (located over the equator on the
Greenwich Meridian) and at nadir view over each pixel. Having
nadir observations for each pixel will not be possible from
a geostationary sensor but is used as a common reference to
allow intercomparison. Furthermore, this temperature at nadir
could be used as a reference temperature when comparing
observations from pixels with different viewing angles which
would be similar to performing a bidirectional reflectance dis-
tribution function correction of reflectance values in the visible
domain. If a normalization of the LST estimates to a common
illumination and observation geometry is to be applied, nadir
would likely be the geometry of reference.
Here, we address the magnitude of the angular effects over

the African continent through model simulations of apparent
pixel temperatures, based on the assumption that each pixel
consists of a mix of only four scene components. These four
components are sunlit canopy, shaded canopy, sunlit back-
ground, and shaded background. In this study, canopy refers to
the tree or tall shrub canopies, and the term background refers
to a surface covered by grasses or other low vegetation and/or
bare soil. The model is capable of estimating the fraction that
each of these components covers within a pixel, for a given
illumination and viewing geometry, and the resulting pixel
radiance is then a linear combination of the component-emitted
radiances weighted by the fraction that each of the components
covers, according to [8]

Tcomposite =
[

1
〈ε〉

∑ (
εkT 4

k fk

)] 1
4

(1)

where Tcomposite is the composite temperature for a given pixel,
〈ε〉 is the composite emissivity, and fk is the directional frac-
tional cover of component k. This requires that the temperatures

and emissivities of each of the pixel components are known. In
this simulation study, the component temperatures and emissiv-
ities are set to constant values across the continent throughout
time. Although this is a very crude assumption, it allows us
for an all-other-things-being-equal comparison to identify in
which regions these angular effects will occur and when they
appear, due strictly to the sun-illumination geometry variation.
To accomplish this, we ran the model for three different days
during year 2007. Those days represent the extreme cases in
terms of angular variation: the summer and winter solstices and
the fall equinox.

A. Model Description

The MGP model is used to analyze the angular dependences
of LST due to the geometrical structure of discontinuous
canopies. The model was designed particularly for this purpose
while still sufficiently accounting for both between- and within-
tree-crown gap probabilities and being relatively computation-
ally efficient to allow for regional-/continental-scale studies.
A brief introduction to the model is given in the following.
For a detailed description, interested readers should consult [7]
and [8].
The MGP model is built on the geometric optics part of

the Geometric Optical–Radiative Transfer (GORT) model [17]
which is a radiative transfer code meant for modeling the
bidirectional reflectance of discrete canopies. This model code
allows for the estimation of how much of a given pixel is
covered by a certain pixel component given the information
on the vegetation structure and the illumination and viewing
geometry. In the case of the current implementation, four pixel
components are considered by the model: sunlit canopy, shaded
canopy, sunlit background, and shaded background. Three of
the pixel component fractions are estimated directly, whereas
the fourth one, the shaded canopy, is estimated as the residual
(constrained by the need for the fractions to sum to one). The
canopy refers to trees and tall shrubs, and background refers to
short vegetation (e.g., grasses) and/or bare soil. This distinction
is made because the tree canopies have the largest influence
on the measured temperature when considering illumination-
and viewing-geometry-induced effects. The model effectively
clumps together all tree canopies and all gaps (both between-
crown and within-crown gaps), allowing the model to treat
the vegetation as a homogenous layer [8]. The model assumes
isotropic emissivity on the microscale, effectively ignoring the
angular differences in emissivity for the single pixel compo-
nents. On the other hand, it does account for the changes in the
effective emissivity of the surface depending on how much of
each pixel component is being seen by the sensor.

B. Input Data

The MGP model requires inputs on tree cover density and
detailed information about the tree vegetation such as average
crown height and crown width, as well as LAI. As an input to
the model for the tree cover density on a continental scale, the
MODIS Vegetation Continuous Fields product [18] for 2001
was applied (latitude/longitude, continental version). The origi-
nal files with 1-km spatial resolution were aggregated to 8 km to
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Fig. 1. (a) Relative azimuth, (b) SZA, and (c) view zenith angle for the same
subset covering the African continent as shown in Figs. 3 and 4 for June 21,
2007, at 11:00 UTC.

match the scale of the vegetation structure parameters. LAI was
obtained from the MOD/MYD15A2 product (collection 5) at
1-km resolution. This was reprojected and resampled to match
the vegetation structure data at 8-km resolution using the
MODIS Reprojection Tool [19].
Furthermore, the model needs angular information on both

illumination and viewing geometries, including view zenith,
view azimuth, sun zenith, and sun azimuth angles. The angular
geometry for June 21, 2007, at 11:00 is shown in Fig. 1.
As the SEVIRI sensor is aboard a geostationary satellite, the
viewing geometry is fixed (disregarding the very rare changes
in satellite positions and shifts in operational service between
MSG-1 and MSG-2). The illumination geometry, on the other
hand, changes both during the day and seasonally. During the
day, the sun moves from east to west across the continent, but
the latitude of this movement depends on the season. This is
represented in the RAA. Here, the RAA is calculated as the
clockwise angular distance between the sun and view azimuth
angles and ranges between 0 ◦ and 360◦. The full 360◦ range has
been used to allow possible identification of asymmetry effects,
resulting in different effects when the sun is east or west of
the sensor (effective morning and afternoon asymmetry), which
would not be possible to discern using a 180◦ range. Similarly,
the sun and view zenith angles have been calculated in the
−90 ◦ to 90◦ range, with negative values indicating zenith
angles west of the sun and the sensor, respectively.
For the estimation of pixel temperatures, the model addi-

tionally requires temperatures and emissivities for each of the
four pixel components. As the emissivity can be assumed to
be independent of solar illumination, only two emissivities
are required. The applied values can be found in Table I.

TABLE I
INPUT TEMPERATURE AND EMISSIVITY VALUES

FOR THE FOUR PIXEL COMPONENTS

Vegetation structure data are based on literature values assigned
to individual classes in a land cover classification map and were
obtained from [7] with a spatial resolution of 8 km.

C. Experimental Setup

The study was designed to explore the extreme cases of an-
gular variation and how these affect the LST across the African
continent. Therefore, three dates during 2007 were selected
which represent the extremes of the variation in viewing and
illumination geometry: the solstices and the fall equinox. At
summer solstice, the sun is positioned on the Tropic of Cancer
located north of the MSG SEVIRI sensor and north of most
of the continent. This will create high SZAs in the southern
part of Africa and will also cause conditions in the afternoon
in Southern Africa, where the sun, the MSG SEVIRI sensor,
and the ground will be aligned. At the winter solstice, the
sensor is located above the Tropic of Capricorn, causing high
solar zenith angles over the northern part of the continent, and
close to principal plane conditions in northwestern Africa in the
mornings. At the equinoxes, the sun is located directly above
the equator, where the sensor is also positioned. This will cause
conditions where the sun is directly behind the sensor, where a
thermal “hot-spot” effect could be expected.
As described previously, the MGP model requires the four

pixel component temperatures as an input for each pixel. It is
impossible to get these four temperatures for the entire con-
tinent simultaneously, as they cannot readily be derived from
satellite measurements, and in situ measurements are naturally
not possible on such a scale. In this study, the four pixel
component temperatures have therefore been set to a constant
value across the continent and with no diurnal variation (see
Table I). These values are, of course, not representative of the
actual temperatures as large variations occur depending on,
among other things, time of day, season, and land cover. These
temperatures have been chosen to represent the right magnitude
of the temperature differences between the four pixel compo-
nents for a surface with moderate vegetation cover. A typical
example is a savannah with trees and a healthy grass cover. By
keeping the temperatures for each component constant through
space and time, we can more easily identify the effects upon
temperature due to geometry variation only. Furthermore, as the
composite emitted radiance is a linear combination of the pixel-
component-emitted radiances, the actual temperatures applied
are not that important for a modeling study like this. The con-
clusions drawn based on these temperatures can easily be trans-
ferred to other situations with different relative temperatures as
the differences depend on the projected abundances of the four
pixel components rather than the temperatures themselves.



RASMUSSEN et al.: MODELING ANGULAR DEPENDENCES IN LAND SURFACE TEMPERATURES 3127

Fig. 2. (a) Average temperature from SEVIRI and nadir view, calculated as the mean of all modeled pixels as a function of the time of day, UTC time.
(b)–(d) Mean, maximum, minimum, and standard deviation temperature difference, calculated as nadir minus SEVIRI for the three dates. All values are continental
averages.

IV. RESULTS AND DISCUSSION

A. Statistics

The result from the simulations includes the projected frac-
tions of the four scene components, as well as LSTs for SEVIRI
geometry and for nadir geometry. On average, the SEVIRI
and nadir temperatures are very similar, both geographically
and seasonally, but vary considerably over the day. The con-
tinentally averaged temperatures for the three days chosen
for the study are shown in Fig. 2(a), hourly between 04:00
and 18:00 UTC. The temperature differences over the day are

solely driven by the changes in angular configuration, as the
scene component temperatures are held constant. The average
temperatures vary between 296.3 K for the 18:00 slot for the
December case and up to 303.5 K for the SEVIRI temperature
at 12:00 for the September case. In most cases, the SEVIRI and
nadir temperatures are very alike for each of the three dates. The
only case where there is a significant difference is around noon
on the equinox date. On this day (September 23, 2007), the
nadir temperatures are higher from the morning up until 11:00
after which the SEVIRI temperatures are quite a lot higher for
the 12:00 slot. After that, the two temperatures converge again.
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In terms of the difference between the two temperatures, the
average difference is just 0.11 K (averaged over all pixels for
all time slots), and it only surpasses 0.3 K in the case of the
equinox, where it reaches 0.5 K at 10:00 UTC and −1.1 K
at 12:00 UTC (with standard deviations of 0.59 and 0.81 K,
respectively). Although the mean temperature difference is
generally not very large, significant temperature differences still
occur at all three dates. The dips and peaks in the early morning
and late afternoon in Fig. 2(a) are due to different parts of the
continent being included/excluded due to the SZA cutoff at 80◦.
As Fig. 2 also indicates, there is a large difference between

how the three dates are affected. Only 0.48% of the pixels on
June 21, 2007, have a temperature difference that is larger than
±1 K, whereas it is 7.48% and 1.10% for September 23 and
December 22, 2007, respectively. This clearly indicates that
the time of year to a large degree controls how abundant the
geometry-induced temperature differences are. On the other
hand, significantly higher differences occur for all three dates,
indicating that, locally, the errors can be larger than ±1 K
during a day.

B. Fraction of Each Scene Component and
Temperature Difference

One of the main outputs from the model is the fractions of
each of the four scene components. The model also outputs
the directional composite temperature of each pixel, based on
the provided scene component temperatures. An example of the
fractions is shown for the summer solstice (June 21, 2007) at
11:00 UTC in Fig. 3, which shows the fractions as seen from
the SEVIRI sensor (top) and the difference in fractions between
nadir geometry and SEVIRI geometry (bottom). The temper-
ature difference between the SEVIRI viewing geometry and
the nadir viewing geometry is shown in Fig. 4. As mentioned,
the composite emitted radiances are a linear combination
of the scene-component-emitted radiances and, in this study,
are closely related to the fraction of sunlit background, as this
has the most distinct temperature (at least 9 K warmer than the
other components). This can also be confirmed by comparing
the difference in the sunlit background fraction in Fig. 3 with
the temperature difference map for the same day and time in
Fig. 4. These are very similar, although some differences are
also apparent, e.g., on the east coast of Madagascar. The date
and time shown in Fig. 4 are a typical midday example showing
both areas where the SEVIRI geometry and the nadir geometry
are warmest.
The two tree “crown” fractions summed show a spatial

pattern that is close to that of the tree cover (a nadir-defined
amount), but variations from this occur particularly at high
view and sun angles. SEVIRI geometry generally has higher
fractions of the “sunlit crown” component than nadir geometry,
with the only exceptions occurring in areas that are very close
to the sensor. The opposite is true for the “shaded crown”
component, although more local-scale deviations are apparent.
Madagascar is a location where big differences occur over

relatively short distances due to the large variations in the
vegetation and the high view zenith angle of the MSG SEVIRI
sensor in this area. On the east coast of Madagascar, the crown

Fig. 3. (Top) Model output of the projected fractions for June 21, 2007, at
11:00 as seen from SEVIRI and (bottom) the difference between the fractions
for SEVIRI view and nadir view calculated as nadir minus SEVIRI.

components dominate as tree cover is dense, not allowing
SEVIRI to see much of the soil/background surface beneath the
canopy. At nadir view, more of the background is seen, whereas
the sunlit background is almost absent due to the dense tree
cover and the position of the sun around the Tropic of Cancer
(23◦26′ N). The main difference in fractions between SEVIRI
view and nadir view occurs in the “shaded background” compo-
nent, which is also the coldest one of the four components. As
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Fig. 4. LST difference for June 21, 2007, at 11:00. Yellow and red (blue)
pixels show the cases where nadir view is warmest (coldest).

nadir view has the highest abundances of this component, the
composite temperature is warmer as seen from SEVIRI than at
nadir.
On the western side of Madagascar, conditions are rather

different with much sparser vegetation. Again, SEVIRI geome-
try has higher fractions of the canopy components than nadir
geometry, due to the higher viewing angle of the former.
However, as the tree cover is much more sparse, the background
components have a much larger influence on the composite
temperatures. In this case where the sunlit background is more
abundant, it becomes the dominant factor in the temperature
difference, leading to higher composite temperatures for nadir
view than SEVIRI view, mainly due to the high view zenith
angle of SEVIRI.
In the densely vegetated central African region, SEVIRI

geometry gives higher temperatures than nadir geometry. This
is caused by the largest difference in fractions occurring for
the sunlit canopy component combined with the almost absent
sunlit background component. Most pixels in these areas ac-
tually have more sunlit background at nadir view compared
to SEVIRI view, which should lead us to expect a higher
composite temperature at nadir, but this is countered by the
relatively larger fraction of sunlit canopy for SEVIRI geometry.
The same explanation is generally true for the few areas in
West Africa, where SEVIRI also has the highest composite
temperatures in this example.
The area showing the most consistent higher composite

temperatures at nadir geometry is the southern part of the Sahel
zone in Sudan, the Central African Republic, and Chad. This re-
gion is located at the transition between the Sahara desert to the
north and the densely vegetated areas in Central Africa to the
south. This area generally has moderate tree cover, and the typi-
cal land cover is woody savannah. The relatively large tempera-
ture difference can be explained by the large difference between

Fig. 5. LST difference as a function of SZA for December 22, 2007. All
modeled pixels for all 15 model runs, hourly from 04:00 to 18:00, are included.

Fig. 6. LST difference as a function of RAA.

how much of the sunlit background component is seen in the
two geometries. Nadir view has approximately 10% higher val-
ues of this fraction than SEVIRI view, causing the high temper-
ature of this component to dominate the composite temperature.

C. LST Difference as a Function of SZA

The LST difference (between SEVIRI geometry and nadir
geometry) shows a strong dependence on the SZA (see Fig. 5).
This was also to be expected, as the temperature difference is
a difference between the SEVIRI and nadir view configuration.
In cases where the SZA is close to zero, the sun will effectively
be placed right behind the sensor, causing the nadir view con-
figuration to solely see the sunlit fractions. Therefore, it should
be expected that there is a large positive difference in these
cases. Cases where the SZA is very large (both negative and
positive) occur early in the morning and late in the afternoon
on the opposite side of the continent from the sun. In these
cases, the SEVIRI view geometry will be closer to the sun than
nadir geometry, causing the SEVIRI-geometry-derived LST
estimates to be warmest. This will lead to negative differences,
which is also evident in the data.

D. LST Difference as a Function of RAA

The only one of the three days showing a clear dependence
of LST on RAA is the fall equinox shown in Fig. 6. The figure
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contains data from 04:00 to 18:00 UTC, but the values actually
contributing to the negative temperature difference values occur
mainly between 11:00 and 13:00 UTC. It shows that, in the
case of the thermal hot-spot effect, pixels that are close to the
principal plane show not only the highest variation in surface
temperature but also the most significant cases where SEVIRI
geometry results in higher temperatures than nadir geometry.
This can be explained by the fact that nadir and near-nadir
geometries will only occur for a limited number of pixels in
an image. In the case of the thermal hot-spot effect occurring
at 12:00 UTC at the fall equinox, almost all pixels in the image
will be warmer with SEVIRI geometry and will all have RAAs
that are very close to the principal plane. The large negative
values mentioned previously occur for pixels that are close to
the principal plane but only in cases where the sun and the
sensor are located on the same side of the pixel in question.
RAAs around 180◦ are also in the principal plane but occur
when the sun and the sensor are on the opposite sides of the
pixel. These pixels do not show the same large variation in tem-
perature differences as the pixels which are close to 0◦ and 360◦

RAA; furthermore, the sign of the differences is generally
different for the two cases with the near-180◦ cases being
positive (nadir geometry warmest) and the near-0◦ and near-
360◦ cases being negative (SEVIRI geometry warmest).

E. Hot-Spot Effects

One of the most severe angular effects occurs when the sun
is located right behind the sensor. In the visible domain, this
is usually referred to as the hot-spot effect, as many vegetated
surfaces have preferential reflectance in this direction, causing
a peak in the reflectance. In the thermal domain, we also get a
peak at the hot-spot geometry. This is not caused by reflectance
as in the visible domain, but the term hot-spot effect will
nevertheless be used in this study. The effect occurs due to an
absence of shaded surface in the area observed by the sensor.
The hot-spot effect is also very apparent in the modeled

temperatures in this study, exemplified by the large dip in the
temperature difference curve in Fig. 2(c) for September 23,
2007, at 12:00 UTC, where the sun is located right behind
the sensor. Fig. 7(b) shows the occurrence of the hot-spot
effect in an area located approximately 5◦ north of the equator
(27.6◦ east) just north of the border between the Democratic
Republic of the Congo and Sudan. Comparing this to the
summer case in Fig. 7(a), it shows absence of this effect. For
the hot-spot case, the diurnal temperature difference is 4 K,
compared to 1 K for the summer case. The large temperature
difference dip occurring at 13:50 local sun time (12:00 UTC) is
clearly caused by the large increase in the fraction of the sunlit
background. The positive temperatures at 10:50 and 11:50 can,
on the other hand, be explained by the hot-spot effect occurring
at 11:50 at this position for the nadir geometry.

F. LST Difference as a Function of Tree Cover

One of the factors also having a clear effect on the tempera-
ture differences is the tree cover amount. This is to be expected
because the effect of changing geometry must be largest for
areas with moderate tree cover as the component fractions do

Fig. 7. Fractions as seen from SEVIRI and mean temperature difference for
one 3 × 3 pixel area in Central Africa for the two dates (a) June 21 and
(b) September 23, 2007. The fall equinox day clearly shows the effect of the hot-
spot geometry for the canopy components and in the temperature difference.

Fig. 8. Average temperature difference (calculated as nadir minus SEVIRI) as
a function of tree cover percent. The values are calculated as an average for all
pixels at all 15 modeled times throughout the day, within a one-percentage tree
cover bin.

not change with geometry for neither unvegetated surfaces nor
surfaces with a dense homogenous layer of vegetation. A bell-
shaped dependence of temperature difference upon tree cover
has also been found earlier in other studies [7], [15].
Fig. 8 shows the average temperature difference between

nadir and SEVIRI geometry as a function of the tree cover,
calculated as the average temperature difference for each pixel,
including all 15 model runs per day. All three dates show the
expected bell-shaped curve, with the maximum occurring at
tree covers between 30% and 40%. On average, nadir geometry
tends to be warmer for low and moderate tree covers, while
the difference between the two is much lower at high tree
covers. For one date, September 23, 2007, SEVIRI geometry
is systematically warmer, where the tree cover is above 70%.
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TABLE II
TOP POINT OF THE FITTED SECOND-ORDER FUNCTION AND THE
CORRESPONDING TEMPERATURE DIFFERENCE VALUE FOR THE
THREE DATES (SEE THE TEXT FOR FURTHER EXPLANATION)

Fig. 9. Mean fractions as seen from SEVIRI, temperature difference, and
RAA for two 3 × 3 pixel areas in northern Liberia for the day June 21, 2007.
The tree cover and position of the two places are almost identical. Tree sizes
vary considerably, with the trees being higher and with larger and denser crowns
in (b) than in (a).

To investigate this dependence further, a second-order poly-
nomial was fitted to the data for each of the three dates. The
maximum of these functions is then found to identify at what
value the model is most sensitive to the tree cover fraction. The
results are shown in Table II, which shows both the maxima
of the functions and the corresponding temperature differences.
For all three dates, the function maxima occur within the
30%–40% interval. The average maximum difference is only
around 0.2 K, but it must be stressed that these are average val-
ues and that differences, locally, can be more than 2 K. The sig-
nificantly lower average temperature difference for September
23, 2007, is caused by the large negative temperature difference
values for the 12:00 UTC slot [as also shown in Fig. 2(c)].

G. Influence of Vegetation Structural Parameters

Furthermore, we evaluated the impact of canopy size and
shape on the LST difference. In some cases, not only the
amount of tree cover or the angular configuration causes tem-
perature differences between nadir and SEVIRI view geometry.
For example, there is only a small difference in tree cover

Fig. 10. (a) Diurnally varying component temperatures used for a sensitivity
run and (b) typical example of the diurnal variation in the temperature differ-
ence with and without the varying component temperatures for a location in
Central Africa.

percentage (approximately 5%) between the two areas shown
in Fig. 9(a) and (b). The two locations are located only about
60 km apart in northern Liberia. However, the main difference
is in the tree and crown structural parameters of the two sites,
with the area shown in Fig. 9(b) dominated by much larger trees
than the area in Fig. 9(a). They are not only larger in terms of
height but also with denser and larger crowns, both horizontally
and vertically.
It is obvious that the area in Fig. 9(a) has much larger

fractions of shaded crown than the other area, whereas the area
in Fig. 9(b) has more sunlit background. This causes the area
in Fig. 9(a) to have a larger temperature difference, with an
amplitude of 0.5 K, compared to an amplitude of 0.1–0.2 K
for the area in Fig. 9(b).

H. Sensitivity to Diurnal Variation in Component Temperatures

To test the validity of the results obtained using component
temperatures that are constant over the day, a model run was
carried out with diurnally varying component temperatures. A
time series of component temperatures was made partly using
measured temperatures from a field site in northern Senegal
and partly matching the applied component temperatures from
Table I. The applied diurnally varying component temperatures
are shown in Fig. 10(a).
Fig. 10(b) shows a typical example of the diurnal variation in

the temperature difference between nadir and SEVIRI geometry
for the fall equinox case. It shows the general trend found that
the temperature difference is generally insensitive to whether
the temperatures are kept constant or vary over the day. For this
to be true, it requires that the temperatures of the individual
components do not change order but keep their respective
position in relation to the others. Moreover, the LST estimates
themselves do not follow this pattern, but it applies, in most
cases, to the temperature difference. This means that, except
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TABLE III
INPUT COMPONENT TEMPERATURES FOR THE
ORIGINAL AND ALTERNATE MODEL RUNS

Fig. 11. Distribution of the LST differences for June 21, 2007, at 11:00 for
the original and alternate sets of component temperatures.

for the temperatures shown in Fig. 2(a), the results presented in
this paper are generally insensitive to whether the component
temperatures are held constant or vary over the day.

I. Sensitivity to Component Temperatures

To test the sensitivity of the model to the selected com-
ponent temperatures, an alternate model run was made for
June 21, 2007, at 11:00 using a different set of temperatures
(see Table III). The fractions are unchanged as neither tree den-
sity, the structural parameters, nor LAI was changed. Several
changes were made to the component temperatures, including
decreasing the difference between the coldest and warmest tem-
peratures, as well as changing the order of the two shaded com-
ponents. These temperatures were chosen to show a case that
could represent either a morning situation before the surface
has been heated to the maximum temperatures. Alternatively, it
could represent the component temperatures that are typical for
a denser vegetated area, where plenty of moisture is available
for evapotranspiration. This would result in a narrower span in
the component temperatures than the temperatures used for the
original model run. The results in terms of the nadir–SEVIRI
temperature differences are shown in Fig. 11. The effect of
the lower sunlit background component temperature is clearly
visible in the generally much lower temperature differences.
Moreover, the entire distribution is shifted toward the left of
the plot, caused by more pixels which now have the highest
temperature for SEVIRI geometry. In general, the narrower the
span of the component temperatures is, the less the temperature
differences can be expected. Spatially, the dependence is more
complex, as it depends on the fractions which, again, depend
on a lot of different parameters, as described in the previous
sections. As shown in the previous sections, the effects should
be expected to be largest in areas with moderate tree cover,
while barren and densely vegetated areas are less affected due
to the relatively homogenous surface structure in such areas.

V. CONCLUDING REMARKS AND PERSPECTIVES

The model simulations show that the illumination and ob-
servation angular configuration can influence the estimated
LST significantly. At the continental scale, the average error
is generally insignificant, except at hot-spot geometry, but with
relatively large variation in the occurrence of the temperature
differences in terms of location and time. This makes it crucial
to take the angular dependence into account before using the
LST estimates as input to models or for trend identification
in time series. Care should also be taken when combining
data from geostationary satellites with data from polar-orbiting
satellites, as the angular dependence will be different from the
two types of sensors due to the difference in viewing geometry.
The largest angular dependence occurs at hot-spot geometry
when the sun is right behind the sensor, which, in this study,
leads to temperature differences between SEVIRI and nadir of
more than 3◦. For the three days modeled: the summer and
winter solstices and the fall equinox, 0.48%, 1.10%, and 7.48%
of the pixels had a temperature difference of more than ±1 ◦C,
respectively. All days also showed a maximum temperature
difference of more than 3 ◦C, with the fall equinox having the
largest difference of more than 6 ◦C over the day.
Many assumptions were made in this study, including the

following: uniform scene component temperatures across the
continent that do not change during the day, no surface orogra-
phy, and isotropic component emission. Despite this, the results
still demonstrate the magnitude of the dependence of the LST
estimates on the angular configuration and land surface cover.
The composite temperature of a pixel is mainly controlled by
how large a fraction of each scene component is viewed from
a sensor at a given time but will also depend on the temper-
ature difference between the components. Higher differences
between the component temperatures will also lead to higher
temperature differences. The component temperatures will vary
diurnally and seasonally depending not only on the illumination
geometry but also on vegetation cover and availability of water
at the surface.
As mentioned, current LST products do not take the angular

effects described in this study into account. The magnitude
of the potential errors found therefore indicates that the error
estimates of the current products are too optimistic, causing
false confidence in downstream applications of the LST data.
A correction/normalization scheme is required if the LST data
are to be used for seasonal studies or for studies exploiting
the capabilities of the SEVIRI sensor for monitoring diurnal
variations. The MGP model applied in this study is not directly
suited for a correction scheme, as the model is computationally
demanding and requires the component temperatures to be
known, which is not possible over a larger region.
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Directional Effects on Land Surface Temperature
Estimation from Meteosat Second Generation for

Savanna Landscapes
Mads Olander Rasmussen, Frank-M. Göttsche, Folke-S. Olesen, and Inge Sandholt Member, IEEE

Abstract—Structured canopies can show pronounced direc-
tional effects which influence land surface temperature (LST)
estimates from thermal infrared (TIR) satellite data. The effects
depend on illumination and viewing geometry, because changes
in these two geometries effectively cause the sensor to “see”
different fractions of the canopy, the “background” surface (bare
soil or low vegetation), and shadow, of which the latter also
depends on the specific geometry of the canopy and its structure.
This study investigates these directional effects for a specific
savanna site in West Africa and extends the findings to areas
with denser tree crown cover. This is achieved by modelling
the combined effects of the structured surface with a geometric
optics model. The model assumes that the surface consists of
four components: shaded and sunlit tree canopy and shaded
and sunlit background. The brightness temperatures of these
four surface components are provided by in-situ measurements
at the validation site and emissivities are taken from the LSA-
SAF project. The LST modelling is performed for the geometry
of the geostationary Meteosat Second Generation and for nadir
geometry. Analyses of the temperature differences between the
LST estimates for the two geometries show that in many cases the
directional effects exceed 1◦C within a day, and that the timing
and the sign of the effects change with season. Directional errors
due to structured canopies are currently not considered in error
estimates of operationally available LST products, e.g. the LSA-
SAF LST product or the MODIS Land LST / emissivity product.

Index Terms—Meteosat Second Generation, SEVIRI, Land
Surface Temperature, Directional effects

I. INTRODUCTION

THERE are a number of sources of uncertainty and

error associated with deriving land surface temperature

(LST) from satellite data. The most prominent are sensor

noise, calibration errors, and imperfect atmospheric correction,

especially with relation to the effect of variable amounts of

water vapour in the atmosphere. A further complication is

the assignment of a representative emissivity to the pixel in

question. For time series of LST, as often needed as input

for many applications, errors in co-registration of images will

generate additional noise. Finally, the “directional effects”

addressed in this paper will cause errors. These are combined

effects of the temporal and spatial variation of the illumination

and viewing geometry and of the specific properties of the

Manuscript received , 2010.
M. O. Rasmussen (email: mora@gras.ku.dk) and Inge Sandholt are with

Department of Geography and Geology, University of Copenhagen, Oester
Voldgade 10, 1350 Copenhagen K. Denmark

F.-M. Göttsche and F. S. Olesen are with Karlsruhe Institute of Technology,
Hermann-von-Helmholtz-Platz 1, 76344 Leopoldshafen, Germany

observed land surface, in particular its vegetation cover. These

effects have earlier been shown to introduce errors of more

than five degrees in LST estimates from NOAA AVHRR data

[1] and slightly less for the Spinning Enhanced Visible and

Infrared Imager (SEVIRI) instrument [2] onboard Meteosat

Second Generation (MSG) [3] with the highest errors occur-

ring in savanna-areas with moderate tree cover.

The SEVIRI based Land Surface Analysis Satellite Appli-

cations Facility (LSA-SAF) LST product [4], [5] deals with

these errors and uncertainties by including a “Quality Flag

(QF) layer” and an “error-bar layer” [6], of which the latter

contains an estimate of the standard LST error that accounts

for sensor noise, uncertainties in the atmospheric correction,

and error associated with emissivity. However, the LSA-SAF

LST error estimate does not take “directional effects” of

the surface into account (no LST products account for these

effects to our knowledge). The present study focuses on this

additional source of error and uncertainty. While errors and

uncertainties due to calibration and estimation of emissivity

are likely to vary relatively slowly (with the exception of

changes due to precipitation or dew events [7]), effects of

illumination and viewing geometry obviously vary diurnally

as well as seasonally. This is particularly important for e.g.

hydrological or SVAT-model applications which rely on a

correct representation of the diurnal cycle. When LST-data

are used as input to hydrological models, slowly varying

errors, e.g. due to problems of estimating representative values

for emissivity, may be partly compensated for during model

calibration, whereas this is not necessarily possible for errors

associated with the diurnal cycle.

This study investigates the directional effects in LST es-

timates from MSG / SEVIRI caused by the structure and

properties of savanna vegetation. Depending on the abundance,

size, shape, and spatial distribution of the tree-vegetation, the

associated LST retrieved from satellite data differ for the

same illumination and viewing geometry. Here, the directional

effects for MSG viewing geometry and for nadir viewing

geometry are simulated with the Modified Geometric Pro-

jection (MGP) model [1], [8] as a function of illumination

geometry and variables describing the vegetation cover. For

a given combination of vegetation structure, illumination and

viewing geometry, and emissivities and temperatures of the

individual surface components, the MGP model can estimate

the directional thermal infrared radiance leaving the surface.

For the period from June to the end of October 2009, which

represents an entire growing season and covers a wide range
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of angular configurations including summer solstice and fall

equinox, the model was run with a temporal resolution of 15

minutes (corresponding to the temporal resolution of SEVIRI)

for all time steps for which the sun was above the horizon (sun

zenith angles below 90 degrees). An analysis of the differences

between the LST obtained under the two different viewing

geometries is the focus of this paper.

II. STUDY AREA

The study area is a test site located north-east of the town

of Dahra in northern Senegal in West-Africa and includes two

towers for validating satellite products [9], [10]. The towers

are equipped with instruments for validating satellite products

in the visible, near-infrared, and the thermal domain. The

field site is hosted by the Centre de Recherches Zootech-

niques de Dahra, Institut Sénégalais de Recherches Agricoles

(ISRA). Annual mean precipitation is approximately 370mm

(1960-2007), but with considerable inter-annual variation. Le

Houerou [11] classified the site as being in the Sudano-

Sahelian ecoclimatic zone, although by definition this zone

is should have mean annual rainfall between 400 mm and 600

mm. The classification is based on older rainfall data; in the

mean time (since the seventies) the region has suffered from

decreased rainfall as has most of West-Africa. The growing

season is relatively short, lasts normally less than 100 days

and occurs between July and October. The area around the

towers is used as grazing land for the zoological research

station, but also as farmland. Additionally, there are some

“Gum Arabic” plantations in the immediate surroundings.

Trees are relatively sparse and the surface cover is dominated

by annual grasses, e.g. Schoenefeldia gracilis, Dactyloctenium
aegypticum, Aristida mutabilis and Cenchrus biflorus [12],

[13]. The soil is sandy and reddish in colour and was classified

as an Arenosol by Batjes [14]. The trees are scattered in

the landscape, either as isolated trees or as small clumps. In

some cases the distribution of the bushes and trees follows

ancient dunes, which causes stripes of high vegetation - hence

the name “tiger bush”. Tree age and size vary widely, and,

depending on the species, some trees are actively shaped by

both man and animals. During a tree survey in 2008 five

different tree species were found [15] of which two were

only represented by a single tree. The dominant species in the

study area are two Acacia species and Balanites aegyptiaca.

The Acacia raddiana is a sub-species of Acacia tortilis,

which is typical for the silty/loamy pediplains in the Sudano-

Sahelian subzone [11] as is Acacia Senegal. Due to the strong

natural seasonality of the region, grass is usually desiccated

from October to April, whereas the trees are usually green

throughout year. During the rainy season the grass grows

high (about 1m) and dense and the entire site is covered by

vegetation.

Bush fires occur regularly and mainly affect the herbaceous

cover, while trees are generally less affected. On October

28th 2008, the area around the towers burned, leaving the

surface clear of vegetation and dark in colour, which was still

the case during another visit of the site in June 2009: the

affected area is clearly visible in fig. 1 as a dark “semi-circle”.
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Fig. 1. The location of the study site close to Dahra, Senegal. Also shown
is the location of 18 of the 26 surveyed 50x50m plots. The area shown is a
subset of the full Quickbird image. The dark area is a fire scar (see the text
for further details).

This might influence the comparison between the in situ point

measurements and the remotely sensed values to some degree,

as only parts of the SEVIRI pixels used were burned.

III. METHOD AND DATA

A. Model description

The MGP-model applied in this study is based on the

Geometric Optics Radiative Transfer (GORT) model [16]

originally developed for use in the visible domain. It mod-

els the surface as consisting of just four surface compo-

nents: sunlit and shaded canopy and sunlit and shaded back-

ground. “Canopy” refers to canopies of trees as well as

tall shrubs/bushes whereas “background” refers to flat soil

surfaces with or without low vegetation cover, e.g. grass.

Given information on canopy size and structure as well as

illumination and viewing geometry, the model estimates the

relative abundances (projected fractional cover) of each of the

four components of a surface. By assuming the components

to be isotropic emitters and reflectors, the model can estimate

the directional radiative temperature of the composite surface

by [8]:

〈T 〉 =
[ 1
〈ε〉

∑
(εkT 4

k fk)
] 1

4
(1)

with 〈T 〉 being the directional composite radiative temperature

for a given pixel, Tk the radiative temperature of component k,

εk the emissivity of component k, fk is the projected fractional

cover of component k and 〈ε〉 is the composite emissivity given

by:

〈ε〉 =
∑

εkfk (2)
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The εk used in eqs. 1 and 2 are broadband emissivities.

However, in this paper spectral (narrowband) emissivities are

used instead. For this to be valid, we have to assume that

the surface components behave like ”grey bodies”, i.e. have

constant (or approximately constant) emissivity in the part of

the spectrum from where most of the TIR radiance originates:

for vegetation this is generally a reasonable assumption. For

more details on the MGP model, interested readers are referred

to [1], [3], [8].

B. Component temperatures

The sensor configuration for validating LST at the Dahra

site consists of four “KT-15.85 IIP” IR-radiometers (self-

calibrating, chopped radiometers, Heitronics GmbH). The KT-

15 measure IR radiance between 9.6μm and 11.5μm and ex-

press the results as brightness temperatures (BT) with standard

deviation 0.25◦C plus 0.35% of the difference between target

and housing temperature. Three of the KT-15 point towards

targets representing different components of the land surface,

while the fourth KT-15 measures downwelling longwave ra-

diance from the atmosphere at 53◦ with relation to zenith and

points northwards. The targets observed by the three surface

facing KT-15 are a patch of grass / soil, which is sunlit over

the entire course of the day, a patch of grass / soil which is

shaded during the day with the exception of early morning and

late afternoon, and a canopy of a Acacia raddiana tree from

south west (see fig 2). The 53◦ zenith angle of the sky-facing

sensor yields measurements which are representative for the

hemispherical downwelling longwave radiation [17]. Due to

the small distance between the radiometers and the surface,

atmospheric attenuation of the surface-leaving IR radiation is

negligible. However, the measurements of the KT-15 observing

the surface contain radiance emitted by the surface (i.e. the tar-

get signal) as well as reflected downwelling IR radiance from

the atmosphere: this is corrected for using the measurements

from the sky-facing sensor. Depending on target emissivity and

on downwelling longwave radiance (e.g. a cold clear sky vs. a

warm humid atmosphere), the reflected component can cause

differences of several degrees Kelvin [18]. All corrections for

the reflected component in the measurements are performed

at KT-15’s centre wavelength of 10.55μm.

In terms of atmospheric correction the situation at Dahra is

difficult since the low elevation of about 90 m a.s.l. results in

long atmospheric paths and the atmospheric water vapour load

varies strongly between the rainy season and the dry season;

especially during the warm (about 40 C) and humid (up to 90

% relative humidity) rainy season the atmospheric correction

of TIR data is extremely challenging. Furthermore, occasional

outbreaks of Sahara dust complicate cloud detection.

In order to provide the MGP model with appropriate input

data, the three measured surface temperatures (see fig. 1) are

used as follows:

• The sunlit grass / soil patch measurements represent the

“sunlit background” component

• The shaded grass / soil patch measurements represent

the “shaded background” component. Morning and late

afternoon cases are included, even when the patch was

Fig. 2. The four Heitronics KT-15.85 IIP radiometers of the ”tree mast”
at Dahra validation site measure the brightness temperatures (BT) of the
MGP model components ”sunlit canopy”, ”sunlit background”, ”shaded
background”, as well as sky BT for correcting the other measurements for
reflected longwave radiance.

not actually shaded: this leads to a slight overestimation

of aggregated pixel temperatures at these times.

• The canopy measurements represent the “sunlit canopy”

component, even if the actual canopy is not completely

sunlit: this leads to a slight underestimation of aggregated

pixel temperatures.

• The “shaded canopy” component is set to air temperature

at 5 meters height, which is available from a nearby

tower (about 100 meters): this generally is a good ap-

proximation. Furthermore, it is practically impossible to

measure shaded canopy temperatures in situ over a long

time period without continuously moving the sensors.

Fig. 3 shows the diurnal temperature variation of these

components for two 7 day periods at the beginning and end

of the study period. In June, before the start of the rainy

season, the diurnal range of temperatures is large, reaching

almost 50◦C for the sunlit background component, followed

closely by the shaded background component. The canopy

components show a considerably lower range of approximately

25◦C. In all but a few exceptional cases, the sunlit compo-

nent temperatures are larger than the corresponding shaded

component temperatures. For October, the diurnal range is

smaller and the shaded background temperatures are more

similar to the canopy component than to the sunlit background

component. In some cases the shaded canopy component
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Fig. 3. Two examples of the input component temperatures as measured at
Dahra validation site in 2009.

temperatures are higher than the sunlit canopy component

temperatures: this indicates that air temperature is not a perfect

surrogate for the shaded canopy component. For the study

period it is to be expected that the sunlit and shaded canopy

component temperatures are almost equal as plenty of moisture

is available for the trees to transpire, effectively cooling the

canopy to a uniform temperature.

C. Emissivity

The MGP model requires emissivity values for the back-

ground and tree components as input. In the case of the field

site studied here, the trees (Acacia and Balanites species) stay

green throughout the year, but they display some temporal

variation in greenness; this is mainly caused by changes in

crown density, but also by some species which are out of

phase with the rainy season. Therefore, the emissivity of the

tree crowns is set to a representative value of 0.98. On the

other hand, the emissivity of the background component varies

significantly over the year, as the availability of moisture

and grass greatly affects the effective emissivity of the land

surface. In order to capture this variation, we use the emissivity

estimated by the LSA-SAF team from MSG data for their op-

erational LST-product. LSA-SAF emissivities are retrieved for

the entire MSG/SEVIRI pixel covering the site and, therefore,

also include the tree components. However, we have chosen

this emissivity to represent the background component only,

since the introduced error is negligible, e.g. for the relatively

small tree crown cover (TCC) of 4% at the Dahra site and

an emissivity of 0.98 for the tree crown and 0.95 for the

background the error is about 0.001. The used emissivities

are shown in figure 4: the seasonal change of the background

component corresponds largely to the seasonal NDVI-curve for
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Fig. 4. Emissivity values for the two types of components over the study
period, as used for input for the model runs.

the area and reflects the variation of vegetation and moisture

in the top soil layer during the rainy season.

D. Emissivity and reflected downwelling longwave radiation

Remote sensing of LST is based on Planck’s law, which

relates the radiance emitted by a black body (emissivity=1)

to its temperature. However, most natural objects are non-

black bodies with 0 < εk < 1, where spectral emissivity εk is

defined as the ratio between the spectral radiance rk emitted

by surface component k at wavelength λ and the spectral

radiance emitted by a black body at the same wavelength and

temperature. Therefore, the spectral radiance emitted by a non-

black body can be obtained by multiplying Planck’s function

B(λ, Tk) with εk:

rk = εk · B(λ, Tk) = εk · c1λ
−5

exp (c2/(λTk)) − 1
(3)

where rk is in Wm−3sr−1, constants c1 = 1.1910 ·
10−16Wm2sr−1 and c2 = 1.4388 · 10−2mK, Tk is the

measured component temperature in Kelvin, and λ is in

meters.

For a sensor located near the surface and measuring within

an atmospheric TIR window, the influence of the atmosphere

can be neglected. With known emissivity, the simplified ra-

diative transfer equation [19] can be used to account for

reflected downwelling TIR radiance from the atmosphere and

for the non-black body behaviour of the surface. Therefore,

the blackbody equivalent spectral radiance Bk emitted by

component k at temperature Tk and with spectral emissivity

εk is given by:

Bk =
rk

εk
=

Rk − (1 − εk)Rsky

εk
(4)

where Rk is the component’s measured spectral radiance

and Rsky is sky radiance, which is also measured in this

study. Once Bk is known, Planck’s law can be solved for the

temperature Tk of surface component k (see eq. 3).

E. Vegetation structure data

In order to be able to upscale the radiometric point mea-

surements from the validation station to the size of a me-

teorological satellite pixel (1-5 km), the relevant land cover

components, e.g. trees and bare ground, and their relative cover

fractions have to be known. The tree vegetation in the study

area was investigated during a field campaign in July 2008

during which 26 plots of 50x50 m2 were surveyed. All trees

within these plots were surveyed and the species, tree height,
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TABLE I
RESULTS FROM THE FIELD TREE SURVEY APPLIED IN THIS STUDY

Parameter Value Unit

Tree crown cover (TCC) 4 %
Avg. tree height 4.3 m
Avg. crown radius 2.0 m
Avg. crown vertical radius 1.5 m
Effective tree crown LAI (eLAI) 2.0 m2/m2

TABLE II
INPUT PARAMETERS USED FOR THE SENSITIVITY RUNS

Parameter Original Dense Struct Struct2

Avg. tree height 4.3 4.3 7.0 5.2
Avg. crown radius 2.0 2.0 2.0 2.5
Avg. crown vertical radius 1.5 1.5 2.5 1.5
Effective tree crown LAI 2.0 5.0 5.0 5.0

diameter at breast height (DBH), crown radius, and crown

base height were recorded. Tree crown cover (TCC) is an

essential parameter for many remote sensing applications, as it

significantly influences surface reflectance and temperature as

well as surface anisotropy in the visible and thermal domain.

Using the multi-spectral Quickbird scene shown in fig. 1, the

field measurements were up-scaled to a larger area. The area

was split into different subsets with slightly different densities

and tree sizes. Interested readers are referred to [15] for more

details on the tree survey. The average TCC for the study

area was determined to be about 4 % and is, among others,

used here to study the directional dependency of LST, e.g. as

obtained from the MSG SEVIRI sensor.

For such low TCC only limited directional effects are

to be expected. In order to be able to apply the MGP

modelling results to a wider geographical area, we chose to

also investigate the sensitivity of the directional effects to

TCC and to vegetation structure. This was done by varying

TCC in 6 steps up to 35% (4, 8, 12, 18, 25 and 35%) for

four different canopy structures, which resulted in a total of

24 model-scenarios. This range of TCC represents a wider

neighbourhood of the site, since TCC varies on the local scale,

e.g. in soil characteristics and management practises, as well

as on the regional scale, e.g. with the increasing precipitation

to the south, although less dramatically, as illustrated in fig. 5.

Especially when considering small-scale variations, the range

of TCC from 4% to 35% is realistic for much of the semi-arid

part of the Sahel. In terms of tree and canopy characteristics,

we used typical values for the tree-species in the study area. In

addition, alternative tree and canopy characteristics (compared

to those from tree survey) were simulated: one case with taller

trees and vertically elongated canopies, and a second case with

lower trees and “flat” horizontally elongated canopies (see

table II), which are typical of many savannah tree-species.

IV. RESULTS AND DISCUSSION

Outputs from the model runs consist of component frac-

tional cover and directional aggregated pixel temperature. In

this study, we primarily investigate the differences in estimated

Fig. 5. MODIS Vegetation Continuous Fields product for 2005 for Senegal
and surrounding countries with the study site highlighted in red [20].

temperatures, namely between the temperature simulated for

the MSG SEVIRI sensor located at 0 degrees East over

the Equator and the temperature simulated for nadir viewing

geometry. These geometries were chosen to study the influence

of illumination and viewing geometry on LST products from

geostationary satellite sensors like MSG SEVIRI on a diurnal

and seasonal scale.

A. Basic statistics, full time series
The basic statistics for the 24 model simulations are shown

in figure 6 which shows the mean, minimum, and maximum

temperature difference for all time steps. For all simulations,

the average temperature difference is small, reaching just

0.34◦C for the ”struct”-run with 35% TCC. Introducing such

a small error (compared to the “ideal”-case of having nadir

measurements) might not seem significant as this is well

within the target accuracy of most LST-products. However, the

average values presented here, are calculated on a larger range

of temperature differences as exemplified by the minimum and

maximum values in figure 6. Considering these values, the

most extreme range exceeds three degrees and for all but the

“struct2” case the ranges exceed two degrees.
The “original” model runs representing the actual conditions

at the field site (TCC = 4% and canopy structure according

to the survey results) show only small temperature differences

for the two viewing geometries. The mean difference is just

0.05◦C and the range is about 0.35◦C. Therefore, considering

the uncertainties in emissivity and the sensitivity of split-

window algorithms to atmospheric water vapour, it is unlikely

that angular effects of this magnitude can be detected in LST

estimates from MSG.
The mean, minimum, and maximum temperature differ-

ences for the “original”-model increase with increasing TCC,
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Fig. 6. Overview of mean, minimum and maximum temperature difference as a function of TCC for each of the 24 model runs.

although the rate of increase levels off. This is consistent

with findings from a previous study, which showed maximum

temperature differences to occur at a TCC of about 35% [3].

The largest increase in temperature range occurs between TCC

values of 4% and 8% (about 1.2◦C), but the range continues

to increase to almost 3◦C at TCC = 35%.
In the “Dense”-runs, the density of the tree crowns was

increased by increasing the effective Leaf Area Index (eLAI)

of the tree crowns from its original value of 2 to a value of

5. In general, the results are very similar to the results of

the “original”-run, but with a major difference for the TCC =

4% run: in this case, the minimum and maximum temperature

differences are considerably higher for the “Dense”-runs (see

fig. 6). This is caused by the higher effective canopy compo-

nent fractions, as dense tree crowns have fewer within-crown

gaps, which effectively sets the canopy component fractions

equal to TCC: this is not the case for sparser crowns. For

the runs with higher TCC, this effect is negligible and the

maximum temperature differences are actually smaller than

for the “original”-run.
The “Struct” and “Struct2”-runs represent cases where the

size and shape of the trees have been altered (see table II for

details). In both cases, the results show a more complex pattern

than for the “original” and “dense” runs and the temperature

differences do not increase monotonously with TCC. The

“struct2”-runs even indicate that the temperature difference

starts to decrease for TCC above 25%. For the “struct2”-run,

temperature differences are similar or lower than for the other

runs with the same values of TCC, while the “struct”-run

shows the largest overall temperature differences at 12, 25

and 35% TCC.
Overall, it is apparent that the directional dependency of

the LST is sensitive to TCC, tree size and shape as well as

eLAI. For eLAI, the current study indicates that the sensitivity

is largest at low TCC, while tree size and shape influence the

temperature differences over the entire range of TCC. For the

range of TCC used in this study, the temperature differences

increase with increasing TCC in most cases.

On their own, the mean, minimum, and maximum temper-

ature differences discussed above do not say much about the

implications for using a time series of LST estimates in a

SVAT-model, e.g. for modelling the diurnal heat exchanges

between the surface and the atmosphere. Using the four canopy

models from table II and varying TCC in 6 steps resulted in 24

simulations: table III shows for how many percent of the time-

steps the temperature difference exceeded 0.5◦C and 1.0◦C,

respectively.

For all runs with TCC = 4% less than 1% exceed temperatures

differences of 0.5◦C; in fact, only for the ”dense”-run any time

steps at all show a difference of 0.5◦C. When increasing TCC

to 8%, up to 5% of the time steps show temperature differences

of more than 0.5◦C. For higher TCC, more than 20% of the

time steps show more than 0.5◦C temperature differences and

in the case of the “struct”-run with TCC = 35% more than 10%

of the time steps exceed a temperature difference of 1.0◦C.

This clearly demonstrates that even if the average temperature

differences are negligible, the temperature difference at a

specific time step can still be significant.

B. Diurnal analysis

The temperature differences between the two viewing ge-

ometries discussed here (nadir and SEVIRI) vary seasonally

and diurnally with the position of the sun. Fig. 7 shows

an example of the temperature differences for all time steps

for the “struct” model with TCC = 18%. Until September

the temperature differences are almost consistently positive

(i.e. nadir-geometry exhibits the higher temperatures), while
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TABLE III
PERCENT OF TIME STEPS WITH A TEMPERATURE DIFFERENCE OF MORE THAN 0.5 AND 1.0 K FOR EACH OF THE 24 MODEL RUNS.

Original Dense Struct Struct2
4 8 12 18 25 35 4 8 12 18 25 35 4 8 12 18 25 35 4 8 12 18 25 35

More than 0.5 K 0 5 10 15 19 22 0 5 10 17 21 26 0 2 11 17 25 29 0 0 3 9 21 22
More than 1.0 K 0 0 1 3 4 6 0 0 1 3 5 8 0 0 2 3 8 11 0 0 0 0 5 4
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Fig. 7. The temperature difference for all time steps for the “struct”, tcc =
18% run.
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Fig. 8. Four examples of the diurnal variation in the temperature difference
between nadir and SEVIRI geometry, all from the “Dense”, TCC = 35%-run.
Note that time is given as UTC, and that local solar noon is approximately
13:00 UTC +/- 15 min depending on season.

temperature differences are almost symmetrically distributed

around 0◦C from September to the end of the study period.

Furthermore, it is apparent that the temperature differences

vary considerably from one day to the next. As the illumination

geometry changes only slowly, this is mainly attributed to

variations in component temperatures caused by clouds and/or

precipitation, since the radiometers also measure underneath of

clouds. In addition to the seasonal variations in the sign of the

temperature difference, the shape of the diurnal difference also

changes (see fig. 8). The June and July curves are similar, but

the September and October cases show negative temperature

differences between 11:00 and 12:00 UTC. The September

case shows the largest negative temperature difference just

before 12:00 UTC, which indicates that for SEVIRI viewing

geometry the temperatures are higher than for nadir-geometry.

This is caused by a hot-spot effect which occurs when the

sun is located right behind the sensor (23rd of September

is fall equinox and the sun is located over the Equator):

this causes the SEVIRI-sensor to observe mostly “sunlit”-

parts of both components, the canopy and the background,

which have higher component temperatures than the “shaded”

parts. At the same time a sensor with nadir-geometry observes
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Fig. 10. The diurnal range of the temperature difference between nadir and
SEVIRI geometry for all of the ”original”-runs. The range is calculated as
the difference between the minimum and maximum temperature difference
occurring within a day.

more ”shaded” parts and, thus, measures a lower aggregated

temperature for the same area. In October the same effect is

observed, although smaller and only near 12:00 UTC, which

is not solar noon but when the sun is close to the sensor at 0

degrees longitude. For the July and October cases, which are

on opposite sides of the fall Equinox, the diurnal variations

are very different due to the different positions of the sun with

relation to the site: during the summer months, the sun passes

north of the site, whereas it passes considerably further south

during the rest of the year. In the summer, the geometry of

the Sun is close to nadir-geometry and, therefore, a strong hot-

spot is observed; during the rest of the year the Sun geometry

is closer to SEVIRI-geometry. This is the controlling factor

for the level of the curve in fig 7.

Although the temperature offset varies with season, here the

amplitude of the daily variations does not seem to change

significantly. Fig. 9 shows examples of the diurnal range of

temperature differences for three of the model runs. The curves

represent the maximum difference between the minimum and

maximum temperature differences occurring at any given day

and can be interpreted as the “error” one would make when

using SEVIRI-based LST estimates during a day compared to

the reference case of nadir-observation. Note that the values

in fig. 9 (and in fig. 10) are daily values, whereas full 15-min.

resolution data are shown in fig. 8.

The three time series shown in fig. 9 show a high degree of

correlation (r2>0.95), indicating that the timing of the temper-

ature differences is mainly controlled by component fractional

cover (depends on sun geometry) and canopy structure. On the

other hand, the amplitude of the differences is controlled by

the differences between the input component temperatures.

Fig. 10 shows the diurnal range in temperature differences,

for the “original”-runs with the six different TCC-densities. It

is obvious that the density in this case controls the range of
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Fig. 9. Three examples of the diurnal range of the temperature difference between nadir and SEVIRI geometry. The range is calculated as the difference
between the minimum and maximum temperature difference occurring within a day.

temperature difference, but the influence of TCC diminishes

as it increases. Furthermore, the correlations between the

different runs are almost perfect, which should be expected as

neither the structural parameters nor the geometry changed.

The implications of the diurnal and seasonal variations of

the temperature differences shown above can be severe when

using LST estimates from a sensor like the SEVIRI-sensor at

full temporal resolution. Not only does one introduce angle-

dependent temperature differences of up to 2◦C during a day,

but also the timing of the differences changes with time of day

and season. This might severely influence performance of e.g.

SVAT models or Surface energy budget models which often

use LST data for assimilation or calibration [21]–[23].

C. Comparison with LSA-SAF LST product

We compared the model results to the LSA-SAF LST

product, which is generated at 3 kilometres spatial resolution

(actual FOV of MSG / SEVIRI is 4.8 km). Instead of com-

paring the in situ data with data for the MSG / SEVIRI pixel

containing the measurement site, we choose a pixel slightly to

the north east. This was motivated by the fact that this pixel

represents the surface around the site better than the actually

co-located pixel, which is covered by a mixture of agriculture,

an Acacia plantation, and tiger bush. We compared remote

sensing based LSA-SAF LST with composite LST from the

MGP model (with vegetation structure and cover from tree

survey) and with LST determined from the in-situ brightness

temperatures over the ”sunlit background” component. As the

TCC is very low (4%), the results for the MGP and for the

”sunlit background” were nearly identical; therefore, only the

MGP-results are discussed below. Due to the low TCC, it is

unlikely that the directional effects can be identified in the

data, as the diurnal range in the temperature difference is on

the order of 0.2 K (as shown in fig. 9 and fig. 10).

Analysis showed that for most of the study period, LSA-

SAF LST and MGP-LST match poorly. Correlation-analysis of

all available matches for the entire period gave a coefficient

of determination r2 of just 0.67. The discrepancies between

the two data sets extend over most of the study period and are

thought to be mainly caused by undetected clouds in the MSG

/ SEVIRI data and by inaccurate atmospheric corrections.

Only the last 3 weeks of the study period yield significantly

better results (see fig. 11A) both in terms of the coefficient of

determination (r2 of 0.928) and in successfully matching the

daily LST cycles. However, even during these 3 weeks cloud

contamination is readily identified, e.g. in fig. 11C on October

13th, 14th and 15th. When additionally removing those days

from fig. 11A, which are obviously contaminated by (sub-

pixel) clouds, the r2 value is improved to 0.975 (see fig. 11B).

A warm and very moist atmosphere over a semi-arid area

during the rainy-season is a challenge for any LST algorithm

and the LSA-SAF LST algorithm does not seem to be an

exception. A smaller part of the discrepancies could also be

caused by the scale mismatch between the in-situ measure-

ments (FOV of about 5 m2) and the MSG / SEVIRI mea-

surements, which represent the integrated signal of about 25

km2 each (ignoring distortions due to off-nadir geometry and

georeferencing errors). However, for the 11th - 31st of October

the LST from the MGP model (and the LST obtained directly

from the in-situ measurements) match the corresponding LST

from LSA-SAF well: therefore, it is unlikely that the difference

in spatial scales caused the low correlation observed before.

It is beyond the scope of this study to validate the LSA-SAF

LST product, but a comparison with in situ data from Dahra

and MODIS data will be the subject of a separate publication.
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Fig. 11. A: scatterplot of LSA-SAF LST for a pixel representative of the
field site against the modeled MGP LST, for the period between October 11th
and October 31st. B: Same as A, but excluding days obviously affected by
undetected clouds. C: An example of the diurnal variation in the LSA-SAF
LST and MGP LST for six days in October.

V. CONCLUSIONS AND OUTLOOK

This study has shown that even if the mean error due

to directional effects is negligible, the directional errors at

individual time steps can still be significant on both the diurnal

and the seasonal scale. Over the considered range of tree crown

covers (TCC), the magnitude of the directional effects in-

creases nearly uniformly with increasing TCC. Canopy shape,

structure and density also influence the temperature difference,

but in a lesser and more complex way than TCC.

For the angular configurations studied here, a diurnal range

in temperature differences of approximately two degrees is

common; furthermore, the absolute values of the temperature

difference vary with the seasons. The highest composite tem-

peratures were consistently found for the viewing geometry

closest to the illumination geometry, as this viewing geometry

“sees” higher fractions of the “sunlit” components (hot spot

effect). For a study area in West Africa and north of the Equa-

tor, in summer this causes LST retrieved for nadir-geometry

to be higher than LST retrieved for SEVIRI-geometry, and

vice versa in winter. This also influences the diurnal variation

of the temperature differences, which show distinctly different

patterns at different times of the year.

Due to the sparse TCC in the area (about 4%) it is unlikely

that it will be possible to separate directional effects on LST

from other sources of uncertainty for the Dahra test site.

However, the MGP model results show that already at a TCC

of 8% the temperature difference due to directional effects can

be up to 2◦C; given LST uncertainties as specified by the LSA-

SAF “errorbar LST” product layer this would be sufficient to

identify these effects in SEVIRI based LST estimates.

The comparison between the LSA-SAF LST products and

the MGP-modeled LST showed large discrepancies for most

of the study period, which mainly covered the - from an optical

remote sensing point of view - highly challenging rainy season.

The results indicate that the LSA-SAF algorithm could not

fully account for the extremely moist and warm atmosphere

at Dahra during this time. In contrast, during the last three

weeks of October 2009 (i.e. after the rainy season) model LST

and LSA-SAF LST generally agreed well with each other, but

LSA-SAF LST continued to suffer from undetected (sub-pixel)

clouds.

The model results presented here are thought to be rep-

resentative of large areas across the Sahel region where the

vegetation structure is similar and TCC is sparse to moderate.

Therefore, for this type of area great care should be taken

when LST products obtained from satellite sensors with high

temporal resolution (usually in geostationary orbit) are used as

input to hydrological or SVAT-models. In this context it should

be noted that the current uncertainty estimates of operational

LST products do not include this source of error.
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Abstract

A tree survey and an analysis of high resolution satellite data were performed to characterise the woody vegetation
within a 10x10 km2 area around a site located close to the town of Dahra in the semi-arid northern part of Senegal.
Among the surveyed parameters were tree type, height, tree crown radius, and diameter at breast height (DBH), for
which allometric models were determined. An object-based classification method was used to determine tree crown cover
(TCC) from Quickbird data. The average TCC from the tree survey and the respective TCC from remote sensing were
both about 3.0%. For areas beyond the surveyed areas TCC varied between 3.0% and 4.5%. Furthermore, an empirical
correction factor for tree clumping was obtained, which considerably improved the estimated number of trees and the
estimated average tree crown area and radius. An allometric model linking TCC to tree stem crosssectional area (CSA)
was developed, which allows to estimate tree biomass from remote sensing. The allometric models for the three main tree
species found performed well and had r2-values of about 0.7 to 0.8. When estimating tree parameters from Quickbird
data alone, the allometric models for tree height and crown radius generally yielded the best results.

Keywords: tree inventory, field survey, tree clumping, image analysis, allometric models, remote sensing

1. Introduction

Estimating tree cover from high resolution remote sens-
ing data is a well established technique and has been em-
ployed in numerous studies. However, historically most
often aerial photography was used to estimate stand pa-
rameters like tree size, stand density and, ultimately, stand
biomass for forestry management applications. With the
launch of very high resolution commercial satellites like
Ikonos and Quickbird, it is now possible to perform similar
studies with spaceborne sensors. Unlike sensors typically
used for aerial surveys, these sensors have multispectral
capabilities and include spectral bands in the visible and
the near-infrared part of the spectrum.

In this study we estimate the tree crown cover, tree
count and other tree parameters for a Quickbird scene cov-
ering an area close to the town of Dahra in semi-arid north-
ern Senegal, West Africa. At first glance tree inventory
analyses in areas like the one studied here appear to be of
limited use, as tree resources are limited and the potential
for economic exploitation is small. However, potentially
relevant applications are long term change studies and the
estimation of carbon stocks contained in the woody veg-
etation. The feasibility for increasing carbon storage in

∗Corresponding author
Email address: mor@geo.ku.dk (Mads Olander Rasmussen)

natural vegetation for areas with slightly more rain (ap-
proximately 600mm/year) has already been demonstrated
by, among others, Toure et al. (2003). The combination
of field studies of tree parameters like height, trunk diam-
eter, and biomass content (both above and below ground)
with remote sensing based estimation of tree cover allows
large scale inventories of both, current and future carbon
stocks. However, the immediate motivation for this study
is to characterise a wider area around a test site, which
consists of two towers with instruments used for validat-
ing remote sensing products. Tree crown cover is an es-
sential parameter in many applications of remote sensing
data, as it significantly influences surface reflectance and
temperature as well as surface anisotropy in the visible
and in the thermal domain. It is planned to utilise tree
crown cover and other tree parameters in a separate study
of angular dependency of land surface temperature, e.g.
as obtained from the Spinning Enhanced Visible and In-
fraRed Imager (SEVIRI) onboard Meteosat Second Gen-
eration (MSG) satellites. In order to upscale radiometric
point measurements performed at the station to the size of
meteorological satellite pixels (1-5 km), the relevant land
cover components, e.g. trees and bare ground, and their
relative cover fractions have to be known.

A wide range of methods for tree delineation and thus
tree crown cover estimation exist, ranging from traditional
classification methods, over texture analysis to object-based
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image analysis, which works on pixel clusters instead of
individual pixels. Despite of an abundance of available
methods, only few studies have addressed areas with sparse
tree cover and with trees covering a wide range of sizes and
ages; in fact, most studies have been on forests and plan-
tations.

Bai et al. (2005) used black and white, 0.5 meter resolu-
tion aerial photographs for estimating the tree encroach-
ment on grasslands in British Columbia, Canada. They
used a maximum likelihood classification to distinguish
between grasslands and forests, the latter being split into
tree crowns and tree shadows. This distinction was made
to identify the transition zone between tree crowns and the
grasslands. They compared the retrieved tree crown cover
estimates with ground measurements and found a good
overall agreement, with a slight tendency for underestima-
tion of tree cover from image analysis at most densities,
with dense tree cover being the exception. Also applying
a classification based method, Hansen et al. (2002) used
IKONOS 1 and 4 meter resolution data to estimate tree
crown cover for a number of test areas in Zambia. They
used texture maps, NDVI, and the raw multispectral chan-
nels to classify the images into ”crown” and ”not crown”.
They compared this to field measurements and reached
r-squared values of 0.867. The results was upscaled to
ETM+ and MODIS scale using a relation between NDVI
and crown cover for the validation of the MODIS Vegeta-
tion Continuous Fields (VCF) product.

In order to identify individual trees or tree clusters,
Leckie et al. (2003) segmented individual tree crowns us-
ing a spectral valley-tracing algorithm effectively treating
the digital numbers (DN) as a height map. Subsequently
they classified the individual crown/cluster objects accord-
ing to species based on 0.6 meter resolution multispectral
airborne CASI-sensor data. The valley-tracing method re-
lies on the contrast between the tree crowns and the gaps
between canopies appearing bright and dark respectively,
in order to identify the gaps between the crowns. In cases
where the trees are clumped together, the trees can not
be separated using such an approach as the dark gaps are
absent. Hirata et al. (2009) used a similar approach de-
veloped for the delineation of watersheds. Using an in-
verted panchromatic band from Quickbird scenes, crowns
and crown tops appear as depressions like in a digital el-
evation model, allowing for the delineation of crowns as
if they were watersheds. Another approach which is fre-
quently applied, is the identification of crown centres by
finding local maxima in spectral bands sensitive to vegeta-
tion (Culvenor, 2002). The crowns are then expanded from
the centre points by expanding the area, either by specify-
ing a threshold value or by a maximum allowed step pixel
value. A third commonly applied technique is matching
templates of trees with identified tree objects (Larsen and
Rudemo, 1998). This requires a priori knowledge about
tree structure and size, and also assumes that trees are
not clumped.

An alternative, geo-statistically based method for tree

crown estimation was proposed by Song and Woodcock
(2003), who used semi-variograms of images at different
spatial resolutions to identify tree crown size. They tested
the method on synthetic data as well as on Ikonos data
and found that the quality of the results depend largely
on the ratio between image resolution and tree crown size,
with the best results achieved for ratios close to unity.

The use of allometric models for forest inventories has
a long history, but they are most commonly applied to
mono-cultural commercial stands to estimate yields. De-
spite the broad application of these models, a wide range
of different functions is used to model the relation between
the parameters, which included trunk diameter at breast
height (DBH), tree height, crown radius and crown area.
Zhang (1997) discussed the use six different functions for
allometric models of DBH-tree height relationships. They
found that the functions perform almost equally well in
terms of r2-values, but the main differences occurred in
terms of the ”saturation”-point for tree height. The satu-
ration point is defined as the maximum tree height, which
in terms of the mathematical function is the asymptote
of the function. They concluded that the selection of the
model should be based more on the predictive capabili-
ties and robustness of the model rather than on its per-
formance in terms of high r2-values or root mean square
error.

The rest of the paper is structured as follows: in the
next two sections descriptions of the study site and of the
used methods and data are given. Then results from a
field survey, a manual and an automatic tree analysis, and
from allometric models are discussed. Finally, the results
are briefly summarized and some conlusions are drawn.

2. Study area

The study area is a test site located north-east of the
town of Dahra in northern Senegal in West-Africa and
includes towers equipped with instruments for validating
satellite products (Stisen et al., 2008; Fensholt and Sand-
holt, 2005). The field site is hosted by the Centre de
Recherches Zootechniques de Dahra, Institut Sénégalais
de Recherches Agricoles (ISRA).

Annual mean precipitation is approximately 370mm
(1960-2007), but with considerable inter-annual variation.
The site is classified by Le Houerou (1989) as being in the
Sudano-Sahelian ecoclimatic zone, although this zone is
defined as having mean annual rainfall between 400 mm
and 600 mm. The classification is based on older rainfall
data; in the mean time (since the seventies) the region has
suffered from decreased rainfall as has most of West-Africa.
The growing season is relatively short, lasts approximately
100 days and occurs between July and October.

The areas around the towers are used as grazing land
for the zoological research station, but also as farmland.
Additionally, rubber plantations are present in the imme-
diate surroundings. Trees are relatively sparse and the sur-
face cover is dominated by annual grasses (e.g. Schoenefel-
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dia gracilis, Digitalia gayana, Dactyloctenium aegupticum,
Aristida mutabilis and Cenchrus bifloures) (Fensholt et al.,
2006; Elberling et al., 2003). The soil is sandy and red-
dish in colour and was classified as an Arenosol by Batjes
(2001).

On October 28th 2008, the area around the towers
was burned by a bushfire. Bush fires occur regularly and
mainly affect the herbaceous cover, while trees are gen-
erally less affected. This bushfire however, also damaged
the trees, leaving some of them scorched and without any
green leafs. Furthermore, almost all of the herbaceous
cover was burned, leaving the surface clear of vegetation
and dark in colour, which was still the case during a field
visit in June 2009. The area affected by the bushfire is
clearly visible in the Quickbird image (fig. 1) and covers
a large part of the study area, but not the plantations in
the south and the south-east.
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Figure 1: The location of the study site close to Dahra, Senegal.
Also shown is the location of 18 of the 26 surveyed 50x50m plots.
The area shown is a subset of the full Quickbird image.

3. Method and data

The tree cover at the Dahra field site is sparse and the
dominating land cover is scattered agricultural fields and
savannas used as grazing lands by pastoralists. Trees are
scattered in the landscape, either as isolated trees or as
small clumps, where in some cases their distribution is in-
duced by old dune systems. The task of identifying trees in
this part of Senegal is, thus, not a case of tree stand param-
eter estimation for uniform, mono-culture stands as tradi-
tionally done in forest management studies. Tree age and
size vary widely, and, depending on the species, some trees

are actively shaped by both people and animals. These fac-
tors also influence the development of allometric models,
which relate different tree parameters to each other, since
the trees are not allowed to develop undisturbed. These
difficulties are accounted for by performing manual and
object-based analyses of tree crown cover and tree count.
The results are validated through comparisons with key
tree parameters obtained from a field survey, e.g. species,
DBH, stem cross-sectional area (CSA), height, crown ra-
dius and crown base height. Allometric models for the
different tree species at the site are determined based on
the field data.

3.1. Field survey

A field survey was carried out in July 2008 at the Dahra
field site. A total of 26 square 50x50 meter plots were sur-
veyed. In order to represent the major forms of land use
in the area, the plots were selected based on a number of
criteria including proximity to the towers, perceived repre-
sentativeness, and their spatial distribution. The positions
of 18 of the plots are shown in figure 1, while the rest is
located further away to the south-west, north-west and
north-east. Only two plots were located in the plantations
in the southern and south-eastern direction as these areas
are not representative of the surrounding tiger bush. The
plots were geolocated by GPS at the centre of each plot.

Parameter Note
Tree id Uniquely identifies the tree
Species
Tree height Estimated from a distance
Crown radius In the south to north direction
Crown base height Distance from the ground to the

bottom of the crown
Stem diameter at
breast height

For trees with more stems at
breast height, these were also
measured

Table 1: Parameters surveyed for each tree during the field survey.

For each of the 26 plots, all trees of more than one me-
ter height were surveyed for the parameters listed in table
1. Some inaccuracies in the delineation of the plots due
to GPS-accuracy, alignment of the plots along east-west
and north-south, and in the measurement of tree height
and crown diameter are to be expected. In cases where it
was impossible to measure stem diameter at breast height
(DBH), e.g. due to small tree height, DBH was measured
at the highest possible level.

3.2. Allometric models

Only a limited number of studies was carried out on
the species relevant to this study, and most of these con-
cern the browse production and biomass rather than the
relation between DBH and tree/crown size. Cissé (1980)
investigated the Balanites aegyptiaca species and derived
a relationship between foliage biomass and crown area,
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tree height and stem circumference at 40 cm above ground
level. By regression, they found a good correlation be-
tween foliage biomass (including fruits) and circumference
of trunk (r=0.86). The correlation between foliage and
tree height was even better with a correlation coefficient
of 0.95.

Deans et al. (1999) estimated the relation between stem
cross-sectional area (CSA) at 30 cm height and total above-
ground biomass for Acacia Senegal, and obtained a linear
relationship with a very good correlation (r2=0.97). In an-
other study (Deans et al., 2003) did not use DBH, which is
commonly measured at 1.30 or 1.40 meter above ground,
but CSA measured closer to the surface. They also inves-
tigated the relation between CSA and fine-root biomass
and coarse-root biomass by fitting a power function, but
the relation was weaker for those parameters. In Deans
et al. (2003) the previous study was extended to more
species and included more details in terms of above-ground
biomass. They also measured C-content in the soil layer
below the trees, but did not consider the relation between
tree height or crown size and DBH; instead the focus was
on the accumulation of nutrients and organic-matter.

Although in a completely different setting and for species
not relevant to this study, Hirata et al. (2009) compared
DBH from a field survey with predicted DBH values based
on crown area derived from panchromatic Quickbird data.
Their model also included information on stand density,
age, and other stand parameters. They obtained good re-
sults, with coefficients of determination between 0.82 and
0.86 for two different species.

We have chosen to use simple logarithmic functions for
our allometric models, as these performed well in terms
of correlation coefficients, and because we are not inter-
ested in the saturation point as was investigated by Zhang
(1997). Therefore, and in order to ease comparisons with
other studies, we chose to focus on using DBH and CSA
measured at standard height, even though many of the sur-
veyed trees had several stems at breast height. We built
logarithmic models as follows:

y = a · lnx+ b (1)

where y is tree height or crown radius, x is either DBH or
CSA, and a and b are constants determined by fittting.

3.3. Image data

A QuickBird image was acquired over the study area
for the date 2008-12-03 at approximately 11:51 am (see
details in Table 2). QuickBird data was chosen as it pro-
vides very high resolution, multi-spectral data as well as
a panchromatic band. This allows analyses of four spec-
tral bands, including a near-infrared band, which is most
suitable for vegetation studies due to the high reflectance
of vegetation in this part of the spectrum. Furthermore,
the panchromatic, high spatial resolution band allows the
application of pan-sharpening methods, which merge infor-
mation contained in a panchromatic band with that from

coarser multispectral bands. The slight off-nadir viewing
geometry reduces the effective resolution of the Quickbird
pan-chromatic band to approximately 0.70 meters and to
2.80 meters for the 4 narrow spectral channels. Despite
the slightly reduced spatial resolution, the data are still
sampled with a pixel spacing of 0.60 and 2.40 meters, re-
spectively.

The date of image acquisition in December 2008 is af-
ter the bushfire mentioned above. As the field survey was
carried out prior to the fire, the image is not showing the
same surface as surveyed. This is thought to mainly influ-
ence the reflectance of the soil/grass surface. Furthermore,
some trees were scorched and lost all their green leaves;
however, the fire is not thought to have significantly im-
pacted the results of the tree analysis presented below.

Date of acquisition 2009-12-03 11:51 am
UL corner coor. 15.448629 N 15.478403 W
LR corner coor. 15.358288 N 15.384906 W
Multispectral res. ∼ 2.8 m 4 channels
Panchromatic res. ∼ 0.7 m
Mean off-nadir angle 23.1 degrees
Mean Sun Azimuth 158.2 degrees
Mean Sun Elevation 49.7 degrees
Mean Sensor Azimuth 15.8 degrees
Mean Sensor Elevation 65.7 degrees

Table 2: Overview of Quickbird data specifications and scene angular
configuration

3.4. Image preprocessing

Preprocessing of the Quickbird image was performed
in ENVI (version 4.2) and included conversion of DN’s
into radiances using the embedded calibration parameters.
Rectification of the image was also carried out, using 8
ground control points collected on the ground. It should
be noted that the accuracy of the GPS equipment used is
approximately 5 meters, which is not sufficient to do an ac-
curate rectification considering the 0.7/2.8 meter effective
resolution of the satellite data. Some inaccuracies were
identified with the rectification, but based on the avail-
able ground information it was not possible to improve
the original rectification.

In order to increase the spatial resolution of the 4 multi-
spectral channels, pan-sharpening was carried out with
the ”Gram-Schmidt”-function included in ENVI. Utilising
the pan-sharpened channels, Normalized Difference Veg-
etation Index (NDVI, see (Tucker, 1979)) was calculated
from bands 3 and 4 without atmospheric correction and
principal component analysis was applied to the four spec-
tral bands (see table 3 for eigenvalues). As expected, the
first principal component was very similar to the panchro-
matic band, while component 2 was very useful for the
identification of trees and shadows in both the burned and
the unburned areas. The principal components and the
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NDVI-image were used for assisting the manual tree iden-
tification, the tree height estimations, and as input to the
automatic analysis with eCognition, all of which are de-
scribed below.

PC no. Eigenvalue % of total variance
1 3951956 95.47 %
2 143324 3.46 %
3 36838 0.89 %
4 7157 0.17 %

Table 3: Eigenvalues and percent variance for each of the four prin-
cipal components.

3.5. Quickbird image analysis

Recent progress in image processing capabilities now
allows an integrated, interactive process of combined im-
age segmentation and object classification. Such capabili-
ties are available in several software packages such as eCog-
nition (by Definiens), as well as in recent versions of Idrisi
(by Clark Labs) and ENVI/IDL (by ITT Visual Informa-
tion Solutions). The concepts behind image segmentation
and object analysis are well known, but the easy access to
these methods make them available to a much larger audi-
ence. With the current software capabilities and compu-
tational power it is now possible to apply ”object oriented
image analysis” methods to the new very high resolution
satellite or airborne data (Baatz and Schäpe, 2000).

Bunting and Lucas (2006) used eCognition and CASI-2
data (1 meter spatial resolution) over a forest Queensland,
Australia. Bunting and Lucas (2006) first masked non-
forest areas and classified the rest into broad forest classes.
They then identified crowns or crown clusters by locat-
ing local maxima and expanding them into larger objects.
The crown/crown cluster objects were then iteratively split
and merged according to their relative position, shape and
spectral characteristics. This approach exemplifies the it-
erative, multi-step delineation process also applied in this
study.

Here, first individual trees were manually identified in
the Quickbird image. The identification utilised the pan-
sharpened data, the NDVI-image and the principal com-
ponents. The results were then compared with the field
survey data for 17 plots within the Quickbird image, 12 in
the burned area, and 5 outside. The two plantation plots
were excluded from the analysis because the tree spacing
does not allow an identification of individual trees. How-
ever, since the spacing in the plantation is systematic, it
would be easier to estimate the tree count by measuring
the spacing between tree rows and between trees within
the rows, and then calculating the total number of trees
in the plantation.

The manual identification of trees relies on the identi-
fication of tree crowns (e.g. high NDVI-values), but also
on the shadows cast by the trees on the ground. Satellite-
images recorded at noon at nadir geometry or, more gener-
ally, in situations where the sun is right behind the sensor,

do not show shadows, which complicates tree-identification.
This is especially the case when the contrast (e.g. in terms
of NDVI) between the crowns and the background is low.
This often occur in cases where the trees do not have dense
canopies or where the background below is covered by
dense vegetation. An accurate estimation of tree height is
also only possible from tree crown shadows. Manual iden-
tification of trees also relies to some extent on trees not be-
ing clumped, but clumping is fairly common in the study
area: especially within a few areas in the north-eastern
corner of the Quickbird image clumping is induced by old
dune systems. Despite the present clumping, the manual
tree identification is not thought to be significantly influ-
enced by it, as it was generally possible to separate the
clumps into individual trees.

3.6. Tree height estimation

Tree heights were to be directly extracted from the
Quickbird image, which is possible because sun elevation
during the acquisition was less than 90 degrees (the sun
was not right above the scene). Therefore, the tree shad-
ows could be exploited to estimate their height (see table
2 for details on the Quickbird image). The calculation of
the tree heights is somewhat complicated by the fact the
sensor viewed the scene at an off-nadir angle, effectively
offsetting the tops of the trees away from the sensor in re-
lation to the shadows cast by the crowns on the ground.
Otherwise, a simple triangle-calculation would have been
sufficient to estimate tree height, since the sun elevation is
known and the horizontal lengths of the shadows are easily
estimated from the image. However, the off-nadir observa-
tion angle of the sensor and the almost opposite positions
of the sun and sensor (azimuth angles of 158.2 and 15.8 de-
grees, respectively), would cause an overestimation of tree
heights if not taken into account, since it displaces the tree
crowns in the image away from their shadows. The opti-
mal scene geometry for a scene that are to be used for tree
height estimation, would be a scene recorded at nadir, but
a few hours either before of after solar noon.

Tree height estimation requires the horizontal distance
from the top point of the tree crown to the shadow cast
by this point on the ground to be measured (in the az-
imuth direction of the sun). This requires that the top
points of the tree crowns can be identified; in practice,
only the approximate locations of the tree tops can be ex-
tracted. However, the shape of the shadow cast on the
ground combined with information about crown density
(e.g. from NDVI) still allows to make a qualified guess
about tree height.

3.7. Automatic estimation of tree crown cover

The Quickbird scene (parts shown in fig. 1) covers
an area of 100 km2. At spatial resolution of 0.6 m this
corresponds to 16692 x 16692 pixels: this renders a man-
ual delineation and analysis of trees impractical. There-
fore, the image analysis software ”eCognition” (Definiens
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GmbH) was employed to separate trees from background
and shadows. The classified image was then analysed and
the number of trees and tree crown cover (TCC) was ob-
tained.

3.7.1. Object-based classification

Traditional image classification methods only make use
of spectral information of individual pixels. However, given
a sufficiently high spatial resolution, targeted physical ob-
jects usually extent over several pixels, e.g. at Quickbird’s
spatial resolution of 60 cm a circular tree crown with 2 m
radius covers 35 pixels (12.6 m2). Due to local variations
in illumination, shadow, etc. over such extended physi-
cal objects, the respective pixels may exhibit substantial
spectral variation and may overlap significantly with other
spectral classes. This spectral variability is reduced con-
siderably when analysing the pixels belonging to an ob-
ject together; at the same time, it does not diminish the
relevant spectral features of the object. Furthermore, im-
age objects can be analysed w.r.t. shape, texture, area,
scale, etc. eCognition exploits this additional information
by classifying image objects rather than single pixels. Its
patented ”Multiresolution Image Segmentation” extracts
homogenous image objects at a given scale (Baatz and
Schäpe, 2000). The choice of ’scale’ depends on the spa-
tial resolution of the sensor and the size of the physical
structures to be extracted. Applying multiresolution seg-
mentation on several scales creates a hierarchy of image
objects in which the vertical layers represent the image
information in different spatial resolutions. All objects
”know” their context, their neighbourhood, their sub- and
super-objects, and the relations between them, e.g. ’rel-
ative border to’, can be used to define classification rules
and to introduce context information. eCognition exploits
this wealth of object and hierarchy related information
with a number of specialised classification methods.

3.7.2. Data and parameter settings

First, the Quickbird data were converted to at-sensor
radiances using the embedded calibration information. Then
Gram-Schmidt pan-sharpening was applied to increase spa-
tial resolution to 60 cm. The normalised difference vegeta-
tion index (NDVI) was obtained from the pan-sharpened
data and also principal component analysis (PCA) was
performed. Pan-sharpening does not yield pixels with the
same spectral contents as pixels actually measured at the
increased resolution. However, this lack of spectral fi-
delity is assumed to be negligible because classifications
are based on spectral contrast rather than on spectral con-
tents. Principal components (PC) 1 & 2 and NDVI served
as input to eCognition. Unfortunately, despite sufficient
system resources eCognition could not process the com-
plete Quickbird scene. Therefore, five spatial subsets of
about 5000 x 5000 pixels each were processed. These rect-
angular subsets do not cover the complete scene but are
sufficiently large to be representative. The subsets were
placed at the four corners (upper left, upper right, lower

left, and lower right) and at the centre of the image. The
centre subset included most of the tree survey plots.

1. Multiresolution image segmentation was performed
on only one level with the weights of the three image
layers (PC 1 & 2 and NDVI) set to one. A fine
scale was chosen to avoid mixed image objects, e.g.
tree crowns mixed with tree shadows. Parameters for
multiresolution segmentation were: scale: 10, shape:
0.3, compactness: 0.5.

2. Since the Quickbird data were acquired during Sene-
gal’s dry season, the contrast between average spec-
tral object values proved to be insufficient for a suc-
cessful classification of tree objects. Therefore, the
fine scale level 1 objects were first classified as ”green”
if the NDVI of any of their member pixels exceeded
0.1. This also classifies image objects with low mean
NDVI as ”green”, e.g. a dry tree with only some
green in the centre of the crown. All other objects
are classified as ”background”.

3. A second object level was created with classification-
based segmentation: neighbouring ”green” level 1
objects were merged into larger level 2 objects and
classified as ”tree or bush”. Neighbouring ”green”
objects belonging to different but neighbouring trees
or bushes are also merged: this causes a certain de-
gree of clumping and reduces the number of tree ob-
jects, but it does not affect the TCC estimate.

4. In a separate classification, the impact of clumping
on average tree crown area was reduced by limit-
ing the area of tree objects to 300 m2 (about 10 m
radius). This excludes large agglomerations of trees,
e.g. long connected strips of tiger bush (compare fig-
ure 2A with figure 2B. Choosing a smaller maximum
tree object area did not change results significantly.
The area of 300 m2 corresponds to a maximum of
5 clumped trees with crown radius of about 4-5 m
(about the largest crown found in the field survey),
which - ignoring the large strips of tiger bush - proved
to be a reasonable estimate for ”normal” clumping.

3.7.3. Correction for tree clumping

Quickbird’s spatial resolution of 60 cm is not sufficient
to resolve very small trees or trees located directly next
to each other. However, the field survey included very
small trees and did not record tree clumping. There-
fore, a ”clumping correction factor” was estimated from
153 photographs taken during the field survey. The pho-
tographs were evaluated for single trees and clearly iden-
tifiable groups of 2 to 5 trees: the aim was to obtain a
representative statistic rather than to claim completeness.
Figure 3A shows an example for tree clumping and the
result of the analysis is shown in figure 3B.

Assuming that eCognition clumps the groups of trees
identified in the photographs into single ”tree” objects, a
clumping correction factor c was calculated as weighted
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Figure 2: Left: Upper right subset, all ”trees” red (UR-all). Right: Upper right subset, ”trees” ≺ 300 m2 red (UR-300)
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Figure 3: Left: Clumped trees at Dahra field site. Right: Number of groups with 1 to 5 trees in group (obtained from photographs).

average of the number of the groups:

c =

5∑

i=1

Ni· i
5∑

i=1

Ni

(2)

where Ni is the number of groups with i trees found in the
photographs.

From figure 3B, the clumping correction factor is de-
termined as c = 672 / 409 = 1.64. This factor was used
to estimate the actual number of trees within tree objects
”300-co” as well as the actual area and radius of the mean
tree crown. Furthermore, since the ”background” objects
are more homogeneous than the ”tree” objects, eCogni-
tion assigns mixed pixels at tree - background boundaries

to the ”tree” objects; therefore, mean tree crown radius
is finally estimated as: mean ”300-co” radius - (Quickbird
pixel size / 2).

4. Results

4.1. Field tree survey

Summary statistics of the field survey are shown in ta-
bles 4 and 5, grouped per plot and per species, respectively.
In total, 189 trees were sampled in 26 plots, of which 4 did
not contain any trees. 12 plots were located within the
area affected by the bushfire, while 14 were outside. Out
of these 14, half were located outside the Quickbird im-
age, and are therefore excluded from most of the analysis.
Two plots were within the plantation area: these are also
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Point Note Count Avg. Height Min. Height Max. Height Avg. DBH Avg. radius %TCC
1 burned 2 2.90 2.50 3.30 0.34 1.09 0.3
3 burned 5 2.84 1.40 4.20 0.22 1.64 2.1
6 burned 4 4.88 4.00 5.50 0.39 2.77 4.2
9 burned 3 5.50 4.50 7.50 0.71 2.92 3.5
12 burned 6 2.68 2.10 3.20 0.21 1.44 1.7
15 burned 1 3.00 3.00 3.00 0.44 2.55 0.8
17 burned 7 4.26 1.20 7.00 0.41 2.06 5.2
19 burned 6 5.28 4.00 7.50 0.60 3.49 10.1
20 burned 1 5.50 5.50 5.50 0.70 2.50 0.8
23 burned 5 3.78 1.90 5.30 0.42 1.54 2.0
26 burned 8 4.26 2.50 7.50 0.40 1.81 4.2
28 burned 2 4.15 1.80 6.50 0.47 2.05 1.4
29 not burned 5 3.92 2.30 7.50 0.31 1.88 2.5
30 not burned 0 0.0
31 not burned 14 4.92 1.90 7.50 0.55 2.10 9.4
32 not burned 10 3.98 2.10 5.00 0.34 1.97 5.7
60 not burned 0 0.0
47 outside QB 12 4.49 2.80 6.00 0.46 2.38 9.2
48 outside QB 0 0.0
49 outside QB 12 3.23 1.60 6.50 0.29 1.60 4.8
50 outside QB 22 2.29 1.70 3.00 0.14 1.48 6.4
51 outside QB 2 1.90 1.70 2.10 0.11 0.98 0.3
52 outside QB 1 7.00 7.00 7.00 0.90 3.10 1.2
61 outside QB 0 0.0
14 plantation 20 2.30 1.20 6.50 0.23 1.23 5.7
59 plantation 41 3.00 1.80 5.50 0.16 2.15 25.6

Table 4: Statistics for all 26 plots surveyed. %TCC is the percentage of each plot covered be tree crowns calculated assuming circular crown
shapes and no tree crown clumping. All measurements are in meters except count and %TCC.

mostly excluded from the analysis, because the trees are
generally too small to be included in the survey, while the
overall plot tree density is too high for an identification
of individual trees in the Quickbird image (especially a
problem for plot number 14).

Only five different tree species were found in the sur-
vey area and two of these were only represented by one
tree each. The Leptadenia Hastata resembles a bush more
than a tree and was often found next to trees. The area is
dominated by two Acacia species and the Balanites Aegyp-
tiaca (see table 5). The Acacia Raddiana is a sub-species
of Acacia Tortilis (will be referred to as Acacia Raddi-
ana throughout this study) and is typical for silty/loamy
pediplains in the Sudano-Sahelian subzone (Le Houerou,
1989) as is Acacia Senegal. The Acacia Raddiana is gen-
erally larger than the Acacia Senegal.

4.2. Allometric models for tree height

The correlation between measured tree heights and di-
ameter at breast height (DBH) from the field survey was
analysed: it shows that DBH can be reliably estimated
from tree height (see fig. 4). Furthermore, DBH and tree
height can often be related to total above ground biomass
and, thus, allow to estimate the total carbon content in
the tree-vegetation.

Fig. 4 shows allometric models for the relation be-
tween maximum DBH and tree height for the Acacia-
species, for Balanites Aegyptiaca, and for the other trees
surveyed. The sizes and ages of the trees in the area vary
widely, which also shows in the plots. The only exception
is Acacia Senegal, which only varies over a narrow range of
tree heights and DBH compared to the two other species.
As distinction between the species is impossible from the
Quickbird image and because of the very similar fits for
the Acacia and Balanites species, we also made a corre-
lation analysis based on all trees surveyed in the field, to
evaluate the robustness of DBH-estimation based on tree
height. As fig. 4D shows, the correlation is good with an
r2-value of almost 0.8, indicating that despite the presence
of several different tree species, DBH can be estimated reli-
ably across the study area solely based on tree height. The
Acacia Senegal trees in the plantation plots were excluded
from the analysis, as they are managed differently than
the trees in the surrounding areas. Furthermore, the main
focus of this study is the non-plantation areas, and other
methods will be more appropriate for the plantations.

We also investigated the relation between total cross-
sectional stem area (CSA) (calculated from the DBH) and
tree height. The difference between the two is, that many
of the surveyed trees had more than one stem at breast
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Species Count Min. height Max. height Avg. height Avg. DBH Avg. crown radius
Acacia Raddiana 19 2.1 m 7.5 m 4.22 m 0.37 m 2.50 m
Acacia Senegal 82 1.2 m 5.5 m 2.61 m 0.15 m 1.71 m
Balanites aegyptiaca 86 1.2 m 7.5 m 4.07 m 0.43 m 1.96 m
Combretum Glutinosum 1 7.0 m 7.0 m 7.00 m 0.81 m 4.00 m
Leptadenia Hastata 1 3.0 m 3.0 m 3.00 m 0.29 m 1.50 m
Total 189 1.2 m 7.5 m 3.46 m 0.31 m 1.92 m

Table 5: Summary statistics grouped per species for the all surveyed trees within the 26 test-plots.

height. These were also measured, but in the analysis
above, only the largest stem was used for the correlation
analysis. Using total cross-sectional stem area include all
measured stems and therefore might give a better represen-
tation of the tree size. As the CSA is calculated assuming
a circular stem shape, the only difference between the two
is that all stems are included in CSA and the DBH only
represent the largest stem.

The results of the CSA-tree height analyses (not shown)
are very similar to results presented in fig. 4. For CSA, the
found correlation for Acacia Senegal was worse with a r2-
value of 0.404 compared to r2 = 0.697 for DBH. The overall
correlation for all trees is on the other hand slightly bet-
ter with r2-values of 0.801 and 0.791 respectively, mainly
due to a better fit for Balanites Aegyptiaca. Overall, the
performance of CSA and DBH is almost identical and in-
dicate that maximum diameter is as good an estimation
as total CSA. Also, Acacia Senegal show a significantly
different relation than the two other main species found
in the area, mainly due to a low range of values both in
terms of tree height and DBH/CSA.

4.3. Allometric models for crown radius

Similarly to considering the relation between DBH and
tree height, we also developed allometric models for the re-
lation between DBH and CSA and crown radius as shown
for CSA in fig. 5. As was the case for tree height, Aca-
cia Raddiana and Balanites Aegyptiaca show good perfor-
mance with r2-values of 0.7 and 0.8 respectively, while the
correlation is very bad for Acacia Senegal (when exclud-
ing the two plantation plots). The results for DBH are
similar to the results with CSA, except for the case of the
entire population of Acacia Senegal trees where CSA per-
form much better with a r2-value of 0.65 compared to 0.26
for DBH. Despite of this, we excluded the Acacia Senegal
trees from fig. 5D, as we are mainly concerned with how
the method will perform outside the plantations. Because
of the bad performance of DBH for Acacia Senegal, the r2-
value found for all tree species in 5D is also significantly
better for CSA than for DBH.

The difference between including and excluding the
plantation plot Acacia Senegal trees are shown in fig. 5B,
where the model fits for both cases have been included.
For both cases, the effective range is limited, but including
the plantation plots still improves the correlation signifi-
cantly. The lack of correlation for the non-plantation trees

could be explained by the fact that Acacia Senegal is often
used for browse for cows and goats, as well as for firewood.
This means that trees are in some cases trimmed, resulting
the in crown radius not being indicative of the stem size.
This is not the case within the plantation, where trees are
used for rubber production and the browsing by animals
is limited.

4.4. Tree count comparison between field survey and man-
ual Quickbird image analysis

A comparison was made between the tree count from
the field survey and manual identification of trees in the
Quickbird image. The results are shown in figure 6 which
include data from both burned and unburned areas (17
plots in total). The correlation is acceptable with an r2-
value of 0.8057, but slope (0.76) and offset (1.10) indicate
that the manual identification of trees in the Quickbird
image has a tendency to underestimate the tree count for
areas with relatively many trees. This could be explained
by problems occurring when trees are clumped together,
which makes the delineation of the individual trees diffi-
cult. This will only have an influence in areas with higher
tree densities and where clumping is present. Further-
more, some problems were identified with the rectification
of the Quickbird image, which influences the quality of
the correlation. The correlation confirms that it is possi-
ble to manually identify trees in the Quickbird image with
acceptable accuracy to use the method for larger areas.

4.5. Tree crown cover from Quickbird and eCognition

The tree crown cover was estimated in the Quickbird
image using the eCognition software as described above.
This was compared to the per plot tree crown cover esti-
mated in the field. The field values were found by calculat-
ing the horizontal area of each tree based on the measured
diameter assuming a circular crown. Furthermore it was
assumed that crowns do not overlap.

The average tree cover fractions agree well: the av-
erage plot tree crown cover from the survey was 3.02%
(values from table 4) compared to 2.97% estimated from
the classification of the Quickbird image with eCognition
(the average of the 12 individual plot TCC shown in figure
7). On the plot scale, the agreement is worse (see figure 7)
with a r2 of 0.51. The low correlation is mainly caused by
the small number of trees per plot, which severely limits
the representativeness of this result. Furthermore, errors
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Figure 4: Allometric model of the relation between DBH and tree
height derived from the field survey data. A) shows the model for
Acacia Raddiana species, B) for Acacia Senegal, C) for Balanites
Aegyptiaca and D) for all trees (and species) in the field survey.
The plots have been made with the same x and y-range to ease
comparison.
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Figure 5: Allometric models for CSA and crown radius for the three
main species and for all trees surveyed. As in figure 4 the axes of the
plots have been scaled to the same range to ease comparison. Acacia
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from in B, where they are shown for comparison.
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Figure 6: Correlation between tree count in the field survey, and
from manual identification of trees in the QuickBird image for 17
out of the 26 plots (plantation plots excluded).

in the rectification lead to errors in the tree count and
also affect tree crown cover estimation. The fire that oc-
curred between the field survey and the acquisition of the
Quickbird image might also have affected the tree crown
cover estimation as many of the lower trees were severely
burned; in some cases green leaves were completely absent,
which made crown delineation difficult.

Table 6 shows the results of the analysis performed
with eCognition for three spatial subsets of the Quick-
bird scene. Only results for the three northern subsets
are given, since the lower left and lower right subsets were
influenced by agricultural land in the south of the Quick-
bird scene and, are, therefore, not representative for tiger
bush. The determined TCC for the centre (CC) subset
(3.0%) is practically identical with the average TCC ob-
tained from the field survey (3.02%). The upper left (UL)
and the upper right (UR) subset yield slightly higher TCC
(3.7% and 4.5%, respectively) than the CC subset, but this
is plausible since the CC subset includes the area affected
by the bush fire. The mean radii determined for the three
subsets with eCognition and then corrected for clumping
are 2.3m, 2.5m, and 2.8m; when subtracting the size of
half a Quickbird pixel (0.3m) from these values to account
for mixed pixels at tree boundaries, the results are close
to the average tree crown radius of 1.92m determined in
the field survey.

4.6. Tree height comparison

The height of the trees was estimated from the Quick-
bird image as described in section 3.6. Figure 8 shows the
correlation between the field survey data and the height
estimates from Quickbird. Out of the 19 plots covered
by the Quickbird image, 15 were included in the analysis.
The two plots without trees were excluded as well as the
two plantation plots as it was impossible to identify the
individual tree shadows in the plantation area.
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Figure 8: Comparison between tree heights measured in the field, and
tree heights estimated from the QuickBird image taking advantage
of the off-nadir viewing and illumination geometry. The values are
calculated as average tree height values per plot and do not represent
the individual trees.

The correlation between tree heights estimated from
the two methods is reasonable, with a r2 of 0.56 but with
a slope of 0.83. Considering the uncertainty inherent in
the tree height estimation from the Quickbird image, the
results are promising although it relies on certain illumina-
tion and viewing geometries. It is an alternative and direct
approach for obtaining tree heights, compared to deriving
crown radius and then obtaining tree height using an allo-
metric model relating crown radius to tree height.

4.7. Upscaling TCC using NDVI

An attempt was done at upscaling the TCC found from
the Quickbird analysis using a plot scale correlation be-
tween TCC and NDVI as done by other authors (Hansen
et al., 2002; Carreiras et al., 2006). The firescar present in
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Subset TCC [%] total area [m2] trees mean area [m2] mean radius [m]
UL-all 3.7 336165 9000 37.4 3.4
UL-300 - 299475 8943 33.5 3.3
UL-300-co - 299475 14666 20.4 2.5 (2.2)
UR-all 4.5 403948 6668 60.6 4.4
UR-300 - 265365 6491 40.9 3.6
UR-300-co - 265365 10645 24.9 2.8 (2.5)
CC-all 3.0 326049 10855 30.0 3.1
CC-300 - 301374 10828 27.8 3.0
CC-300-co - 301374 17757 17.0 2.3 (2.0)

Table 6: Analyses of upper left (UL), upper right (UR), and centre (CC) spatial subsets of the Quickbird scene. ”all” means all objects
classified as trees, ”300” means only objects with an area less than 300 m2, and ”300-co” is the number of trees with less than 300 m2

corrected for clumping (”300” trees times 1.64). The values in brackets for mean ”300-co” radii give the radius minus 30 cm (Quickbird pixel
/ 2) to account for the ring of mixed pixels at the perimeter of tree objects

the Quickbird image will affect this correlation, which is
why only plots within the firescar was included. The re-
sults of the correlation analysis is shown in fig. 9 and show
an almost absence of correlation between the two param-
eters. A similar test was made for a Quickbird image ac-
quired on 2007-09-25 (during the rainy-season) and similar
results were obtained. Furthermore, we also performed a
correlation analysis including 25 plots using a dry-season,
15 meter resolution ASTER scene from 2007. This anal-
ysis (not shown) also showed a very weak correlation be-
tween TCC and NDVI. Based on the obtained results, we
concluded that attempts at using a TCC-NDVI based up-
scaling method for upscaling the results to MODIS and/or
MSG SEVIRI scale for the region would not be feasible.
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Figure 9: Scatterplot of NDVI against TCC for 12 plots (all within
the burned region). The TCC is based on the Quickbird analysis
and the NDVI is average values for each plot.

5. Summary and concluding remarks

A field survey was performed in order to characterise
the woody vegetation at a permanent validation site for
satellite products, located in the semi-arid northern Sene-
gal. The site is mainly covered by sparse tiger bush with

the woody vegetation dominated by Balanites Aegypti-
aca and different Acacia species. Among the surveyed pa-
rameters were tree type, height, tree crown radius, and
DBH, which were used to determine allometric models
with quantities available from remote sensing (e.g. tree
crown radius). Tree crown cover (TCC) was determined
from satellite data with an object-based classification method.
The average TCC of 12 field survey plots (3.0 %) agreed
well with the corresponding TCC determined from remote
sensing (3.0 %); for larger areas not covered by the field
survey the TCC determined from remote sensing varied
between 3.0 % and 4.5%. Based on field survey informa-
tion, an empirical correction factor was determined to ac-
count for tree clumping. This correction factor was then
used to obtain a better estimate of the number of trees
and the average tree crown area and radius from the re-
mote sensing data, which consisted of one panchromatic
and four multi-spectral channels of Quickbird data. The
average tree crown radius determined from the field survey
(1.9m) matched the respective value from remote sensing
(about 2.0m) well, which gives confidence in estimating
these parameters for large areas from remote sensing data,
e.g. on scale of a MSG pixel. The allometric model de-
scribing the relationship between TCC and CSA then also
allows to estimate the tree biomass from remote sensing.
The TCC and the average tree crown radius determined
here can serve as input to a Geometrical Optical Radia-
tion Transfer (GORT) model, which allows the upscaling
of temperatures based on radiometric measurements in the
thermal infrared to MSG pixel scale.

The allometric models developed in this study for the
three main species studied, generally showed good perfor-
mance with r2-values around 0.7 to 0.8. Acacia Senegal
behaved differently than the other species, partly due to
a narrow range of stem circumferences and an apparent
de-coupling of DBH/CSA and, especially, crown radius.
In terms of estimating tree parameters from analyses of
the Quickbird image, the allometric models for tree height
and crown radius produce good results, although the pre-
dictive capabilities of the models for large trees is some-
what limited due to the shape of the functions used. A
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small change (e.g. from estimation error) in tree height
or crown radius might lead to significant changes in the
DBH or CSA. Despite of this, the methods applied in this
study demonstrate the potential of using high resolution
remote sensing data for tree inventory analysis, which can
ultimately be applied for biomass monitoring.

The attempt at upscaling the estimation of TCC us-
ing a relation between TCC and NDVI failed, due to the
lack of correlation between the two parameters. On the
local scale, the lack of correlation could be related to the
occurrence of the bushfire, but analyses of other images
including an ASTER scene all gave similar results. This is
believed to be caused by the relative low TCC in the area,
which means that differences in the background (soil and
grasses) dominate the local changes in NDVI compared to
the influence of the tree crowns on the NDVI. In areas
where such a relation has been shown to work, TCC is
generally higher, increasing the influence of the tree crown
NDVI on the overall plot-scale NDVI.
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Abstract

This paper validates several satellite-based estimates of land surface temperature (LST) for semi-arid West Africa by
intercomparing them and using ground measurements from two locations in Senegal and Mali as reference. The validation
focuses on LST estimates based on Meteosat Second Generation (MSG) SEVIRI data; these are obtained with variants
of the “split window”-technique, which use different methods for assessing atmospheric water vapour content and surface
emissivity. In addition, the effect of using different cloud masking procedures is studied. Furthermore, LST estimates
obtained from MODIS data are compared with field observations from the two sites. The results show that in the
monsoon season none of the MSG SEVIRI-based LST retrieval methods performs satisfactorily, while accuracy, in terms
of bias, correlation and slope, improves significantly with the onset of the dry season. The large discrepancies between
field observations and satellite LST estimates are thought to be caused mainly by problems with atmospheric correction
during the rainy season. Furthermore, the choice of cloud mask significantly effects the performance of the chosen
algorithms.

Keywords: Land Surface Temperature, MSG SEVIRI, MODIS, monsoon season

1. Introduction

As satellite-based products of bio-physical variables be-
come easier accessible for various applications, validation
and accuracy assessment become increasingly more impor-
tant. LST-products are used for a variety of purposes, not
at last in hydrology, both as input to or for the valida-
tion of physically-based, distributed hydrological models
(Stisen et al., 2008a) and SVAT-models (Coudert et al.,
2006, 2008), as well as for direct estimation of evapotran-
spiration, soil moisture, and plant water stress (Norman
et al., 1995; Nishida et al., 2003; Sandholt et al., 2002;
Verstraeten et al., 2006; Stisen et al., 2008b). For these
applications it is highly important that the input LST-
estimates are unbiased, the spatial LST patterns are real-
istic, and the diurnal patterns of LST variation are well
represented.

Commonly LST is estimated by combining information
from two or more bands located in atmospheric windows
in the thermal infrared (TIR) part of the spectrum (the
split-window technique (Price, 1984)). The accuracy of
LST-estimation is influenced by a number of sources of er-
ror and noise, including (1) the ability of the algorithms
to correct for atmospheric water vapour content (W) and
aerosols, (2) the assignment of realistic values of emissivity

∗Corresponding author
Email address: mora@gras.ku.dk (Mads O. Rasmussen)

to the land surface, (3) errors associated with satellite im-
age co-registration, (4) imperfections of the cloud masks
used, and (5) directional effects (i.e. anisotropy), which
are associated with interactions between varying viewing
and illumination geometry and e.g. a vegetation canopy.
This paper focuses on the first four sources of error, while
the fifths is discussed elsewhere (Smith et al., 1997; Pin-
heiro et al., 2004, 2006; Trigo et al., 2008c; Rasmussen
et al., 2010b,c).

With the launch of the geostationary MSG satellites, it
is now possible to estimate LST every 15 min over Africa
and Europe using split-window algorithms. Unlike the first
generation of Meteosat’s with a single TIR channel, MSG
provides measurements in four TIR channels. Three of
these are located within the two atmospheric TIR windows
and greatly improve the estimation of LST from space.
Several algorithms have been proposed but, to our knowl-
edge, none of these have to date been extensively validated
over the African Continent. In this study we compare the
results of several SEVIRI-based LST algorithms with each
other and to in situ data from two field sites in West Africa.
The sites are located in the semi-arid Sahel region at ap-
proximately 15°North. Both locations are dominated by
grasslands and have only limited tree cover. Furthermore,
we evaluate the quality of two MODIS LST products, the
MOD11A1 1 km data set and the MOD11B1 5/6 km data
set for the same sites.

A direct validation based on independent ground mea-
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surements is complicated due to scale issues. Therefore,
intercomparisons between products obtained with differ-
ent retrieval methods from different satellite data are often
also used to assess the accuracy of the products. We com-
pare estimates of land surface temperature (LST) based on
data from the Meteosat Second Generation (MSG) Spin-
ning Enhanced Visible and Infrared Imager (SEVIRI) sen-
sor and the Aqua/Terra MODIS sensors. Furthermore,
the satellite-based LST are validated against ground mea-
surements from the Sahel region of West Africa. It should
be noted that validation results generally apply only to a
specific set of atmospheric conditions and biomes. Here,
we focus on semi-arid West Africa during a short monsoon
season.

2. Methods and data

2.1. Planck’s law and LST retrieval from field measure-
ments

Remote sensing of LST is based on Planck’s law, which
relates the radiance emitted by a black body (emissiv-
ity=1) to its temperature. However, most natural objects
are non-black bodies with 0 < ε < 1, where spectral emis-
sivity ε is defined as the ratio between the spectral radi-
ance r emitted by the surface at wavelength λ and the
spectral radiance emitted by a black body at the same
wavelength and temperature. Therefore, the spectral ra-
diance, r, emitted by a non-black body can be obtained
by multiplying Planck’s function B(λ, T ) with ε:

r = ε ·B(λ, T ) = ε · c1λ
−5

exp (c2/(λT ))− 1
(1)

where r is in Wm−3sr−1, constants c1 = 1.1910 · 10−16W
m2sr−1 and c2 = 1.4388 · 10−2mK, T is the measured
temperature in Kelvin, and λ is in meters.

For a sensor located near the surface and measuring
within an atmospheric TIR window, the influence of the
atmosphere can be neglected. With known emissivity, the
simplified radiative transfer equation (Dash et al., 2002)
can be used to account for reflected downwelling TIR ra-
diance from the atmosphere and for the non-black body
behaviour of the surface. Therefore, the blackbody equiv-
alent spectral radiance B emitted at temperature T and
with spectral emissivity ε is given by:

B =
r

ε
=

R− (1− ε)Rsky

ε
(2)

where R is the measured spectral radiance and Rsky is sky
radiance, which also has to be known, e.g. from measure-
ments. Once B is known, Planck’s law can be solved for
the temperature T of the surface (see eq. 1).

2.2. LST algorithms for MSG
A number of LST algorithms have been proposed for

use with data from the MSG SEVIRI instruments (Madeira,
2002; Sobrino and Romaguera, 2004; Sun and Pinker, 2007;
Jiang and Li, 2008; Jiménez-Muñoz and Sobrino, 2008;
EUMETSAT et al., 2009; Atitar and Sobrino, 2009). All
of them utilise data from at least two channels, namely
SEVIRI channels 9 and 10 centred at 10.8 and 12.0 µm,
respectively, which are located in the atmospheric win-
dow bands where the atmosphere is relatively transpar-
ent. The algorithms proposed by Sun and Pinker (2007)
further uses information from channel 4 (middle-infrared
band centred at 3.9 µm) and channel 7 (thermal infrared
band centred at 8.7µm). All of the above mentioned algo-
rithms are split-window algorithms, except Sun and Pinker
(2007), although their four-channel algorithm also mainly
depends on the same principles as the split-window algo-
rithms. Given information on land surface emissivity and
atmospheric water vapour content (W), split-window algo-
rithms use the top of atmosphere brightness temperatures
measured in two adjacent bands to correct for the influence
of the atmosphere and to derive land surface temperature.
For a review of methods for estimating LST and emissivity
from passive satellite sensors, readers are referred to Dash
et al. (2002).

The LST product produced by the Land Surface Anal-
ysis Satellite Applications Facility (LSA-SAF) (EUMET-
SAT et al., 2009; Madeira, 2002) as well as the algorithm
proposed by Jiang and Li (2008) is based on the method
developed for the MODIS MOD11A1-product (Wan and
Dozier, 1996). This is a generalized version of the algo-
rithm originally proposed for NOAA Advanced Very High
Resolution Radiometer (AVHRR) data by Becker and Li
(1990). The generalized split-window algorithm used for
the LSA-SAF product has different sets of coefficients de-
pending on atmospheric water vapour content and view
zenith angle (VZA), as this was found to improve perfor-
mance. The overall bias was estimated to be 0.05K with
a RMSE of 0.78K and with errors increasing with increas-
ing water vapour and Sun Zenith Angle (SZA) (EUMET-
SAT et al., 2009). The LSA-SAF product also includes a
pixel-by-pixel error-estimate and a flag-layer with quality
assessment data (Freitas et al., 2010; Trigo et al., 2008a).

For further analysis, in this study a number of algo-
rithms was chosen. These include the LSA-SAF algorithm,
based on the generalized split-window algorithm, as well as
the alternative algorithms Sobrino and Romaguera (2004);
Atitar and Sobrino (2009); Jiménez-Muñoz and Sobrino
(2008). The algorithm proposed by Jiménez-Muñoz and
Sobrino (2008) was developed for multi-sensor use, and
the authors provide coefficients for a number of sensors,
including MSG SEVIRI, GOES, MODIS Aqua and Terra,
and NOAA AVHRR. This allows to merge and compare
data from the different sensors by simply replacing the re-
spective bands and coefficients depending on the sensor
used. All investigated algorithms require surface emissiv-
ity and water vapour as input data on a pixel-by-pixel ba-
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sis. LSA-SAF uses an internal emissivity product based on
the “vegetation cover method” (VCM) (Peres and DaCa-
mara, 2005; Trigo et al., 2008b), which assigns emissivities
to the soil and canopy fractions of each pixel and scales
these according to fractional vegetation cover (FVC). The
FVC used by LSA-SAF is a daily updated LSA-SAF prod-
uct and water vapour is obtained from forecast data from
the European Centre for Medium-range Weather Forecasts
(ECMWF). All selected algorithms utilise the mean and
the difference between the band emissivities, since a study
for polar orbiting satellites found that this type of split-
window algorithm yields the best performance (Yu et al.,
2008).

2.2.1. Emissivity and total column water vapour

All three alternative non-operational SEVIRI LST- prod-
ucts considered in this study require emissivity and water
vapour as input. Here, the focus was on methods that
are as simple as possible to apply and that allow near-
real-time data processing, preferably without relying on
external products.

Emissivity was calculated using the VCMmethod men-
tioned above (Peres and DaCamara, 2005). The emissivity
of a given pixel is calculated as a linear combination of the
emissivity of the vegetation and the emissivity of the bare
soil, which are both scaled by their relative abundances
(as also done for the LSA-SAF product):

ε = εvFV C + εg(1− FV C) (3)

where εv is the emissivity of the vegetation, εg is the emis-
sivity of the bare soil, and FVC is the fractional vegetation
cover of the respective pixel. The emissivities are assigned
according to a land cover classification scheme for each of
the SEVIRI bands separately. FVC varies with season and
is obtained from a relation between FVC and Normalized
Difference Vegetation Index (NDVI):

FV C =
NDV Ii −NDV Imin

NDV Imax −NDV Imin
(4)

where NDV Ii is the actual NDVI (Tucker, 1979) of the
given pixel and NDV Imin and NDV Imax are the val-
ues for bare soil and 100% vegetation cover, respectively
(Nishida et al., 2003). This method is sensitive to the
chosen values for NDV Imin and NDV Imax, as discussed
in detail by Stisen et al. (2007). Furthermore, some au-
thors use a variant of the above equation, where the right
hand side of the equation is squared (Carlson and Rip-
ley, 1997; Sobrino et al., 2008) or further modified (Agam
et al., 2007). In this study, NDVI was obtained from the
MODIS MOD/MYD13A2 level 3, 16-day product and re-
sampled to SEVIRI spatial resolution. In the future, an
updated version of the emissivity lookup-tables might be
applied (Trigo et al., 2008b) or replaced by a method pro-
posed by Sobrino et al. (2008), which relies on data from
the visible part of the spectrum; however, also with these
changes the method will be sensitive to the chosen mini-
mum and maximum NDVI values.

For the retrieval of total column water vapour, several
direct methods have been suggested for use with MSG SE-
VIRI data. With two sets of measurements in channels 9
and 10 as input, the methods proposed by Schroedter-
Homscheidt et al. (2008); Sobrino and Romaguera (2008)
estimate water vapour on a daily basis. By using data from
two time slots (with a minimum difference in brightness
temperature of 5 and 10 degrees, respectively) the meth-
ods avoid the requirement of providing either near-surface
air temperature or LST, which is otherwise common. The
downside of this is that the water vapour is assumed to be
constant between the two measurements, an assumption
that does not necessarily hold. Furthermore, due to the
required brightness temperature differences these methods
only provide one (or only a few) daily estimates of water
vapour.
Here, a simpler method was implemented, which only re-
lies on the temperature difference (∆T) between the two
channels and on land surface emissivities. This allows for
pixel-by-pixel estimation of water vapour at full 15-min
temporal resolution. The method was originally devel-
oped for channels 4 and 5 of NOAA-9 AVHRR (Choudhury
et al., 1995) and is expressed as a linear relation between
∆T and water vapour (W):

∆T = α+ βW (5)

where:

α = 75∆ε
′
+ (1− ε4)− 0.15 (6)

β = 0.05[1− 44∆ε
′ − 5(1− ε4)] (7)

∆ε
′
=

(ε4 − ε5)

ε5
(8)

where channels 4 and 5 of NOAA AVHRR only have to
be replaced by MSG SEVIRI channels 9 and 10. The co-
efficients were not re-calculated for SEVIRI; however, due
to the similar channel widths and central wavelengths of
AVHRR and SEVIRI the error associated with this sim-
plification is assumed to be negligible.

2.3. Tested algorithms

All applied algorithms were proposed by the Global
Change Unit, Department of Earth Physics and Thermo-
dynamics at the University of Valencia. The first set of al-
gorithms (referred to as Romaguera) consist of two slightly
different algorithms for MSG-1 and MSG-2 both in terms
of algorithm and coefficients. For MSG-1, the algorithm is
(Sobrino and Romaguera, 2004):

Ts =TIR10.8 + [3.17− 0.64 cos θ](TIR10.8 − TIR12.0)

+

[
− 0.05 +

0.157

cos θ

]
(TIR10.8 − T 2

IR12.0)

+

[
65− 4

cos2 θ

]
(1− ε)

+

[
− 11.8 +

5.1

cos θ

]
W (1− ε)
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+

[
− 180 +

24

cos θ

]
∆ε

+[−4 + 34 cos θ]W∆ε− 0.6 (9)

and Atitar and Sobrino (2009) for MSG-2:

Ts =TIR10.8 +

[
1.34− 0.11

cos2 θ

]
(TIR10.8 − TIR12.0)

+

[
0.29 +

0.08

cos2 θ

]
(TIR10.8 − T 2

IR12.0)

+

[
60.67− 10.01

cos2 θ

]
(1− ε)

+

[
− 6.71 +

2.47

cos2 θ

]
W (1− ε)

+

[
− 125.91 +

15.09

cos2 θ

]
∆ε

+

[
19.44− 4.27

cos2 θ

]
W∆ε

+

[
− 0.44 +

0.57

cos2 θ

]
(10)

where TIR10.8 and TIR12.0 are the brightness temper-
atures of split-window channels 9 and 10, θ is the view
zenith angle, W is the total column water vapour content,
ε is the mean emissivity, and ∆ε is the difference between
the two channel emissivities.

The third algorithm is referred to as ”Munoz” and was
proposed by Jiménez-Muñoz and Sobrino (2008), who pub-
lished the coefficients for a number of low-resolution ther-
mal infrared sensors including MSG SEVIRI, MODIS, and
the NOAA AVHRR:

Ts = Ti + c1(Ti − Tj) + c2(Ti − Tj)
2 + c0

+(c3 + c4W )(1− ε) + (c5 + c6W )∆ε (11)

where Ti and Tj are the brightness temperatures of the
two split window channels, and c0 - c6 are fitted coefficients
for the MSG SEVIRI sensors (see table 1).

2.4. Study period

The study period is from June 1st (doy 152) to Oc-
tober 31st (doy 304) 2009 and covers 153 days. During
most of this period MSG-2 (located at 0.0°) was the op-
erational satellite, but during the period from 2009-08-15
14:00 until 2009-08-21 07:45, MSG-1 (located at 9.5°East)
was the operational satellite. The SEVIRI-sensor scans
the earth disk every 15 minutes in 12 spectral channels,
resulting in 96 daily image slots per channel. For the study
period 99.62% (14632 out of 14688) of all potential slots
and 96.86% (14227 out of 14688) LSA-SAF LST slots were
available for analysis.

2.5. Cloud masking

Two different cloud masks were considered in this study:

� MPEF CLMK (CLMK) from the EUMETSAT Ap-
plications Ground Segment, which comprises a Me-
teorological Products Extraction Facility (MPEF).

� SAF-NWC from the Satellite Application Facility for
supporting NoWCasting and very short range fore-
casting (will be referred to as SAF CLMK) (Derrien
and Gleau, 2005).

The former is distributed real-time along with the HRIT-
data from EUMETSAT via EumetCast, while the SAF-
NWC is distributed as an integral part of the LSA-SAF
LST product.

2.6. MODIS LST products

LST estimates derived from MODIS data are widely
used and are some of the most extensively validated prod-
ucts. The following two products are considered:

� MOD11A1: 1 km (full resolution) product based
on the generalized split-window algorithm described
above (Wan and Dozier, 1996).

� MOD11B1: 5/6 km product based on the ”day/night
algorithm” and, depending on version, has a spatial
resolution of 5 km (V4.1) and 6 km (V5.0) (Wan and
Li, 1997).

Both products are distributed in different versions. We
have considered version 4.1 and version 5 (latest version)
in this study. The two MODIS EOS missions Terra and
Aqua provide up to four daily estimates of LST with local
overpass times at approximately 10:30 and 02:00 (both AM
and PM), respectively.

The MOD11B1 product uses a different type of algo-
rithm to the split-window algorithms discussed above. It
is based on one day and one night observation in 7 of the
MODIS bands from which land surface emissivity and tem-
perature are retrieved simultaneously; for more details, in-
terested readers are referred to the original paper by Wan
and Li (1997). As the resolution of the MOD11B1 product
more or less matches the nominal spatial resolution of the
SEVIRI sensor (4.8 km at nadir) and because it provides
an independent LST estimate based on more bands and
uses a different retrieval approach, we decided to include
both MODIS LST products in the analysis.

2.7. Considerations on scale

This study considers satellite data at three different
spatial scales, namely the 3 km MSG SEVIRI data (the ac-
tual field of view is approximately 4.8 km (Schmetz et al.,
2002)), and the 1 km and 5/6 km MODIS data. These
are compared to in situ data which are measured on a
much smaller spatial scale (order of 10 m). Furthermore,
the satellite data are influenced by inaccuracies in geo-
rectification. The quoted accuracy for MSG-1 and MSG-2
is 0.4 pixel or 1.2 km (Eumetsat, 2007). In order to mit-
igate potential geo-rectification issues, it was decided to
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Table 1: MSG SEVIRI coefficients for the Munoz-algorithm. Source: Jiménez-Muñoz and Sobrino (2008)

λi;λj c0 c1 c2 c3 c4 c5 c6
[m] [K] [-] [K−1] [K] [K cm2 g−1] [K] [K cm2 g−1]

MSG-1 10.79;11.94 0.006 1.736 0.297 45.3 -0.97 -147 18.3
MSG-2 10.78;11.99 -0.021 1.503 0.273 44.2 -0.58 -135 16.7

use a 3x3 window of SEVIRI data for comparisons with in
situ data. Although this increases the (nominal) SEVIRI
foot-print from 3 x 3 km2 to 9 x 9 km2, the averaged val-
ues will be more stable than the values from single pixels.
For the MOD11A1 1 km product, a 9 x 9 pixel window
was chosen to match the 9 x 9 km2 window size of the
SEVIRI-data. For the coarser MOD11B1 product, a 2 x
2 km2 window was chosen, although the ground area cov-
ered is, thus, slightly larger at 10 x 10 km2 (or 12 x 12 km2

for V5.0 data). This requires large homogenous areas to
be used as study sites for the in situ measurements, which
is the case for the two sites used in this study (which will
be introduced below).

Using a pixel window instead of a single pixel also al-
lows for deriving statistics for the temperature variation
within the window. In all cases, data were only consid-
ered if at least two pixel values were available within the
window, and a threshold was applied on the maximum
standard deviation allowed for a given time slot to be in-
cluded in the analysis (depending on window size and data
type).

2.8. Field sites and instrumentation

In situ data from two field sites are used in this study
for comparison with satellite data. The two sites are both
located within the Sahel zone in semi-arid West Africa
(see fig. 1 for locations). The sites are located in large
relatively homogenous areas, which is required for com-
parisons with data from moderate and coarse resolution
satellite sensors. At the two sites, Dahra, Senegal and
Agoufou, Mali, tree cover is sparse (about 3-4 %) and the
ground cover is dominated by annual grasses. The land
use is predominantly rangeland used as browsing areas for
animals, although some agricultural areas are present at
the Dahra site.

2.8.1. Dahra, Senegal

The field site is located north-east of the town of Dahra
in northern Senegal in West-Africa and consists of two tow-
ers for validating satellite products Stisen et al. (2008b);
Fensholt and Sandholt (2005). The towers are equipped
with instruments for validating satellite products in the
visible, near-infrared, and the thermal domain. The field
site is hosted by the Centre de Recherches Zootechniques
de Dahra, Institut Sénégalais de Recherches Agricoles (ISRA).
Annual mean precipitation is approximately 370mm (1960-
2007), but with considerable inter-annual variation. The
growing season is relatively short, lasts normally less than
100 days and occurs between July and October. The area

around the towers is used as grazing land for the zoolog-
ical research station, but also as farmland. The soil is
sandy and reddish in colour and has been classified as an
Arenosol (Batjes, 2001). The surface cover is dominated
by annual grasses and the tree crown cover (TCC) around
the site was determined by (Rasmussen et al., 2010a) to be
around 4%. The trees are scattered in the landscape, ei-
ther as isolated trees or as small clumps. In some cases the
distribution of the bushes and trees follows ancient dunes,
which causes stripes of high vegetation - hence the name
“tiger bush”. Due to the strong natural seasonality of the
region, grass is usually desiccated from October to April,
whereas the trees are usually green throughout year. Dur-
ing the rainy season the grass grows high (about 1m) and
dense and the entire site is covered by vegetation.

2.8.2. Agoufou, Mali

The Agoufou site (15.3N, 1.5W) is located in Mali in
the Gourma region which stretches from the loop of the
Niger River southward down to the Burkina-Faso border.
It is part of the African Monsoon Multidisciplinary Anal-
ysis (AMMA) - Couplage de l’Atmosphere Tropicale et
du Cycle Hydrologique (CATCH) Observatory in West-
Africa. The Agoufou site, close to the small town of Hom-
bori (373 mm long term rainfall average), is set on a homo-
geneous 3 x 3 km fixed dune system that is representative
of the most common situation in Central Sahel.

The vegetation at Agoufou is typical of mid-Sahel sandy
soil vegetation with a herbaceous layer almost exclusively
composed of annual species, and scattered trees and shrubs.
Tree cover is 3.1 % (Hiernaux et al., 2009). Surface energy
budget, soil moisture and vegetation growth are markedly
shaped by the alternation of a long dry season and a short
rain season. The rapid germination and growth of the an-
nual vegetation is a prime example of such a sharp cycle.
Annuals germinate after the first rains, in June or July
and unless the plants wilted before maturity by lack of
rain, the senescence matches approximately with the end
of the rainy season. Herbaceous yield is largely determined
by the duration and soil moisture condition of that period.
In turn, the rapid plant growth greatly impacts the land
surface properties like the energy balance and fluxes.
More details about the Agoufou site and the AMMA- CATCH
observatory in Mali can be found in Mougin et al. (2009).

2.9. Instrumentation at the field sites

The sensor configuration for validating LST at the Dahra
site consists of four “KT-15.85 IIP” IR-radiometers (self-
calibrating, chopped radiometers, Heitronics GmbH). The
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Figure 1: Top: An example of the LSA-SAF LST product for 2009/07/01 at 00:00. Bottom: The difference between the cloud masks for the
same time. In the legend for the bottom part, CLMK denotes the MPEF CLMK, while LSA-SAF denotes the SAF-CLMK.
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KT-15 measure IR radiance between 9.6µm and 11.5µm
and express the results as brightness temperatures (BT)
with standard deviation 0.25◦C plus 0.35% of the differ-
ence between target and housing temperature. Three of
the KT-15 point towards targets representing different com-
ponents of the land surface, while the fourth KT-15 mea-
sures downwelling longwave radiance from the atmosphere
at 53◦ with relation to zenith and points northwards. The
targets observed by the three surface facing KT-15 are a
patch of grass / soil, which is sunlit over the entire course
of the day, a patch of grass / soil which is shaded during
the day with the exception of early morning and late after-
noon, and a canopy of a Acacia raddiana tree from south
west. The 53◦ zenith angle of the sky-facing sensor yields
measurements which are representative for the hemispher-
ical downwelling longwave radiation (Kondratyev, 1969).
Due to the small distance between the radiometers and the
surface, atmospheric attenuation of the surface-leaving IR
radiation is negligible. However, the measurements of the
KT-15 observing the surface contain radiance emitted by
the surface (i.e. the target signal) as well as reflected down-
welling IR radiance from the atmosphere: this is corrected
for using the measurements from the sky-facing sensor.
Depending on target emissivity and on downwelling long-
wave radiance (e.g. a cold clear sky vs. a warm humid at-
mosphere), the reflected component can cause differences
of several degrees Kelvin (Schädlich et al., 2001). All cor-
rections for the reflected component in the measurements
are performed at KT-15’s centre wavelength of 10.55µm.

At Agoufou, the site is equipped with a IRTS-P in-
strument from Apogee Instruments. It is a type-K ther-
mocouple sensor measuring in the spectral region between
6 and 14 µm region with an accuracy of ± 0.3 K. It has
a relatively wide field of view; 25°half-angle for 90% of
the signal equalling a 1 m FOV at the mounting height of
3 m. The sensor is measuring a patch of grass which is
sunlit throughout the day. Since no measurements of the
downwelling longwave radiation in a similar spectral band
were available, no corrections of the reflected TIR compo-
nent were performed. Considering the wide spectral region
measured by this instrument, this could lead to significant
errors in the measured temperatures (on the order of a
couple of K) especially for cases with high concentrations
of water vapour in the atmosphere.

For a derivation of LST from brightness temperature
measurements the emissivities of the surface components
have to be known, e.g. the emissivities of the soil back-
ground and of the grass and tree vegetation. At both sites,
Dahra and Agoufou, trees stay green throughout the year
and show only little temporal variation. Consequently, the
seasonal change of emissivity for spatially coarse satellite
pixels corresponds largely to the NDVI-curve of the grass
and closely reflects the variation of moisture in the top
soil layer during the rainy season. Emissivities for Dahra
and Agoufou were determined once per day using the FVC
approach (eq. 3 and 4) and for both sites the data were
corrected for emissivity as described by equation 2. For

Dahra, where also the downwelling longwave radiance Rsky

is measured, the data were additionally corrected for the
reflected Rsky component.

In terms of atmospheric correction of TIR satellite data
both sites are challenging since they have low elevations
a.s.l., which results in long atmospheric paths. The atmo-
spheric water vapour load varies strongly between rainy
and dry season and especially during the warm (about
40°C) and humid (up to 90 % relative humidity) rainy
season the atmospheric correction is challenging. Fur-
thermore, occasional outbreaks of Sahara dust complicate
cloud detection.

3. Results and discussion

3.1. Regional scale comparison between LST products

The LSA-SAF, the Munoz, and the Romaguera-products
were investigated by comparing them over the entire time
series. This was done by pair-wise correlating all those
LST products for each time slot within a subset, for which
all products were classified as cloud-free land surface pix-
els. The chosen subset covers sub-Saharan West-Africa at
a size of 1000 x 550 pixels with 3 kilometres spatial res-
olution of the data grid; 79% of the pixels in this subset
are land pixels, see fig. 1 top. Taking into account the
two different cloud masks and that the LSA-SAF product
is only delivered with cloud mask applied, this means that
the LSA-SAF product can not be compared to the CLMK-
masked data. Therefore, four different pairs of data to can
be investigated:

1. LSA-SAF LST vs Munoz (LSA-SAF cloud mask).

2. LSA-SAF LST vs Romaguera/Atitar (LSA-SAF cloud
mask).

3. Munoz vs Romaguera/Atitar (LSA-SAF cloud mask).

4. Munoz vs Romaguera/Atitar (CLMK cloud mask).

The results are highly consistent during the study pe-
riod and, therefore, only a limited number of days are
shown in fig. 2 (top panel). The two alternative prod-
ucts Munoz and Romaguera are very similar and, with
almost no exceptions, show r2-values above 0.95. A slight
diurnal pattern is present with highest correlation during
daytime. The correlation between the two products and
the LSA-SAF product is also practically indifferent to the
cloud mask applied. In contrast, the correlation between
the Munoz and Romaguera products and the LSA-SAF-
product is weaker and shows a distinct diurnal variation.
The strongest correlation is observed around noon, when
the r2-values are generally above 0.8 and in most cases
exceed 0.9 for both products. During nighttime, correla-
tion is much weaker with typical r2-values between 0.6 and
0.7. Compared to the Romaguera-product, the Munoz-
product is consistently stronger correlated to the LSA-
SAF-product during daytime. The opposite is true dur-
ing night-time. A diurnal pattern is also present in the
difference between the number of available land pixels for
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Figure 2: Top: A time series of r2 values for a week in October for
a pair-wise comparison between the LST-products. Also shown (in
grey, right hand scale) the difference in cloud-free land pixels between
the two cloud masks in percent (computed as SAF CLMK minus
MPEF CLMK). Bottom: the Mean Absolute Deviation (MAE) for
the four time series shown above calculated pairwise.

the two cloud masks (calculated as % clear land pixels in
the LSA-SAF mask minus the corresponding % of clear
land pixels in the CLMK-product), although it is not a
relatively smooth diurnal curve like for the coefficient of
determination. The maximum in the difference between
the two cloud masks generally occurs around 6 am, after
which the difference reduces rapidly and starts to increase
slowly with a dip in the late afternoon in many cases. The
LSA-SAF mask consistently has more clear pixels than
the CLMK mask. Fig. 2, bottom shows the mean abso-
lute error between the four pairs, and diurnal variations
matching the patterns in the correlation. Typical differ-
ences between the two alternative products are between
0.2 and 0.5 K, while typical values for the comparison with
the LSA-SAF is 1.5 K during nighttime and 2-3 K during
daytime.

3.2. Point validation of LST products

3.2.1. MSG-based LST products

The LSA-SAF LST and the two alternative LST prod-
ucts were compared to in situ measurements from the
Dahra, Senegal, and Agoufou, Mali, sites. For the two
alternative products, the version masked with the SAF
CLMK cloud mask and the version masked with the MPEF

CLMK cloud mask were investigated separately. The statis-
tics of the comparisons for the five products are sum-
marised by month in table 2 for the entire study period
for the two sites.

A general observation in these comparisons is that there
are large biases in most cases, with the exception of Oc-
tober. Looking at the data month by month reveals that
in terms of coefficient of determination the performance is
generally worst in August and September, while June and
July have the largest biases. Despite the quite different lo-
cations of the two sites, and the differences in instruments
and corrections carried out, the overall patterns for the
two sites are very alike for all five LST products.

For the Dahra site, the LSA-SAF product has biases
between -1.90 and -6.86 degrees, with a mean bias for the
entire study period of -5.30 degrees. The corresponding
r2-values vary between 0.60 (for September) and 0.96 (for
October) and, thus, follow the general pattern well. For
all months except October, the bias exceeds 5 degrees and
the r2-values do not exceed 0.82. The poor performance
especially for August and September is also reflected by
slopes around 0.6 and offsets exceeding 100 K. At Agoufou,
the performance is generally slightly better both in terms
of bias and r2-values. The results for both locations are
discouraging in terms of biases and correlation, as they
by far exceed the expected uncertainties of the LSA-SAF
product, which is given by the accompanying “errorbar”
product. Scatter plots between in situ LST and LSA-SAF
LST for the entire study period and per month for Dahra
are shown in fig. 3 and for Agoufou in fig. 4.

In order to check the indication that the performance
of the products improves towards the end of the study pe-
riod, we analysed data until November 12th for Dahra.
The time series for October was also investigated and an
apparent change in performance around October 11th 2009
was found. For the period from October 11th to Novem-
ber 12th a comparison with the in situ data yielded more
encouraging results (see fig. 5): the r2-value increased to
0.98, the bias reduced to less than one K and the slope was
close to 1. This clearly indicates that after the end of the
rainy season the LSA-SAF performs excellently at Dahra.

Comparing the LSA-SAF product to the two alterna-
tive sets of products investigated here yields mixed results
(see table 2). In terms of biases and r2-values the MPEF
CLMK-versions of the algorithms out-perform the LSA-
SAF algorithm. On the other hand, the slopes obtained
for the LSA-SAF LST are generally closer to unity, i.e. the
relationship is closer to the 1:1 line than for the other prod-
ucts. When comparing the LSA-SAF LST to the alterna-
tive products with the SAF CLMK cloud mask (which is
a fairer comparison), only the biases are consistently lower
for the alternative products while the other measures are
better for the LSA-SAF product.

The performance of the Munoz and the Romaguera
products (table 2) is very similar, both, in terms of coeffi-
cient of determination and in terms of biases. For Agoufou,
the Munoz-algorithm performs slightly better, but the dif-
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Figure 3: Scatterplot of LSA-SAF LST against in situ measurements for the Dahra, Senegal site. The top left plot shows the data for the
entire study period, whereas the other plots show the data for the 5 separate months.
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Figure 4: As fig. 3 but for the Agoufou, Mali site.
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Figure 5: Dahra. Similar to the plots in fig. 3 but only including
data between 11-10-2009 and 12-11-2009.

ferences are small. For Dahra, there is almost no differ-
ence for the datasets using the MPEF CLMK-mask, while
Munoz perform slightly better for the datasets using the
SAF CLMKmask. Therefore, based on this analysis, there
is a slight preference for the Munoz algorithm.

In terms of the cloud mask, the statistics are generally
better for the MPEF CLMK data than for the data masked
with the SAF CLMK cloud mask. The bias is lower and r2-
values are better or equal in all cases. Only for the slope,
the SAF CLMK out-performs the MPEF CLMK for a few
cases of the Munoz and Roma LST-products. The main
reason for the better performance of the MPEF CLMK
could be that it masks out significantly more pixels than
the SAF CLMK. For the entire 5 months analysed here, on
average 46.44% of the land pixels in the LSA-SAF product
are marked cloud-free, while for the MPEF CLMK-mask
only 35.44% are classified as cloud-free. An example of
this is given in fig. 1 bottom panel where the difference
between the two cloud masks is shown. Several large ar-
eas are present where the MPEF CLMK mask indicates
clouds, while the SAF CLMK marks the same areas cloud-
free. The opposite case, where SAF CLMK masks out pix-
els that are clear according to the MPEF CMLK-product,
usually occurs along cloud-edges where the LSA-SAF is
generally more conservative. This is seen as a seam of pix-
els (in blue) around many of the big cloud-areas in fig. 1,
bottom. Differences between the two cloud masks can also
be seen on the western-most part of Africa along the Sene-
galese coast. As can be seen from the LSA-SAF tempera-
tures, the area has relatively low temperatures compared
to the area just a little further inland. This area is identi-
fied as cloud in the MPEF CLMK, while the SAF CLMK
classified it as clear. Other examples occur in the southern
part of the subset, just north of a larger area identified as
cloud by both products. Here, smaller areas with signif-
icantly lower temperatures are identified as clouds in the
MPEF CLMK-product, while SAF CLMK identifies them
as clear.

It is striking how similar the monthly correlation pat-
terns for the two sites are when comparing fig. 3 and fig.
4. Almost month by month, the slope and the shape of
the point-clouds for the Dahra and Agoufou sites match.
Overall, the scatter is larger for Dahra and for August and
September the range of temperatures is smaller. Despite
these differences, the main features are very similar for the
two sites, indicating that the correlations are controlled
by similar factors. This can be explained by the fact that
the two sites are located at approximately the same lati-
tude and, therefore, the onset of the African monsoon is
also similar. The monsoon is the main factor controlling
the content of atmospheric water vapour, but aerosol op-
tical depth generally does not increase during this period
(Ogunjobi et al., 2008). The low correlations for both sites
coincide with the monsoon season and indicate problems
of the LST retrieval algorithms.

Fig. 6 shows two examples of the diurnal variation in
the in situ LST as well as the satellite-based estimates from
the MSG LSA-SAF product and the MOD11A1-product
representative of a monsoon-case (top) and dry-season case
(bottom). The first part of October shows an almost con-
sistent underestimation by the LSA-SAF product com-
pared to the in situ data, although one day (October 2nd)
shows the opposite case. The observed offset is similar in
magnitude to the bias found in the comparison of the two
products. In several cases, e.g. on October 4th and 5th
and on October 8th, LSA-SAF underestimates LST dra-
matically: this could be explained by undetected clouds.
The in situ data on the 8th also indicate some cloud cover
during the afternoon with a small dip followed by a spike.
This underestimation leads to large temperature differ-
ences between in situ and LSA-SAF LST (in blue, right
scale) and in some cases exceeds 15 K. For the second pe-
riod shown in fig. 6 bottom, the match between in situ
data and LSA-SAF LST is significantly better, with some
almost perfectly matching days near the end of the pe-
riod. However, the first day (Oct. 22nd) and a few other
days also show signs of undetected clouds in the LSA-SAF
data, which causes larger discrepancies between the two
LST estimates.

For both sites, there are some days for which the LST
in the plots (fig. 3 and 4) are distinctive lines or trajec-
tories. One of the most obvious examples occurs in July
at the Agoufou site, where a series of points is clearly vis-
ible above the main point-cloud. These indicate a large
overestimation of LST in the LSA-SAF product or an un-
derestimation in the in situ LST. Other such events can
be identified during most months for Agoufou, while for
Dahra these occur mostly during the two first months.
The trajectories could at least be partly caused by local
phenomena that do not effect larger parts of the total 9
x 9 km2 area, e.g. local precipitation events, which have
a pronounced effect on the in situ measurements, but not
on the satellite data.
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Figure 6: The diurnal variation in the in situ data, the LSA-SAF
LST, the MOD11A1 LST, and the difference between in situ and
LSA-SAF (in blue, right hand scale) for two periods in October for
the Agoufou site. The two cases are representative of the monsoon-
season (top) and the dry-season (bottom), respectively.

3.2.2. MODIS LST products

We compared the LST-estimates fromMODIS MOD11A1
(1 km) and MOD11B1 (5/6 km) products with in situ
measurements. MODIS LST products are currently the
best operationally available alternative to MSG-data and
provide up to four daily estimates of LST (for most ar-
eas) at moderate or coarse resolution. However, with four
LST values per day the retrieval of diurnal LST variation
is incomplete and, due to the fixed timing of the satellite
overpasses, there is no guarantee that the full temperature
range is monitored. The two MODIS products are consid-
ered here because they use algorithms that are based on
different assumptions and, thus, provide to different LST-
estimates that can be assessed.

If all cases with simultaneously available in situ and
MODIS LST are considered, correlation coefficients be-
tween 0.6 and 0.8 are obtained. However, the correla-
tion mainly reflects the similar temperature ranges of the
MODIS observations and the in situ data, but individual
estimates do not match well. In fig. 7 and 8 the correla-
tions are shown by platform (Terra/Aqua) and by overpass
(day/night) for the MOD11A1 (top) and the MOD11B1
(bottom) product.

Performance of the MOD11A1 and MOD11B1 is simi-
lar for both sites. When considering the data for each sen-
sor overpass separately, in most cases there is hardly any
correlation between in situ data and MODIS estimates.
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Figure 7: Scatterplot of in situ versus the MODIS MOD11A1 (top)
and MOD11B1 (bottom) products for the Dahra-site. MOD repre-
sents data from the MODIS Terra sensor and MYD data from the
MODIS Aqua sensor.
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Figure 8: Scatterplot of in situ versus MODIS MOD11A1 (top) and
MOD11B1 (bottom) products for the Agoufou-site.

Despite that, the r2-values are similar for the MOD11A1
and the MOD11B1 product, while slopes and offsets are
closer to their ideal values (1.0 and 0.0, respectively) for
the coarser MOD11B1 product. The slopes are very close
to unity for MOD11B1, but still with a significant bias
while the slopes for MOD11A1 are lower at around 0.7.
Only the day overpass of the MODIS Aqua sensor shows a
slight tendency for a consistent positive correlation. The
Aqua sensor day pass takes place around 2:00 pm which is
usually close to the time of maximum temperature due to
the solar heating of the surface. This can be seen in figures
7 and 8 where the Aqua day overpass generally show the
highest temperatures. As for SEVIRI, the match between
in situ data and satellite measurements improves towards
the end of the study period. Therefore, we extended the
time series ”after the monsoon” for the Dahra-site from
October 11th to November 12th and plotted the MODIS
data against the respective in situ LST (see fig. 5). When
comparing the results to those for the June to October
data shown in fig. 7 top, the fit has improved notably, the
regression is now close to the 1:1 line, and the coefficient
of determination increased to 0.87.

In order to investigate if there is a dependence on the
view zenith angle (VZA), which was observed in previous
studies Trigo et al. (2008c), we plotted the differences be-
tween in situ LST and MOD11B1 LST against MODIS
VZA (see fig. 9). Although fig. 9 is dominated by scatter,
there is a slight tendency towards larger differences with
increasing VZA, which is highlighted by the fitted second
order polynomials. It is also noticeable that the differences
between in situ data and MOD11B1-values are largest for
Aqua afternoon overpasses. This can be explained by the
fact that the highest temperatures are found during the af-
ternoon hours when the different surface components (e.g.
bare soil and vegetation) have the largest differences in
temperature; combined with the high range of MODIS
VZA this leads to the directional effects identified by Trigo
et al. (2008b); Pinheiro et al. (2004, 2006). These effects
occur as the illumination and viewing geometries change
with overpass, which exposes different fractions of sunlit
and shaded parts of the surface components to the sen-
sor. As the sunlit parts are generally warmer than the
shaded parts, the geometry of the overpass influences the
temperature estimates.

One of the most noticeable features is the difference
in the number of good observations between MOD11A1
and MOD11B1 in the favour of the former. Interestingly,
there is also a difference in data availability for MOD11A1
product version 5 (currently the latest version) and version
4.1: for Agoufou, 271 matches between in situ data and
version 5 data were found, but only 188 matches for ver-
sion 4.1 (and the in situ data series is almost complete).
Compared to a potential number of matches which just
exceeds 600, this difference is significant. For the coarser
MOD11B1 product 164 values were available (version 4.1)
for the same period, which is only slightly more than a
quarter of the potential values and on average just above
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Figure 9: Temperature differences (calculated as in situ minus
MOD11B1) against MODIS view zenith angle. The shown lines are
fitted second order polynomials. The markers for the different over-
passes are the same as for fig. 7 and 8.

one per day. The pattern is similar for the Dahra site.
This difference in the data availability is likely to be the
result of the refinements in the V5 algorithm, e.g. the con-
fidence level for the cloud masking has been lowered from
99% to 95% for areas below 2000 m a.s.l., which means
that more pixels are processed (Wan, 2008).

Earlier studies reported problems with the MOD11A1
version 5 product over arid and semiarid areas (Hulley and
Hook, 2009). We compared the two product versions over
both sites, and found no significant differences between the
two product versions in terms of LST values. A scatter-
plot for the Dahra site is shown in fig. 10, which shows
an almost perfect correlation. If one also removes cases
for which less than half of the 81 pixels within the averag-
ing window are available, the largest outliers are removed,
the coefficient of determination increases to 0.998. This
only leaves four cases where the LST difference between
the versions exceeds two degrees and none exceeds three
degrees. For neither of the two test sites the retrieved LST
seem to be affected by algorithmic differences between ver-
sions 5 and 4.1. However, despite the previously reported
problems, the large difference in available data for the two
versions makes version 5 preferable for applications in the
investigated geographic region.

4. Concluding remarks and perspectives

We tested the performance of several SEVIRI-based
LST algorithms over two sites in semi-arid West Africa.
The results show that none of the algorithms performs well
during the monsoon-season and the retrieved LST have
large biases and relatively low r2-values. This may be due
to problems with the algorithms themselves or with the es-
timated total column water vapour, which is a key input to
the algorithms. The tested algorithms yield similar results
for the two field sites, which indicates that the problems
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Figure 10: Comparison between MOD11A1 version 5 and version 4.1
data for the Dahra site.

are not caused by issues arising from comparing small scale
in situ measurements with medium or coarse scale satel-
lite data. All algorithms perform much better towards the
end of the monsoon season, with considerably lower biases
and with r2 values above 0.9: this indicates that the poor
performance is limited to the monsoon season.

Among the different SEVIRI algorithms tested, the
Munoz algorithm generally out-performed the Romaguera/
Atitar algorithms. Comparing LST from the Munoz algo-
rithm to the LSA-SAF product yielded mixed results: the
Munoz LST generally had higher r2-values and lower bi-
ases, but the LSA-SAF product had slopes closer to unity
and smaller offsets.

One key finding is that the LSA-SAF product performs
better with the MPEF CLMK cloud mask applied than
with the SAF CLMK cloud mask. This is surprising as
the SAF CLMK was specifically developed for use with
LSA-SAF products. The main reason for this difference
in performance is thought to be the large difference in
the number of ”cloud-free” pixels: on average, the MPEF
CLMK mask marks approximately 30% more pixels as
cloudy than the SAF CLMK mask. The better relative
performance is gained at the cost of less data. Both cloud
masks suffer from problems with undetected clouds within
and outside the monsoon-season, which leads to large un-
derestimations in the satellite derived LST’s and weaker
correlations.

The MODIS products investigated showed relative poor
agreement with the in situ data, with slightly better per-
formance of the coarser MOD11B1 product compared to
the 1 km MOD11A1-product, although the latter provided
more data. No significant difference was found between the
V5 and V4.1 data in terms of LST-estimates; since the V5
data contain more cloud-free data, it is recommended to
use V5 data.
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