Metadata, citation and similar papers at core.ac.uk

Provided by Copenhagen University Research Information System

UNIVERSITY OF COPENHAGEN

PyCSP - controlled concurrency

Vinter, Brian; Friborg, Rune Mgllegaard; Bjgrndalen, John Markus

Published in:
International Journal of Information Processing and Management

Publication date:
2010

Document version
Peer reviewed version

Document license:
Unspecified

Citation for published version (APA):
Vinter, B., Friborg, R. M., & Bjgrndalen, J. M. (2010). PyCSP - controlled concurrency. International Journal of
Information Processing and Management, 1(2), 40-49.

Download date: 07. apr.. 2020

https://core.ac.uk/display/269196431?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://curis.ku.dk/portal/da/persons/brian-vinter(e5515832-e109-4958-8c81-9cac89ecfa2c).html
https://curis.ku.dk/portal/da/publications/pycsp--controlled-concurrency(d6bbedd0-ee57-11df-b6d2-000ea68e967b).html

PyCSP - controlled concurrency

Brian Vinter
Department of Computer Science
University of Copenhagen
DK-2100 Copenhagen, Denmark
vinter @diku.dk

Rune Mgllegaard Friborg
Department of Computer Science
University of Copenhagen
DK-2100 Copenhagen, Denmark
runef @diku.dk

John Markus Bjgrndalen
Department of Computer Science
University of Tromsg
N-9037 Tromsg, Norway
jmb@cs.uit.no

Abstract

Producing readable and correct programs while at the
same time taking advantage of multi-core architectures is
a challenge. PyCSP is an implementation of Communi-
cating Sequential Processes algebra (CSP) for the Python
programming language, taking advantage of CSP’s for-
mal and verifiable approach to controlling concurrency
and the readability of Python source code. We describe
PyCSP, demonstrate it through examples and demonstrate
how PyCSP compares to Pthreads using a benchmark.

1 Introduction

Maintaining scientific codes is a well-known challenge;
many applications are written by scientists without any for-
mal computer science or software engineering qualifica-
tions, and usually grown “organically” from a small kernel
to hundreds of thousands of code-lines. These applications
have mostly targeted simple single core systems and have
still grown to a complexity where the cost of maintaining
the codes is prohibiting, and where the continued correct-
ness of the code is often questionable. This problem is be-
ing addressed today by training scientists in some kind of
structured program development, however emerging archi-
tectures, which are massively parallel and often heteroge-
neous, may again raise the complexity of software develop-
ment to a level where non computer scientists will not be
able to produce reliable scientific software.

1.1 Motivation

PyCSP [3] is intended to help scientists develop correct,
maintainable and portable code for emerging architectures.
Python is highly suited for scientific applications. While
it is interpreted and thus very slow, scientific libraries effi-
ciently utilize the underlying hardware. CSP provides a for-
mal and verifiable approach to controlling concurrency, fits
directly into scientific workflows, and maps directly onto
many graphical tools that present scientific workflows such
as Taverna[11], Knime[2] and LabView[7].

CPUs are produced with multiple cores today and ev-
ery announced future CPU generation[12] seems to feature
an ever increasing number of cores. As single core per-
formance increase very slowly, researchers are required to
exploit this parallel hardware for increased performance.
To this end a number of parallel libraries like BLAS and
programming tools like Intel Parallel Studio[8] are appear-
ing. Unfortunately parallel libraries are often not enough to
achieve acceptable speed and even with advanced tools par-
allel programming remains a source of added complexity
and new bugs in software development.

The intended users for PyCSP are not computer scien-
tists, but scientists in general. It can not be expected that
general scientists will learn CSP as formulated by Hoare
[6], thus the approach in this paper to controlling concur-
rency is based on CSP, but does not require any knowledge
of CSP. The key elements of controlling concurrency using
PyCSP is presented in the PyCSP section.

https://www.researchgate.net/publication/245805381_Communicating_Sequential_Processes?el=1_x_8&enrichId=rgreq-36fd405822471c63f3827cc90c7d2f0c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYyMTUwMjtBUzoxNTQ2NTAzNTU0NDE2NjVAMTQxMzg4MjkyNjQwOA==
https://www.researchgate.net/publication/30012625_KNIME_the_Konstanz_information_miner?el=1_x_8&enrichId=rgreq-36fd405822471c63f3827cc90c7d2f0c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYyMTUwMjtBUzoxNTQ2NTAzNTU0NDE2NjVAMTQxMzg4MjkyNjQwOA==
https://www.researchgate.net/publication/221004379_PyCSP_-_Communicating_Sequential_Processes_for_Python?el=1_x_8&enrichId=rgreq-36fd405822471c63f3827cc90c7d2f0c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYyMTUwMjtBUzoxNTQ2NTAzNTU0NDE2NjVAMTQxMzg4MjkyNjQwOA==

1.2 Related Work

During the last decade we have seen numerous new li-
braries and compilers for CSP. Several implementations are
optimized for multi-core CPUs that are becoming the de-
facto standard when buying even small desktop computers.
Occam-7 [9], C++CSP [4] and JCSP [14] are three robust
CSP implementations of CSP. C++CSP and JCSP are li-
braries for C++ and Java, while Occam-7 uses CSP inher-
ently in the programming language.

2 CSpP

The Communicating Sequential Processes algebra, CSP
[6], was invented more than 25 years ago and while it was
highly popular and thoroughly investigated in its first years,
interest dropped off in the late 1980 because the algebra ap-
peared to be a solution in search of a problem, namely mod-
elling massively concurrent processes and providing tools
to solve many of the common problems associated with
writing parallel and concurrent applications.

CSP provides many attractive features with respect to the
next generation processors; it is a formal algebra with au-
tomated tools to help prove correctness, it works with en-
tirely isolated process spaces, thus the inherent coherence
problem is eliminated by design, and it lends itself to being
modelled through both programming languages and graph-
ical design tools.

Another attractive feature of CSP, which has so far not
been investigated, is the fact that it should lend itself to-
wards modelling heterogeneous systems. This is important
for the next generation processors since heterogeneity has
already been introduced: the CELL-BE processor features
two architectures on the core, while the Tesla processors re-
quire a classic processor for managing the overall system
and the scalar portions of an application.

3 PyCSP

PyCSP provides an API that can be used to write concur-
rent applications using CSP. PyCSP was introduced in 2007
[3] and revisited in 2009 [13]. The API is implemented in
four versions: Threads, processes, greenlets and net. Since
all implementations share the same API it is trivial to swap
from one implementation to another. Having several imple-
mentations sharing one API was presented in [5].

* pycsp.threads - A CSP process is implemented as an
OS thread. The internal synchronization is handled by
thread-locking mechanisms. This is the default imple-
mentation. Because of the Python Global Interpeter
Lock, this is best suited for applications that spend
most of their time in external routines.

* pycsp.processes - A CSP process is implemented as
an OS process. The internal synchronization is more
complex than pycsp.threads and is built on top of the
multiprocessing module available in Python 2.6. This
implementation is not affected by the Global Inter-
preter Lock!, but has some limitations on a Windows
OS and generally has a larger communication over-
head than the threaded version.

* pycsp.greenlets - This uses co-routines instead of
threads. Greenlets is a simple co-routine implementa-
tion that is bundled together with pylib. It provides the
possibility to create 100.000 CSP processes in a single
CSP network. This version is optimal for single-core
architectures since it provides the fastest communica-
tion.

* pycsp.net - A proof-of-concept net implementation of
pycsp.threads. All synchronization is handled in a sin-
gle process. This provides the same functionality as
pycsp.threads, but adding a larger cost and a bottle-
neck by introducing the ChannelServerProcess. It uses
Pyro [1] for communication.

Use threads

from pycsp.threads import =x
Use processes

from pycsp.processes import =*

Table 1. Switching between implementations
of the PyCSP API

3.1 Processes

A process in PyCSP is an isolated unit of execution, not
physically isolated as an operating system process, but by
design should not share objects with other processes. A
process is specified by using the @process decorator as
depicted in listing 1.

This creates a increment class that can produce incre-
ment process instances. Executing the process is covered in
the Concurrency section.

3.2 Networks of Processes

The only allowed methods to communicate between pro-
cesses are to either pass arguments when creating processes
or by sending messages across channels. All communica-
tions are blocking operations and are guaranteed to be sent

lethon uses a Global Interpreter Lock, the GIL, to protect the inter-
preter when multiple threads execute Python code. The GIL limits concur-
rency when executing Python code, but libraries commonly mitigate the
problem by releasing the GIL when executing external code.

https://www.researchgate.net/publication/244421236_Communicating_mobile_processes_in-troducing_occam-pi?el=1_x_8&enrichId=rgreq-36fd405822471c63f3827cc90c7d2f0c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYyMTUwMjtBUzoxNTQ2NTAzNTU0NDE2NjVAMTQxMzg4MjkyNjQwOA==
https://www.researchgate.net/publication/221004323_Integrating_and_extending_JCSP?el=1_x_8&enrichId=rgreq-36fd405822471c63f3827cc90c7d2f0c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYyMTUwMjtBUzoxNTQ2NTAzNTU0NDE2NjVAMTQxMzg4MjkyNjQwOA==
https://www.researchgate.net/publication/245805381_Communicating_Sequential_Processes?el=1_x_8&enrichId=rgreq-36fd405822471c63f3827cc90c7d2f0c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYyMTUwMjtBUzoxNTQ2NTAzNTU0NDE2NjVAMTQxMzg4MjkyNjQwOA==
https://www.researchgate.net/publication/221004402_Three_Unique_Implementations_of_Processes_for_PyCSP?el=1_x_8&enrichId=rgreq-36fd405822471c63f3827cc90c7d2f0c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYyMTUwMjtBUzoxNTQ2NTAzNTU0NDE2NjVAMTQxMzg4MjkyNjQwOA==
https://www.researchgate.net/publication/221004379_PyCSP_-_Communicating_Sequential_Processes_for_Python?el=1_x_8&enrichId=rgreq-36fd405822471c63f3827cc90c7d2f0c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYyMTUwMjtBUzoxNTQ2NTAzNTU0NDE2NjVAMTQxMzg4MjkyNjQwOA==

exactly once and received by exactly one process. A chan-
nel can have any number of writing processes and any num-
ber of reading processes. It is created using the Channel
class.

a = Channel('A’)

Processes are usually passed their input and output chan-
nels as parameters which can then be used to communicate
with other processes. An example of this usage is shown in
listing 1.

@process

def increment (cin, cout, inc_value=l):

while True:
cout (cin() + inc_value)

Listing 1. Example process with 10

To communicate on a channel an application is required
to create an input or output end. This is created using the IN
and OUT functions, which will return a ChannelEnd object.
Requesting a channel end object will also join the actual
channel. This adds information to the channel, letting it
know how many readers and writers that are connected to
it. The number of readers and writers is used to automate
poisoning explained in Section 3.5.

To create an increment instance P and provide it with
channel ends we do the following:

P = increment (IN(a), OUT (b))

Reading on an input channel end ein = IN(a) is done
by invoking cin (). Writing msg X on an output channel
end cout = OUT (a) is done by invoking cout (X).

Calling IN(a) or OUT(a) on a channel a to create a
channel end is usually combined with creating processes,
by providing channel ends as arguments to new processes.

3.3 Concurrency

Creating a process will simply instantiate a copy of the
process but not execute or start it in any way. A set of pro-
cesses may be executed using one of three ways, Sequence,
Parallel or Spawn. Sequence and Parallel are synchronous
and will only terminate once all processes in their parame-
ter list are terminated. Sequence executes the processes one
at a time while Parallel executes all the processes concur-
rently. Spawn starts the set of processes and then returns,
one may view it as an asynchronous version of Parallel.

When processes are passed to Parallel (.. .), they are
queued for execution and the Parallel construct will block
until all have finished.

a,b = Channel('A’), Channel('B’)
Parallel (
counter (OUT (a)), 10),
increment (IN(a), OUT (b)),
printer (IN (b))

Listing 2. Initiating processes for execution

The code in listings 2 completes when the counter, incre-
ment and the printer processes has completed. In this case
it will never complete. Section 3.5 explains how to end the
Parallel (processes) execution

3.4 Nondeterminism

When an input or output channel end is invoked, as ex-
plained in Section 3.2, you are committed to this channel
until this communication has completed. Using the Alter-
nation class, it is possible to commit to a guard set until
exactly one of these is selected.

A guard set is represented as a list of dictionaries where
the keys are either input channel ends from which to read
or two-tuples where the first entry is an output channel end
and the second the value that should be written to the cor-
responding channel. The value of each dictionary entry is a
function of type choice. This function may be executed if
the guard becomes true. If the guard is an input guard then
the choice function will always have the parameter Chan-
nellnput available which is the value that was read from the
channel.

Alternation has two methods

» Execute — which waits for a guard to complete and then
executes the associated choice function

* Select - which returns a two-tuple, the guard that was
chosen by Alternation and if the guard was an input-
guard, the message that was read.

Note that alternation always performs the guard that was
chosen, i.e. channel input or output is executed within the
alternation so even the empty choice with an alternation ex-
ecution or a choice where the results are simply ignored,
still performs the guarded input or output. An example of
alternation usage is shown in listings 3.

@choice
def read_action (ChannelInput=None) :
print ChannelInput

@choice
def write_action():
print 'W’

@process
def par_ in_out(cinl, cin2, cout3, cnt):
for i in range(cnt):
Alternation ([
{ cinl:read_action },
{ cin2:read_action },
{ (cout3,i):write_action }
]) .execute ()

Listing 3. Alternation

The guard types included in the distribution are:
 Channel end input

* Channel end output

* Timeout(seconds) - When expired, it will commit.
» Skip() - At first change it will commit.

The order of guards in a guard set is important. A guard
set having a Skip() guard as the first item will always com-
mit to this Skip() guard, thus Skip() is usually used as the
last item in a guard set. A usage of Timeout() might be like
this:

(guard_selected, msg) = Alternation([
{ cin:None },
{ Timeout (seconds=1) :None }
1) .select ()

if isinstance(guard_selected, Timeout):
print ‘timeout!’

3.5 Termination

A controlled shutdown of a CSP network can be per-
formed by using poisoning [10]. Poisoning of a net-
work may happen in one of two ways, either as an ex-
plicit poison which will propagate the entire network in-
stantly and cause a fast termination, or as an incremental
retirement which allows all processes to finish their cur-
rent work before termination. An explicit poison is per-
formed using the poison (channel/channelend) call.
The less intrusive poison can be performed by using the
retire (channelend) call. Calling retire will cause a
decrement of an internal counter inside a channel. When
a retire () call causes a channel to have O readers or 0
writers left, the channel is permanently retired and any ac-
cess will cause an exception as described below.

Upon the permanent retirement or poisoning
of a channel, all processes that access the chan-
nel will raise a ChannelRetireException() or
ChannelPoisonException () respectively. Any fol-
lowing reads or writes on same channel will also raise an
exception. Whether this exception is caught inside the

process or passed on is left to the programmer. The default
behaviour is that the Process class will catch the exception
and then, depending on whether it is poisoned or retired,
the following occurs: all channels and channel ends in the
argument list of the poisoned process are poisoned, thus
propagating a poison signal through all known channels.
All channel ends in the argument list of the retired process
is retired, thus propagating a retire signal through to all
known channel ends.

In listings 4 a programmer chooses to catch
ChannelRetireException () inside a process.

@process
def printer(cin):
try:
i=0

while True:
print cin()
i+=1
except ChannelRetireException:
print ’'Printed’, i, ’'values’

Listing 4. Controlling termination

@process
def counter (cout, N):
for i in range(N):
cout (i)
retire (cout)

Listing 5. Initiating termination

To initiate termination, we poison the network nicely by
calling retire in listings 5. This propagates a retire when all
output ends of a channel are retired. Instead of retire(),
poison() could be used which poisons the channel in-
stantly. Poisoning channels or retiring channel ends are a
nice way to shut down processes.

4 Examples

Our first example is an application that computes the
Mandelbrot set. This example is also used in section 5 to
compare PyCSP performance to Pthreads. It consists of a
manager process and a number of worker processes. The
design is modelled in figure 1. The manager divides the
computation into jobs and loops on the Alternation in list-
ing 6, until all jobs have been computed.

while jobs or len(results) < jobcount:
if jobs:
Alternation ([{

If selected, a job is read
from workerIn
workerIn:received job,

https://www.researchgate.net/publication/221004341_JCSP-poison_Safe_termination_of_CSP_process_networks?el=1_x_8&enrichId=rgreq-36fd405822471c63f3827cc90c7d2f0c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYyMTUwMjtBUzoxNTQ2NTAzNTU0NDE2NjVAMTQxMzg4MjkyNjQwOA==

If selected, the job at the
end of the jobs list is

written to workerOut
(workerOut, jobs[-1]) :send_job

}1) .execute ()
else:
received_ job (workerIn())

Listing 6. Manager process: Deliver and re-
ceive loop

This Alternation handles all synchronization between the
manager and the workers. For every loop, one of two things
will occur. Either a new job is sent to a worker asking for a
job, or a new job result is received from a worker finished
computing. When all jobs are computed and received, they
are glued together and the computation has finished.

Job
Manager
Worker
Result of Job

Figure 1. Mandelbrot PyCSP design

The second example is a simple webserver that runs a
set of services. In figure 2 we demonstrate how easily this
implementation can be mapped into a model consisting of
connected processes. A service can register itself by send-
ing an output channel end to the dispatcher. This is then en-
tered into a service dictionary inside the dispatcher. When
an incoming request is received it is sent to a matching ser-
vice if one exists. A popular service might register several
processes to handle a greater load. The dispatcher is able
to listen for both new services registering and incoming re-
quests by using an Alternation on input guards.

Listen on '
Socket HTTPsocket

Incoming
Request Redirect

Request r

Figure 2. Webserver PyCSP design

Answer

Dispatcher

Register Once

An example of a hello world service is shown in listing
7. It performs a self-registering step and then goes into a

loop. In this loop requests are received and bundled together
with an output channel end. When returning the result for
a request, the result is sent on cout, which communicates
directly to the HTTPSocket process handling the client con-
nection.

@process
def HelloWorld(register):
req chan = Channel ()
cin = IN(req _chan)
register ((’ /hello.html’, OUT(req chan)))
while True:
(req_str, cout) = cin()
cout ("Hello World")

Listing 7. HelloWorld process

The simple webserver has one bottleneck, the dispatcher.
All other processes can be multiplied in numbers, to do
loadbalancing. When a request is dispatched to a service,
the dispatcher is free to handle other requests and is not re-
quired to wait for any services to finish.

User Input

I

Control

Figure 3. Stochastic Minimum Search PyCSP
design

The final example combines processes allocated for user
input and output with performing a stochastic search for a
local minimum in parallel. The PyCSP design is shown in
figure 3 and maps directly to the actual code. A version of
the code necessary to perform this search, with a simplified
gmin process, is shown in listing 8. A channel used to up-
date the workers with the function f, going from the master
to the workers has been removed in the listed code. This
simple network shows how a concurrent interactive appli-
cation can be made using PyCSP. The userin process can
easily parse inputs from the keyboard and perform actions
depending on the input. In this example when the user en-
ters an input, the network is terminated with a poison call.

@process
def gmin(f ,chout):
try:
while True:
Find local minimum of function £
from random point
chout (min)

@process
def master (kbd, scr, workers_i):
log = []
while True:
Alternation([{
kbd:None,
workers_ i:"""
log.append (ChannelInput)
log.sort()
scr (log[0])

}1) .execute ()

@process

def userin(kbd) :
raw_input ("Terminate")
poison (kbd)

@process
def userout (scr):
while True:
print scr()

kbd = Channel ()

scr = Channel ()
workers = Channel ()
N=10

= "xXx*x2+y**x2-pylab.cos (18xx)
-pylab.cos (18xy) +2’

Parallel (userin (OUT (kbd)),
userout (IN(scr)),
master (IN(kbd), OUT (scr), IN(workers)),
[gmin (£, OUT (workers)) for i in range(N)]
)

Listing 8. Stochastic Minimum Search

As long as the application is running the workers will
search for a new local minimum, constantly updating the
master process with new candidates which are printed to
the screen by userout. Upon termination the poison signal
is propagated to all processes and the application exists.

5 Performance

To compare the overhead of using PyCSP with a C pro-
gram using Pthreads, we run a Mandelbrot benchmark. The
benchmark uses the same C function for computing the val-
ues of a group of pixels. The PyCSP version calls the C
function using the standard Python ctypes library.

Since the computation time for each region of the com-
puted picture is irregular, we use a bag-of-tasks scheme
to provide automatic load-balancing. Each worker thread
retrieves a task description from a task queue protected
with a lock (C version) or a manger process using chan-
nels (PyCSP version), computes the pixels requested in that

task description, and stores the results before fetching a new
task.

The bechmarks are executed on a computer with § cores:
two Intel Xeon E5310 Quad Core processors and 8GB
RAM running Ubuntu 9.04. We use PyCSP version 0.6.0
with Python 2.6.2.

The measured time for each run includes the startup and
completion time for the worker threads or PyCSP processes,
but not the startup time of the main program.

5.1 Results

Figure 4 shows the speedups of the PyCSP and Pthreads
implementations of the benchmark when run using various
problem sizes. The number of tasks is kept constant at 100,
while the size of the total problem is varied from 10x10
pixels to 2560x2560 pixels.

As expected, the Pthreads version approaches linear
speedup earlier than the PyCSP version: the 640x640,
1280x1280 and 2560x2560 problems are close to linear,
while in the PyCSP version only the two largest problems
are close to linear. The execution time for the largest prob-
lem with a single worker is similar in both versions: 49.48
seconds for PyCSP and 49.36 seconds for Phtreads. For 8
workers, the numbers are 6.45 seconds for PyCSP and 6.28
seconds for Pthreads.

The main difference between the versions is the overhead
of the interpreted Python language, and also that the PyCSP
workers need to wake up and interact with a manager pro-
cess, while in the Pthreads version, there workers only need
to grab and release a lock.

The results shows that for this benchmark, PyCSP and
the choices made in the PyCSP solution add a small over-
head compared to the Pthreads version, but that the over-
head is not overly large: the smallest problem size that ap-
proaches linear speedup is 4 times larger for the PyCSP ver-
sion than the Pthreads version.

6 Conclusions

We have described PyCSP, an implementation of Com-
municating Sequential Process algebra (CSP) for the
Python programming language. PyCSP takes advantage of
CSP’s formal and verifiable approach to controlling concur-
rency. The close mapping between the graphical represen-
tation of CSP programs and the PyCSP source code makes
it easy to compare design documents and implementations,
helping programmers manage the complexity that is often
introduced when introducing parallel architectures.

In this paper we show that using PyCSP, we can get
fairly close to the efficiency of a Pthreads implementation
of a Mandelbrot benchmark. The smallest problem size that
provides a near linear speedup with PyCSP using 8 CPU

Speedup PyCSP

5i26-0010 ——
§i26-0020 ~--x-
size-0040 ------

size-0160 ——m-— A
size-0320 ---o-- e
size-0640 -~ -o-- - e

7 - size-0080 & /

61 size-1280 — & 5
§ize-2560 ----a--- A

Speedup
>

of workers

Speedup pthreads

5ize-0010 ——
size-0020 ---x--—-

size-0040 ---*--- P

7 size-0080 & AL
size-0160 ——#-— P
size-0320 ---o-- A
size-0640 - - =

size-1280 -—-&-—
Size-2560 ---4---

Speedup
S

1 2 3 4 5 6 7
of workers

Figure 4. Speedup of PyCSP and Pthreads
Mandelbrot computations.

cores is four times the smallest problem size that provide a
near linear speedup with the Pthreads version. This is close
enough that we believe PyCSP to be usable for scientific
computations.

References

[1] Pyro: Python remote objects. http://pyro.sourceforge.net/.

[2] M. R. Berthold, N. Cebron, F. Dill, T. R. Gabriel, T. Kotter,
T. Meinl, P. Ohl, C. Sieb, K. Thiel, and B. Wiswedel. Kn-
ime: The konstanz information miner. In Studies in Classifi-
cation, Data Analysis, and Knowledge Organization (GfKL
2007). Springer, 2007.

[3] J. M. Bjgrndalen, B. Vinter, and O. Anshus. PyCSP
- Communicating Sequential Processes for Python. In
A.A.McEwan, S.Schneider, W.Ifill, and P.Welch, editors,
Communicating Process Architectures 2007, pages 229—
248, jul 2007.

[4] N. C. Brown. C++CSP2: A Many-to-Many Threading. In
A. A. McEwan, W. Ifill, and P. H. Welch, editors, Communi-
cating Process Architectures 2007, pages 183-206, jul 2007.

[5] R. M. Friborg, J. M. Bjgrndalen, and B. Vinter. Three
Unique Implementations of Processes for PyCSP. In Com-
municating Process Architectures 2009, nov 2009.

[6] C.Hoare. Communicating sequential processes. Communi-
cations of the ACM, 21(8):666-677, pages 666—677, August
1978.

[7] LabView. http://www.ni.com/labview/.

[8] Intel parallel studio. http://software.intel.com/en-us/intel-
parallel-studio-home/.

[9] P.H.Welch and F. Barnes. Communicating mobile processes
- introducing occam-pi. In Communicating Sequential Pro-
cesses, Lecture Notes in Computer Science, pages 175-210.
Springer-Verlag, 2005.

[10] B. H. Sputh and A. R. Allen. JCSP-Poison: Safe Termina-
tion of CSP Process Networks. CPA, Communicating Pro-
cess Architectures, September 2005.

[11] Taverna Project. http://taverna.sourceforge.net.

[12] B. Vinter. Next generation processes. In B. Topping and
P. Ivanyi, editors, Parallel, Distributed and Grid Computing
for Engineering, Computational Science, Engineering and
Technology, pages 21-33. Saxo-Coburg Publications, 2009.

[13] B. Vinter, J. M. Bjgrndalen, and R. M. Friborg. PyCSP Re-
visited. In Communicating Process Architectures 2009, nov
2009.

[14] P. H. Welch, N. C. Brown, J. Moores, K. Chalmers, and
B. Sputh. Integrating and Extending JCSP. In A. A. McE-
wan, W. Ifill, and P. H. Welch, editors, Communicating Pro-
cess Architectures 2007, pages 349-369, jul 2007.

https://www.researchgate.net/publication/244421236_Communicating_mobile_processes_in-troducing_occam-pi?el=1_x_8&enrichId=rgreq-36fd405822471c63f3827cc90c7d2f0c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYyMTUwMjtBUzoxNTQ2NTAzNTU0NDE2NjVAMTQxMzg4MjkyNjQwOA==
https://www.researchgate.net/publication/244421236_Communicating_mobile_processes_in-troducing_occam-pi?el=1_x_8&enrichId=rgreq-36fd405822471c63f3827cc90c7d2f0c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYyMTUwMjtBUzoxNTQ2NTAzNTU0NDE2NjVAMTQxMzg4MjkyNjQwOA==
https://www.researchgate.net/publication/244421236_Communicating_mobile_processes_in-troducing_occam-pi?el=1_x_8&enrichId=rgreq-36fd405822471c63f3827cc90c7d2f0c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYyMTUwMjtBUzoxNTQ2NTAzNTU0NDE2NjVAMTQxMzg4MjkyNjQwOA==
https://www.researchgate.net/publication/244421236_Communicating_mobile_processes_in-troducing_occam-pi?el=1_x_8&enrichId=rgreq-36fd405822471c63f3827cc90c7d2f0c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYyMTUwMjtBUzoxNTQ2NTAzNTU0NDE2NjVAMTQxMzg4MjkyNjQwOA==
https://www.researchgate.net/publication/221004341_JCSP-poison_Safe_termination_of_CSP_process_networks?el=1_x_8&enrichId=rgreq-36fd405822471c63f3827cc90c7d2f0c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYyMTUwMjtBUzoxNTQ2NTAzNTU0NDE2NjVAMTQxMzg4MjkyNjQwOA==
https://www.researchgate.net/publication/221004341_JCSP-poison_Safe_termination_of_CSP_process_networks?el=1_x_8&enrichId=rgreq-36fd405822471c63f3827cc90c7d2f0c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYyMTUwMjtBUzoxNTQ2NTAzNTU0NDE2NjVAMTQxMzg4MjkyNjQwOA==
https://www.researchgate.net/publication/221004341_JCSP-poison_Safe_termination_of_CSP_process_networks?el=1_x_8&enrichId=rgreq-36fd405822471c63f3827cc90c7d2f0c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYyMTUwMjtBUzoxNTQ2NTAzNTU0NDE2NjVAMTQxMzg4MjkyNjQwOA==
https://www.researchgate.net/publication/221004323_Integrating_and_extending_JCSP?el=1_x_8&enrichId=rgreq-36fd405822471c63f3827cc90c7d2f0c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYyMTUwMjtBUzoxNTQ2NTAzNTU0NDE2NjVAMTQxMzg4MjkyNjQwOA==
https://www.researchgate.net/publication/221004323_Integrating_and_extending_JCSP?el=1_x_8&enrichId=rgreq-36fd405822471c63f3827cc90c7d2f0c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYyMTUwMjtBUzoxNTQ2NTAzNTU0NDE2NjVAMTQxMzg4MjkyNjQwOA==
https://www.researchgate.net/publication/221004323_Integrating_and_extending_JCSP?el=1_x_8&enrichId=rgreq-36fd405822471c63f3827cc90c7d2f0c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYyMTUwMjtBUzoxNTQ2NTAzNTU0NDE2NjVAMTQxMzg4MjkyNjQwOA==
https://www.researchgate.net/publication/221004323_Integrating_and_extending_JCSP?el=1_x_8&enrichId=rgreq-36fd405822471c63f3827cc90c7d2f0c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYyMTUwMjtBUzoxNTQ2NTAzNTU0NDE2NjVAMTQxMzg4MjkyNjQwOA==
https://www.researchgate.net/publication/245805381_Communicating_Sequential_Processes?el=1_x_8&enrichId=rgreq-36fd405822471c63f3827cc90c7d2f0c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYyMTUwMjtBUzoxNTQ2NTAzNTU0NDE2NjVAMTQxMzg4MjkyNjQwOA==
https://www.researchgate.net/publication/245805381_Communicating_Sequential_Processes?el=1_x_8&enrichId=rgreq-36fd405822471c63f3827cc90c7d2f0c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYyMTUwMjtBUzoxNTQ2NTAzNTU0NDE2NjVAMTQxMzg4MjkyNjQwOA==
https://www.researchgate.net/publication/245805381_Communicating_Sequential_Processes?el=1_x_8&enrichId=rgreq-36fd405822471c63f3827cc90c7d2f0c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYyMTUwMjtBUzoxNTQ2NTAzNTU0NDE2NjVAMTQxMzg4MjkyNjQwOA==
https://www.researchgate.net/publication/30012625_KNIME_the_Konstanz_information_miner?el=1_x_8&enrichId=rgreq-36fd405822471c63f3827cc90c7d2f0c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYyMTUwMjtBUzoxNTQ2NTAzNTU0NDE2NjVAMTQxMzg4MjkyNjQwOA==
https://www.researchgate.net/publication/30012625_KNIME_the_Konstanz_information_miner?el=1_x_8&enrichId=rgreq-36fd405822471c63f3827cc90c7d2f0c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYyMTUwMjtBUzoxNTQ2NTAzNTU0NDE2NjVAMTQxMzg4MjkyNjQwOA==
https://www.researchgate.net/publication/30012625_KNIME_the_Konstanz_information_miner?el=1_x_8&enrichId=rgreq-36fd405822471c63f3827cc90c7d2f0c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYyMTUwMjtBUzoxNTQ2NTAzNTU0NDE2NjVAMTQxMzg4MjkyNjQwOA==
https://www.researchgate.net/publication/30012625_KNIME_the_Konstanz_information_miner?el=1_x_8&enrichId=rgreq-36fd405822471c63f3827cc90c7d2f0c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYyMTUwMjtBUzoxNTQ2NTAzNTU0NDE2NjVAMTQxMzg4MjkyNjQwOA==
https://www.researchgate.net/publication/30012625_KNIME_the_Konstanz_information_miner?el=1_x_8&enrichId=rgreq-36fd405822471c63f3827cc90c7d2f0c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYyMTUwMjtBUzoxNTQ2NTAzNTU0NDE2NjVAMTQxMzg4MjkyNjQwOA==
https://www.researchgate.net/publication/221004402_Three_Unique_Implementations_of_Processes_for_PyCSP?el=1_x_8&enrichId=rgreq-36fd405822471c63f3827cc90c7d2f0c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYyMTUwMjtBUzoxNTQ2NTAzNTU0NDE2NjVAMTQxMzg4MjkyNjQwOA==
https://www.researchgate.net/publication/221004402_Three_Unique_Implementations_of_Processes_for_PyCSP?el=1_x_8&enrichId=rgreq-36fd405822471c63f3827cc90c7d2f0c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYyMTUwMjtBUzoxNTQ2NTAzNTU0NDE2NjVAMTQxMzg4MjkyNjQwOA==
https://www.researchgate.net/publication/221004402_Three_Unique_Implementations_of_Processes_for_PyCSP?el=1_x_8&enrichId=rgreq-36fd405822471c63f3827cc90c7d2f0c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYyMTUwMjtBUzoxNTQ2NTAzNTU0NDE2NjVAMTQxMzg4MjkyNjQwOA==
https://www.researchgate.net/publication/221004379_PyCSP_-_Communicating_Sequential_Processes_for_Python?el=1_x_8&enrichId=rgreq-36fd405822471c63f3827cc90c7d2f0c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYyMTUwMjtBUzoxNTQ2NTAzNTU0NDE2NjVAMTQxMzg4MjkyNjQwOA==
https://www.researchgate.net/publication/221004379_PyCSP_-_Communicating_Sequential_Processes_for_Python?el=1_x_8&enrichId=rgreq-36fd405822471c63f3827cc90c7d2f0c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYyMTUwMjtBUzoxNTQ2NTAzNTU0NDE2NjVAMTQxMzg4MjkyNjQwOA==
https://www.researchgate.net/publication/221004379_PyCSP_-_Communicating_Sequential_Processes_for_Python?el=1_x_8&enrichId=rgreq-36fd405822471c63f3827cc90c7d2f0c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYyMTUwMjtBUzoxNTQ2NTAzNTU0NDE2NjVAMTQxMzg4MjkyNjQwOA==
https://www.researchgate.net/publication/221004379_PyCSP_-_Communicating_Sequential_Processes_for_Python?el=1_x_8&enrichId=rgreq-36fd405822471c63f3827cc90c7d2f0c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYyMTUwMjtBUzoxNTQ2NTAzNTU0NDE2NjVAMTQxMzg4MjkyNjQwOA==
https://www.researchgate.net/publication/221004379_PyCSP_-_Communicating_Sequential_Processes_for_Python?el=1_x_8&enrichId=rgreq-36fd405822471c63f3827cc90c7d2f0c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYyMTUwMjtBUzoxNTQ2NTAzNTU0NDE2NjVAMTQxMzg4MjkyNjQwOA==
https://www.researchgate.net/publication/220621502

