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Abstract

We propose a model able to describe the Interspike Intervals of two or more neurons subject
to common inputs from the network.  The single neuron dynamic is described through a classical Leaky
Integrate and Fire model, but the model also catches the joint behavior of two neurons resorting to the
use of copulas.  Copulas are mathematical objects largely used to describe dependencies laws.  Syn-
chronous and delayed dependencies are considered by means of a set of examples.  Results are discussed
making use of crosscorrelograms.
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Introduction

Stochastic models have been extensively used
to describe single neuron activity and to understand
coding principles.  Strong mathematical efforts have
determined the development of analytical, numerical
or eventually simulative methods for their study.
This fact has allowed the use of single neuron models
to describe the role of the noise in signal transmission
and to study input-output relationships.  In this
framework Leaky Integrate and Fire (LIF) models
owe their popularity to the existence of specific math-
ematical methods and to their ability to reproduce a
set of experimental features (4, 5, 9).

LIF models are of little help when one wishes to
work with information transmitted in a neuronal
network.  The spike trains in a network are determined
by connections between the involved neurons and
groups of neurons.  Available mathematical methods
for the LIF models do not allow the description of
Interspike Intervals (ISIs) in the presence of dependent
processes.  Jump diffusion processes have been

proposed to model the dynamics of interconnected
neurons (17) and other approaches make use of
simplified LIF models to mimic the dynamic of single
neuronal units linked with assigned laws (7).
Simulation is the typical method for these studies, but
it requires increasing computational time when the
dimension of the network grows and the description
of the single neuron dynamics is not oversimplifed.
The lack of analytical results and the presence of a
large number of parameters make the interpretation
of simulations diffcult.

In this paper we propose a new approach to the
description of the activity of neuronal networks.  We
present a model for the description of the simulta-
neous activity of two neurons influenced by dependent
noise.  The model is formulated as a LIF model.  The
reason for this is to get a mathematically tractable
model, and to have the possibility to re-use results
and methods developed for the single neuron case.
The study is performed using simulations but this
should only be considered as a first step devoted to
the understanding of model features.  Indeed, the
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structure of the model is such that further mathematical
studies should allow the development of specific
techniques for its analysis.  We limit ourselves to
model a couple of neurons but the extension to a
larger number of units could be considered when the
mathematical problems involved with the study of
this model are solved.

The leading idea in the formulation of the model
is the use of copulas.  Recalling that a copula is a
mathematical object joining two distributions to model
the dependence between the involved random variables
(r.v.), we introduce a dependence between two
stochastic processes by coupling their increments.
We describe the membrane potential evolution of
each neuron by means of a diffusion process, and we
couple the processes through suitable copulas joining
their noise terms.  The rationale for this type of cou-
pling lies in the observation that both neurons are
connected with the network.  Hence, they become
dependent due to their common dependence on the
network activity.  Other types of dependencies could
be investigated, however, the main aim of this paper
is to focus on this new approach and not to propose a
new general model.  Furthermore, we do not detail
here a possible procedure to get a realistic dependence
between the spike trains.  We simply draft the basic
ideas, postponing the mathematical procedure to a
more technical paper to get a bivariate diffusion
process as a limit of the Stein’s model for two neurons.
Hence, we do not build “ad hoc” families of copulas,
but we use some of the most popular families to in-
vestigate the effect of the introduction of dependencies
between spike trains modeled via LIF models.

A short review on copulas and their properties is
presented in Section 2, while we refer to (12) for a
complete introduction.  The use of copula in neuro-
science was first proposed by (8), but it is not yet suf-
ficiently investigated.  Here we describe each neuron
via a LIF model, but the two involved stochastic pro-
cesses are dependent to account for the dependency
between the two neurons.  In Section 3 we present the
model and the quantities of interest for its study.  The
effect of using different copulas to couple the two
stochastic processes is investigated in Section 4 to
detect possible differences in the spike trains generated
through different couplings of the modeled neurons
and to recognize experimental features that the model
can mimic.  Hence, we illustrate the neuronal dynamics
that can be explained through the proposed depen-
dencies.  In particular, we show that the model allows
both synchronous and delayed spiking activity.  A set
of examples are discussed making use of crosscorre-
lograms.

Crosscorrelograms are the typical statistical
method to analyze simultaneously recorded ISIs but
some criticism on their use has appeared in the

literature (2).  The examples discussed here confirm
these difficulties.  Our results show that they are
sensitive to different coupling intensities but they
seem unable to distinguish between different types of
dependencies.  This fact is related to the global nature
of the crosscorrelogram that considers the entire spike
trains dependencies, but loses local ones.  Statistical
techniques to describe the local dependencies be-
tween two point processes are lacking.  Further math-
ematical and statistical developments should be
considered for a more complete study of the features
of the proposed model.  The copula approach is used
here only to model the coupling of the noise terms in
the membrane potential expressions.  However, it
will be applied to the study of dependencies in the
simulated spike trains when the necessary mathematics
will be developed.

The difficulty in the use of copulas between
point processes suggests preliminary work on the
coupling between random variables.  A first step in
this direction should be the determination of the
copula between the first passage times through a
boundary of the two coupled diffusion processes
modeling the membrane potential evolution.  This
task implies the introduction of a renewal version of
the proposed model and the discussion of a further set
of examples.  The limited space available for this
paper discourages the presentation of these results
here and we postpone this discussion to a future
paper.

Mathematical Background on Copulas

In this Section we only consider bivariate random
variables to avoid a heavy notation, but extensions to
the multivariate case follow the same arguments.  The
typical object used to describe the statistical properties
of a random variable X is its distribution  FX(x) =
IP(X < x), ∀x ∈ IR.  To describe a pair of random
variables (X, Y) one should know their marginal
distributions FX(x) , FY (y) and their joint distribution

IP(X < x, Y < y) = FX,Y(x, y) , ∀x ∈ IR, y ∈ R.
[1]

The marginal distributions can easily be obtained
from the joint distribution by setting x = ∞ to get
FY(y) or y = ∞ to get FX(x).  Hence, the bivariate
distribution FX,Y(x, y) completely describes the pair
of random variables catching both the marginal be-
havior and their dependencies.  This fact has an im-
mediate contraindication when one wishes to study
dependencies.  Indeed, the joint distribution merges
dependencies and marginal features.  To avoid this
problem the notion of copula has been introduced and
its use has gained popularity thanks to the increasing
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number of modeling instances where it can be used.  A
huge number of papers makes use of copulas to model
financial problems while applications in neuroscience
up to now are rare (8, 16).

To define a copula between two r.v. let us
consider two uniform r.v.s U, V on [0, 1] × [0, 1].
Assume that they are not necessarily independent, but
are related through their joint distribution function

C(u, v)= IP(U < u, V < v). [2]

The function C: [0, 1] × [0, 1] → [0, 1] is called
copula.  Consider the two marginal distributions
FX(x) = IP(X < x) and FY(y) = IP (Y < y) of the two
r.v.s X and Y.  It is easy to check that

C(FX(x), FY(y)) = FX,Y(x, y) [3]

defines a bivariate distribution with marginals FX(x)
and FY(y).  A celebrated theorem by Sklar establishes
that any bivariate distribution can be written in the
form of eq. [3].  Furthermore, if the marginals are
continuous then the copula representation is unique
(12).

If we change the marginals in [3] we obtain a
different joint distribution.  Furthermore, different
marginals can be coupled through different copulas
to obtain different bivariate distributions.

Copulas are scale free since they are invariant
under increasing and continuous transformations.
This property allows us to avoid assumptions on the
scales of the marginals.  Furthermore, the copulas
contain all the information related to the dependencies
between the random variables and do not involve
marginal distributions.  Hence, one can separate the
study of bivariate distributions into two parts: the

marginal behavior and the dependencies between the
r.v.s contained in the copula structure.

The simplest bivariate copula is the independent
copula which is defined as C(u, v) = uv, (u, v) ∈
[0, 1] × [0, 1].  More complex copula functions usu-
ally contain one or more parameters, which are called
association parameters.  If only one parameter appears
in a copula function, it usually ref1ects the strength of
the dependence.  Consider for example the following
copula function

C(u, v)= max{(u–α + v–α)–1/α, 0} [4]

where (u, v) ∈ [0, 1] × [0, 1] and α ∈ (–1, 0) ∪ (0, ∞).
It is known as a Clayton copula.  In the limit when
α → 0 it converges to the independence copula.
A continuous copula C(u, v) can be characterized
through its probability density function, given by:

c (u, v) =
∂2C (u, v)

∂u∂v
. [5]

For example, the independent copula has proba-
bility density function c(u, v)= 1, (u, v) ∈ [0, 1] ×
[0, 1], i.e. the dependence is uniform on [0, 1] × [0, 1].
In Fig. 1 we show scatterplots of bivariate r.v.s coupled
through the Clayton copula characterized by different
marginals.

Many families of copulas have been proposed
in the literature introducing copulas with different
shapes that can solve a variety of modeling challenges.
The most well-known families of copulas belong to
the Archimedean family.  These copulas owe their
popularity to their large f1exibility.  Furthermore,
they are simple since their expression involves one
single parameter.  Unfortunately, they are based on
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Fig. 1. Scatterplots of bivariate r.v.s (X, Y) coupled through Clayton copulas with α = 2.  Panel A: standard normal marginals.  Panel
B: exponential marginals with rate r = 1.
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algebraic arguments and their use can rarely be
justified through modeling motivations.  Research in
this direction is still scarce and should be increased
to give more significance to the use of copulas.

Specific indices able to measure the strength of
dependencies between the involved r.v.s are often
used in the study of bivariate models.  Besides the
correlation coefficient, a largely used association
index is the so-called Kendall’s τ.  It compares con-
cordance and discordance probabilities for the
involved r.v.s (12).  It is defined as:

τ = IP[(X – X′)(Y – Y′) > 0]

– IP[(X – X′)(Y – Y′) < 0] [6]

where (X, Y) and (X′, Y′) are two bivariate r.v.s
identically distributed.  Its statistical version is the
estimator:

τ =
nc – nd

1
2

n(n – 1)
, [7]

where nc is the number of concordant pairs, nd is the
number of discordant pairs in the data and n is the
sample size of each variable.  Often it is advantageous
to re-parametrize copulas through Kendall’s τ in
substitution of the original parameter.  In the case of
a Clayton copula the relationship between α and

Kendall’s τ is α =
2τ

1 – τ .

The Model

We describe the subthreshold membrane poten-
tial evolution of two neurons through two Ornstein
Uhlenbeck processes:

dXt = –
Xt

θ + µ1 dt + σ1 dW1(t); Xt0
= 0 [8]

dYt = –
Yt

θ + µ2 dt + σ2 dW2(t); Xt0
= 0. [9]

Here θ > 0 is the time decaying membrane
constant, µ1 and µ2 describe the net input impinging
on the neurons while σ1 and σ2 describe the intensity
of its variability.  According to the classical assump-
tions on LIF models, eqs. [8] and [9] describe the
subthreshold behavior while the interspike intervals
of the two neurons are described by the first passage
time of the processes through a boundary S:

T1 = min(t > t0 : Xt > S; Xt0
 < S)

T2 = min(t > t0 : Yt > S; Yt0
 < S). [10]

After the spike each membrane potential is
instantaneously reset to its resting value that we
assume equal to zero.  When the two neurons are not
coupled, W1(t) and W2(t) are two independent Wiener
processes. For a fixed n > 0 let us consider a partition

of (t0, t) with steps h =
t – t0

n
.  The Euler discretized

version of these equations is

Xi = Xi – 1 + –
Xi – 1

θ + µ1 h + σ1 Zi
1; Xt0

= 0 [11]

Yi = Yi – 1 + –
Yn – 1

θ + µ2 h + σ2 Zi
2; Yt0

= 0. [12]

Here Zi
k = Wk(ih) – Wk((i – 1)h) are independent

Gaussian random variables with mean 0 and variance
h for k = 1, 2 and i = 1, 2, …, n. In the case of
independent neurons the r.v.s {Zi

1} and {Zi
2} are

independent.  However, when the two neurons belong
to a network they are linked to each other.  Hence, we
cannot assume that their dynamics are independent.
In particular, both neurons are subject to a variability
depending on the whole network.  Then it seems
reasonable to introduce a dependence between the
random variables (Zi

1, Zi
2) i = 1, 2, …, n, representing

the increments of the membrane potential at times ti =
ih.  Due to the assumptions on LIF models these
random variables have Gaussian marginal distri-
butions.  We introduce specific copula expressions to
describe the coupling of the increments to couple the
ISIs of the two considered neurons.  Assume that their
joint distribution is

FZi
1, Zi

2(z1, z2) = C(φ(z1), φ(z2)), [13]

where φ(⋅) indicates the Gaussian distribution with
mean 0 and variance h.  This approach also allows the
introduction of a delay in the coupling law.  Indeed,
instead of eq. (13) we can assume:

FZi
1, Z2

i + m
(z1, z2) = C(φ(z1) , φ(z2)), i = 1, 2, …, n.

[14]

Here m introduces a delay of mh in the coupling
between the increments.  Eq. [14] allows us to model
connections between neurons that are not instanta-
neous but require a time interval to be effective.

We further assume that after eliciting of spike,
the membrane potential of each neuron restarts from
its resting value and its increments maintain the
coupling with the other neuron.  Note that this hy-
pothesis implies a renewal assumption for the single
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neuron behavior.  However, the dependence between
the increments of the two processes destroys the
renewal property for the joint dynamics.

With a slight abuse of terminology, we will call
OU model the discretized model [11], [12] with the
dependency law [13], while we call it “delayed OU
model” when the copula is given by [14].

Having intracellular recordings of the membrane
potential evolutions, the choice of the copula functions
[13] or [14] could be suggested by statistical argu-
ments.  Alternatively, one could resort to model mo-
tivations to get a specific expression for the selected
copula function.  For example, one could resort to the
Stein’s model

dVi (t) = –
Vi (t)

θ + µi dt + δ +dNi
+(t) + δ –dNi

–(t)

i = 1, 2 [15]

where θ and mi, i = 1, 2 have the same meaning as
in eqs. [11], [12], δ+ and δ– are the amplitudes of
instantaneous changes of the membrane potential
values due to the arrival of external inputs to the
neuron, and Ni

+(t) and Ni
–(t) are two independent

Poisson processes.  When the two neurons belong to
independent subnetworks, one can assume that the
processes (N1

+(t), N1
–(t)) are independent from N2

+(t),
N2

–(t)).  However, when the neurons belong to an
interconnected network these processes are no more
independent due to the presence of some common
inputs.  These last inputs may eventually have a
delayed effect on one of the two neurons but in any
case they determine a dependence between the two
neurons.  Different coupling laws may arise according
to the rules introduced to account for common inputs.
This determines the copulas catching the different
coupling between the epochs of excitatory (inhibitory)
inputs. When the continuous limit of Stein’s equations
[15] is performed one gets [8] and [9] (10, 15) and the
increments of the processes exhibit a dependence due
to the dependence between the arrival times of the
inputs.  The copula expression between the incre-
ments should then be determined from the copula
between the arrival times.  This task requests some
mathematical effort and we postpone it to a future
paper.  Here we simply focus on the consequences of
the coupling of the two equations through well known
families of copulas.  Future statistical and math-
ematical studies will allow the selection of realistic
families of copulas for the proposed model.

To facilitate our understanding on some con-
sequences of the hypothesized coupling of the pro-
cesses [11] and [12], we consider the special case of
the perfect integrator model, taking the limit of [11]
and [12] as θ goes to ∞ when the coupling is determined

by eq. [13].  The r.v.s corresponding to the state of the
two processes at time n can be rewritten as

Xn = Xn – 1 + µ1h + σ1Zn
1 = nµ1h + σ1 Zi

1Σ
i = 1

n

; Xt0
= 0
[16]

Yn = Yn – 1 + µ2h + σ2Zn
2 = nµ2h + σ2 Zi

2Σ
i = 1

n

; Yt0
= 0
[17]

Repeating the afore-mentioned abuse of terminology
we will refer to the discretized model [16], [17] with
the dependency law [13] as the Wiener model.

Recalling the invariance of the copula function
for monotone transformations, the copula between

(Xn, Yn) coincides with the copula between ( Zi
1Σi = 1

n
,

Zi
2Σi = 1

n
). Indeed Xn and Yn are strictly increasing

functions of Zi
1Σi = 1

n
 and Zi

2Σi = 1

n
, respectively (12).

Hence the couple (Xn, Yn), when n → ∞, tends to a
bivariate normal vector, due to the multivariate central
limit theorem (1) applied to the sum of random
variables involved in [16] and [17] and the copula
coupling such r.v.s becomes the normal copula (12).
Analogous discussion can be repeated in the case of
coupling through eq. [14].  The case of the OU
discretized model [11] and [12] is less straightforward,
but an analogous convergence result holds. In the
next section, we will study the effect of the use of
different copulas between increments on the ISI’s
properties.  To this aim, it is useful to separate in-
stances in which the number n of iterations at the time
of boundary crossing is large enough to determine the
Gaussian convergence of the copula joining (Xn, Yn),
from those in which the copula between the processes
is significantly different from the Gaussian one.  In
we report the results obtained for the Clayton copula
between (Xn, Yn) for some simulated examples.  The
numbers marked with bold character indicate where
the convergence to the normal copula for the coupled
r.v.s has not yet happened.  Here we test the conver-
gence to the normal copula through a Goodness-of-
fit test for copulas (6) with p-value p = 0.05.  In the
next Section we select the examples of ISIs determined
by a non Gaussian copula that we compare with those
determined by a Gaussian copula, i.e. the copula
associated with the bivariate normal distribution
(12).  We have repeated this analysis also for the
Frank and the Gumbel copulas.  These copulas are
Archimedean ones (12).  The Frank copula is defined
by

C (u, v) = –
1
αln 1 +

(e– αu – 1)(e–αv – 1)

e– α – 1
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where (u, v) ∈ [0, 1] × [0, 1] and α ≠ 0, while the
Gumbel copula is defined by

C(u, v)= exp(–[(–ln u)α +(–ln v)α]1/α

where (u, v) ∈ [0, 1] × [0, 1] and α ∈ [1, ∞).  For both
these copulas we obtained similar values to those
in the second column of Table 1, but these last two
families tend to anticipate the convergence to the
normal copula with respect to the Clayton one.

Results

Here we discuss the results making use of cross-
correlograms.  Hence, our analysis cannot be complete
since crosscorrelograms capture global properties of
spike trains, and do not capture local dependencies.
To get a more complete analysis of the model features,
one should develop suitable alternative mathematical
methods.  Unfortunately, this is not yet the case and
further studies appear to be necessary.  A possible
approach could make use of the notion of copulas to
measure dependencies between interspike times.  To
motivate these efforts it seems reasonable to start
with a simulation study collecting expected features
of the model and analyzing them with crosscorrelo-
grams.  Indeed, a first analysis of the model properties
can suggest its improvement or eventually discourage
its future use.

The model has been studied to ascertain the
following features:

1. the differences between couples of spike trains
described by means of OU or Wiener processes;

2. the role of the choice of the copula family on the
coupled behavior of the two modeled neurons;

3. the role of different intensities of Kendall’s τ
between the increments of the processes on the
dependence features of the simulated spike trains;

4. the consequences of the introduction of a delay in
the coupling of the increments of the processes
on the dependency properties of the simulated
spike trains.

To perform our analysis we have simulated
spike trains from models [11], [12].  In all the con-
sidered examples, we have fixed σ1

2 = σ2
2 = 1 mV2/ms,

S = 10 mV and θ = 20 ms.  The case θ = ∞, correspond-
ing to the Wiener model, is also considered.  Different
values for the input excesses µ1 and µ2 are considered
to distinguish the subthreshold (S > µiθ, i = 1, 2) and
suprathreshold regimes (S < µiθ, i = 1, 2).  Furthermore,
we have considered different copulas to join the
increments of the processes [11], [12].  Copulas of
Frank, Gumbel and Clayton have been used for dif-
ferent values of the Kendall’s τ: τ = –0.96, –0.5, 0.5,
0.8, 0.96.

As far as the first point is concerned, we have
compared crosscorrelograms obtained using eqs [11]
and [12] with those obtained using [16] and [17].  In
both models we coupled the increments through [13].
Indeed, we wanted to understand if the same coupling
law applied to different marginal dynamics, i.e. the
OU or the Wiener models, may give rise to different
features.  We have collected a set of examples for
different ranges of τ and for different choices of
copulas.  In Fig. 2 panels A-C (B-D) we show the
crosscorrelograms between ISIs simulated from the
Wiener (OU) model, using the Clayton copula for
µ = 1, 2 mVms-1 and τ = –0.5, 0.96.  Here and in the
next crosscorrelograms, the dotted line represents the
reference level in crosscorrelation, i.e. the predicted
expected level for stationary independent processes
(3, 14).  The full lines represent the 0.95 confidence
interval for the reference level.  Thus a flat crosscor-
relogram indicates two independent processes.  Fig. 2
shows that the qualitative features of the two models
are similar.  Indeed, when τ is negative both models

Table 1.

τ nclayton µ = 2 µ = 1.5 µ = 0.4

nT1 nT2 nT1 nT2 nT1 nT2

0.5 25 63 78 78 96 333 360
0.8 200 53 50 81 67 885 325
0.96 100 52 52 80 80 1051 1047

–0.5 100 48 63 55 78 514 250
–0.96 400 48 64 57 65 514 242

Experimental evaluation on the convergence of the Clayton copula between (Xn, Yn) (given by eq. 16, 17, Wiener
model) to the normal one is made as follows.  Let nT1

(nT2
) be the number of iterations of the Euler schema until

the boundary crossing for neuron 1 [2], for different values of µ and τ.  Let nClayton be the number of terms
necessary for convergence to the normal copula to occur.  If max(nT1

, nT2
) < nClayton then we mark (nT1

, nT2
) with

bold character.
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give rise to a strong simultaneous inhibition while
positive τ gives rise to synchronism in the spike times
when µ is large enough.  Note that the crosscorrelo-
grams of both models present bumps around zero, i.e.
the model determines an inhibitory effect in cor-

respondence to simultaneous spikes, and simultaneity
is a frequent phenomenon.  To understand the causes
of this result, we have considered the autocorrelo-
grams for the ISIs of each simulated neuron, in a set
of instances characterized by large τ and a suprath-

Fig. 2. Panel A(B): crosscorrelograms (crosscorrelation denoted by ξ) between ISIs simulated via eqs. [16]-[17], Wiener model
and (11)-(12), OU model with µ = 1, 2 mV/ms and coupled through Clayton Copula with τ = –0.5.  Upper panels µ = 1 mV/ms,
lower panels µ = 2 mV/ms.  Panel C(D): the same structure of Panel A(B) with τ = 0.96.  Other parameters: σ1 = σ2 = 1
mV2/ms-1, S = 10 mV, θ = 20 ms, t0 = 0 ms, x0 = 0 mV.
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reshold regime.
The examples in Fig. 3 show autocorrelograms

corresponding to the crosscorrelograms of the OU
model in Fig. 2.  Here and in the next autocorrelo-
grams, the dotted lines represent the reference level in
autocorrelation, that is the predicted asymptotic value
1/k where k denotes the mean of the spike-interval
data.  The full lines represent the 0.95 confidence
interval related to the reference level (13).

For the considered choice of parameters, i.e. for
µ  large enough, the autocorrelogram reveals a
periodicity, related to the dominance of the deter-
ministic behavior of the OU process when µ is large.
This means that the observed bumps in the crosscor-
relograms in Fig. 2 depend on the marginal behavior
of each neuron.  Hence, from the considered examples,
we can conclude that the models react in similar way
to the introduction of a dependency in their membrane
potential evolution while their differences can be ex-
plained by their marginal behavior, being charac-
terized by different first passage time distributions.
As a consequence of these results, in the remaining
part of this paper we limit ourselves to the study of
the OU model.

In the second step of our analysis, we check a

possible change of dependence in the spike trains
when different copulas are used to couple the in-
crements.  To pursue this task, we select the study
cases making use of Table 1, wishing to avoid false
coupling similarities determined by the convergence
to the normal copula of the couples (Xn, Yn) when n
is large enough.  Hence, we consider only cases for
which the threshold crossing of at least one process
happens before the convergence to the normal copula.
In Fig. 4 Panel A we show scatterplots of bivariate
r.v.s coupled through Clayton and Gumbel copulas
used to couple the Gaussian increments when τ = 0.8
while in Panel B we show the corresponding cross-
correlograms for the OU model when µ = 2 mV/ms.
No significant differences can be observed in Fig. 4
corresponding to a change of the used copula.

Fig. 5 illustrates the effect of changes in the
strength of the coupling, measured through the
Kendall’s τ in the subthreshold regime.  The cross-
correlogram does not detect weak dependencies while
strong positive dependencies determine synchronous
activity and negative ones determine inhibition of
such synchronism.  A further remark concerns the
case τ = 0.96.  Indeed the bumps of the crosscor-
relogram cannot be explained looking at the auto-
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Fig. 3. Panel A(B): autocorrelograms (autocorrelation denoted by ψ) of neuron 1 (2) for the OU model.  Upper panels µ = 1 mV/ms,
lower panels µ = 2 mV/ms.  Other parameters: the same values assigned in Fig. 2.  When the coupling copula is the Clayton
one with τ = 0.96, the corresponding crosscorrelograms are illustrated in Fig. 2 Panel D.
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correlograms as we did with those in Fig. 2.  Hence,
the presence of a strong positive dependence deter-
mines an inhibition phenomenon around the syn-
chronism not explained by the marginal behavior of
each neuron.  This case corresponds to different
behaviors of the Wiener and OU models since the
subthreshold regime does not exist for the Wiener
model, and the crosscorrelograms of the Wiener model
under analogous conditions do not exhibit bumps
(data not shown).

Finally we have considered the effect of dif-
ferent delay values in the delayed OU model.  The
introduction of the delay determines small shifts
of the peak around zero of the crosscorrelograms.
The shifts are positive or negative according to the
type of positive or negative dependency (data not
shown).  Only large values for the delay, i.e. values
at least of the order of the mean firing time, make this
shift visible.  The limited effect on the crosscorre-
lograms may again be explained by the technique
used for the model analysis.  Indeed, the crosscorre-
lograms work on the entire spike train and thus they
average over many values.  This fact may hide some
existing dependence.

We have also performed a preliminary study on
the role of σ values in the introduced coupling between

the two neuronal dynamics. Qualitative features
observed do not change, but high values of σ destroy
synchronization or mutual inhibition.

Conclusions

We have proposed a model for a pair of neurons
belonging to a network.  The dependence between
different units is introduced, postulating the existence
of a copula, joining the increments of the two pro-
cesses.  Further statistical and modeling studies should
be performed to determine realistic expressions for
this copula while here we considered classical families
of copulas without motivating their choice with model
properties.

The use of autocorrelograms and crosscorrelo-
grams has allowed us to show that the model can
reproduce a set of observed features such as syn-
chronization and mutual inhibition between the two
modeled neurons.  A variant of the model allows us to
reproduce delays in the synchronization or in the
inhibition.  As one may expect, increasing positive
dependencies determine higher positive peaks in the
crosscorrelograms, while negative dependencies deter-
mine depressions in their shapes.  In the case of strong
positive dependencies, one observes bumps in the

4

0

-4

Y

-4 0

PANEL A

4 X

0.25

0.2

0.15

ξ

-15 -5 50
Time (ms)

PANEL B

15

0.25

0.2

0.15

ξ

-15 -5 50
Time (ms)

10

4

0

-4

Y

-4 0 4 X
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parameters: the same values assigned in Fig. 2.  The parameter choice for µ is such that the processes coupled with Gumbel copula
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crosscorrelograms.  In the suprathreshold regime
these bumps can be explained by the autocorrelograms
that exhibit peaks, but in the subthreshold regime this
phenomenon has no analogous explanation.  Indeed
in this case it is related to the introduced dependency
between the two neurons.

Different models and different types of depen-
dencies have been analyzed, and it seems that these
changes do not have important consequences.

However, our conclusion could be related to our
investigation technique.  Indeed, the crosscorrelogram
does not detect local dependencies, and further inves-
tigations with different methods should check the
possible existence of these.  Hence, we cannot yet
claim with security the equivalence of different
coupling rules on the two spike trains.

We conclude by observing that many generali-
zations of this model can be done but to make it
convenient to study larger networks, it is necessary to
develop mathematical and statistical methods that

avoid simulations, and to analyze the results with
more specific methods than crosscorrelograms.  This
mathematical task could start with the study of sim-
plified situations such as a renewal model in which
both neurons restart after the spike of the second
one.  Despite its loss of realism, the study could be a
first step to develop the necessary mathematical
methods.  This method could then hopefully be used
for the more complex case.
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