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Preface 

This thesis is the result of a three-year PhD project which was jointly based at the 

Center for Macroecology, Evolution and Climate, Department of Biology, University of 

Copenhagen (Denmark) and the Biodiversity and Global Change Lab, Department of 

Biodiversity and Evolutionary Biology, National Museum of Natural Sciences (CSIC), 

Madrid (Spain). The project was jointly supervised by Prof. Dr. Carsten Rahbek 

(Copenhagen) and Prof. Dr. Miguel B. Araújo (Madrid).  

The PhD project was temporally split into two equal parts performed at the two 

work places mentioned above. The project was funded by an internationalization stipend 

from the Danish Agency for Science, Technology and Innovation, administered by the 

University of Copenhagen.  

The thesis consists of two parts. The first part is a synopsis which gives an overview 

of the background and the objectives of the thesis, summarizes and discusses the main 

findings, and outlines some perspectives for future research. The second part consists of 

five manuscripts, written as scientific papers, which comprise the core work of the PhD 

project. Finally, three supplementary chapters document some additional work on topics 

related to the objectives of the thesis. 
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Summary 

How does climate change affect biodiversity? – Answering this question is one of 
the most important tasks in current ecological research. Earth has been warming by 
0.7°C during the last 100 years, and the consequences are already apparent in biotic 
systems. For example, species are responding by shifts of their distributional ranges, 
which affects the spatial patterns of species richness and turnover. Global temperatures 
are projected to rise by 1.8 - 4°C until the end of the century; hence climate change will 
most likely leave further imprints on species and ecosystems. This PhD thesis aims to 
contribute to a better understanding of the impacts of climate change on species 
distributions and spatial patterns of biodiversity.  

Contemporary climate change is assumed to be one of the major future threats for 
biodiversity, due to its supposedly unprecedented velocity. On the contrary, recent 
studies suggest that climatic changes during and after the Pleistocene may have been 
much faster than commonly assumed. In one of the studies of this thesis I discuss the 
consequences of these findings for species and ecosystems. Since these rapid climate 
change events did not cause a broad-spectrum mass extinction, one might assume that 
most species may also be able to successfully cope with contemporary climate change. 
However, current ecosystems are heavily modified by humans. Among other factors, 
habitat destruction and fragmentation caused by anthropogenic land-use changes 
negatively affect species’ strategies to cope with climate change. Therefore, although 
we need to rethink species’ abilities to cope with rapid climate change, the interactions 
of different threats impose severe challenges for biodiversity. In a global assessment of 
future threats for amphibian diversity, I investigate the geography of climate change, 
land-use change and the fungal pathogen Batrachochytrium dendrobatidis (Bd). Results 
indicated that the regions with highest projected climate and land-use change impacts 
show a strong tendency of congruence, but show little overlap with regions of high Bd 
prevalence. Overall, two-thirds of the areas harboring the richest amphibian faunas may 
be heavily impacted by at least one of the major threats by 2080.  

The stability of the climatic niche influences the need for a species to track climate 
change via dispersal, or its potential to adapt to novel climatic conditions. I therefore 
explore the phylogenetic signal in climatic niches of the world’s amphibians, which 
serves as a surrogate quantification of niche stability. Results indicate an overall 
tendency of phylogenetic signal to be present in realised climatic niches, but signal 
strength varies across biogeographical regions and among amphibian orders. 

The ability to successfully track climatic changes depends on dispersal, which is in 
turn influenced by ecological adaptations, such as the affiliation with a certain habitat 
type. A common hypothesis is that species adapted to less persistent habitats have 
evolved stronger dispersal abilities. Two studies of my thesis provide evidence for this 
hypothesis: (1) geographical distributions of dragonflies adapted to less persistent 
habitats show higher degrees of equilibrium with climatic conditions; (2) spatial 
patterns of European freshwater species richness and turnover differ strongly among 
habitats, indicating a faster post-glacial re-colonization of northern Europe by species 
adapted to habitats of lower persistence. 
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Resumé 

Hvordan påvirkes biodiversiteten af klimaforandringerne? – At besvare dette 
spørgsmål er en af de vigtigste opgaver for økologisk forskning i dag. Jorden er blevet 
0,7 °C varmere over de sidste 100 år, og konsekvenserne for biologiske systemer er 
allerede tydelige. For eksempel reagerer arter med forandringer i deres udbredelse, 
hvilket forandrer de rumlige mønstre i artsrigdom. Globale temperaturer forventes at 
stige med endnu 1,8 – 4 °C i løbet af dette århundrede; det er derfor sandsynligt at 
klimaforandringer vil påvirke arter og økosystemer yderligere. Denne ph.d.-afhandling 
sigter mod at bidrage til en bedre forståelse af klimaforandringernes indvirkning på 
arters udbredelse og på rumlige mønstre i artsrigdom. 

De nuværende klimaforandringer formodes at blive en de største fremtidige trusler 
mod biodiversiteten, da man har ment at forandringen sker hurtigere end nogensinde 
før. Dog viser nyere studier at klimaforandringerne under og efter Pleistocæn muligvis 
er sket hurtigere end hidtil antaget. Da hurtige klimaforandringer ikke dengang 
udryddede mange arter, må man gå ud fra at de fleste arter også vil være i stand til at 
håndtere de nuværende klimaforandringer. Dog er nutidens økosystemer stærkt 
påvirkede af mennesker. Både habitat-ødelæggelse og landskabs-fragmentering, skabt af 
menneskers brug af jorden, har en negativ indvirkning på arters strategier til at håndtere 
klimaforandringer. Selv om vi er nødt til at gentænke arters evne til at klare hurtige 
klimaforandringer, udgør interaktionerne mellem forskellige trusler altså stadig en 
alvorlig udfordring for biodiversiteten. I en global undersøgelse af fremtidige trusler for 
diversiteten af padder undersøger jeg geografien af klimaforandringer, 
jordbrugsændringer og den patogene svamp Batrachochytrium dendrobatidis (Bd). Der 
var et stort sammenfald mellem de områder hvor påvirkningen fra klimaforandringer og 
jordbrugsændringer var størst, men kun et lille overlap med områder hvor Bd var 
almindelig. Alt i alt kan op mod to tredjedele af de områder i verden der har den rigeste 
padde-fauna blive stærkt berørt af en af de tre vigtige trusler inden 2080. 

Stabiliteten af arters klimatiske niche afgør hvor nødvendigt det er for dem at følge 
klimaforandringer ved at sprede sig, og deres mulighed for at tilpasse sig nye klimatiske 
forhold. Jeg undersøger derfor det fylogenetiske signal i de klimatiske nicher for alle 
verdens padder, hvilket er en måde at kvantificere nichernes stabilitet. Resultaterne 
indikerer at der generelt er et fylogenetisk signal i arternes realiserede klimatiske nicher, 
men at styrken af signalet varierer på tværs af biogeografiske områder og mellem 
forskellige ordener af padder. 

Evnen til at følge klimaet afhænger af spredningsevnen, som igen afhænger af 
økologiske tilpasninger såsom tilknytning til en bestemt habitattype. En udbredt 
hypotese er at arter der er knyttet til mindre varige habitater har udviklet en større evne 
til spredning. To studier i denne afhandling støtter denne hypotese: (1) den geografiske 
udbredelse af guldsmede som er knyttet til mindre varige habitater er i højere grad i 
ligevægt med de klimatiske forhold; (2) der er stor forskel på de rumlige mønstre i 
artsrigdom og turnover hos europæiske ferskvandsarter fra forskellige habitattyper, 
hvilket tyder på at arter der er tilpasset mindre varige habitater har genkoloniseret 
Europa hurtigere efter sidste istid.  
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Zusammenfassung 

Welchen Einfluss hat der Klimawandel auf die biologische Vielfalt? – Die 
Beantwortung dieser Frage ist eine der wichtigsten Aufgaben aktueller ökologischer 
Forschung. Die Erde hat sich während der letzten 100 Jahre im globalen Durchschnitt 
um 0,7°C erwärmt, und die Folgen in biotischen Systemen sind bereits deutlich sichtbar. 
Arten reagieren etwa mit Verschiebungen ihrer Verbreitungsgebiete, was sich wiederum 
in den räumlichen Mustern der Artenvielfalt niederschlägt. Vorhersagen der globalen 
Temperaturerwärmung belaufen sich auf etwa 1,8 – 4°C bis zum Ende dieses 
Jahrhunderts; weitere gravierende Konsequenzen des Klimawandels für Arten und 
Ökosysteme sind zu erwarten. Ziel dieser Dissertation ist, einen Beitrag zu leisten zum 
besseren Verständnis der Auswirkungen des Klimawandels auf die geographische 
Verbreitung von Arten und auf die räumlichen Muster biologischer Vielfalt. 

Insbesondere aufgrund seiner angeblich beispiellosen Geschwindigkeit wird der 
gegenwärtige Klimawandel als eine der größten Bedrohungen für die Biodiversität 
angesehen. Aktuelle Studien jedoch zeigen, dass die Klimaveränderungen während und 
nach dem Pleistozän deutlich schneller stattfanden als gemeinhin angenommen. Eines 
der Kapitel dieser Arbeit nimmt sich dieser Problematik an und diskutiert die 
Konsequenzen für biologische Systeme. Die Tatsache, dass ebendiese raschen 
Klimaveränderungen keine übergroße Zahl an Aussterbeereignissen mit sich brachten, 
mag den Schluss nahelegen, dass die meisten Arten auch dem gegenwärtigen 
Klimawandel gewachsen sein werden. Heutige Ökosysteme sehen sich jedoch mit 
dramatischen Eingriffen des Menschen konfrontiert. Vor allem die dem anthropogenen 
Landnutzungswandel geschuldete Zerstörung und Fragmentierung natürlicher 
Lebensräume hat negative Effekte auf die Strategien der Tier- und Pflanzenarten, 
erfolgreich auf den Klimawandel zu reagieren. Obwohl also unsere Sicht auf die 
Möglichkeiten der Organismen, mit schnellen Klimaveränderungen fertig zu werden, 
überdacht werden sollte, stellen die Interaktionen verschiedener negativer 
anthropogener Einflüsse eine gewaltige Herausforderung für Arten und Ökosysteme 
dar. Auch aufgrund der Bedeutung ebendieser Interaktionen befasst sich eines der 
Kapitel dieser Dissertation mit zukünftigen globalen Bedrohungsszenarien für die 
Biodiversität der Amphibien. Gegenstand der Studie sind insbesondere die räumliche 
Variation der Bedrohungsintensität von Klima- und Landnutzungswandel sowie des 
pathogenen Pilzes Batrachochytrium dendrobatidis (Bd). Die Ergebnisse deuten darauf 
hin, dass die Regionen mit der voraussichtlich stärksten Intensität von Klima- und 
Landnutzungswandel eine hohe Kongruenz zeigen, während diese kaum mit den 
Gebieten einer hohen Vorkommenswahrscheinlichkeit von Bd überlappen. Bis zum Jahr 
2080 könnten bis zu zwei Drittel der Regionen, die den höchsten Reichtum an 
Amphibienarten beherbergen, mindestens einer der angeführten drei wichtigsten 
Bedrohungen in hoher Intensität ausgesetzt sein. 

Die Stabilität der klimatischen Nische einer Art beeinflusst einerseits die 
Notwendigkeit derselben, Veränderungen in den Klimabedingungen durch Ausbreitung 
zu folgen bzw. andererseits ihr Potential, neuen Klimabedingungen durch Anpassung zu 
begegnen. Aus diesem Grunde stellt die Untersuchung des phylogenetischen Signals in 
den klimatischen Nischen der Amphibien, welches als Surrogat für die Quantifizierung 
der Nischenstabilität herangezogen werden kann, einen weiteren Gegenstand dieser 



 

 

Dissertation dar. Die Ergebnisse dieser Studie indizieren eine generelle Tendenz des 
Vorhandenseins eines solches phylogenetischen Signals, seine Stärke variiert jedoch 
zwischen biogeographischen Regionen und verschiedenen Amphibienordnungen. 

Das Potential, erfolgreich auf Klimaveränderungen zu reagieren, hängt von der 
Ausbreitungsfähigkeit der Arten ab, welche wiederum von ökologischen Anpassungen, 
beispielsweise an einen bestimmten Habitattyp, beeinflusst wird. Dass Arten, welche an 
wenig stabile Lebensräume gebunden sind, eine bessere Ausbreitungsfähigkeit 
entwickelt haben, ist eine verbreitete Hypothese. Diese wird untermauert durch zwei 
Studien dieser Dissertation: Zum einen zeigen die geographischen Verbreitungen von an 
weniger stabile Habitate angepassten Libellen eine stärkere Tendenz zum 
Gleichgewicht mit klimatischen Bedingungen; zum anderen unterscheiden sich die 
Muster im Artenreichtum der europäischen Süßwasserfauna deutlich zwischen 
verschiedenen Habitattypen. Diese Unterschiede deuten auf eine schnellere 
nacheiszeitliche Wiederbesiedlung des nördlichen Europa durch Arten hin, die an 
Habitate von geringerer Stabilität gebunden sind. 
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Species distributions and climate change:  

current patterns and future scenarios  

for biodiversity 

- Synopsis - 

1. Introduction 

1.1 Species distributions and climate change 

Species distributions are determined by a range of different factors, among which 

climate is one of the most important ones (von Humboldt 1808; Grinnell 1917; 

MacArthur 1972; Pearson & Dawson 2003). There is little doubt that climatic 

conditions influence the survival and reproduction of individuals and in turn the 

distributions of species, even though some controversy remains about the relative 

importance of climate as determinant of species distributions, e.g. compared to 

historical influences (Currie 1991; Rohde 1992; Jetz & Rahbek 2002; Hawkins et al. 

2003; Currie et al. 2004; Rahbek et al. 2007). It is numerously documented that species 

have shifted their ranges in response to the climatic fluctuations during the Pleistocene 

(Zschokke 1908; Webb & Bartlein 1992; Hewitt 1999; Davis & Shaw 2001). During the 

last century, global average temperature has risen by approximately 0.7 °C, due to 

anthropogenic greenhouse gas emissions (IPCC 2007). Contemporary climate change 

has been shown to cause range shifts of species (e.g. Parmesan et al. 1999), as well as 

changes in phenology, physiology or morphology (Parmesan 2006). Global warming is 

projected to continue and increase during the next decades: depending on the climate 

change models and emission scenarios used, global average temperatures are projected 

to rise by 1.8 to 4.0 °C until 2100 (IPCC 2007; see also Serreze 2010 for a concise 

summary). Based on these climate change scenarios, dramatic consequences are 

anticipated for biodiversity (Williams et al. 2003; Thomas et al. 2004; Lovejoy & 

Hannah 2005; Thuiller et al. 2005; Colwell et al. 2008). Interactions between climate 

change and other threats, such as habitat destruction and the spread of infectious 
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diseases or invasive species, may further worsen the future perspectives for biodiversity 

(Sala et al. 2000; Harvell et al. 2002; Jetz et al. 2007; Brook et al. 2008). 

1.2 The temporal stability of the climatic niche 

The ecological niche of a species determines its responses to environmental 

conditions, and thus its distribution in space and time. Following Hutchinson (1957), the 

(fundamental) niche is the multi-dimensional environmental hyperspace in which a 

species can survive and maintain a positive rate of population growth. Thus, the climatic 

component of the fundamental niche hyperspace constitutes the climatic niche. The 

climatic niche of a species is influenced by its physiological, morphological and 

behavioural characteristics; it determines how the species responds to the climatic 

conditions of its environment. 

Table 1 | Phylogenetic niche terminology 

Term Definition* 

Phylogenetic niche 
signal 

Tendency for related species to resemble each other's 
ecological characteristics more than species randomly 
drawn from a phylogeny (Blomberg & Garland 2002; 
Losos 2008). 

Niche stability Tendency for niche characteristics to remain unchanged 
over time (Nogués-Bravo 2009); indicated e.g. by strong 
phylogenetic signal of niche characteristics. 

Niche lability Tendency for niche characteristics to change over time; 
indicated e.g. by weak phylogenetic signal of niche 
characteristics. 

Phylogenetic niche 
conservatism 

Tendency of related species’ niches to be even more 
similar than expected given their phylogeny (following 
Harvey & Pagel 1991; Losos 2008). 

*Note that definitions remain partly controversial (see e.g. Wiens & Graham 2005; Losos 2008; 
Pearman et al. 2008). Definitions here are not intended to be authoritative, but are given for 
clarification. 

When climatic conditions change, a species can respond by moving, adapting or 

going extinct (Holt 1990). In this context, the stability of the climatic niche (see Table 1 

for terminological clarifications) is of fundamental importance: it influences the need 

for species to track climate change via dispersal, or its potential to adapt to novel 

climatic conditions (apart from phenotypic plasticity or population variability, see 
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chapter I). Since direct measurements of climatic niche stability are difficult to obtain 

(but see Vieites et al. 2009), surrogates are needed to quantify niche stability. The 

relationship between niche similarity and phylogenetic relatedness has been suggested 

as such a surrogate: understanding the extent to which there is a phylogenetic signal in 

ecological niches (Table 1) may help to understand the tendency of niches to evolve or 

to remain stable (Blomberg et al. 2003). This topic - the dynamics of the ecological 

niche in space and time - has gained increasing interest recently (Fig. 1; for recent 

reviews see Wiens & Graham 2005; Losos 2008; Pearman et al. 2008). 

 
Figure 1 | Increase in studies investigating phylogenetic 
niche relatedness. Number of articles per year are obtained by 
a recent search (date: 27/01/2010) in the Web of Knowledge for 
studies (articles and reviews) investigating phylogenetic niche 
signal or phylogenetic niche conservatism (search phrase, TS = 
((signal OR conservatism) AND niche AND phylogen*). 

1.3 Dispersal and habitat stability 

Dispersal is an important factor influencing species distributions, and therefore one 

of the key processes determining the spatial and temporal variation of biological 

diversity (Lomolino et al. 2006). It is generally defined as the movement of individuals 

away from their natal area or between two successive breeding areas (Clobert et al. 

2001). Dispersal is affected by various biotic and abiotic factors. Geographical barriers 

impede dispersal processes, such as freshwater bodies for terrestrial, land masses for 

limnic biota, or mountain ranges and saline water bodies for both. 
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One of the ecological factors suggested to trigger dispersal is the stability of the habitat 

(Southwood 1962). Species adapted to habitats that are less persistent over time should 

have evolved stronger abilities to disperse than species adapted to habitats of higher 

persistence (Southwood 1962; Roff 1994; Zera & Denno 1997; Ribera & Vogler 2000). 

If they are stronger dispersers, species adapted to less persistent habitats may more 

successfully track fluctuations in climatic conditions (Heino et al. 2009). 

1.4 Objectives of the thesis 

The overall objective of my PhD thesis is to contribute to a better understanding of 

how climate change may impact biodiversity. The five chapters of the thesis aim to 

explore current patterns and future scenarios of species distributions and species 

richness in relation to climatic conditions, and to investigate the interplay of climate, 

dispersal and habitat adaptations. In particular, I  

 explored the potential impacts of climate change and its interactions with other 

threats on biodiversity (chapters I and II);  

 investigated the links between phylogenetic relationships and climatic niche 

similarity (chapter III); 

 analysed the influence of habitat stability on dispersal ability – by exploring 

spatial diversity patterns and the equilibrium of species distributions with 

climatic conditions (chapters IV, V and supplementary chapter A). 

2. Summary and discussion of main findings 

2.1 Potential impacts of climate change and its interactions with other threats 

on biodiversity 

Contemporary climate change has been documented to cause biotic responses (for 

summaries, see Hughes 2000; McCarty 2001; Walther et al. 2002; Root et al. 2003; 

Parmesan & Yohe 2003; Parmesan 2006). Species are showing changes in timing of 

migration and breeding (Visser & Holleman 2001; Hassall et al. 2007; Tøttrup et al. 

2008) and are shifting their distributions towards higher elevations and higher latitudes 

(Parmesan 1996; Parmesan et al. 1999; Hickling et al. 2005; Wilson et al. 2007; Kelly 

& Goulden 2008; Pöyry et al. 2009; Forister et al. 2010). Climate change projections 

have been extensively used to model future biodiversity scenarios. These are most 
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frequently based on potential changes of species distributions, and aim to predict 

changes in species richness and turnover, as well as species extinctions (Peterson et al. 

2002; Thomas et al. 2004; Thuiller et al. 2005; Araújo et al. 2006; Levinsky et al. 2007; 

Pompe et al. 2008; Algar et al. 2009; Lawler et al. 2009; Lawler et al. 2010).  

It is widely assumed that current and projected climate change is much more rapid 

than the climatic changes during and after the glacial-interglacial cycles of the 

Pleistocene. The most recent report of the Intergovernmental Panel of Climate Change 

(IPCC) states that “it is very likely that the global warming of 4°C to 7°C since the Last 

Glacial Maximum occurred at an average rate about ten times slower than the warming 

of the 20th century” (IPCC 2007, p. 435). However, evidence accumulates that the 

climatic changes during and after the Pleistocene may have been much faster than 

commonly assumed in studies assessing climate change impacts on biodiversity (Alley 

et al. 2003; Steffensen et al. 2008; see chapter I for a review of this evidence). Since 

these rapid climate change events did not cause a large number of extinctions (except 

for selected group, such as European trees or large mammals; Svenning 2003; Koch & 

Barnosky 2006), one might assume that species may also be able to cope successfully 

with current and future climate change.  

However, conditions today are different from those of the past (chapter I): many 

current ecosystems are heavily used and modified by humans (Foley et al. 2005; 

Millennium Ecosystem Assessment 2005). Land-use changes and their consequences 

such as habitat destruction, degradation, and fragmentation impose severe pressures on 

species (Pimm & Raven 2000; Sala et al. 2000) and also limit the ability of species to 

cope with climate change, (Fig. 2, chapter I). Therefore, even though species’ abilities 

to cope with rapid climate change may be greater than previously thought, the 

interactions of different anthropogenic threats, such as climate change and land-use 

change, impose severe challenges for species and ecosystems (Sala et al. 2000; Jetz et 

al. 2007; Brook et al. 2008; Forister et al. 2010). 

For these reasons, thorough assessments of the interactions of different threats are 

urgently needed to project future scenarios of biodiversity. Amphibians appear to be the 

most severely threatened vertebrate taxon (Stuart et al. 2004; IUCN et al. 2008; Wake 

& Vredenburg 2008). They are particularly vulnerable to the impacts of climate and 

land-use change, due to their life cycle, physiology and limited dispersal abilities 

(Blaustein & Wake 1990; e.g. Alford & Richards 1999; Wells 2007). An additional 

threat for amphibian diversity is posed by the spread of chytridiomycosis, a disease 
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caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd); outbreaks can cause 

dramatic population declines (Berger et al. 1998; Daszak et al. 1999; Lips et al. 2006) 

or even the extinction of entire species (Schloegel et al. 2006). Several studies have 

investigated the interactions of different threats for amphibians, such as the potential 

relationship of climate change and Bd infection (Pounds et al. 2006; Bosch et al. 2007; 

Lips et al. 2008). However, no study to date has assessed how the major threats for 

amphibians may spatially vary in the future on a global scale. Analyses of this kind are 

urgently needed to develop future scenarios of amphibian diversity and thus to enhance 

conservation efforts. 

 
Figure 2 | The influence of habitat fragmentation on species’ ability to 
track climate change via dispersal. (A) A species tracks climate change by 
gradually shifting its range through an undisturbed landscape, (B) the same 
situation in a fragmented landscape. 

To help bridging this gap of knowledge, I assessed the potential impacts of future 

climate change on the distributions of the world’s amphibian species and analysed the 

spatial variation of the three major threats climate change, land-use change and Bd for 

the year 2080 (chapter II). Results indicate that the regions with the most dramatic 

impacts of climate change on amphibian diversity are located in Africa, parts of 

northern South America, and the northern Andes (chapter II). Regions with highest 

projected climate change impacts overlap with regions of high projected land-use 

changes, but for frogs, e.g., there is almost no overlap between regions of high Bd 

occurrence and projected climate or land-use change impacts (Fig. 3, chapter II). Some 

regions, such as northern Central America or the northern Andes, that are particularly 

species-rich across taxa, are projected to be exposed to different threats (Fig. 3).  

Overall, approximately two-thirds of the area harboring the richest amphibian faunas 

will likely be heavily impacted by at least one of the major threats by 2080. For 

amphibians, this tendency of spatial threat additivity may be particularly problematic, 

since their biology makes them vulnerable to a variety of threats (Wilbur 1980; Wells 
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2007; Wake & Vredenburg 2008). However, other factors such as chemical pollution 

and direct exploitation e.g. for food, medicine and the pet trade further worsen the 

perspectives for amphibians (Blaustein et al. 2003; Collins & Storfer 2003; Stuart et al. 

2004). Thus, threats for the global diversity of amphibians may be far more severe than 

previous, mono-causal assessments have suggested, which imposes major challenges for 

sustainable amphibian conservation.  

 

Figure 3 | Future threats for global amphibian diversity. Outlined areas indicate an overlap 
of high projected impact of the respective threat (see chapter II for details) with high species 
richness, separately for the different orders. Areas in dark red, for instance, are the areas with 
high frog species richness where a high proportion of the species are projected to “lose” climatic 
suitability by the year 2080. 

2.2 Phylogenetic signal in climatic niche similarity 

The question to which extent phylogenetically related species also share ecological 

requirements, has attracted increasing attention in recent years: a search within the Web 

of Knowledge revealed that almost two thirds of all articles and reviews on this topic 

were published from 2007 to 2009 (Fig. 1). Several reasons may have contributed to this 

popularity of the topic, all of which relate to the assumption that comprehending 

temporal niche dynamics contributes to a better understanding of dynamics of species 

distributions and species richness through space and time (Pearman et al. 2008). Firstly, 

the assumption of niche stability (see Table 1 for definitions of terms) may help to 

explain global biodiversity gradients, such as the difference in species richness between 

tropical and temperate regions (Wiens & Donoghue 2004; Hawkins et al. 2007). 

Secondly, niche stability obviously influences the ability of species to respond to 

environmental changes (see also sections 2.1 and 2.3, and chapter I), as well as e.g. the 

performance of invasive species in novel environments (Broennimann et al. 2007). 
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Thirdly, species distribution models (SDMs) rely on the assumption of niche stability. 

SDMs relate species occurrence data to environmental variables to project species 

distributions in space and time (Guisan & Zimmermann 2000; Guisan & Thuiller 2005); 

they have been shown to be powerful tools in various fields of ecological and 

conservation research. Confidence in their use would increase if a general trend in niche 

stability prevails over niche lability (Pearman et al. 2008). 

The strength of the phylogenetic signal in ecological niche parameters has been 

suggested to serve as surrogate to quantify niche stability (Garland 1992; Blomberg et 

al. 2003; Rheindt et al. 2004; but see Revell et al. 2008; Ackerly 2009). Thus, 

understanding to which extent there is a phylogenetic signal in the climatic niche helps 

to comprehend climatic niche evolution in space and time. Although phylogenetically 

related species are often similar in their ecological requirements (Freckleton et al. 2002; 

Blomberg et al. 2003), the generality and the strength of a phylogenetic signal in 

ecological niches remains controversial (Pearman et al. 2008; Losos 2008). 

Furthermore, existence and strength of the phylogenetic signal vary depending on (1) 

spatial scale (e.g. local communities, isolated islands, or continents), (2) type of 

ecological trait under study (e.g. climatic or dietary characteristics), and (3) taxonomic 

(or phylogenetic) scale (e.g. intra-genus or inter-family comparisons) (see e.g. Peterson 

et al. 1999; Böhning-Gaese & Oberrath 1999; Prinzing et al. 2001; Brändle et al. 2002; 

Losos et al. 2003; Böhning-Gaese et al. 2003; Martinez-Meyer et al. 2004; Graham et 

al. 2004; Silvertown et al. 2006; Knouft et al. 2006; Entling et al. 2007; Evans et al. 

2009). 

To investigate whether species may be able to adapt to current and future climate 

change, the phylogenetic signal in the climatic niche is of particular interest. However, 

with few exceptions (e.g. Prinzing et al. 2001), comprehensive analyses on the strength 

of the phylogenetic signal in climatic niches remain scarce. In the first study of this kind 

on a global scale for an entire organism class, I explored the phylogenetic signal in 

climatic niches of the world’s amphibians (chapter III). I first used a global family-level 

phylogeny to test for phylogenetic signal in species climate niches. Then I tested for the 

existence of phylogenetic signal and measured its strength separately for the three 

orders of amphibians (Anura, Caudata, and Gymnophiona) and for each of seven 

biogeographical regions. The results indicate that there is an overall phylogenetic signal 

in climatic niches, but that signal strength varies considerably among the three 

amphibian orders and across the different regions (Fig. 4). If the strength of the 
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phylogenetic signal is indeed an estimate of niche stability, these results lend support to 

the assumption that in some biogeographical regions (e.g. in Australasia or in the 

Afrotropics) there is a strong tendency for stability in climatic niches of amphibians 

(Fig. 4), which in turn may indicate that species in these regions will face increased 

challenges when confronted with severe climatic changes. However, as the analyses of 

this study are conducted with data of very coarse spatial and phylogenetic (i.e. 

taxonomic) resolution, I see them as a baseline for more detailed studies using data of 

finer geographical and phylogenetic resolution. 

 
Figure 4 | Variation in the strength of the phylogenetic signal in climatic niches of frogs 
and salamanders. Bars show the proportions of variance in climatic niches that are explained at 
different taxonomic levels (see key). Bars are organised from lower (species) to higher (above-
family) taxonomic levels. A black bar (e.g. Madagascan frogs or Indo-Malayan salamanders) 
would indicate that all variance lies at the species-level, and none is explained at higher 
taxonomic levels, thus indicating a weak phylogenetic signal. A high proportion of variance 
explained above the family level (e.g. Australasian or Palaearctic frogs) indicates a strong 
phylogenetic signal. Proportions of explained variance in niche positions are averaged across 
the two ordination axes which were used to quantify climatic niches (see chapter III for further 
details). 

2.3 The influence of habitat stability on dispersal ability: Spatial patterns of 

freshwater diversity and the equilibrium of species distributions with 

contemporary climate 

The habitat is a template for ecological strategies and life-history traits of species, 

such as the dispersal ability (Southwood 1977; 1988). Species adapted to habitats of 

lower persistence in space and time should have evolved stronger dispersal abilities than 

species adapted to habitats of higher stability (Southwood 1962); this constitutes the 

habitat-stability-dispersal hypothesis (HSDH; Fig. 5). Freshwater ecosystems provide 

an excellent opportunity to test the HSDH, since they can be roughly divided into less 

stable habitats of running water, such as creeks, rivers and streams (lotic habitats) and 
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more stable habitats of standing water, such as pools, ponds and lakes  (lentic habitats; 

Bohle 1995; Dobson & Frid 1998; see also supplementary chapter A and references 

therein). Many freshwater animals have a distinct affiliation with one of the two habitat 

types (Illies 1966; 1978). According to the HSDH, species adapted to lentic habitats 

should have evolved stronger dispersal abilities than species adapted to lotic habitats 

(Ribera & Vogler 2000; Ribera 2008).  

 

Figure 5 | The habitat-stability-dispersal hypothesis (HSDH). Habitat stability is assumed to 
influence dispersal ability. Lower habitat stability leads to stronger dispersal ability, which in 
turn leads to a faster re-colonisation of deglaciated regions, higher filling of potentially suitable 
ranges, larger range sizes, lower species turnover (beta-diversity), and a stronger ability to track 
climatic changes (but note that some of these consequences are not independent of each other). 
See the respective chapters and papers in the right column for details. 

In a study exploring spatial diversity patterns in the European freshwater fauna, I 

showed that the latitudinal variation of species richness differed among groups of 

different habitat preference (supplementary chapter A): while lotic species showed a 

monotonic decrease of species richness with latitude, lentic species richness showed a 

hump-shaped relationship with latitude. Beta-diversity was generally lower in lentic 

than in lotic and groundwater species. I interpreted these results as a consequence of the 

different dispersal abilities of the respective groups, implying different abilities to re-

colonise central and northern Europe after the last glaciation (supplementary chapter A; 

see also Hof et al. 2006). The availability of the respective habitats had only a weak 

effect on the differing spatial variation of species richness, especially for lotic habitats 

(chapter IV). These findings strengthen the support for the conclusions of 

supplementary chapter A. 
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Apart from biotic interactions (Hutchinson 1957), dispersal ability influences the 

extent to which a species occupies its potential range, which can be defined as the 

geographical area with suitable environmental conditions (Pulliam 2000; Gaston 2003; 

Soberón 2007). Range filling, a measure calculated as the ratio of the observed (or 

realised) and potential range (R/P ratio), has been suggested to indicate the extent of 

equilibrium of a species distribution with environmental conditions, and in turn to give 

an estimate of a species’ dispersal ability (Svenning & Skov 2004; Munguía et al. 

2008). If lentic species are indeed stronger dispersers than lotic species, R/P ratios of 

lentic species should be higher than those of lotic species. Further, lentic species should 

be able to more rapidly track changes in environmental conditions. I tested these 

predictions for 112 European dragonfly species using two temporally distinct datasets 

on species distribution and climate (for 1988 and 2006; chapter V). I found higher R/P 

ratios in lentic than in lotic species and a tendency for faster tracking of climatic 

changes in lentic species. These results lend further support to the hypothesis that lentic 

species show a stronger dispersal ability than lotic species on average.  

Overall, these findings provide additional evidence for the HSDH, suggesting that 

habitat stability strongly influences the evolution of dispersal ability, which has now 

been documented for aquatic and terrestrial systems, and based on macroecological, 

phylogenetic, phylogeographical and theoretical approaches (Denno et al. 1991; Roff 

1994; Zera & Denno 1997; Travis & Dytham 1999; Ribera et al. 2001; Ribera et al. 

2003; Hof et al. 2006; Marten et al. 2006; Abellan et al. 2009). 

3. Perspectives 

3.1 Predicting the future of biodiversity: challenges and needs 

Predicting future scenarios for biodiversity is a challenge, because any validation of 

models projecting the future is difficult, if not impossible. On the other hand, the 

challenge is due to the complexity of nature and of the factors determining occurrence, 

survival, reproduction or dispersal of living organisms. However, predicting future 

scenarios of biodiversity is a fundamental goal of ecological research in the era of 

global change and the current biodiversity crisis. This combination of challenges and 

needs calls for rigorous scientific approaches and careful interpretations of results. From 

this seemingly trivial but nevertheless important statement, several conclusions arise: 
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 All studies aiming to predict future scenarios of biodiversity, e.g. by means of 

species distribution modelling (SDM), should carefully assess the uncertainty 

of the methods and data used. This may provide estimates of the consistency 

and the reliability of the projections (chapter II, supplementary chapter A). The 

requirement of uncertainty assessments also implies that when modelling 

species distributions, e.g. based on their climatic envelopes, studies should 

make use of the broadest selection of data and methods available (Araújo & 

New 2007), unless there is a valid a priori reason to include or exclude certain 

data or methods. 

 Predictions of biodiversity scenarios may be improved by the integration of 

different methodological approaches, as the strength of one method may 

compensate for the weakness of another. For example, SDMs rely on a 

calibration of the relationships between occurrences and environmental 

variables for each single species, which is problematic for species with very 

few occurrences. Macroecological modelling does not rely on species-by-

species fitting of environmental envelopes, but assumes an influence of 

environmental conditions on species richness per se, thus being able to provide 

future scenarios of biodiversity where SDMs may not be applicable (Kerr et al. 

2007; Algar et al. 2009). These multi-species approaches may further be 

improved by methods of simulation-based macroecological modelling, taking 

into account processes such as speciation, extinction and dispersal (Rangel et 

al. 2007; Rahbek et al. 2007; Gotelli et al. 2009). Furthermore, combining 

SDMs with process-based approaches such as models of (meta-) population 

and community dynamics may help to overcome the general neglect of 

demographic processes or biotic interactions in SDMs or macroecological 

modelling (e.g. Keith et al. 2008; Anderson et al. 2009). 

 Since the direct validation of future biodiversity scenarios is not possible, 

insights into past dynamics of species distributions in response to climatic 

fluctuations may be used for an improved calibration of models (Nogués-Bravo 

2009). Examples from the marine realm illustrate how time series data from the 

past can be used to calibrate models for future projections (MacKenzie & 

Köster 2004; MacKenzie et al. 2007). Further, the existence of occurrence or 

distribution data for different time periods (chapter IV; Menendez et al. 2006; 

Gonzalez-Megias et al. 2008; Pöyry et al. 2009) gives the opportunity to 
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directly assess the influence of climatic changes on changes in species 

distributions, species richness and turnover. Empirical estimates of species 

dispersal over time, extracted from these data, may also improve SDMs by 

overcoming unrealistic assumptions of no or unlimited dispersal (see also 

below).  

3.2 Habitats, dispersal and climate change 

The habitat-stability-dispersal hypothesis (HSDH) has received additional support 

by my findings (chapter IV, V, supplementary chapter B). However, direct empirical 

data on dispersal distances of a sufficient sample of species adapted to habitats of 

different stability are still lacking. Systematic assessments of the variation in population 

genetic and phylogeographical structuring across a range of species may serve as a first 

step in this direction (Marten et al. 2006; Papadopoulou et al. 2008; Abellan et al. 

2009).  

The consistently documented link between habitat stability and dispersal ability may 

help to improve studies using SDMs for projecting species distributions in response to 

climate change. These studies usually rely on simplified dispersal scenarios, such as 

unlimited or no dispersal (e.g. Thomas et al. 2004; Levinsky et al. 2007). Even though 

it is widely acknowledged that these scenarios are unrealistic assumptions (Guisan & 

Thuiller 2005), a lack of data on dispersal abilities enforces the use of these 

oversimplified scenarios. If habitat is a robust determinant of dispersal ability, 

establishing simple links between habitat preferences, habitat stability, and dispersal 

ability may help to improve model parametrisation with regard to species dispersal, and 

hence to improve the biological validity of SDMs (chapter IV; see e.g. Williams et al. 

2005 for an example trying to use more realistic dispersal scenarios by linking modes of 

dispersal to dispersal distances). 

Dispersal ability may also be important for niche dynamics in space and time. To 

successfully cope with climatic changes, species with a higher tendency of climatic 

niche stability (and thus a lower adaptability) should have evolved a stronger dispersal 

ability. In contrast, species with a higher tendency of niche lability (and thus a higher 

adaptability) should be able to “afford” being weak dispersers. A test of this prediction 

may help to understand how the interactions of ecological and evolutionary processes 

such as dispersal and adaptation may influence species responses to climate change. 
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3.3 Ecological niches: What are we measuring? 

The recent boost of studies investigating the link between phylogenetic relatedness 

and niche similarity is partly due to the increasing availability of phylogenetic trees, 

distribution data and powerful computer software. However, the availability of data and 

technical resources may sometimes distract us from reflections about whether we try to 

answer questions that we can actually not answer with the data at hand. In my analyses 

on phylogenetic signal in amphibian climatic niches, for instance, I quantified climatic 

niches by calculating niche positions from species occurrence records and climatic 

variables extracted from grid cells that cover areas of up to 50,000 km2. These grid cells 

may contain steep climatic gradients and their area by far exceeds the range of many 

species, so it is doubtful that I correctly characterised the niches of many small-ranging 

species. Therefore, I refrained from trying to infer complex evolutionary mechanisms 

such as speciation (Graham et al. 2004; Kozak & Wiens 2006) or the phylogenetic 

structuring of local or regional communities (Webb et al. 2002; Cavender-Bares et al. 

2004). Instead, I was only able to explore coarse trends and provide a baseline for 

further studies on much finer phylogenetic and geographical resolutions. For these 

studies, high-quality data on species occurrences are of fundamental importance. 

However, data quality can not be improved by downscaling coarse range maps that are 

based on SDMs or expert knowledge to finer resolutions; instead, more and better data 

obtained from field surveys are urgently needed to overcome the problem of data 

deficiency.  

The inference of ecological niches from environmental variables across species 

ranges may be questionable in general, which is be partly due to a lack of understanding 

of the conceptual background of the niche and its realisation in geographical space 

(Colwell & Rangel 2009; see also discussion in chapter III for the problem of the 

distinction between realised and fundamental climatic niches and the issue of niche 

quantification in this context). We urgently need more empirical studies assessing the 

relationships between a species’ (fundamental and realised) ecological niche and its 

geographical distribution (for conceptual papers, see Pulliam 2000; Soberón 2007; 

Soberón & Nakamura 2009; Colwell & Rangel 2009). 

Finally, I am tempted to add the – also self-critical – note that the increasing 

disassociation of analyses using highly advanced techniques from solid conceptual 

thinking and profound biological knowledge may not be sustainable for the 

advancement of ecological and global change research in the long run.  
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3.4 Interaction of different threats: challenges for conservation 

Different threats impacting biodiversity require different conservation measures. My 

analysis on the spatial variation of different threats for amphibians illustrates this 

challenge (Beebee & Griffiths 2005; Mendelson et al. 2006b; Gascon et al. 2007). The 

measures necessary for amphibian conservation include, among others, conventional 

protected area approaches, the prohibition of industrial and agrochemical pollutants, the 

prevention of Bd spread through hygienic measures for herpetologists, captive breeding 

programs, and international agreements on the reduction of greenhouse gas emission. 

Although the number of studies on the mechanistic interactions among different 

threats for biodiversity is increasing, the relevant processes remain poorly understood in 

many cases, which impedes the application of appropriate conservation approaches. For 

amphibians, e.g., the interaction of climate change and Bd spread is still controversial 

(Pounds et al. 2006; Mendelson et al. 2006a; Pounds et al. 2007; Lips et al. 2008; Rohr 

et al. 2008), and the abiotic and biotic factors influencing host susceptibility to Bd are 

far from being understood (Bielby et al. 2008; Garner et al. 2009; Richmond et al. 

2009). Little is also known about how interacting effects of land-use climate change 

influence the potential responses of species to rapid climate change (chapter I).  

To fill these gaps of knowledge, a unified research framework is needed that 

considers climate change together with the other main drivers of species extinctions, in 

particular habitat destruction, invasive species, and infectious diseases (chapter I). The 

development of such a framework imposes challenges for climate change biologists and 

conservationists, as it requires integrative approaches in theory and application. 

However, this avenue appears to be the only one to effectively mitigate the current 

biodiversity crisis. 
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Abstract 

It is generally assumed that current climate change is exceptional partly because of its 

unprecedented velocity. This being true, species and ecosystems would now face new 

challenges given their exposure to such extremely fast climatic changes. However, new 

geophysical research suggests that dramatic changes in temperature, wind regime, and 

sea-level during the Late Pleistocene occurred extremely rapidly over just a few years. 

These climatic changes may have been faster than contemporary ones, which raises 

questions about the ability of extant species to adapt to ongoing climate change. We 

argue that the advances in geophysical research will fundamentally change the way we 

perceive species’ ability to cope with climate change and call for a revision of how we 

model and interpret the effects of climate change on biodiversity. 
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Planet Earth has undergone severe climatic changes in the past, most recently during the 

glacial-interglacial cycles of the Pleistocene. It has generally been assumed that climate 

changes during and after the Pleistocene were gradual while contemporary climate 

warming occurs at an unprecedentedly rapid rate, a factor predicted to have dramatic 

consequences for biodiversity (IPCC 2007). However, recent geophysical studies are 

now challenging this view. Based on high resolution Greenland ice core data, Steffensen 

et al. (2008) showed that moisture source temperature changed up to 4°C per year near 

the end of the last glacial period (14,700yr B.P.). Brauer et al. (2008) reported an abrupt 

increase in storminess within a single year in Western Germany during the Younger 

Dryas cold climate period (12,700yr BP), and linked this event to the inception of 

deglaciation (see also Bakke et al. 2009). Similarly, sea levels around the Yucatán 

Peninsula underwent a rapid rise of 2-3 meters (most likely approximately 36 mm per 

year) during the last interglacial period (121ky B.P.) (Blanchon et al. 2009). Although 

the existence of abrupt historic climate change has previously been acknowledged 

(Alley et al. 2003), these new studies not only confirm these changes as being general, 

but also document, on a much finer temporal resolution, that these changes were more 

rapid than previously anticipated, especially by researchers modelling the effect of 

current and future climate change on biodiversity. Thus, these new geophysical findings 

have profound implications for climate research and pose a challenge to existing 

paradigms in climate change impact studies.  

Studies that assess the impact of climate change on biodiversity tend to adopt the 

view that past climatic changes were gradual rather than abrupt. The most recent report 

of the Intergovernmental Panel of Climate Change (IPCC), while recognizing that rapid 

climate changes occurred in the past, states that “it is very likely that the global 

warming of 4°C to 7°C since the Last Glacial Maximum occurred at an average rate 

about 10 times slower than the warming of the 20th century” (IPCC 2007, p. 435). This 

perception is based upon the fact that Earth’s temperature has increased by 0.74°C from 

1906 to 2005 and that sea levels have risen 3.1 mm per year in the decade between 1993 

and 2003 (IPCC 2007). Climate projections for the end of the century (2090-2099) 

range from a global mean temperature change of 1.8-4°C to a sea level rise of 0.18-0.59 

m (IPCC 2007). Focus on the speed of climate change during the last century has 

presumably given rise to the view that past climatic changes were much slower and that 

the current and anticipated “extraordinary” rate of future global warming is predicted to 

have a significant effect on Earth’s biodiversity (e.g. Thomas et al. 2004). 
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In this context, it is worth noting that the rapid climate change in the Quaternary 

period (spanning approximately 2.6 million years ago to the present) did not cause a 

broad-spectrum mass extinction; instead it appeared to have primarily affected a few 

specific groups, mainly large mammals and European trees (Koch & Barnosky 2006). 

The fact that relatively few taxa became extinct, compared to periods of mass 

extinctions, indicates that most extant species exposed to contemporary climate changes 

must have coped successfully with the abrupt climatic changes of the past.  

Species’ responses to climate change are usually condensed to: adaptation, dispersal 

and extinction (Holt 1990). The prevailing consensus, when modelling the effect of 

climate change on species distributions, is that current climate change simply outpaces 

micro-evolutionary processes so that there is no time for evolutionary adaptation (Jump 

& Penuelas 2005). Dispersal is regarded as the likely main response of species to past 

climatic changes and has been widely identified as a response to recent climate change, 

usually via range shifts from lower to higher latitudes and altitudes (Parmesan & Yohe 

2003). However, if the rapid rates of historical climate change described above are 

acknowledged, dispersal in terms of large range shifts (Fig. 1 A) over these short time 

periods become quite improbable as the main response of species to past climatic 

changes. Likewise, microevolutionary adaptations comprising small-scale changes in 

genetic diversity in a population over a few generations are even more difficult to 

imagine as a potential response to rapidly changing historical climate regimes.  

The fact that extant species did not become extinct during the last period of drastic, 

rapid climate change indicates that species must have used strategies other than shifts of 

geographical distributions or evolutionary adaptation to cope with changing climate. 

Adaptation to rapid changes in environmental conditions is not exclusively reliant on 

relatively slow microevolutionary processes based on genetic changes in populations. 

Instead, the phenotypic variability of populations, in the form of physiological, 

phenological or morphological traits, may have allowed species to cope with rapid 

climatic changes within their range (Nussey et al. 2005). Alternatively, retreats to 

nearby areas with suitable microclimates (Fig. 1 B, C), permitting species to endure 

adverse climatic conditions appear to have played a role for various taxa and regions 

(Willis et al. 2000). 

The recent reports on the exceptionally rapid climatic changes in the Late 

Quaternary and the fact that extant species have coped successfully with past climatic 

changes give rise to  the question of whether estimates of extinction risk due to current 
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and future climate change are exaggerated. When addressing this question one should 

bear in mind that the ability of species to cope with fast climate change is different 

today than it was in the past, with current landscapes and ecosystems severely modified 

by humans (Sala et al. 2000). These modifications have brought about land-use change 

and concomitant habitat destruction, degradation, and fragmentation at large spatial 

scales, which impose severe pressures on species. These modifications also have a huge 

impact on species’ potential strategies to cope with climate change thus increasing the 

negative impact of climate change per se. First; these land-use changes may reduce the 

possibilities of species to survive climate change in suitable microclimatic “pockets”. 

Smaller and fewer habitat patches by definition contain fewer microclimatic pockets 

suitable for species’ endurance during climate change (Fig. 1 D-F). Secondly, smaller 

habitat patches sustain smaller populations, which show lower genetic and phenotypic 

variability (Jump & Penuelas 2005) – a pre-requisite for rapid adaptive responses. Thus, 

habitat fragmentation reduces species’ potential to respond with trait shifts due to lower 

phenotypic variability across species ranges. Furthermore, fragmentation also impedes 

short- and long-distance dispersal processes (Fig. 1 D-F) (Fahrig & Merriam 1994), 

reducing immigration probability, which further reduces genotypic and phenotypic 

variability (Young et al. 1996) and in turn the ability of species to adapt to changing 

environmental conditions. 

The fact that extant species have demonstrably survived rapid, historic climatic 

changes is good news. It suggests that species’ ability to cope with drastic climate 

change is better than hitherto recognised, perhaps due to the phenotypic variability of 

populations, or to their ability to survive in microclimatic pockets in a heterogeneous 

landscape. In other words, species are probably more resilient to climatic changes than 

typically anticipated in most assessments of the negative effect of climate change on 

biodiversity (Willis & Bhagwat 2009). To understand the potential responses (e.g. 

dispersal or adaptation) of species to changing environments, a unified framework that 

considers climate change together with the main drivers of species extinctions, such as 

habitat destruction, invasive species, and diseases, is needed. The development of such a 

framework imposes a challenge for climate change biologists and conservationists 

focusing on how to effectively mitigate the biodiversity crisis and ecosystem changes 

caused by global changes of land-use and climate. 
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Figure 1 | Changes in species’ ranges as a result of climatic changes in a pristine world 
prior to human impact on e.g. habitat continuity (A-C), and in a world of habitat 
destruction and fragmentation (D-F), with adaptation excluded as a determining factor. A, 
Species track climatic changes by gradual range shifts. In case of extremely rapid climate 
change, as suggested by recent studies (see text), species may (B) endure adverse climatic 
conditions in small areas of suitable microclimates within their ranges and expand when suitable 
climatic conditions return, or (C) endure in small areas of suitable microclimates within their 
ranges, and thereafter track suitable climate conditions. D-F are parallels to A-C in a world of 
habitat destruction and fragmentation. Here, the available area containing suitable microclimatic 
conditions is smaller, which reduces the probability of endurance (central panels) and the 
probability of successful range shifts (right-hand panels). 
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Abstract 

Amphibians are experiencing population declines far exceeding those of other 

vertebrate groups. The exact causes of these declines are still a matter of controversy 

but most likely include climate change, land-use change and the spread of 

Chytridiomycosis, a disease caused by the pathogenic chytrid fungus Batrachochytrium 

dendrobatidis (or Bd for short). Here, we provide a global assessment of the geography 

of these potential threats and their interactions. We show that the highest proportions of 

species negatively affected by climate change are projected to occur in Africa, parts of 

northern South America, and the Andes. Regions with highest projected climate and 

land-use change impacts show a strong tendency of congruence, but show little overlap 

with regions of high Bd prevalence. Other threats like pollution and direct exploitation 

may affect the exact geography of impacts, but in absolute terms only add to the already 

considerable threats identified. Our findings highlight that the existing declines of 

amphibians will most likely be exacerbated in the 21st century as multiple drivers of 

extinction risk may impose a far more alarming jeopardy for global amphibian diversity 

than previous, mono-causal assessments have suggested.  
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30% of the world’s amphibian species are listed as threatened in the IUCN Red List, 

making of this group the most endangered vertebrate group globally (Stuart et al. 2004; 

IUCN et al. 2008; Wake & Vredenburg 2008). Numerous species are experiencing 

population declines in many regions of the world (Pounds & Crump 1994; Lips 1998; 

Alford & Richards 1999; Houlahan et al. 2000; Schloegel et al. 2006; Whitfield et al. 

2007; Ryan et al. 2008; Rovito et al. 2009). Important causes for amphibian declines are 

anthropogenic land-use changes leading to habitat destruction, degradation and 

fragmentation, climate change, the fatal disease chytridiomycosis which is transmitted 

by the chytrid fungus Batrachochytrium dendrobatidis (Bd), direct exploitation for food, 

medicine and the pet trade, environmental pollution, increase in UV-B irradiation due to 

anthropogenic ozone depletion, and the spread of invasive species (Blaustein & 

Kiesecker 2002; Collins & Storfer 2003; Beebee & Griffiths 2005). 

Numerous studies have assessed how these threats affect amphibian species and 

interact at local and regional scales (Pounds & Crump 1994; Berger et al. 1998; Becker 

et al. 2007; Bosch et al. 2007; Wake 2007; Laurance 2008; Lips et al. 2008). A recent 

continental assessment has used species distribution models to project climate change 

impacts on American amphibian diversity (Lawler et al. 2010). Attempts have also been 

made to assess the relative importance of different threats on a global scale (Stuart et al. 

2004; Bielby et al. 2008; Sodhi et al. 2008). Several hypotheses have been proposed on 

the potential interactions between major threats, namely Bd and climate change, yet no 

final accord has been reached (Pounds et al. 2006; Pounds et al. 2007; Alford et al. 

2007; Lips et al. 2008; Rohr et al. 2008). First models of the geography of Bd under 

climate change have been provided (Ron 2005; Rödder et al. 2009; Rödder et al. 2010), 

but to date an integrative, global-scale assessment on the spatial interactions of the most 

severe threats climate change, Bd and land-use change is missing.  

Using a dataset of 5,527 amphibian species we here demonstrate how the spatial 

interaction of the three most important threats (climate change, Bd, and land-use 

change, see Methods) may impact amphibian diversity between now and 2080 in a 

geographically heterogeneous way (see Fig. 1 for the spatial variation of threat 

intensity).  

Regions with high projected impact of climate change on diversity (regions of 

overlap of the 25% grid cells with the highest proportion of species losing climatic 

suitability in 2080 with the 25% grid cells of highest species richness) were for frogs in 

the northern Andes and parts of the Amazon and the Cerrado in South America, large 
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areas of Africa and a small region in South East Asia (Fig. 1A, Fig. S1 in the 

Supplementary Material). Values for the proportion of losers per grid cell range up to 

73% (= 96 species) (Fig. 1A). For salamanders, western North America, northern 

Central America and southern and southeastern Europe are the regions projected to be 

most heavily impacted by climate change, as are some scattered grid cells in northern 

South America for caecilians (Fig. 1A, Fig. S1). For salamanders, the maximum 

proportion of losers (species projected to lose climatic suitability) in the most species-

rich grid cells reaches 72% (18 species, Fig. 1A). 

 
Figure 1 | Geographical variation of threat intensity, projected for 2080. A, proportion of 
“climate losers” (= proportion of species per grid cell projected to lose climatic suitability, 
arithmetic mean across 14 GCMs, 3 emission scenarios, and 3 modeling algorithms); B, 
probability of occurrence of Bd (as projected by climate-based species distribution models, 
arithmetic mean across 3 GCMs and 2 emisson scenarios, data from Rödder et al. 2010); C, 
land-use change (= proportion of grid cell area projected to be converted from a natural to an 
anthropogenic state, arithmetic mean across 4 scenarios, data from Alcamo et al. 1998); see 
Methods for further details. White areas in panel A indicate the absence of the amphibian order 
from the respective regions. 

The regions with the strongest projected impacts of climate change did not overlap 

with the regions of the highest probability of occurrence of Bd for frogs and caecilians 

(Fig. 2A); the observed overlap (OVobs) of the two threats was significantly lower than 

the overlap expected by chance for frogs (OVexp, G = 6.19, p = 0.013) and did not differ 

from random overlap for caecilians (G = 0.51, p = 0.48; Table 1). They did, however, 

overlap for salamanders (OVobs > OVexp, G = 11.0, p < 0.001, Table 1, Fig. 2A). Within 
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the 25% grid cells with the highest frog species richness, the difference between 

observed and expected overlap was even stronger (G = 37.5, p < 0.001; Table 1). 

Regions of high projected climate change impacts largely overlapped with those 

showing high projected land-use change impacts for frogs (OVobs > OVexp; all grid cells, 

G = 15.3, p < 0.001; 25% richest grid cells, G = 10.6, p = 0.001; Table 1, Fig. 2B), but 

not for salamanders and caecilians (OVobs ≈ OVexp; all grid cells, GSalamanders = 0.90, p = 

0.34, GCaecilians = 0.036, p = 0.85; 25% richest grid cells, GSalamanders = 1.2, p = 0.27, 

GCaecilians = 0.71, p = 0.40; Table 1, Fig. 2B). The regions with high probability of 

occurrence of Bd did not overlap with the regions of high projected land-use change 

impact (OVobs < OVexp, G = 4.28, p = 0.038; Table 1, Fig. 2C), also when considering 

the regions of highest species richness (OVobs ≈ OVexp; Table 1). This supports previous 

studies that have outlined the varying intensity of projected climate and land-use change 

across space (Jetz et al. 2007; Lee & Jetz 2008) or ecosystems (Sala et al. 2000).  

 
Figure 2 | Spatial overlap of regions exposed to high impact of different threats, projected 
for 2080. A, climate change and Bd; B, climate change and land-use change; C, land-use 
change and Bd. Regions under high impact are defined as (1) the 25% grid cells with the highest 
projected proportion of “climate losers”, (2) the 25% grid cells with the highest projected 
probability of Bd occurrence, (3) the grid cells with a projected land-use conversion from a 
natural to an anthropogenic state of at least 25%. White areas in panels A and B indicate the 
absence of the amphibian order from the respective regions.
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Table 1 | Null model results and G-statistics for the analyses of spatial overlap of different 
threats.  

 overlapobs* overlapexp
† ±CI G‡ 

ALL GRID CELLS 

Climate change and Bd  
Anura 241 280 ±20 6.19* 
Caudata 212 170 ±15 10.96*** 
Gymnophiona 19 22 ±6 0.51 n.s. 

Climate change and land-use 
Anura 161 117 ±14 15.27*** 
Caudata 22 27 ±7 0.9 n.s. 
Gymnophiona 35 34 ±7 0.0355 n.s.

Bd and land-use 
World 111 134 ±15 4.28* 

25% RICHEST REGIONS 

Climate change and Bd  
Anura 25 58 ±10 37.47*** 
Caudata 66 55 ±7 5.18* 
Gymnophiona 5 3 ±2 1.13 n.s. 

Climate change and land-use 
Anura 127 95 ±12 10.61** 
Caudata 2 4 ±3 1.21 n.s. 
Gymnophiona 2 3 ±3 0.71 n.s. 

Bd and land-use 
Anura 62 67 ±10 0.44 n.s. 
Caudata 15 12 ±3 0.74 n.s. 
Gymnophiona 4 4 ±2 0.003 n.s. 

Threats are the projections of the proportion of “climate losers” (climate change), Bd probability 
of occurrence (Bd), and land-use change (land-use). Threat overlap analyses were done 
separately for all grid cells and within the 25% grid cells of highest species richness for the 
respective amphibian order. 
*number of grid cells being among the 25% of the grid cells projected to be most heavily 
impacted by the two respective threats 
†expected overlap (arithmetic mean and 95% confidence intervals) as derived from 10,000 null 
model simulations; for the null models, grid cells projected to be most threatened were randomly 
distributed across the available grid cells (which differ for frogs, salamanders and caecilians) and 
grid cells where threats overlapped were counted  
‡G-statistics tests if the expected and observed values of overlap differ significantly from each 
other (replicated goodness of fit, Sokal & Rohlf 1995; Lund & Rahbek 2002); significance 
levels: ***p < 0.001, **p < 0.01, *p < 0.05, n.s. = not significant 
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To the best of our knowledge, no study has so far quantitatively coupled species-

specific climate change models with projections of land-use change and the potential 

spread of a highly infectious pathogen on a global scale. We stress, however, that 

various issues of data- and method inherent uncertainties and of some underlying 

biological assumptions in the models need to be borne in mind when interpreting our 

results (see Methods and Supplementary Text). Nevertheless, this note of caution should 

not hide the fact that the future of amphibian biodiversity appears to be threatened 

(Beebee & Griffiths 2005; Wake & Vredenburg 2008). Firstly, several threats that have 

been documented to cause amphibian declines, such as exploitation, pollution, the 

spread of invasive species or UV-B irradiation (Collins & Storfer 2003; Beebee & 

Griffiths 2005), could not be considered in this study. They give reason for additional 

concern, especially because of negatively interacting effects (Blaustein & Kiesecker 

2002; Collins & Storfer 2003; Bancroft et al. 2008). Secondly, our coarse-resolution 

approach may obscure more severe impacts on local scales that could have global 

effects. For instance, small areas may harbor rich endemic amphibian faunas whose 

species may be highly susceptible to Bd infection and show particularly high values of 

climate suitability for Bd in combination with the actual occurrence of the fungus. Such 

local coincidences cannot be detected by our coarse-scale assessment, but could actually 

result in the global extinction of many endemic species.  

Thirdly, the 25%-approach as used in our analyses does not imply that the 

amphibian faunas of the remaining regions are not impacted. Nevertheless, even in the 

unlikely case that the only regions where amphibians are threatened by 2080 are those 

identified by the arbitrary thresholds used here, more than half of the total range of each 

of the three amphibian orders would be under severe impact of either of the three threats 

(Fig. 3). When only considering the regions with the highest species richness, about two 

thirds of the area harboring the richest frog and salamander faunas (half of the area for 

caecilians) can be assumed to be heavily impacted by 2080.  

The phenomenon of spatial threat additivity revealed by our analysis may be 

particularly problematic for amphibians. Their biology makes amphibians vulnerable to 

a variety of threats (Wells 2007; Wake & Vredenburg 2008). For instance, many 

amphibian species rely on different habitats because of their multi-stage life cycle 

(Wilbur 1980). If threats are spatially additive, this may be worse for amphibians than 

for other organisms only relying on a single habitat: if, e.g., one particular area is 

affected by land-use change and another area by the water-mediated spread of a 
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pathogenic fungus, organisms relying on both habitats will suffer in both areas, while a 

coincidence of the two threats in one area and the absence of both in the other area 

would potentially be less problematic be more beneficial. In fact, amphibians without an 

aquatic stage appear to be less vulnerable than those relying on an aquatic stage (Lips 

1998; Lips et al. 2003; Bielby et al. 2008; Sodhi et al. 2008). 

 
Figure 3 | Spatial additivity of threats in 2080. Yellow, red 
and black colors indicate regions exposed to one, two or three 
high threat projections, respectively. Blue colors indicate 
regions of high species richness not projected to be exposed to 
high impact (by any of the three threats).  
Regions under high threat are defined as (1) the 25% grid cells 
with the highest projected proportion of “climate losers”, (2) the 
25% grid cells with the highest projected probability of Bd 
occurrence, (3) the grid cells with a projected land-use 
conversion from a natural to an anthropogenic state of at least 
25%. Regions of high species richness are defined as the 25% 
grid cells with the highest species richness for the respective 
amphibian order. White areas indicate the absence of the 
amphibian order from the respective regions. 
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The problem of spatial additivity and mechanistic interaction of multiple threats 

imposes major challenges for sustainable approaches of amphibian conservation. Very 

different measures on different temporal, spatial and political scales are needed (Beebee 

& Griffiths 2005; Mendelson et al. 2006; Gascon et al. 2007). These range from 

conventional protected area approaches via the prohibition of industrial and 

agrochemical pollutants or the prevention of Bd spread through hygienic measures for 

herpetologists and captive breeding programs to international agreements on the 

reduction of greenhouse gas emission. The global spatial additivity of threats for 

amphibian diversity as documented by our analyses underlines the pessimistic long-term 

perspectives for the global amphibian diversity (Stuart et al. 2004; Beebee & Griffiths 

2005; Mendelson et al. 2006). We call for more quantitative spatial assessments on the 

intensity and interactions of threats and stress the need of multi-level conservation 

approaches. 

Methods summary 

To identify the regions with the highest projected impacts of climate change on 

amphibian species, we fitted bioclimatic models for 5,527 species using ensemble 

forecasting (Araújo & New 2007). We used climatic data from 14 different general 

circulation models (GCMs) of the 4th IPCC report (IPCC 2007; Meehl et al. 2007) under 

three emission scenarios and applied three common bioclimatic modeling algorithms. 

For each of 5041 2×2 degrees latitude-longitude cells, we identified the species 

projected to lose climatic suitability (“losers”) in 2080 compared with current 

conditions. We then mapped the proportion of losers out of the total number of species 

per grid cell across the world. As the regions with the highest projected impact of 

climate change, we identified the 25% of the grid cells with the highest proportion of 

losers, separately for frogs, salamanders and caecilians. We also identified the regions 

with the highest species richness, as well as the regions with the highest probability of 

occurrence of Bd (data from Rödder et al. 2010) and with the highest projected land-use 

change in 2080 (data from Alcamo et al. 1998), again using a 25%-threshold.  

To assess the spatial overlap of the regions of highest impact from different threats, 

we used null model simulations and a G-statistics approach (replicated goodness of fit, 

Sokal & Rohlf 1995; as proposed in Lund & Rahbek 2002). For the null models, we 

randomly distributed the regions projected to be most threatened (which were defined as 

explained above) across the available grid cells (which differ for frogs, salamanders and 
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caecilians), and counted the cells where threats overlap – separately for projected 

climatic impacts on amphibian diversity, Bd probability of occurrence and land-use 

change. We ran 10,000 simulations after which we compared the observed overlap 

values with those of the simulations. The G-statistics tests if the expected and observed 

values of overlap differ significantly from each other. 
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Methods 

Data. We conducted species distribution modeling for 5527 amphibian species from 

the three amphibian orders Anura (frogs and toads), Caudata (salamanders and newts) 

and Gymnophiona (caecilians), which for simplicity are henceforth referred to as frogs, 

salamanders and caecilians. Distribution data were compiled from the ‘Global 

Amphibian Assessment’ (IUCN et al. 2004). Polygons of species’ ranges were 

resampled to a 2 × 2 degree latitude-longitude grid (referred to as the 2°-grid in the 

following) including 5041 terrestrial cells (for maps of species richness, see Fig. S2 in 

the Supplementary Material). 

Climatic data were obtained from the World Climate Research Programme’s 

(WCRP's) Coupled Model Intercomparison Project phase 3 (CMIP3) multi-model 

dataset (Meehl et al. 2007) of the 4th Intergovernmental Panel on Climate Change 

(IPCC) report. Data were derived from 14 coupled Atmosphere-Ocean General 

Circulation Models (GCMs) and three emission scenarios (see Table S1 for an overview 

of the used datasets). Using this series of GCMs we encompass a wide range of 

equilibrium climate sensitivity (ECS, 2.1°C to 4.3°C; see Table S1 for details) and an 

array of original spatial resolutions, from 1.1 × 1.1 to 3.75 × 3.75 degrees latitude-

longitude in the original sets. Outputs for each model were obtained for three SRES 

(IPCC 2000) emission scenarios (A1B, A2 and B1, but note that A2 and B1 scenarios 

were not available for all of the GCMs, Table S1; see IPCC 2007, p. 18, for a detailed 

description of the different scenario storylines). Inclusion of these three scenarios 

ensures that the models cover a wide range of likely climatic changes.  

For each of the GCMs and emission scenarios, five climatic variables were obtained 

for present time (averaged across a 30-year time period from 1970 to 1999), which was 

the baseline used to calibrate the models, as well as for a 30-year time period from 2070 

to 2099, subsequently referred to as 2080. The variables used were mean annual rainfall 

and precipitation seasonality, annual temperature range, minimum temperature and 

maximum temperature. These variables are known to impose constraints on amphibian 

physiology and survival (Carey & Alexander 2003; Wells 2007) and are often used to 

model amphibian species distributions and richness (e.g. Araújo et al. 2006; 2008). All 

climate variables were resampled to the 2°-grid. This resolution approximates the 

average of the original GCM resolutions.  
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By using a global extent approach and given our scale of analysis in terms of grain 

size, we (1) avoid asserting artificial data quality by inappropriate downscaling of the 

climatic data, and (2) minimize the problem of false absences in the species distribution 

data (e.g. Hurlbert & Jetz 2007) as many species in the dataset have only been identified 

in a few localities, with no knowledge about the true extent of occurrence of the species 

(IUCN et al. 2008). However, the coarse resolution precludes detailed local assessments 

of threat interactions and processes; therefore we focus on documenting coarse spatial 

patterns here. 

As projections of the probability of occurrence of Bd we used climate-based 

consensus projections by Rödder et al. (2010). Their projections (standardized 

probability of occurrence given by a consensus of MaxEnt SDMs across 3 GCMs and 2 

emission scenarios) were resampled to the 2°-grid by weighted averaging (Fig. S3). For 

the subsequent analyses, we used a consensus map calculated as arithmetic means 

across the all projections (Fig. 1B). Generally, averaging across different scenarios may 

be problematic. However, for practical reasons and because separate maps of the 

variation of Bd probability of occurrence for each combination of used GCM × scenario 

did not show strong differences in the spatial pattern (Fig. S3), we stick to the consensus 

map. 

For the projections of potential land-use change, we used data from the Millennium 

Ecosystem Assessment (MA, Alcamo et al. 1998; Millennium Ecosystem Assessment 

2005b). The MA uses four scenarios representing a variety of socio-economic and 

political futures to estimate future changes in the Earth’s land-cover ("Adapting 

Mosaic", "Global Orchestration", "Order from Strength", and "TechnoGarden"; for 

more information on the MA data and the description of scenarios, see Millennium 

Ecosystem Assessment 2005a; Jetz et al. 2007). The MA maps provide information on 

current and future distributions of 18 different land-cover types at a 0.5° latitude-

longitude resolution. For a quantification of potential land-use change we identified grid 

cells that are projected to change from a natural to an anthropogenic land-cover state 

(change of any land-cover type to land-cover type 3 “cropland/permanent pasture”) and 

calculated the proportion of area changed for each cell of our 2°-grid for 2080, as a 

consensus map (arithmetic mean across all four scenarios, Fig. 1C) and separately for 

each of the four scenarios (Fig. S4). As for Bd projections, for practical reasons and 

because a separate use of different MA scenarios does virtually not affect the results, we 

used the consensus map in the subsequent analyses. 
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Modeling. Three different modeling algorithms, Euclidean distance (ED), 

Mahalanobis distance (MD) and MaxEnt (MX), were used to run species distribution 

models (SDMs). These presence-only algorithms were selected due to the large number 

of species with uncertain distributions to be modelled. The two distance methods 

measure the similarity of each species’ occurrence to the mean (or centre) of the 

available climatic space. Accordingly species’ niches are defined as circular (for ED) or 

elliptical (for MD) shapes in climatic hyperspace (Farber & Kadmon 2003). 

BioEnsembles, a new computer software which is able to optimize and take advantage 

of high-speed parallel processing, was used to run the ED and MD models (Rangel et al. 

2009). MaxEnt version 3.2.4 (Phillips et al. 2006; Phillips & Dudik 2008), a machine-

learning technique based on the principle of maximum entropy, was used to run the MX 

models. In MaxEnt, we used a regularization multiplier of 0.5 (a model parameter which 

allows for adjustment of the degree of model overfitting), since this value represents a 

balance between being able to fit models for species with very few records while 

avoiding an unreliable degree of overfitting. For each of the 5,527 species, we ran each 

possible modeling combination (3 modeling algorithms × 14 GCMs × 3 scenarios × 2 

time periods), which resulted in 1,260,156 models (note that for some GCMs only two 

scenarios were available, Table S1). Standard SDM validation procedures were not 

applicable in our study (but note that a validation for future scenarios is in any case not 

possible). However, we cautiously assessed patterns of variation in model results that 

may have resulted from different sources of uncertainty, such as species with small 

numbers of occurrence records, different modeling algorithms, variation among GCMs 

that may result from different resolutions and equilibrium climatic sensitivities, as well 

as different emission scenarios (see Supplementary Text, also for discussion on model-

inherent assumptions). All analyses were performed separately for frogs, salamanders 

and toads.  

Processing of modeling results. For two reasons we used a no-dispersal scenario as 

the basic underlying assumption for the further processing of the modeling results. 

Firstly, it is unlikely that amphibians will be able to fully track changes in climatic 

conditions by shifts of their distributional ranges (Smith & Green 2005), in particular 

when thinking of the coarse spatial scale of our analyses (see also our discussion of 

coarse data implications in Supplementary Text). Secondly, and more importantly, the 

ranges of many species are extremely small (see Fig. S1 for range-size frequency 

distributions). Since SDM range projections can become unreliable for species with few 
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occurrence records (Stockwell & Peterson 2002; McPherson et al. 2004; Wisz et al. 

2008) we refrained from projecting a species’ range into areas where the species does 

not currently occur. Furthermore, because of various uncertainties (see Supplementary 

Text) we decided not to use thresholds to transfer raw model outputs (i.e. probabilities 

of occurrence) into presences or absences. Instead, we used the change in climatic 

suitability per grid cell within species’ current ranges. The change in climatic 

suitabilities was then calculated as the difference of the climatic suitabilities between 

current and future conditions (standardized MX probability of occurrence or 1 minus the 

standardized raw distance for ED and MD, respectively; see Fig. S5 for an example). 

This procedure was repeated for each model combination (algorithm × GCMs × 

scenarios) for each species. Despite the standardization of values of suitability change to 

a range from 0 to 1, the values are not quantitatively comparable across the different 

modeling algorithms, which is due to general differences in distance-based (ED, MD) 

and machine-learning (MX) algorithms as well as to and software-inherent differences 

(for histograms and maps of the mean changes of suitability per grid cell, calculated 

across the means of all species, see Fig. S6 and Fig. S7). Therefore we used a qualitative 

approach to identify the regions with the strongest projected impacts of climate change 

on amphibian diversity: for each model combination, we counted the number of species 

per grid cell  that (1) lose climatic suitability (“climate losers” - negative change in 

climatic suitability between current and future conditions), (2) gain climatic suitability 

(“climate winners” - positive change in climatic suitability between current and future 

conditions) and (3) show no change in climatic suitability between current and future 

conditions. Note that doing so implies that species with the smallest change in climatic 

suitability will be counted as “climate loser” or “climate winner”, and that species may 

be identified as losers in one grid cell and as winners in another. However, as we do not 

intend to forecast species extinctions we believe our approach is valid. 

To identify the regions with the strongest projected impacts of climate change on 

amphibian diversity, we built consensus maps of the proportion of climate losers and 

then identified the 25% of all grid cells with the highest proportion of losers (Fig. S1). 

Consensus maps were derived by calculating arithmetic means of the proportion of 

climate losers across all model combinations (algorithm × GCM × scenario) for 2080 

(Fig. 1A).  

Many studies have shown that species distribution modeling results can vastly differ 

when using different GCMs, emission scenarios and algorithms (e.g. Araújo et al. 2005; 
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Pearson et al. 2006). To assess the uncertainties around the consensus, we mapped the 

proportion of losers separately as arithmetic means (1) across all combinations of GCM 

× algorithm per scenario (Fig. S8), (2) across all combinations of GCM   × scenario per 

algorithm (Fig. S9 A-C), and (3) across all combinations of GCM × scenario per 

combination of two algorithms (Fig. S9 D-F). Furthermore, following a novel 

uncertainty assessment protocol (Diniz-Filho et al. 2009), we assessed the proportion of 

variation explained by different sources of uncertainty (algorithm, GCM, scenario, their 

interactions, and the residual uncertainty) by variance partitioning (SS proportion in 3-

way ANOVAs; Fig. S10), and mapped these proportions of uncertainty (Fig. S11, see 

Diniz-Filho et al. 2009 and Supplementary Text for details). In addition, we identified 

the 25% grid cells with the highest proportion of  climate losers separately for each 

model combination and calculated the number of models per grid cell that identified this 

grid cell as one of the 25% with the highest proportion of losers. These overlap maps 

were constructed for each possible algorithm combination (ED × MD × MX; ED × MD, 

ED × MX, MD ×MX; ED, MD, MX) to also assess the amount of uncertainty that is 

associated with the use of one, two or three modeling algorithms (Fig. S12). 

Spatial overlap of different threats. To investigate the spatial overlap of different 

threats for amphibian diversity, we identified the regions with the highest projected 

impact for each of the respective threat: 25% of all grid cells with the highest proportion 

of climate losers (Fig. S13 A), 25% of all grid cells with the highest probability of 

occurrence of Bd (Fig. S13 B), and the grid cells with a projected land-use change of at 

least 25% of the total area (Fig. S13 C). All of these calculations were based on the 

consensus maps which were derived as explained above. 

To assess the spatial overlap of the regions of highest projected impact from 

different threats (Fig. 2), we used null model simulations (Table 1, Fig. S14) and a G-

statistics approach (replicated goodness of fit, Sokal & Rohlf 1995; as proposed in Lund 

& Rahbek 2002). For the null models, we randomly distributed the regions projected to 

be most threatened (which are defined as explained above) across the available grid 

cells (which differ for frogs, salamanders and caecilians), and counted the cells where 

threats overlapped – separately for projections of climatic impacts on amphibian 

diversity, Bd probability of occurrence and land-use change. We ran 10,000 simulations 

after which we compared the observed overlap values with those of the simulations 

(Table 1, Fig. S14). With the G-statistics test we determined which of the expected and 
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observed values of overlap differ significantly (see also Table 1 and Lund & Rahbek 

2002 for details). 
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Supplementary Material 

Supplementary Text | Assessment of uncertainties 

In the analyses quantifying the amount of uncertainty resulting from different 

sources in the ensemble modeling, we found that the interaction between GCMs and 

modeling algorithm accounted for the largest level of uncertainty (c. 60% explained 

variance in a three-way ANOVA, Fig. S10 – see Methods for details). Among the main 

effects, the variation among GCMs was the largest source of uncertainty (c. 20% 

explained variance), followed by the variation among algorithms (c. 10%). This pattern 

was consistent among the different amphibian orders (Fig. S10). Mapping the different 

sources of variance revealed no distinct spatial pattern (Fig. S11).  

When mapping the 25% grid cells with the highest projected proportion of losers 

separately for each modeling combination (GCM × scenario × algorithm, Fig. S12), an 

overlay of all model combinations showed only an intermediate consistency among the 

different models for some of the regions projected to be most heavily impacted. When 

removing the models of the Mahalanobis Distance (MD), the consistency increased 

considerably (Fig. S12 E), especially for regions projected to be most heavily impacted, 

which then reached consistency values of up to 50-60%. In fact, a visual inspection of a 

large sample of species-specific maps indicated that the MD results were much less 

reliable than the results obtained from the ED and MX models. However, since the 

spatial pattern of the regions projected to be exposed to high climate change impact 

does not considerably change when excluding the MD models (Fig. S13 and S16), we 

decided to leave them in the consensus projections. 

The overall pattern of the spatial variation of the proportion of climate losers did not 

differ among the three SRES emission scenarios, with only the proportion values 

differing among the different scenarios, where the A2 scenario generally showed higher 

proportions of losers than the A1B and the B1 scenario (Fig. S8). Removing the species 

with very small range sizes did not result in any considerable changes in the spatial 

patterns (Fig. S15).  

We emphasize that beyond the uncertainties resulting from the large number of 

models used in the ensemble modeling analyses there are several fundamental 

assumptions and uncertainties inherent in the methods used that need to be taken into 

account. These refer in particular to (1) assumptions inherent in the species distribution 



 Chapter II 79 

modeling approach, (2) assumptions and uncertainties in the climate-based modeling of 

Bd, and (3) the coarseness of the data and analyses used. These points call for a cautious 

interpretation of the results. 

Firstly, several fundamental, biologically rather unrealistic assumptions are inherent 

in climate-based species distribution models, such as the equilibrium of the species’ 

distributions with current climatic conditions, neglect of biotic interactions in 

determining distributions, simplified dispersal assumptions (null- and full- dispersal 

scenarios), and neglect of species’ evolutionary potential to adapt to novel climatic 

conditions (Guisan & Thuiller 2005). As a result of this, many studies have outlined 

pathways to overcome the shortcomings of species distribution models (e.g. Araújo & 

Guisan 2006; Keith et al. 2008; Anderson et al. 2009). However, for a global and 

taxonomically comprehensive analysis like ours we rely on the coarse distribution and 

climate data at hand which does not allow for more innovative approaches. Therefore, 

we provide an uncertainty assessment of our models in concert with a cautious 

interpretation of our results (see above). In particular, we stress that projections and 

scenarios as used and produced in our analyses are not to be taken as predictions. 

Secondly, the occurrence and spread of Bd is, of course, not only dependent on 

climate, and the interaction between climate change and Bd outbreaks remains heavily 

debated (Pounds et al. 2006; Pounds et al. 2007; Alford et al. 2007; Bosch et al. 2007; 

Lips et al. 2008). Although a certain climatic optimum has been documented, the 

evolutionary potential to adapt to novel climatic conditions may be particularly high for 

microbial pathogens such as Bd (Fisher et al. 2009). Furthermore, several of the regions 

with a high climate-based projected probability of Bd occurrence that harbor a rich 

amphibian fauna, such as Madagascar, have as yet not been exposed to Bd (Kriger & 

Hero 2009). Thus, the Bd models would rely on the introduction of Bd to these regions. 

However, reports on the rapid spread of Bd during the last decades (James et al. 2009) 

and the contribution of humans to this spread (Kriger & Hero 2009) give rise to serious 

concerns even for the regions not yet colonized by Bd. Furthermore, little is yet known 

about the factors influencing the susceptibility of amphibians to Bd infection (Berger et 

al. 2005; Woodhams et al. 2007; Fisher et al. 2009; Richmond et al. 2009). While some 

species suffer dramatically and the first extinctions due to Bd infection have been 

documented (Schloegel et al. 2006; Skerratt et al. 2007), other species are apparently 

able to cope with the pathogen (Woodhams et al. 2006).  
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Thirdly, the data on land-use change are very rough estimates based on various 

socioeconomic and environmental development scenarios (Millennium Ecosystem 

Assessment 2005). As a general caveat, one has to bear in mind that our analyses as 

well as the underlying climate, species distribution and land-use data are of coarse 

resolution. For example, it is unlikely that we accurately characterize the climatic niche 

of a narrowly-ranging species by averaging temperature values across 2° grid cells of an 

area covering c. 48,000 km² at the equator (see also discussion in Hof et al. 2010). 

However, due to the high uncertainty inherent in model or scenario data (such as our 

climate and land-use data), scaling down the resolution to 1° or even 0.5° would imply 

an artificial accuracy of the analyses that by no means can be supported by the 

underlying source data. Hence, using a rather coarse resolution may actually be more 

appropriate for this type of analyses. Moreover, as we restrict our aim to the coarse 

quantification of the spatial interactions of different threat projections, we believe our 

analyses are robust. 
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Supplementary Tables 

Table S1 | Overview of the climatic (GCM) data used. 

Model ecs* resolution   scenarios† 

  (°lat × °lon) 

CCSM3, USA 2.7 1.4 × 1.4 A1B, A2, B1 

MRI-CGCM2.3.2, Japan 3.2 2.8 × 2.8 A1B, A2, B1 

CGCM3.1(T47), Canada 3.4 3.75 × 3.75 A1B, A2, B1 

CGCM3.1(T63), Canada 3.4 1.9 × 1.9 A1B, B1 

GFDL-CM2.0, USA 2.9 2.0 × 2.5 A1B, A2, B1 

GFDL-CM2.1, USA 3.4 2.0 × 2.5 A1B, A2, B1 

CSIRO-Mk3.0, Australia 3.1 1.9 × 1.9 A1B, A2, B1 

ECHAM5/MPI-OM, Germany 3.4 1.9 × 1.9 A1B, A2, B1 

UKMO-HadCM3, UK 3.3 2.5 × 3.75 A1B, A2, B1 

UKMO-HadGEM1, UK 4.4 1.3 × 1.9 A1B, A2 

IPSL-CM4, France 4.4 2.5 × 3.75 A1B, A2, B1 

MIROC3.2(hires), Japan 4.3 1.1 × 1.1 A1B, B1 

MIROC3.2(medres), Japan 4 2.8 × 2.8 A1B, A2, B1 

PCM1, USA 2.1 2.8 × 2.8 A1B, A2 

*equilibrium climate sensitivity, the annual mean surface air temperature change experienced 
by the climate system after it has attained a new equilibrium in response to a doubling of CO2 
concentration (unit: degrees Celsius) (IPCC 2007) 
†scenarios used in the species distribution modeling; for some GCMs only two scenarios were 
available by the time of data download  
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Supplementary Figures 

 
Figure S1 | Overlap of regions of high species richness and high impact of climate change, 
Bd, and land-use change by 2080. Regions of high species richness (dark grey) are defined as 
the 25% grid cells with the highest species richness; regions exposed to high impact are defined 
as, A, the 25% grid cells with the highest projected proportion of “climate losers” (red), B, the 
25% grid cells with the highest projected probability of Bd occurrence (blue), C, the grid cells 
with a projected land-cover conversion from a natural to an anthropogenic state of at least 25% 
(green). Overlap of high richness with the respective threat is given in black. White areas 
indicate the absence of the amphibian order from the respective areas. 
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Figure S2 | Species richness and range sizes of amphibians. A, Spatial variation of 
amphibian species richness; B, range-size frequency distributions. Note the differences in the 
color scale in panel A and the scaling of the x-axis in panel B.  
FRO, frogs; SAL, salamanders, CAE, Caecilians. Grey areas in panel A indicate the absence of 
the amphibian order from the respective areas. 

 
Figure S3 | Probability of occurrence of Bd, projected for 2080. Values of probabilities of 
occurrence are obtained on climate-based species distribution models using MaxEnt (results 
from Rödder et al. 2010; rescaled to the 2°-grid). Different panels show the combinations of 
emission scenarios (columns) and GCMs (rows) used.  
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Figure S4 | Projections of land-use change for 2080. Colors indicate the proportion of the 
area of one 2°-grid cell projected to be converted from a natural to an anthropogenic land-
use state (data from Alcamo et al. 1998), for each the four MA scenarios (Millennium 
Ecosystem Assessment 2005). A, Adapting Mosaic; B, Global Orchestration; C, Order from 
Strength; D, TechnoGarden. 

 
Figure S5 | Calculation of change in climatic suitability. From the current distribution (left-
hand panel), SDMs are fitted using climatic variables for current and future conditions. SDMs 
assign a certain climatic suitability (= probability of occurrence) to each grid cell (central 
panels; darker colours indicate higher suitabilities). The change in suitability is calculated as the 
difference between current and future suitabilities (right-hand panel). The exemplary species is 
the Northern Cricket Frog (Acris crepitans), which occurs throughout the eastern USA (picture 
courtesy: J. Oldenettel). 
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Figure S6 | Mean changes in climatic suitability for 
climate losers and winners, projected for 2080. Values are 
calculated as arithmetic means across 14 GCMs of mean 
changes in climatic suitability across all species per grid cell 
that lose (white bars) or win (grey bars) climatic suitability 
(for an explanation of the calculation of climatic suitabilities, 
see Fig. S2). Each panel shows a separate combination of 
emission scenario (rows) and modeling algorithm (columns). 
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Figure S7 | Spatial variation of mean changes in climatic suitability for climate losers, 
projected for 2080. Values are calculated as arithmetic means across 14 GCMs of mean 
changes in climatic suitability across all species per grid cell that lose climatic suitability. Each 
panel shows a separate combination of emission scenario (rows) and modeling algorithm 
(columns). A, ED × A1B, B, MD × A1B; C, MX × A1B; D, ED × A2; E, MD × A2, F, MX × 
A2; G, ED × B1; H, MD × B1, I, MX × B1; FRO, frogs; SAL, salamanders; CAE, caecilians. 
Note the different color scaling for the different modeling algorithms (columns). 
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Figure S8 | Proportions of climate losers projected for 2080, based on different emission 
scenarios. Values are calculated as arithmetic means across 14 GCMs and 3 modeling 
algorithms, separately for different emission scenarios. A, A1B scenario; B, A2 scenario; C, B1 
scenario; FRO, frogs; SAL, salamanders, CAE, caecilians. 

 
Figure S9 | Proportions of climate losers projected for 2080, based on different modeling 
algorithms. Values are calculated as arithmetic means across 14 GCMs and 3 emission 
scenarios, separately for each modeling algorithm (A-C), and for combinations of two modeling 
algorithms (D-F). A, ED; B, MD; C, MX; D, ED × MD; E, ED × MX, F, MD × MX; FRO, 
frogs; SAL, salamanders, CAE, caecilians; ED, Euclidean Distance; MD, Mahalanobis 
Distance; MX, MaxEnt. 
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Figure S10 | Partitioning of uncertainty in ensemble modeling of the proportions of 
climate losers for 2080. Uncertainty is given as the proportion of variance in the proportion of 
“climate losers” per grid cell explained by different sources of uncertainty: GCM, algorithm 
(Alg), emission scenario (Scen), their interactions, and residual variance (Resid). Variance 
proportions (proportions of Sum of Squares) are obtained from 3-way ANOVAs (see Methods 
and Supplementary Text for further details). 
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Figure S11 | Spatial variation of the uncertainty in the consensus projections of climate 
losers for 2080. Uncertainty is given as the proportion of variance in the proportion of “climate 
losers” per grid cell explained by different sources of uncertainty. A, GCM; B, algorithm; C, 
emission scenario; D, GCM × algorithm; E, GCM × scenario, F, Algorithm × scenario; G, 
residual variance. FRO, frogs; SAL, salamanders, CAE, Caecilians. Variance proportions 
(proportions of Sum of Squares) are obtained from 3-way ANOVAs (for further details, see 
Methods and Diniz-Filho et al. 2009). 
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Figure S12 | Consistency of models projecting regions to be exposed to high climate change 
impact by 2080. Consistency is indicated as number of model combinations (algorithm × GCM 
× scenario) projecting a certain grid cell as being among the 25% cells with the highest 
proportion of climate losers. A, ED; B, MD; C, MX (n =38); D, ED + MD; E, ED + MX; F, 
MD + MX (n = 76); G, all model combinations (n = 114). Darker colours indicate higher 
consistency (larger number of models projecting this grid cell to be exposed under high impact). 
FRO, frogs; SAL, salamanders, CAE, caecilians; ED, Euclidean Distance, MD, Mahalanobis 
Distance, MX, MaxEnt. 
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Figure S13 | Regions projected to be exposed to high impact of climate change, Bd, and 
land-use change by 2080. Regions projected to be exposed to high impact are defined as, A, 
the 25% grid cells with the highest projected proportion of “climate losers” (red), B, the 25% 
grid cells with the highest projected probability of Bd occurrence (blue), C, the grid cells with a 
projected land-cover conversion from a natural to an anthropogenic state of at least 25% 
(green). Overlap high richness with the respective threat is given in black. White areas in panel 
A indicate the absence of the amphibian order from the respective regions. 
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Figure S14 | Results of null models simulating random spatial overlap among different 
threats. For the null models, we randomly distributed the regions projected to be 
exposed to high impact (defined by 25%-thresholds, see Methods, Fig. 2, Fig. S13 and 
Fig. S15) across the available grid cells (which differ for frogs, salamanders and 
caecilians). Here, histograms of the values obtained from 10,000 simulations are shown 
(see also Table 1 and Fig. 2). A, climate change × Bd, B, climate change × land-use; C, Bd × 
land-use. 
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Figure S15 | Proportion of climate losers for species of the upper range-size quartile, 
projected for 2080. A, raw values calculated as arithmetic means across 14 GCMs, 3 emission 
scenarios, and 3 modeling algorithms, only including the species within the upper range-size 
quartile; B, 25% grid cells with the highest proportion of climate losers (red). The upper range 
size quartile is comprised of the 25% species with the largest range sizes (numbers of grid cells 
occupied by species in the upper range size quartile: frogs, 11; salamanders, 8; caecilians, 6). 
FRO, frogs; SAL, salamanders, CAE, caecilians. 
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Figure S16 | Regions projected to be exposed to high climate change impact by 2080, based 
on different modeling algorithms. Regions of high climate change impact (red) are defined as 
the 25% grid cells with the highest proportions of climate losers, based on values calculated as 
arithmetic means across 14 GCMs and 3 emission scenarios, separately for each modeling 
algorithm (A-C), and for combinations of two modeling algorithms (D-F). A, ED; B, MD; C, 
MX; D, ED × MD; E, ED × MX, F, MD × MX; FRO, frogs; SAL, salamanders, CAE, 
caecilians; ED, Euclidean Distance; MD, Mahalanobis Distance; MX, MaxEnt (see Fig. S7 for 
raw values). 

 
Figure S17 | Regions projected to be exposed to high land-use change impact by 2080. 
Regions exposed to high land-use change impact (green) are defined as the grid cells with a 
conversion from a natural to an anthropogenic land-cover state of at least 25% of the total grid 
cell area. Different panels show the values for each the four Millennium Ecosystem Assessment 
scenarios (Millennium Ecosystem Assessment 2005). A, Adapting Mosaic; B, Global 
Orchestration; C, Order from Strength; D, TechnoGarden (see Fig. 14 for raw values). 
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Abstract 

The question of whether closely related species share similar ecological 

requirements has attracted increasing attention, because of its importance for 

understanding global diversity gradients and the impacts of climate change on species 

distributions. In fact, the assumption that related species are also ecologically similar 

has often been made, although the prevalence of such a phylogenetic signal in 

ecological niches remains heavily debated. Here, we provide a global analysis of 

phylogenetic niche relatedness for the world’s amphibians. In particular, we assess 

which proportion of the variance in the realised climatic niches is explained on higher 

taxonomic levels, and whether the climatic niches of species within a given taxonomic 

group are more similar than between taxonomic groups. We found evidence for 

phylogenetic signals in realised climatic niches although the strength of the signal 

varied among amphibian orders and across biogeographical regions. To our knowledge, 

this is the first study providing a comprehensive analysis of the phylogenetic signal in 

species climatic niches for an entire clade across the world. Even though our results do 

not provide a strong test of the niche conservatism hypothesis, they question the 

alternative hypothesis that niches evolve independently of phylogenetic influences. 
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Introduction 

The question of whether related species are also ecologically similar is as old as 

modern biology (Darwin 1859). Recently, the question has gained increased interest 

(Wiens 2008; Losos 2008a; 2008b; Dormann et al. 2009; Vieites et al. 2009a), partly 

because of its implications for understanding global biodiversity gradients (Wiens & 

Donoghue 2004), and partly because it helps in comprehending how species might 

adapt to ongoing climate changes (e.g. Botkin et al. 2007). Understanding the extent to 

which there is a phylogenetic signal in ecological niches (the tendency for related 

species to resemble each other's ecological characteristics more than species randomly 

drawn from a phylogeny; Blomberg & Garland 2002; Losos 2008a) helps to formulate 

hypothesis about niche evolution. This is particularly true if one adopts the view that 

estimation of the signal strength in climatic niches may serve as a surrogate measure for 

the rate of climatic niche evolution (Garland 1992; Blomberg et al. 2003; Rheindt et al. 

2004; but see Revell et al. 2008; Ackerly 2009). It needs to be added, though, that 

establishing such a phylogenetic signal does not demonstrate the existence of 

phylogenetic niche conservatism, which is the tendency of related species’ niches to be 

even more similar than expected given their phylogeny (Losos 2008a). However, the 

existence of strong signals in climatic niches do challenge the alternative hypothesis that 

niches evolve quickly (e.g. Broennimann et al. 2007) and independently of phylogeny 

(e.g. Dormann et al. 2009). 

Despite the relevance of the climatic niche concept to contemporary ecology (Araújo 

& Guisan 2006; Soberón 2007), quantitative analyses on the strength of the 

phylogenetic signal in climatic niche similarities are scarce (but see, e.g., Prinzing et al. 

2001). As pointed out by Losos (2008a), most studies investigating phylogenetic signals 

in ecological niches only include few species at rather small geographic extents. Thus, 

the need for taxonomically and geographically comprehensive analyses on phylogenetic 

signals in climatic niches is timely. Here, we provide the first of such analyses and test 

for the existence and strength of phylogenetic signals in climatic niches for an entire 

class of organisms, the amphibians, on a global scale. Ideally, one would test 

hypotheses about niche evolution using measures of the fundamental niche (sensu 

Hutchinson 1957), since the fundamental niche is the product of the genetics, 

morphology and physiology of the species, thus being the “feature” which evolves. In a 

climatic context, the fundamental niche would be the range of combinations of climatic 
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variables in which the species could potentially exist (Austin et al. 1990; Soberón 

2007). Unfortunately, estimates of the fundamental climatic niches for large numbers of 

species are difficult to obtain. Therefore we have to rely on surrogates estimated with 

the climate envelope of species, i.e. the combination of climatic variables (e.g. means 

and extremes of precipitation and temperature) that best describes a species’ 

geographical range. This characterisation can, however, at best represent the realised 

climatic niche of a species, and will never entirely portray the fundamental climatic 

niche (see discussion in Araújo & Guisan 2006; Colwell & Rangel 2009; Soberón & 

Nakamura 2009).  

Here, we first used a family-level phylogeny of the world’s amphibians to test for 

the existence of phylogenetic signals in species climate niches. Then we tested for the 

existence of phylogenetic signals and measured their strength separately for the three 

orders of amphibians and for each one of seven biogeographical regions.  

Material and methods 

We used distributions for 5527 amphibian species from all three amphibian orders 

(Anura, Caudata, Gymnophiona, see Table S1 in the Supplementary Material for an 

overview of the numbers of species included in the dataset). Distribution data were 

compiled from the ‘Global Amphibian Assessment’ (IUCN et al. 2004). This dataset 

comprises distribution maps (extent of occurrence polygons) for each species based on 

documented records and expert knowledge. Although it is the most comprehensive 

global dataset available for amphibian distributions, many species are listed as “data 

deficient”, due to a lack of knowledge on their real distributions. Climatic data 

(originally 19 bioclimatic variables at 10’ resolution) were compiled from the 

WorldClim database (Hijmans et al. 2005). Distribution and climate data were 

resampled to a 2×2 degree latitude-longitude grid including 5017 terrestrial cells.  

A taxonomic topology for genus, subfamily, family and higher taxonomic levels was 

compiled from the ‘Amphibian Tree of Life’ (Frost et al. 2006) and the online database 

‘Amphibian Species of the World’ (ASW; Frost 2007). The taxonomic nomenclature of 

this database is based on a phylogenetic super tree considering the most recent studies 

of amphibian phylogeny and is thus building upon direct inferences of the evolutionary 

history of the species. Despite criticism on several aspects of the original ‘Amphibian 

Tree of Life’ phylogeny (see e.g. Wiens 2007), the ASW taxonomy is the most 

comprehensive taxonomic database for amphibians to date and is being used frequently 
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in conservation and evolutionary studies (e.g. Blackburn 2008; Corey & Waite 2008; 

Santos et al. 2009).  

Quantifying climatic niches 

Climatic niches were characterised using an ordination approach termed ‘outlying 

mean index’ (OMI; Dolédec et al. 2000). In contrast to other ordination techniques, 

OMI does not make assumptions about the shape of the species’ response curves to the 

environment and gives equal weight to sites independent of their species richness. OMI 

gives the species average position (“niche position”) within environmental space, which 

represents a measure of the distance between the environmental conditions used by the 

species and the mean environmental conditions of the study area. It also quantifies the 

variability of environmental conditions used by each species (“niche breadth”), given by 

the standard deviation along the respective OMI axes (for more details, see Dolédec et 

al. 2000; as well as Thuiller et al. 2004 for a case study using OMI). Here, 

environmental conditions were measured as a function of eight climatic variables: mean 

diurnal range of temperature, minimum temperature of the coldest month, annual range 

of temperature, mean temperature of the warmest quarter, annual precipitation, 

precipitation seasonality, precipitation of the driest quarter, and precipitation of the 

warmest quarter (for a detailed description of the derivation of these variables, see 

Hijmans et al. 2005). These variables include a range of climatic factors (temperature 

extremes, amount and seasonality of precipitation) which are known to impose 

constraints on the occurrence and survival of amphibians (Carey & Alexander 2003; 

Wells 2007), and are often used to model the geographical distributions of individual 

species (e.g. Araújo et al. 2006) and species richness (e.g. Araújo et al. 2008). In the 

OMI analysis, we used the first and second axes of the ordination since they explained 

82% to 96% of the total inertia (Table S2). OMI analyses were performed using the 

ade4 package in R (Chessel et al. 2004; R Development Core Team 2008). A 

randomisation test was performed to examine if niche positions along climate gradients 

could have arisen by chance (Dolédec et al. 2000); one thousand permutations were 

obtained for testing niche positions of each species occurring in each one of the 

biogeographical regions (see below). From the OMI analysis, we also obtained 

measures of niche breadth along the first and second OMI axes (for more details, see 

Dolédec et al. 2000; Thuiller et al. 2004). 
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Species may share ecological traits because of their shared evolutionary history, but 

also because they occur in similar places (see Freckleton & Jetz 2009, and references 

therein). For practical reasons, to account for possible confounding effects arising from 

spatial autocorrelation in niche characteristics and to explore the potential geographic 

variation in phylogenetic signal strength, all analyses except the one for the family-level 

phylogeny (see below) were performed separately for each amphibian order and 

biogeographical realm. Biogeographical realms were classified following the divisions 

of Sclater (1858) and Wallace (1876), later renamed by Olson et al. (2001): Afrotropics, 

Australasia, Indo-Malay, Nearctic, Neotropics, Palaearctic, Antarctica, and Oceania 

(referred to here as “regions”; see Table S1 for an overview of the numbers of species 

for each species set). Because there are no amphibians in Antarctica and only a few 

across the scattered islands of Oceania, these regions were removed from the analyses. 

Madagascar harbours a rich amphibian fauna that is quite distinct from the Afrotropical 

fauna (Duellman 1999; Vieites et al. 2009b); therefore, we added Madagascar as a 

seventh region. Nevertheless, we are aware that the spatial extent of the regions is still 

too large to completely rule out any confounding spatial influence on niche similarity. 

However, the geographic and phylogenetic resolution of our data does not allow for 

more sophisticated approaches (as recently proposed by Freckleton & Jetz 2009).  

Testing for phylogenetic signals in climatic niche similarity 

To test for phylogenetic signals in climatic niche similarity, we used Blomberg’s 

randomisation test and K statistic, variance component analyses (VCA), analysis of 

similarity (ANOSIM) and Wilcoxon rank sum tests. Blomberg’s randomisation test for 

phylogenetic signal assesses whether a given phylogenetic tree (including topology and 

branch lengths) better fits a set of data assigned to the tree tips (climatic niche positions 

in our case) as compared with the fit obtained when the data have been randomly 

permuted across the tree tips (Blomberg et al. 2003). The K statistic indicates the 

strength of phylogenetic signal, as compared with an expectation based on the tree 

structure and assuming Brownian motion character evolution. K values equal to 1 

indicate a phylogenetic signal resembling the Brownian motion evolution model, values 

of K > 1 or < 1 indicate a stronger or weaker signal than the one expected by the 

Brownian motion model of character evolution (Blomberg et al. 2003). Since no 

complete phylogeny is yet available for the world’s amphibians, we used the global 

family-level phylogeny from Roelants et al. (2007). Climatic niches of families were 
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calculated as arithmetic means of niche positions (separately for each OMI axes) across 

all species belonging to the respective family. Blomberg’s randomisation and K 

analyses were performed using the picante package within R, with 1000 randomisations 

to assess significance (Kembel et al. 2009). 

With VCA we quantified how much of the niche variance on the species level 

(among-species variance) can be explained at different taxonomic levels (Venables & 

Ripley 1999; Prinzing et al. 2001). As taxonomic levels we used the genus, subfamily 

and family grouping as well as the higher taxonomic categories above the family level 

as given by Frost et al. (2006). A large proportion of the among-species variance in 

niche position explained at higher taxonomic levels would indicate a phylogenetic 

signal in climatic niche similarity. On the other hand, all the variance localised among 

the species would indicate the absence of a phylogenetic signal. We applied VCA with a 

restricted maximum likelihood approach, using the functions lme and varcomp in the 

ape package within R (Paradis et al. 2004). We also performed null models to assess if 

the results of the VCA could be produced by chance alone. The null models simulate the 

case of no phylogenetic signal – running VCA based on a randomised phylogeny. To 

generate the null models, we randomised the taxonomic assignments of the species and 

calculated the variance components as the mean of one thousand randomisations. Again, 

we ran this analysis separately for the three amphibian orders within each region. 

With ANOSIM – a non-parametric test analogous to ANOVA – we tested if niche 

similarities within groups were larger than between groups (Clarke 1993). The 

procedure started with a calculation of within- and between-group niche dissimilarities, 

as follows. Euclidean distances between niche positions were calculated for pairwise 

combinations of all possible pairs of species. The Euclidian distances – reflecting niche 

dissimilarity between pairs of species – were then compared within and between 

taxonomic groups aggregated at the genus and family levels. When the mean within-

group niche dissimilarity is smaller than between-group niche dissimilarity, this is 

interpreted as indicating the presence of a phylogenetic signal in climatic niche 

similarity; when the mean is larger, it means the phylogenetic signal is lost. Based on 

999 permutations, we tested whether within- and between-group niche dissimilarities 

were more different than expected by chance. ANOSIM was run with the vegan 

package of R (Oksanen et al. 2009), again separately for each one of the 

biogeographical regions (see also Fig. S1 in the Supplementary Material for an 

illustration of the procedure, and Fig. S2 for examples of two species sets).  
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We also calculated the amount of niche overlap along the first and second OMI axis 

within and between groups (families and genera). To do so, according to the protocol of 

the ANOSIM analysis, we calculated the pairwise niche overlap for all possible species 

pairs, again separately for each order and biogeographical region. Species occurring in 

only one grid cell have by definition a niche breadth of zero and are therefore excluded 

from the overlap analyses. We then grouped the pairwise niche overlap values into a 

within-taxon and between-taxon group (the taxon being the family or genus). Fore each 

dataset (amphibian order per region), the within- and between-group separation was 

done (i) for the entire species pool and (ii) separately for each taxon (see also Table 2 

for details). Wilcoxon rank sum tests (Hollander & Wolfe 1999) were used to test if 

within-group overlap was larger than between-group overlap, which would indicate a 

phylogenetic signal.  

By applying different methods to test for phylogenetic signal we try to decrease the 

risk that the outcomes are biased by the uncertainties or problems of a certain method. 

Results indicating the same tendency for different methods (although not quantitatively 

comparable) would strengthen the general value of results and support stronger 

inference. To ensure that the results were not systematically biased by species with 

niche characterisations that could have arisen by chance, VCA and ANOSIM analyses 

were performed (1) including all species and (2) including only species with climatic 

niches significantly better characterised by OMI than expected by chance.  

Results 

In the global analyses on the family level, we found a phylogenetic signal in climatic 

niches for the first and second OMI axes (P = 0.001 and P = 0.026, respectively). Signal 

strength differed considerably among the two axes, the first axis showing a signal 

stronger than expected from a Brownian motion evolution model (K = 1.45), the second 

axis showing a signal lower than that (K = 0.44). 

 The analysis conducted with VCA showed that a high proportion of among-species 

variance in climatic niche position is explained at higher taxonomic levels (Fig. 1). 

Results were consistent independently of whether the whole set of species or the sub-set 

with significant OMI values was considered. In most cases, the analyses of the species 

for which climatic influences were significant showed an even stronger phylogenetic 

signal (Fig. S3); this indicates that there were no biases arising from potentially 

unreliable niche characterisations. Therefore, results for the full analyses are presented.  
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Figure 1 | Results of the variance component analyses (VCA). Variance 
components are calculated as the proportion of among-species variance in climatic 
niche positions that is explained at different taxonomic levels (species, genus, 
family, above-family; see key). The bars are organised from lower (species) to 
higher (above-family) taxonomic levels. A completely black bar indicates that all 
variance lies at the species-level, and none is explained at higher taxonomic levels. 
The analyses were performed separately for the three orders and each of the 
biogeographical regions (AFR, Afrotropics; AUS, Australasia; IND, Indo-Malay; 
MAD, Madagascar; NEA, Nearctic; NEO, Neotropics; PAL, Palaearctic). Within 
one species set (represented by a box), the first and third bars give the observed 
(“obs”) values (for the first or second OMI axis, respectively), and the second and 
fourth bars give the values for the according null model (“exp”). Null models were 
conducted by randomising the phylogenetic assignment for the species pool, thus 
representing the null expectation of no phylogenetic signal in climatic niche 
similarity (see text for further details). 
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The observed proportions of explained variance at higher taxonomic levels were 

consistently larger than those yielded by the null models, which simulated the case of no 

phylogenetic signal (the only exception were Indo-Malayan Caudata). However, when 

comparing different regions and orders, we found considerable variation (Fig. 1): For 

Anura, variance explained above the species level ranged from 7% (Madagascar) up to 

76% (Australasia), with most values exceeding the mean value of 49% (averaged across 

all regions and both OMI ordination axes). For Caudata, values ranged from 0% (Indo-

Malay) to 87% (Palaearctic), and the mean was 50%. For Gymnophiona, extreme values 

for niche variance explained above the species level were 10% (Indo-Malay and 

Neotropics) and 70% (Afrotropics), with a mean of 34%.  

Tests of niche differences with ANOSIM revealed that within-group niche distances 

were significantly smaller than between-group distances in the vast majority of cases 

(Table 1). This outcome matches the findings of the VCA, also indicating the presence 

of a phylogenetic signal in climatic niches at both the genus and the family levels for 

most regions and taxa. Again, running the analyses with all species or using only those 

species for which OMI performed significantly well rendered highly consistent results 

(Table S3). Despite the consistent trend of within-group niche distances being smaller 

than between-group distances, we found a small number of cases deviating from the 

overall pattern. At the family level, 3 out of 13 analyses showed larger within-group 

distances than between-group distances. At the genus level, within-group distances were 

larger than between-group distances only for two out of 14 data sets (see Table 2 for 

details). 

Niche overlap analyses showed that in the majority of cases within-group overlap 

was larger than between-group overlap (Table 2). In the comparison of pooled within- 

and between groups, within-family overlap was significantly larger than between-family 

overlap in 8 out of 13 datasets along the first OMI axis and in 7 out of 13 datasets along 

the second OMI axis. On the genus level, within-group overlap was significantly larger 

than between-group overlap in 10 out of 14 datasets along the first OMI axis and in 9 

out of 14 datasets along the second OMI axis. Comparing within- and between-group 

overlap separately for each family or genus per region, still the majority of datasets 

showed the overall pattern. As for the other analyses, the results varied considerably 

among regions, taxa, and the two OMI axes. 
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Table 1 | Climatic niche distances for amphibians on the family and genus levels 

within different biogeographical regions. 

  Mean niche distance* ANOSIM† 

 n Within SD Between SD rANOSIM P 

FAMILIES        

Anura        
AFR 16 2.04 1.18 2.37 1.35 0.14 <0.001 
AUS 9 2.03 1.64 3.18 1.87 0.35 <0.001 
IND 12 2.42 1.42 2.50 1.39 0.034 <0.001 
MAD 3 1.65 0.94 1.83 1.03 0.10 0.003 
NEA 8 2.31 1.41 2.35 1.35 0.022 0.143 
NEO 19 2.08 1.41 2.37 1.54 0.11 <0.001 
PAL 11 2.37 1.47 2.73 1.57 0.14 <0.001 
Caudata        
IND 2 1.53 0.89 1.37 0.79 -0.10 0.785 
NEA 7 2.46 1.73 2.40 1.56 -0.0045 0.522 
NEO 3 2.13 1.48 2.87 1.77 0.25 <0.001 
PAL 4 2.92 1.88 3.61 2.02 0.21 <0.001 
Gymnophiona        
AFR - - - - - - - 
IND 2 2.58 1.55 2.56 1.51 -0.0040 0.44 
NEO 2 2.14 1.26 2.24 1.50 0.0012 0.462 

GENERA        

Anura        
AFR 50 1.96 1.12 2.35 1.34 0.16 <0.001 
AUS 37 2.69 1.84 2.92 1.88 0.074 0.002 
IND 67 2.04 1.43 2.50 1.39 0.19 <0.001 
MAD 16 1.62 0.94 1.74 0.99 0.069 0.02 
NEA 17 2.37 1.51 2.34 1.35 -0.0042 0.454 

NEO 12
6 1.98 1.51 2.33 1.52 0.16 <0.001 

PAL 41 2.08 1.50 2.69 1.56 0.25 <0.001 
Caudata        
IND 6 1.43 0.78 1.47 0.87 0.0089 0.445 
NEA 20 1.37 1.22 2.57 1.66 0.44 <0.001 
NEO 9 1.69 1.31 2.38 1.57 0.28 <0.001 
PAL 17 2.31 1.78 3.42 1.99 0.35 <0.001 
Gymnophiona        
AFR 7 1.12 1.17 2.90 1.67 0.62 <0.001 
IND 4 2.66 1.61 2.51 1.49 -0.052 0.725 
NEO 10 2.12 1.32 2.17 1.31 0.029 0.321 

*Mean distances were calculated by averaging all Euclidean distances in niche positions in climatic 
space between species pairs within a family or genus (“Within”) or between species pairs that do not 
share the same family or genus (“Between”). Furthermore, we give the respective standard deviations 
(“SD”) and the number of families or genera (“n”) within each region used in the analysis. For further 
details on how the distance values were calculated, see Fig. S1.  
†The ANOSIM statistic (rANOSIM) and the associated P values give estimations on the likelihood that 
the observed differences were significantly different from 0. (For more details, see text). Values are 
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given separately for the three amphibian orders and for each biogeographical region. ANOSIM values 
showing significantly larger niche distances for between-group than for within-group species pairs are 
indicated in bold. Note that the analyses could not be conducted on the family level for Afrotropical 
Gymnophiona, as all species occurring there belong to the same family. 
AFR, Afrotropics; AUS, Australasia; IND, Indo-Malay; MAD, Madagascar; NEA, Nearctic; NEO, 
Neotropics; PAL, Palaearctic. 

Discussion 

Our analyses provide evidence in support of the idea that phylogenetically related 

species have similar realised climatic niches, even though the strength of the 

phylogenetic signal varied considerably across amphibian orders and biogeographical 

regions. To our knowledge, this is the first study investigating phylogenetic niche 

signals across an entire class of organisms on a global scale, nevertheless accounting for 

regional variation. Thus it provides a starting point to address questions related to 

evolutionary niche dynamics of amphibians. 

Overall, we found a phylogenetic signal in amphibians’ realised climatic niches, as 

was first shown at the family level by Blomberg’s randomisation test and K statistic. 

However, the strength of the signal differed considerably for the two niche axes. Both 

the VCA and the niche overlap analyses, which were done separately for the different 

regions and orders, supported the existence of a phylogenetic niche signal among 

amphibians in the majority of the datasets. Applying a different methodology 

(ANOSIM) again supported the general finding of a phylogenetic signal. Admittedly, 

the values for the ANOSIM statistic (rANOSIM, see Table 1) are relatively low in many 

cases, even though the P values indicated statistical significance. These low values may 

often be attributable to the high species numbers in some regions (e.g. Neotropical or 

Indo-Malayan Anura), resulting in high significance levels even though the differences 

might be weak. However, the general tendency confirmed by four different methods and 

across the majority of the species sets analysed supports the conclusion that the trend is 

robust.  

Only a few studies have measured phylogenetic niche signals of clades at large 

geographical scales. For European plants, Prinzing et al. (2001) found that 28–75% of 

among-species niche variance (niche positions along environmental gradients) was 

explained at higher taxonomic levels. This result is roughly concordant with our 

findings. For Central European spiders, 20–40% of the variance in niche position in 

shading and moisture was explained at higher taxonomic levels (Entling et al. 2007). 

However, the spiders’ phylogenetic signal in ecological traits was consistently lower 
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than in morphological traits (>70% of morphological variance explained above the 

species level). For dietary niches of European birds, Brändle et al. (2002) found that 

about 70% of the variance was explained at higher taxonomic levels. Even though there 

are a limited number of studies to compare our results with, our findings are consistent 

with results previously reported for phylogenetic signals in climatic niches, and also 

with those in morphological traits or dietary niches.  

Despite an overall and robust trend of detection of phylogenetic signals in climatic 

niches, we found considerable variation in the strength of the signal among 

biogeographical regions and the three amphibian orders. Further analyses are needed to 

examine such variation in detail. In the context of this study we can only discuss some 

of the limitations of the analysis and some of the most striking findings.  

As mentioned before our analyses are based on characterizations of species realised 

climatic niches. Such niches are incomplete representations of species’ true limits of 

tolerance to climate variables and so cannot entirely portray fundamental climatic 

niches (Soberón 2007). Obviously the possibility of existence of strong mismatches 

between the observed realised and the fundamental niches decrease the likelihood of 

detecting a phylogenetic (i.e. evolutionary) signal and it is impossible to rule out that 

such mismatches may have caused weak phylogenetic signal in some of our data sets. 

Nevertheless, given (i) this conceptual mismatch between realised and fundamental 

climatic niches, and (ii) that except for the global family-level analysis we use a 

taxonomy (albeit based on recent phylogenies) that introduced further uncertainties (see 

below), one could expect that any phylogenetic signal would be obscured. Given this 

potential for ambiguity, identifying a consistent pattern across most of the regions even 

with the data and methods used rather strengthens the conclusion that a phylogenetic 

signal exists in amphibian climatic niches.  

However, the coarse spatial resolution of the data may on the other hand weaken the 

information content of the results. Many of the grid cells (which cover areas of almost 

50,000 km2 at the equator) contain strong climatic gradients and exceed the range of 

many species. Assigning closely related species within one grid cell to the same climatic 

niche although they actually have very different climatic preferences could inflate the 

phylogenetic signal. In fact, within areas of rather small extent, closely related species 

may show strong tendencies of niche divergence (e.g. Graham et al. 2004; Knouft et al. 

2006; Kozak & Wiens 2007). However, an inflation of the phylogenetic signal should 

not occur if such species with different niches within the same grid cell belong to 
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different genera or families – assigning them to the same niche position would in this 

case rather weaken the phylogenetic signal in our analyses. In any case, we cannot fully 

discard the potential inflation of the phylogenetic signal’s strength here, but we 

emphasize that with our analyses we do not and cannot unravel complex evolutionary 

mechanisms such as speciation (Kozak & Wiens 2006) or the phylogenetic structuring 

of local or regional communities (Webb et al. 2002), all of which require data at a much 

finer spatial and phylogenetic resolution.  

Besides methodological factors, geographic, taxonomic and climatic idiosyncrasies 

contribute to the observed variation in the strength of the phylogenetic signal. For 

Anura, e.g., only Nearctic genera showed a result contradictory to the overall pattern of 

the ANOSIM analysis, the within-group similarity being slightly lower than the 

between-group similarity. This result was driven by the low niche similarity within the 

genus Lithobates, which is the largest genus in the Nearctic Anura (30 species). An 

examination of the different species reveals that some are widely distributed (e.g. L. 

sylvatica, L. catesbeiana), but others (e.g. L. dunni, L. onca, L. sevosus) have small 

ranges located in very different regions within the Nearctic and thus have very different 

climatic niches. This combination of high species richness and a high within-genus 

variety of climatic niches may have contributed to the low phylogenetic signal in the 

Nearctic Anuran genera. Furthermore, taxonomic misclassifications may also influence 

the failure of detection of a phylogenetic signal (Blomberg et al. 2003). This is a general 

issue for our analyses, of course, but may be particularly important for Nearctic Anura, 

as classification of Lithobates as a genus remains controversial (see, e.g., Hillis & 

Wilcox 2005; Frost et al. 2006; Che et al. 2007). 

A rather weak phylogenetic signal was also detected at the family level of Nearctic 

Caudata as indicated by the VCA and the niche overlap analysis (Fig. 1, Table 2). Here, 

the family Plethodontidae comprises more than three times as many species as the other 

families combined (143 vs. 43 species). The highly diverse Plethodontid salamanders 

occupy a great variety of niches (Vieites et al. 2007), whereas the niches of species 

within each Plethodontid genus are very similar (e.g. for Hydromantes, Desmognathus, 

or Batrachoseps). Indo-Malayan Caudata showed no clear pattern, possibly because of 

the low species richness of Caudata in this region (25 species) and because for many 

species the distributions used represent only a small part of their entire distribution. 

Thus, this species set is rather negligible. However, we stress that in the vast majority of 

cases, the total ranges of species are contained within one biogeographical region.  
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Table 2 | Climatic niche overlap analyses for amphibians on the family and 

genus levels, along the first and second OMI axes (OMI1 and OMI2), within 

different biogeographical regions. 

  OMI1   OMI2   

 n* Pooled†  n W > B 
‡ n W < B

‡ Pooled n W > B n W < B 

FAMILIES        

Anura        
AFR 15 (2) W > B*** 10 (0) 0 (5) W > B*** 6 (4) 1 (4) 
AUS 9 (0) W > B*** 7 (1) 0 (1) W > B*** 6 (2) 0 (1) 
IND 12 (1) W > B*** 7 (1) 2 (2) W > B*** 7 (1) 1 (3) 
MAD 3 (2) W < B (n.s.) 0 (0) 0 (3) W > B*** 1 (1) 1 (0) 
NEA 8 (3) W > B** 1 (2) 0 (5) W > B (n.s.) 0 (3) 0 (5) 
NEO 19 (1) W > B*** 8 (3) 3 (5) W > B (n.s.) 9 (1) 3 (6) 
PAL 11 (3) W > B (n.s.) 3 (4) 1 (3) W > B** 4 (2) 3 (2) 
Caudata        
IND 2 (1) W > B* 1 (1) 0 (0) W > B (n.s.) 0 (1) 0 (1) 
NEA 7 (1) W < B*** 2 (3) 1 (1) W < B*** 3 (2) 1 (1) 
NEO 2 (1) W > B*** 2 (0) 0 (0) W < B (n.s.) 0 (1) 0 (1) 
PAL 4 (1) W > B* 1 (1) 0 (2) W > B*** 2 (0) 0 (2) 
Gymnophiona       
IND 1 (1) W < B (n.s.) 0 (0) 0 (1) W < B (n.s.) 0 (0) 0 (1) 
NEO 2 (0) W > B (n.s.) 0 (1) 0 (1) W > B*** 1 (0) 0 (1) 

GENERA        

Anura        
AFR 47 (34) W > B*** 16 (18) 0 (13) W > B*** 12 (10) 2 (23) 
AUS 34 (17) W > B*** 17 (7) 1 (9) W > B*** 9 (11) 1 (13) 
IND 60 (32) W > B*** 22 (21) 0 (17) W > B*** 25 (17) 4 (14) 
MAD 16 (8) W > B (n.s.) 3 (2) 2 (9) W > B*** 3 (3) 1 (9) 
NEA 15 (15) W > B* 2 (6) 0 (7) W > B (n.s.) 4 (2) 0 (9) 
NEO 112 (52) W > B*** 39 (27) 4 (42) W > B*** 32 (34) 5 (41) 
PAL 38 (18) W > B*** 5 (19) 0 (14) W > B*** 8 (13) 1 (16) 
Caudata        
IND 5 (2) W > B (n.s.) 0 (3) 0 (2) W > B (n.s.) 0 (3) 0 (2) 
NEA 18 (7) W > B*** 4 (6) 1 (7) W < B* 6 (3) 1 (8) 
NEO 7 (6) W > B*** 5 (0) 0 (2) W > B* 0 (4) 0 (3) 
PAL 16 (13) W > B*** 4 (2) 0 (10) W > B*** 4 (1) 0 (11) 
Gymnophiona       
AFR 4 (7) W > B (n.s.) 0 (2) 0 (2) W < B (n.s.) 0 (0) 0 (4) 
IND 2 (3) W < B (n.s.) 1 (0) 0 (1) W > B (n.s.) 1 (1) 0 (0) 
NEO 9 (7) W > B*** 1 (1) 0 (7) W > B*** 2 (2) 0 (5) 

*Number of groups (families or genera, respectively) included in the overlap analyses. Values in 
brackets give the number of groups for which tests could not be performed (e.g. groups that included a 
single species only or that only consisted of species occurring in a single grid cell) 
†For the pooled comparisons, all within- (W) and all between-group (B) values of niche overlap 
(families or genera, respectively) were pooled and then compared using Wilcoxon rank sum tests. “W 
> B” indicates that within-group overlap was larger than between-group overlap (which would indicate 
a phylogenetic signal). Asterisks indicate significance levels, ***P < 0.001, **P < 0.01, *P < 0.05, 
n.s., not significant. 
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‡Numbers of groups (families or genera) showing within-group niche overlap being larger or smaller 
than between-group overlap (numbers in brackets indicate the number of within- or between-group 
comparisons that were not significant). 
AFR, Afrotropics; AUS, Australasia; IND, Indo-Malay; MAD, Madagascar; NEA, Nearctic; NEO, 
Neotropics; PAL, Palaearctic. 

Some authors question whether establishing the existence of a phylogenetic signal is 

a useful pursuit (Wiens & Graham 2005; Wiens 2008). In parallel, calls for “further 

research into the extent and occurrence of PNC [phylogenetic niche conservatism], and 

phylogenetic signal more generally” (Losos 2008a, p. 1001) are also common. Testing 

for the existence of a phylogenetic signal is important as the assumption underlies 

several types of studies, such as the investigation of diversity gradients and the building 

of species distribution models for climate change prediction, and because its generality 

is still under debate.  

Although the aim of our study was to test for a phylogenetic signal in climatic 

niches, our analyses provide a baseline for further investigations on climatic niche 

conservatism in amphibians. Phylogenetic niche conservatism can be defined as the 

tendency of closely related species to be more similar than expected based on 

phylogenetic relationships (Losos 2008a); put more broadly, it is the temporal constancy 

of the ecological niche (Pearman et al. 2008; Nogués-Bravo 2009). Niche conservatism 

is a topic of recent growing interest (Peterson et al. 1999; Prinzing et al. 2001; Wiens 

2004; Wiens & Graham 2005; Kozak & Wiens 2006; Dormann et al. 2009; Freckleton 

& Jetz 2009; Vieites et al. 2009a). Overall, its generality or even existence remains a 

matter of controversial debate (Pearman et al. 2008; see, e.g., Losos 2008a). Based on 

our findings, we can draw two conclusions with regards to phylogenetic niche 

conservatism and temporal niche constancy in amphibians. First, as recently pointed out 

by Losos (2008a, p. 997), a “lack of phylogenetic signal is sufficient to indicate that 

PNC does not occur.” Thus, based on our detection of a phylogenetic signal in climatic 

niches, the niche conservatism hypothesis cannot be rejected. Second, for several 

regions, we found high values of among-species niche variance explained above the 

family level (Afrotropical and Palaearctic Anura: >30%, Australasian Anura: >60%). 

This result lends support to the suggestion of the existence of considerable constancy in 

climatic niches for a period of time that reaches back to the late Cretaceous or even 

earlier (>65 Mya ago), when many of the above-family splits took place (Roelants et al. 

2007). However, further studies are needed using finely resolved phylogenetic and 
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climatic data to test for the occurrence and strength of phylogenetic conservatism in 

amphibian climatic niches. 
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Supplementary Material 

Supplementary Tables 

Table S1 | Numbers of species included in the analyses for the three 

amphibian orders within the seven biogeographical regions and for the 

world.  

 Anura Caudata Gymnophiona 

AFR 672  26 
AUS 526   
IND 813 26 42 

MAD 219   
NEA 145 186  
NEO 2428 224 76 
PAL 331 97  

World 4875 508 144 

Note that for Anura and Caudata, the values for the world slightly differ from the bare sum of 
the species occurring in the different regions because a few species occur in two of the 
regions for these orders. Empty fields indicate the absence of the entire order from the 
respective region. AFR, Afrotropics; AUS, Australasia; IND, Indo-Malay; MAD, 
Madagascar; NEA, Nearctic; NEO, Neotropics; PAL, Palaearctic. 
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Table S2 | Cumulative explained inertia of the first and second OMI 

ordination axes, given as proportions of the total inertia, separately for 

the three amphibian orders and biogeographical regions.  

  Anura Caudata Gymnophiona 

Region Axis    

AFR 1 0.70  0.91 
 2 0.89  0.95 
AUS 1 0.74   
 2 0.94   
IND 1 0.67 0.77 0.54 
 2 0.89 0.92 0.82 
MAD 1 0.76   
 2 0.96   
NEA 1 0.74 0.84  
 2 0.94 0.95  
NEO 1 0.69 0.71 0.78 
 2 0.83 0.90 0.91 
PAL 1 0.60 0.69  
 2 0.83 0.88  

Note that missing values reflect an absence of the entire order in the region.  
AFR, Afrotropics; AUS, Australasia; IND, Indo-Malay; MAD, Madagascar; NEA, Nearctic; 
NEO, Neotropics; PAL, Palaearctic. 
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Table S3 | Climatic niche distances for amphibians on the family and genus levels, 

considering only those species for which climatic influence was significant.* 

 Mean niche distance ANOSIM 

 Within SD Between SD rANOSIM P 

FAMILIES       

Anura       
AFR 2.05 1.30 2.52 1.48 0.18 <0.001 
AUS 2.01 1.83 3.23 2.10 0.34 <0.001 
IND 2.62 1.66 2.77 1.68 0.053 <0.001 
MAD 1.08 0.82 1.40 1.11 0.13 0.062 
NEA 2.42 1.43 2.43 1.41 0.003 0.41 
NEO 2.31 1.55 3.04 1.93 0.23 <0.001 
PAL 2.41 1.50 2.77 1.61 0.13 <0.001 
Caudata       
IND 1.22 0.92 1.12 0.98 -0.03 0.541 
NEA 2.41 1.89 2.40 1.62 0.032 0.205 
NEO 1.86 1.68 4.99 1.67 0.77 0.012 
PAL 2.80 1.77 3.65 1.97 0.26 <0.001 
Gymnophiona       
AFR - - - - - - 
IND - - - - - - 
NEO 2.14 1.26 2.24 1.50 0.30 0.368 

GENERA   

Anura       
AFR 2.00 1.20 2.48 1.47 0.18 <0.001 
AUS 2.78 2.02 2.98 2.12 0.057 0.043 
IND 2.14 1.62 2.77 1.67 0.22 <0.001 
MAD 1.02 0.78 1.23 0.98 0.096 0.098 
NEA 2.44 1.47 2.42 1.41 -0.0035 0.522 
NEO 2.09 1.53 2.97 1.90 0.29 <0.001 
PAL 2.18 1.54 2.73 1.60 0.21 <0.001 
Caudata       
IND 1.11 0.87 1.20 0.95 0.15 0.27 
NEA 1.44 1.29 2.53 1.78 0.36 <0.001 
NEO 1.73 1.49 2.63 2.18 0.19 0.039 
PAL 2.19 1.52 3.40 1.93 0.38 <0.001 
Gymnophiona       
AFR 0.69 1.82 2.40 1.46 0.55 0.047 
IND - - - - - - 
NEO 1.85 1.18 2.34 1.44 0.20 0.032 

*Note that the analyses could not be conducted at the family level for Afrotropical and Indo-Malayan 
Gymnophiona because all species occurring there belong to the same family. Accordingly, the analyses 
could not be conducted for Indo-Malayan genera of Gymnophiona. For details, see text and Table 2.  
AFR, Afrotropics; AUS, Australasia; IND, Indo-Malay; MAD, Madagascar; NEA, Nearctic; NEO, 
Neotropics; PAL, Palaearctic. 
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Supplementary Figures 

 
Figure S1 | Illustration of the calculation of within- and between-
group niche distances. We show the hypothetical example of three 
groups (e.g. three different genera, indicated by the different symbols 
– triangles, stars, and diamonds). Each point represents the niche 
position of one species within a two-dimensional climatic space 
(given by the first and second OMI axis). Lines represent the 
Euclidean distances between niche positions (= niche distances) 
among species. Straight lines indicate niche distances between species 
belonging to the same group. All distances between species within this 
group are averaged, with the result giving the mean within-distance 
for this group. Dotted lines indicate niche distances among the species 
of one group and the species of all the other groups (note that only a 
small selection of all possible dotted lines is shown). The average of 
all these values gives the mean between-distance for this group. This 
procedure is repeated for every group. Finally, the mean within-group 
distance for the whole species set is calculated by averaging all the 
mean within-group distances from all the groups. Accordingly, the 
mean between-group distance for the whole dataset is calculated. 
These mean values for within- and between-group niche distances are 
given in Table 2. The ANOSIM statistic tests if the differences 
between within-group and between-group distances are significantly 
different from zero, using a rank-similarity algorithm, based on a 
given number of permutations (see text for further details). 
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Figure S2 | Examples for OMI plots according to the setup of Fig. S1. Each point represents 
the niche position of one species within a two-dimensional climatic space (given by the first and 
second OMI axis). Different symbols indicate different families. AUS, Australasia; PAL, 
Palaearctic. 

 



124 Phylogenetic signals in climatic niches 
 

 

 
Figure S3 | Comparison of the variance component analyses (VCA) for all 
species (indicated by “all”) and for those species for which climatic influence 
was significant (indicated by “sig”). For further details, see text and Fig. 1. AFR, 
Afrotropics; AUS, Australasia; IND, Indo-Malay; MAD, Madagascar; NEA, 
Nearctic; NEO, Neotropics; PAL, Palaearctic. 
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Abstract 

Aim. In Europe the relationships between species richness and latitude differ 

between lentic (standing water) and lotic (running water) species. Freshwater animals 

are highly dependent on suitable habitat, and thus, the distribution of available habitat 

should strongly influence large-scale patterns of species richness. We tested whether 

habitat availability can account for the differences in species richness patterns between 

European lentic and lotic freshwater animals. 

Location. Europe 

Methods. We compiled occurrence data of 1959 lentic and 2445 lotic species as 

well as data on the amount of lentic and lotic habitats across 25 pre-defined 

biogeographical regions of European freshwaters. We used the range of altitude of 

every region as a proxy for habitat diversity. We investigated the relationship between 

species richness and habitat availability and diversity with univariate and multiple 

regression analyses. 

Results. Species richness increased with habitat availability in lentic species, but not 

in lotic species. Species richness increased with altitudinal range in lotic species, but 

decreased in lentic species. In both groups habitat availability and diversity could not 

account for previously reported latitudinal patterns in species richness. In lotic species, 

richness declined with latitude whereas there was no relationship between habitat 
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availability and latitude. In lentic species, richness showed a hump-shaped relationship 

with latitude whereas there was an increase of available habitat with latitude. 

Main conclusions. Habitat availability and diversity are poor predictors of species 

richness of the European freshwater fauna across large scales. Our results indicate that 

the distributions of European freshwater animals are probably not in equilibrium and 

may still be influenced by history, namely the recurrent glaciations of Europe and 

possible differences in post-glacial re-colonization. The distributions of lentic species 

appear to be closer to equilibrium than those of lotic species. This lends further support 

to the hypothesis that lentic species have a higher propensity of dispersal than lotic 

species. 

Introduction 

Habitat is the template for the evolution of species traits, e.g. the propensity for 

dispersal (Southwood 1962; 1977). Lentic habitats are generally more ephemeral than 

lotic habitats (Dobson & Frid 1998) and because there is a negative relationship 

between the persistence of a habitat and the propensity for dispersal of its inhabitants 

(Southwood 1962; Wiener & Tuljapurkar 1994; Dingle & Drake 2007), lentic species 

should have evolved a higher propensity for dispersal than lotic species. Therefore, 

several recent studies suggested that in freshwater animals, lentic (standing water) 

species are stronger dispersers than lotic (running water) species (e.g. Ribera & Vogler 

2000; Ribera et al. 2001; 2003; Marten et al. 2006; Hof et al. 2006; see Ribera 2008 for 

an overview).  

Analysing distribution data of the European freshwater fauna published by Illies 

(1966a; 1978), Hof et al. (2008) showed that there are strong differences in the patterns 

of species richness between lentic and lotic species: Lentic species show a hump-shaped 

relationship with latitude with a peak in central Europe, whereas richness of lotic 

species decreases with increasing latitude. The authors attributed these patterns to 

differences in postglacial re-colonization of both groups as a result of the different 

dispersal abilities of lentic and lotic species (Hof et al. 2008). By definition, freshwater 

animals are confined to aquatic habitats and so their distribution is totally dependent on 

the distribution of suitable habitat. In terrestrial animals there is commonly a positive 

relationship between species richness and area (Rosenzweig 1995) or suitable habitat, 

respectively (MacArthur 1964; Storch et al. 2003). The same holds true for freshwater 
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organisms (Hugueny 1989; Rosenzweig & Sandlin 1997; Allen et al. 1999). The 

distribution of freshwater habitats should therefore be a strong predictor of freshwater 

species richness in Europe and the observed differences in the relationship of species 

richness with latitude between lentic and lotic species may simply reflect differences in 

the distribution of lentic and lotic habitats across Europe. In their analysis, Hof et al. 

(2008) tested for a relationship between the size of the biogeographical regions and 

species richness. However, it is doubtful that area per se is a good proxy for suitable 

habitat. In the present study, we analysed the spatial distribution and amount of lentic 

and lotic water bodies across Europe in relation to the observed patterns of species 

richness of lentic and lotic freshwater animals. 

Illies (1961) divided watercourses into different segments (e.g. krenal, rhithral, 

potamal) that usually occur in a similar order downstream, from relatively high altitudes 

(springs, brooks) to relatively low altitudes (river mouths). The different segments have 

different physical (e.g. water current) and chemical (e.g. oxygen, nutrients) properties 

and species compositions, and there is a high species turnover between different river 

segments (Illies 1961; Dobson & Frid 1998). Lentic water bodies also have different 

characteristics at different altitudes. In Europe, lakes at low altitudes usually have lower 

alkalinity, lower pH, and lower concentrations of nitrogen and phosphorus, whereas 

lakes at higher elevations are deeper and have lower concentrations of organic matter 

and nutrients (Nõges 2009). Consequently, regions with a large altitudinal range should 

contain more different types of freshwater habitats. In our analysis, we thus included the 

altitudinal range of a region as a simple proxy for habitat diversity.  

To summarize, we want to address the following questions: (1) Are there differences 

in the distribution and quantity of lentic and lotic habitats across Europe? (2) Is there a 

relationship between the availability of habitat and species richness in European 

freshwater animals? (3) Does species richness increase with the altitudinal range as a 

proxy for habitat diversity within a region? (4) Do differences in habitat availability and 

habitat diversity account for the different species richness patterns of lentic and lotic 

freshwater animals? 

Material and methods 

Data on the distribution and habitat use of all European freshwater species were 

compiled from Illies (1978). Together with leading experts in the field of freshwater 

zoology, Illies (1966a; 1978) defined 25 zoogeographic regions of European freshwater 
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and recognised 42 types of habitat. The majority of these habitat types are very 

specialised. There are, e.g., more than 20 types of parasitism and many specific cases of 

habitat use such as in Tardigrada and Culicidae (five habitat types). The categories 

lentic and lotic consist of seven (lakes, ephemeral small water bodies, phytotelmata, 

inland saline waters, bogs, thermal waters, swamps) and three (springs, brooks and 

rivulets, rivers and streams) of the 42 habitat types. For all European freshwater species, 

the book provides data on their presence/absence in each of the regions and their habitat 

use. For further information on the compilation of the dataset and on habitat categories 

see Hof et al. (2008). For the present analysis, we used only species occurring 

exclusively in these seven (lentic) and three (lotic) habitats (number of species per 

region in Table S1 in the Supplementary Material). The habitat data correspond to the 

species used in the data set.  

Data on standing and running waters were compiled from the Global Lakes and 

Wetland Database (GLWD; Lehner & Döll 2004) and from the Digital Chart of the 

World Server (Environmental Systems Research Institute 1993, 

http://www.maproom.psu.edu/dcw). Our data set included all European lentic waters 

with a surface area greater than 0.1 km² and lotic waters of a Strahler stream order of 

two and higher (Strahler 1952). We defined lotic habitat availability as the sum of the 

length of all parts of a river within a region (henceforth called river length) and lentic 

habitat availability as the sum of the perimeter of all standing waters (henceforth called 

lake perimeter). Lake perimeter is a more suitable proxy of lentic habitat availability 

than lake area (Bohle 1995; see also discussion in Ribera et al. 2003).  

Altitudinal data were compiled from the GTOPO30 data set (EROS 1996). It 

includes a digital elevation model with a grid spacing of 30 arc seconds. For our 

analysis, we determined the altitudinal range of every region as the difference between 

maximum and minimum elevation. We used GLOBAL MAPPER 7.04 (Global Mapper 

Software LLC, Parker, CO, USA, 2006) and ARCGIS 9.2 (Environmental Systems 

Research Institute, Redlands, CA, USA, 2006) for all GIS analyses. 

Since our habitat dataset does not include very small, temporary lentic water bodies, 

we excluded from the analysis all lentic species that occur exclusively in such habitats 

(based on Illies’ classification). We also excluded those lotic species that occur 

exclusively in springs. The final data set included 1959 lentic and 2445 lotic species 

(taxonomic overview in Table S2). Although this classification of species differs 

slightly from that in Hof et al. (2008), it had no relevance on the general outcomes of 
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the analyses: lentic (R²=0.33, P=0.012) and lotic (r²=0.33, P=0.003) species richness of 

the reduced dataset showed virtually the same relationship with latitude as the one 

including all lentic (R²=0.32, P=0.015) and lotic (r²=0.32, P=0.003) species. The 

relationships between lentic and lotic species richness and latitude were consistent 

among taxonomic groups (Fig. S1 and S2). 

Lake perimeter, river length, and altitudinal range were log10-transformed in order to 

approximate normality. We fitted multiple general linear models (type I sum of squares) 

to evaluate the effect of habitat availability and habitat diversity on species richness. 

After inclusion of habitat availability and diversity, we subsequently added latitude and 

its squared term into the model in order to test whether the spatial structure remained in 

the data (cf. Legendre & Legendre 1998) after accounting for habitat availability. A 

significant and negative regression coefficient of the squared latitude after accounting 

for habitat availability would indicate that a hump-shaped relationship remained 

between lentic species richness and latitude. All final models showed no spatial 

autocorrelation of residuals and it was therefore not necessary to include space in our 

tests. We used R version 2.7 (R Development Core Team 2008) for all statistical 

analyses. 

Results 

With respect to the questions posed in the introduction the results were as follows:  

(1) Habitat availability of lentic habitats increased with increasing latitude (r²=0.44, 

P<0.001), whereas there was no relationship between lotic habitat availability and 

latitude (r²=0.06, P=0.25; Fig. 1, Fig. 2). Habitat availability was significantly and 

positively correlated with the size of the bioregions. The relationship was stronger for 

lotic (r²=0.98, P<0.001) than for lentic habitats (r²=0.56, P<0.001). 

(2) Species richness tended to increase with habitat availability in lentic species 

(r²=0.14, P=0.06), but not in lotic species (r²=0.01, P=0.65, Fig. 2). Total species 

richness of freshwater animals was not correlated with the size of a bioregion (r²=0.09, 

P=0.14). Tested separately, lentic species richness increased with the size of a bioregion 

(r²=0.19, P=0.03), whereas there was no correlation in lotic species (r²=0.01, P=0.60).  

(3) Species richness increased with the altitudinal range of a region in lotic species 

(r²=0.19, P=0.03), but tended to decrease in lentic species (r²=0.15, P=0.06). Habitat 

availability and diversity together accounted for 20.3 and 19.5 per cent of the variance 

in lentic and lotic species richness, respectively.  
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Figure 1 | Species richness and habitat availability of lentic and lotic animals in Europe. 
Lentic habitat availability is defined as the perimeter of all standing water bodies (km×103), and 
lotic habitat availability as the sum of the length of all parts of a river (km×103) within a 
bioregion. The 25 biogeographical regions of the European freshwater fauna were defined by 
Illies (1966a; 1978). 

(4) After accounting for habitat availability, altitudinal range was still positively 

correlated with species richness in lotic but not in lentic species (Table 1). Adding 

latitude and its squared term into the model showed that after controlling for habitat and 

altitudinal range, there was still a monotonic decrease of species richness with latitude 

in lotic species (r²=0.16, P=0.050), and a hump-shaped relationship between species 

richness and latitude in lentic species (regression coefficient of squared latitude 

negative; R²=0.32, P=0.015, Fig. 3, Table 1). The patterns of habitat availability did not 

correspond to the patterns of species richness (Fig. 1). In lentic species there was an 

increase of available habitat with increasing latitude (vs. hump-shaped relationship of 

richness and latitude), and in lotic species there was no relationship between habitat 

availability and latitude (vs. decline of species richness with increasing latitude; Fig. 2).  
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Table 1 | Species richness in dependency of habitat availability and latitude 

(general linear models, type 1 SS). 

 MSS F Regression 
coefficient P 

Lotic species     
River length 9353 0.32 44.70 0.579 
Altitudinal range 181389 6.17 269.6 0.022 
Latitude 175575 5.97 62.27 0.024 
Latitude² 51247 1.74 -0.66 0.202 
Residuals 29409    
Lentic species     
Lake perimeter 174180 5.69 202.12 0.027 
Altitudinal range 27090 0.88 93.79 0.358 
Latitude 64429 2.10 178.2 0.162 
Latitude² 332661 10.9 -1.70 0.004 
Residuals 30614    

Significant correlations (P<0.05) are given in bold. (MSS: Mean sum of squares;  
n = 25). River length and lake perimeter were log10-transformed. Note the significant and 
negative regression coefficient for Latitude² in lentic species. 

Discussion 

Differences in species diversity are most commonly attributed to area (MacArthur & 

Wilson 1967; Connor & McCoy 1979; Rosenzweig 1995), contemporary climatic 

conditions (Wright 1983; Currie 1991; Hawkins et al. 2003), or historical factors 

(Haffer 1969; Latham & Ricklefs 1993; Dynesius & Jansson 2000). With respect to 

habitat area we found a positive, albeit weak, relationship between species richness and 

habitat availability in lentic species (r²=0.14), but not in lotic species (r²=0.01). These 

values are very low compared to values reported for species-area relationships in 

terrestrial as well as aquatic species (Barbour & Brown 1974; Connor & McCoy 1979; 

Hugueny 1989; Watters 1992; Oberdorff et al. 1995; 1997; Rosenzweig & Sandlin 

1997). Furthermore, the latitudinal species richness patterns of both lentic and lotic 

animals remained virtually the same after controlling for habitat (Table 1, Fig. 3). 

Hence, the patterns of species richness of lentic and lotic species across Europe do not 

reflect the distribution of the respective freshwater habitats. We conclude that the 

availability of habitat is a poor predictor of the broad scale patterns of species richness 

in freshwater animals across broad spatial scales. 
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Figure 2 | Habitat availability vs. latitude (above), and 
species richness vs. habitat availability for lentic (left) and 
lotic species. Every point represents one of the 25 
biogeographical regions of European freshwater species defined 
by Illies (1966a; 1978). Habitat availability is log10 transformed. 
Lentic habitat availability is defined as the perimeter of all 
standing water bodies (km*103), and lotic habitat availability as 
the sum of the length of all parts of a river (km*103) within a 
bioregion. n=25. 

Ribera et al. (2003) found that total area is a good predictor of total species richness 

of aquatic Coleoptera, but not of the species richness of lentic and lotic species, when 

tested separately. In our analysis, total species richness of European freshwater animals 

was not correlated with the total area of a bioregion. When tested separately, lentic, but 

not lotic, species richness increased with the total area of a bioregion. The relationship 

between lentic species richness and total area was a bit stronger (r²=0.19, P=0.03) than 

that between lentic species richness and available lentic habitat (r²=0.14, P=0.06). Both 

relationships, however, are rather weak and there is only a small, non-significant 

difference between them. We thus conclude that neither of them is a good predictor of 

the species richness of European lentic freshwater animals. 
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Figure 3 | Species richness (above) and residuals vs. latitude 
in lentic (left) and lotic species, after controlling for habitat 
availability and habitat diversity (i.e. altitudinal range), n=25. 

Illies (1966b) argued that montane regions such as the Pyrenees or the Alps have 

relatively fewer species than other regions probably because they largely lack typical 

lowland habitats such as eutrophic lakes or potamal river segments and consequently 

lack species that occur in these kinds of habitats. The diversity of both lentic and lotic 

habitats should thus be highest in regions that span a wide altitudinal range (Illies 1961; 

1966b; Dobson & Frid 1998; Nõges 2009; see also Introduction). In our analysis the 

altitudinal range of a region accounted for 15.0 and 19.5 per cent of the variation in 

lentic and lotic species richness, respectively. Lotic species richness increased with the 

altitudinal range of a region as expected, but lentic species richness tended to decrease. 

The relationship, however, was rather weak in both groups, and in lentic species it 

disappeared in the multivariate analysis. This might indicate that altitudinal range is not 

a suitable proxy for diversity of lentic habitats or that its effects are superimposed by 

other relationships. The altitudinal ranges of the regions are highest in southern and 

northern Europe and show a minimum in central Europe whereas lentic species richness 

shows the opposite trend: it peaks in central Europe and then gradually declines both 

northwards and southwards. Given the rather weak correlation and the complex history 
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of the European continent with its recurrent glaciations during the ice-ages, it is likely 

that the peak of lentic species richness in central Europe is predominantly caused by 

other factors than habitat diversity (see Hewitt 1999; 2000; Hof et al. 2008). The 

observed negative trend between species richness and altitudinal range could merely 

present a random pattern caused by their opposing relationships with latitude.  

Our habitat data set does not (and cannot) include all European water bodies but 

only those with a surface area bigger than 0.1 km² (lentic) and rivers of a Strahler 

stream order of two and higher (lotic). Any river, however, is fed from its tributaries, so 

its presence will be due to the presence of smaller ones (Bohle 1995; Dobson & Frid 

1998). As a consequence, every river in our data set will stand for a similar number of 

smaller ones that are not included. Kristensen et al. (1995) estimated that there were 

about 500,000 – 700,000 water bodies with a surface area of 0.01 to 0.1 km² in Europe, 

65 – 90 % of which are estimated to be located in northern Europe (Scandinavia and 

northern Russia). These water bodies are thus not likely to explain the peak of species 

richness in central Europe. Furthermore, in our analysis we removed all lentic species 

from the original data set that exclusively occur in small temporary pools, i.e. in habitats 

that are too small to be included in our habitat data set. We also excluded all lotic 

species that exclusively occur in springs. Hence our data set includes only species 

typical for the water bodies that were included in our data sets on habitat availability. 

Nevertheless, species richness of these removed species showed similar relationships to 

habitat availability (Fig. S3 and S4). Hence, small water bodies that are not included in 

our habitat data set are not responsible for the observed patterns of lentic and lotic 

species richness. 

Available energy, measured e.g. as mean annual temperature or primary 

productivity, has been suggested to be a strong predictor of species richness, and shown 

to decrease with increasing latitude (Wright 1983; Currie 1991; Hawkins et al. 2003). 

With respect to our data, it may appear as if the decrease of lotic species richness with 

latitude followed a decrease of available energy. We tested species richness against 

climatic data taken from Worldclim (Hijmans et al. 2005). However, because of the 

rather coarse resolution of our species distribution data, climatic data have to be 

averaged over relatively large bioregions, which makes it very difficult to disentangle 

the effect of energy from a possible influence of space (i.e. history). We therefore 

decided not to follow up these tests. Higher resolved species distribution data are 

required to test how energy is related to lentic and lotic species richness in Europe. 



 Chapter IV 137 

Nevertheless, because European lentic and lotic species show strikingly different 

patterns of species richness, energy alone has to be ruled out as a universal determinant 

of species richness of European freshwater animals (Hof et al. 2008). Moreover, it 

certainly cannot account for the differences in the distribution of lentic and lotic species 

richness. 

If neither habitat availability nor energy are likely to be responsible for the observed 

differences in the distribution of species richness of lentic and lotic animals, this may 

suggest that the distribution of certain taxa of freshwater species in Europe is not in 

equilibrium with current environmental conditions and to some extent is still influenced 

by historical factors (Svenning & Skov 2004; Araújo et al. 2008). It is well known that 

the European biota were strongly influenced by the glacial cycles during the Pleistocene 

(Hewitt 1999; 2000) and signals of these impacts remain detectable in present-day 

patterns of species richness and composition as well as in the distribution of genotypes 

(Svenning & Skov 2004; Araújo et al. 2008). Many European species spent the last 

glacial maximum in refugia on the Mediterranean peninsulas (Holdhaus 1954; Taberlet 

et al. 1998; Hewitt 1999). When the ice masses retreated, species re-colonized central 

and northern Europe out of these refugia (Hewitt 1999). Lentic species are expected to 

have a higher propensity for dispersal than lotic species which is expressed by larger 

geographical ranges (Ribera & Vogler 2000; Hof et al. 2006; Reyjol et al. 2007), faster 

colonization (Ribera et al. 2003), lower beta diversity (Hof et al. 2008), a lower 

population differentiation (Bohonak et al. 2004; Marten et al. 2006) but higher intra-

population and overall genetic diversity (Zickovich & Bohonak 2007). Since re-

colonization is strongly dependent on the dispersal ability of a species (Diamond 1972; 

Svenning & Skov 2007; Araújo et al. 2008), the higher dispersal ability of lentic species 

may have allowed them to re-colonize central and northern European regions faster than 

lotic species. 

This is supported by the fact that the proportion of lentic to lotic species increases 

from southern towards northern Europe, while beta-diversity between regions decreases 

(Hof et al. 2008). Furthermore, the positive species-area (or species-habitat) relationship 

in lentic species may indicate that the distributions of lentic species are closer to 

equilibrium with the current distribution of their habitats than those of lotic species. The 

hump-shaped relationship between lentic species richness and latitude and the decrease 

of lotic species richness with increasing latitude are consistent when individual taxa are 

tested separately (Fig. S1 and S2 in the Supplementary Material). Re-colonization 
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routes of lentic species from different refugia may have met in central Europe (see 

Hewitt 2000, for terrestrial animals), which may have led to a mixing of species and the 

observed peak of richness there. Lotic species, on the other hand, probably re-colonized 

central and northern Europe much slower, and therefore the extent of mixing is less 

pronounced or even lacking.  

Our study corroborates former results that suggested non-equilibrium situations for 

European biota (Svenning & Skov 2004; Araújo et al. 2008). We emphasize that 

consideration of species’ ecological traits (Ribera et al. 2003; Vogler & Ribera 2003; 

Marten et al. 2006; McPherson & Jetz 2007), as well as the history of the region studied 

(Graham et al. 2006; Svenning & Skov 2007) is indispensable in order to understand 

large-scale species richness patterns and differences among taxa in this regard. 

Acknowledgements 

We thank Andreas Marten for helpful suggestions and fruitful discussions. Many 

thanks to Susanne Fritz for valuable comments on an earlier version of the manuscript. 

C.H. acknowledges support of the Danish National Research Foundation to the Center 

for Macroecology, Evolution and Climate. 

 



 Chapter IV 139 

References 

Araújo, M. B., Nogués-Bravo, D., Diniz-Filho, J. A. F., Haywood, A. M., Valdes, P. J. 
& Rahbek, C. (2008) Quaternary climate changes explain diversity among reptiles 
and amphibians. Ecography 31, 8-15. 

Allen, A. P., Whittier, T. R., Kaufmann, P. R., Larsen, D. P., O’Connor, R. J., Hughes, 
R.M. et al. (1999) Concordance of taxonomic richness patterns across multiple 
assemblages in lakes of the northeastern United States. Canadian Journal of 
Fisheries and Aquatic Sciences 56, 739–747. 

Barbour, C. D. & Brown, J. H. (1974) Fish species diversity in lakes. The American 
Naturalist 108 473-489. 

Bohle, H. W. (1995) Limnische Systeme. Springer, Berlin. 

Bohonak, A. J., Smith, B. P. & Thornton, M. (2004) Distributional, morphological and 
genetic consequences of dispersal for temporary pond water mites. Freshwater 
Biology 49, 170-180. 

Connor, E. F. & McCoy, E. D. (1979) The statistics and biology of the species-area 
relationship. The American Naturalist 113, 791-833. 

Currie, D. J. (1991) Energy and large-scale patterns of animal- and plant-species 
richness. The American Naturalist 137, 27-49. 

Diamond, J. M. (1972) Biogeographic kinetics: estimation of relaxation times for 
avifaunas of Southwest Pacific islands. Proceedings of the National Academy of 
Sciences of the United States of America 69, 3199-3203. 

Dingle, H. & Drake, V. A. (2007) What is migration? Bioscience 57, 113-121. 

Dobson, M. & Frid, C. (1998) Ecology of aquatic systems. Longman, Harlow. 

Dynesius, M. & Jansson, R. (2000) Evolutionary consequences of changes in species' 
geographical distributions driven by Milankovitch climate oscillations. Proceedings 
of the National Academy of Sciences of the United States of America 97, 9115-9120. 

Environmental Systems Research Institute (1993) Digital chart of the world. 
Environmental Systems Research Institute, Redlands, CA. 
http://www.maproom.psu.edu/dcw. 

Environmental Systems Research Institute (2006) ArcGIS 9.2. Environmental Systems 
Research Institute, Redlands, CA. 

EROS (USGS Earth Resources Observation and Science) (1996) GTOPO30. Global 30 
arc-second elevation data set. U.S. Geological Survey, Sioux Falls, SD. 
http://eros.usgs.gov/ products/elevation/gtopo30/gtopo30.html.  

Global Mapper Software LLC (2006) Global Mapper v7.04. Global Mapper Software 
LLC, Parker, CO. 

Graham, C. H., Moritz, C. & Williams, S. E. (2006) Habitat history improves prediction 
of biodiversity in rainforest fauna. Proceedings of the National Academy of Sciences 
of the United States of America 103, 632–636. 

Haffer, J. (1969) Speciation in amazonian forest birds. Science 165, 131-137. 

 



140 Habitat availability and species richness of freshwater animals 
 

 

Hawkins, B. A., Field, R., Cornell, H. V., Currie, D. J., Guégan, J.-F., Kaufman, et al. 
(2003) Energy, water, and broad-scale geographic patterns of species richness. 
Ecology 84, 3105-3117. 

Hewitt, G. M. (1999) Post-glacial re-colonization of European biota. Biological Journal 
of the Linnean Society 68, 87-112. 

Hewitt, G.M. (2000) The genetic legacy of the Quaternary ice ages. Nature 405, 907-
913. 

Hijmans, R.J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. (2005) Very high 
resolution interpolated climate surfaces for global land areas. International Journal 
of Climatology 25, 1965-1978. 

Hof, C., Brändle, M., & Brandl, R. (2006) Lentic odonates have larger and more 
northern ranges than lotic species. Journal of Biogeography 33, 63-70. 

Hof, C., Brändle, M. & Brandl, R. (2008) Latitudinal variation of diversity in European 
freshwater animals is not concordant across habitat types. Global Ecology and 
Biogeography 17, 539–546 

Holdhaus, K. (1954) Die Spuren der Eiszeit in der Tierwelt Europas. Wagner, 
Innsbruck 

Hugueny, B. (1989) West African rivers as biogeographic islands: species richness of 
fish communities. Oecologia 79, 236-243. 

Illies, J. (1961) Versuch einer allgemeinen biozönotischen Gliederung der 
Fließgewässer. Internationale Revue der gesamten Hydrobiologie und Hydrographie 
46, 205-213. 

Illies, J. (1966a) Limnofauna europaea, eine Zusammenstellung aller die europäischen 
Binnengewässer bewohnenden mehrzelligen Tierarten mit Angaben über ihre 
Verbreitung und Ökologie. (Mit 52 Mitarbeitern). Fischer, Jena. 

Illies, J. (1966b) Verbreitung der Süßwasserfauna Europas. Verhandlungen der 
Internationalen Vereinigung für Theoretische und Angewandte Limnologie 16, 287-
296. 

Illies, J. (1978) Limnofauna Europaea, 2nd edn. Gustav Fischer Verlag, Stuttgart. 

Kristensen, P., Hansen, H. O. & Frische, K. D. (1995) Rivers, reservoirs and lakes. In: 
Europe's Environment - The Dobris Assessment (ed. by Stanners, D. & Bourdeau, 
P.). European Environment Agency, Copenhagen. 

Latham, R. E. & Ricklefs, R. E. (1993) Continental comparisons of temperate-zone tree 
species diversity. Species diversity in ecological communities (ed. by Ricklefs, R. E. 
&  Schluter, D.). The University of Chicago Press, Chicago, IL. 

Legendre, P. & Legendre, L. (1998) Numerical ecology. Elsevier, Amsterdam. 

Lehner, B. & Döll, P. (2004) Development and validation of a global database of lakes, 
reservoirs and wetlands. Journal of Hydrology 296, 1-22. 

MacArthur, R. H. (1964) Environmental factors affecting bird species diversity. The 
American Naturalist 98 387-397. 

MacArthur, R. H. & Wilson, E. O. (1967) The theory of island biogeography. Princeton 
University Press, Princeton. 



 Chapter IV 141 

Marten, A., Brändle, M. & Brandl, R. (2006) Habitat type predicts genetic population 
differentiation in freshwater invertebrates. Molecular Ecology 15, 2643-2651. 

McPherson, J. M. & Jetz, W. (2007) Effects of species’ ecology on the accuracy of 
distribution models. Ecography 30, 135–151. 

Nõges, T. (2009) Relationships between morphometry, geographic location and water 
quality parameters of European lakes. Hydrobiologia 633, 33–43. 

 Oberdorff, T., Guégan, J.-F. & Hugueny, B. (1995) Global scale patterns of fish species 
richness in rivers. Ecography 18, 345-352. 

Oberdorff, T., Hugueny, B. & Guégan, J.-F. (1997) Is there an influence of historical 
events on contemporary fish species richness in rivers? Comparisons between 
Western Europe and North America. Journal of Biogeography 24, 461-467. 

R Development Core Team (2008) R: A language and environment for statistical 
computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: 
http://www.r-project.org 

Reyjol, Y., Hugueny, B., Pont, D., Bianco, P.G., Beier, U., Caiola, N., et al. (2007) 
Patterns in species richness and endemism of European freshwater fish. Global 
Ecology and Biogeography 16, 65-75. 

Ribera, I. (2008) Habitat constraints and the generation of diversity in freshwater 
macroinvertebrates. Aquatic insects: challenges to populations (ed. by Lancaster, J. 
& Briers, R. A.). CAB International, Wallingford, UK. 

Ribera, I. & Vogler, A. P. (2000) Habitat type as a determinant of species range sizes: 
the example of lotic-lentic differences in aquatic Coleoptera. Biological Journal of 
the Linnean Society 71, 33-52. 

Ribera, I., Barraclough, T. G. & Vogler, A. P. (2001) The effect of habitat type on 
speciation rates and range movements in aquatic beetles: inferences from species-
level phylogenies. Molecular Ecology 10, 721-735. 

Ribera, I., Foster, G. N. & Vogler, A. P. (2003) Does habitat use explain large scale 
species richness patterns of aquatic beetles in Europe? Ecography 26, 145-152. 

Rosenzweig, M. L. (1995) Species diversity in space and time. Cambridge University 
Press, Cambridge. 

Rosenzweig, M. L. & Sandlin, E. A. (1997) Species diversity and latitudes: listening to 
area's signal. Oikos 80, 172-176. 

Southwood, T. R. E. (1962) Migration of terrestrial arthropods in relation to habitat. 
Biological Reviews 37, 171-214. 

Southwood, T. R. E. (1977) Habitat, the templet for ecological strategies? Journal of 
Animal Ecology 46, 337-365. 

Storch, D., Konvicka, M., Benes, J., Martinková, J. & Gaston, K. J. (2003) Distribution 
patterns in butterflies and birds of the Czech Republic: separating effects of habitat 
and geographical position. Journal of Biogeography 30, 1195-1205. 

Strahler, A. N. (1952) Dynamic basis of geomorphology. Geological Society of America 
Bulletin 63, 923–938. 

Svenning, J. C. & Skov, F. (2004) Limited filling of the potential range in European tree 
species. Ecology Letters 7, 565–573. 



142 Habitat availability and species richness of freshwater animals 
 

 

Svenning, J. C. & Skov, F. (2007) Could the tree diversity pattern in Europe be 
generated by postglacial dispersal limitation? Ecology Letters 10, 453-460. 

Taberlet, P., Fumagalli, L., Wust-Saucy, A.-G. & Cosson, J.-F. (1998) Comparative 
phylogeography and postglacial colonization routes in Europe. Molecular Ecology 7, 
453-464. 

Vogler, A. P. & Ribera, I. (2003) Evolutionary analysis of species richness patterns in 
aquatic beetles: why macroecology needs a historical perspective. Macroecology: 
concepts and consequences (ed. by Blackburn, T. M. & Gaston, K. J.). Blackwell, 
Oxford. 

Watters, G. T. (1992) Unionids, fishes, and the species-area curve. Journal of 
Biogeography 19, 481-490. 

Wiener, P. & Tuljapurkar, S. (1994) Migration in variable environments: exploring life-
history evolution using structured population-models. Journal of Theoretical 
Biology 166, 75-90. 

Wright, D. H. (1983) Species-energy theory: an extension of species-area theory. Oikos 
41, 496-506. 

Zickovich, J. M. & Bohonak, A. J. (2007) Dispersal ability and genetic structure in 
aquatic invertebrates: a comparative study in southern California streams and 
reservoirs. Freshwater Biology 52, 1982-1996. 



 Chapter IV 143 

Supplementary Material 

Supplementary Tables 

 

Table S1 | Number of lentic and lotic species per bioregion 

Region Number of 
lentic species

Number of  
lotic species 

Ibero-Macaronesian Region 345 562 
Pyrenees 195 445 
Italy, Corsica, and Malta 514 609 
Alps 739 784 
Dinaric Western Balkan 341 515 
Hellenic Western Balkan 409 480 
Eastern Balkan 301 485 
Western Highlands 490 597 
Central Highlands 782 762 
The Carpathians 494 754 
Hungarian Lowlands 541 338 
Pontic Province 501 247 
Western Plains 635 494 
Central Plains 1125 490 
Baltic Province 682 290 
Eastern Plains 757 368 
Ireland and Northern Ireland 400 218 
Great Britain 686 400 
Iceland 95 22 
Borealic Uplands 561 236 
Tundra 290 177 
Northern Sweden 476 220 
Taiga 686 275 
The Caucasus 302 324 
Caspic Depression 291 81 
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Table S2: Number of species per taxon in the data 

sets of European lentic and lotic freshwater 

animals. 

Phylum  Lentic Lotic 

Annelida  14 5 
Arthropoda Arachnida 

Crustacea 
Insecta 

366
270
749

300 
79 

1798 
Chordata ‘Pisces’ 

Amphibia 
Reptilia 

38
6
0

72 
4 
1 

Mollusca Bivalvia 
Gastropoda 

10
89

16 
78 

Nematoda  61 14 
Platyhelminthes  93 50 
Porifera  1 0 
Rotifera  262 19 
Tardigrada  0 8 
Cnidaria  0 1 

Total  1959 2445 
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Supplementary Figures 

 

Figure S1 | Species richness vs. latitude in different lentic taxa. In Actinopterygii, Bivalvia 
and Gastropoda, Region 6 was removed because of its unusually high number of species which 
only occur in Lake Ochrid. 

 



146 Habitat availability and species richness of freshwater animals 
 

 

 

Figure S2 | Species richness vs. latitude in different lotic taxa. 
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Figure S3 | Species richness of lentic species 
that exclusively occur in small and ephemeral 
water bodies vs. latitude. These species were 
removed from the original data set and were not 
included in the analyses. 

 

 

Figure S4 | Species richness of lotic species that 
exclusively occur in springs vs. latitude. These 
species were removed from the original data set 
and were not included in the analyses. 
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Abstract 

Habitat shapes life history traits and ecological characteristics of species. The 

persistence of habitats should influence the dispersal of species, selecting for stronger 

dispersal in habitats of lower temporal stability. As standing freshwater bodies (lentic 

habitats) are on average less persistent over time than running waters (lotic habitats), 

lentic species should show a higher propensity for dispersal than lotic species. 

Assuming that climatic conditions are an important determinant of species distributions, 

we hypothesise that the distributions of lentic species should be closer to equilibrium 

with current climatic conditions and that lentic species should more rapidly track 

climatic changes. We tested these hypotheses using two datasets (from 1988 and 2006) 

of European dragonfly distributions and the according climatic data. Species 

distribution models showed that range filling (the ratio of realised vs. potential range 

size) was consistently higher for lentic than for lotic species. When using data from 

1988 to model distributions in 2006, models consistently overpredicted the ranges of 

lotic species, and more strongly than for lentic species. These results confirm the 

proposed hypotheses, lending support to the assumption that habitat persistence shapes 
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the evolution of dispersal. Further, we conclude that lentic species may be more 

successful in tracking climate change. 

Introduction 

Habitat is an important template for the evolution of life history traits and hence 

ecological characteristics of species (Southwood 1962). Freshwater habitats can be 

divided into standing water bodies such as lakes and ponds (= lentic habitats) and 

running water bodies such as streams, rivers and creeks (= lotic habitats). Lentic 

habitats are, on average, less persistent over time than lotic habitats (Dobson & Frid 

1998; Ribera 2008). This should have consequences for the evolution of dispersal 

abilities of species adapted to these habitat types: if their habitats are more likely to 

disappear within shorter periods of time, lentic species should have evolved a higher 

propensity for dispersal than lotic species (Ribera & Vogler 2000). Several studies have 

provided support for predictions of this hypothesis – hereafter referred to as the habitat-

stability dispersal hypothesis (HSDH). Various macroecological, phylogenetic and 

phylogeographical studies have shown that lentic species have larger range sizes 

(Ribera & Vogler 2000; Hof et al. 2006) and a lower genetic diversity among 

populations (Marten et al. 2006; Papadopoulou et al. 2008; Abellan et al. 2009) than 

lotic species. Furthermore, re-colonisation of northern European regions after the last 

glaciation was most probably faster for lentic than for lotic species (Ribera et al. 2003; 

Hof et al. 2008; Dehling et al. 2010). However, at least the molecular evidence for the 

HSDH is controversial (e.g. Short & Caterino 2009) and comparisons of dispersal 

capacities of lentic and lotic species, e.g. by quantitative assessments of range changes, 

remain scarce.  

Here, we provide a test of the HSDH for European dragonflies using species 

distribution models (SDMs). SDMs are useful for projecting species’ potential ranges 

based on observed distribution data (Elith & Leathwick 2009), and have been 

extensively used for projecting potential future distributions of species under climate 

change scenarios (e.g. Levinsky et al. 2007). If contemporary climate is an important 

determinant of species distributions, distributions of species with stronger dispersal 

abilities should be closer to equilibrium with contemporary climatic conditions (Araújo 

& Pearson 2005). Therefore these species should show higher levels of range filling and 

should be able to rapidly track climatic changes. Range filling, the ratio of the realised 

vs. potential range size (R/P) given by SDMs, has been used to infer the degree of 
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species’ equilibrium with climatic conditions (Svenning & Skov 2004; Munguía et al. 

2008), with a higher R/P ratio indicating higher degree of equilibrium. The HSDH 

therefore predicts that R/P ratios of lentic species should be higher than R/P ratios of 

lotic species. Furthermore, lotic species should track changes in the climatic conditions 

more slowly than lentic species. If so, then SDMs should overestimate lotic more often 

than lentic species ranges when comparing range changes with climatic changes 

between two distinct time periods.  

Material and Methods 

As distribution data we used the range maps of all species of European dragonfly 

published in Askew (1988) and Dijkstra & Lewington (2006) (Table S1 in 

Supplementary Material). Maps were transferred into the UTM (Universal Transverse 

Mercator) 50 × 50 km grid of Europe used for the Atlas Flora Europaeae (see 

Supplementary Material for details). We further compiled larval habitat preferences 

(lentic, lotic, generalist) and taxonomic data for all species from the abovementioned 

sources. 

Climatic data were obtained from the CRU TS 2.1 data set (Mitchell & Jones 2005). 

It covers the years 1901-2002 and includes mean monthly temperature and total 

monthly precipitation at a resolution of 0.5 × 0.5° latitude-longitude. Climatic data were 

resampled to the 50 × 50 km grid by weighted averaging, using a grid of Europe from 

Nogués-Bravo & Araújo (2006, http://www.biochange-lab.eu/). To relate the species 

distribution data to climatic conditions, we averaged climatic data across time spans 

matching the 1988 and 2006 species distribution datasets. As climatic variables we used 

mean annual temperature and total annual precipitation (see Supplementary Material for 

further details).  

We ran SDMs for all species using BIOMOD (Thuiller et al. 2009) with eight 

different modelling techniques (see Table 1 and Fig. 1 for the techniques used). Model 

outputs were transformed into presences and absences using two different thresholds 

(ROC and Kappa). For more details on the different SDM techniques as well as on the 

standard features of BIOMOD, see Thuiller et al. (2009). Potential distributions for 

1988 and 2006 were obtained by calibrating the models using the species distribution 

and climatic data for the respective time periods and projecting distributions back into 

geographical space for the same time period, using the 50 × 50 km grid. These 

projections were used to calculate the ratio of realised vs. potential range sizes (R/P 
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ratio), for 1988 and 2006. Six species in each dataset were excluded from the analyses 

because they occurred in less than 20 grid cells (Table S1), and SDMs with fewer 

records are less reliable (see e.g. Stockwell & Peterson 2002). Models calibrated in 

1988 were also used to project distributions for 2006. To assess how well species 

tracked climatic changes from 1988 to 2006 we calculated proportions of true positives 

(TP) and true negatives (TN) comparing projected and observed distributions for 2006. 

To assess the influence of habitat type (lentic and lotic) on R/P ratios and TP and TN 

proportions, we excluded 13 generalist species. We used Wilcoxon rank sum tests to 

assess the effect of habitat type on R/P ratios and proportions of TP and TN. To test for 

confounding effects of phylogeny, we used two-way ANOVAs with family, habitat and 

their interactions as independent variables (type I sum of squares). As range size per se 

may also affect SDM performance and R/P ratios, we plotted the effect of habitat on 

R/P ratios and proportions of TP and TN separately for range size quartiles. All analyses 

were run in R (version 2.8.1; R Development Core Team 2008). 

Results 

R/P ratios were higher for lentic than for lotic species, independent of the SDM 

method used (P < 0.05, Fig. 1). Phylogeny had a weak influence on R/P ratio, but the 

effect of habitat type remained significant in most cases for 2006, and marginally 

significant in most cases for 1988 (table1). Range size had an influence on R/P ratio, but 

for the first to third range size quartiles lentic species still showed higher R/P ratios 

(Fig. S2 and S3 in Supplementary Material). 

Comparisons of observed and projected distributions for 2006 showed an 

overprediction of lotic species ranges in six of eight modelling techniques (significantly 

smaller proportion of TP than TN, Fig. 2). The same pattern was observed in most cases 

for lentic species, but the difference tended to be smaller, indicating a stronger tendency 

of overprediction for lotic species. The tendency of smaller TP than TN proportions for 

lotic species was supported in most of the cases in the 1st, 2nd and 3rd range size quartile, 

whereas in the 4th quartile TP proportions were larger than TN proportions (Fig. S4). 

The tendency of smaller differences between TP and TN proportions for lentic than for 

lotic species was less pronounced when accounting for range size (Fig. S4). 
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Figure 1 | Effect of habitat type (lentic = standing waters, 
lotic = running waters) on R/P ratios of European 
dragonflies for different SDM techniques, for 1988 and 
2006. Range projections were translated into presences and 
absences from probabilities of occurrence using ROC-based 
thresholds (see Fig. S1 for calculations using Kappa-based 
thresholds). Differences were significant (P < 0.05) in all cases 
(Wilcoxon rank sum test). See Fig. S1 for SDM acronyms and 
an explanation of box-and-whisker plots. 

Discussion 

Higher range filling levels in lentic dragonfly species (Fig. 1) support the hypothesis 

that distributions of lentic species distributions are closer to climatic equilibrium than 

distributions of lotic species. This is further underlined by the tendency of stronger 

overprediction for lotic species ranges when comparing range projections and observed 

ranges for 2006 (Fig. 2). Both findings support the HSDH, suggesting that lower habitat 

stability selects for stronger dispersal abilities (Ribera & Vogler 2000; Hof et al. 2006). 

Species with the largest range sizes did not show the difference in R/P ratios between 
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lentic and lotic species (Fig. S2-S4). However, SDMs cannot project ranges larger than 

the geographical domain; hence species with very large ranges are expected to have 

high R/P ratios. Furthermore, note that only a small number of lotic species reach very 

large range sizes (twenty lentic but only three lotic species in the fourth range-size 

quartile), which precludes meaningful comparisons. Phylogenetic effects influenced the 

differences in range filling in some cases (Table 1), but the influence of habitat was still 

detectable after controlling for phylogeny (family). We though call for studies using 

species-level phylogenies to eventually discard potentially confounding phylogenetic 

effects. 

Table 1 | Two – way ANOVA (type I sum of squares) for effects of family and 

habitat on range filling (realised vs. projected range size) for 1988 and 2006.  

 Family Habitat Family×Habitat  Residuals 

 F P F P F P MS† 

1988        
ANN* 1.18 0.32 2.29 0.13 0.76 0.55 0.13 
CTA 1.58 0.14 3.02 0.086 0.99 0.42 0.10 
GAM 1.51 0.16 3.77 0.056 0.87 0.49 0.11 
GBM 1.43 0.19 3.80 0.055 0.86 0.49 0.098 
GLM 1.43 0.19 2.51 0.12 0.59 0.67 0.14 
MARS 1.35 0.23 3.39 0.070 0.80 0.53 0.11 
MDA 1.38 0.21 3.46 0.067 0.79 0.53 0.11 
SRE 1.85 0.073 5.97 0.017 0.87 0.49 0.073 

2006        
ANN 2.19 0.032 2.95 0.090 1.12 0.35 0.13 
CTA 1.76 0.090 7.23 0.009 1.45 0.22 0.086 
GAM 1.99 0.052 7.68 0.007 1.45 0.22 0.089 
GBM 1.96 0.056 7.91 0.006 1.46 0.22 0.080 
GLM 1.77 0.088 5.45 0.022 1.12 0.35 0.12 
MARS 1.80 0.083 6.92 0.010 1.36 0.26 0.090 
MDA 1.83 0.077 7.07 0.010 1.42 0.24 0.095 
SRE 2.72 0.008 8.22 0.005 2.59 0.04 0.066 

Significant effects (P < 0.05) of habitat type after correcting for the effect of family are given in bold, 
marginally significant effects (P < 0.1) are given in italic fonts. 
*see Fig. S1 for SDM technique acronyms  
†residual mean squares 

The availability of lentic and lotic habitats can also confound the observed 

differences in range filling, e.g. in cases where climatic conditions are suitable, but no 

freshwater habitats are present. This case is assumed if habitat availability is a strong 
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predictor of freshwater species richness. However, for the geographical extent and 

resolution of our study, the distribution of freshwater bodies is a weak predictor for 

dragonfly species richness (Keil et al. 2008). Furthermore, the explanatory power of 

habitat availability for species richness of lotic habitats is exceptionally low (Dehling et 

al. 2010). Therefore the effect of the distribution of habitat availability should be of 

minor importance. The influence of other factors such as pollution, anthropogenic land-

cover changes, or the occurrence of predators (Hassall & Thompson 2008) could also 

affect the results of our analyses. However, as these factors do either not differentially 

affect lotic and lentic species or habitats (land-cover changes) or most likely act at a 

different geographical scale than the scale of our analyses (pollution, predators), we 

assume such effects are negligible for the extent and resolution of our analyses. 

Our results support findings of previous studies that lotic species are weaker 

dispersers than lentic species (Marten et al. 2006; Hof et al. 2006; Abellan et al. 2009). 

If so, lentic species should be able to track climatic changes more rapidly than lotic 

species (Heino et al. 2009). Our analyses support this prediction, along with studies that 

relate contrasting large-scale diversity patterns in European lentic and lotic species to 

their re-colonisation capacity after the last ice age (Ribera & Vogler 2000; Ribera et al. 

2003; Hof et al. 2008). It is widely accepted that the glacial-interglacial cycles of the 

Pleistocene are still mirrored in contemporary patterns of species richness in Europe 

(Svenning & Skov 2007; Araújo et al. 2008). As dragonflies are assumed to be strong 

dispersers compared to other invertebrates, they are also expected to be able to track 

climatic changes more successfully (Hickling et al. 2005; Clausnitzer et al. 2009). The 

differential dispersal abilities of species adapted to different habitat types suggest that 

similar generalizations for entire taxa may be misleading, though.  

Dispersal ability is of major importance for species to successfully respond to 

climate change. SDM studies aiming to project species distributions under future 

climate change projections usually adopt very coarse dispersal scenarios, i.e. unlimited 

or no dispersal (e.g. Levinsky et al. 2007). That these scenarios are unrealistic is widely 

acknowledged, but as long as species-specific dispersal data are vastly lacking, multi-

species SDMs rely on simplifications. If habitat is indeed a generally important 

determinant of dispersal ability (Southwood 1962), establishing even simplified links 

between habitat preferences, habitat stability, and dispersal ability may, with an 

accordant model parametrisation, help to overcome the oversimplistic dispersal 
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assumptions currently used in models that project species responses to future climate 

change. 

 

Figure 2 | Proportion of true positives, TP, and true negatives, TN, for 
lotic and lentic dragonflies according to different SDMs. TP and TN 
where calculated comparing the ratio of projected vs. observed presence 
(TP) or absence (TN) records for 2006, averaged across all lotic and lentic 
species, respectively. Models were calibrated with 1988 distribution and 
climate data and then projected for 2006. Error bars give the standard error 
of the mean. See Fig. S1 for SDM acronyms. Significance levels (Wilcoxon 
rank sum tests), ***P < 0.001, ** P < 0.01, n.s., not significant. 

Acknowledgements 

Special thanks to Florian König and Yannic Grewe for digitizing dragonfly 

distribution maps. We also thank David Nogués-Bravo for helpful comments. CH and 

CR acknowledge support of the Danish National Research Foundation to the Center for 

Macroecology, Evolution and Climate. MBA was funded by EC FP6 ECOCHANGE 

project, Contract No 036866-GOCE) and by the Spanish Ministry of Science and 

Innovation (Complementary Action No CGL2008-01198-E/BOS). 



 Chapter V 159 

References 

Abellan, P., Millan, A. & Ribera, I. (2009) Parallel habitat-driven differences in the 
phylogeographical structure of two independent lineages of Mediterranean saline 
water beetles. Molecular Ecology 18, 3885-3902. 

Araújo, M. B., Nogues-Bravo, D., Diniz-Filho, J. A. F., Haywood, A. M., Valdes, P. J. 
& Rahbek, C. (2008) Quaternary climate changes explain diversity among reptiles 
and amphibians. Ecography 31, 8-15. 

Araújo, M. B. & Pearson, R. G. (2005) Equilibrium of species' distributions with 
climate. Ecography 28, 693-695. 

Askew, R. R. (1988) The Dragonflies of Europe, 2nd edition. Harley Books, Colchester. 

Clausnitzer, V., Kalkman, V. J., Ram, M., Collen, B., Baillie, J. E. M., Bedjanic, M. et 
al. (2009) Odonata enter the biodiversity crisis debate: The first global assessment of 
an insect group. Biological Conservation 142, 1864-1869. 

Dehling, D. M., Hof, C., Brändle, M. & Brandl, R. (2010) Habitat availability cannot 
explain the species richness patterns of European lentic and lotic freshwater animals. 
Journal of Biogeography in revision. 

Dijkstra, K.-D. B. & Lewington, R. (2006) Field guide to the dragonflies of Britain and 
Europe. British Wildlife Publishing, Dorset, UK. 

Dobson, M. & Frid, C. (1998) Ecology of aquatic systems. Longman, Harlow. 

Elith, J. & Leathwick, J. R. (2009) Species Distribution Models: Ecological Explanation 
and Prediction Across Space and Time. Annual Review of Ecology Evolution and 
Systematics 40, 677-697. 

Hassall, C. & Thompson, D. J. (2008) The effects of environmental warming on 
Odonata: a review. International Journal of Odonatology 11, 131-153. 

Heino, J., Virkkala, R. & Toivonen, H. (2009) Climate change and freshwater 
biodiversity: detected patterns, future trends and adaptations in northern regions. 
Biological Reviews 84, 39-54. 

Hickling, R., Roy, D. B., Hill, J. K. & Thomas, C. D. (2005) A northward shift of range 
margins in British Odonata. Global Change Biology 11, 502-506. 

Hof, C., Brändle, M. & Brandl, R. (2006) Lentic odonates have larger and more 
northern ranges than lotic species. Journal of Biogeography 33, 63-70. 

Hof, C., Brändle, M. & Brandl, R. (2008) Latitudinal variation of diversity in European 
freshwater animals is not concordant across habitat types. Global Ecology and 
Biogeography 17, 539-546. 

Keil, P., Simova, I. & Hawkins, B. A. (2008) Water-energy and the geographical 
species richness pattern of European and North African dragonflies (Odonata). 
Insect Conservation and Diversity 1, 142-150. 

Levinsky, I., Skov, F., Svenning, J. C. & Rahbek, C. (2007) Potential impacts of climate 
change on the distributions and diversity patterns of European mammals. 
Biodiversity and Conservation 16, 3803-3816. 



160 Habitat stability, dispersal and climate change 
 

 

Marten, A., Brändle, M. & Brandl, R. (2006) Habitat type predicts genetic population 
differentiation in freshwater invertebrates. Molecular Ecology 15, 2643-2651. 

Mitchell, T. D. & Jones, P. D. (2005) An improved method of constructing a database 
of monthly climate observations and associated high-resolution grids. International 
Journal of Climatology 25, 693-712. 

Munguía, M., Peterson, A. T. & Sánchez-Cordero, V. (2008) Dispersal limitation and 
geographical distributions of mammal species. Journal of Biogeography 35, 1879-
1887. 

Nogués-Bravo, D. & Araújo, M. B. (2006) Species richness, area and climate correlates. 
Global Ecology and Biogeography 15, 452-460. 

Papadopoulou, A., Bergsten, J., Fujisawa, T., Monaghan, M. T., Barraclough, T. G. & 
Vogler, A. P. (2008) Speciation and DNA barcodes: testing the effects of dispersal 
on the formation of discrete sequence clusters. Philosophical Transactions of the 
Royal Society B-Biological Sciences 363, 2987-2996. 

R Development Core Team (2008) R: A language and environment for statistical 
computing. 

Ribera, I. (2008) Habitat constraints and the generation of diversity in freshwater 
macroinvertebrates. In: Aquatic insects: challenges to populations (ed. by Lancaster, 
J. & Briers, R. A.). CAB International, Wallingford, UK. 

Ribera, I., Foster, G. N. & Vogler, A. P. (2003) Does habitat use explain large scale 
species richness patterns of aquatic beetles in Europe? Ecography 26, 145-152. 

Ribera, I. & Vogler, A. P. (2000) Habitat type as a determinant of species range sizes: 
the example of lotic-lentic differences in aquatic Coleoptera. Biological Journal of 
the Linnean Society 71, 33-52. 

Short, A. E. Z. & Caterino, M. S. (2009) On the validity of habitat as a predictor of 
genetic structure in aquatic systems: a comparative study using California water 
beetles. Molecular Ecology 18, 403-414. 

Southwood, T. R. E. (1962) Migration of terrestrial arthropods in relation to habitat. 
Biological Reviews 37, 171-214. 

Stockwell, D. R. B. & Peterson, A. T. (2002) Effects of sample size on accuracy of 
species distribution models. Ecological Modelling 148, 1-13. 

Svenning, J. C. & Skov, F. (2004) Limited filling of the potential range in European tree 
species. Ecology Letters 7, 565-573. 

Svenning, J. C. & Skov, F. (2007) Ice age legacies in the geographical distribution of 
tree species richness in Europe. Global Ecology and Biogeography 16, 234-245. 

Thuiller, W., Lafourcade, B., Engler, R. & Araujo, M. B. (2009) BIOMOD - a platform 
for ensemble forecasting of species distributions. Ecography 32, 369-373 (version 
0). 

 



 Chapter V 161 

Supplementary Material 

Supplementary Text | Material and Methods 

Species distribution maps. The different sources of range maps (Askew 1988; 

Dijkstra & Lewington 2006) may differ in their accuracy. The maps in Dijkstra & 

Lewington (2006), for instance, use different colours to indicate the status of the 

species. Following Keil et al. (2008) we only used the purple (main area of distribution) 

and blue (uncommon/scattered occurrence but not declining) areas in Dijkstra & 

Lewington (2006) as distribution records. Records from the inner Alps, where major 

differences between the different map sources could be attributed to differences in 

mapping accuracy were excluded. Since distribution data are generally less reliable in 

eastern Europe, we ignored all distribution records located east of the eastern borders of 

Finland, the Baltic countries, Poland, Hungary, Slovakia, Romania, Bulgaria and 

Greece. Nevertheless, we stress that dragonflies, due to their size, habitats and 

behaviour, range among the taxa with the best data record in space and time across 

Europe. Therefore, we believe that the accuracy of the maps is sufficient for our 

analyses. 

Time periods of climatic data used. To relate the species distribution datasets to 

climatic conditions, we averaged climatic the climatic variables (mean annual 

temperature and total annual precipitation) for time periods from 1971 to 1984 and from 

1989 to 2002 for comparisons with the 1988 and 2006 species distribution datasets. 

CRU TS 2.1 and other single climatic data sets of comparable quality do not cover all 

the years of interest for the respective time periods of this study (1970-2006). Using two 

data sets of different origin that cover all the years of interest though appeared to be 

problematic, due to potential mismatches in accuracy. We believe that despite the small 

gap between the climatic and species distribution data, this approach is sound for two 

reasons: firstly, including four additional years would most probably not significantly 

change the average calculated over 14 years (we repeated the analyses using a time span 

of 10 years for the climatic data which did not significantly change the results [not 

shown here]). Secondly, the data records used to generate the range maps of dragonfly 

distributions do not correspond exactly to the date these maps were published but rather 

to a larger period of time before the date of publication.  
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Supplementary Tables 

Table S1 | List of 112 dragonfly species with range size (number of grid cells 

occupied), larval habitat and taxonomic information (suborder and family). 

Species Range size Habitat Suborder Family 

 1988 2006    

Aeshna affinis 906 1171 lentic Anisoptera Aeshnidae 
Aeshna caerulea 524 497 lentic Anisoptera Aeshnidae 
Aeshna crenata 24 48 lentic Anisoptera Aeshnidae 
Aeshna cyanea 1544 1462 lentic Anisoptera Aeshnidae 
Aeshna grandis 1139 1165 lentic Anisoptera Aeshnidae 
Aeshna isosceles 1038 920 lentic Anisoptera Aeshnidae 
Aeshna juncea 1266 1228 lentic Anisoptera Aeshnidae 
Aeshna mixta 1435 1596 lentic Anisoptera Aeshnidae 
Aeshna serrata 55 56 lentic Anisoptera Aeshnidae 
Aeshna subarctica 458 626 lentic Anisoptera Aeshnidae 
Aeshna viridis 333 341 lentic Anisoptera Aeshnidae 
Anax imperator 1422 1593 lentic Anisoptera Aeshnidae 
Anax parthenope 848 1146 lentic Anisoptera Aeshnidae 
Boyeria irene  377 352 lotic Anisoptera Aeshnidae 
Brachythemis leucosticta 30 30 lentic Anisoptera Libellulidae 
Brachytron pratense 1145 1100 lentic Anisoptera Aeshnidae 
Calopteryx haemorrhoidalis 444 385 lotic Zygoptera Calopterygidae 
Caliaeschna microstigma 117 118 lotic Anisoptera Aeshnidae 
Calopteryx splendens 1370 1414 lotic Zygoptera Calopterygidae 
Calopteryx virgo 1797 1530 lotic Zygoptera Calopterygidae 
Calopteryx xanthosoma 383 339 lotic Zygoptera Calopterygidae 
Cercion lindeni*† 758 843 generalist Zygoptera Coenagrionidae 
Ceriagrion tenellum 763 695 lentic Zygoptera Coenagrionidae 
Coenagrion armatum 468 319 lentic Zygoptera Coenagrionidae 
Coenagrion caerulescens 316 235 lotic Zygoptera Coenagrionidae 
Coenagrion hastulatum 1044 902 lentic Zygoptera Coenagrionidae 
Coenagrion hylas*† 2 0 generalist Zygoptera Coenagrionidae 
Coenagrion johanssoni 375 363 lentic Zygoptera Coenagrionidae 
Coenagrion lunulatum 764 557 lentic Zygoptera Coenagrionidae 
Coenagrion mercuriale 611 558 lotic Zygoptera Coenagrionidae 
Coenagrion ornatum 244 223 lotic Zygoptera Coenagrionidae 
Coenagrion puella*† 1688 1634 generalist Zygoptera Coenagrionidae 
Coenagrion pulchellum*† 1359 1378 generalist Zygoptera Coenagrionidae 
Coenagrion scitulum 276 570 lotic Zygoptera Coenagrionidae 
Cordulia aenea 985 1098 lentic Anisoptera Corduliidae 
Cordulegaster bidentata 199 350 lotic Anisoptera Cordulegastridae 
Cordulegaster boltoni 1230 1120 lotic Anisoptera Cordulegastridae 
Cordulegaster heros* 8 101 lotic Anisoptera Cordulegastridae 
Cordulegaster insignis*† 10 17 lotic Anisoptera Cordulegastridae 
Cordulegaster picta† 41 14 lotic Anisoptera Cordulegastridae 
Crocothemis eythraea 907 1306 lentic Anisoptera Libellulidae 
Diplacodes lefebvrei 29 26 lentic Anisoptera Libellulidae 
Enallagma cyathigerum*† 1918 2037 generalist Zygoptera Coenagrionidae 
Epallage fatime 43 64 lotic Zygoptera Euphaeidae 
Ephitheca bimaculata 332 469 lentic Anisoptera Corduliidae 



 Chapter V 163 

Table S1 continued      
Erythromma najas*† 1053 1216 generalist Zygoptera Coenagrionidae 
Erythromma viridulum*† 911 1298 generalist Zygoptera Coenagrionidae 
Gomphus flavipes 466 276 lotic Anisoptera Gomphidae 
Gomphus graslini 33 103 lotic Anisoptera Gomphidae 
Gomphus pulchellus 411 555 lentic Anisoptera Gomphidae 
Gomphus schneideri† 49 15 lotic Anisoptera Gomphidae 
Gomphus simillimus 358 297 lotic Anisoptera Gomphidae 
Gomphus vulgatissimus 944 1162 lotic Anisoptera Gomphidae 
Hemianax ephippiger 58 320 lentic Anisoptera Aeshnidae 
Ischnura elegans*† 1554 1633 generalist Zygoptera Coenagrionidae 
Ischnura genei*† 42 42 generalist Zygoptera Coenagrionidae 
Ischnura graellsi 243 166 lentic Zygoptera Coenagrionidae 
Ischnura pumilio 1106 1453 lentic Zygoptera Coenagrionidae 
Lestes barbarus 1364 1431 lentic Zygoptera Lestidae 
Lestes dryas 1477 1428 lentic Zygoptera Lestidae 
Lestes macrostigma 418 141 lentic Zygoptera Lestidae 
Lestes sponsa 1425 1506 lentic Zygoptera Lestidae 
Lestes virens 1074 1298 lentic Zygoptera Lestidae 
Lestes viridis*† 1406 1261 generalist Zygoptera Lestidae 
Leucorrhinia albifrons 301 394 lentic Anisoptera Libellulidae 
Leucorrhinia caudalis 303 389 lentic Anisoptera Libellulidae 
Leucorrhinia dubia 976 975 lentic Anisoptera Libellulidae 
Leucorrhinia pectoralis 214 508 lentic Anisoptera Libellulidae 
Leucorrhinia ribucunda 558 736 lentic Anisoptera Libellulidae 
Libellula depressa 1690 1662 lentic Anisoptera Libellulidae 
Libellula fulva 1150 1003 lentic Anisoptera Libellulidae 
Libellula quadrimaculata 1602 1659 lentic Anisoptera Libellulidae 
Lindenia tetraphylla 168 59 lotic Anisoptera Gomphidae 
Macromia splendens 23 61 lotic Anisoptera Corduliidae 
Nehalennia speciosa 292 194 lentic Zygoptera Coenagrionidae 
Onychogomphus costae* 5 29 lotic Anisoptera Gomphidae 
Onychogomphus forcipatus 1040 1363 lotic Anisoptera Gomphidae 
Onychogomphus uncatus 392 314 lotic Anisoptera Gomphidae 
Ophiogomphus cecilia 588 562 lotic Anisoptera Gomphidae 
Orthetrum albistylum 511 617 lentic Anisoptera Libellulidae 
Orthetrum brunneum 1050 1164 lotic Anisoptera Libellulidae 
Orthetrum cancellatum 1515 1683 lentic Anisoptera Libellulidae 
Orthetrum chrysostigma*† 36 44 generalist Anisoptera Libellulidae 
Orthetrum coerulescens*† 1307 1492 generalist Anisoptera Libellulidae 
Orthetrum nitidinerve 43 86 lentic Anisoptera Libellulidae 
Orthetrum trinacria 21 27 lentic Anisoptera Libellulidae 
Oxygastra curtisi 400 269 lotic Anisoptera Corduliidae 
Pantala flavescens*† 0 6 generalist Anisoptera Libellulidae 
Paragomphus genei 41 42 lotic Anisoptera Gomphidae 
Platycnemis acutipennis 415 312 lotic Zygoptera Platycnemididae 
Platycnemis latipes 362 301 lotic Zygoptera Platycnemididae 
Platycnemis pennipes*† 1468 1398 generalist Zygoptera Platycnemididae 
Pyrrhosoma nymphula*† 1811 1649 generalist Zygoptera Coenagrionidae 
Selysiothemis nigra 33 59 lentic Anisoptera Libellulidae 
Somatochlora alpestris 351 293 lentic Anisoptera Corduliidae 
Somatochlora arctica 489 686 lentic Anisoptera Corduliidae 
Somatochlora flavomaculata 541 796 lentic Anisoptera Corduliidae 
Somatochlora meridionalis 165 329 lentic Anisoptera Corduliidae 
Somatochlora metallica  1409 1316 lentic Anisoptera Corduliidae 
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Table S1 continued      
Somatochlora sahlbergi*† 3 10 lentic Anisoptera Corduliidae 
Sympecma annulata 172 219 lentic Zygoptera Lestidae 
Sympetrum danae 1170 1147 lentic Anisoptera Libellulidae 
Sympetrum depressiusculum 222 344 lentic Anisoptera Libellulidae 
Sympetrum flaveolum 1511 1110 lentic Anisoptera Libellulidae 
Sympetrum fonscolombei 1095 1521 lentic Anisoptera Libellulidae 
Sympecma fusca 1453 1398 lentic Zygoptera Lestidae 
Sympetrum meridionale 815 1025 lentic Anisoptera Libellulidae 
Sympetrum sanguineum 1503 1463 lentic Anisoptera Libellulidae 
Sympetrum striolatum 1783 1827 lentic Anisoptera Libellulidae 
Sympetrum vulgatum 1006 1022 lentic Anisoptera Libellulidae 
Trithemis annulata 90 250 lentic Anisoptera Libellulidae 
Zygonyx torridis* 5 23 lotic Anisoptera Libellulidae 

* species not included in the analyses of the 1988 data 
† species not included in the analyses of the 2006 data 
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Supplementary Figures 

 
Figure S1 | Box-and-whisker plots of the effect of habitat 
type (lentic = standing waters, lotic = running waters) on 
R/P ratios of European dragonflies using different SDM 
techniques, for 1988 and 2006. Projected range sizes were 
transformed into presences and absences from probabilities of 
occurrence using Kappa-based thresholds. The differences were 
statistically significant (P < 0.05) in all cases except for ANN 
models in 1988 (P = 0.18, Wilcoxon rank sum test). Box-and-
whisker plots give the following variables: horizontal black 
line, median; box, range between 1st and 3rd quartile; vertical 
dashed lines, maximum or minimum values (if no outliers, 
indicated by small circles) or 1.5 times the interquartile range 
below the first and above the third quartiles. SDM technique 
acronyms: artificial neural networks, ANN, classification tree 
analyses, CTA, generalised additive models, GAM, generalised 
boosted models, GBM, generalised linear models, GLM, 
multiple adaptive regression splines, MARS, mixture 
discriminant analyses, MDA, surface range envelopes, SRE. 
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Figure S2 | Box-and-whisker plots of the effect of habitat type on R/P ratios of European 
lentic and lotic dragonflies for different SDM techniques, 1988. Projected range sizes were 
translated into presences and absences from probabilities of occurrence using ROC-based 
thresholds. R/P ratio comparisons were plotted separately for each of the four range size 
quartiles of the species in the dataset (the first consisting of the 25% of the species with the 
smallest range sizes, the fourth quartile consisting of the 25% of the species with the largest 
range sizes). Note that the number of lentic and lotic species per range size quartile was not 
equally distributed: ([quartile, Nlentic, Nlotic] 1st, 13, 10; 2nd, 13, 10; 3rd, 17, 6; 4th, 20, 3). See Fig. 
S1 for SDM technique acronyms and for an explanation of the box-and-whisker plots. 
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Figure S3 | Box-and-whisker plots of the effect of habitat type on R/P ratios of European 
lentic and lotic dragonflies for different SDM techniques, 2006. Projected range sizes were 
translated into presences and absences from probabilities of occurrence using ROC-based 
thresholds. R/P ratio comparisons were plotted separately for each of the four range size 
quartiles of the species in the dataset (the first quartile consisting of the 25% of the species with 
the smallest range sizes, the fourth quartile consisting of the 25% of the species with the largest 
range sizes). Note that the number of lentic and lotic species per range size quartile was not 
equally distributed: ([quartile, Nlentic, Nlotic] 1st, 12, 11; 2nd, 14, 9; 3rd, 17, 6; 4th, 20, 3). See Fig. 
S1 for SDM technique acronyms and for an explanation of the box-and-whisker plots. 
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Figure S4 | Proportion of true positives, TP, and true negatives, TN, for European lotic 
and lentic dragonflies according to different species distribution models. TP and TN 
proportions were plotted separately for each of the four range size quartiles of the species in the 
dataset (the first quartile consisting of the 25% of the species with the smallest range sizes, the 
fourth quartile consisting of the 25% of the species with the largest range sizes). Note that the 
number of lentic and lotic species per range size quartile was not equally distributed: ([quartile, 
Nlentic, Nlotic] 1st, 12, 11; 2nd, 14, 9; 3rd, 17, 6; 4th, 20, 3). See Fig. 2 for details on TP and TN 
calculation; see Fig. S1 for SDM technique acronyms. 
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ABSTRACT

 

Aim

 

We analysed the variation of species richness in the European freshwater fauna
across latitude. In particular, we compared latitudinal patterns in species richness
and 

 

β

 

-diversity among species adapted to different habitat types.

 

Location

 

Europe.

 

Methods

 

We compiled data on occurrence for 14,020 animal species across 25
pre-defined biogeographical regions of European freshwaters from the 

 

Limnofauna
Europaea

 

. Furthermore, we extracted information on the habitat preferences of
species. We assigned species to three habitat types: species adapted to groundwater,
lotic (running water) and lentic (standing water) habitats. We analysed latitudinal
patterns of species richness, the proportion of lentic species and 

 

β

 

-diversity.

 

Results

 

Only lentic species showed a significant species–area relationship. We
found a monotonic decline of species richness with latitude for groundwater and
lotic habitats, but a hump-shaped relationship for lentic habitats. The proportion of
lentic species increased from southern to northern latitudes. 

 

β

 

-Diversity declined
from groundwater to lentic habitats and from southern to northern latitudes.

 

Main conclusions

 

The differences in the latitudinal variation of species richness
among species adapted to different habitat types are in part due to differences in the
propensity for dispersal. Since lentic habitats are less persistent than lotic or ground-
water habitats, lentic species evolved more efficient strategies for dispersal. The
dispersal propensity of lentic species facilitated the recolonization of central Europe
after the last glaciation. Overall, we stress the importance of considering the history
of regions and lineages as well as the ecological traits of species for understanding
patterns of biodiversity.
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INTRODUCTION

 

Although it has been known about for more than 200 years, the

decrease of species richness with latitude is still poorly under-

stood (Fischer, 1960; for recent reviews see Willig

 

 et al

 

., 2003;

Hillebrand, 2004; Mittelbach

 

 et al

 

., 2007). Besides the mid-domain

effect (Colwell & Lees, 2000), three classes of hypotheses have

been proposed to explain this pattern: (1) the species–energy

hypothesis, which states that species richness is determined by

energy availability (Currie, 1991; Hawkins

 

 et al

 

., 2003); (2) the

species–area hypothesis, which points to the importance of space

for species richness (Terborgh, 1973; Rosenzweig, 1995); and (3)

the historical hypothesis which emphasizes the importance of

history, in particular climatic fluctuations (Fischer, 1960;

Dynesius & Jansson, 2000; Graham

 

 et al

 

., 2006). In Europe the

climatic fluctuations during the Pleistocene had dramatic impacts

on diversity patterns, since the east–west orientation of the major

mountain ranges impeded rearrangements of distributional

areas in response to climatic fluctuations (see, e.g., Whittaker

 

 et al

 

.,

2007, and references therein).

Habitat is an important template for the evolution of species

traits, in particular for dispersal ability (Southwood, 1962; 1977).

For freshwater ecosystems, studies initiated by I. Ribera and

co-workers highlighted the importance of interactions between
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habitat stability, dispersal ability and patterns of species dis-

tributions (Ribera & Vogler, 2000; Ribera 

 

et al

 

., 2001, 2003; see

also Hof

 

 et al

 

., 2006; Marten

 

 et al

 

., 2006; Ribera, 2008). Our

study is an extension of this work covering a broader range of

taxonomic groups and habitat types and analyzing 

 

β

 

-diversity

among biogeographical regions. It is, like the foregoing investigations,

based on the following hypothetical framework: On geological

time-scales lentic habitats (standing waters) are less stable than

lotic (running waters) or groundwater habitats (Gibert

 

 et al

 

.,

1994; Dobson & Frid, 1998; Griebler & Mösslacher, 2003; Ribera,

2008). The majority of the larger lakes in Europe, for instance,

date back to the Pleistocene (Schwoerbel, 1999). On the contrary,

several European river systems originated in the Mesozoic

(Hantke, 1993). Depending on size, lentic waters may even disappear

within decades as sediments accumulate in the basins (Hutchinson,

1957; Harper, 1992). Overall, lentic habitats are likely to vanish

within shorter periods of time than lotic habitats. Hence, one

would expect species living in lentic habitats to be characterized

by a higher propensity for dispersal than species living in lotic

or groundwater habitats (Dobson & Frid, 1998; Ribera & Vogler,

2000; Ribera

 

 et al

 

., 2003; Marten

 

 et al

 

., 2006; Ribera, 2008).

From this, we deduce two predictions concerning latitudinal

patterns of species richness and 

 

β

 

-diversity in European freshwater

animals. Firstly, if lentic species have a higher propensity for

dispersal, they should have more rapidly recolonized central and

northern regions. Hence we expect that species richness of lentic

habitats should decrease with latitude at a lower rate compared

with lotic or groundwater habitats. This implies also that the

proportion of lentic species increases with latitude. Furthermore,

dispersal influences species turnover (

 

β

 

-diversity) (Soininen

 

et al

 

., 2007a,b). Therefore, we secondly expect lower levels of

 

β

 

-diversity among regions for lentic compared with lotic and

groundwater species.

 

METHODS

 

The data for the present analyses were extracted from the

 

Limnofauna Europaea

 

 (Illies, 1978). The biogeographical regions

of Europe outlined in this book were used for all analyses

(Table 1). For each region, data on latitude (northern and

southern boundary), longitude (western and eastern boundary) and

maximum altitude were compiled from http://earth.google.com/.

From this information we calculated the mean latitude and

longitude of each region. Areas of regions were estimated by

weighing pieces of paper cut from a copied map. Note that four

of the 25 regions are open at their eastern border, which may

Table 1 Geographical data and species richness of all habitats, and of the different habitat types of the 25 biogeographical regions of Europe as 
defined in the Limnofauna Europaea (Illies, 1978).

Region 

code Region

Latitudinal 

centre (°N)

Longitudinal 

centre (°E)

Maximum 

altitude (m)

Area 

(km2)

Species richness

All 

habitats

Groundwater 

habitats

Lotic 

habitats

Lentic 

habitats

IBE Ibero-Macaronesian region 38.23 –12.24 3717 560,736 2543 99 633 741

PYR Pyrenees 42.53 0.54 3404 49,548 1684 82 510 395

ITA Italy, Corsica and Malta 40.98 12.97 3380 264,311 3284 135 709 1018

ALP Alps 45.81 10.82 4808 210,580 4479 96 989 1426

DIN Dinaric western Balkans 44.37 17.71 2656 161,032 2543 170 683 682

HEL Hellenic western Balkans 39.13 23.76 2917 173,419 2258 100 566 729

EAB Eastern Balkans 41.73 25.07 2925 177,548 2161 74 564 623

WEH Western highlands 47.36 5.53 1886 156,903 2776 101 706 888

CEH Central highlands 49.74 12.50 1602 260,129 4922 133 927 1717

CAR Carpathians 47.15 22.07 2655 185,806 3842 130 884 1112

HUN Hungarian lowlands 46.48 19.72 500 169,290 3187 67 421 1098

PON Pontic province 45.83 30.18 1545 264,258 2819 50 345 939

WEP Western plains 46.90 0.61 1000 404,644 3690 106 609 1280

CEP Central plains 55.17 9.27 500 540,902 5465 77 627 2213

BAP Baltic province 56.93 24.23 318 210,580 3163 13 347 1263

EAP Eastern plains 53.48 38.66 1000 2,320,511 3792 27 445 1442

IRE Ireland and Northern Ireland 53.39 –8.01 1041 82,580 1669 9 249 691

GBR Great Britain 56.16 –3.44 1344 235,354 3490 33 492 1350

ICE Iceland 64.91 –19.02 2110 103,226 475 2 28 204

BOR Borealic uplands 64.13 13.06 2469 309,677 2153 4 276 1004

TUN Tundra 71.53 44.68 1590 330,219 1365 6 193 540

NSW Northern Sweden 64.60 17.44 1200 231,225 1954 12 254 849

TAI Taiga 63.03 39.71 1000 1,606,190 2896 9 312 1221

CAU Caucasus 42.12 44.07 5642 363,354 2089 65 391 606

CAS Caspic depression 48.08 47.03 500 627,612 1591 5 144 532
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introduce some bias due to the distribution of singletons or the

calculation of areas. All these areas are located in the European

part of Russia. Therefore, we used the Ural Mountain chain as the

eastern boundary of these regions. It is well known that the Ural

Mountains act as a biogeographical boundary, which is not

crossed by most of the species occurring in central Asia or

Siberia.

For each region we compiled species presences or absences.

The taxonomy as well as recent changes in species names were

updated using the Fauna Europaea Web Service (2004). Our

initial compilation listed 14,457 species, and after considering

taxonomic changes and uncertain species the final list comprised

14,020 species of fish, annelids, water mites, crustaceans, insects,

molluscs, nematodes, rotifers, flatworms and several taxa of

fewer than 150 species (for an overview on species numbers of

these major taxonomic groups, see Table S1 in Supplementary

Material). The 

 

Limnofauna Europaea

 

 provides information of

the habitat requirements for most of the species listed. From the

more than 40 habitat categories given in the 

 

Limnofauna

 

 we

grouped species into three major habitat types: groundwater,

lotic (running waters from springs to large streams) and lentic

habitats (standing waters from phytotelmata to large lakes). For a

number of reasons we had to exclude 46% of the total species

pool: (1) we had to exclude the 2663 species for which no habitat

preferences where available; (2) we excluded 1958 generalists for

which a habitat assignment was impossible; (3) we excluded 1025

parasitic species, as they rather rely on a specific host than on a

certain type of habitat; (4) we excluded the 476 species occurring

in brackish waters or with very special habitat requirements (e.g.

leaf miners of aquatic plants, species living in mosses like

tardigrades etc.).

Geographical variables and species richness of the different

habitat types were tested for normality using the Kolmogorov–

Smirnov test (StatSoft Inc., 2002). All variables except area

approximated a normal distribution. Area was log

 

10

 

-transformed

in all analyses, after which it also attained normality. We

calculated simple linear regressions to test for the effect of area

on species richness across the 25 regions. To analyse the relation-

ship between species richness and latitude, we used multiple

linear regressions. We always tested for the effect of latitude on

species richness after correcting for all other geographical variables

(for a visual inspection of the relationships between species

richness and latitude, longitude, altitude and area see Fig. S1).

The plot of species richness vs. latitude suggested a hump-shaped

relationship. Therefore, we also included squared latitude as an

independent variable in some analyses. To investigate the

relationship between the proportion of lentic species and latitude,

we used a multiple generalized linear model (binomial error

term, logit link function, forward selection; Crawley, 2002).

Patterns of 

 

β

 

-diversity among regions were investigated by

means of additive partitioning of species diversity (Crist

 

 et al

 

.,

2003) for each of the three habitats. For this analysis, regions

were grouped into four latitudinal bands according to their

latitudinal centres (< 45

 

°

 

 N, between 45

 

°

 

 N and 50

 

°

 

 N, between

50

 

°

 

 N and 60

 

°

 

 N, > 60

 

°

 

 N; see Fig. 2). Areas of regions were used

as weights.

 

RESULTS

 

We found a significant species–area relationship only for lentic

habitats (Table 2). The relationship of species richness and

latitude differed between lentic habitats compared with lotic and

groundwater habitats. In the latter species groups, species

richness declined monotonically with latitude, whereas lentic

species exhibited a hump-shaped relationship (Table 3, Fig. 1,

Fig. S2). Species richness of lentic species peaked in central

Europe, within a region covering the Netherlands, the northern

part of Germany, the southern part of Scandinavia and parts of

Poland (region CEP, see Table 1 and Fig. 2). The proportion of

lentic species increased significantly from southern to northern

latitudes (deviance = 647.2, 

 

P

 

 < 0.0001; Fig. 3). Even after con-

sidering the other geographical variables this pattern remained

significant (Table 4). Additive partitioning of species diversity

revealed a decline of 

 

β

 

-diversity from groundwater to lotic to

lentic species (Fig. 2). Furthermore, for each of the three habitat

types, 

 

β

 

-diversity decreased from southern to northern latitudes

(Fig. 2).

Figure 1 Relationship between latitude and 
species richness for freshwater species 
occurring within three different habitat types: 
(a) groundwater habitats, (b) lotic habitats, 
(c) lentic habitats. Each point represents the 
number of species occurring in the respective 
habitat within one of the 25 regions shown in 
Fig. 2.

Table 2 Slope and correlation coefficients for the relationship 
between species richness and area (log10-transformed) for the three 
different habitat types (simple linear regressions, n = 25).

Habitat type Slope R P

Groundwater habitats –29.16 0.044 0.32

Lotic habitats –48.58 0.0050 0.74

Lentic habitats +537.4 0.19 0.031
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DISCUSSION

 

Our analyses showed (1) a monotonic decline of species richness

with latitude for groundwater and lotic habitats, but a hump-

shaped relationship for lentic habitats; (2) an increase in the

proportion of lentic species with increasing latitude; and (3) a

decline in 

 

β

 

-diversity from groundwater to lotic to lentic habitats

and from southern to northern latitudes.

The observed patterns in species richness might be caused by a

variation in the sampling effort among regions (Bardgett

 

 et al

 

.,

2005; Moerman & Estabrook, 2006). As many, if not most,

ecologists and taxonomists reside in central Europe, the fauna of

this region is very well known (Illies, 1966; Bardgett

 

 et al

 

., 2005).

We argue that this bias does not sufficiently explain the observed

variation of richness. First, since the fauna of groundwater

habitats is not very well known (Gibert

 

 et al

 

., 1994; Griebler &

Table 3 Multiple linear regressions of species richness for freshwater animals within 25 European biogeographical regions vs. geographical 
variables (type I sum of squares; StatSoft Inc., 2002) according to different habitat types. Significant relationships are indicated in bold. 

β MSS F P β MSS F P

Groundwater habitats Lentic habitats

Area 0.001  2589 1.7 0.206 Area 0.48 894,966 6.8 0.017

Longitude –0.13  557 0.37 0.551 Longitude –0.18 289,230 2.2 0.154

Altitude 0.14  9485 6.3 0.021 Altitude –0.037 225,321 1.7 0.206

Latitude 0.37 19,174 12.7 0.002 Latitude 5.4 73,866 0.56 0.462

Latitude2 –1.0  349 0.23 0.636 Latitude2 –5.4 820,983 6.3 0.022

Residuals  1510 Residuals 131,343

Lotic habitats

Area 0.15  7008 0.16 0.690

Longitude –0.17 39,051 0.91 0.352

Altitude 0.31 222,965 5.2 0.034

Latitude 2.8 289,894 6.8 0.018

Latitude2 –3.3 90,277 2.1 0.163

Residuals 42,815

MSS, mean sum of squares; β, standardized regression coefficient.

Figure 2 β-Diversity of freshwater animals within four bands of regions across Europe. We calculated β-diversity for each band and habitat 
using additive partitioning of species richness (Crist et al., 2003). A value of 100% would indicate that all species occur in only one region of a 
band and a value of 0% that all species occur in all regions of a band. Regions of a band are marked by the same colour. β-Diversity decreased 
from groundwater species to lentic species for all four bands and β-diversity decreased with latitude for all habitat types (square, lentic habitats; 
circle, lotic habitats; triangle, groundwater). Region codes are listed in Table 1.
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Mösslacher, 2003), sampling should particularly influence the

species numbers within this group. However, species richness of

the groundwater fauna declined with latitude (Fig. 1a). Second,

the number of species recorded in only one sample (singletons)

is a good indicator of the sampling effort (Novotn

 

y

 

 & Basset,

2000). In our case the number of singletons in a region has two

components: species with a restricted geographical range

(endemics) and species accidentally recorded in only one region.

The latter is an indication of the sampling effort. If the

hump-shaped pattern is a consequence of the extensive sampling

in central Europe, then we would expect: (1) that species groups

with a hump-shaped relationship have a high proportion of

singletons; and (2) that there is also a hump-shaped relationship

between the number of singletons and latitude. However, the

hump-shaped relationship occurs in species adapted to lentic

habitats (Table 3, Fig. 1c), which have a rather low proportion of

singletons compared with lotic and groundwater species (Table

S2). Furthermore, for all three species groups the number of

singletons declines with increasing latitude (Fig. S3).

Although the areas of the biogeographical regions differed by

a factor of more than 40 (Table 1), area was a poor predictor of

species richness for species adapted to lotic and groundwater

habitats. One may argue that terrestrial surface area is not a good

surrogate for area covered by freshwaters. For groundwater habitats,

though, the terrestrial surface area roughly approximates habitat

area, as groundwater is a type of freshwater habitat that should be

available almost everywhere below the surface (Gibert

 

 et al

 

.,

1994; Griebler & Mösslacher, 2003). However, for groundwater

species, the relationship between species richness and area was

negative (Table 2). If one accepts that our failure to find a

species–area relationship for groundwater or lotic habitats is not

due to a bias, the difference in the significance between lotic and

lentic habitats becomes interesting. A non-significant relation-

ship between area and species richness may be due to non-

equilibrium conditions (MacArthur & Wilson, 1963; Ricklefs &

Bermingham, 2004), which points to differences in the equilib-

rium conditions between groundwater and lotic vs. lentic biota.

We will return to this point below.

Many papers have documented that species richness increases

with several surrogates of energy available to the communities of

plants or animals (Wright, 1983; Currie, 1991; Badgley & Fox,

2000; Hawkins

 

 et al

 

., 2003). Even if the geographical resolution

of our data is not sufficient for a meaningful evaluation of the

energy-availability hypothesis, the monotonic decline of species

richness with latitude that was observed for lotic and ground-

water habitats is consistent with a latitudinal decline of energy

availability. Nevertheless, the surprising difference in the latitudinal

variation of species richness among species adapted to different

habitats rejects the energy-availability hypothesis as a 

 

general

 

explanation.

We are aware of four possible explanations for the observed

differences in diversity patterns among habitats: (1) evolutionary

idiosyncrasies; (2) differences in habitat availability; (3) differences

in the location of refugia; and (4) differences in the dispersal

propensity of species among habitats. These are discussed in turn

below.

(1) We pooled a wide variety of taxa with very different

phylogenetic backgrounds. This could lead to differences in

diversity patterns between habitats if certain taxa of species

adapted to a particular habitat dominate certain regions. To

investigate if such evolutionary idiosyncrasies are responsible

for the decrease of species richness with latitude in lotic and

groundwater habitats, we tested whether the observed correla-

tions are expected by chance, i.e. whether the phylogenetic

assignment drives the pattern. For this, we randomized habitat

preference across species and calculated the correlation coeffi-

cient for the relationship between species richness and latitude

(for a detailed explanation see Fig. S4). For both lotic and

groundwater habitats, the correlation coefficient expected by

chance was negative, but all simulated coefficients were larger

than the observed coefficients. Consequently, evolutionary

idiosyncrasies are not sufficient to explain the decrease of species

richness with latitude.

(2) The availability of the habitat types across the 25 bio-

geographical regions might also explain the observed differences

in the latitudinal variation of species richness. This argument is

partly related to our discussion of the species–area relationship. For

groundwater habitats, terrestrial area approximates the available

Figure 3 Proportion of lentic species in relation to latitude. 
Each point represents the proportion of species occurring in lentic 
habitats of the 25 regions shown in Fig. 2. The curve visualizes a 
generalized linear model (deviance = 647.2; P < 0.0001; 
y = e−1.93 + 0.026 × latitude (1 + e−1.93 + 0.026 × latitude)−1).

Table 4 Relationships between the proportion of lentic species 
within 25 biogeographical regions of Europe vs. geographical 
variables (multiple generalized linear model, binomial error term, 
logit link function, forward selection, Crawley, 2002, n = 25).

Estimate Deviance P

Area 0.13 134 < 0.001

Longitude –0.0029 16.9 < 0.001

Altitude –0.000028 238 < 0.001

Latitude 0.037 324 < 0.01

Latitude2 –0.00013 1.03  0.31
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habitat area. Our failure to find a species–area relationship for

this habitat type suggests that the availability of habitats is not

sufficient to explain the diversity patterns of freshwater species.

Ribera 

 

et al

 

. (2003) also argued consistently against this habitat-

availability hypothesis. Nevertheless, further investigations are

needed for a convincing test of this hypothesis.

(3) After the last glaciation many species recolonized central

Europe from Mediterranean refugia (de Lattin, 1957; Hewitt,

1999). However, recent studies have demonstrated the exist-

ence of glacial refugia north of the Alps (Stewart & Lister, 2001;

Pauls

 

 et al

 

., 2006; Kristjánsson & Svavarsson, 2007). Further-

more, a considerable number of species may have colonized cen-

tral Europe from eastern regions (e.g. Banarescu, 1990; Kotlík

 

et al

 

., 2004). Irrespective of the location of the refugia, the recol-

onization of Europe should be biased towards species with a

high dispersal propensity. The decrease of 

 

β

 

-diversity from

southern to northern regions may also be a legacy of the recolo-

nization of the higher latitudes after the Pleistocene (Hewitt,

1999; 2000).

(4) Lentic species are assumed to show a higher propensity

for dispersal than lotic species. The differences in 

 

β

 

-diversity

among species adapted to groundwater, lotic and lentic habitats

are perfectly consistent with the proposed differences in the

dispersal propensity of species associated with these habitats,

because with an increasing propensity for dispersal one expects

a decrease in 

 

β

 

-diversity (Soininen 

 

et al

 

., 2007a,b). From this, in

turn, one may deduce the hypothesis that the decrease of species

richness with latitude in lotic as well as groundwater habitats is

due to a low recolonization rate. The increase in the proportion

of lentic species with latitude supports this argument. Con-

sequently one might argue that the communities of lotic and

groundwater habitats have not yet reached equilibrium in central

and northern Europe. In contrast, lentic species may have

reached equilibrium, which is also suggested by a significant

species–area relationship (see above). Furthermore, low dispersal

rates facilitate speciation (Bohonak, 1999; Marten

 

 et al

 

., 2006),

which should lead to a higher speciation rate in lotic as well as

groundwater species compared to lentic species (Ribera & Vogler,

2004). The rugged topographic relief of the Mediterranean

regions may have further contributed to a higher speciation rate

(Mayr, 1942; Hewitt, 1999). The high levels of 

 

β

 

-diversity in

southern Europe are concordant with a higher speciation rate in

the Mediterranean. However, we found this difference in lotic

and lentic species. Therefore, differences in the speciation rate of

lentic and lotic species do not sufficiently explain the observed

difference in the relationship between species richness and

latitude among lentic and lotic species.

None of these four factors that may have influenced the differ-

ence in the relationship between species richness and latitude

among the different habitat types can account for the hump in

species richness of lentic freshwater animals in central Europe.

We propose three possible processes that might have generated

this pattern. First, a considerable number of lentic species could

have gone extinct in the southern refugia after the last glaciation,

when the Mediterranean climate shifted to semi-arid conditions

(Salinas

 

 et al., 2000; Oliva-Paterna et al., 2003). Note that this

argument is not consistent with the foregoing, that habitat

availability is not supposed to drive the observed patterns.

Second, if lentic species are stronger dispersers, more species

from eastern refugia may have reached central Europe. At the end

of the last Ice Age, huge proglacial lakes provided pathways of

recolonization for lentic species (e.g. Schäfer, 1997). However,

our data indicate a decrease in the proportion of lentic species

from west to east (Table 4). Consequently, this explanation also

seems to be rather unlikely. Third, the mid-domain effect predicts

a hump in species richness in the centre of a geographical

domain (Colwell & Lees, 2000). This model places geographical

ranges of species randomly across the available space. Further-

more, it assumes that biota are close to equilibrium. Indeed, due

to their higher dispersal ability, lentic species should be near

equilibrium conditions (see also above), so the mid-domain

effect might be useful to approach an explanation of the species

richness peak in lentic species in central Europe.

With our study, we underline that to understand differences in

the spatial variation of biological diversity among taxa one has to

consider the history of regions and lineages (Graham et al., 2006;

Rahbek et al., 2007; Reyjol et al., 2007; Svenning & Skov, 2007) as

well as the ecological traits of species (Ribera et al., 2003; Vogler

& Ribera, 2003; Hof et al., 2006; Marten et al., 2006; McPherson

& Jetz, 2007; Ribera, 2008). Furthermore, our analyses support

previous studies which document that various European groups

of plants and animals are not in equilibrium with current climate

(Svenning & Skov, 2004; Araújo & Pearson, 2005; Araújo et al.,

2008).
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J. A. F. Diniz-Filho (diniz@icb.ufg.br), L. M. Bini and R. D. Loyola, Depto de Ecologia, ICB, Univ. Federal de Goiás (UFG), Cx.P. 131,
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Forecasts of species range shifts under climate change are fraught with uncertainties and ensemble forecasting may
provide a framework to deal with such uncertainties. Here, a novel approach to partition the variance among modeled
attributes, such as richness or turnover, and map sources of uncertainty in ensembles of forecasts is presented. We model
the distributions of 3837 New World birds and project them into 2080. We then quantify and map the relative
contribution of different sources of uncertainty from alternative methods for niche modeling, general circulation models
(AOGCM), and emission scenarios. The greatest source of uncertainty in forecasts of species range shifts arises from using
alternative methods for niche modeling, followed by AOGCM, and their interaction. Our results concur with previous
studies that discovered that projections from alternative models can be extremely varied, but we provide a new analytical
framework to examine uncertainties in models by quantifying their importance and mapping their patterns.

Environmental niche models, or species distribution models
(SDM), are frequently used to forecast shifts in species
geographic distributions under climate change (Peterson
et al. 2002, Thomas et al. 2004a, Thuiller et al. 2005a, b,
Araújo et al. 2006, Lawler et al. 2009). When species ranges
closely match their potential niche, associations between
species ranges and environmental factors can be reliably
used to estimate the ecological requirements of species
(Araújo and Guisan 2006, Soberón 2007). Estimated
associations can then be utilized to forecast species range
shifts and related changes in biodiversity patterns under
climate change scenarios.

It is widely acknowledged that SDMs provide a
simplified representation of the processes governing the
geographic distributions of species (Pearson and Dawson
2003, Guisan and Thuiller 2005). Actually, multiple
ecological and evolutionary processes, operating at different
spatial and temporal scales, are expected to determine
contemporary distributions of most species (Araújo et al.
2008, Pearman et al. 2008), and several of these processes
are poorly represented in the models (Guisan and Thuiller
2005). In addition to ecological uncertainties, there are
several sources of methodological uncertainty that have
been discussed in a number of recent studies (Thuiller et al.
2004, Araújo et al. 2005a, b, Pearson et al. 2006, 2007,

Marmion et al. 2009). Nevertheless, and despite computa-
tional and methodological advances, the decision as to
which model to use is often ad hoc (Araújo and New 2007),
and there is little agreement regarding the relative perfor-
mance of alternative niche-based techniques and overall
modeling strategies for forecasting species distributional
changes under climate change (Araújo and Rahbek 2006,
Dormann 2007, Peterson et al. 2007, Phillips 2008).

Methodological uncertainties may arise because of
differences in data sources and statistical methods used for
niche and climate modeling (Heikkinen et al. 2006). If it is
not possible to clearly establish which models are more
adequate to a particular problem, a potential solution to
take inter-model variability into account is to fit multiple
models, or ensembles, and combine them into some sort of
consensus forecast (for reviews see Araújo and New 2007,
Leutbecher and Palmer 2008). Recent studies suggested that
improvements in the forecasts could be achieved if
ensembles were obtained and the results were appropriately
analyzed (Araújo et al. 2005a, 2006, Marmion et al. 2009,
Roura-Pascual et al. 2009). For instance, some widely used
methods for niche modeling, such as GARP, Neural
Networks, and Random Forests do generate multiple
projections and combine them into a single consensus
solution (Lawler et al. 2009, O’Hanley 2009, see also
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Table 1 in Araújo and New 2007). The new version of the
BIOMOD software allows different methods to be fitted
and projections to be compared and combined (Thuiller
et al. 2009).

However, existing approaches sparsely sample all possi-
ble uncertainties from models (Araújo and New 2007). For
example, it is difficult to fully explore uncertainties arising
from data uncertainty or from the large numbers ensembles
of AOGCM (Atmosphere-Ocean General Circulation
Models) that are currently being generated. There is indeed
a possibility that some sources of methodological and
technological uncertainty, such as climate models and
emission scenarios, might be more important than how
the parameters of particular method are estimated (Thomas
et al. 2004b, Berthelot et al. 2005, Stainforth et al. 2005).
Techniques for handling and combining large ensembles of
forecasts are also in their infancy and consensus projections
may hide variability arising from disparate sources of
uncertainty with existing tools being unable to successfully
disentangle them. Thus, a more detailed analysis of the
sources of uncertainties and their patterns is important to
improve modeling strategies and to define over which
sources an ensemble is necessary.

Here, we develop a new quantitative approach to analyze
uncertainties in large ensembles of forecasts and disentangle
the contribution of individual sources of variation entering
the models. This approach is based on a spatially-explicit
decomposition of total sum of squares of the ensemble-
forecasted values of faunal turnover. Thus, our approach
provides maps of uncertainty and allows an investigation of
the regions more affected by particular sources of un-
certainty. Buisson et al. (2009) proposed an alternative
approach to partition the variance in ensembles of forecasts
of species distributional changes that also allows an
exploration of the geographic components of uncertainty.
We applied our approach to understand the uncertainties in
forecasts of species turnover maps of New World birds
under climate change. Our study provides a comprehensive
ensemble forecasting experiment to assess the relative
contribution of seven species distribution models, five
climate models, and two emission scenarios. Although
other sources of uncertainty exist, our approach can be
quickly expanded in the future to incorporate other sources
of variation and thus it provides a fine perspective that
enables new insights on how to better evaluate shifts in

biodiversity patterns and what are the greatest challenges at
different levels of the modeling process.

Material and methods

Data

Data on the extent of occurrence (range filling) for 3837
species of the New World birds were downloaded from
the NatureServe /<www.natureserve.org/getData/birdMaps.
jsp/> and resampled to a grid of 18�18 latitude/longitude.
A similar approach for deriving species presence and
absence maps from extent of occurrence data was adopted
by Lawler et al. (2009). Although we acknowledge that
this is not the most commonly used approach to model
species distributions (which is usually based on more
detailed data of species occurrences and fine scale envi-
ronmental data), this allows a first understanding of
continental patterns in species turnover based on a very
large number of species.

Climatic data for species distribution modeling were
derived from five coupled Atmosphere-Ocean General
Circulation Models (AOGCMs), including CCSM3,
CSIRO-Mk3.0, UKMO-HadCM3, ECHAM5/MPI-OM
and MIROC. Although other AOGCMs are available, this
selection covers a wide range of different predictions and
was defined to maximize the different degree of predicted
climate warming. The AOGCMs used here have different
equilibrium climate sensitivity values ranging from 2.78C to
4.38C. Equilibrium climate sensibility is the annual mean
surface air temperature change experienced by the climate
system after it has attained a new equilibrium in response to
a doubling of CO2 concentration, and are within the range
of all AOGCMs available from IPCC. These models also
tried to encompass projections with different spatial
resolutions, ranging from 1.18�1.18 to 3.758�3.758
latitude/longitude in the original set. Data were extracted
from the World Climate Research Program’s (WCRP)
Coupled Model Intercomparison Project phase 3 (CMIP3)
multi-model dataset (Meehl et al. 2007).

Outputs for each model were obtained for two emission
scenarios (A1 and B1) that are available for all AOGCMs
selected above. In general, scenarios A1 and B1 can be
roughly classified as ‘‘pessimistic’’ and ‘‘optimistic’’, respec-
tively, according to the CO2 emissions. The A1 storyline
and scenario family assumes a future of very rapid economic

Table 1. Median proportions of the total sum of squares from the three-way ANOVA performed for each grid cell covering the New World,
evaluating the relative contributions of method for niche modeling, AOGCM and emission scenario to the variability in forecasting species
turnover. Minimum and maximum values in the maps are also given (see also Fig. 3). Geographical patterns in each variance component are
estimated by Moran’s I coefficient in the first distance class and by correlogram intercept (in km).

Source SS(%) Geographical patterns

Median Min-max Moran’s I* Correlogram intercept (km)

Method 66.10 3.8�94.7 0.489 4014
AOGCM 13.80 1.2�47.4 0.399 3088
Scenario 0.01 0.0�20.0 0.155 643
Method�AOGCM 11.80 1.3�40.9 0.259 643
Method�Scenario 0.70 0.0�15.7 0.219 1646
AOGCM�Scenario 3.10 0.0�34.3 0.242 1646
Third-order interaction 2.30 0.2�15.2 0.199 643

*All Moran’s I significant at pB0.01.
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growth and rapid introduction of more efficient technolo-
gies, but low population growth. A major underlying theme
is a substantial reduction in regional differences in per
capita income and, more specifically, the A1 scenario used
here assumes a balanced mix of technologies and supply
sources, with technology improvements and resource
assumptions, including that no single energy source is
overly dominant (IPCC 2000). The other scenario used
herein (B1), also starts from the same low population
growth rate, but it differs from A1 in assuming rapid
changes in economic structures toward a service and
information economy, with reductions in material intensity,
and the introduction of clean and resource-efficient
technologies. The emphasis is on global solutions to
economic, social, and environmental sustainability, includ-
ing improved equity, but without additional climate
initiatives (IPCC 2000).

For each one of the AOGCMs and emission scenarios,
four variables were obtained for both present time (base-
line used to calibrate the models, the average values from
1970 to 1999) and future (estimated 2070�2099 interval,
2080 for simplicity hereafter). Variables used were mean
annual rainfall and variability, average temperature of the
warmest and coldest months. Rather than only using
all these variables simultaneously to predict the geogra-
phic ranges of all species, the 15 combinations (2p � 1,
where p�4) of these four variables (Fig. 1) were used
in independent models, accounting them for eventual
differences in ecological processes driving geographic
distributions of species across the New World. These
variables encompass the major hypotheses which

are often raised to explain patterns of species richness at
global scale (Hawkins et al. 2003).

Modeling species distributions

For each species, data were randomly divided into calibra-
tion and validation sets comprising 75 and 25% of the
species’ range, respectively, and the procedure was repeated
50 times, maintaining the observed prevalence of species in
each partition (i.e. for presence only methods, 75% of the
cells within the species’ range, randomly defined, were used
for modeling, whereas for presence�absence methods the
analyses were conducted using a random sample of 75% of
cells both inside and outside species’ range). Beyond
creating independent � or at least partially independent �
sets for model calibration and validation, partition also
allows to take data uncertainty into account, especially con-
sidering that range filling maps tend to have larger
commission errors (Hawkins et al. 2008). Thus, each
calibration dataset was used to project species distributions,
according to seven SDMs described below (which were
estimated with the 15 combinations of four environmental
variables) on each combination of AOGCM and emission
scenario previously defined. For species with range size
�10 cells (12% of species), rather than performing a cross-
validation 50 times, each of the n cells was deleted once and
analyses were repeated n times (roughly equivalent to a
Jackknife procedure � Pearson et al. 2007).

We fitted seven species distribution models (SDMs) and
projected species potential distributions for baseline and

Figure 1. A schematic representation of the analytical framework used to evaluate spatial patterns of uncertainty in ensemble forecasting.
Forecasting is generated using 15 combinations of the four bioclimatic variables, based on 50 random replications of calibration/
validation datasets, for each method for niche modeling. Projections are based on the five AOGCMs for the two emission scenarios (A1
and B1). Then a three-way ANOVA is applied to each cell and the proportion of the total sum of squares accounted by each source can be
mapped. A PCA can be used to evaluate the similarity among the ensemble-based vectors.
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future climates (Fig. 1). The modeling methods used
included a range of SDMs that are both conceptually
and statistically different (Segurado and Araújo 2004, Elith
et al. 2006, Tsoar et al. 2007, Philips and Dudı́k
2008), such as simple surface range envelope models like
BIOCLIM (Busby 1991), and Euclidian and Maha-
lanobis (EUC and MAHAL) distances (Farber and
Kadmon 2003). We also fitted Generalized Linear Models
(GLM) (McCullagh and Nelder 1989) and more com-
plex machine learning approaches such as Random Forest
(RF) (Breiman 2001), Genetic Algorithm for Rule Set
Production (GARP) (Stockwell and Noble 1992), and
Maximum Entropy (MAXENT) (Phillips et al. 2006,
Phillips and Dudı́k 2008). We developed new computer
software � BioEnsembles � in which all these methods
were implemented. This software was designed to optimize
and take advantage of high-speed parallel processing,
both within (multi-processors computers) and between
(grid architecture) computers.

Notice that the fitting and projection of alternative
models using data partition and the 15 combinations of
variables are used here to explore uncertainties from the
initial conditions and model parameterization (sensu Araújo
and New 2007). However, because of the large number of
maps for each species, both the data-splitting procedures
and variable selection were not included into the current
analysis of sources of uncertainty. Rather, maps resulting
from reshuffling data and variables were summed to
generate the vector of ensemble frequencies of occurrence
of the species for each of the combinations of SDM,
AOGCM and emission scenarios (see below).

The True Skill Statistics (TSS) (Allouche et al. 2006),
varying between �1 and 1, was used as a fit statistic. It
was calculated for each model based on the confusion
matrix expressing matches and mismatches of observed
and predicted occurrences in the validation data set. This
matrix was computed after using ROC curves to convert
continuous predictions into presence-absence. Models with
TSS smaller than zero were discarded.

Also, it was not possible to fit all methods for all species
using different combinations of variables (for example, lack
of convergence in GLM or impossibility of inverting the
covariance matrix when computing Mahalanobis distances).
Most methods cannot deal with species occurring in a single
cell (ca 1.2% of the species). Because of these restrictions,
not all 3837 species were used for all SDM methods and
AOGCMs (Supplementary material Table S1, Fig. S1).
Thus, for each method and AOGCM, up to 750 models
(50 dataset partitions modeled using 15 combinations of
variables) were generated for each species. Finally, this
combination of models generates an ensemble-based fre-
quency of species distributions in the future and species are
considered to occur in a given cell if at least 50% of the
models predict its occurrence there (i.e. a majority
consensus rule) (Araújo et al. 2005a, 2006).

Rather than evaluating each species’ ensemble distribu-
tion independently, we calculated species turnover for each
combination of SDM, AOGCM, and scenario, which was
based on the number of potential species gained (G) or lost
(L) within each cell and given by (G�L)/(S�G) (Thuiller
2004). Notice that species turnover was calculated by
comparing potential ranges as modeled in 2070�2099 and

the modeled ranges on baseline period, rather than observed
ranges.

Evaluating the consistency between projections

Species turnover maps (7 SDM�5 AOGCMs�2 emis-
sion scenarios, each one based on a maximum number of
750 models for each species) were averaged across each cell,
generating a turnover consensus map, as well as standard
deviations and coefficients of variation that allow mapping
where uncertainty in projections is larger.

To evaluate the origins of variability around this
consensus, we submitted the correlation matrix among the
70 projections to a Principal Component Analysis (PCA),
as suggested by previous authors (Thuiller 2004, Araújo
et al. 2005a, 2006). This allows evaluating the similarity of
the projections (values of turnover as predicted by combi-
nations of SDM, AOGCM and emission scenarios) by the
loadings (i.e. the Pearson’s correlation coefficients between
predicted values and the scores) of the interpretable axes,
which were defined by the broken-stick criterion (Legendre
and Legendre 1998).

The loadings of the PCA can be used to express the
relative position (similarity) of the maps from different
SDM, AOGCMs and scenarios, whereas the PCA scores are
the main directions of covariation among the maps
throughout the projections variability. If the first principal
component has a large relative eigenvalue, it tends to be
highly correlated with the average consensus map and can
be used as a consensus map as well (Araújo et al. 2005a,
2006, Marmion et al. 2009).

Mapping the sources of variation around the
consensus solution

Although it is trivial to map the mean (consensus) turnover
in each cell based on maps generated by different SDM,
AOGCMs, and emission scenarios, as well as their variance
or coefficient of variation, it is much more difficult to
understand the main sources of variation around the
consensus. The PCA described above can be used to
evaluate similarity of maps, but it does not necessarily
allow a formal partition of the sources contributing to the
differences among the maps. To address this problem we
performed a three-way Analysis of Variance (ANOVA)
without replication (Sokal and Rohlf 1995, Legendre and
Legendre 1998) for each cell, using species turnover as the
response variable and SDM, AOGCM and emission
scenarios as factors. We then obtained the sum of squares
which can be attributed to each of these sources and their
interaction (SDM�AOGCM, SDM�emission scenario,
AOGCM�emission scenario and SDM�AOGCM�
emission scenario). Notice that because this is a three-way
ANOVA without replication, it is impossible to disentangle
residual variance (i.e. part of variation not explained by
SDM, AOGCM and emission scenario) and variance
determined by the full (triple) interaction among these
three sources. Because the levels in each factor (or source of
variation) are a ‘‘sample’’ of possibilities (i.e. other
AOGCMs and SDM), we could think in all these factors
as random effects, although as pointed out above they were
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selected to cover most of the range of variation within each
factor.

We estimated the variance components as the simple
proportions of the sum of squares attributable to the three
sources (and their interaction) in respect to the total sum of
squares. As we performed the analyses for each cell in the
grid covering the New World (Fig. 1), it was possible to
map each variance component and, in this way, identify
regions of low and high uncertainty and the main sources
accounting for this uncertainty. Notice that ANOVA was
applied here to a turnover metrics, which varies between 0
and 1, so that violations in the assumptions of normality are
not unlike. This may be not a problem when dealing with
other metrics, but it is difficult to check for this problem in
every grid cell. However, we believe that our results are
robust to these problems and performing a square root/
arcsin transformation of turnovers prior to the ANOVA
(which are likely to improve the models) did not qualita-
tively affect the patterns in maps and the relative magnitude
of variance components. The correlation between variance
components from transformed and untransformed turnover
metrics was always higher than 0.95 (median magnitudes all
the same up to the second decimal place).

We explicitly quantified the spatial patterns in each
variance components using correlograms, based on Moran’s
I spatial autocorrelation coefficients calculated for 10
geographic distance classes (Legendre and Legendre
1998). Magnitude of spatial pattern was established by
Moran’s I in the first distance class and by the correlograms’
X-intercept (i.e. the distance at which autocorrelation
becomes negative). Spatial analyses were performed in
SAM (Spatial Analysis in Macroecology) software, freely
available at /<www.ecoevol.ufg.br/sam/> (Rangel et al.
2006).

Results

A consensus map of mean species turnover across the 70
ensembled combinations of SDM, AOGCM and emission
scenario (Fig. 2A), shows relatively high turnover (up to
56%) in northern parts of North America, in the Amazon
and across the Andean region in South America, in Central
America, throughout Mexico and in southeastern US.
However, there was a high variation among projections,
mainly in north and northwestern North America and parts
of the Amazon, with coefficients of variation going up to
90% (Fig. 2B).

The first axis of the principal component analysis
applied to the correlation matrix among the 70 turnover
maps explained only 29.3% of the correlation structure,
whereas the second principal component explained 23.5%
of the variation. The first five axes selected by a broken-stick
criterion explained 67.5% of the variation among turnover
maps, indicating thus a marked level of heterogeneity
among them. Spatial patterns and magnitude of turnover
were quite different among combinations of SDM,
AOGCM and emission scenarios (Supplementary material
Table S2). Thus, it is difficult to disentangle by a simple
visual inspection of the loading structure which sources of
variation contributed more to the variability in the

ensemble of forecasts (although this may be useful for a
posteriori comparisons � see below).

The three-way ANOVA applied to each cell indicated
that the distinct sources of variation have different
contributions to the geographically-structured variation
around the consensus solution observed in Fig. 2A. Out
of the main effects, SDM explained a high proportion of
the total sum of squares with a median value of 66%,
ranging from 4 up to 95% (Table 1). High proportions of
the total sum of squares that can be attributable to this
factor were found in all North America and in the Amazon
(Fig. 3A).

There is a high correlation (r�0.88) between the
Moran’s I coefficients in the first distance class and the
median proportion of variation accounted for by each
source of uncertainty (Table 1). Thus, factors accounting
for most of the variability among the forecasts are also the

Figure 2. Consensus patterns of species turnover (A) and
coefficients of variation, in percentage, among the 70 turnover
maps (B) based on 3837 species of New World birds.
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ones with the strongest spatial patterns. For instance, the
variance component associated to SDM (the main source of
variation according to the decomposition of the total sum
of squares) is structured at broad geographical scales, with a
large Moran’s I in the first distance class and positive
coefficients extending up to ca 4000 km (Table 1).

On the other hand, although AOGCM did not have a
very high median value (Table 1), the proportion of the
total sum of squares attributable to this source can be as
high as 47% in most of South America, as well as in Central

America (Fig. 3B). Geographical patterns expressed in the
correlograms are also relatively strong (Moran’s I in the first
distance class equal to 0.399) and positive autocorrelation
can be found up to 3000 km (Table 1).

Among the interactions, the most important was the one
between SDM and the AOGCM, with proportions ranging
from 1.3 to 40.9%, with a median of 11.8% (Table 1). The
highest values for this interaction were found in central
North America and in the dry regions of eastern part of
South America (Fig. 3C). This variance component has

Figure 3. Proportion of the total sum of squares accounted for by SDM (A), AOGCM (B) and the interaction between these factors (C).

Figure 4. Loadings of the first principal component extracted from a matrix of species turnover forecasted by different methods for niche
modeling, AOGCMs and emission scenarios.
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spatial autocorrelation only at the smallest distance classes,
with positive Moran’s I (0.259) in the first distance class (up
to 640 km) (Table 1).

The proportion of the total sum of squares revealed wide
differences in species turnover patterns derived from
distinct SDM and AOGCMs, and these components are
geographically structured. These differences in maps can
now be analyzed in more detail by examining the loadings
of the first principal component. This analysis works here as
a multivariate version of ‘‘a posteriori’’ comparisons in
ANOVA (Sokal and Rohlf 1995), expressing the relative
importance of each vector of prediction to the consensus
map (Fig. 4). According to the loadings of the first principal
component, the main difference among methods can be
seen between a cluster of RF and MAXENT (with higher
loadings in PC1) against Euclidean and GARP (with lowest
loadings, but with high variation), with BIOCLIM,
MAHAL and GLM occupying an intermediate position.
All methods, except for RF and MAXENT, produce
different results when using different AOGCMs, which
explains the interaction term and makes it more difficult to
interpret the effects of AOGCM alone (methods for
modeling approaches, because of their larger effects, are
easier to interpret).

Discussion

Partitioning uncertainties

Our study provides an illustration of how variation in
ensembles of forecasts can be partitioned, thus offering a
tool for investigating the origins of the uncertainties
entering the models. Even if we accept that ensemble
forecasts generate more accurate (Araújo et al. 2005a), or at
least more conservative projections (Marmion et al. 2009),
it is still important to identify the main sources of variation
that affect the averaged projections (Brook et al. 2009, Elith
and Graham 2009).

Previous studies (Thuiller 2004, Araújo et al. 2005a,
2006) used principal component analysis, or other classi-
fication analyses, as exploratory tools to describe the relative
similarity among maps produced using different SDM or
AOGCMs, allowing then a qualitative assessment of the
relative importance of uncertainty sources. However, when
several sources of uncertainty are explored, variability
among projections might display complex patterns that
might be difficult to interpret with the visual inspection of
PCA loadings. Furthermore, formal quantitative assess-
ments of uncertainty are necessary if they are to be
systematically addressed and conveyed to model users.

Dormann et al. (2008) pioneered the use of ANOVA
designs to uncouple uncertainties in SDM. They showed
that the variability among statistics used to evaluate models
projections of great grey shrike’s distributions was, on
average, 60% attributable to the use of distinct SDM. Our
approach differs from Dormann et al. (2008) in that we
quantify variance in the projected distribution maps rather
than in the model fit statistics, which have more complex
properties and are difficult to interpret in the context of
model ‘‘transferability’’ (i.e. projecting the results of SDM
in a different region or time; Araújo et al. 2005b, Araújo

and Rahbek 2006, Randin et al. 2006). A manuscript
recently accepted for publication in Global Change Biology
and kindly supplied by one of the authors (Buisson et al.
2009) proposed an alternative approach to partition the
variance in ensemble-based forecasts of species turnover that
also allows an exploration of the geographic components of
uncertainty, as performed here. However, Buisson et al.
(2009) used a GLM to evaluate only the main sources of
uncertainty, but they did not explore the interactions
between SDM and AOGCMs, and indeed our results
showed that differences among SDMs are not the same
when their projections are based on different AOGCMs
(Fig. 4).

It is important to notice that the relative importance of
each source of uncertainty depends of the variation among
the levels within each factor. For all factors analyzed here,
we tried to maximize the variation among levels by selecting
SDM, AOGCMs, emission scenarios and data (species)
with different characteristics. For example, the PCA reveals
that differences among forecasts derived from different
SDM are in line with current knowledge on how these
methods work and how they are classified (Elith and
Graham 2009). It is understood that SDM tend to differ
in model fit, but it is less clear what is the link between fit
and ‘‘transferibility’’ of the models (see below). So, if one
uses sophisticated methods such as MAXENT and RF (i.e.
assuming that a good fit indicates high transferability � see
below), the relative importance of SDM may be reduced
(Buisson et al. 2009). Indeed, if only these two methods are
used, the median proportion of variation accounted by
SDM falls from 66.1 to only 4.2% (whereas the median
proportion accounted by AOGCM increases from 13.8 to
53%). Clearly, discussions around the relatively magnitude
of these sources of uncertainty (Thomas et al. 2004b,
Thuiller et al. 2004) must take into account which amount
of variation within a factor the levels used (different SDM
or AOGCM) cover in a comparative analysis.

Our results based on the turnover of New World birds
clearly showed that the choice of the SDM contributed the
most to uncertainty in the range of predictions, when
compared with AOGCM and emission scenarios. These
results are in line with previous studies showing that
different niche modeling approaches may produce markedly
different predictions of species range changes under climate
change (Thuiller et al. 2004, Araújo et al. 2005a, b, 2006,
Araújo and Rahbek 2006, Pearson et al. 2006). Our
approach further revealed that the AOGCM would con-
tribute with more uncertainty than the emission scenarios,
and its interaction with SDM could be as important as the
effects of AOGCM alone.

The discrepancy among the results obtained with
different SDM has certainly motivated a large body of
literature on comparison of methods that tries to find the
‘‘best’’ predictions (Manel et al. 1999, Thuiller 2003,
Brotons et al. 2004, Segurado and Araújo 2004, Elith et al.
2006, Lawler et al. 2006, Meynard and Quinn 2007,
Peterson et al. 2007, Tsoar et al. 2007) and discusses how to
evaluate modeling approaches, both in terms of model fit
(Fielding and Bell 1997, Liu et al. 2005, Lobo et al. 2008,
Peterson et al. 2008) and model transferability (Araújo et al.
2005b, Randin et al. 2006, Peterson et al. 2007, Fitzpatrick
et al. 2008, Peterson and Nakazawa 2008, Phillips 2008).

903

Supplementary chapter B   189



It is important to highlight that, in most cases, fit-statistics
provide measures of the adjustment of projections to the
data used for calibration, but in other cases, fit statistics
measure how well model projections fit data sets apart for
evaluation. The problem is the lack of independence as
evaluation data are frequently spatially and/or temporally
autocorrelated with the data used for calibration. Therefore,
fit statistics provide an inflated and sometimes spurious
measure of the models’ suitability to be transferred into
independent settings (Araújo et al. 2005b, Araújo and
Rahbek 2006, Randin et al. 2006, Peterson et al. 2008).

In addition to such statistical considerations on model fit
and transferability, there is also a discussion about the
components of the niche that are captured by each model
(Araújo and Guisan 2006, Soberón 2007, Jiménez-Valverde
et al. 2008), as well as the relative roles of multiple
ecological and evolutionary processes driving current
species’ ranges in deterministic and stochastic ways and
how they can be incorporated into the methods (Araújo and
Luoto 2007, De Marco et al. 2008, Rickebusch et al. 2008,
Anderson et al. 2009).

Thus, supposing that further studies on all these issues
will be able to discard some of the SDMs or AOGCMs
(considering the criteria of model fit and transferability, or
unreliable AOGCMs), we can expect that the uncertainties
around the ensemble-based forecasts would be reduced. In a
very optimistic (and most unlikely) scenario, if researchers
found a definitive solution about which SDM should be
selected (the main source of variation according to our
results), then the level of uncertainty could be drastically
reduced.

Mapping uncertainties

In addition to allowing a quantitative evaluation of the
relative importance of different sources of variation around
a consensus solution discussed above, our approach also
allows mapping the variance components. This can be
important because it adds another dimension (geography)
to evaluate the uncertainties, giving more information on
where the consensus can be achieved with low variation and
where more research is needed to minimize variance.

In principle, four independent combinations of the two
characteristics of the variance component maps, their
geographic structure and their magnitude, could be found,
forming a ‘‘two-by-two’’ scheme. Finding which of these
combinations exist for a particular analysis possesses some
interesting implications for practical decisions regarding
forecasting. The first combination is given by a high level of
variability which is also geographically-structured. In this
case, uncertainty is not spatially random, which can shed
light to the problems in each factor generating uncertainty.
For example, AOGCMs can give different predictions in
regions with a particular environmental characteristic,
whereas all methods for SDM can provide similar solutions
in a given region and differ in others (Beaumont et al.
2007). These geographically-structured components also
show that when analyzing a given region more emphasis can
be given in a particular source of uncertainty. Although
short-distance spatial autocorrelation in the variance com-
ponents is inevitable, because of autocorrelation in climate

and distributional data, broad-scale patterns may indicate
more complex patterns that require ecological or methodo-
logical interpretations.

The second combination can be given by a high, but
geographically random variance component. This is the
most challenging combination because it will be hard to
predict regions of high or low uncertainty or establish which
levels within a factor (i.e. SDM) can be used alone without
increasing uncertainty. In this case, the differences among
models cannot be associated with geographically-structured
factors (e.g. environmental characteristics), so that it is more
difficult to understand variation among projections. Under
this combination, the use of ensemble-based forecasts is
probably the best analytical strategies for forecasting.

The third combination, a geographic structure in a
variance component with low mean, is unlikely to appear in
real data. If the effect is small, there is also small variation
among cells and it is unlike that any spatial pattern appears.
Finally, the forth combination, given by low variability
among results within cells which is also geographically
random, indicates that the source of uncertainty is not
important at all.

For the New World birds, we found a correlation
between geographic structure and the relative proportion of
variation accounted for by each source of uncertainty,
reinforcing that the two characteristics of the variance
component maps (i.e. magnitude and spatial pattern of the
component) are not independent, so that the second and
third combinations described above are not found.

The map of coefficient of variation in turnover shows
that most differences among ensemble-based projections
were found in the northern temperate region of the New
World, and in the Amazon. A visual inspection of the
maps averaged across SDM and AOGCMs further
revealed why these differences arise (see also Supplemen-
tary material Fig. S2, Fig. S3). For example, some
methods, such as RF, MAXENT, EUC and GLM, did
not predict high turnovers in central Amazon (although
this still depends on AOGCMs for some methods), which
explains why the variance component of niche modeling
techniques in this region is much higher (up to 90%) than
for other regions of the New World (Fig. 3A). In general,
MAXENT, RF and GLM predict smaller turnover across
the continent than other methods, and the other methods
vary a lot in their prediction of turnover in the northern
part of the continent. Indeed, Fig. 3 suggest that if
predictions of turnover rates are to be made for a few
regions in the New World, such as the southeastern coast
of Brazil, methods for niche modeling tend to give similar
results and their differences are of minor concern. On the
other hand, if one is interested in predictions for northern
hemisphere of the New World or Amazon, especially
northern US and Canada, AOGCMs are not an important
source of uncertainty (so any one could be used) and one
should focus on why methods are giving different answers.
These patterns can also have implications for conservation
decisions and it is important to notice, for example, that
regions with higher SDM uncertainty are also those with
high turnover levels detected by Lawler et al. (2009), based
on random forest.
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Concluding remarks

Our analyses support previous findings that SDM is the
main source of uncertainty in forecasts of species range
shifts under climate change and clearly highlights the
importance of ensemble forecasting because of the current
difficulties in the statistical evaluating model fit and
transferability. This conclusion does not oppose the view
that reductions of uncertainty in ensembles forecasts still
demand a better evaluation of the individual SDM that
compose the ensembles. Although the effects of SDM,
AOGCMs and emission scenarios have been continuously
evaluated in the literature, our approach provides a
quantitative evaluation of the magnitude and geographical
structure of these sources of uncertainty. Also, it can be
easily expanded to encompass more complex designs
addressing a larger spectrum of sources of variation in
ensemble forecasting. Moreover, mapping uncertainty
brings a new avenue for research, as it reveals that even
when a given study compares sources of uncertainty they are
not necessarily the same across different parts of the globe.
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Abstract 

While patterns in geographic range sizes in free-living species have received much 

attention, little is known on the corresponding patterns in parasites. For the first time, 

we report on patterns in geographic range sizes and dimensions of endoparasites, using 

published species lists of freshwater trematodes in 25 biogeographical regions of 

Europe. In general, the range sizes of trematodes showed a typical hollow curve 

frequency distribution, with most species having small ranges. Contrary to expectations, 

there were no differences in range sizes among trematodes using hosts with high (birds) 

and limited (e.g. fish) dispersal capacity. This suggests that the well known importance 

of host dispersal capacity for parasite dispersal at small local spatial scales is overridden 

by other factors on larger continental scales. Regression analyses and Rohde plots 

showed that the relationship between the latitudinal centre and range size was hump-

shaped in all host groups except for reptiles, for which it was linear. Most of the 

variation fell within the expectations given by null models, suggesting that the patterns 

mainly result from the geographic properties of the European continent and the 

biogeographical regions. Finally, trematode ranges tended to stretch more in east-west 

than in north-south directions, indicating dispersal barrier effects for parasite faunas, 

probably due to the orientation of major geographical features such as the Alps.  
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Introduction 

There is substantial variation in the size of the geographic ranges of species, 

spanning up to 12 orders of magnitude (Brown et al. 1996). Species with very limited 

distributions, e.g. confined to oceanic islands, lie at one end of the spectrum. At the 

other end are cosmopolitan species with extremely large range sizes, spreading over 

much of the globe. This includes many marine animals like algae, jellyfish, fish, 

seabirds and cetaceans have wide distributions throughout the marine realm (Gaston 

2003). Within any taxonomic group, this variation in the size of geographic ranges can 

be visualised with a frequency distribution of the species-specific range sizes. Most 

groups of plants and animals show a unimodal distribution of range sizes with a strong 

right skew, sometimes called the “hollow curve” (Willis 1922; MacDonald 2003). This 

means that the majority of species within a taxon have small to medium geographic 

range sizes and only a few species have very large ranges. 

While the hollow curve distribution of species’ geographic range sizes is a universal 

pattern, the mean size of geographic ranges differs among major phylogenetic lineages. 

Within the vertebrates, freshwater fish have the smallest range sizes, followed by, in 

increasing order, amphibians, reptiles, mammals and birds (Anderson 1977; 1984a; 

1984b; Anderson & Marcus 1992; Brooks et al. 2001). There are also patterns in range 

size variation within taxonomic groups. For example, the range sizes of species tend to 

decrease from high to low latitudes, a phenomenon known as Rapoport’s rule (Stevens 

1989). Geographic ranges may not only vary in extent but also in shape, i.e. ranges do 

not necessarily have the same extent in all dimensions. For example, Major 

biogeographical barriers or large-scale climatic zones can restrict the contours of 

species’ ranges (Brown & Maurer 1989). However, geographic patterns in species 

richness may also simply result from the geometric properties of the study area, 

resulting in the so-called mid-domain effect, which can be tested using null models 

(Colwell & Hurtt 1994; Colwell & Lees 2000; Colwell et al. 2004). 

Whereas patterns in geographic range sizes of free-living species have received 

much interest, little is known about the geographic range sizes of parasites. Some 

studies have found a positive correlation between the range sizes of hosts and the 

numbers of parasite species infecting these hosts (Dritschilo et al. 1979; Gregory 1990; 

Brändle & Brandl 2001; Krasnov et al. 2004). However, to our knowledge only two 

related studies to date have investigated patterns in geographic range sizes of parasites 

themselves. The geographic ranges of ectoparasitic fleas (Siphonaptera) from small 
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mammals show the same hollow curve distribution as seen in free-living species 

(Krasnov et al. 2005; 2008). The geographic range size of flea species was negatively 

correlated with their degree of host specificity, i.e. highly host specific flea species had 

smaller ranges than generalists that infect a wide range of host species (Krasnov et al. 

2005). However, host specificity is not the only determinant of the size of geographic 

ranges of parasites. As parasites, depend on their hosts for dispersal, the dispersal 

capacity of the hosts should be strong determinants of the size of geographic ranges of 

parasites. In parasites with complex life cycles, like digenean trematodes, definitive 

hosts should be most relevant in this respect, as adult worms inside definitive hosts are 

the main dispersal stage of the parasites. The first intermediate hosts of trematodes are 

molluscs, which have a very limited dispersal capacity (planktonic larval stages are not 

infected). The second intermediate hosts are invertebrates, amphibians or fish, all of 

which again have limited dispersal capacity. Definitive hosts of trematodes are always 

vertebrates, which carry the adult parasites and disperse the parasites via their eggs shed 

with faeces. In general, the dispersal capacity of parasites in bird definitive hosts is 

considered to be higher than that of parasites utilising fish and other less vagile 

definitive hosts (Esch et al. 1988), an assumption supported by data on population 

genetics (Criscione & Blouin 2004). Hence, we expect parasites using freshwater fish as 

definitive hosts to have, on average, the smallest range sizes, and parasites utilising 

birds to have the largest range sizes within a regional assemblage of trematodes. 

In this study, we investigate patterns in range sizes and dimensions in European 

freshwater trematodes. Besides determining the frequency distributions of trematode 

range sizes, we investigate whether the range sizes of trematode species are determined 

by the dispersal capacity of their definitive hosts. To the best of our knowledge, both 

have not been investigated in endoparasites. Also, other patterns in range sizes of 

parasites like Rapoport’s rule or the dimensional shapes of parasites’ ranges have, as far 

as we know (other than the flea study mentioned above), not been studied to date. Based 

on the published distributions of trematodes over 25 biogeographical regions in Europe, 

we ask the following questions: 1) Do the range sizes of trematodes exhibit the typical 

hollow curve distribution known from free-living species?, 2) Do the mean range sizes 

of trematodes differ depending on the type of definitive host they use?, 3) Are the range 

sizes of trematodes larger at higher latitudes (Rapoport’s rule)?, and 4) Do the shapes of 

the ranges of trematodes in Europe follow major topographic features like the Alps?  
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Materials and methods 

The data set used for the analyses was extracted from the Limnofauna Europaea 

(Illies 1978), using the data on presence/absence of digenean trematodes in each of 25 

bioregions. All trematode species included in these tables spend at least the first part of 

their life cycle in freshwater habitats, i.e. the first intermediate host is always a 

freshwater mollusc. For each trematode species, we extracted information on the type of 

definitive hosts used from the original tables in the book: 1) fish, 2) amphibians, 3) 

reptiles, 4) mammals, 5) birds and mammals (in the case of trematode species that can 

use either), and 6) birds. Species with unknown type of definitive host were excluded 

from the analyses. In addition to information on the parasites we acquired geographic 

data on the 25 biogeographical regions. For each biogeographical region, as defined in 

the book, we determined the northern and southern as well as the eastern and western 

boundaries using http://earth.google.com/ and calculated the latitudinal and longitudinal 

ranges of each region from these data (Table 1; see Hof et al. 2008 for a map). In 

addition, using GIS, we calculated the area of each bioregion (Table 1).  

Based on these data, we calculated various geographic range measures for each 

trematode species: 1) number of biogeographical regions in which each species was 

recorded; 2) total area occupied by each trematode species; 3) latitudinal and 

longitudinal range (degrees), using the boundaries of the northern-, southern-, western- 

and eastern-most regions in which each species occurred; and 4) dimensional shapes of 

each range (maximum north-south and east-west extent in km), using great circle 

calculations. Since the distance between longitudinal bands depends on latitude, we 

identified the eastern and western longitudinal extremes of the range and calculated the 

distance between them at the mean latitude of the species’ range.  

To visualise the geographic ranges of the European freshwater trematode species, 

we plotted the frequency distribution of range sizes, separately for each major host 

group, using the total number of regions occupied by each species as this measure is 

least vulnerable to area overestimation (see discussion). We tested for differences in the 

mean range of trematode species utilising different definitive host groups with one-way 

ANOVAs (type 3 SS), using log-transformed data of 1) number of regions occupied by 

each species, 2) total area occupied, 3) latitudinal range and 4) longitudinal range. Post-

hoc comparisons were conducted with Tukey’s HSD tests (for unequal n).  

To investigate the relationships between the latitudinal centres of each species’ 

range and the total area occupied by the species (log-transformed), we used regression 
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analyses and Rohde plots (named after Rohde 1993, although this type of plot was 

originally introduced by Graves 1985). For the regression analyses, we included simple 

and squared latitudinal centre as independent variables, since plots of log(area) vs. 

latitudinal centre suggested a hump-shaped relationship. For the Rohde plots, we 

divided the geographic domain into latitudinal bands of 3° width. Within each of these 

bands, we calculated the mean log(area) of all species whose latitudinal centre falls 

within this band (for details, see Rohde et al. 1993).  

Table 1 | Latitudinal and longitudinal range as well as area of the 25 different 

biogeographical regions, as defined in Illies (1978), used for the analyses.  

Region 
code Region Latitudinal 

range [°]
Longitudinal 

range [°] Area [km²]

IBE Ibero-Macaronesian region 11.12 33.28 623512
PYR Pyrenees 1.08 4.28 47177
ITA Italy, Corsica and Malta 10.55 11.13 259796
ALP Alps 4.32 11.53 230555
DIN Dinaric western Balkan 5.03 8.15 169565
HEL Hellenic western Balkan 8.42 8.95 148864
EAB Eastern Balkan 5.97 8.07 166136
WEH Western highlands 6.88 5.28 163624
CEH Central highlands 4.35 11.53 265879
CAR The Carpathians 5.34 9.83 187997
HUN Hungarian lowlands 3.52 7.30 171969
PON Pontic province 5.35 16.08 245422
WEP Western plains 9.00 11.48 403351
CEP Central plains 10.70 25.40 551551
BAP Baltic Province 6.00 13.20 205697
EAP Eastern plains 12.72 40.02 2320724
IRE Ireland and Northern Ireland 3.95 5.18 91572
GBR Great Britain 12.42 10.38 246186
ICE Iceland 3.08 11.00 110541
BOR Borealic uplands 12.33 16.42 321639
TUN Tundra 10.95 48.62 415856
NSW Northern Sweden 9.40 13.42 258423
TAI Taiga 11.37 38.68 1647955
CAU The Caucasus 6.60 12.57 379397
CAS Caspic depression 10.22 20.85 780402

 

Because the shape of Europe constrains the possible locations and shapes of 

geographic ranges, a hump-shaped relationship between latitude and range size is 

expected even in the absence of ecological processes (Colwell & Hurtt 1994). To 

account for the effect of such geometric constraints, we compared the observed patterns 

to a null model. For each host group, we used a modification of the ‘spreading dye’ 
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algorithm (Jetz & Rahbek 2001) to generate a set of random cohesive ranges. This 

algorithm keeps the range size distribution constant (in this case the number of occupied 

regions), while randomizing the geographic location of each range.  We then used the 

generated ranges to calculate slopes and intercepts for regressions of log(area) vs. 

latitudinal centre (including both the linear and quadratic term of the latter). This 

procedure was repeated 1000 times, and the coefficients were averaged to generate 

composite models for the null expectation of area-latitude plots. We also added 95% 

confidence intervals of the null model to all Rohde plots, based on the 2.5 and 97.5 

quantile values from the 1000 sets of simulated ranges. 

To visualise the geographical orientation of ranges, we plotted the east-west extent 

of ranges versus their north-south extent (km). If the orientation of ranges were random, 

we would expect these values to cluster around a diagonal line with slope = 1 (Brown & 

Maurer 1989). To account for the shape of the European continent and the location of 

biogeographical regions, we also added a line indicating the orientations of the null 

ranges generated above. 

As the analyses of Rapoport’s rule and of geographical orientation of ranges along 

the north-south and east-west axes combine data from various trematode lineages, we 

tested for potential phylogenetic effects. Unfortunately, no complete phylogeny of 

trematodes is currently available. Instead we used the latest taxonomy used in a current 

comprehensive revision of the Trematoda (Gibson et al. 2002, Jones et al. 2005, Gibson 

et al. 2008) to test for effects of superfamily, family or genus on area, latitudinal centre, 

east-west or north-south extent of the parasite ranges used in the analyses. We tested 

each taxonomic level separately, using one-way ANOVAs, as nested designs combining 

all taxonomic levels in a single analysis were not possible due to many missing cells 

resulting in incomplete designs.  

Results 

Overall, our analyses included data on 564 freshwater trematode species (see Fig. 1 

for numbers per definitive host groups). In general, all four measures of geographic 

range considered here were highly correlated with each other (all p < 0.001; area - 

number of regions: r2=0.84; area – latitudinal range: r2=0.83; area - longitudinal range: 

r2=0.77; number of regions - latitudinal range: r2=0.70; number of regions - longitudinal 

range: r2=0.71; latitudinal range - longitudinal range: r2=0.77).  
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Figure 1 | Frequency distribution of species-specific range sizes of European freshwater 
trematodes utilising different types of definitive hosts. Note that data are non-transformed. 
Numbers of trematode species in each group are indicated on the figure. 

The species-range size distributions showed that most trematode species occupy 

only a few bioregions (Fig. 1). Overall, this pattern was less clear in trematodes of 

definitive host groups for which only limited numbers of parasite species are available 

(reptiles, birds & mammals, Fig. 1). In general, the range size distributions among host 

groups were similar, with trematodes from none of the definitive host groups having 

particularly large ranges. This was reflected in the mean geographic range sizes or 

dimensions of trematode species among the different types of definitive hosts. Although 

trematode species utilising mammals or birds as definitive hosts had the smallest 

geographic ranges (Fig. 2), the difference was not or only marginally significant, 

depending on the measure of range size used (ANOVAs: Area: F5,558= 1.66, p = 0.14; 
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number of regions: F5,558= 2.59, p = 0.02; latitudinal range: F5,558= 2.34, p= 0.04; 

longitudinal range: F5,558= 1.92, p = 0.09). Subsequent post-hoc comparisons in the two 

significant ANOVAs showed no significant differences among any of the different 

comparisons (in all comparisons p ≥ 0.53 (no. of regions) or p≥0.47 (latitudinal range)).  
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Figure 2 | Mean (+SE) geographic range sizes (number of regions occupied, log area 
occupied, latitudinal and longitudinal range) of European freshwater trematodes utilising 
different types of definitive hosts. Note the truncated y-axes in all cases. For the number of 
trematode species per type of definitive host see Fig. 1.  

We found the relationship between latitudinal centre and area to be hump-shaped in 

all host groups except for reptiles, for which it was linear (Fig. 3 & 4; Table S1 in 

Supplementary Material). The linearity of the relationship for reptiles may arise because 

only a part of the latitudinal gradient is realized: no trematode species are associated 

with reptiles above 55° N (Fig. 3 upper left). Both the regression analyses and the 

Rohde plots showed that most of the variation falls within the expectations due to 

geometric constraints. However, comparing observed and simulated values, most 
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observed relationships are steeper than expected from the null model simulations. This 

is also indicated by the differences in the slopes and intercepts between observed and 

simulated relationships (Table S1). 

 
Figure 3 | Relationships between the latitudinal centre (˚N) and range size (area*10.000 
km2) for the six groups of definitive hosts showing values for each trematode species (black 
points). Black lines indicate the observed relationships fitted from these points (area vs. linear 
and squared term of latitudinal centre; reptiles: area vs. linear term of latitudinal centre only). 
Grey lines indicate the relationships rendered by the null model simulations, based on slopes 
and intercepts from 1000 simulations (straight line) and the according 95% confidence intervals 
(For values of observed and simulated slopes and intercepts, see Table S1).  

Trematodes in all six types of definitive hosts showed similar trends in the shape of 

their ranges. All ranges tended to stretch more in east-west than in north-south 

directions (Fig. 5), as the vast majority of points fall below the diagonal line indicating 

equal north-south and east-west extents. Furthermore, most of the points also fall below 

the lines indicating the pattern expected from the null models – most species have range 

shapes that stretch even more towards east-west vs. north-south than expected given the 

geographic extent and shape of the European continent and the biogeographical regions 

(Fig. 5, Fig. S1).  
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Figure 4 | Relationships between the latitudinal centre (˚N) and range size (area*10.000 
km2) for the six groups of definitive hosts using Rohde plots. Black points are the mean 
values of log10(area), calculated from those species whose latitudinal centres fall within 
latitudinal bands of 3° width. Error bars indicate the standard errors of the mean. Grey lines 
indicate the values rendered by the null model simulations (straight line) and their respective 
95% confidence intervals (dashed lines). For the number of trematode species per type of 
definitive host see Fig. 1. For details on null model setup, see text. 

Tests for potential phylogenetic effects in the latter two analyses (Fig. 3-5) showed 

significant overall ANOVAs in only a few cases. However, subsequent post-hoc tests 

did not reveal significant differences among particular taxonomic groups, which 

suggests that potential differences among groups were two small to be detectable in 

post-hoc comparisons. While this does not completely rule out any differences among 

groups it indicates that potential differences are very small and that phylogenetic effects 

should not be confounding the analyses. The only significant tests occurred in the host 

group with the least data available in terms of the number of parasite species, the 

trematodes of reptiles, where post-hoc tests identified a particular genus (Patagium) and 

family (Auridistomidae, Patagium being the only genus in this family) as being 

significantly different from others. However, excluding this genus from the analyses 

resulted in similar results and thus we decided to present the full data.  
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Figure 5 | Relationships between the maximum north-south and east-west extent (km) of 
the geographic ranges of European freshwater trematodes utilising different types of 
definitive hosts. Black straight lines (slope = 1) indicate ranges of equal extent in north-south 
and east-west direction. Grey dashed lines indicate the regression line rendered from the null 
model simulations. Colours indicate the latitudinal centres of the species’ ranges, ranging from 
southern (dark red) via central (light red and blue) to northern (dark blue) latitudes. 

Discussion 

The geographic range sizes of parasites in all definitive host groups showed the 

typical right-skewed pattern observed in free-living species: most parasite species 

occupy small ranges, and only a few species occupy large ones. The range size 

measures for each parasite species are likely to be overestimates as parasite species 

occurring within a bioregion do not necessarily occur everywhere within this region. 

This may particularly affect the range size measures of parasites occurring in large 

regions as it results in large total range sizes. However, the number of regions occupied 

should be the least problematic measure in this respect and thus the general trend of a 

right-skewed pattern seems to be robust. Fleas (Siphonaptera) ectoparasitic on small 

mammals show a similar pattern (Krasnov et al. 2005) and their geographic range size 

is negatively correlated with their degree of host specificity: generalist flea species, 

infecting a wide range of host species, had larger ranges than highly specific species 
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(Krasnov et al. 2005). Host specificity may also underlie the pattern observed in 

European trematode species, although we cannot test this formally as no information on 

host specificity is currently available. The extreme right skew of trematode range sizes 

might suggest that the majority of trematodes are relatively host specific and analyses of 

regional parasite faunas of vertebrates indicate that the majority of helminth species are 

indeed relatively host specific (Gregory et al. 1991; Poulin 1992; Poulin 2007). Being 

restricted to a single or just a few host species means that the spatial distribution of a 

parasite species strongly depends on the dispersal capacities of its particular host 

species. Dispersal capacity is probably limited in the majority of potential hosts as 

vertebrates also generally show hollow curve distributions of their geographic range 

sizes (Gaston 2003). Hence, the dispersal potential of parasites should be limited by that 

of their hosts, and consequently their geographic ranges have to be relatively small in 

the majority of cases, resulting in the observed hollow curve shapes for the frequency 

distributions of their geographic range sizes. Dispersal limitations of the intermediate 

hosts involved in the complex life cycles of trematodes might further restrict the 

parasites’ dispersal. Host specificity is universally high for the first intermediate (mostly 

gastropods) host (Galaktionov & Dobrovolskij 2003) and gastropods are usually 

restricted in their dispersal capacity as adults (planktonic stages are not infected).  

Contrary to expectation, parasites utilizing host groups presumed to have high 

dispersal capacities, like birds, did not have, on average, larger range sizes than those 

utilizing host groups with smaller dispersal capacity. Of course, the resolution of the 

available data might have been too coarse to detect any differences. However, 

considering the well known importance of definitive host type for parasite dispersal, we 

would have expected strong differences among groups well exceeding the resolution of 

our data. For example, findings from parasite community structure in fish hosts on local 

scales indicate the dispersal capacity of the definitive host to be crucially important for 

parasite dispersal (Esch et al. 1988). In addition, phylogeographical evidence suggests 

that parasites using birds should achieve a greater geographic range (especially 

considering the large migrations of water birds in Europe). Typically, freshwater 

parasites using fish as definitive hosts show pronounced genetic structure among 

different populations on a scale of a few hundred kilometres, whereas those using birds 

do not, suggesting that the latter have much greater dispersal potential (Criscione & 

Blouin 2004). Perhaps the structuring forces acting on local scales are overcome by 

other forces on regional to continental scales as used in our analysis. Several non-
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exclusive mechanisms might be at work on these larger spatial scales. For instance, 

hosts with a high dispersal capacity may often also carry a high number of parasite 

species, as the number of parasite species exploiting a particular host species increases 

with that host’s geographic range size (Dritschilo et al. 1979; Gregory 1990; Shenbrot et 

al. 2007). Hence, a few highly mobile and widely distributed host species (e.g. 

migratory fish) might distribute many parasite species on a large spatial scale, although 

the host group in general (e.g. fish) has a relatively small dispersal capacity. In addition, 

the actual infection levels (e.g. prevalence, or percentage of hosts infected) of parasite 

species in host populations may be of importance. Interestingly, mean helminth 

prevalence in fish hosts, i.e. the proportion of individual hosts in a population that are 

infected, seem to be higher than in bird hosts based on comprehensive compilations of 

published data (Poulin 1998a; 1998b). Hence, the higher dispersal capacity of birds 

might be offset by their relatively low levels of infection, decreasing the chances for a 

parasite species to disperse. Another mechanism blurring the expected pattern could be 

that there are simply more specialist parasites using birds compared to those using fish. 

These specialists would be confined to the dispersal ranges of their single definitive 

hosts, most of which would have limited dispersal capacity themselves as suggested by 

small ranges, and this may again offset any advantage associated with the high dispersal 

capacity of the host group in general. However, consistent comparative data from the 

different host groups are not available to test these ideas. 

Regression analyses and Rohde plots showed that the relationship between 

latitudinal centre and range size was hump-shaped in all host groups (except for 

reptiles). We acknowledge that both of these methods have their pitfalls and that the 

coarse resolution of the data limits the analyses. Also, using latitude alone does not 

allow identifying underlying structuring environmental factors like climate (Hawkins & 

Diniz-Filho 2004). However, we think that the data are still valuable for a simple 

analysis of latitudinal patterns; especially since such patterns have never been studied in 

endoparasites before. Should more detailed distributional data become available in the 

future, more elaborate and detailed analyses will be feasible, expanding on our basic 

findings. However, the graphs suggest that latitude does not seem to have an important 

effect on range size patterns as most of the variation falls within the expectations given 

by the null models. Hence, the pattern arises due to the geographic shape and extent of 

the European continent and the biogeographical regions, with land masses being 

interrupted along a latitudinal band by the Mediterranean Sea in the south. Species with 
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the mid-point of their range in the south may thus have a restricted dispersal capacity 

simply due to the geographical topology. In addition, mid-domain effects due to the 

geographic extent of the continent and the bioregions probably add to the phenomenon 

(Colwell & Hurtt 1994; Colwell & Lees 2000; Colwell et al. 2004). However, although 

the latitudinal distribution of range size largely followed the expectations from the null 

models, most host groups showed somewhat steeper slopes in the observed values 

versus the null model simulations. This might indicate that other factors besides non-

biological domain effects additionally mediate the latitudinal distribution of range sizes. 

For example, host specificity may play a role in that generalist trematodes may occur in 

more regions than null models suggest because a higher number of potential hosts 

should translate into a higher dispersal capacity (see above).  

The pattern of range sizes stretching more in east-west than in north-south directions 

remained after controlling for geometric constraints of the study area with null models 

and is similar to the one observed in European birds (Brown & Maurer 1989). If the 

orientation of ranges was only determined by the shape of Europe, we would expect the 

data to follow the null model expectations.  However, the orientation is longer in the 

East-West direction than expected, which is probably an effect of the orientation of 

major climatic zones and major topographical features like mountain chains (e.g. the 

Alps), which run in an east-west direction in Europe (Brown & Maurer 1989). They act 

as a dispersal barrier for both free-living and parasite species. Interestingly, the effect in 

our data was most pronounced in trematodes with centres of distribution in the south to 

mid Europe. This probably points to the particular importance of the southern mountain 

chains like the Alps and Pyrenees as biogeographical barriers for hosts and parasites. In 

contrast, the pattern was more or less absent in trematode species with northern 

distributional centres. This may be interpreted as a legacy of the ice ages with highly 

dispersive northern species re-colonising large parts of northern Europe after a large-

scale eradication of northern faunas (Hof et al. 2008). 

Any large scale analysis of geographical patterns depends on the quality of the 

underlying data. As discussed above, the coarse resolution of the data might be of 

particular concern. However, we think using these data is valid considering that the 

simple biogeographical patterns we investigate should not be too sensitive in this 

respect (see above) and considering that such patterns have never been investigated in 

endoparasites before. There are certainly data sets of better quality but for trematodes 

this data base is probably as good as it can get. Hence, we believe the data presented 
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make a valuable start to investigate biodiversity patterns in this group. Other critical 

issues with the data set might be sampling effort and synonyms. Potential differences in 

sampling effort among bioregions could affect our measures of trematode range sizes. 

However, the trematode fauna of Europe is probably one of the best known in the 

world, and it has been the focus of much interest, particularly with respect to 

vertebrates, for a very long time. In addition, a quantitative analysis of the proportion of 

singletons per bioregion (species present in a single bioregion only) shows a relatively 

even distribution of singletons among bioregions (Thieltges et al. in prep.). As 

singletons can be good indicators of sampling effort (Novotny & Basset 2000), this 

suggests that sampling effort is relatively uniform among the 25 bioregions and thus not 

confounding our study. Synonyms among the named parasite species in the data set 

might be problematic but the original data set was compiled by experts in their field and 

therefore the nomenclature should be consistent across the bioregions. It is also difficult 

to see how the spatial distribution of synonymous species could occur in a way that 

leads to the patterns observed in our analyses. Hence, we think the data set and our 

analyses are sufficiently robust to test for the observed patterns.  

In conclusion, the geographic range size patterns of European freshwater trematodes 

show a typical hollow curve distribution, with most species having small ranges. 

Interestingly, varying within-range dispersal capacity among host groups (e.g. high in 

birds and low in fish) did not affect the range sizes of parasites, suggesting that the 

dispersal capacity of definitive hosts is of much less importance on large spatial scales 

than small-scale studies have suggested. Range sizes of trematodes showed a hump-

shaped distribution along a latitudinal gradient similar to null model expectations, 

suggesting that the observed pattern is caused by the extent and shape of the geographic 

domain and that no latitudinal trend exists. Finally, trematode ranges tended to stretch 

more in east-west than in north-south directions, even when the geographic domain was 

considered by null models, pointing to geographic features like the Alps as major 

barriers for the dispersal of parasites. Our analysis was confined to trematodes and it 

will be interesting in futures studies to investigate other parasite groups (e.g. cestodes, 

nematodes, ectoparasites etc.) to see if the patterns hold true more generally.  
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Supplementary Material 

Supplementary Tables 

Table S1 | Values for models fitted for the relationship between latitudinal centre 

and log10(area).  

 Observed values Null model simulations 

 Intercept Slope P Slope² P²* R² Intercept Slope Slope² 

Fishes -14.7 0.76 <0.001 -0.0067 <0.001 0.43 -5.14 0.41 -0.0037 
Amphibians -9.12 0.59 0.015 -0.0056 0.003 0.25 -6.61 0.47 -0.0042 
Reptiles 1.79 0.099 <0.001   0.58 -5.02 0.41 -0.0037 
Mammals -14.0 0.75 0.009 -0.0068 0.003 0.42 -5.03 0.41 -0.0037 
Mam. & birds -15.3 0.80 <0.001 -0.0073 <0.001 0.52 -3.83 0.36 -0.0032 
Birds -17.1 0.89 <0.001 -0.0085 <0.001 0.34 -3.94 0.36 -0.0032 

Observed values are calculated as coefficients from the model area vs. linear and squared term of 
latitudinal centre. P values indicate if the slopes of the terms were significant. For reptiles, since the 
quadratic term was not significant, area was fitted to the linear term of latitudinal centre only. R² values 
indicate the explained variance for the full models. For the setup of null model simulations, see text. 
*Values for the squared term of latitudinal centre 
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Supplementary Figures 

 
Figure S1 | Frequency distributions of the residuals of the observed values of north-south 
vs. east-west extent against the line fitted from the null model simulations. Negative values 
are those that fall below the null model line, i.e. that have a larger east-west than north-south 
extent than expected from the geographic shape and extent of the European continent and the 
biogeographical regions. Positive values are those that fall above the null model line 
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