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Abstract

We use a statistical model, the cointegrated vector autoregressive model, to assess
the degree to which variations in Earth’s orbit and endogenous climate dynamics can
be used to simulate glacial cycles during the late Quaternary (390 kyr—present). To
do so, we estimate models of varying complexity and compare the accuracy of their
in-sample simulations. Results indicate that strong statistical associations between
endogenous climate variables are not enough for statistical models to reproduce glacial
cycles. Rather, changes in solar insolation associated with changes in Earth’s orbit
are needed to simulate glacial cycles accurately. Also, results suggest that non-linear
dynamics, threshold effects, and/or free oscillations may not play an overriding role in
glacial cycles.

1 Introduction

According to Paillard (2001), Adhemar (1842) is among the first to link changes in cli-
mate to variations in Earth’s orbit, specifically precessional changes in the equinox.
Croll (1875) formalizes this notion by postulating that seasonal changes in solar insola-
tion, which are associated with precession, cause ice sheets to grow and shrink. This
explanation is expanded to include changes in eccentricity, precession, and obliquity
by Milankovitch (1941). His model hypothesizes that glacial cycles coincide with the 23
and 41 kyr periods of precession and obliquity. This hypothesis is confirmed by Hays
et al. (1976) who examine the periodicity of ice sheets. Since then, the main features
of “the Milankovitch theory” have been confirmed many times.

Despite these successes, not all aspects of glacial cycles can be explained by the
Milankovitch theory. Among the most notable is the so-called “100 kyr problem”. Re-
constructions of ice volume based on 6 20 indicate that the accumulation and ablation
of ice sheets show a very strong 100 kyr cycle during the late Pleistocene (Schackleton
and Opdyke, 1973). This periodicity is problematic for theories that stress orbital cy-
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cles (Imbrie et al., 1993) because the amplitude of the insolation signal associated with
eccentricity is only about 2 W/m?. This change is much smaller than the change asso-
ciated with precession (~100 W/m?) and obliquity (~ 20 W/m?) and is the heart of the
100 kyr problem—why does the climate system respond so strongly to small changes in
solar insolation that are associated with eccentricity?

Efforts to answer this question in particular, and to better understand glacial cycles
in general, take two approaches. One approach seeks to identify mechanisms that
connect ice-volumes to other climate variables. Mechanisms include changes in the
atmospheric concentrations of carbon dioxide (Saltzman and Maasch, 1990) and inter-
planetary dust particles (Muller and MacDonald, 1997). To evaluate these hypotheses,
analysts often use statistical techniques (either ordinary least squares or spectral tech-
niques) to link a proxy for the mechanism of interest with either temperature and/or ice
volume. For example, research indicates that there is a close and seemingly stable
correlation between CO, and temperature (Paillard, 2001; Siegenthaler et al., 2005;
Martinez-Garcia et al., 2009; Luthe et al., 2008), CO, and ice volume (Martinez-Garcia
et al., 2009) , CO, and dust (Bender, 2003), and sodium and temperature (Petit et al.,
1999; Wolff et al., 2006). Some of these correlations are strong, as measured by di-
agnostic statistics. For example, the linear relationship between CO, and Antarctic
temperature during the previous 800 kyr has an R? of 0.82 (Luthe et al., 2008). Sim-
ilarly, Shackleton (2000) finds that deep water temperature is highly coherent (0.97)
with the Vostok CO, signal. Despite the obvious relationships among variables, the
direction of cause-and-effect among climate variables is uncertain.

A second approach, which is not mutually exclusive, is to identify the season(s) when
and the latitude(s) where changes in solar insolation have the greatest effect on climate.
This approach goes beyond eccentricity, precession, and obliquity because the com-
plexity of the full Milkankovitch cycle implies that the system responds to insolation at
many different places and seasons (Imbrie et al., 1993). Several studies report results
that highlight the importance of solar insolation in the Northern Hemisphere (Hays,
1978; Lorius et al., 1999; Raymo, 1997; Imbrie et al., 1993; Petit et al., 1999; Masson

587

6, 585626, 2010

Glacial cycles:
drivers

R. K. Kaufmann and
K. Juselius

Title Page

Abstract Introduction

Conclusions References

Tables Figures

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

() ®

uI
| I


http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/6/585/2010/cpd-6-585-2010-print.pdf
http://www.clim-past-discuss.net/6/585/2010/cpd-6-585-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

et al., 2000; Jouzel et al., 2007; Kawamura et al., 2007). For example, Kawamura et
al. (2007) argue that “southern solar insolation is in antiphase or is completely out of
phase, with Antarctic climate ... these phasings suggest that Antarctic climate is paced
by northern summer insolation presumably through northern ice sheet variation.” But
the importance of Northern Hemisphere insolation is disputed by others. Huybers and
Denton (2008) argue that insolation during the Southern Hemisphere summer is the
more important driver of temperature in the Antarctic.

In this paper, we use a recently developed statistical technique, the so called coin-
tegrated vector autoregression approach, to assess the degree to which variations in
Earth’s orbit and endogenous climate dynamics can be used to simulate glacial cycles
during the late Quaternary period (391 kyr—present). To do so, we estimate models of
varying complexity and compare the accuracy of their in-sample simulations. Results
indicate that strong statistical associations between endogenous climate variables that
are reported in previous studies are not enough for statistical models to reproduce
glacial cycles. Rather, changes in solar insolation associated with changes in Earth’s
orbit are needed to simulate climate cycles. Also, the in-sample accuracy of simulating
glacial cycles using our (essentially linear) statistical models suggests that non-linear
dynamics, threshold effects, and/or free oscillations may not play an overriding role in
glacial cycles.

These results and the methods used to obtain them are described in four sections.
Section 2 describes the data and the statistical techniques used to estimate and com-
pare the statistical models. Results are described in Sect. 3. Section 4 discusses how
these results can be used to test various hypotheses about the drivers of glacial cycles.
Section 5 concludes by describing how future efforts will use this statistical approach
to estimate temperature sensitivity, test hypotheses about climate dynamics, and test
the hypothesis that human activity had a significant effect on climate well before the
start of the industrial revolution.
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2 Methodology
2.1 Data

Our aim with this paper is to make extensive use of recent statistical modelling tech-
niques, the so called cointegrated vector autoregressive (CVAR) model, to describe
glacial cycles over the previous 391 kyr. For this purpose, we assemble data on six
measures of the climate system; land temperature (Temp), carbon dioxide (CO,),
methane (CH,), ice volume (Ice), sea surface temperature (SST), and sea level (Level).
Data for temperature, carbon dioxide, and methane are obtained from cores drilled into
the Antarctic ice sheet, and therefore represent local conditions. Data on ice volume
are derived from 57 cores drilled by the Deep-Sea Drilling Project and Ocean Drilling
Program across the globe. Sea surface temperature is reconstructed using alkenones
from site PS2489-2/0DP1090 in the subantarctic Atlantic. Data for sea level are re-
constructed using oxygen isotope records from Red Sea sediments. Sources for these
data, the number of observations, units of measure, and their original time scale are
given in Table 1.

Indirect linkages among the six climate variables are proxied by four variables; iron
(Fe), sea salt sodium (Na), non sea-salt calcium (Ca), and non sea-salt sulfate (SOi').
Fe is derived almost entirely from terrestrial sources and is used as a proxy for a so-
called iron fertilization effect that may enhance biotic uptake of CO, (Martin, 1990).
Sulfate (SOi_) originates mainly from marine biogenic emissions of dimethylsulphide
(after removing sea-salt sources using the Na data), and so is a proxy for marine
biogenic emissions (Wolff et al., 2008). Sea salt sodium is derived from the sea-ice
surface and proxies winter sea-ice extent (Wolff et al., 2006). Non sea-salt calcium
has a terrestrial origin (mainly Patagonia) and may represent changes in temperature,
moisture, vegetation, wind strength, glacial coverage, or changes in sea level in and
around Patagonia (Basile et al., 1997).

To make these data amenable to a statistical analysis, we convert them to a com-
mon time scale (EDC3) using conversions from Parrenin et al. (2007) and Ruddiman
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and Raymo (2003). These unevenly spaced observations are interpolated (linearly) to
generate a data set in which each time series has a time step of 1 kyr.

Solar insolation is exogenous to the statistical models and this driver is represented
using several time series. Changes in Earth’s orbit generate changes in solar insolation
that are represented by times series for precession, obliquity, and eccentricity. These
changes generate spatial and temporal variations that are represented by time series
for the radiation received at a specific latitude (e.g. 65° N) on a given day (e.g. 21 June—
Summer). We also represent the effect of summer-time insolation with cumulative in-
solation on days during which insolation exceeds a pre-defined threshold (e.g. Huybers
and Denton, 2008). For example, Insol275 is a time series for cumulative annual inso-
lation for days on which daily insolation exceeds 275 W/m? ata specific latitude.

2.2 The statistical model

All statistical model results are based on the cointegrated vector autoregressive
(CVAR) model (Johansen, 1988; Juselius, 2006), which was developed to adequately
analyze non-stationary time-series in a multivariate setting mostly for economic appli-
cations. As most climate data can be well approximated by (unit root) nonstationary
processes (e.g. Stern and Kaufmann, 2000; Kaufmann et al., 2010), the usefulness of
the CVAR model to address important questions in climate science seems potentially
large. If a set of climate variables share a stochastic trend, a unique linear combina-
tion of the variables (in levels) will be stationary even though the variables themselves
are nonstationary. This stationary combination of nonstationary variables is said to
cointegrate.

By combining differenced and cointegrated data, the CVAR model specifies time-
series data as short-run variations around longer run equilibria. Longer run forces are
divided into the forces that move the equilibria (the pushing forces) and forces that
correct deviations from equilibrium (adjusting forces).

To illustrate the intuition for the types of hypotheses that can be tested using a coin-
tegrated VAR model, we specify Model 1. The variables Temp;, CO,;, and Ice; are
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modelled endogenously conditional on one exogenous variable for solar insolation,
Insol0 at 65° N. This specification is consistent with some of the simpler models dis-
cussed in the literature (e.g. Imbrie et al., 1993).

ATemp;_
ATemp, Yot Y11 V12 Y13 V1a Acof 3
ACOy; | = | Yoo | [AINSOlL ]+ | Va1 Voo Vo3 Vou Alcett_11 ¥
Alce; Yo3 V31 V32 Va3 Vaa AInsoI; 1
5
. gﬂ 312 [Temp-b,CO,-b,lInsol-by],_,
21722 | | [Temp-bglce—b,Insol-by,];_
| 031 32
[ 144 E1t
+ U | + 82,1L s
| U3 €31

This model can be used to test the hypothesis that changes in temperature from period
10 f—1tot can be explained by:

1. the change in solar insolation with impact y;.

2. lagged adjustment effects as measured by the previous change in temperature,
CO,, Ice, and solar insolation, with impacts y4, for the j-th lagged change in the
first equation;

15 3. lagged adjustment effects as measured by the previous equilibrium error (i.e. the
cointegration relation) between temperature and CO, corrected for solar inso-
lation, (Temp—b,;CO,—-b,lInsol-bgy¢);_¢, with impact a¢;, and between tempera-
ture and ice corrected for solar insolation, (Temp-bslce—b,Insol-by,);_4, With
impact a4,. When {a41,a1,} < 0, temperature will equilibrium correct in the follow-

20 ing sense: if, for example, last period’s temperature was higher than its postulated
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value, i.e. (Temp—Temp) >0, where Temp = b,CO, + b,Insol + by, then the tem-
perature would tend to decrease in period t;

4. a constant term 4;; and
5. random shocks, &4 ;.

Of course, the same model can be used to test the ability to explain changes in
CO, and Ice. For example, CO, also adjusts to disequilibrium in the first cointegration
relation if a,; > 0. Similarly, if az, >0, then Ice is also equilibrium correcting. This
implies that temperature changes towards equilibrium can be caused by temperature
reacting directly to disequilibrium, and/or because CO, and Ice have done so. The
estimated values of the a coefficients indicate which variables adjust and the rate of
adjustment. Thus, the model is able to describe a rich structure of dynamic feed-back
effects.

The use of the CVAR model is dictated by the nonstationary nature of the time series
for climate variables. Using standard techniques (e.g. a multiple regression model)
could generate misleading result, for example:

1. standard statistical inference (t-, F-, and Chi-square tests) from a multiple regres-
sion model would be incorrect because inference is based on an assumption of
stationarity. The assumption of stationarity is satisfied because the CVAR model
transforms the variables to stationary differences and cointegrating relationships.

2. if climate mechanisms are inherently simultaneous, multidimensional, and dy-
namic, then results from a single equation multiple regression model can be (and
often are) misleading.

3. the use of R? as a measure of a model’'s explanatory power is generally mislead-
ing if the endogenous variable is nonstationary. By formulating the endogenous
variables in changes rather than levels, the CVAR avoids this problem.
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4. a correlation coefficient (defined in terms of deviations from a constant mean) is
only appropriate for stationary variables. For nonstationary variables a correlation
coefficient generally is meaningless and can be completely misleading (Granger
and Newbold, 1974). By replacing the concept of correlation with cointegration,
the CVAR model can evaluate whether variables are strongly associated or not
without the peril of spurious correlations.

2.3 Experimental design

The fully parameterized CVAR model is used to generate in-sample simulations for
each endogenous variable. The simulations are initialized with observed values of the
endogenous variables prior to the start date (391 kyr). To identify the factor(s) that
determines the ability of the CVAR model to simulate glacial cycles, we estimate four
basic models that vary according to their set of exogenous and endogenous variables
(Table 2). Based on this design, we test several hypotheses regarding the role of ex-
ogenous changes in Earth’s orbit and endogenous climate dynamics in glacial cycles.
The four basic models are motivated by three basic hypotheses, which are given below:

Hypothesis 1. Glacial cycles are generated by changes in orbital cycles.

To test this hypothesis we specify Model 1 and Model 2 that differ with respect to
the inclusion of different sets of variables for solar insolation. Both models include
three endogenous variables; temperature, carbon dioxide, and ice. These variables are
strongly correlated and represent important aspects of the glacial cycle. In Model 1,
these three endogenous variables are “pushed” by a single variable for solar insolation
as measured by cumulative annual solar insolation (Insol0) at 65° N. This variable is
chosen because it is commonly used as a driver of glacial cycles (Kukla et al., 1981;
Imbrie et al., 1993). Model 2 extends Model 1 by including the following solar variables:

1. precession, obliquity, and eccentricity to capture variations associated with
changes in Earth’s orbit,
593
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2. solar insolation on 21 March (SunSpr), 21 June (SunSum), 21 September
(SunAut), and 21 December (SunWin) at 65° N to capture possible effects of sea-
sonal variations in solar intensity,

3. cumulative annual solar insolation at 65° N for days on which the diurnal average
insolation intensity exceeds 275 W/m?, (Insol275) and cumulative annual solar
insolation for days on which intensity exceeds 550 W/m? (Insl550) at 65°N, to
capture the effects described by Huybers and Denton (2008).

Hypothesis 2. Glacial cycles are generated by endogenous dynamics.

To evaluate the role of endogenous climate dynamics and examine linkages among
the endogenous and exogenous variables, Model 3 and Model 4 expand the number
of endogenous variables relative to Models 1 and 2 by including another seven vari-
ables; methane, sea surface temperature, sea level, iron, sea salt sodium, non sea-salt
calcium, and non sea-salt sulphate. The design is similar to Model 1 and 2: Model 3
includes Insol0 as the only exogenous driver, whereas Model 4 includes the ten vari-
ables for solar insolation at 65° N. This design makes it possible to compare forecasts
generated by models that vary according to the number and complexity of endogenous
linkages.

Hypothesis 3. Solar insolation at 65° N is the best proxy for spatial and temporal specific effects
of orbital changes in solar insolation.

Because Model 4 is best able to reproduce the climate cycles (see results), we use
this model to test the hypothesis that solar insolation at 65° N generates the most accu-
rate in-sample simulation. To test this hypothesis, the full set of forcing variables (four
measures of seasonal solar insolation and the three measures of cumulative annual
solar insolation) measured at 65° N is successively replaced by measurements from
each of twelve latitudes spaced 5° apart from 60° to 85° North and South. For ex-
ample, one of the twelve models specifies SunSpr, SunSum, SunAut,SumWin, Insol0,
Insol275, and Insol550 measured at 75° S.
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We test these hypotheses (and others) by comparing the accuracy of in-sample sim-
ulations generated by competing models. The ability of various models to simulate
endogenous variables is assessed using the following loss function:

. 12 . \2
Or =Xt =X 1) = (Xt =X 1)

where x; is the observed value of endogenous variable x for period t, X;;, s=1,/, is
the in-sample simulation for endogenous variable x simulated by model s for period .
Values of d; are used to calculate the S,, test statistic (Lehman, 1975) as follows:

_>1.(d)-05N
V025N

where /,(d;) =1 if d; > 0, and 0 otherwise and N is the number of observations.

The S,, statistic tests the null hypothesis that models / and j are able to simulate
endogenous variable x with equal accuracy. Under this null hypothesis, the S,, test
statistic is asymptotically standard normal. A positive value for the S,, statistic that
exceeds the p = .05 threshold (1.96) indicates that the in-sample simulation for en-
dogenous variable x generated by model j is closer to the observed value than the
in-sample simulation for endogenous variable x generated by model / more often than
expected by random chance and, hence that model j generates a more accurate in-
sample simulation of variable x than model /.

SZa

3 Results

For all models tested, the trace statistic strongly rejects the null hypothesis that there

are no (zero) cointegrating relationships. Furthermore, for all models, the element

of the alpha matrix for the last equation that is associated with the last cointegrating

relationship is negative. This indicates that the last cointegrating relationship loads into

the last equation. Based on this result, the m matrix is assigned full rank (the number

of cointegrating relationships is set equal to the number of endogenous variables).
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The R? for individual equations of the CVAR models reported in Table 3 suggest a
wide disparity in the ability of Models 1-4 to account for the historical movements in
the three endogenous variables. That the R? for the individual equations increases
when the number of endogenous and exogenous variables increases from Model 1 to
2, and from Models 3 to 4, is not surprising. However, that the cause for the increased
explanatory power varies among the three endogenous variables may be more inter-
esting. For temperature and CO,, expanding the number of endogenous variables from
Model 1 to Model 3 generates a larger increase in explanatory power than expanding
the number of exogenous solar variables from Model 1 to Model 2. Conversely, ex-
panding the number of exogenous variables for solar insolation in Model 2 relative to
Model 1 generates a larger increase in the explanatory power of the equation for ice
than the addition of endogenous variables in Model 3 relative to Model 1.

The S,, statistic (Table 4) rejects (p < 0.05) the null hypothesis for all comparisons
except one (the ability of Model 1 and Model 3 to simulate ice volume cannot be distin-
guished statistically), which indicates that there is always one model that generates a
more accurate in-sample simulation than another. The in-sample accuracy of the com-
parisons generally is consistent with the explanatory power indicated by the R? for the
individual equations. For example, the accuracy of the in-sample simulation generated
by Model 4 is clearly superior to those generated by Models 1-3 (Table 4).

Despite the general consistency between the R? of the statistical fit and the accuracy
of the in-sample simulation, there are an important exceptions. Model 2 generates a
more accurate in-sample simulation than Model 3 for all three endogenous variables
despite the fact that the R? of the temperature and CO, equations in Model 3 is greater
than the R? for the same equations in Model 2.

The latitudinal set of exogenous variables for solar insolation that generates the most
accurate simulation varies among the ten endogenous variables (Table 5). The most
accurate simulation for each of the endogenous variables is chosen from among the
twelve simulations based on the number of “wins” relative to “losses”. Wins are defined
as a comparison in which the S,, statistic identifies the simulation as more accurate
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(p < .05) — losses are defined as a comparison in which the S,, statistic identifies the
simulation as less accurate (p < .05).

Using this criterion, we identify eight variables for which there is fairly strong evi-
dence for a “most accurate simulation” (Table 5). Of these eight, the most accurate
simulation for the variables, Temp, CO,, Ice, and Na, is generated by models that
measure solar insolation in the Southern Hemisphere. Models that measure solar in-
solation in the Northern Hemisphere generate the most accurate in-sample simulation
for the variables, CH,, Fe, Ca, and Level. For the remaining two variables, SOi' and
SST, the latitude at which solar insolation is measured seems to have no measurable
effect on the model’s accuracy — the “best model” is more accurate than only two other
simulations and is inferior to no other simulations.

4 Discussion

Cmpared to Model 3, the ability of Model 2 to generate an accurate in-sample simu-
lation (herein termed skill) may be understood by comparing two measures of its per-
formance (,‘-?2 for individual equations and the accuracy of the in-sample simulation as
indicated by the S,, statistic). At first glance these two measures seem contradictory.
As indicated by Figs. 1 and 2, Model 2 is able to generate a more accurate in-sample
simulation than Model 3, whereas the statistical fit, as measured by the R? for the tem-
perature and Ice equations in Model 3 is greater than those of Model 2 (Table 3). For
example, the R? for the temperature equation of Model 3 is 0.41 compared to 0.29 for
Model 2.

The increased explanatory power (R?) of the Temp and CO, equations in Model 3
stems from the inclusion of endogenous variables that directly and/or indirectly transmit
the effect of changes in solar insolation to temperature and CO,. That is, the suite of
variables for solar insolation in Model 2 cannot directly account for the large changes
in temperature and CO,, over glacial cycles.

597

6, 585626, 2010

Glacial cycles:
drivers

R. K. Kaufmann and
K. Juselius

Title Page

Abstract Introduction

Conclusions References

Tables Figures

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

() ®

uI
| II I


http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/6/585/2010/cpd-6-585-2010-print.pdf
http://www.clim-past-discuss.net/6/585/2010/cpd-6-585-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

Rather, changes in solar insolation are amplified by changes in oceanic and/or at-
mospheric circulation, biotic activity, and/or sea ice. Model 3 proxies these changes
with an expended set of endogenous variables; CH,, Fe, Na, Ca, SOi‘, Level, and
SST. These endogenous variables embody the relevant changes in solar insolation,
therefore including the expanded suite of endogenous variables allows the estimation
of Model 3 to “fit” a larger fraction of the variation in the historical values of temperature
and CO, than Model 2. But the historical information that is embodied in the expanded
suite of endogenous variables is “lost” when these variables are simulated endoge-
nously by Model 3 because Model 3 does not include the relevant set of variables for
solar insolation. Without the requisite suite of variables for solar insolation, Model 3
cannot use the enhanced connections among endogenous variables to generate ac-
curate in-sample simulations for temperature and CO,. Conversely, Model 2 is able
to simulate Temp, CO,, and Ice with a higher degree of accuracy because it contains
linkages between these three variables and a fuller set of variables for solar insolation.

To conclude, the inability of Model 1 and Model 3 to simulate the glacial cycles implies
that these models are missing exogenous variables that drive glacial cycles and/or
endogenous variables that translate changes in solar insolation to changes in climate.
The improvement of R? in Model 4 compared with Model 2 suggests that it is important
to allow the endogenous climate mechanisms to be as rich as possible. This conclusion
allows us to use various versions of Models 1—4 to test hypotheses about glacial cycles
that are raised in the literature.

4.1 Strong statistical associations among endogenous variables temperature,
CO,, and ice are sufficient to explain glacial cycles

As suggested by the R? for individual equations in the CVAR and the S,, statistics,
models differ in their ability to simulate glacial cycles. Model 1 and Model 3 are not
able to reproduce the large fluctuations in temperature, CO,, or ice in a meaningful
fashion (Fig. 1a—c). For example, the in-sample simulation generated by Model 1 is
able to account for only 21 percent of the observed variation in temperature.
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This inability may seem surprising given that previous analyses indicate that strong
statistical associations exist between temperature, CO,, and ice. But, because A
measures of model’s fit of an endogenous variable given the observed values of the
other variables, it need not be a good measure of a model’s ability to simulate glacial cy-
cles. To illustrate this, we use Model 1a to simulate temperature and ice endogenously
assuming that CO, (along with annual solar insolation at 65° N) is given exogenously,
i.e. endogenously simulated values of CO, are replaced with observed values for CO,,
which allows temperature and Ice to adjust towards equilibrium values implied by the
observed values of CO,.

This change in model specification increases the ability of Model 1a to simulate val-
ues for temperature (Fig. 1a). Measured by the R? of the in-sample forecast, Model 1a
can account for 64 percent of the variation in temperature. This, however, is still less
than the R? between observed values of CO, and temperature, which is 0.77. And it is
less than the value generated by Model 4, in which CO, is simulated endogenously.

The inability Model 1 to reproduce the climate cycles may be sensitive to the choice
of variable to represent solar insolation (here Insol0). For example, other analysts
(e.g. Kukla et al., 1981) argue that mid-June insolation at 65° N is an important driver of
glacial cycles. But specifying insolation on the first day of summer, 21 June (Model 1b)
instead of total annual insolation at that latitude has little effect on the ability of Model 1b
to reproduce glacial cycles (Fig. 1a—c). For example, Model 1b is able to account for
31 percent of the variation in temperature.

Thus, in spite of strong statistical associations among Temp, CO,, and Ice, endoge-
nous in-sample simulations suggest that, without a sufficient set of solar insolation
pushing variables, type 1 models fail to generate accurate simulations of glacial cycles.

4.2 Glacial cycles are driven by feedbacks endogenous to the climate system

One possible explanation to the failure of Model 1 to simulate glacial cycles is that the
three endogenous variables (Temp, CO,, and Ice) fail to capture important feed-backs
endogenous to the climate system. Indeed, some analysts argue that the large glacial

599

6, 585626, 2010

Glacial cycles:
drivers

R. K. Kaufmann and
K. Juselius

Title Page

Abstract Introduction

Conclusions References

Tables Figures

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

() ®

uI
| I


http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/6/585/2010/cpd-6-585-2010-print.pdf
http://www.clim-past-discuss.net/6/585/2010/cpd-6-585-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

terminations associated with the 100 kyr cycle are driven by free oscillations endoge-
nous to the climate system. For example, Saltzman and Verbitsky (1994) develop a
model that suggests an internal instability, which is generated by feedbacks among
temperature, CO, and ice volume, generates an internal oscillation with a 100 kyr pe-
riod.

We test the hypothesis that glacial cycles are driven by feedbacks endogenous to
the climate system with Model 3, which expands Model 1 by including seven more
endogenous variables (CH,, Fe, Na, SOi‘, Ca, Level, and SST).

The expanded set of endogenous variables does not change the simulation for Temp,
CO,, or Ice in a meaningful fashion. Model 3 generates a more accurate in-sample
simulation than Model 1 for temperature and CO, (Table 4), but only because the loss
function used to calculate S,, statistic translates accuracy to a binary variable based
on the answer to the following question — is the value generated by one simulation
closer (to the observed value) than the value generated by the other simulation. But
the ability of Model 1 and Model 3 to reproduce the record for temperature during the
sample period, as measured by the R? of the in-sample simulation does not increase
in a statistically meaningful fashion: Model 1 (0.21) and Model 3 (0.23). This result
suggests that feedbacks and/or free oscillations among the ten endogenous variables
in Model 3 cannot generate glacial cycles accurately.

4.3 Glacial cycles are driven by changes in solar insolation

Consistent with the Milankovitch hypothesis, there is a large increase in the skill of
Model 2 relative to Model 1 compared to the small increase in the skill of Model 3 rel-
ative to Model 1. The improvement of Model 2 is caused by adding more variables
for solar insolation, as opposed to simply adding more variables. While adding vari-
ables should not diminish a statistical model’s ability to simulate in-sample (additional
variables that do not have a statistically measurable effect will be “zeroed out” by the
estimation procedure), simply adding more variables does not improve a statistical
model’s skill as indicated by the performance of Model 3 relative to Model 1.
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Model 2 expands Model 1 with nine forcing variables that measure variations in solar
insolation due to seasonal and orbital changes. With this change, Model 2 simulates
a much larger fraction of the increases and decreases in Temp, CO,, and Ice (see
Fig. 2a—c). For example, it is able to simulate terminations associated with marine
isotopic stages 9, 7, and 5.

4.4 Which component of solar insolation drives glacial cycles?

The conclusion that glacial cycles are driven by changes in solar insolation begs the
question, which variables for solar insolation contribute most to the in-sample accu-
racy of Model 2 relative to Model 1. We assess this question by estimating models
(Models 2a—c) that contain variables for solar insolation from one of three groups: (1)
orbital changes (precession, obliquity, eccentricity); (2) seasonal variations (SunSpr,
SunSum, SunAut and SunWin) and; (3) variations in cumulative summer insolation (In-
sol 275 and Insol550). As indicated in Fig. 3a—c, including orbital variations (Model 2a)
generates the greatest increase in accuracy relative to Model 1, followed by seasonal
variations (Model 2b), and lastly by cumulative summer insolation (Model 2c). The in-
sample forecast generated by Model 2c¢ is visually similar to that simulated by Model 1
and the accuracy of these two models cannot be distinguished statistically. Consistent
with this result, removing Insol275 and Insol550 from Model 2 (Model 2(d)) generates
little change relative to Model 2, which indicates that cumulative summer insolation (at
these two thresholds) has little explanatory power relative to the other variables for so-
lar insolation. Together, these results imply that Insol275 and Insol550 make only a
small contribution to the ability of Model 2 to simulate glacial cycles.

4.5 Obliquity paces late Pleistocene terminations

Continuing with the logic from the previous section, it has been argued that some
components of orbital changes are more important to glacial cycles than others. To test
the null hypothesis that glacial terminations are independent of precession, obliquity,
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or eccentricity, Huybers and Wunsch (2005) analyze the leading empirical orthogonal
function of ten well-resolved marine 680 records. Results reject the null hypothesis
that glacial terminations are independent of obliquity at the five percent significance
level. Conversely, this hypothesis cannot be rejected for eccentricity and precession.

We evaluate these results by estimating versions of Model 2 that include either:
obliquity (Model 2(e)), eccentricity (Model 2(f)), or precession (Model 2(g)). Of the
three models, only Model 2(e) simulates changes in temperature, CO,, and ice volume
large enough to be interpreted as terminations (Fig. 3a—c).

But obliquity is not a sufficient explanatory variable for glacial terminations. As indi-
cated in Fig. 3a—c, Model 2(e) simulates several false terminations, which we define as
large reductions in ice cover (and increases in temperature and atmospheric CO,) that
are not present in the observational record. For example, Model 2(e) simulates a large
reduction in ice volume about 90 kyr (Fig. 3c). There is no noticeable reduction in the
observational record.

Huybers and Wunsch (2005) recognize this difficulty, suggesting that the climate
state skips one or two obliquity beats before deglaciating. By way of explanation, they
suggest that high latitude insolation and thickness of the ice sheet determine whether
a glacial termination event occurs. This explanation seems unlikely. Replacing an-
nual solar insolation at 65° N with corresponding values at latitudes between 60° and
85° from the Northern or Southern Hemisphere does not allow a modified version of
Model 2(e) to improve its ability to differentiate obliquity cycles that do and do not gen-
erate deglaciations. The thickness of ice may determine whether an obliquity cycle
generates a deglaciation event, but Model 2(e) is not able to simulate ice volume with
sufficient accuracy to do so.

Nonetheless, the two components of the explanation, the thickness of the ice sheet
and high latitude insolation can be considered as specific examples of two general
categories that cause the missing beats; internal dynamics of the climate system or
other aspects of solar insolation. To test the role of endogenous climate dynamics,
we estimate Model 3(a), which uses obliquity and Insol0 as the two variables for solar
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insolation that push changes in the ten endogenous variables. As indicated in Fig. 3a—
¢, changes in ice volume, CO,, and temperature are greatly reduced relative to the
changes simulated by Model 2(e). But the poor skill of Model 3(a) indicates that oblig-
uity does not pace the endogenous variable(s) that determines whether the relationship
between obliquity and ice volume (and or temperature and CO,) generates a glacial
termination.

Conversely, Model 2(a), which contains precession and eccentricity in addition to
obliquity, generally is able to translate obliquity cycles into glacial terminations. This
capability suggest that eccentricity and precession influence, either directly or indirectly
via endogenous climate variables, whether changes in obliquity generate a glacial ter-
mination. This result contradicts the findings by Huybers and Wunsch (2005) that
glacial terminations are independent of eccentricity and precession.

4.6 The 100kyr cycle is generated by nonlinearities, threshold effects, and/or
endogenous oscillations

Model 4 generates the most accurate in-sample simulation because it combines the
expanded set of variables for solar insolation with the expanded set of endogenous
variables (Fig. 2a—c). Together, these variables are able to simulate a large portion
of the changes in Temp, CO,, and Ice that are associated with the 100 kyr oscilla-
tion. Model 4 uses linear specifications to represent the long-run relationship between
exogenous and endogenous variables, and all variables are linear representations of
physical variables other than Insol275 and Insol550. But Insol275 and Insol550 have
little explanatory power (Sect. 4.4). The only other non-linear component is the asymp-
totic manner in which endogenous variables adjust towards their long-term equilibrium.

This ability does not imply that glacial cycles are completely linear. The most sys-
tematic “inaccuracy” in Model 2 and Model 4 is their inability to simulate the very sharp,
short rise in temperature at the start of the terminations associated with MIS 5, 7, and
9. This phase of a glacial cycle may be generated by non-linearities, threshold effects,
or the failure to include an important exogenous or endogenous variable. A second
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systematic error, the inability to simulate the most recent interglacial, is described be-
low.

Similarly, the ability of Model 4 to reproduce a large fraction of the changes in Temp,
CO,, and Ice associated with glacial cycles does not imply that the CVAR model
“solves” the 100 kyr problem in a way that is consistent with physical mechanisms.
Variables that represent variations in Earth’s orbit are measured in dimensionless units
(Table 1). As such, it is not possible to make a physical interpretation the coefficients
associated with eccentricity, precession, and obliquity.

The lack of a physical interpretation may be most troublesome for eccentricity, which
is associated with very small changes in solar insolation. To evaluate the importance
of the eccentricity variable, we estimate Model 4a, which eliminates eccentricity from
Model 4. Even without the eccentricity variable, Model 4a is able to reproduce much of
the 100 kyr Cycle (Fig. 2a—c). The in-sample simulation captures much of the warming
and reduction in ice volume that is associated with the second phase of glacial termi-
nation 7, and glacial termination 7,;. Conversely, Model 4a is less able to reproduce
glacial termination T}, and the first phase of termination 7;,;. Together, these results
suggest that the ability of Model 4 to reproduce a significant portion of the 100 kyr cycle
is not due solely to small changes in solar insolation as represented by the eccentricity
variable.

Although Model 4 is able to capture much of the variation in glacial cycles, there are
several extended periods when simulated values for Temp, CO,, and/or Ice deviate
from observed values. Most notable are periods of warming during cool periods asso-
ciated with MIS 6 and 10. Another difficulty includes the inability to simulate much of
the warming that is associated with the most recent glacial termination 7,. This failure
may be caused by the omission of anthropogenic activities that raise the atmospheric
concentrations of CO, and CH,. According to Ruddiman (2003), concentrations of
CO, and CH, rise anomalously starting 8,000 and 3500 years ago and these rises af-
fect the climate system. As described in Sect. 5, future research will use the statistical
model estimated here to assess the “Ruddiman hypothesis”.
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4.7 Solar insolation in the Northern Hemisphere drives glacial cycles

The mixed results reported in Table 5 indicate that glacial cycles are driven by changes
in solar insolation in both hemipsheres. Models that specify variables which measure
solar insolation in the Southern Hemisphere generate the most accurate simulations
for Temp, CO,, Ice, and Na. Of these, the first three are used most often to represent
glacial cycles.

From a statistical perspective, strong statistical associations between Southern
Hemisphere insolation and temperature and Na are not surprising. Our measure of
temperature represents conditions near the Vostok core, where the ice is formed. Sim-
ilarly, Na represents sea ice in the high latitudes of Southern oceans. As such, local
insolation is expected to be an important determinant. Given this linkage, it may seem
surprising that Southern Hemisphere insolation does not generate the most accurate
simulation for SST, which measures temperature in the high latitudes of the Southern
Atlantic.

The correlation between insolation at high latitudes of the Southern Hemisphere and
CO, can be explained in terms of recent hypotheses about the role of ocean circulation.
According to these hypotheses, ice cover (Stephens and Keeling, 2000) and ocean
overturning (Francois et al., 1997; Toggweiler, 1997; Watson and Garabato, 2006) in
the high latitudes of the Southern Ocean drive atmopspheric CO, concentrations that
control glacial cycles. That solar insolation in the Southern Hemisphere generates the
most accurate simulations for temperature and ice also is consistent with findings by
Petit et al. (1999) who argue that annual changes in solar insolation at high latitudes of
the Southern Hemisphere influence Vostok temperature. Similarly, Huybers and Den-
ton (2008) find that using cumulative summer insolation in the Southern Hemisphere
to drive a single column atmosphere model generates the most accurate simulation of
ice volume at Dome F.

Conversely, our results contradict statistical results and mechanistic explanations for
the importance of Northern Hemisphere insolation. Previous analyses argue for the
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importance of solar insolation in the Northern Hemisphere based on empirical rela-
tionships between insolation in the Northern Hemisphere and ice volume (Petit et al.,
1999). This relationship is explained by reference to the formation of North Atlantic
deep water (Imbrie et al., 1993; Gildor and Tziperman, 2001).

Insolation in the Northern Hemisphere generates the most accurate in-sample sim-
ulations for CH,, Fe, Ca, and Level. Atmospheric methane is generated largely by ter-
restrial biotic activity at mid latitudes — most land is located in the Northern Hemisphere,
especially at mid and high latitudes. The distribution of land between hemispheres also
implies a correlation between Northern Hemisphere insolation and Fe, which has a ter-
restrial origin. Conversely, the ability of Northern Hemisphere insolation to generate
the most accurate in-sample simulation for Ca is surprising because Ca is thought to
be associated with conditions in the high latitudes of the Southern Hemisphere (Basile
et al., 1997; Wolff et al., 2006). Finally, there is no simple explanation for why Northern
Hemisphere insolation should generate the most accurate in-sample simulation for sea
level, especially because insolation in the Southern Hemisphere generates the most
accurate simulation for ice volume and ice volume is a major control on sea level.

5 Conclusions

Although the statistical models for glacial cycles reported here cannot replace mecha-
nistic models, a CVAR can be used to test competing hypotheses against the observa-
tional record. Here, we demonstrate that a CVAR can simulate much of the variation
in Temp, CO,, and Ice that is associated with glacial cycles. To do so, the CVAR must
represent solar insolation with a suite of variables that represent changes in Earth’s
orbit and seasonal variations at various latitudes. Expanding the set of endogenous
variables beyond temperature, CO,, and ice also enhances the ability of the CVAR to
simulate glacial cycles. The hemisphere and latitude that generates the most accurate
simulation varies among the ten endogenous variables in Model 4.
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The ability of the CVAR to test hypotheses against the observational record extends
well beyond previous efforts. Statistical relationships among time series in the CVAR
model are not spurious. The presence of cointegrating relationships indicates that time
series share the same stochastic trend, which implies that time series have a long-run
relationship. These long-run relationships and the dynamics by which variables adjust
to disequilibrium in are embodied in the I matrix of Eq. (1).

In this first step of an on-going research effort organized around a CVAR model, we
do not disentangle long- and short-run relationships. Future research will decompose
the M matrix by imposing over-identifying restrictions. ldentifying the CVAR will allow
us to explore the following topics:

— Quantify the long-term temperature sensitivity to a doubling of atmospheric CO,
(AT,,). The identified CVAR also will allow us to separate the direct effect from
the full ice-albedo feedback.

— Quantify the dynamics by which changes in solar insolation affect endogenous
variables and the mechanisms by which these effects are transmitted through the
climate system. This will build on current efforts that seek to match turning points
in time series (Caillon et al., 2003).

— Test hypotheses about the mechanisms that drive changes in the endogenous
variables. For example, testing whether Fe, SST, and/or Na are part of the coin-
tegrating relationship for CO, will allow us to test whether iron fertilization, ocean
overturning, and/or ice cover, respectively, play an important role in controlling
atmospheric CO, during glacial cycles (Sigman and Boyle, 2000).

— Test the hypothesis that the nature of glacial cycles changes over time. For most
of the endogenous variables, data are available over the last 750 kyr. We will es-
timate the CVAR over this full period and test whether the long-term relationships
and/or rates of adjustment change in a statistically meaningful way, with special
focus on the so-called mid Pleistocene Revolution. We will also use the model
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to “backcast”’ the endogenous variables and compare the simulated values for ice
volume over the last several million years, for which data are available.

— Test the “Ruddiman hypothesis” that anthropogenic climate change starts about
5000 years ago. We will include times series for CO, and CH, emissions as-
sociated with anthropogenic activities as exogenous variables and test whether
anthropogenic emissions improve the model’s ability to simulate the last glacial
termination, which it currently does poorly.

We do not expect any one of these analyses to be definitive. But they will add to
on-going investigations by using rigorous statistical techniques to test what is and is
not consistent with the observational record.
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Glacial cycles:

Table 1. Time seres included in the CVAR. RS

R. K. Kaufmann and

Variable Source Unit Time Scale Obs .

K. Juselius
Temp Jouzel et al. (2007) Aavg. last 1 kyr EDC3 710
COo, Ldthi et al. (2008) ppmv ECD3 517
CH, Loulergue et al. (2008). ppbv EDC3 1477
Ice Lisiecki and Raymo (2005)  &6'%0 (per mil) LRO4 390 °
Fe Wolff et al. (2006) pgm2yr EDC2 187
Na Wolff et al. (2006) pugm=2yr’ EDC2 195
so, Wolff et al. (2006) ugm=Zyr’ EDC2 195
Ca Wolff et al. (2006) ugm=2yr! EDC2 195 :
Sea Level Siddal et al. (2003) Mgetersy SPECMAP 125
Sea Surface Temp  Martinez-Garcia et al. (2009) Degrees C EDC3 121
Eccentricity Paillard et al. (1996) Dimensionless index — 391 — n
Obliquity Paillard et al. (1996) Degrees - 391
Precession Paillard et al. (1996) Dimensionless index — 391 _ _
Seasonal Insolation Paillard et al. (1996) W/m? - 391
Cumulative Huybers and Denton (2008)  Giga Joules - 391

Summer Insol
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Table 2. Specification of the estimated CVARs.

Glacial cycles:

Endogenous Exogenous Variables drivers
Model 1 T, CO,, Ice InsolO0,
Model 1(a) T, Ice CO,, Insol0, R. K.KKiufm?nn and
Model 1(b) T, CO,, Ice SunSum, . Juselius

Model 2 T, CO,, Ice Obl, Prec, Ecc, SunSpr, SunSum, SunFall,

SunWin, Insol0, Insol275, Insol550

Model 2(a) T, CO,, Ice Insol0, Obl, Prec, Ecc _
Model 29 T, GO, loe Ine0l0, Insolare, Insolgd o
odel2(6) T, 00ar e SunSum, SunFall, SuTwin
Miodel 200 7. 00 los Inal0, Prec
Moddl 3 T.00% Oy e, neol0 I B
Model 3a I/:ecl\cl)azcc;:z;?zgl S5t Insol0, Obl BRI EEEN

Fe, Na, Ca, Level, SST

Model 4 T, CO,, CHy,, Ice, Fe, Insol0, Obl, Prec, Ecc, SunSpr, SunSum,
Na, Ca, Level, SST, SunkFall, SunWin, Insol275, Insol550
Model 4(a) T, CO,, CH,, Ice, Insol0, Obl, Prec, SunSpr, SunSum,

Fe, Na, Ca, Level, SST SunFall, SunWin, Insol275, Insol550
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Table 3. The R? for the individual equations in the VECM for endogenous variables common
to Models 1-4.

Model 1 Model 2 Model 3 Model 4
Temperature 0.142 (0.21) 0.285(0.59) 0.414 (0.23) 0.499 (0.67)
CO, 0.264 (0.10) 0.347 (0.46) 0.394 (0.11) 0.466 (0.58)
Ice 0.226 (0.17) 0.369 (0.61) 0.316 (0.18) 0.406 (0.70)

Note: The R? for the in-sample simulation is given in parentheses.
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Table 4. In-sample accuracy of Models 1-4 as indicated by the S, statistic.

Model j

Model2 Model 3 Model 4
Model i Title Page
Model 1 4.49* 3.48** 5.31* )
002 3.79** 2.68** 6.12** Abstract Introduction
Ice 582" 0.46 7.53" Conclusions References
Model 2 -4.29* 4.09™
002 —3.59**  4.91** Tables Figures
Ice -5.51* 5.31*
Model 3 5.31** >l
CO, 6.62** .
Ice 7.54*
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Table 5. Summary statistics of the 12x11 comparison for in-sample accuracy as generated by
the S,, statistics for each of the ten endogenous variables.

Endogenous Variable Most Accurate Wins Losses

Title Page
Temperature South 70 9 0
co, South 75 5 0 Abstract Introduction
CH, North 60 6 0 Conclusions References
Ice South 70 7 0
Fe North 75 7 0 Tables Figures
Na South 70 9 0
SO%” None 2 0
c North 75 8 0 -
Sea Level North 60 5 0 >
SST None 2 0
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Fig. 1c. Observed values of ice volume (as proxied by 6180) and values simulated by various

versions of Model 1 and Model 3.
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Fig. 2a. Observed values of temperature and values simulated by various versions of Model 2
and Model 4.
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Fig. 2b. Observed values of atmospheric CO, and values simulated by various versions of
Model 2 and Model 4.
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Fig. 3a. Observed values of temperature and values simulated by various versions of Model 2.
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Fig. 3c. Observed values of ice volume (as proxied by §'°0) and values simulated by various Full Screen / Esc
versions of Model 2.
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