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ABSTRACT  

The phylogenetic position of Brachiopoda remains unsettled, and only few recent data on 

brachiopod organogenesis are currently available. In order to contribute to questions 

concerning brachiopod ontogeny and evolution we investigated nervous and muscle 

system development in the craniiform (inarticulate) brachiopod Novocrania anomala. 

Larvae of this species are lecithotrophic and have a bilobed body with three pairs of 

dorsal setal bundles which emerge from the posterior lobe. Fully developed larvae exhibit 

a network of setae pouch muscles as well as medioventral longitudinal and transversal 

muscles. After settlement, the anterior and posterior adductor muscles and delicate 

mantle retractor muscles start to form. Comparison of the larval muscular system of 

Novocrania with that of rhynchonelliform (articulate) brachiopod larvae shows that the 

former has a much simpler muscular organization. 

The first signal of the neurotransmitter serotonin appears in fully developed Novocrania 

larvae, which have an apical organ that consists of four flask-shaped cells and two ventral 

neurites. These ventral neurites do not stain positively for the axonal marker α-tubulin in 

the larval stages. In the juveniles, the nervous system stained by α-tubulin is 

characterized by two ventral neurite bundles with a commissure in the mid-body region. 

Our data are the first direct proof for the presence of an immunoreactive neurotransmitter 

in lecithotrophic brachiopod larvae and demonstrate the existence of flask-shaped 

serotonergic cells in the brachiopod larval apical organ, thus significantly increasing the 

probability that this cell type was part of the bauplan of the larvae of the last common 

lophotrochozoan ancestor.  
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INTRODUCTION 

The phylogenetic position of Brachiopoda remains unresolved, although most molecular 

analyses agree on their inclusion within Lophotrochozoa. Thereby, some recent works 

support the more traditional view that Brachiopoda clusters with Ectoprocta and 

Phoronida to form the Lophophorata, the direct sistergroup of Spiralia (Trochozoa) (Gee 

1995; Nielsen 2002; Halanych 2004). Current brachiopod internal phylogeny suggests 

division of the phylum into the three clades Linguliformea, Craniiformea, and 

Rhynchonelliformea (Williams et al. 1996). Craniiform brachiopods share morphological 

traits with both linguliforms and rhynchonelliforms. As such, a circumferential mantle 

cavity, a muscle system with oblique muscles and two pairs of shell adductors, a 

transitional median tentacle during lophophore development, and a median division of the 

brachial canals into two separate cavities within the lophophore may be regarded as 

common features of craniiforms and linguliforms, while a proteinaceous calcitic shell, a 

single row of tentacles on a trocholophous lophophore, gonads suspended in the mantle 

sinus, and lecithotrophic larvae are shared between craniiforms and rhynchonelliforms 

(Rowell 1960; Atkins and Rudwick 1962; Williams et al. 1996). 

Experimental embryology has shown that the animal half of the egg forms the ectodermal 

epithelium of the apical lobe, while the vegetal half forms endoderm, mesoderm and the 

ectoderm of the mantle lobe in N. anomala (previously assigned to various genera and 

thus referred to in the literature as Crania anomala or Neocrania anomala, respectively) 

(Lee and Brunton 1986, 2001; Freeman 2000). During metamorphosis, both the ventral 

and the dorsal shell are formed from the dorsal epithelium of the larva (Nielsen 1991).  
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Recent immunocytochemical studies have revealed the almost universal occurrence of an 

apical organ that contains flask-shaped cells in larvae of Annelida, Mollusca, Sipuncula, 

Entoprocta, and Platyhelminthes (see Wanninger 2009 for review). These flask-shaped 

cells usually contain the neurotransmitter serotonin and may also show FMRFamidergic 

immunoreactivity. The wide occurrence of serotonin throughout the Metazoa indicates 

that this transmitter was part of the ancestral nervous system of multicellular animals 

(Hay-Schmidt 2000). Surprisingly, neither the serotonin molecule itself nor the existence 

of flask-shaped cells has hitherto been proven for lecithotrophic larvae of any brachiopod 

clade, thus leaving a significant gap in our understanding of the evolution of the 

brachiopod nervous system and the origin of this cell type within the lophophorates. 

Accordingly, we provide herein the first thorough immunocytochemical study on 

neurogenesis in a brachiopod with a lecithotrophic larva, the craniiform Novocrania 

anomala, and compare our findings with data on other lophotrochozoan phyla such as 

mollusks and annelids. In our general quest to shed light on brachiopod organogenesis, 

we also present data on Novocrania myogenesis, which for the first time allows 

conclusive comparisons between the muscular systems of craniiform and 

rhynchonelliform brachiopod larvae and thus contributes to questions concerning the 

ancestral muscular bodyplan of brachiopod larvae. 

 

 

MATERIAL AND METHODS 

Animal collection, breeding, and fixation 
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Rocks with attached adults of Novocrania anomala where obtained by dredging in the 

vicinity of the Sven Lovén Centre for Marine Sciences, Gullmarsfjord, Sweden 

(58°15’921”N, 11°25’103”E) in October 2007 and September 2008. The rocks were 

maintained in the laboratory in running seawater and adults were removed and dissected 

for gametes. For artificial fertilization, eggs and sperm were removed from the gonads 

with pulled glass pipettes and separately left in beaker glasses with filtered seawater at 

ambient seawater temperature (14°C). The water containing the eggs was changed at least 

four times to wash off follicle cells and superfluous gonad tissue. Eggs were regularly 

checked for germinal vesicle breakdown and sperm cells were checked for motility under 

a compound microscope. After approximately 12 hours, 2 ml of a highly diluted sperm 

suspension (testes of three to five adults in approximately 100 ml filtered sea water) were 

added to the beaker glasses containing eggs. Developing larvae were fixed at various 

stages after fertilization (from 34 hours post fertilization [hpf] to 17 days post settlement) 

in 4% paraformaldehyde in 0.1M phosphate buffer (PB) for 90 min. Thereafter, larvae 

were washed three times for 15 min each in 0.1M PB and finally stored in 0.1M PB 

containing 0.1% NaN3 at 4ºC. 

 

Immunocytochemistry, confocal laserscanning microscopy (CLSM), and 3D 

reconstruction 

Prior to staining, larvae were washed thrice for 15 min each in PB and incubated for 1 h 

in PB containing 0.2% Triton X-100 (Sigma-Aldrich, St. Louis, MO, USA) at room 

temperature to permeabilize the tissue. For F-actin staining, specimens were left 

overnight at 4°C in 0.1M PB containing 0.2% Triton X-100 and 1:40 diluted Alexa Fluor 
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488 phalloidin (Invitrogen, Molecular Probes, Eugene, OR, USA). For serotonin and α-

tubulin staining, specimens were first incubated overnight at 4°C in 6% normal goat 

serum in 0.1M PB and 0.2% Triton X-100 (blocking solution). Second, specimens were 

incubated for 24 hours at 4°C in blocking solution containing either a 1:800 diluted 

polyclonal primary serotonin antibody (Zymed, Carlton Court, CA, USA), or a 1:500 

diluted monoclonal primary acetylated α-tubulin antibody (Sigma-Aldrich). Third, 

specimens were washed in the permeabilization solution overnight at 4°C with four 

changes. Then, the secondary antibodies (either Alexa Flour 633-conjugated goat anti-

rabbit, Invitrogen, or TRITC-conjugated goat anti-rabbit, Sigma-Aldrich) were added in a 

1:300 dilution to the blocking solution and the samples were incubated for 24 hours. 

Subsequently, the specimens were washed three times for 15 min each in 0.1M PB and 

embedded in Fluoromount G (Southern Biotech, Birmingham, AL, USA) on glass slides. 

Negative controls omitting either the phalloidin dye or the respective secondary antibody 

were performed in order to test for signal specificity and rendered no signal. The samples 

were analyzed with a Leica DM RXE 6 TL fluorescence microscope equipped with a 

TCS SP2 AOBS laserscanning device (Leica Microsystems, Wetzlar, Germany). Animals 

were scanned with 0.16 µm - 0.49 µm step size, and the resulting image stacks were 

merged into maximum projection images. In addition, light micrographs were recorded to 

allow overlay with the CLSM images for exact orientation and localization of the muscle 

and nervous systems within the animals. Adobe Photoshop CS3 software (Adobe, San 

Jose, CA, USA) was used to create overlay images and for assembling the figure plates. 

The sketch drawings were generated with Adobe Illustrator CS3 (Adobe), and the 3D 
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reconstructions were created with the Imaris imaging software Version 5.7.2 (Bitplane, 

Zürich, Switzerland) based on the CLSM image stacks. 

 

 

RESULTS 

Myogenesis  

The first signals of F-actin were found in the setae pouches of bilobed larvae at the onset 

of setae formation. The six setae pouches are distributed in pairs along the dorsal ridge of 

the posterior lobe (Fig. 1A). As the setae grow, the setae pouch muscles develop further 

into spherical systems (Fig. 1, B and G-I; Fig. 2A). Later in development, the setae pouch 

muscles get interconnected by two bundles of medioventral longitudinal muscles, which 

run ventrally from anterior to posterior (Fig. 1, C-D and G-I; Fig. 2A). The medioventral 

longitudinal muscle strands get interconnected by transversal muscles (Fig. 1, B-D and 

G-I) which are distributed homogenously in early stages (Fig. 1B) and concentrate into 

three bundles in later stages (Fig. 1D). Accordingly, the metamorphic competent larva 

has setae pouch muscles, medioventral longitudinal muscles, and transversal muscles. 

During metamorphosis, the larval musculature is replaced by the juvenile musculature 

which most likely develops entirely de novo, i.e., independent of the larval muscle 

systems (Fig. 1E). The juvenile musculature comprises mantle margin muscles, oblique 

muscles, as well as anterior and posterior adductor muscles (Fig. 1F). 

 

Neurogenesis 
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The first signals of the neurotransmitter serotonin appear in fully developed, 

metamorphic competent, bilobed larvae. At this stage, four flask-shaped cells are present 

in the anterior-most part of the apical lobe (Fig. 3, A-D). They are oriented in different 

directions with only one pointing towards the apical pole of the larva. The flask-shaped 

cells are connected to two ventral neurites which extend posteriorly (Fig. 3, A-D). The 

flask-shaped cells are lost during metamorphosis, and early juveniles have two ventral 

neurites which project from the anterior lobe into the posterior lobe (Fig. 3E). During 

subsequent development, the ventral neurites get interconnected by a commissure in the 

mid-part of the juvenile, at the former border between the apical and the posterior lobe 

(Fig. 3F). 

The axonal marker α-tubulin is first expressed in juveniles five days after metamorphosis 

(Fig. 4A). Two solid neurite bundles develop ventrolaterally in the anterior lobe of the 

juvenile and subsequently grow in posterior direction into the posterior lobe (Fig. 4B). 

Later in development, these neurite bundles close anteriorly and posteriorly, and the 

commissure in the region of the former border between the anterior and posterior lobe is 

established (Fig. 4, C-F). Serially arranged mantle neurites extend from the anterior part 

of the ventral neurite bundles in lateral direction towards the mantle margin of the 

juvenile (Fig. 4, B-F). Comparison of the position of the α-tubulin signal in the juveniles 

and the serotonin signal in the larva suggests that the larval ventral neurites form the 

precursors of the juvenile ventral neurite bundles. 

 

 

DISCUSSION 
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Comparative brachiopod myoanatomy 

The musculature of fully developed Novocrania larvae consists of setae pouch muscles, 

the medioventral longitudinal muscles that interconnect these setae pouch muscles, and 

transversal muscles that interconnect the medioventral longitudinal muscles. This 

relatively simple muscular organization differs significantly from that of articulate 

brachiopod larvae, which comprises pedicle muscles, longitudinal muscles, a circular 

mantle muscle, central mantle muscles, a U-shaped muscle, serially arranged mantle 

muscles, setae muscles, setae pouch muscles, an apical longitudinal, and an apical 

transversal muscle (Fig. 2B herein and Altenburger and Wanninger 2009). These 

differences may be due to different functional aspects in craniiform (inarticulate) and 

rhynchonelliform (articulate) larvae, especially during metamorphosis. Thereby, larvae of 

Novocrania curl ventrally by contraction of the paired medioventral muscles and attach to 

the substrate via the epithelium at the posterior end of the larva. The brachial valve is 

then secreted by the median part of the dorsal epithelium and the pedicle valve is secreted 

by the attachment epithelium (Nielsen 1991). Larvae of the rhynchonelliform brachiopod 

Terebratalia attach via a secretory product produced by the distal tip of the pedicle lobe 

at the posterior end of the larva. After attachment, the mantle lobe flips over the apical 

lobe and secretes a protegulum containing calcium carbonate (Stricker and Reed 1985; 

Freeman 1993). Despite these differences at metamorphosis, we regard it unlikely that the 

larval ecology of Novocrania and Terebratalia differs significantly, and we therefore 

argue that the distinct differences in the larval myoanatomy do not reflect functional 
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constraints but hint towards an early evolutionary divergence of craniiform and 

rhynchonelliform brachiopods.  

The phylogenetic relationship of craniiforms to the other brachiopod subtaxa is still 

controversial. Based on their lack of a valve-to-valve articulation they have traditionally 

been grouped together with other inarticulated groups (Williams and Rowell 1965). This 

view is supported by molecular analyses based on 18S rDNA sequences, which either 

place the craniiforms within the linguliforms (Cohen 2000) or as the direct sistergroup of 

the linguliforms (Cohen and Weydmann 2005). Other morphological characters such as 

the presence of an anus and a lophophore without internal mineralized support underpins 

a close relationship of craniiform and linguliform brachiopods (Carlson 1995). However, 

based on the lecithotrophy of the larvae and the presence of a calcareous shell in the 

adults, craniiform brachiopods have been proposed to be closer related to the 

rhynchonelliforms rather than to the linguliforms, which have a free-swimming 

planktotrophic life cycle stage that closely resembles the morphology of juvenile 

brachiopods (Nielsen 1991). Accordingly, an alternative scenario proposes that 

lecithotrophic larvae equipped with larval setae are basal for Brachiopoda and that the 

swimming “paralarvae” of lingulids constitute a planktonic juvenile stage, thereby 

implying that the linguliforms have secondarily lost the lecithotrophic larva (Lüter 2001). 

The musculature of post- metamorphosic Novocrania comprises anterior adductors, 

posterior adductors and oblique lateral muscles. This corresponds to the musculature 

found in adults, which in addition have brachial protractor muscles at the base of the 

lophophore, an unpaired median muscle, and oblique internal muscles (Bulman 1939; 

Helmcke 1939; Williams and Rowell 1965). In the present study we found mantle 
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retractor muscles, which had previously been undescribed for Novocrania and which 

correspond to the respective muscles found in the rhynchonelliform brachiopods 

Argyrotheca cordata, A. cistellula, and Terebratalia transversa (Altenburger and 

Wanninger 2009). 

Given the distinct differences in the larval musculature of craniiforms and 

rhynchonelliforms it is difficult to infer a muscular groundpattern for brachiopod larvae. 

However, it appears likely that a hypothetical ancestral brachiopod larva had at least setae 

pouch muscles and a musculature that interconnect these setae pouch muscles. 

 

Neurogenesis 

The serotonergic nervous system of Novocania anomala starts to develop in fully 

established larvae and shows an apical organ consisting of four flask-shaped cells and 

two lateroventral neurites, which grow from the anterior lobe into the posterior lobe. 

These results constitute the first unambiguous account of the presence of an apical organ 

with serotonergic flask-shaped cells in a lecithotrophic brachiopod larva. Similar apical 

organs containing flask-shaped cells have been found in a wide range of lophotrochozoan 

phyla including entoprocts (Wanninger et al. 2007), mollusks (Voronezhskaya et al. 

2002; Wanninger and Haszprunar 2003), annelids (Voronezhskaya et al. 2003), and 

ectoprocts (Pires and Woollacott 1997; Shimizu et al. 2000). The finding of an apical 

organ with flask-shaped cells in a lecithotrophic brachiopod larva suggests that such an 

apical organ was also present in the larva of the last common lophotrochozoan ancestor 

(Wanninger 2009) and that lecithotrophic larvae are basal for Brachiopoda. Similar to the 

vast majority of lophotrochozoan larvae, but significantly different to the situation found 
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in the entoproct creeping-type larva and the larva of polyplacophoran mollusks, the apical 

organ of N. anomala is comparatively simple, thus supporting the notion that a simple 

apical organ was present in the “ur-lophotrochozoan” larva and that Entoprocta and 

Mollusca form a monophyletic assemblage (Tetraneuralia concept; see Wanninger 2009).  

A serotonergic nervous system has previously been described for planktotrophic 

linguliform brachiopod “paralarvae”. There, the apical organ is located at the base of the 

median tentacle and comprises numerous serotonergic cells (Hay-Schmidt 1992). While 

it is tempting to speculate that this neural structure might correspond to the spiralian-type 

apical organ described herein for Novocrania, it is important to note (i) that a flask-

shaped character could not be assigned to the apical organ cells of these linguliform 

paralarvae and (ii) that the number of cells in the apical organ is considerably higher than 

that in the other spiralian larvae. Overall, the “apical organ” of linguliform larvae 

resembles more closely the one found in phoronid and deuterostome larvae (Santagata 

2002), the homology of which remains to be proven. The suggested derived character of 

the nervous system of linguliform brachiopod paralarvae is consistent with the view that 

linguliforms have lost the lecithotrophic larva and have secondarily acquired a 

planktotrophic life cycle stage via a stage that resembles a swimming juvenile rather than 

a “true” brachiopod larva (Lüter 2001). 

We found α-tubulin-positive neural tissue solely in post-metamorphic specimens of N. 

anomala. The α-tubulin signal is located in a region comparable to the serotonin signal 

and shows two ventral neurite bundles that are interconnected at the anterior end, at the 

posterior end, and by a commissure at the former border between the apical lobe and the 

posterior lobe. The fact that we did not find α-tubulin in the Novocrania larvae that 
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exhibit serotonergic neurites demonstrates that tubulin alone is not a reliable marker for 

nervous structures in lophotrochozoan larvae.  

The tubulinergic nervous system in juvenile Novocrania outlines the adult nervous 

system, which consists of two ventral neurite bundles, a subesophageal and a 

supraesophageal commissure, and mediodorsal mantle neurites (Blochmann 1892; 

Bullock and Horridge 1965). The anterior ventral neurite bundles form the arm neurites 

of the lophophore. Perpendicular from these arm neurites extend accessory brachial 

neurites (Williams and Rowell 1965).  

Despite some classical studies, the adult neural anatomy of brachiopods is only poorly 

known (James et al. 1992). In the articulate Gryphus the nervous system comprises a 

transverse supraenteric ganglion and a subenteric ganglion lying above and below the 

esophagus, as does the subesophageal and supraesophageal commissure in Novocrania 

anomala (Bullock and Horridge 1965). Our study provides a first step towards an 

understanding of the larval anatomy, neurotransmitter distribution, and development of 

the nervous system in brachiopod taxa with lecithotrophic larvae. While additional data 

are needed to assess the brachiopod neural groundpattern, the finding that serotonergic 

flask-shaped cells similar to those found in spiralian larvae do occur in the apical organ 

of N. anomala larvae strengthens the hypothesis that this cell type was also present in the 

last common ancestor of Lophotrochozoa (see Wanninger 2009).  
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FIGURE LEGENDS 
 

Figure 1: Muscle development in Novocrania anomala. Overlay of maximum projection 

micrographs from phalloidin staining and light micrographs. Anterior faces upwards and 

scale bars equal 50 µm. (A) Larva with anterior lobe (AL), posterior lobe (PL) and early 

signs of F-actin in the three pairs of setae pouches (arrows) along the dorsal ridge of the 

posterior lobe. (B) Larva with setae (se), anterior lobe (AL), posterior lobe (PL), setae 

pouch muscles (arrows), homogenously distributed transversal muscles (asterisks), and a 

distinct F-actin-rich area (arrowheads), which might be involved in cementing the larva 

to the substrate during settlement. (C) Later larval stage with setae pouch muscles 

(arrows), medioventral longitudinal muscles (empty arrows), and F-actin-rich area 

(arrowhead) on the dorsal side. (D) Metamorphic competent larva in ventral view with 

setae (se) and setae pouch muscles (arrows), which are ventrally interconnected by two 

strands of medioventral longitudinal muscles (empty arrows). The medioventral 

longitudinal muscles are interconnected by transversal muscles, which at this stage are 

concentrated into three bundles (asterisks). (E) Specimen during metamorphosis with 

remnants of larval setae pouches muscles (arrows) and larval medioventral longitudinal 

muscles (empty arrows), which are most probably undergoing resorption. The adult 

anterior adductor muscles (aad) start to develop. (F) Juvenile with mantle margin muscles 

(mm), anterior adductor muscle (aad), oblique muscle (ob), and posterior adductor 

muscles (pad). (G-I) Three-dimensional reconstruction of the dataset shown in D. (G) 

Ventral view of the musculature of a fully developed larva with medioventral 

longitudinal muscles (red), setae pouch muscles (yellow), and transversal muscle 
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(asterisk). (H) Same specimen as in G, anterior view. (I) Same animal as in G, dorsal 

view. 

 

Figure 2: Semi-schematic representation of the larval musculature of craniiform and 

rhynchonelliform brachiopods. (A) Musculature of Novocrania anomala with setae 

pouch muscles (red circles), medioventral longitudinal muscles (white), and transversal 

muscles (yellow-grey). Size of the specimen is approximately 150 μm. (B) Musculature 

of Argyrotheca cordata based on Altenburger and Wanninger (2009) with pedicle 

muscles (beige), longitudinal muscles (orange), central mantle muscles (brown), U-

shaped muscle (green), setae pouch muscles (red circles), circular mantle muscle (light 

blue), serial mantle muscles (dark orange), setae muscles (purple), apical longitudinal 

muscles (dark blue), and apical transversal muscle (yellow). Size of the specimen is 

approximately 280 μm.  

 

Figure 3: Development of the serotonergic nervous system in Novocrania anomala. A, 

B, E, and F: Overlay of maximum projection micrographs of serotonin staining and light 

micrographs. C and D: Three-dimensional reconstruction of the dataset shown in B. 

Anterior faces upwards and scale bars equal 50 µm. (A and B) Metamorphic competent 

larva with three pairs of setae bundles (se) and four flask-shaped serotonergic cells 

(asterisks) in the anterior part of the apical lobe (AL), as well as two ventral serotonergic 

neurites (arrows) running from the apical lobe towards the posterior lobe (PL). The stage 

in A is slightly younger than that depicted in B. C and D: Same dataset as in B with four 

flask-shaped serotonergic cells (red) and two ventral neurites which are interconnected 



 20 

anteriorly (yellow). (C) Ventral view. (D) Lateral view. The flask-shape is visible only in 

one cell due to the different position of the cells. (E) Juvenile during metamorphosis with 

two ventral neurites (arrows) which run from the region of the former anterior lobe (AL) 

into the region of the former posterior lobe (PL). Larval setae (se) and juvenile shell (s) 

are present. (F) Later stage of a juvenile with two ventral neurites (arrows) which are 

interconnected by a commissure (co). 

 

Figure 4: Development of the nervous system in Novocrania anomala as revealed by 

acetylated α-tubulin staining. A–D: Overlay of maximum projection micrograph of α-

tubulin staining and light micrograph. E and F are 3D reconstructions of the dataset 

shown in D. Anterior faces upwards and scale bars equal 50 µm. (A) First α-tubulin 

signal in a juvenile five days after metamorphosis. The former larval apical lobe (AL) 

and posterior lobe (PL) are still visible under the shell (s) of the juvenile. Two ventral 

neurite bundles develop in the anterior lobe (arrows). The juvenile body is still covered 

by larval cilia (ci). Some serially arranged neurites (sn) extend inwards from the ventral 

neurite bundles. (B) The ventral neurite bundles (arrows) elongate further in posterior 

direction. A commissure (co) starts to form at the former border of the apical and the 

posterior lobe but is not yet closed. From the anterior portion of the ventral neurite 

bundles, serially arranged mantle neurites (smn) extend distally outwards and serially 

arranged neurites (sn) extend inwards. The cilia of the juvenile gut (gu) are visible in the 

median region of the juvenile. (C) Juvenile with the same structures as in B. The 

commissure (co) is closed and the ventral neurite bundles (arrows) have fused anteriorly. 

(D) Neural anatomy of a juvenile 17 days after metamorphosis with the commissure (co) 
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interconnecting the ventral neurite bundles (arrows) and the serially arranged mantle 

neurites (smn), which extend towards the edge of the juvenile mantle. (E) Three-

dimensional reconstruction of the dataset shown in D, dorsal view. (F) Three-dimensional 

reconstruction of the dataset shown in D. Postero-dorsal view demonstrating that the 

ventral neurite bundles (yellow) and the serially arranged mantle neurites (green) bend 

ventrally. 

 


