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Summary

Sensornets have been used for ecological monitoring the past decade, yet
the main driving force behind these deployments are still computer scien-
tists. The denser sampling and added modalities offered by sensornets could
drive these fields in new directions, but not until the domain scientists be-
come familiar with sensornets and use them as any other instrument in their
toolbox.

We explore three different directions in which sensornets can become easier
to deploy, collect data of higher quality, and offer more flexibility, and we
postulate that sensornets should be instruments for domain scientists.

As a tool to ease designing and deploying sensornets, we developed a method-
ology to characterize mote performance and predict the resource consumption
for applications on different platforms, without actually having to execute
them. This enables easy comparison of different platforms.

In order to reduce the amount of faulty and missing measurements, we de-
veloped a mote-based anomaly detection framework lightweight enough to
run alongside an actual data acquisition application. This allows faulty mea-
surements to be detected immediately and not after the experiment has been
concluded.

To increase the flexibility of sensornets and reduce the complexity for the
domain scientist, we developed an AI-based controller to act as a proxy
between the scientist and sensornet. This controller is driven by the scientist’s
requirements to the collected data, and uses adaptive sampling in order to
reach these goals.
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Chapter 1

Introduction

The Scientific Method

In the field of natural science, experiments play an integral role in proving
and refuting hypotheses. As early as 1021, Ibn al-Haytham established the
importance of verifying hypotheses with experiments in his book Book of
Optics. Until then, science was based on imagination and logical deduction
rather than experiments. This is why Galileo Galilei in 1638 could reject
Aristotele’s theories on the movement of falling objects in his book Two New
Sciences by performing rigorous experiments. This method of letting the
experiment rule over deduction was later formalized in the Rules of Reasoning
in Philosophy in Isaac Newton’s 1726 edition of Principia which paved the
way for the modern scientific method, which mainly consists of these four
points:

1. Statement of problem

2. Formulation of hypothesis

3. Testing of hypothesis using experimentation

4. Analysis of experimental results

Where (3) and (4) can either prove or disprove the hypothesis formulated in
(2). In the latter case, it is necessary to return to either (1) or (2) and re-
formulate the problem and/or the hypothesis by using the knowledge gained
from the experiment.
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Chapter 1

Because of the importance of rigorous experiments, new discoveries and sci-
entific fields are often linked together with the progress of measurement in-
struments. For example, the invention of the microscope paved the road
for microbiology, the same way the telescope revolutionized astronomy, and
each generation of particle accelerators have proved the existence of more
elementary particles from the Standard Model.

How the MEMS Revolution

Changed Experimental Science

With the MEMS1 revolution, it has become possible, both technologically
and economically, to sample modalities in places and on scales previously
not feasible. As an example, we use the progress of bird monitoring to show
the impact of technology.

Previously, knowledge of birds was gained primarily by manual observation
with binoculars and telescopes. This passive sensing relied solely on the
human observer and only information such as numbers, race, and gender
were easily available.

This process was later augmented with bird tagging, which made it possi-
ble to distinguish individual birds from the flock and track the same bird
throughout seasons. By combining observations from different regions, it
also became possible to track bird migration patterns. However, this process
still requires human intervention and relies solely on humans being in the
field to observe the particular birds that are tagged. Obviously, because of
this it is not possible to keep track of all the birds who have been tagged.

After the MEMS revolution, bird monitoring has taken a quantum leap for-
ward from relying completely on passive observations to active tracking and
monitoring. Birds have been tagged with dataloggers,2 equipped with small
GPS receivers to continuously track their location. After the datalogger’s
retrieval, the bird’s entire flightpath can be downloaded.

By combining the datalogger with inexpensive radios, we essentially have
the mote platform. By forming networks of sensors (sensornets) with these
motes, it became possible to download the measurements without having

1Microelectromechanical systems
2Sensors combined with stable storage and just enough processing power to sample

the sensors at fixed intervals and store the data.
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to retrieve the dataloggers first. After initial deployment, data are auto-
matically downloaded from the motes through the sensornet and stored in
databases for later retrieval, completely removing the human element from
the data acquisition process.

The low cost has made it possible to vastly improve the density of data
samples, both in space and time, and the small size has made it possible
to combine modalities with fields previously unheard of. For example, in
the Great Duck Island bird monitoring project by Mainwaring et al. [5],
modalities such as light, temperature, pressure, and humidity were measured
inside bird nests.

However, the sensors with the greatest technologically breakthroughs are
mainly those used in the automotive, health, and consumer electronics indus-
try such as accelerometers, gyroscopes, microphones, and imaging devices.
Other sensors, not needed by these industries, have yet to see the same ex-
ponential evolution. These are mainly chemical, gaseous, and optical sensors
which are still bulky and expensive.

Problem Statement

Sensornets have already revolutionized the way experimental scientists can
collect data by offering automatic sampling both temporally and spatially
denser than manual sampling allows, and at the same time in places and
with modalities previously unattainable.

However, experimental scientists themselves have yet to embrace sensornets
and utilize them in the same manner as they would any other instrument in
their toolbox. Field deployments, such as the volcano monitoring by Werner-
Allen et al. [13] and soil monitoring by Musăloiu-E. et al. [6] clearly illustrate
this by the fact that half the people involved were computer scientists.

One of the reasons for this discrepancy lies in the complexity still involved
with successfully deploying a sensornet, as illustrated by Barrenetxea et
al. [1]. In order for experimental scientists, without the necessary computer
skills, to embrace sensornets, this gap must be bridged. Design and visual-
ization tools, such as those by Burns et al. [2] and Nath et al. [7] can alleviate
deployment and data management problems, but sensornet management still
remains an open issue.

Another reason why sensornets have yet to replace experimental scientists’
manual sampling in the field is the lack of flexibility. It is not enough just to

3



Chapter 1

sample more places and more often; sensornets must also be as flexible and
adaptive as a scientist in the field can be.

The problem, however, lies in the flow of information. Previous sensornets,
such as ZebraNet by Huang et al. [4], forest monitoring in Redwood by Tolle
et al. [12], and the river monitoring project LUSTER by Selavo et al. [10]
have all been one-way. Motes are deployed, and measurements are sampled,
stored and forwarded to the gateway. In order for sensornets to give the
domain scientists the ability to adapt the same way they would have, had
they been in the field, information must flow both ways.

This retasking can be achieved with sensornets such as Tenet by Gnawali
et al. [3], but it is only useful if the domain scientist is actually present and
monitoring the measurements. Because of the data explosion from the denser
sampling and continuous operation, processing this data fast enough to reap
the benefits of automatic data acquisition, by reacting faster to episodic
events, would either require significant human resources or automatic online
processing.

Processing measurements as soon as they become available could also help
remedy the problem with faulty and missing measurements. Sensornets with-
out online processing have been plagued with faulty measurements, because
typically these faults are only discovered long after the experiment is over,
making it impossible to repair the faulty equipment or redo the measure-
ments. The soil monitoring sensornet Suelo by Ramanathan et al. [8] uses
online processing of measurements to detect faulty equipment, however, their
solution is human intervention and not automatic recovery.

For example, as part of the river monitoring program at the Zackenberg3

ecologial research station, water samples are taken and the water level is
recorded twice a day. This interval is normally sufficient to capture varia-
tions because changes normally happen on this time scale. However, because
the river is connected to high altitude lakes which can freeze and melt sev-
eral times during spring and fall, sudden flooding can occur, doubling the
water level for a day or two. For an ecologist in the field, already taking
manual samples, it is easy to discover this sudden flooding, to increase the
measurement frequency during the flooding, and return to the normal sam-
pling frequency afterwards. It is also easy for the ecologist to quickly verify
the validity of the measurements and redo the samples if some faults have
been introduced.

Obviously, with a sensornet in place, measurements could be taken more

3http://www.zackenberg.dk
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often and without involving the ecologist. However, with the current level of
sensornets it is not possible for ecologists to deploy sensornets and achieve
the same level of adaptability as described above. In order for sensornets
to replace ecologists in the field, they must be deployable by the ecologists
themselves and have the same level of adaptability.

To summarize, the problems we seek to solve in this thesis are: How do we
turn sensornets into viable instruments for the domain scientist to deploy in
the field? How do we increase the quality of the data by avoiding faulty and
missing measurements? And, with the domain scientist’s limited time, how
do we make the sensornet able to adapt to the environment in the same way
the domain scientist would have done had she been present?

Thesis

The main issue with sensornets being scientific instruments, lies in the inter-
action between the domain scientist and the sensornet. Because, deploying
a sensornet is still too computer intensive for a non-computer scientist, and
manually controlling a sensornet in real-time is not practical.

We tackle these problems on three fronts. First, we introduce a benchmark-
ing methodology to help choose the right set of motes and applications for
the deployment. Second, we introduce an anomaly detection framework to
increase the quality of the collected data. Third, we introduce a controller
to mediate between the domain scientist and the sensornet, thereby making
it easier for the scientist to control the sensornet, and react to changes in the
collected data.

For the mote benchmarking, we seek a methodology to predict the outcome of
running different applications on a variety of mote platforms, without actu-
ally having to port the applications and execute them. We base our solution
on real traces instead of simulations in order to incorporate nondeterminis-
tic interactions from the environment. Our solution, inspired by Seltzer et
al. [11], is based on decomposing applications into unit actions and measure
the time and energy consumption for each action on different platforms.

For the anomaly detection, we seek a framework lightweight enough to be in-
corporated into the data collection application already running on the mote,
in order to detect anomalies in the measurements as soon as they are sampled,
and thereby allowing the mote to react immediately. We base our detection
algorithms on machine learning, to avoid misclassification problems between
different types of anomalies.

5



Chapter 1

Finally, to act as a middleman between the domain scientist and sensornet we
introduce a controller based on the Planning and Scheduling [9] architecture
known from the Artificial Intelligence community. This allows the domain
scientist to define a set of overall goals, reflecting the scientist’s requirements
to the collected data. Based on a model and the actual state of the system
(i.e., sensornet and environment) the controller plans a set of actions to
achieve these goals.

However, for the controller to construct a plan that both satisfies the scien-
tist’s requirements and utilizes the sensornet’s resources most efficiently, it is
necessary to estimate the time and energy consumption of each plan under
consideration. We base our resource model on deconstructing each plan into
unit actions according to our benchmarking methodology above. With this
model in place the controller can reason about whether a plan is both feasible
and efficient, in terms of available time and energy.

Another consideration the controller must take into account, is the state of
the environment. For the controller to be adaptive, it must be able to detect
changes the domain scientist would find interesting and disregard irrelevant
ones. Using the anomaly detection framework above, the controller becomes
capable of distinguishing between what the scientist deems important and
unimportant, and by processing the acquired data online, the plans the con-
troller constructs will reflect the actual state of the environment and system.

Returning to the river monitoring example above, two goals based on the
ecologist’s requirements could be (1) take at least one water sample every
hour, and (2) during flooding, take at least six water samples every hour
if the energy reserve permits it. It is then the controllers responsibility to
ensure that given unexpected events such as faulty measurements or rising
water levels that the goals are achieved by either retaking water samples or
increasing the sampling rate.

In summary, our thesis for this dissertation is:

Sensornets should become instruments that domain scientists can
pick, deploy, and program to efficiently collect high quality datasets.

Contributions

This dissertation has the following three major contributions:

• A vector-based methodology to study mote performance. Our method
divides resource consumption into two components, one characterizing
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the specific application and one characterizing the platform in general.
By combining these vectors, we are able to both predict the energy and
time consumption of the same application on different platforms, and
different applications on the same platform.

• An anomaly detection framework based on machine learning algorithms.
We show that the machine learning algorithms are superior to the sim-
ple heuristics used in previous sensornets and do not suffer from the
same misclassification problems, where faults are mistaken for events
and vice versa. Furthermore, with a TinyOS implementation we show
that these algorithms are lightweight enough to perform online anomaly
detection on a mote.

• A sensornet controller based on artificial intelligence. We capture the
scientist’s requirements in terms of data collection modes, consisting of
a range of acceptable parameters, and use these to drive the controller.
By utilizing our resource prediction methodology to reason about effi-
ciency and feasibility, and our detection framework to track changes in
the environment, the controller can choose the actions that best meets
the scientist’s goals given the state of the environment and available
resources.

The rest of this dissertation is structured around our move towards scientific
sensornets and the change from automatic to adaptive data acquisition. In
Chapter 2 we look back at our initial sensornet deployments. We present the
lessons we learned and the problems that motivated the development of our
three front approach. In Chapter 3 we present the first cornerstone, the char-
acterization of mote performance with the purpose of facilitating sensornet
design and deployment. In Chapter 4 we present the second cornerstone, the
machine learning based anomaly detection framework to increase the qual-
ity of the collected data. In Chapter 5 we present the third cornerstone,
the AI-based sensornet controller to mediate between the domain scientist
and sensornet. Finally, in Chapter 6 we offer our concluding remarks and
directions for future work.

Bibliography

[1] G. Barrenetxea, F. Ingelrest, G. Schaefer, and M. Vetterli. The Hitch-
hiker’s Guide to Successful Wireless Sensor Network Deployments. In
SenSys ’08: Proceedings of the 6th ACM conference on Embedded net-
work sensor systems, pages 43–56, New York, NY, USA, 2008. ACM.

7



Chapter 1

[2] R. Burns, A. Terzis, and M. Franklin. Software tools for sensor-based
science. In Proceedings of the Third Workshop on Embedded Networked
Sensors (EmNets 2006), Feb. 2006.

[3] O. Gnawali, B. Greenstein, K.-Y. Jang, A. Joki, J. Paek, M. Vieira,
D. Estrin, R. Govindan, and E. Kohler. The TENET Architecture for
Tiered Sensor Networks. In ACM SenSys 2006, Nov. 2006.

[4] P. Huang, H. Oki, Y. Wang, M. Martonosi, L. Peh, and D. Rubenstein.
Energy-efficient Computing for Wildlife Tracking: Design Tradeoffs and
Early Experiences with ZebraNet. In Proceedings of the Tenth Interna-
tionla Conferece on Architectural Support for Programming Languages
and Operating Systems (ASPLOS-X), Oct. 2002.

[5] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson.
Wireless sensor networks for habitat monitoring. In WSNA ’02: Proceed-
ings of the 1st ACM international workshop on Wireless sensor networks
and applications, pages 88–97, New York, NY, USA, 2002. ACM.
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Chapter 2

Automatic Data Acquisition

Due to the MEMS revolution, sensornets have made it possible to monitor
ecological environments and animal life much denser in space and time and
with modalities previously not possible. More importantly, this allows do-
main scientists to design new experiments and test theories previously not
possible to perform in the field.

For example, the gender of the Box Turtles1 is not determined at conception,
but by the temperature in the nest during incubation. At least, this is what
laboratory experiments show. But how do we determine if the parameters
we observe in the lab also apply in nature as well? I.e., will temperatures
between 27-28◦C result in male turtles and temperatures between 29-30◦C
in females?

The only way to prove this, is to actually measure the temperature in a nest
with eggs found in nature. This is exactly what the sensornet deployed by
Szlavecz et al. [2] did. They put temperature and moisture sensors inside
the Box Turtles’ nests and used motes to sample these sensors and store the
measurements. This data was then periodically forwarded to a gateway and
stored in a database.

We faced a similar situation in the Hogthrob project where we used a sen-
sornet to detect oestrus in household sows. The project was a three-party
collaboration between (1) the swine production industry, which main goal is
to maximize production by keeping the sows healthy and reproductive, (2)
the veterinarians, who wish to understand the sows’ behavior and build a
model of this, and (3) the computer scientists, who develop and manage the
sensornet.

1http://en.wikipedia.org/wiki/Box_turtle
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Oestrus detection is important to the farmers, in order to maximize the sows’
reproduction, and important to the veterinarians, as part of their behavior
model. Traditionally, this detection has been done manually either by back
pressure tests, close visual inspection, or measuring the rectal temperature.

Obviously, all three methods are slow and cumbersome and do not scale well
for large households. As it turns out, the onset of oestrus is closely related
to the sows’ physical activity level, and a suitable modality to express this
physical activity would be acceleration. For the veterinarian, this could also
contribute to the behavioral model since each kind of activity has its own
distinct acceleration pattern. Because accelerometers have become small,
inexpensive, and power efficient enough to be equipped on a mote, it is
possible to mount one on each sow using a neck collar. This allows us to
acquire acceleration data, with minimal intrusion to the sows’ daily routines
and environment and with minimal manual labor for the farmers.

In ”Lessons from the Hogthrob Deployments” we describe two field deploy-
ments of the sow monitoring sensornet and the development process leading
up to each. The paper was presented at the Second International Workshop
on Wireless Sensor Network Deployments, 2008 and made in collaboration
with Cécile Cornou, Klaus Madsen, and Philippe Bonnet.

We successfully acquired enough data for the veterinarian to build her sow
behavioral model and we were also able to devise simple detection algorithms
to determine whether or not a sow is in heat. Compared to a similar sow
monitoring sensornet, Wired Pigs by McCauley et al. [1], we are able to
achieve a higher throughput and thereby sustain a higher sampling rate.

However, we also discovered several fundamental problems which we since
then have used to guide our research:

First, based on the problems we encountered during the first deployment we
changed the hardware platform for the second experiment. But, choosing the
right mote for the right job is not trivial. What we missed, was a systematic
approach to predict the behavior of an application on a new platform with-
out having to actually deploy it. This is especially important for resource
constrained platforms, where applications might be too resource intensive to
achieve the desired sampling rate and stay within the energy budget. More
generally, we need a way to reason about system resources, such as energy
and time, in order to utilize them optimally. Such resource awareness will
not only help choosing the right platform but also help designing and adapt-
ing the application to maximize the sensornets’ value. For example, in both
deployments the batteries lasted longer than the actual experiments. This
surplus energy could have been used on a higher duty-cycle which potentially
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could have reduced data loss.

Second, even with a simple one-hop star topology, the network connectivity
varied greatly because of the changing environment, i.e., the sows themselves
impacted the radio link quality when they moved around leading to periods
with network outage. Although samples were stored for later transmission,
these outages still resulted in memory shortage leading to loss of data. We
did experiment with a degraded operation mode, but what we need is a
more flexible mechanism to throttle the sampling rate given the state of
the system in order to utilize the resources more efficiently and meet the
consistency requirement of the domain scientist. In fact, this mechanism
should also consider the sensor readings from the environment as well, since
different situations might call for different sampling strategies. Because of
network outages, this mechanism cannot solely rely on the more resourceful
gateway but must also have a mote based component.

Last, we used the yield (fraction of acquired data to the theoretical maxi-
mum) as our performance factor (which seems to be the de facto standard
in sensornets). From the computer scientist’s perspective this seems reason-
able, however, as it turns out this is not necessarily the case for the domain
scientists. The problem is, yield only describes the amount of data miss-
ing and not the distribution of it. For the domain scientists, consistency is
more important and missing data spread out evenly over time is preferred
to clusters of missing data. What we need is a performance factor that re-
flects the domain scientist’s requirements and a way to dynamically adapt
the sampling strategy to optimize this factor.
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Abstract Today, even small-scale sensor networks need to 

be carefully designed, programmed and deployed to meet user 

goals, such as lifetime or quality of the collected data. Only by 

confronting the problems that do come up during actual 

deployments can we devise the tools, methods and abstractions 

that will help meet the requirements of a sensor network 

infrastructure. In this paper we report on the lessons we 

learned deploying two experimental sensor networks in a pig 

farm in the context of the Hogthrob project. We describe the 

design of the sensor networks whose goal was to collect time 

series of sow acceleration data over a menstrual cycle, i.e., circa 

30 days, and we discuss the lessons we learned. 

 
Index Terms sensor network deployments, group housed 

sows, acceleration time series. 

 

I.INTRODUCTION 

n the context of the Hogthrob project
1
, we aim at 

developing an infrastructure for online monitoring of sows 

in production. Today, farmers use RFID based solutions to 

regulate food intake. Such systems do not allow the farmers 

to locate a sow in a large pen, or to monitor the life cycle of 

a sow (detect oestrus, detect injury, etc.). Our long term goal 

is to design a sensor network that overcomes these 

limitations and meets the constraints of the pig industry in 

terms of price, energy consumption and availability.  

In a first phase, we focus on oestrus detection. We use a 

sensor network to collect the data that scientists can use to 

develop an oestrus detection model based on the sow's 

activity. Such sensor networks promise to be part of the 

experimental apparatus scientists can use to densely sample 

phenomena that were previously hard or impossible to 

observe in-situ, and then build appropriate models.  

Automated oestrus detection has been mainly studied for 

dairy cattle and for individually housed sows. Group housing 

complicates the problem significantly as it may impair the 

oestrus behavior of subordinate sows. Possible methods for 

automated oestrus detection for group housed sows are 

reviewed in [CC06]. Our goals are (i) to assess whether it is 

feasible to detect the onset of oestrus using acceleration data 

and (ii) to devise a detection method that is appropriate for 

online monitoring. 

We designed a sensor network that collects sow 

acceleration data during a complete oestrus cycle (21 days in 

which the sows show one oestrus). In this period, the nodes 

should remain unattended in order to avoid disturbing the 

sows. This is a tough challenge in terms of energy 

consumption as packaging constrains the size of the batteries 

and thus the energy budget.  

We deployed our sensor network on a production herd in  

                                                           
1  A collaboration between DIKU, DTU, KVL, IO Technologies and 

NCPP (http://www.hogthrob.dk). 

 

Sjælland, Denmark
2
 in a 264 m

2 
indoor pen (see Figure 1). 

Because of cost considerations (we need to refund the 

farmer for the missed opportunity to perform artificial 

insemination) we reserved a limited number of sows.  

 

 
Figure 1: Plan of the Experimental Pen 

 

We ran a first experiment during a four weeks period in 

February and March 2005 and a second in January and 

February 2007.  

In this paper, we report our experience preparing, 

conducting and analyzing these field experiments:  

1) We describe the design of the sensor network. Our first 

experiment focused on the power budget and on energy 

consumption in order to keep data collection running for 

3 weeks. We relied on the lessons learned from previous 

deployments as they were related in the literature when 

planning the experiment [SITEX02][GDI02][GDI04]. 

We thus paid particular attention to packaging, battery 

selection, duty cycling, and replication in the back-end 

infrastructure. In our second experiment, we focused on 

improving the yield of accurate collected data with a 

goal of 90%.  

2) We discuss the lessons learned and how our results can 

be applied in a larger context. 

 

II.FIRST EXPERIMENT 

Our goal was to design a sensor network for the collection 

of sow acceleration data sets. We faced two key problems, 

typical of sensor networks deployed for scientific data 

collection: 

1) What is our power budget?  How do we duty cycle the 

sensor nodes to keep energy consumption within our 

budget? 

2) How do we collect the data from the sensor nodes to the 

back-end infrastructure? 

 

                                                           
2 www.askelygaard.dk 
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A.  Sensor Network 

Sensor Nodes. We decided to use BTnodes [Beutel] as a 

hardware platform. We used Btnodes rev2, equipped with an 

ATMega128 micro-controller, 64 KiB of external RAM, and 

an Ericsson ROK 101 007 Bluetooth module. Our goal was 

to use the high-bandwidth radio
3
 of the BTnodes to transmit 

large amounts of data. This opens up for a model where the 

sensor data is stored locally on the node as it is captured, 

and periodically transmitted in large chunks to the base 

station. We thus leverage the radio  bandwidth in order to 

reduce its duty cycle. We developed an accelerometer board 

for the BTnode and designed a node packaging that could fit 

the neck.  

Sensor Data. In his experiment with individually housed 

sows, Geers [Geers95] used a sampling rate of 255 Hz. An 

experiment with the MIT LiveNet system used a 50Hz 

sampling rate to detect shivering [Sung04]. We estimated 

that a 4 Hz sampling rate would be good enough to capture 

the activity of sows.  

Accelerometers. The most important parameter of an 

accelerometer is the range of acceleration it can measure. 

The acceleration experienced when a human walks is in the 

range of 0-2g. We assume that the acceleration of a sow 

walking will be in the same range, while the occasional 

fights could lead to higher accelerations. For the sake of 

redundancy and comparison, we equipped our board with a 

2D analog accelerometer (ADXL320 from Analog Devices) 

as well as a 3D digital accelerometer (LIS3L02DS from 

STMicroelectronics).  

Packaging. We needed an appropriate packaging in order 

to attach a BTnode to the neck. We had to design a 

protective casing that (a) could contain a BTnode with the 

accelerometer board and batteries, (b) would fit the shape of 

hostile environment.  

We designed a box in a carved oblong form that fits the 

shape of a sow's neck (Figure 2). The box is in effect air 

tight (23 screws to fix the top, with an o-ring underneath, to 

seal it). It is 135x33x80mm. Its walls are 5 mm thick to 

resist bites. The box can contain a BTnode equipped with 

the accelerometer board as well as a pack of 4 AA size 

batteries. Note that the protective casing turned out to be the 

most expensive part of the equipment. Attaching this box to 

the neck was also a challenge. We finally devised a 

reliable method using medical tape and a sow collar. 

Power Budget. In our experience, BTnodes exhibit 

unstable behavior with an input voltage of around 3V. We 

thus decided to use a 4x1.2V battery pack to make sure that 

the node could deplete the batteries fully before 

encountering brown-outs. For economic reasons, we decided 

to use rechargeable batteries. We decided against Lithium 

cells because of their sensitivity to shocks and their price. 

Instead we opted for NiMH batteries.  

We experimented with three different cells: One from 

Panasonic with a nominal capacity of 2100 mAh, and two 

from Ansmann with nominal capacities of 2300 and 2400 

mAh. A constant discharge experiment confirmed the 

                                                           
3 434 kbit/s bandwidth compared to (at that time) contemporary radios 

like the CC1000 which only had 76.8 kbit/s. 

capacity figures given by the manufacturers as well as the 

promised flat discharge curves. Our power budget was thus 

around 10000mWh. 

Duty Cycling Model This limited power budget led us to 

define an aggressive duty cycling model. First, we should 

keep the power consumption of the BTnode to a minimum 

when not working. Our initial experiments showed a 

consumption of 54 mW for an idle BTnode. We succeeded 

in bringing this figure down to 2,4 mW by entering a deeper 

sleep mode and disabling the external memory. 

Second, in order to transmit large chunks of data, we had 

to store the accelerometer samples. This was a bit of a 

challenge with the external memory disabled. We decided to 

use the unused parts of the program memory, i.e., the 128 

KiB flash inside the ATMega128 micro-controller. Because 

8 KiB were reserved for the boot loader and our code 

occupied around 20 KiB, we could use around 100 KiB of 

program memory to store sensor data which in turn 

corresponded to around 55 minutes of sampling. Thus, in 

our duty cycling model the radio was turned off until the 

memory was almost filled up. 

 

Figure 2: The sensor node box. 

 

Back-end Infrastructure. For our experiment, the role of 

the back-end infrastructure was twofold. First, it should 

obtain and store data from the sensor nodes. Second, it 

should collect ground truth about sow activity, i.e., video 

recording of the pen.  

For data collection we used a star topology with all the 

sensor nodes in direct communication range of the base 

station, which was a PC connected to an external Bluetooth 

dongle hanging from the ceiling in the middle of the pen. Its 

role was (a) to communicate with the sensor nodes and (b) to 

timestamp and store the received packets.  

In order to check if the range of a single Bluetooth dongle 

provided sufficient coverage, we placed a BTnode (with its 

protective casing) in different corners of the pen and verified 

that connections could be opened and data transferred. This 

test did not reveal any problems. 

The communication between the sensor nodes and the 

base station used the following protocol. The base station 

continually sends inquiries. Whenever required by the duty 

cycling model, a sensor node starts an inquiry scan (a scan 

requires less energy than sending inquiries [Leopold03]). 

When a base station detects a sensor node, it creates a 

connection. When the connection is established, the sensor 

node sends status information including the number of 

samples it contains. The server does the bookkeeping; it 

requests the samples that have not yet been transmitted and 

acknowledges their reception. The sensor node stores a 
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sample until its transmission has been acknowledged. When 

memory is full, new samples are simply dropped. 

The key issues when designing the infrastructure were: 

Timestamping: In order to analyze the data sets, we 

needed to control that a sow was actually moving when the 

data set indicated some activity. The same PC was used to 

assign a global timestamp to both video frames and sensor 

data. The PC was connected to the Internet and synchronized 

with a remote NTP server.  

The timestamping of the video frames was done by the 

frame grabbing software while the timestamping of the time 

series was done on each sensor node by attaching a logical 

timestamp (a counter) to the samples it collected. The PC 

then associated the logical timestamp with the global 

timestamp on each batch of samples it got from a particular 

sensor node (in the context of one Bluetooth connection). 

Global timestamps were attached to individual samples in a 

post-processing phase. 

Data storage: Each frame stored in PNG format 

occupied 8 KiB. We expected a stream of 32 KiB per 

second for each camera and a total of 80 GiB of data per 

camera for the duration of the experiment. We used an 

ADSL line with an uplink capacity of 512 KiB/sec to 

connect the base station PC to the Internet. We reserved 

1TB of disk space on a remote file server to store the video 

and the time series. 

Reliability: We paid particular attention to reliability as 

it had been reported to be a problem in previous 

deployments [GDI02]. We chose a straightforward approach 

and basically replicated all the processing on two base 

station PCs. Both PCs were equipped with their own 

Bluetooth dongle. We splitted the coaxial cables so that each 

PC was connected to all the cameras. Both PCs ran NTP 

clients connected to the same NTP server. They proceeded 

in parallel with the timestamping of both video frames and 

time series. Both PCs shared the ADSL line connecting the 

farm to the Internet. A fail-over service monitored both 

servers and picked one of the PCs to upload data to the 

remote file server. 

Resilience to the hostile environment: Sows are 

aggressive animals and they will try to eat any equipment 

they can put their mouth on. The pen is a hostile 

environment as well mainly due to the corrosive ammonia. 

We decided to place the PCs in a container outside the pen 

for protection and used USB extenders, connected via 

Ethernet cables, to connect the PCs to the Bluetooth dongles. 

B.  First Field Experiment 

The experiment took place from February 21st to March 

21st 2005. Data was collected from the sensor network from 

Day 11 to Day 30. In this Section we report on the data 

collection process using our sensor network and we describe 

the collected data. 

1) Hits and Misses 

Sensor node lifetime was our main concern when 

designing the sensor network. Our lab experiment suggested 

a possible lifetime of around 60 days. In fact, 4 of the nodes 

could collect data for the duration of the experiment. The 

fifth sensor node lost its Bluetooth module a week before the 

end of the experiment and had to be replaced.  

Battery drain information was measured by the BTnode 

and sent to the base station in the status packet that prefixed 

all transmissions. Figure 3 shows the voltage drain for one of 

the sensor nodes equipped with an Ansmann battery pack. 

We obtained a flat discharge curve very similar to the one 

we obtained with constant discharge. Note that the actual 

voltage of the cell was higher than the nominal 1.2V and we 

obtained around 5V for the duration of the experiment. From 

day 37 on, there was still enough power left in the batteries 

to turn the Bluetooth module on, receive a connection and 

send the initial packet. However during the send phase, the 

voltage of the batteries dropped so low that the node 

browned out.  

The main problem we encountered during the experiment 

was missed connections between the base station and sensor 

nodes. We expected the sensor nodes to upload their data 

approximately once an hour, but we only observed an 

average of 16 connections a day. Once a connection was 

established, though, data transfer was successful. We 

observed that these missed connections occurred mostly 

while the sows were in the corners of the pen. It is most 

probably the water contained in the body of the sow and the 

iron contained in the internal alcoves of the pen that limit the 

communication range of the sensor node. As a result our 

time series contain numerous holes (see next Section). 

 

Figure 3: Voltage drain during the experiment for a 

sensor node equipped with an Ansmann battery pack. 

 

Another problem was that sensor nodes rebooted every 

other day. The only node that did not reboot was equipped 

with a custom made battery pack with batteries welded 

together. As a result, the samples that had been collected but 

not transferred were overwritten. Also, the reboot caused the 

logical timestamp counter to reinitialize. Fortunately, we had 

programmed the nodes to connect to the base station only 10 

minutes after a reboot so we avoided cascading effects. 

We realized after the experiment was finished that our two 

PCs (connected to the same NTP server) were approximately 

20 seconds out of sync. This problem combined with the 

numerous node reboots made the post-processing of the 

sensor data complicated and error prone. 

 

2) Collected Data 

We collected around 200MiB of sensor data per node
4
. 

                                                           
4  The data sets are available at http://hogthrob.42.dk/. Our agreement 

with the farmer does not allow us to release the video images. 
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We validated a posteriori the validity of the data collected 

from the analog and digital accelerometers by converting the 

raw measurements to the gravitational acceleration. This 

verification showed that most of the accelerations measured 

with the digital accelerometer were around 1g as expected.  

The analog accelerometers however showed some weird 

behavior. A closer look at the sensor node application 

revealed that the analog accelerometers were turned on for 

too short a period (20ms while 80ms would have been 

needed). As a result the measurements from the analog 

accelerometers were unusable. Such a bug that slipped our 

lab experiments should have been detected and fixed while 

the experiment was running, not afterwards. 

The time frame we use as reference for our analysis is 

01/03/05 at 00:00 to the 21/03/05 at 00:00. Compared to a 

theoretical number of 6912000 samples
5
 we obtained a yield 

of 53%, 62%, 61% and 71% respectively for each node. 

These figures are reasonable compared to previous sensor 

network deployments [Red05], but very low when compared 

to the actual available data. Looking back, it was a mistake 

not to specify the yield as a primary objective for our 

experiment.  

We use the collected acceleration data to assess whether it 

can be used to detect oestrus. We want to distinguish 

between periods of activity where the relative acceleration is 

high, and periods of calm where the relative acceleration is 

close to null. For this purpose, we use the Omniburst stream 

processing system developed at NYU [Shasha04]. This 

system finds bursts (i.e., subsequences with abnormal 

aggregates) of various durations within a time series.  

In our case, we are interested in short periods with intense 

accelerations as well as longer periods where a lot of 

possibly less intense accelerations occur. The periods where 

a sow is inactive will not contain bursts. We focus on short 

bursts (window size 100 samples) where 90% of the 

measurements are above a given threshold and long bursts 

(window size 1000 samples) where 60% of the 

measurements are above the threshold. We use a low 

threshold value for the relative acceleration (i.e., we only 

consider that a sow is inactive if the relative acceleration is 

close to zero). 

 

 
Figure 4: Sow Activity over a period of 24 hours at the 

start of the experiment (March 1st) 

 
Figure 5: Sow Activity over a period of 24 hours during 

its heat period (March  15th) 

 

Figure 4 shows the output of Omniburst on the time series 

corresponding to a day of measurement (outside the heat 

period). The green bars on the graph correspond to active 

periods, the white areas correspond to inactive periods and 

                                                           
5  Four times per second times 3600 seconds per hour times 24 hours a 

day times 20 days. 

the grey areas correspond to holes in the time series due to 

missed connections. We validated on the video the 

alternation of active and inactive periods described by the 

graph. The long inactive period between logical timestamps 

80000 and 230000 actually corresponds to a good night 

sleep. Figure 5 shows the activity of a sow during its heat 

period. The difference in the level of activity with respect to 

Figure 4 is striking, in particular at night. This is 

encouraging for the definition of a detection model. 

III.SECOND EXPERIMENT 

The goal we set for ourselves for the second experiment 

was to reduce the holes in the collected time series and reach 

a yield of 90%.  

A.  Sensor Network 

We made some key improvements for the second 

experiment both in terms of hardware and software. In terms 

of hardware, we made the following adjustments: 

In the first experiment our aim was to leverage the high 

bandwidth of the Bluetooth radio. However, even if 

Bluetooth had a superior bandwidth there was also a higher 

overhead cost in terms of the time it took to establish a 

connection, often in the range of 30 seconds or more. Newer 

low power radios, like the Chipcon CC2420, offer 250 kbit/s 

bandwidth with little to none connection time, depending on 

the protocol in use. With this radio the process of offloading 

all the data could be done before the Bluetooth radio even 

established connection.  

The price on non-volatile storage has dropped 

significantly and has become widely available on sensor 

nodes. By adding external storage we increased the amount 

of samples stored and thus increased the time the node could 

be out of range without dropping measurements. This gave 

us both better duty-cycling and lowered the effect of black-

out periods.  

We added directional antennas to the base station to 

increase signal strength. Since the movement of the sows 

was restricted to the ground, using directional antennas 

instead of omni-directional antennas would increase the 

signal strength with at least a factor 2. We could not go 

further and add antennas to the sensor nodes, as it would be 

impossible to keep the antennas aligned and operational  

sows tend to roll over a lot. 

In order to reduce spontaneous reboots, we only relied 

on welded battery packs.  

In terms of software, we introduced the following 

features: 

We increased the storage capacity by compressing the 

collected data.  

We defined a degraded mode for transmissions. In the 

first experiment, measurements could be dropped in case the 

flash was full. This time, we anticipated the lack of storage 

space and we defined a lossy compression scheme that 

allowed us to trade a lower data resolution for reduced space 

occupation.  

Sensor Nodes. For the second experiment we decided to 

use the Sensinode Micro.4 as a hardware platform. It is 

equipped with a TI-MSP430 microcontroller, 512 KiB 

external FLASH, and a Chipcon CC2420 radio.  
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Accelerometers: The Sensinode Micro.4 came with an 

optional accelerometer board equipped with an analog 3D 

accelerometer (MMA7261Q from Freescale 

Semiconductors). The range of the accelerometer was set at 

±2.5g and the analog output was converted to a 12-bit digital 

signal by an extra chip on the accelerometer board. This 

ensured that there were no timing issues with the 

microcontroller.  

Power Budget: The Sensinode Micro.4 requires a supply 

voltage of 1.5-2.6 V, so a 2x1.2 V battery pack was 

sufficient. Again we opted for rechargeable NiMH batteries 

but since the first experiment, newer batteries with increased 

capacity had become available. Specifically, we chose the 

Panasonic 2600 mAh, which gave us an approximate power 

budget of 6000 mWh.  

Note that the estimated power budget is significantly 

lower than the one used for the first experiment with the 

BTnode. Also note that the idle consumption for the 

Sensinode Micro.4 is 2.4 mW (same as the Btnodes) and 

that the Chipcon CC2420 radio has the same power 

consumption as the Bluetooth radio during send and receive. 

However, the Bluetooth radio has a mandatory inquiry phase 

each time a connection is established, that uses a staggering 

165 mW for at least 10 seconds. The Chipcon CC2420 does 

not have this long discovery period and as a result overall 

energy consumption is much lower with the Micro than with 

the Btnode. 

Duty Cycling Model: We adapted the same strategy as in 

the first experiment, however, with the increased storage and 

with additional data compression, we were able to store 5-10 

hours of data (compared to the 55 minutes in the first 

experiment). Since the connection time was virtually instant, 

we also used a more relaxed offloading scheme, where we 

initiated the first offload attempt already when the node was 

half full. If this failed we tried again after a back off period, 

with each period defined by the halving of the remaining 

free space until a minimum period was reached. As the 

memory started to run out the back off period thus became 

shorter.  

Compression: We note that in order to increase the yield, 

it is important not to run out of storage space, since this 

means new measurements will be dropped instantly. We thus 

added a lossless compression algorithm before storing the 

data. In extreme cases where repeated offload attempts had 

failed and the node was about to run out of space we shifted 

to lossy compression. 

The lossless compression used is a simple differential 

algorithm with variable bit-rate. The data is divided into 

blocks, so that each block can be decompressed 

independently. The first measurement in each block is stored 

fully, together with the timestamp and the readings from all 

three axes, <x1,y1,z1>. The timestamp is only stored for the 

first data point, since the sampling rate is fixed. When the 

next measurement <x2, y2, z2> is about to be stored, the 

difference on each axis is calculated <x1-x2>, <y1-y2>, and 

<z1-z2>, and only this difference is stored.  

To minimize the header size for each data point we 

choose four discrete bitrates to store the differences in: 4, 7, 

 

9 or 12 bits, with the last value being no compression. Lab 

experiments [Madsen06] show that our custom compression 

algorithm outperforms (in terms of code size, compression 

ratio and power consumption) both Huffman and Lz77 

compression, when used on this particular kind of data.  

In the sow behavior statistical models (developed based 

on the data from the first experiment and not presented here 

because of lack of space [Cornou07]), measurements are 

grouped together and averaged. The least intrusive lossy 

compression is thus an average of several values. For our 

lossy compression scheme, we take the average of four 

measurements, which equals a second with our sampling 

rate, and stores it with the lossless algorithm mentioned 

above. Another bit in the header is used to indicate whether 

or not a lossy compression has been performed.  

In summary, data points are thus stored as 15 bit, 24 bit, 

30 bit, or 39 bit values.  

Back-end Infrastructure: With the Chipcon CC2420 

radio instead of Bluetooth, the communication protocol 

became slightly different. To minimize the time during 

which the radio was active, we changed the polling process 

of the base station into a push process of the sensor nodes. 

 After the connection had been made, we reused the 

offloading protocol from the first experiment. It should be 

noted that the discovery process takes less than a second to 

complete, making the process at least a factor 20 cheaper 

than with the Bluetooth radio. 

In this experiment our base station was a PC connected to 

a Sensinode Micro.4 node, which acted as a bridge, meaning 

it handled the discovery and connection, but otherwise 

forwarded the data to the PC. The PC handled the offloading 

protocol, timestamping and decompression. Also, the node 

was equipped with a Cisco ceiling mounted directional 

antenna. As in the first experiment, we did a coverage survey 

of the pen which yielded no problems, as expected. 

The 4 analog black/white video cameras from the first 

experiment were replaced by 2 digital color cameras 

mounted opposite each other in the ceiling. Each camera 

acted as a webcam and frames were grabbed by a standard 

PC. The cameras were NTP enabled and embedded a 

timestamp directly into each frame. The timestamping of the 

time series remained the same as for the first experiment.  

Again we used redundancy to increase reliability. The 

only difference with the first experiment was that we used 2 

PCs for storing the time series and 2 PCs for video 

recording. We also added a heart-beat-pulse between the 

base station PC and the bridge node, so it did not offer 

connections if the PC application was unavailable.  

B. Second Field Experiment 

The experiment took place from January 24th to February 

24th 2007. 12 sows were selected and divided into two 

groups with 6 in each. Two different experiments were 

conducted. The first focused on oestrus detection and lasted 

3 weeks with both groups of sows involved. The second was 

an activity observation experiment which lasted for a week 

and involved only one group. This group was reequipped 

with fresh batteries after the first experiment.  
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1) Hits and Misses 

Although our power budget was more strained this time, 

none of the nodes ran out of power. The main problem we 

observed was that the soldering on one of the batteries broke 

off on one of the last days and thus killed the node for the 

rest of the experiment.  

Compared to the first field experiment the amount of 

received data was significantly higher and we did not 

experience any spontaneous reboots. We did, however, 

experience data corruption at the flash level which resulted 

in duplicate timestamps and invalid values. Whether this is 

due to faulty hardware or a bug in the driver is unknown.  

 

2) Collected Data 

We collected around 170 MiB of raw sensor data per 

node. This is numerically less than the first experiment, 

because we only collected 3D measurements. After the 

corrupted data were cleaned up, timestamp expanded and 

calibrated to SI units, each data set occupied 450 MiB.  

Table 1 shows the yield for each node. The column 

r

out of the measured samples an c

the actual usable data after the corrupted data is removed. 

The average yield for the oestrus detection experiment is 

92.7% and 89.3% for the received and cleaned data 

respectively. It should be noted that node 11 is the one 

where the batteries fell off, which explains the lower yield. 

For the activity detection experiment the yield is 92.0% and 

90.3% for the received and cleaned data respectively, which 

is consistent with the oestrus detection experiment. 

These percentages are significantly higher than our first 

experiment and previous sensor network deployments in 

general. Looking at the reception percentage it is clear that 

we still have connection issues, similar to the first 

experiment. Specifically, blackouts occur when the sows are 

sleeping on top of the nodes, but since our nodes can 

actually hold more data than the average sleeping period of 

the sows, it should be possible to devise a strategy that is 

resilient against this problem, e.g., offload every hour or 

every other hour instead of every 5-6 hour as it is now. 

 

Node id 1 2 3 4 5 6 7 8 9 10 11 12 

% recv 92 93 94 94 94 90 96 95 95 96 80 93 

% clean 86 88 94 94 89 80 95 94 94 95 75 86 

Table 1. Yield for the 2
nd

 Experiment. 

IV.LESSONS LEARNED 

The sensor networks that we deployed in Hogthrob were 

quite simple with few sensor nodes, a single modality, and 

no multihop. Still we faced many challenges to meet our 

goals in terms of lifetime and yield, and we learned lessons 

that apply to sensor network-based data acquisition systems 

in general: 

 1. Model aware vs. Model agnostic data acquisition. In 

order to improve yield, it is necessary to design degraded 

operations modes that kick in to preserve data in case of 

communication failures, or lack of storage space. The design 

of appropriate degraded modes should be based on how the 

collected data is to be modeled. 

 2. Mote characteristics.  The amount of storage 

available, the time during which the radio must be on to 

transmit data, and the power consumption in sleep mode are 

key characteristics that impact the duty cycling policy and 

thus should drive the decision of which mote to use for a 

given deployment. 

 3. Offline vs. Online adjustments.  We collected data 

using a best effort approach, then analyzed it offline and 

proceeded to adjust our data collection efforts. Ideally, the 

sensor network should be deployed so that (a) the collected 

data is analyzed online, and (b) the data acquisition methods 

are adjusted to guarantee that user requirements are met 

(e.g., interesting events are caught and faults are 

compensated for or signaled). 

 4. Post-processing. The design of the data acquisition 

system should include both post-processing (cleaning, 

timestamping, decompression, calibration) as well as 

transformation and loading into the format used for data 

analysis. 

 

V.CONCLUSION 

We described the experience we gained deploying sensor 

networks to collect sow activity data sets. We believe that 

the sensor network we designed is representative of the 

experimental apparatus needed for initially exploring an 

application domain. The lessons we learned should be useful 

for future deployments. 
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Chapter 3

Normalizing Resource
Consumption

The defining characteristic for sensornets, and the mote platform in partic-
ular, have been the limited resources: processing power, battery life, stor-
age, bandwidth, etc. These limitations have spawned a variety of systems,
network protocols, and algorithms with the purpose of minimizing resource
consumption.

However, these minimizations often come as the results of a trade-off between
resource consumption and performance. In the presence of energy harvest-
ing, the trade-off between resource consumption and performance can become
particularly fluent because of the variations in the amount of harvested en-
ergy. In order to minimize resource requirements, while still keeping the
desired performance level, several resource aware systems have been devel-
oped.

For example, the Pixie operating system by Lorincz et al. [4] keeps track of all
resources and utilizes a broker to allocate these to applications. This allows
a more fine grained control between minimizing resources and optimizing
performance at the operating system level.

Another example is the solar powered system developed by Fan et al. [1].
They used a centralized scheme to adapt the sampling strategy based on
the available stored energy and the expected harvested energy, under the
conditions that the energy reserve should never be depleted while at the
same time as much of the free harvested energy should be used, thereby
maximizing use of the harvested energy.

The two main concerns for resource aware systems, such as those described
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above, are knowing (1) the available resources and (2) the resource require-
ments for each action. The first can be estimated either by direct measure-
ment of the remaining voltage or indirectly by keeping records of resources
already spent. For the second part, Fan et al. used datasheets to estimate
resource consumption while Lorincz et al. assumed the information to be
available from other sources.

In ”Characterizing Mote Performance: A Vector-Based Methodology” we
present a systematic way to normalize an application’s energy and time con-
sumption by splitting it into unit actions and measuring the energy and time
consumed by each. Our method is based on collecting the application’s traces
when executing in the field while simultaneously measuring the energy con-
sumption and elapsed time. This allows us to incorporate non-deterministic
real-world interactions which simulations such as PowerTOSSIM by Shnay-
der et al. [6] and AEON by Landsiedel et al. [3] lack. The paper was presented
at the 5th European conference on Wireless Sensor Network, 2008 and made
in collaboration with Martin Leopold and Philippe Bonnet.

Our approach is similar to Quanto by Fonseca et al. [2] who also collects ap-
plication traces, but instead of only tracking resource usage we also consider
resource prediction. Using linear algebra and a vector-based approach, in-
spired by Seltzer et al. [5], we devised a method to divide the energy and time
consumptions into two independent contributions, one specific to the appli-
cation and one specific to the platform. By combining application vectors
with platform vectors we are able to predict the energy and time consump-
tion of one application on different platforms, and different applications on
the same platform. Cross-platform prediction is essential when comparing
different platforms in preparation for a deployment. In the Hogthrob deploy-
ments, this would have been extremely valuable since we would have been
able to consider a wider range of motes for our second deployment without
having to actually deploy them.

Application predictions can be used in resource aware applications such as
those mentioned above. Since each element in the application vector repre-
sents an action, it is also possible to construct artificial application vectors
using real ones as template.
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Abstract. Sensors networks instrument the physical space using motes
that run network embedded programs thus acquiring, processing, storing
and transmitting sensor data. The motes commercially available today
are large, costly and trade performance for flexibility and ease of pro-
gramming. New generations of motes are promising to deliver significant
improvements in terms of power consumption and price — in particular
motes based on System-on-a-chip. The question is how do we compare
mote performance? How to find out which mote is best suited for a given
application? In this paper, we propose a vector-based methodology for
benchmarking mote performance. Our method is based on the hypothe-
sis that mote performance can be expressed as the scalar product of two
vectors, one representing the mote characteristics, and the other repre-
senting the application characteristics. We implemented our approach in
TinyOS 2.0 and we present the details of our implementation as well as
the result of experiments obtained on commercial motes from Sensin-
ode. We give a quantitative comparison of these motes, and predict the
performance of a data acquisition application.

1 Introduction

Sensor networks-based monitoring applications range from simple data gath-
ering, to complex Internet-based information systems. Either way, the physical
space is instrumented with sensors extended with storage, computation and com-
munication capabilities, the so-called motes. Motes run the network embedded
programs that mainly sleep, and occasionally acquire, communicate, store and
process data. In order to increase reliability and reduce complexity, research pro-
totypes [1, 2] as well as commercial systems1 now implement a tiered approach
where motes run simple, standard data acquisition programs while complex ser-
vices are implemented on gateways. These data acquisition programs are either
a black box (Arch Rock), or the straightforward composition of building blocks
such as sample, compress, store, route (Tenet). This approach increases relia-
bility because the generic programs are carefully engineered, and reused across

1 See http://www.archrock.com
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deployments. This approach reduces complexity because a system integrator does
not need to write embedded programs to deploy a sensor network application.

Such programs need to be portable to accommodate different types of motes.
First, a program might need to be ported to successive generations of motes.
Indeed, hardware designers continuously strive to develop new motes that are
cheaper, and more power efficient. Second, a program might need to be ported
simultaneously to different types of motes, as system integrators need various
form factors or performance characteristics.

Handzicki, Polastre et al.[5] address the issue of portability when they de-
signed TinyOS 2.0 Hardware Abstraction Architecture. They defined a general
design principle, that introduces three layers:

1. Mote Hardware: a collection of interconnected hardware components (typi-
cally MCU, flash, sensors, radio).

2. Mote Drivers: Hardware-specific software that exports a hardware indepen-
dent abstraction (e.g., TinyOS 2.0 define such Hardware Independent Layer
for the typical components of a mote).

3. Cross-Platform Programs: the generic data acquisition programs that orga-
nize sampling, storage and communication.

We rely on these three layers to reason about mote performance. Whether
motes are deployed for a limited period of time in the context of a specific
application (e.g., a scientific experiment), or in the context of a permanent in-
frastructure (e.g., within a building), power consumption is the key performance
metric. Motes should support data acquisition programs functionalities within a
limited power budget. We focus on the following questions:

1. What mote hardware to pick for a given program? The problem is to explore
the design space and choose the most appropriate hardware for a given pro-
gram without having to actually benchmark the program on all candidate
platforms.

2. What is a mote hardware good for? The problem is to characterize the type
of program that is well supported by a given mote hardware.

3. Is a driver implemented efficiently on a given hardware? The problem is to
conduct a sanity check to control that a program performs as expected on a
given hardware.

We are facing these questions in the context of the Hogthrob project, where
we design a data acquisition infrastructure. First, because of form factor and cost,
we are considering a System-on-a-Chip (SoC) as mote hardware. Specifically, we
want to investigate whether Sensinode Nano, a mote based on Chipcon’s CC2430
SoC, would be appropriate for our application. More generally, we want to find
out what a CC2430 mote is good for, i.e., what type of applications it supports
or does not support well. Also, we had to rewrite all drivers to TinyOS 2.0
on CC2430, and we should check that our implementation performs as well as
TinyOS 2.0 core. Finally, we would like to use Sensinode Micro as a prototyping
platform for our application as its toolchain is easier and cheaper to use (see
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Section 3.2 for details). We would like to run our application on the Micro,
measure performance, and predict the performance we would get with the Nano.

In this paper, we propose a vector-based methodology to study mote perfor-
mance. Our hypothesis is that energy consumption on a mote can be expressed
as the scalar product of two performance vectors, one that characterize the mote
(hardware and drivers), and one that characterize the cross-platform application.
Using this methodology, we can compare motes or applications by comparing
their performance vectors. We can also predict the performance of an applica-
tion on a range of platforms using their performance vectors. This method will
enable sensor network designers answer the questions posed above. Specifically,
our contribution is the following:

1. We adapt the vector-based methodology, initially proposed by Seltzer et
al.[4], to study mote performance in general and TinyOS-based motes in
particular (Section 3).

2. We conduct experiments with two types of motes running TinyOS 2.0:
Sensinode Micro and CC2430. We ported TinyOS to these platforms (see
Section 4).

3. We present the results of our experiments (Section 5). First, we test the
hypothesis underlying our approach. Second, we compare the performance
of the Micro and CC2430 motes using their hardware vectors. Finally, we
predict the performance of generic data acquisition programs from the Micro
to the CC2430.

2 Related Work

Typically, analytical models, simulation or benchmarking are used to study the
performance of a program [3]. In our opinion, simulation is best suited for rea-
soning about the performance and scalability of protocols and algorithms, not to
reason about the performance of an application program on a given mote hard-
ware. Indeed, simulators are best suited when they abstract the details of the
hardware and driver layers. Standard benchmarks fall into two categories: ap-
plication benchmarks (SPEC, TPC), or microbenchmarks (lmbench)2. There is
no such standard benchmark for sensor networks. Micro benchmarks have been
defined for embedded systems (EEMBC), but they focus at the automotive and
consumer electronics markets – they do not tackle wireless networking or sensing
issues.

The vector-based methodology proposed by Setlzer et al.[4] has been used
to characterize the performance of web servers, OS utilities and Java Virtual
Machines. Our paper is the first to propose this methodology in the context of
sensor networks.

Performance estimation is of the essence for real-time embedded systems.
The focus there is on timing analysis, not so much on energy consumption. We
share a same goal of integrating performance estimation into system design [8].

2 See http://www.tpc.org, http://www.spec.org, http://www.bitmover.com/lmbench,
and http://www.eembc.org/ for details about these benchmarks.
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In the context of sensor network, our work follows-up on the work of Jan
Beutel that defined metrics for comparing motes[9]. Instead of using data sheets
for comparing mote performance, we propose to conduct application-specific
benchmarks.

Our work is a first step towards defining a cost model for applications running
on motes. Such cost models are needed in architectures such as Tenet [1] or
SwissQM [2] where a gateway decides how much processing motes are responsible
for. Defining such a cost model is future work .

3 Vector-Based Methodology

The vector-based methodology[4], consists in expressing overall system perfor-
mance as the scalar product of two vectors:

1. A system-characterization vector, which we call mote vector and denote
MV . Each component of this vector represents the performance of one prim-
itive operation exported by the system, and is obtained by running an ap-
propriate microbenchmark.

2. An application-characterization vector, which we call application vector
and denote AV . Each component of this vector represents the application’s
utilization of the corresponding system primitives, and is obtained by instru-
menting the API to the system primitive operations.

Our hypothesis is that we can define those vectors such that mote perfor-
mance can be expressed as their scalar product:

Energy = MV ·AV

Our challenge is to devise a methodology adapted to mote performance. The
issues are (i) to define the mote vector components, and the microbenchmarks
used to populate them, and (ii) to define a representative application workload,
to collect a trace from the instrumented system API, and to convert an applica-
tion trace into an application vector.

3.1 Mote Vector

We consider a system composed of the mote hardware together with the mote
drivers. The primitive operations exported by such a system are:

– CPU duty cycling: the network embedded programs that mainly sleep and
process events need to turn the CPU on and off3.

– Peripheral units: controlled through the hardware-independent functions
made available at the drivers interface.

3 Note that we assume that the mote hardware relies on a single CPU to control all
peripheral units. Peripheral units such as digital sensors might include their own
micro-controller. Our assumption simply states that a mote program is run on a
single CPU.
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We choose this system because its interface is platform-independent. This has
two positive consequences. First, we can use mote vectors to compare two differ-
ent motes. Second, the application vector is platform-independent. We can thus
use our vector-based methodology to predict the performance of an application
across motes.

The mote vector components correspond to the CPU (when active or idle),
and the peripheral units (as determined by the driver interfaces). Throughout the
paper, we use an associative array notation to denote the mote (and application)
vector components, e.g., MV [active] corresponds to CPU execution, MV [idle]
corresponds to CPU sleep, MV [PUi], correspond to peripheral units primitives
where PUi is for example ADC sample, flash read, flash write, flash erase, radio
transmit, radio receive.

We need to define a metric for the vector components. The two candidates
are energy and time. We actually need both: (a) energy to compute the scalar
product with the application vector and thus obtain mote performance, and (b)
time to derive the platform-independent characteristics of an application (see
Section 3.2). We thus need to define a microbenchmark for each mote vector
component for which we measure time elapsed and energy spent. We distinguish
between the energy mote vector, noted MVe, and the time mote vector, noted
MVt.

The microbenchmarks must capture the performance of the system’s primi-
tive operations. The first problem is to represent CPU performance. The most
formidable task for the CPU in a sensor network application is to sleep. This
is why we distinguish sleep mode from executing mode in the mote vector. For
the applications we consider, a single sleep mode is sufficient. Defining a mi-
crobenchmark to define the energy spent in sleep mode is trivial. However, we
wish to use the time mote vector to compare the time spent in sleep mode by
different motes. Intuitively, the time spent in sleep mode is a complement of the
time spent processing. As an approximation, we thus consider that MVt[idle] is
the complement of MVt[active] with respect to an arbitrary time period (fixed
for all mote vectors), and that MVe[CPUsleep] corresponds to the energy spent
in sleep mode during that time.

The second problem is to define an appropriate representation of CPU per-
formance (in executing mode). Unlike peripheral units, for which drivers define
a narrow-interface, the CPU has a rich instruction set. It is non-trivial to es-
timate the CPU resources used by a given application as it depends on the
source code and on the way the compiler leverages the CPU instruction set. We
choose a simple approach where we use a microbenchmark as a yardstick for the
compute-intensive tasks of an application. We thus represent CPU performance
using a single vector component. There is an obvious pitfall with this approach:
we assume that the distribution of instructions used by the microbenchmark is
representative of the instructions used by the application. This is unlikely to be
the case. We use this simple approach, despite its limitation, as a baseline for
our methodology because we do not expect CPU utilization to have a major
impact on energy consumption. Our experiments constitute a first test of this
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assumption. Obviously much more tests are needed, and devising a more precise
estimation of CPU utilization is future work.

The third problem related to the microbenchmarks is that driver interfaces
often provide a wide range of parameters that affect their duration and energy
consumption. Instead of attempting to model the complete range of parameters,
we define microbenchmarks that fix a single set of parameters for each peripheral
unit primitive. Each peripheral unit microbenchmark thus corresponds to calling
a system primitive with a fixed set of parameters, e.g., a microbenchmark for
radio transmit will send a packet of fixed length, and a microbenchmark for ADC
sampling will sample once at a fixed resolution. We believe that this models the
behavior of sensor network application that typically use a fixed radio packet
length or a particular ADC resolution. This method can trivially be expanded
by defining a vector component per parameters (e.g., replacing radio transmit
with two components radio transmit at packet length 1 and radio transmit at
packet length 2 ).

For the sake of illustration, let us consider a simplistic mote with a subset
of the TinyOS 2.0 drivers, that only exports two primitives: ADC sample and
radio transmit (tx). The associated time mote vectors will be of the form:

MVt =




active
idle
adc
tx




Where the mote vector components correspond to the time spent by the
mote running the CPU microbenchmark, to the time spent in sleep mode (the
complement of the time spent running the CPU benchmark with respect to an
arbitrary time period that we set to 20 s), to the time spent running the ADC
benchmark, and to the time spent running the transmit benchmark.

In order to express mote performance as the scalar product of the energy
mote vector and the application vector, we need the components of the mote
vectors to be independent. This is an issue here, because CPU is involved when-
ever peripheral units are activated. Our solution is to factor CPU usage in each
peripheral unit component. As a consequence, the mote vector component cor-
responding to CPU performance (active) must be obtained without interference
from the peripheral units. Another consequence is that we need to separate the
CPU utilization associated to peripheral units from the pure computation, when
deriving the platform-independent characteristics of an application. We thus reg-
ister CPU time when benchmarking each peripheral unit primitive. We denote
them as CPU [PUi] for each peripheral unit primitive PUi.

We detail in the next Section, how we use those measurements when deriving
the application vector from a trace.

3.2 Application Vector

Our goal is to characterize how an application utilizes the primitives provided
by the underlying system. The first issue is to define a workload that is repre-
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sentative of the application. In the context of sensor networks, workload charac-
terization is complicated (i) because motes interact with the physical world and
(ii) because the network load on a mote depends on its placement with respect
to the gateway, and (iii) because different motes play different roles in the sensor
network (e.g., in a multihop network a mote located near the gateway deals with
more network traffic than a mote located at the periphery of the network).

We consider that a sensor network application can be divided into representa-
tive epochs that are repeated throughout the application lifetime. For example,
the application we consider in the Hogthrob project consists of one data ac-
quisition epoch4, where an accelerometer is sampled at 4 Hz, the samples are
compressed, stored on flash when a page is full, and transmitted to the gateway
when the flash is half-full. While sampling is deterministic, such an epoch is non-
deterministic as compressing, storing or transmitting depends on the data being
collected, and on the transmission conditions. Obviously, tracing an application
throughout several similar epochs will allow us to use statistics to characterize
these non-deterministic variations.

For each epoch, we trace how the application uses the CPU and the periph-
eral units. More precisely the trace records the total time spent by the mote
in each possible mote state, defined by the combination of active mote vector
components (active that represents the compute-intensive operations, idle that
represents the CPU in sleep mode, and PUi that represents a peripheral unit
interface call). We thus represent the trace as a vector, denoted T . T is of di-
mension 2m, where m is the dimension of the mote vector. Some of the mote
states will not be populated because they are mutually exclusive (e.g., active
and idle), or because the driver interfaces prevent a given combination of active
peripheral units.

Let us get back to the simple example we introduced in the previous section.
The trace vector for an epoch will be of the form:

T =




active
idle
adc
tx
adc & tx

active & adc
active & tx
active & adc & tx

. . .




Now the problem is to transform, for each epoch, the trace vector into a
platform-independent application vector. The application vector, denoted AV ,

4 A sensor network deployed for collaborative event detection will typically consist of
two epochs: one where motes are sampling a sensor and looking for a given pattern
in the local signal, and one where motes are communicating once a potential event
has been detected.

Normalizing Resource Consumption

31



has same dimension m as the mote vector, and each application vector compo-
nent corresponds to the utilization of the system resource as modeled in the mote
vector. The application vector components have no unit, they correspond to the
ratio between the total time a system primitive is used in an epoch, by the time
spent by this system primitive in the appropriate microbenchmark (as recorded
in the time mote vector MVt). Note that if the driver primitive is deterministic,
then the ratio between the total time spent calling this primitive in an epoch
and the microbenchmarking time is equal to the number of times this primitive
has been called. However, drivers typically introduce non-determinism,because
the scheduler is involved or because drivers embed control loops with side effects
(e.g., radio transmission control that results in retransmissions).

We use a linear transformation to map the trace vector onto the application
vector. This transformation can be described in three steps:

1. We use an architecture matrix to map the trace into a vector of dimension
m, the raw total time vector, where each component correspond to the
total utilization of the CPU and peripheral units. The architecture matrix
encodes the definition of each state as the combination of active mote vector
components. Note that this combination depends on the architecture of the
mote. For example, a SPI bus might be shared by the radio and the flash. In
this case, the time spent in a state corresponding to radio transmission and
flash write is spent either transmitting packets or writing on the flash (there
is no overlap between these operations). We assume fair resource arbitration
and consider that both components get half the time recorded in the trace.
In case of overlap between operations, both get the total time recorded in
the trace.
In our simplistic example, assuming that a SPI resource is shared between
the radio and the ADC, the architecture matrix will be of the form:

AM =




1 0 0 0 0 1 1 1
0 1 0 0 0 0 0 0 ...0 0 1 0 1

2 1 0 1
2

0 0 0 1 1
2 0 1 1

2




2. We use a CPU matrix to factor out of the active component the time spent
by the CPU controlling the peripheral units. The CPU matrix, of dimension
m×m, is diagonal except for the column corresponding to the active compo-
nent. This column is defined as 1 on the diagonal, 0 for the idle component,
and −CPU [k]/MV [k] for all other components. When multiplying the total
time vector with the CPU matrix, we obtain a total time vector where the
active component corresponds solely to the compute-intensive portion of the
application.
Using again our running example, we have a CPU matrix of the form:

CPU =




1 0 −CPU [adc]
MVt[adc]

−CPU [tx]
MVt[tx]

0 1 0 0
0 0 1 0
0 0 0 1



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3. We use the time mote vector to derive the application vector. The basic idea
is to express the application utilization of the system primitive as the ratio
between total time per component, and the time spent running a benchmark.
We define the inverse mote vector, MV −1, as a vector of dimension m where
each component is the inverse of the time mote vector component (this in-
verse is always defined as the time mote vector components are always non
zero). We define the application vector as the Hadamard product of total
time vector with the inverse mote vector.
With our running example, we obtain the equation:




totalactive/MVt[active]
totalidle/MVt[idle]
totaladc/MVt[adc]
totaltx/MVt[tx]


 =




totalactive
totalidle
totaladc
totaltx


 ◦




1/MVt[active]
1/MVt[idle]
1/MVt[adc]
1/MVt[tx]




More generally, we derive the application vector from the trace vector using
the following linear transformation:

AV = (CPU× (AM× T )) ◦MV −1

And we obtain the mote performance as the scalar product of the application
vector with the energy mote vector:

E = AV ·MVe

4 Implementation in TinyOS 2.0

We applied our vector-based methodology to two motes: Sensinode Micro, a
Telos-like mote, and CC2430, which is the basis for a new generation of com-
mercial motes5. We ported TinyOS 2.0 on both platforms.

4.1 CC2430 and Sensinode Micro

As a SoC Chipcon’s CC24306 has a small form factor (7x7 mm) and promises
to be mass-produced at a lower price than complex boards. Motes built around
the CC2430 might constitute an important step towards reducing the price of
sensor networks. The CC2430 is composed of the 8051 MCU with a wide range of
common on-chip peripherals as well as an 802.15.4 radio very similar to the Texas
Instruments CC2420. We run the system at 32 MHz. The CC2430 differs from
the platforms on which TinyOS has been implemented so far in two important
ways: the system architecture and the interconnect to the radio.

The Intel 8051 MCU architecture was designed in the early eighties and many
oddities from the era remain. Not only is it an 8 bit, CISC style processor with a

5 We experimented with a CC2430 development kit. Using commercial systems based
on CC2430, such as Sensinode Nano, is future work.

6 For details, see CC2430 data sheet: http://focus.ti.com/lit/ds/symlink/cc2430.pdf
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Harvard architecture7, but the main memory is further subdivided into separate
address spaces that differ in size, are addressed differently and vary in access
time. Simply put, the 8051 defines a fast memory area limited to 256 bytes,
and a slow memory area of 8 KiB. In addition to variables, the fast access area
contains the program stack. This limits the program stack to less than 256 bytes
depending on the amount of variables in this area. Commonly, activation records
of functions are placed on the stack, thus potentially limiting the call depth
critically. To circumvent this problem, the compiler places stack frames in the
slow data area, which imposes a high cost for storing and retrieving arguments
that do not fit in registers when calling a function. The slow access RAM also
penalizes dynamic memory allocation, and context switches and thus favor an
event-based OS with static memory allocation such as TinyOS.

Because CC2430 is a SoC, there is no bus between the MCU and the radio.
The MCU controls the radio via special function registers (instead of relying on
a SPI bus as it is the case on Telos and Micro motes for example). The other
peripheral units (ADC, UART, timers, flash, and pins) are accessed in the 8051
MCU as in other micro-controllers such as the MSP or Atmega.

The Sensinode Micro is built around the 16 bit, RISC style MSP430 MCU
with combined code and memory spaces (Von Neuman). The platform can run
up to 8 MHz, but we choose 1 MHz in our experiments. Apart from the built
in common peripherals of the MSP, it features the Texas Instruments CC2420
radio which is connected though an SPI bus.

4.2 TinyOS 2.0 on CC2430 and Micro

TinyOS 2 has been designed to facilitate the portability of applications across
platforms. First, it is built using the concept of components that use and pro-
vide interfaces. TinyOS is written in nesC, an extension of C that supports
components and their composition. Second, TinyOS implements the Hardware
Abstraction Architecture[5]. For each hardware resource, a driver is organized
in three layers: the Hardware Presentation Layer (HPL) that directly exposes
the functions of the hardware component as simple function calls, the Hard-
ware Abstraction Layer (HAL) that abstracts the raw hardware interface into
a higher-level but still platform dependent abstraction, and the Hardware In-
dependent Layer (HIL) that exports a narrow, platform-independent interface.
The TinyOS 2.0 core working group has defined HIL for the hardware resources
of typical motes: radio, flash, timer, ADC, general IO pins, and UART.

Porting TinyOS 2.0 on CC2430 consisted in implementing these drivers8. For
the timers, pins, UART and ADC we used the TinyOS HIL interfaces, however
for the Radio and Flash diverge from the common interfaces.

Radio We export the radio using a straightforward SimpleMac interface. This
interface is well suited for the 802.15.4 packet-based radios of the CC2430.

7 Code and data are located in separate memory space
8 For details, see http://www.tinyos8051wg.net
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It allows to send and receive packets, and set various 802.15.4 parameters as
well as duty cycling the radio. Note that we depart from the Active Message
abstraction promoted by the TinyOS 2.0 core working group. Our SimpleMac
implementation supports simple packet transmission, but does not provide
routing, or retransmission. Implementing Active Messages is future work.

Flash We export the flash using the SimpleFlash interface that allows to read
and write an array of bytes, as well as delete a page from flash. Note that this
interface is much simpler than the abstractions promoted by the TinyOS 2.0
core working group (volumes, logging, large and small objects). We adopted
this simple interface because it fits the needs of our data acquisition appli-
cation. Implementing the core abstractions as defined in TEP103 is future
work.

Timer The timers are exported using the generic TinyOS Timer interfaces
Alarm and Counter. These two interfaces give applications access to hard-
ware counters and allows the use of the TinyOS components to extend the
timer width from 16 bit to 32 bit. Note that on the pre-release CC2430 chips
we used for our experiments, timers do not work properly9.

ADC The Analog-to-Digital Converter is accessed through the core Read in-
terface that allows to read a single value. In order to read multiple values,
an application must issue multiple read calls or use DMA transfers.

Pins The General IO pins are exported through the core GeneralIO interface,
that allows to set or clear a pin, make it an input or an output.

UART The UART is exported using the core SerialByteComm interface (that
sends and receives single bytes from the UART) and StdOut interfaces (that
provides a printf-like abstraction on top of SerialByteComm.

Note that we did not need to change the system components from TinyOS 2.0.
However, supporting a sleep mode on the CC2430 requires implementing a low-
frequency timer. On the pre-release CC2430 chips we used for our experiments,
timers do not work properly. This is work in progress, as a consequence our
experiments are conducted without low-power mode on the CC2430.

The main challenges we faced implementing TinyOS 2.0 drivers on CC2430
were to (i) understand the TEP documents that describe the core interfaces as
we were the first to port TinyOS 2.0 on a platform that was not part of the core,
and (ii) to define an appropriate tool chain. Indeed, the code produced by the
nesC pre-compiler is specific to gcc, which does not support 8051. We had to (a)
choose another C compiler (Keil), and (b) introduce a C-to-C transformation
step to map the C file that nesC outputs into a C file that Keil accepts as
input (e.g., Keil does not support inlining, the definition of interrupt handlers is
different in Keil and gcc, Keil introduces compiler hints that are specific to the
8051 memory model). The details of our toolchain are beyond the scope of this
paper, see [6] for details.

Because the Micro has many similarities with the Telos mote, on which
TinyOS 2.0 was originally developed, porting porting TinyOS 2.0 was a sim-

9 The timers miss events once in a while. This error is documented on a ChipCon
errata, which is not publically available.
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ple exercise. However, the wiring of the radio does not feature all of the signals
available on the Telos mote, meaning that the radio stack could not be reused.
We implemented the simple MAC layer, SimpleMac, and simple flash layer Sim-
pleFlash described above.

4.3 Mote Vectors and Benchmarks

The vector component are chosen by analyzing the components used by the ap-
plications. As a result, we choose the following components for their mote vectors:
active, idle, adc, radio receive, radio transmit, flash read, flash write, and
flash erase. Doing so, we leave some of the peripheral unit primitives out of
the mote vector (e.g., the primitives to set or get the channel on the 802.15.4
radio) and unused peripherals. The time spent executing primitives left out are
factored as CPU execution time, while the unused peripherals are only consid-
ered to contribute the idle power consumption. We also leave timers, UART and
general IO pins out of the mote vector. The time spent in the timers is factored
in the CPU idle component. We leave general IO pins out because we do not use
LEDs, or digital sensors. Similarly, we do not use the UART. Note that we do
not consider a specific sensor connected to the ADC.

The benchmarks we defined for these mote vector components are:

– A compression algorithm to characterize CPU execution. This component
contains a mix of integer arithmetic with many loads and stores and some
function calls. Using this algorithm is a baseline approach.

– Simple function calls with a fixed parameter for each peripheral unit primi-
tive10. Note that benchmarks, in particular for the radio and flash, contain
some buffer manipulation. These are measured as CPU [PUi] (see Section
2.1).

4.4 TinyOS API Instrumentation

We need to implement the CPU and peripheral units to collect the traces that are
the basis for the application vectors. We implemented the following mechanisms:

– For the peripheral units, we introduce a platform-independent layer between
the component that provides the driver interface and the component that
uses it. As an example consider reading a value from the ADC using the
TinyOS 2.0 Read interface. This interface starts an ADC conversion with a
Read command and returns with a readDone, We insert a layer that records
the time elapsed between the Read command is called and the readDone
event is received. This is obviously an approximation of the time during
which the ADC is actually turned on.

– For the CPU, we leverage the fact that TinyOS has a simple task scheduler
that puts the CPU into sleep mode when the task queue is empty. The
microprocessor is awoken via interrupts generated from internal or external

10 The source code is available through the TinyOS 2 contribution section
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peripherals. We record the time elapsed between the CPU enters sleep mode
and the woke-up interrupt handler is executed as idle and the rest of the
time as active.

In order to collect this trace, we encode each state as a combination of bits
(our mote vector is of dimension 8) we thus use 8 bits to encode the states.
Collecting this trace could be done internally on the mote being investigated, but
this introduces a management overhead. Instead we output each bit of the state
as an IO pin, using a second mote, which we call LogRecorder, that records the
state transitions. This mechanism is very similar to the monitoring techniques
devised for deployment-support networks[7].

4.5 Data Acquisition Applications

We use simple data acquisition applications as workload for our experiments. We
build them from building blocks: sample, compress, store, and send. We create
4 applications that increase the parallel behavior of these tasks from isolation to
parallel sample and transmission:

SampleCompressStore is a simple state machine, that runs each step in isola-
tion. As each sample is retrieved, it is then compressed, and once 10 samples
are retrieved they are stored to flash. This cycle is repeated 9 times.

DataAcquisition extends the state machine from SampleCompressStore to re-
trieve the data from flash and transmit it. Again, each step in isolation.

SampleStoreForward is similar to DataAcquisition, except without the com-
pression step.

DataAcquisitionAdv performs the same tasks as DataAcquisition, but inter-
leaves the sample and transmit processes. Store is done in isolation.

For our first experiments, we want a deterministic workload that exhibits
reproducible results. One important source of variance in a sensor network ap-
plications is the environment. We choose a simple network topology and trans-
mission scheme. Data is transmitted in 384 byte chunks (data and padding).
The transmission does not expect acknowledgment that a packet is received, but
only wait for the channel to be cleared (CCA) before sending. Sampling is at
10Hz and for compression we use the Lz77 algorithm.

5 Experimental Results

5.1 CC2430 and Micro

We ran the benchmarks described in the previous section on both the Micro
and CC2430 motes. The time and energy mote vectors we obtain are shown in
Figure 1 as spider charts. The results are somewhat surprising. CC2430 is much
faster than the Micro when running the benchmarks and transmitting packets.
Slow memory accesses is compensated by the high clock rate and direct access to
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Fig. 1. Time and energy mote vectors for CC2430 and Micro

the radio speeds up packet transmission. It means that the CC2430 can complete
its tasks quickly, and thus be aggressively duty cycled. In terms of energy, we
observe that:

1. CPU operations are two to three orders of magnitude more expensive on
the CC2430 than on the Micro. This is due to the high clock rate (which
guarantees fast execution) and to the overhead introduced by the slow access
RAM.

2. Flash operations are much more expensive on the Micro than on the CC2430.
These results led us to check our driver implementation (which is a positive
results in itself). We could not find any bug. We believe that the difference
in performance can be explained by the difference in clock rate between both
platforms (1 MHz for the Micro vs. 32 MHz for the CC2430) and with the
fact that the CC2430 driver is hand coded in assembler and the Micro’s is
not.

5.2 Performance Prediction

We used our methodology to derive the application vectors for the four data
acquisition applications described in the previous Section. The results are shown
in Figure 2.

The profiles we get for the applications correspond to what we expect. Indeed,
the application vector components for the ADC, flash and radio operations corre-
spond roughly to the number of samples, flash and radio operations issued by the
applications. The application vector is designed to be platform-independent. We
thus expect that the application vectors derived from the CC2430 and Micro are
similar. The good news is that they are at the exception of the ADC component.
This is either a measurement error, a software bug in the driver, or a hardware
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bug. We focused on this issue and observed that the time it takes to obtain a
sample on CC2430 varies depending on the application. Two different programs
collecting the same data through the same ADC driver experience different sam-
pling times. We observed as much as 50% difference between two programs. We
believe that this is another hardware approximation on the CC2430.
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Fig. 3. Energy measurements and estimates

Our initial hypothesis is that the energy spent by an application on a mote
can be estimated using the scalar product of the application vector with the mote
vector. We computed the energy estimate for the DataAcquisitionAdv application
and we compared them to the measurements we conducted directly on the motes
(using an oscilloscope). The results are shown in Figure 3.

The estimations are well into an order of magnitude from the actual energy
consumption. This is rather positive. As expected, the contribution from the
CPU in active mode is insignificant. The poor performance of the CC2430 is
due to the fact that we did not implement sleep mode support on the CC2430.
Much more work is needed to test our methodology. This experiment, however,
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shows that we can use our method to prototype a data acquisition application
with the Micro and predict how much energy the CC2430 would have used in
the same conditions.

6 Conclusion

We described a vector-based methodology to characterize the performance of an
application running on a given mote. Our approach is based on the hypothesis
that mote energy consumption can be expressed as the scalar product of two vec-
tors: one that characterize the performance of the core mote primitives, and one
that characterizes the way an application utilizes these primitives. Our experi-
ments show that our methodology can be used for predicting the performance
of data acquisition applications between Sensinode Micro and a mote based on
the CC2430 SoC. Much more experimental work is needed to establish the lim-
its of our approach. Future work includes the instrumentation of an application
deployed in the field in the context of the Snowths project, and the development
of a cost model that a gateway can use to decide on how much processing should
be pushed to a mote.
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Chapter 4

Anomaly Detection

In experimental science, consistency in the data collection process is key to
a successful deployment. Equipment errors and faulty measurements must
be detected quickly in order to avoid data loss. However, discovering faulty
equipment is not trivial because faulty measurements can seem perfectly
valid and pass through the sensornet the same way as valid data, and not be
detected until post-processing.

A comprehensive list of measurement faults typically encountered in sensor-
nets have been presented by Ni et al. [5]. Generally, measurement faults can
be divided in two categories: permanent and temporary. For the permanent
faults, all subsequent measurements from the same sensor or mote will result
in faulty measurements and the only remedy is to replace the defective com-
ponent. For temporary faults subsequent measurements from the same sensor
and mote might be completely valid. Depending on the frequency of these
faults, faulty measurements can be remedied by immediately resampling the
sensor once the error has been detected.

The ability to collect consistent data thus depends on how quickly missing
or faulty measurements can be identified and how fast this can be reme-
died. However, not all sensornets allow a swift response. Especially gateway
based sensornets with a high duty-cycling or bad network connectivity are
particularly vulnerable.

For example, in the Life Under Your Feet project, by Musăloiu-E. et al. [4],
a sensornet collects temperature and moisture measurements, stores them
locally, and periodically offloads them to a gateway. This sensornet is highly
duty-cycled, with motes being out of contact with the gateway for weeks.
Hence, the time to detect faulty measurements can be of this order of mag-

41



Chapter 4

nitude, and resampling faulty sensors is not an option even though the fault
might have been temporary.

The zebra monitoring project ZebraNet by Huang et al. [3] was also exposed
to this flaw. However, in this sensornet the latency was due to missing
network connectivity because of the zebras’ movement and not duty-cycling.

In order to reduce the impact of temporary faulty equipment it is necessary
to detect faults as quickly as possible. Preferably, measurements should be
checked right after they are sampled on the mote and a watchdog should
ensure that faulty measurements are resampled immediately, in case they
are temporary. Otherwise, an alert should be raised in order for the defect
component to be replaced.

The question is, how do we detect faulty measurements on the mote? In
”Mote-Based Online Anomaly Detection Using Echo State Networks” we
present a machine learning based data processing framework, where mea-
surements that deviate significantly from a training set is characterized as
anomalies. This framework is based on a Neural Network variant, small and
lightweight enough to be implemented on a mote. The paper was presented at
the 5th IEEE International Conference on Distributed Computing in Sensor
Systems, 2009.

We subsequently augmented this framework with a Bayesian Network based
machine learning algorithm, which proved to be superior in terms of execution
speed and storage requirements. We present our findings in ”Mote-Based
Anomaly Detection” which has been submitted to the ACM Transactions on
Sensor Networks journal and is currently under review. Both papers have
been made in collaboration with Andreas Terzis and Philippe Bonnet.

This approach of combining faults and events into a unified anomaly de-
tection framework is different from detection techniques previously used in
sensornets, such as those presented by Greenstein et al. [1] and Sharma et
al. [7], which rely on a set of heuristics tailored to specific faults and events.

Although these heuristics are efficient in terms of processing speed and stor-
age requirements, and effective on their respective fault or event, Gupchup
et al. [2] pointed out that they are also susceptible to misclassification as
well, where faults are misclassified as events and vice versa. We avoid this
misclassification problem by basing our framework on machine learning al-
gorithms, which have the ability to generalize over the training data and
classify everything else as anomalies.

The caveat of using machine learning is the availability of training data. In
deployments where historic data is available training sets can easily be con-
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structed, however, in new deployments where measurements have yet to be
obtained the options are limited. In this case, one have to settle with artificial
training sets based on models, bootstrapping the training during the deploy-
ment, or using human assisted learning similar to Suelo by Ramanathan et
al. [6].

In the Hogthrob deployments, such a watchdog could have been used to
minimize data loss due to the storage being full. This could have been done
by defining inactivity periods caused by the sow sleeping to be anomalous
and let the watchdog action be not to store this data.

Bibliography

[1] B. Greenstein, C. Mar, A. Pesterev, S. Farshchi, E. Kohler, J. Judy,
and D. Estrin. Capturing high-frequency phenomena using a bandwidth-
limited sensor network. In SenSys ’06: Proceedings of the 4th interna-
tional conference on Embedded networked sensor systems, pages 279–292,
New York, NY, USA, 2006. ACM.

[2] J. Gupchup, A. Sharma, A. Terzis, R. Burns, and A. Szalay. The Perils of
Detecting Measurement Faults in Environmental Monitoring Networks.
In DCOSS, 2008.

[3] P. Huang, H. Oki, Y. Wang, M. Martonosi, L. Peh, and D. Rubenstein.
Energy-efficient Computing for Wildlife Tracking: Design Tradeoffs and
Early Experiences with ZebraNet. In Proceedings of the Tenth Inter-
nationla Conferece on Architectural Support for Programming Languages
and Operating Systems (ASPLOS-X), Oct. 2002.
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Abstract. Sensor networks deployed for scientific data acquisition must
inspect measurements for faults and events of interest. Doing so is cru-
cial to ensure the relevance and correctness of the collected data. In this
work we unify fault and event detection under a general anomaly de-
tection framework. We use machine learning techniques to classify mea-
surements that resemble a training set as normal and measurements that
significantly deviate from that set as anomalies. Furthermore, we aim at
an anomaly detection framework that can be implemented on motes,
thereby allowing them to continue collecting scientifically-relevant data
even in the absence of network connectivity. The general consensus thus
far has been that learning-based techniques are too resource intensive to
be implemented on mote-class devices. In this paper, we challenge this
belief. We implement an anomaly detection algorithm using Echo State
Networks (ESN), a family of sparse neural networks, on a mote-class
device and show that its accuracy is comparable to a PC-based imple-
mentation. Furthermore, we show that ESNs detect more faults and have
fewer false positives than rule-based fault detection mechanisms. More
importantly, while rule-based fault detection algorithms generate false
negatives and misclassify events as faults, ESNs are general, correctly
identifying a wide variety of anomalies.

Keywords: Anomaly detection, Real-time, Wireless Sensor Networks

1 Introduction

Sensor networks deployed to collect scientific data (e.g., [1–3]) have shown that
field measurements are plagued with measurement faults. These faults must be
detected to prevent pollution of the experiment and waste of network resources.
At the same time, networks should autonomously adapt to sensed events, for ex-
ample by increasing their sampling rate or raising alarms. Events in this context
are measurements that deviate from “normal” data patterns, yet they represent
features of the underlying phenomenon. One such example would be rain events
in the case of soil moisture.

The problem is that algorithms which classify measurements that deviate
from the recent past as faulty tend to misclassify events as faults [4]. This be-
havior is undesirable because, unlike faults which must be discarded, events are
the most important data that a mote collects, as they inform scientists about the
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characteristics of the observed environment. Furthermore, detection algorithms
tailored to specific types of faults lead to false positives when exposed to multiple
types of faults [4].

In this work we unify fault and event detection under a more general anomaly
detection framework, in which online algorithms classify measurements that sig-
nificantly deviate from a learned model of data as anomalies. By including punc-
tuated, yet infrequent events in the training set we avoid the misclassification
problem mentioned above thus allowing the system to distinguish faults from
events of interest. More importantly, this learning-based technique can effectively
detect measurement sequences that contain multiple categories of anomalies that
do not exist in the training data.

Obviously anomaly detection can and should also be done on a gateway that
correlates data from multiple sensors. Nonetheless, we claim that online detection
on motes is also very much relevant. We motivate this need through an example
derived from one of our ongoing projects [5]. Consider a set of motes deployed
under the surface of a lake with limited physical access. These motes are con-
nected to a floating buoy via acoustic modems which can be non-functional over
long periods of time, either because the buoy is out of communication range or
due to background noise in the lake. The motes should be able to autonomously
alter their sensing behavior depending on whether the collected measurements
are seemingly faulty or correspond to interesting events. For example, faulty
measurements should be replaced in a timely manner by new measurements
while interesting events should trigger sampling rate increases.

In summary, the contributions of this paper are as follows: (1) we develop
an anomaly detection framework based on the Echo State Network (ESN) [6].
(2) We implement this framework on a mote-class device. (3) We quantitatively
compare the ESN with two rule-based fault detection techniques. Specifically, we
show that an ESN small enough to function alongside a fully-functional environ-
mental monitoring mote application, is still more sensitive to subtler faults and
generates fewer false positives than the two rule-based fault detection techniques.

2 Related Work

Anomaly characterization and detection has received significant attention in the
sensor network community, yielding a broad range of algorithmic approaches.
Probabilistic Principal Component Analysis [7], geometric algorithms [8], and
Support Vector Machines [9], detect anomalies by partitioning data into subsets
and subsequently identifying outliers. However, the temporal relations among
data points are lost in such partitioning. We seek a solution that not only con-
siders each data point in isolation, but also the context in which it appears.

Rashidi et al. recast the problem above as a pattern recognition problem
and built a framework for pattern mining and detection [10], while Röemer used
conditional rules to define anomalies [11] . However, neither of these solutions
operate directly on raw measurements. Rather they rely on simple rules and
thresholds to annotate the data with descriptive labels. The accuracy of both
methods thereby depends on those labeling algorithms.
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Sensor networks have extensively used rule- and threshold-based anomaly
detection schemes due to their simplicity. For example, Werner-Allen et al. used
threshold rules over Exponentially Weighted Moving Averages (EWMA) to de-
tect seismological events [12], while analogous threshold techniques have been
used to detect Cane toads [13] and vehicles [14]. In the context of environmental
monitoring, Sharma et al. proposed two rules to detect faults commonly ob-
served by such applications: Short faults, defined as drastic differences between
two sequential measurements, and Noise faults, defined as periods during which
measurements exhibit larger than normal variations [15]. To detect the former,
the Short rule compares two adjacent data points and classifies the more recent
as faulty when the difference is above a certain threshold. To detect the latter,
the Noise rule considers a sliding window of measurements and flags all mea-
surements in the window as faulty if the standard deviation is above a certain
threshold. While these detection schemes are very resource efficient, their effec-
tiveness is limited. For example, Werner-Allen et al. estimated the accuracy of
their detection technique to be as low as 5%-29% [12]. Moreover, these schemes
also suffer from inherent misclassification problems [4]. We thus seek a solution
based on machine learning.

The use of machine learning as an anomaly detection tool has been proposed
in the context of WSNs. For example, Echo State (neural) Networks [16] and
Bayesian Networks [17] have been proposed for offline gas monitoring, while
Kalman filters have been used for offline sow monitoring [18]. Bokareva and
Bulusu used a Competitive Learning Neural Network (CLNN) for online classifi-
cation [19]. However, the neural network was implemented on a Stargate gateway
rather than a mote-class device. We bridge the gap between online detection and
machine learning by implementing a learning-based technique on a mote.

3 Machine Learning

We propose a classification mechanism that accepts measurements matching a
model as valid and rejects everything else as anomalies, where we define anoma-
lies as the measurements that significantly deviate from learned data. We rely
on machine learning techniques to define our classification model and focus on
supervised learning because our scientific partners are able to provide training
sets that correspond to the data they expect. Such data sets include previously
collected measurements and synthetic data generated by analytical models.

What learning technique should we choose to achieve both accurate anomaly
detection and efficient implementation on a mote-class device? We rule out
Kalman filters, because they base each prediction on a sliding window of ob-
served values instead of a compact model of learned data. Likewise, a Bayesian
network’s graph reduction operation (which is NP-complete) and the model-
ing of probability functions (typically Gaussians), discourage its use on resource
constrained devices. Consequently, we decided to use ESN to meet our require-
ments in terms of classification efficiency (i.e., minimize false classifications) and
resource use (i.e., minimize CPU, RAM, ROM, and energy usage).
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3.1 Neural Networks

A neural network can be informally considered as an approximation function.
Specifically, when presented with a subset of the original function’s value pairs
during the training stage, the neural network generalizes over these data and ap-
proximates the outcome of the original function in the prediction stage. Formally,
a neural network is a weighted directed graph where each vertex represents a
neuron. We consider discrete-time networks consisting of K input neurons, N
hidden neurons, and L output neurons. The input neurons act as sources and
the output neurons as sinks. The value of neuron j is given by: vj = A(

∑
wijvi),

where vi is the output of neuron i, wij is the weight of the edge connecting neu-
ron i to j, and A() is the activation function. This function is typically tanh() or
a similar function. The training stage consists of adjusting the network’s weights
to approximate its output signal to the training signal.

Echo State Networks. In an ESN, all neurons are interconnected (but can
have zero-weighted edges) meaning cycles involving one or more neurons are
allowed. This gives each neuron the capability to remember, adding memory to
the network as a whole. All the neurons’ connections, directions, and weights
are generated randomly and do not change, except for the output weights which
are changed during training. The neurons thus act as a black box referred to
as the Dynamic Reservoir (DR). This property reduces the learning algorithm
to a simple linear regression. According to the Echo State property [6], the DR
contains a set of basis states and by adjusting the output weights it is possible
to capture the ’echoes’ of real states as linear combinations of these basis states.
Although the DR is randomly generated, Jaeger proved that it is possible to
ensure that the DR indeed has the Echo State property by enforcing certain
conditions [6] . One such condition is that the DR must be sparsely connected,
i.e., 10% of all possible connections are actually active.

Anomaly Detection. We use ESNs to determine whether sensor readings
are anomalous by comparing the ESN predictions to the actual measurements.
In order to quantify the prediction error we look at the absolute differences
between the measurements (M) and the predictions (P ), i.e., δ = |M−P |. This
difference should ideally be close to zero for normal data, while anomalous data
should result in large differences (peaks). In other words, the ESN transforms the
original time series into one whose values are∼ 0 most of the time, corresponding
to the expected data. Anomaly detection thus reduces to recognizing the peaks
in the transformed signal. We can then use pattern matching algorithms based
on simple thresholds that have been proven to be both efficient and effective for
such simple signals.

3.2 Discussion

The decoupling of the DR from the output weights enables several optimiza-
tions that fit WSNs particularly well. For example, the same DR can be used
for multiple tasks by storing task-specific output weights and post-deployment
updating can be done without transmitting the entire DR. Also, the require-
ment that the DR is sparsely connected, combined with the use of sparse matrix
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Fig. 1. (a) Q-Q plot of δlab/tanh and δmote/tanh. (b) Q-Q plot of δlab/tl and δmote/tl.

algebra, allows the implementation of ESNs that are larger than regular Feed
Forward networks.

A limitation that ESNs share with all learning algorithms is their dependence
on training data. In particular, if these data do not represent what domain
scientists deem as “normal”, the predictions will be useless. Therefore, the choice
of training sets, and more interestingly the choice of classification technique
based on the available training sets is a very interesting open problem, which
is beyond the scope of this paper. We just note that a key issue in successfully
deploying an ESN lies in the choice and availability of training data. For example,
adjusting the sampling rate in an adaptive sampling environment can change
the properties of the measurement time series and thus possibly invalidate the
training set. This issue can however be remedied, by storing different output
weights for each sampling rate, or by disregarding higher sampling rates when
applying the ESN detection. On the positive side, ESNs have the ability to
generalize over the training data. In other words, ESNs base their predictions
on the trends of the presented data rather than exact values. This feature allows
motes deployed in similar regions to share the same training data instead of
requiring mote-specific training sets.

4 ESN on a Mote

4.1 Implementation

While we create and train the ESNs offline, a complete ESN (including the
network’s activation function, output weights, and the DR) is included in the
application that runs on the mote. We use TinyOS 2.x to ensure portability
to a broad range of mote class devices. Our implementation, publicly available
for download at [20], focuses on feasibility and efficiency: the ESN must be
able to fit in memory and the algorithm must be fast enough to maintain the
desired sampling rate. We present the following three optimizations to improve
performance along these two axes.

Sparse Matrix Algebra. The size of the DR’s weight matrix grows quadrati-
cally with the number of neurons in the reservoir n. However, only 10% of these
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footprint for an ESN using the custom tanhlike activation function.

elements are non-zero because the DR must possess the Echo State property.
We leverage this feature by storing the matrix using Compressed Row Stor-
age [21], which only stores the non-zero elements and the layout of the matrix.
This reduces the necessary storage from O(n2) to O(2nz + n + 1), where nz is
the number of non-zero elements. This technique also reduces the number of
operations needed to perform matrix multiplications by a similar factor since
only non-zero elements are considered.
Single Floating Point Precision. Most mote-class devices rely on software
emulated floating point operations due to lack of dedicated hardware. This con-
tributes to both the storage and runtime overheads. At the cost of reduced
floating point precision we select to store and compute all values using single
instead of double floating point precision. Doing so halves the size of all the
weight matrices and reduces the number of emulated floating point operations
needed. As we later show, the resulting loss of precision is tolerable.
Tanhlike Activation Function. Because the activation function has to be
applied to all the neurons in every iteration, it is important to choose an effi-
cient function. At the same time, choosing a suboptimal activation function can
significantly degrade the ESN’s output quality. The algorithm for the often used
hyperbolic tangent, tanh(), has high complexity requiring both large amounts
of storage and a significant processing time. Because of these shortcomings, [22]
proposed the approximate function:

TL(x) = sign(x)

[
1 +

1

2⌊2n|x|⌋

(
2n |x| − ⌊2n |x|⌋

2
− 1

)]

where n ∈ ZZ determines the steepness of the function. This tanhlike function
has properties similar to tanh() (when n = 1) but with far lower complexity.
However, it is also a non-differentiable, piecewise-linear function because of the
rounding operations (⌊·⌋). Therefore, we expect the quality of the ESN’s output
to be lower than when using tanh(), because small changes in input will result
in large changes in output if these changes happen across a linear junction.

4.2 Evaluation

We verify that our ESN implementation indeed performs well on a mote-class
device by comparing its output to a reference ESN running on a PC. We consider
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Fig. 3. Total execution cost of one ESN iteration divided to three components. (a)
using the GCC built-in tanh() activation function. (b) using the custom tanhlike
activation function.

ESNs which consist of two input signals (with one of the input signals held at
a constant bias value in order to improve performance [23]), a 10-400 neuron
reservoir, and one output signal (i.e., K = 2, N = 10 − 400, and L = 1). All
mote experiments are carried out on a TelosB mote [24], running TinyOS 2.x
with the clock frequency set to the default speed of 4 MHz [25]. Data sets are
stored in ROMwith measurements read with a fixed frequency to simulate sensor
sampling. We use Matlab R2007a with the Matlab toolbox for ESNs [26] as our
reference implementation. We use the Mackey-Glass (MG) time series with a
delay τ = 17 [27] to evaluate our ESN implementation. This system is commonly
used to benchmark time series prediction methods because of its chaotic nature.

Sanity Check. We created a MG time series with 4,000 samples and used
the first 2,000 samples to train a 50 neuron ESN, the next 1,000 samples for
initialization, while the last 1,000 samples were used as the prediction vector
MG. Both the tanh() and tanhlike activation functions were used resulting
in four different predictions: P lab/tanh, Pmote/tanh, P lab/tl, and Pmote/tl. We
compute the four prediction errors and normalized root-mean-squared deviations
(NRMSD).

Figure 1 presents the Q-Q plots [28] of the prediction errors grouped by
activation function. Since the NRMSDs from the same activation function are
almost identical and the points in the Q-Q plots lie on a straight line with slope
one, we conclude that the TelosB ESN implementation has the same accuracy as
the one in Matlab. Also, with an NRMSD less than 1% we see that the 50-neuron
ESN is indeed capable of tracking the MG time series. However, the choice of
activation function has a significant impact on the accuracy of the predictions,
with tanh() being four times more accurate than the tanhlike function. This
supports our claim that the piecewise-linearity of the tanhlike function degrades
performance.

In order to compare the double precision floating point in Matlab with that
of the single precision floating point on the TelosB, we look at the differences be-
tween predictions from the former with the latter when using the same activation
function, i.e., δtanh = P lab/tanh − Pmote/tanh and δtl = P lab/tl − Pmote/tl. We
compute the NRMSDs for both error distributions: NRMSD(δtanh) = 6.6·10−3 %
and NRMSD(δtl) = 1.3 · 10−4 %. Because NRMSD(δtanh) < NRMSD(δlab/tanh)
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and NRMSD(δtl) < NRMSD(δlab/tl) the errors caused by using single precision
floating point are smaller than the errors caused by the ESN predictions. Thus,
using single precision floating point on the TelosB is sufficient.

Performance. In order to explore the implementation’s characteristics, such as
ROM footprint, runtime speed, and accuracy, we vary the number of neurons in
the DR. The ROM usage can be divided into two components: (1) Framework,
the ESN algorithm used for prediction. (2) Weight Matrices, the DR and out-
put weights. Whereas (1) is constant, (2) depends on the number of neurons in
the reservoir. Figure 2a presents the ROM size difference for the two activation
functions and Figure 2b shows the ROM footprint of the aforementioned com-
ponents (using tanhlike). We observe that the memory contribution from the
reservoir grows linearly, confirming the storage requirement of the Compressed
Row Storage (O(2nz+n+1)). Also, the ROM footprint is 1,806 bytes for tanh()
and 368 bytes for tanhlike, making the former five times larger than the latter.

Next we measure the runtime cost of the ESN implementation. For each
iteration, the ESN prediction algorithm performs the following set of operations:
(1) Matrix, matrix-vector multiplication. (2) Activation Function, application
of the activation function. (3) Output, vector-vector multiplication. Figure 3
summarizes the execution time of one prediction step and the contributions
from each of the three operations. Surprisingly, the tanh() activation function is
the most expensive operation and not the matrix-vector multiplication. It takes
28% longer to run than the matrix-vector multiplication and 453% longer than
the tanhlike activation function.

Finally, we look at the prediction error as a function of reservoir size and acti-
vation function. We compare against the MG time series and find the NRMSD(δ)
for the six reservoirs and two activation functions used above. Figure 4 presents
the results of this comparison. As expected, the prediction error decreases as the
reservoir size increases and the tanh() activation function leads to more accurate
predictions in general. Upon closer inspection, there appear to be three distinct
regions relative to the reservoir size: small (10 neurons), medium (50-300 neu-
rons), and large (300-400 neurons). In the small region, the prediction error is
dominated by the small size of the reservoir and the choice of activation function

Chapter 4

52



50 100 150 200
−1

−0.5

0

0.5

1
(a) Short, β=1

Sample No.
50 100 150 200

−1

−0.5

0

0.5

1
(b) Noise, w=100 and β=1

Sample No.

Fig. 6. Two types of injected anomalies: (a) Short faults and (b) Noise faults.

becomes less important. In the medium region there is a diminishing, yet clear
reduction of the prediction error as the reservoir size increases. Finally, in the
large region the prediction error does not decrease by adding neurons to the
reservoir. Interestingly, the largest contribution to the prediction error comes
from the activation function, with no overlap of prediction errors for the 50-400
neuron reservoirs. In fact, even the 50 neuron tanh() reservoir outperforms the
400 neuron tanhlike reservoir.

5 Evaluation

5.1 Experimental Design

The results from the previous section suggest that an ESN can be accurate, small,
and fast enough to be incorporated with an existing data collection application
that has been actively deployed for the past three years [1]. Motes in these
sensor networks collect soil temperature and soil moisture readings every 20
minutes and store them to their onboard flash memory. All measurements are
periodically offloaded over the network and persistently stored in a database.
This environmental sensing application uses 40,824 bytes of ROM and 3,928
bytes of RAM, leaving 8,328 bytes of available ROM and 6,312 bytes of free
RAM on the TelosB. From the previous section we know that a 50-neuron ESN
using the tanhlike activation function has a ROM footprint of 6,788 bytes and a
prediction time of 572 ms for each measurement. Thereby such an ESN complies
with both the storage and computation constraints of the application and will
be used for the remainder of this section.

Anomaly Types. We focus on two types of random anomalies: Short and Noise.
These were defined in [15] and presented in Section 2. Samples of these faults can
be seen in Figure 6. For brevity we only present these two random anomalies;
for the detection of a systematic anomaly and further results we refer to our
technical report [29]. For Short anomalies, we use two parameters to control
their injection: the sample error rate and the amplification factor, β. For each
anomalous measurement, m̃i, we multiply the standard deviation of the original
signal, σ, with β to obtain: m̃i = mi + βσ, where mi is the true measurement.

For Noise anomalies, we use three parameters: the sample error rate, the
period length, w, and the amplification factor, β. For each noisy period, we
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Fig. 7. Environmental sensing data sets. (a) Soil moisture and (b) Soil temperature.

calculate the standard deviation of the underlying signal and multiply it with
β to create a random normal distribution with zero mean and βσ standard
deviation (i.e., N(0, βσ)). We then add samples from this distribution to each
of the true measurements within that period.

Detection Algorithms. We use the two rule-based anomaly detection algo-
rithms defined by [15] and summarized in Section 2 to detect the two anomalies
mentioned above. We use these algorithms as reference as they are directly re-
lated to the anomalies we inject and their complexity is comparable to that
of currently deployed fault detection algorithms. Our strategy for setting the
thresholds is to minimize the number of false positives when the detection algo-
rithms are applied to data sets with no anomalies.

Data Sets. For each of the soil moisture and soil temperature modalities that we
use, we obtain a training and a test data set from the experiment’s database [1].
Each of the four data sets consists of 1,000 data points. Figure 7 illustrates two
such data sets. The data has been automatically sanitized by the database as
a standard procedure for removing anomalies, following the methods proposed
by [15]. By using this preprocessed data (instead of raw data) our results will
not be biased by any anomalies already present in the data stream. Instead, we
can assume that the only anomalies in the data are the ones we explicitly inject,
thereby establishing the ground truth for evaluation purposes.

5.2 Results

Figure 5 illustrates the operation of the ESN anomaly detection algorithm by
presenting the relation between the injected anomalies (Short β = 1; Noise β = 1
and w = 20), the temperature measurements – including the artificially added
anomalies, the prediction error δ, and the detected anomalies. Notice that the
prediction error is indeed an almost constant signal overlaid with large peaks co-
inciding with the injected faults. When not injected with anomalies we find that
NRMSD(δTemp) = 2.4% and NRMSD(δMoist) = 4.4% for the temperature and
moisture data set respectively. This accuracy is of the same order of magnitude
as the one [16] found when tracking gas measurements, meaning that our online
implementation is indeed comparable to the offline counterpart.

We use a 5% sample error rate (i.e., 5% of the measurements are polluted
with errors) for each fault type and a period w = 10 for Noise faults. The
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Fig. 8. Short rule, Noise rule, and ESN detection applied to the moisture data set.

amplifications used for the evaluation are: 1 ≤ β ≤ 5. Figure 8 compares the
three algorithms, in the case of moisture data, when applied to the Short faults,
Noise faults, and a combination of both faults (5% Short and 5% Noise faults).
We only apply each rule to its own domain fault since this is the optimal scenario.
The challenge of this data set is the similarity between the onset of rain events
and Short faults. In order to avoid false positives the thresholds must be set high
enough to avoid triggering the Short rule during the rain events.

In the left column, Figure 8(a,d), we compare the Short rule with the ESN
detection when applied to Short faults. Not surprisingly the Short rule performs
well on this type of fault when β ≥ 3. However, for lower β values the Short
rule cannot distinguish between rain events and faults, and detects none of the
latter. The ESN is effective for β ≥ 2 but at the cost of more false positives
at higher βs. In the middle column, Figure 8(b,e), we compare the Noise rule
with the ESN detection when applied to Noise faults. Interestingly, the Noise
rule does not perform well on its corresponding faults. At β ≥ 3 we see the
same trend as before with no false negatives, however, we also see a significant
number of false positives. This behavior is caused by the aggressiveness of the
Noise rule, marking the entire window as faulty rather than individual points.
For low β values we still see the ambiguity between events and faults, leading to
no positive detections. The ESN detector, however, has no false positives, and
a significantly lower number of false negatives for β ≤ 2. Finally, for higher β
values the number of false negatives is also significantly smaller than the number
of false positives of the rule-based algorithm.

Judging by these results, we conclude that the ESN can match up with the
rule based detectors. There is although a trade-off between false positives and
false negatives, since decreasing one often leads to the increase of the other.
However, in a real deployment it is not possible to choose what algorithm to use
on which faults and we must assume that all faults can appear at any time. In
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Fig. 9. Short rule, Noise rule, and ESN detection applied to the temperature data set.

the right column, Figure 8(c,f), we thus compare a hybrid detector using both
the Short rule and the Noise rule at the same time on a data set injected with
both types of faults. We see that the hybrid detector has the same behavior as
the Noise rule, with either high number of false negatives or false positives. On
the other hand, the ESN detector is performing significantly better across all
β values, illustrating the strength of the learning algorithm’s ability to detect
what is not normal.

Next, we perform the same analysis on the temperature data set, using the
same parameters to inject errors. The challenge of this data set, from the per-
spective of a detection algorithm, is the high temperature variance, caused by
the diurnal pattern, that resembles noise faults. As before, the Short rule and
faults are in the left column, Figure 9(a,d), Noise rule and faults in the mid-
dle column, Figure 9(b,e), and the hybrid detector on both types of faults in
the right column, Figure 9(c,f). One can see that the overall accuracy improves
significantly, with more faults being detected. Also note that the Noise rule gen-
erates a large number of false positives, supporting the claim that the diurnal
temperature patterns in the data set can be misclassified as Noise faults. Again,
when used on both faults simultaneously we see that the false positives is the
biggest drawback with the hybrid detector. The ESN detector, however, does
not misclassify to the same extent, again clearly showing the ESN’s ability to
distinguish between normal and anomalous data.

5.3 Discussion

We have shown that, for the modalities we tested, the ESN is capable of detecting
low-amplitude anomalies better than specific rule-based anomaly detectors. At
the same time, it is equally effective over multiple anomaly types, as it has
the ability to detect a wide range of features deviating from the training set.
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There are, however, several factors that limit the applicability of ESNs. We
identify three key issues: (1) As we saw in Section 4.2 the prediction time for
each iteration is in the order of seconds. For environmental monitoring, where
changes happen on the scale of minutes, this prediction speed is acceptable.
However, this technique might not be feasible for high data rate applications. (2)
For deployments in which no historical data are available, the training data will
have to be constructed (e.g., from models, experience, etc.) or learned during the
deployment. Neither options are desirable, because an artificial training set will
lack the details encountered in the field. (3) Because the ESN is an approximation
function, its quality is highly dependent on the size of the dynamic reservoir
(DR). In the case of soil moisture and temperature a DR of 50 neurons suffices
for anomaly detection. However, given a different set of constraints the DR might
not be large enough to encode the dynamics of the underlying modality.

6 Conclusion

This paper unifies fault and event detection in sensor networks under the general
framework of anomaly detection. We show that online anomaly detection is fea-
sible on mote-class devices by implementing an Echo State Network (ESN) on a
TelosB mote. This network performs as well as a PC-based ESN of the same size,
proving that it is feasible to implement sophisticated pattern recognition algo-
rithms on motes. Indeed, the ESN is small and fast enough to function alongside
an environmental monitoring application, detecting measurement anomalies in
real-time. Depending on the amplitude of the injected anomalies, the ESN pro-
vides equivalent or higher detection accuracy compared to rule-based detectors
customized to specific faults. However, the most significant feature of the ESN
detector is its generality since it is capable of detecting all features not present
in the training set.

In our future work we will explore the feasibility of implementing other ma-
chine learning techniques, such as Bayesian Networks, on mote-class devices
and compare their performance to ESNs. With different methods available, the
challenge becomes how to choose the best supervised learning method for mote-
based online classification when given a particular training set from the domain
scientists.
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Sensor networks deployed for scientific data acquisition must inspect measurements for faults and
events of interest. Doing so is crucial to ensure the relevance and correctness of the collected data.
In this work we unify fault and event detection under a general anomaly detection framework. We
use machine learning techniques to classify measurements that resemble a training set as normal
and measurements that significantly deviate from that set as anomalies. Furthermore, we aim at
an anomaly detection framework that can be implemented on motes, thereby allowing them to
continue collecting scientifically-relevant data even in the absence of network connectivity. The
general consensus thus far has been that learning-based techniques are too resource intensive to be
implemented on mote-class devices. In this paper, we challenge this belief. In fact, we show that
the accuracy of learning-based detection algorithms on a mote-class device is comparable to their
PC-based implementation. Moreover, we compare two techniques based on learning algorithms –
Echo State Networks (ESN) and Bayesian Networks (BN) – to rule-based detection algorithms.
We find that learning-based techniques are more sensitive to subtle faults and generate fewer false
positives than rule-based fault detection. Finally, the BN is as effective as the ESN even though
it requires a third of the memory and decreases execution time by an order of magnitude.

Categories and Subject Descriptors: I.5.5 [Computing Methodologies]: Pattern Matching—
Implementation; C.2.4 [Computer Systems Organization]: Computer-Communication Net-
works—Distributed Systems

General Terms: Design
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1. INTRODUCTION

Sensor networks deployed to collect scientific data (e.g., [Musăloiu-E. et al. 2006;
Selavo et al. 2007; Tolle et al. 2005]) have shown that field measurements are plagued
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with measurement faults. These faults must be detected to prevent pollution of the
experiment and waste of network resources. At the same time, networks should
autonomously adapt to sensed events, for example by increasing their sampling
rate or raising alarms. Events in this context are measurements that deviate from
“normal” data patterns, yet they represent features of the underlying phenomenon.
One such example would be rain events in the case of soil moisture measurements.

The issue is that detection algorithms tailored to specific types of faults lead to
false positives when exposed to multiple types of faults [Gupchup et al. 2008]. More
importantly, algorithms which classify measurements that deviate from the recent
past as faulty tend to misclassify events as faults [Gupchup et al. 2008]. This
misclassification is particularly undesirable because measurements from episodic
events are the most important data for domain scientists and should be given the
highest priority, while faults have no value and should be discarded thus improving
the quality of the underlying sensing instrument.

In this work we unify fault and event detection under a more general anomaly
detection framework, in which online algorithms classify measurements that signifi-
cantly deviate from a learned model of data as anomalies. By including punctuated,
yet infrequent events in the training set we avoid the misclassification problem men-
tioned above thus allowing the system to distinguish faults from events of interest.
More importantly, these learning-based techniques are general in the sense of de-
tecting measurement sequences that contain multiple categories of anomalies that
do not exist in the training data.

Obviously anomaly detection can and should also be done on a gateway that
correlates data from multiple sensors. Nonetheless, we claim that online detection
on motes is also very much relevant. We motivate this need through an example
derived from one of our ongoing projects [MANA ]. Consider a set of motes deployed
under the surface of a lake with limited physical access. These motes are connected
to a floating buoy via acoustic modems which can be non-functional over long
periods of time, either because the buoy is out of communication range or due to
background noise in the lake. The motes should be able to autonomously alter their
sensing behavior depending on whether the collected measurements are seemingly
faulty or correspond to interesting events. For example, faulty measurements should
be replaced in a timely manner by new measurements while interesting events
should trigger sampling rate increases.

In this paper, we propose using learning-based anomaly detection on mote-class
devices. More specifically, our contributions are the following: (1) We develop an
anomaly detection framework based on Echo State Networks as well as Bayesian
Networks; (2) we implement these frameworks on a mote-class device and show that
their accuracy is comparable to a PC-based implementation; (3) we quantitatively
compare these frameworks with two rule-based, fault-specific detection algorithms.
We show that learning-based techniques are more sensitive to subtle faults and gen-
erate fewer false positives than the rule-based fault detection techniques. Finally,
we show that the Bayesian Networks framework is as effective as the Echo State
Network framework, while occupying a third of the memory footprint and running
ten times faster.

The remainder of this paper is organized as follows. In Section 2 we present
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related work on anomaly detection. In Section 3 we discuss machine learning algo-
rithms in general and in particular how Echo State Networks and Bayesian Networks
can be used for anomaly detection. In Section 4 and Section 5 we present the im-
plementation of the former and the latter, respectively. In Section 6 we evaluate
the performance of the two detectors when applied to data collected from an actual
deployment and finally in Section 7 we offer our conclusions.

2. RELATED WORK

Anomaly characterization and detection have received significant attention in the
sensor network community. In particular, rule- and threshold-based detection
schemes have been used extensively due to their simplicity and low resource require-
ments. For example threshold-based detection has been used in a broad variety of
deployments such as seismological event detection [Werner-Allen et al. 2006], Cane
toad monitoring [Hu et al. 2005], and vehicle tracking [Pister 2001].
In the context of environmental monitoring, [Sharma et al. 2007] proposed two

rules to detect faults commonly observed by such applications: Short faults, de-
fined as drastic differences between two sequential measurements, and Noise faults,
defined as periods during which measurements exhibit larger than normal varia-
tions. To detect the former, the Short rule compares two adjacent data points and
classifies the more recent as faulty when the difference is above a certain threshold.
For the latter fault type, the Noise rule considers a sliding window of measurements
and flags all of them as faulty if the standard deviation is above a certain thresh-
old. While these detection schemes are very resource efficient, their effectiveness
is limited. For example, [Werner-Allen et al. 2006] estimated the accuracy of their
detection technique to be as low as 5%-29%. Moreover, these schemes suffer from in-
herent misclassification problems in which events are mistaken for faults [Gupchup
et al. 2008]. We seek a solution that can improve the detection accuracy and avoid
misclassification while still be efficient enough to run online on a mote.
More sophisticated algorithms such as pattern recognition [Rashidi and Cook

2008; Römer 2006] and data partitioning [Omitaomu et al. 2008; Wu et al. 2008;
Kaplantzis et al. 2007] have been used for anomaly detection in wireless sensor
networks. However, the former did not consider raw measurements but relied on
meta-tags and the latter removed the temporal information of the data points.
We seek a solution that processes the raw data points directly and utilizes the
information inherent in the temporal relation among them.
Machine learning techniques have been proposed for anomaly detection in WSNs.

For example, Kalman filters have been used for offline sow monitoring [Cornou and
Lundbye-Christensen 2008] while Echo State (neural) Networks [Obst et al. 2008]
and Bayesian Networks [Wang et al. 2008] have been proposed for offline gas moni-
toring. [Bokareva et al. 2006] used a Competitive Learning Neural Network (CLNN)
for online classification but the neural network was implemented on a Stargate gate-
way rather than a mote-class device. [Osborne et al. 2008] used a multi-output
Gaussian process to predict missing sensor readings, but they also relied on a PC-
class device. We bridge the gap between online detection and machine learning by
implementing two learning-based techniques on a mote.
In [Chang et al. 2009] we presented an anomaly detection framework based on
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Echo State Networks. This neural network variant was used to predict the next
measurement value as a function of all the previous ones. The prediction error
could subsequently be used for anomaly detection. The evaluation showed the
framework to be significantly more accurate than the rule-based counterparts. At
the same time ESNs did not suffer from increased numbers of false positives when
faced with different types of faults. Although efficient enough to run on a mote
alongside a production-level environmental monitoring application, the combined
code consumed the mote’s entire ROM, while the algorithm’s execution speed lim-
ited the sampling rate to 1 Hz. In this paper, we extend this framework to Bayesian
Networks, on the premise that this data structure captures the temporal relation
between data points more efficiently.

3. MACHINE LEARNING

We build our anomaly detection framework on a classification mechanism that
accepts measurements matching a learned model as valid and rejects measurements
that significantly deviate from learned data as anomalies.
We rely on machine learning techniques to build our classification model and focus

on supervised learning because our scientific partners are able to provide training
sets that correspond to the data they expect. Such data sets include previously
collected measurements and synthetic data generated by analytical models.
What learning technique should we choose to achieve both accurate anomaly de-

tection and efficient implementation on a mote-class device? We rule out Kalman
filters, because they base each prediction on a sliding window of observed values
instead of a compact model of learned data. Initially we thought that a Bayesian
Network’s learning and inference operations (which are NP-hard [Dagum and Luby
1993]) and the modeling of probability functions (typically Gaussians), would pre-
clude its use on resource constrained devices. Consequently, we decided to use Echo
State Networks to meet our requirements on classification efficiency (i.e., minimize
false classifications) and resource use (i.e., minimize CPU, memory, and energy us-
age). However, as we later show inference for certain Bayesian Network types can
in fact be done in polynomial time. Furthermore, by performing the learning step
in a pre-processing phase we were able to use Bayesian Networks as well.
We continue by describing how Echo State Network and Bayesian Networks can

be used for anomaly detection.

3.1 Neural Networks

A neural network can be informally considered as an approximation function.
Specifically, when presented with a subset of the original function’s value pairs
during the training stage, the neural network generalizes over these data and ap-
proximates the outcome of the original function in the prediction stage. Formally,
a neural network is a weighted directed graph where each vertex represents a neu-
ron. We consider discrete-time networks consisting of K input neurons, N hidden
neurons, and L output neurons. The input neurons act as sources and the output
neurons as sinks. The value of neuron j is given by: vj = A(

∑
wijvi), where vi is

the output of neuron i, wij is the weight of the edge connecting neuron i to j, and
A() is the activation function. This function is typically tanh() or a similar func-
tion. The training stage consists of adjusting the network’s weights to approximate
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its output signal to the training signal.

Echo State Networks. In an ESN, all neurons are interconnected (but can have
zero-weighted edges) meaning cycles involving one or more neurons are allowed.
This gives each neuron the capability to remember, adding memory to the network
as a whole. All the neurons’ connections, directions, and weights are generated
randomly and do not change, except for the output weights which are changed
during training. The neurons thus act as a black box referred to as the Dynamic
Reservoir (DR). This property reduces the learning algorithm to a simple linear
regression. According to the Echo State property [Jaeger 2001], the DR contains a
set of basis states and by adjusting the output weights it is possible to capture the
’echoes’ of real states as linear combinations of these basis states. Although the
DR is randomly generated, [Jaeger 2001] proved that it is possible to ensure that
the DR indeed has the Echo State property by enforcing certain conditions. One
such condition is that the DR must be sparsely connected, i.e., 10% of all possible
connections are actually active.
The decoupling of the DR from the output weights enables several optimizations

that fit mote-class devices particularly well. For example, the same DR can be
used for multiple tasks by storing task-specific output weights and post-deployment
updating can be done without transmitting the entire DR. Also, the requirement
that the DR is sparsely connected combined with the use of sparse matrix algebra,
allows us to implement ESNs that are larger than regular Feed Forward networks.

Anomaly Detection. We use ESNs to determine whether sensor readings are
anomalous by comparing the ESN predictions to the actual measurements. In
order to quantify the prediction error we look at the absolute differences between
the measurements ( ~M) and the predictions (~P ), i.e., ~δ = | ~M − ~P |. This difference
should ideally be close to zero for normal data, while anomalous data should result
in large differences (peaks). In other words, the ESN transforms the original time
series into one whose values are ∼ 0 most of the time, corresponding to the expected
data. Anomaly detection thus reduces to recognizing the peaks in the transformed
signal. We can then use pattern matching algorithms based on simple thresholds
that have been proven to be both efficient and effective for such simple signals.

3.2 Bayesian Networks

Informally, a Bayesian Network is a probabilistic model where given some evidence
(measurements) it can estimate the expectation value (most probable outcome) and
the likelihood (probability) of both the evidence and expectation value. Formally,
a Bayesian Network is a directed acyclic graph in which each node represents a
random variable and every directed arc represents a dependency relation between
the parent node and the child node. Each edge includes a conditional probability
distribution (CPD) P (A = a|B = b), where A is the random variable of the child
node and B is the random variable of the parent. In each node a joint CPD
can be constructed using the CPDs of the connected edge(s). CPDs are usually
implemented as tables when the random variables are discrete and as Gaussian
probability distributions when the random variables are continuous.
When given the values of some of the random variables the expectation values

and probability distributions in both children and parent nodes change. This evi-

Anomaly Detection

63



dence, which can be from observations or direct measurements, fixes the value of the
now observed nodes. Using Bayes rule and the CPDs, probabilities are propagated
through the network to the rest of the hidden nodes. This process of computing
the posterior probability for query purposes is called inference. The values with the
highest probabilities become the expectation values and the corresponding proba-
bility the likelihood.
The structure of the Bayesian Network are either constructed using a priori

knowledge, e.g., rain causes wet grass, or learned from a training set. Similarly, the
CPDs are also constructed using knowledge or learned from a training set using
statistical methods [Russell and Norvig 2003].

Anomaly Detection. Each node in our Bayesian Network represents a measure-
ment. As a consequence, random variables are continuous. As measurements are
obtained sequentially in time, the structure of our Bayesian Network is a subset of
a fully connected DAG, where each edge points forward in time. The CPDs are not
derived from the laws of nature, but learned from the training set.
By entering the measured data as evidence we can use the CPDs to infer the

likelihood of any particular sequence of measurements. When measurements are
similar to the training set the likelihood value will be high, while the likelihood will
drop significantly when an anomalous data point is introduced. Anomaly detection
can thus be recast as a pattern recognition problem on this greatly simplified signal.

3.3 Discussion

As approximation functions, neural networks can learn the structure and correlation
between data points. However, this information is not stored very efficiently because
the network is essentially created by memorizing patterns of data points. On the
other hand, Bayesian Networks are structured from the physical dependencies in the
data and the CPDs are tailored to each individual node and not the entire network
as a whole. Hence, we expect that the same amount of information that can be
stored in a neural network can be stored in a much smaller Bayesian Network,
reducing both the memory usage and computations needed in each iteration.
A limitation that Bayesian Networks share with all learning algorithms, including

neural networks, is their dependency on training data. In our case, this limiting fac-
tor is transformed into the accuracies of the CPDs, which we construct empirically
from the training data. If these data do not represent what the domain scientists
consider to be “normal”, the resulting likelihood will be useless. For deployments in
which no historical data are available, the training data will have to be constructed
(e.g., from models, experience, etc.) or learned during the deployment. Neither
options are desirable, because an artificial training set will lack the details encoun-
tered in the field. Therefore, the choice of training sets is a very interesting open
problem, which is beyond the scope of this paper. We just note that a key issue in
successfully deploying a Bayesian Network based on learning lies in the choice and
availability of training data.
For example, adjusting the sampling rate in an adaptive sampling environment

can change the properties of the measurement time series and thus possibly invali-
date the training set. This issue can however be remedied, by storing different CPDs
for each sampling rate, or by disregarding higher sampling rates when entering the
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evidence into the Bayesian Network. On the positive side, Bayesian Networks with
continuous CPDs (such as Gaussian probability distributions) have the ability to
generalize over the training data. By this we mean that data similar to the training
data will yield similar likelihoods even though they are not exactly identical. This
feature allows motes deployed in similar regions to share the same training data
instead of requiring mote-specific training sets.

4. ESN ON A MOTE

4.1 Implementation

While we create and train the ESNs offline, a complete ESN (including the network’s
activation function, output weights, and the DR) is included in the application that
runs on the mote. We use TinyOS 2.x to ensure portability to a broad range of mote
class devices. Our implementation, publicly available for download1, focuses on
feasibility and efficiency: the ESN must be able to fit in memory and the algorithm
must be fast enough to maintain the desired sampling rate. Next, we present three
optimizations to improve performance along these two axes.

Sparse Matrix Algebra. The size of the DR’s weight matrix grows quadratically
with the number of neurons in the reservoir n. However, only 10% of these elements
are non-zero because the DR must possess the Echo State property. We leverage
this feature by storing the matrix using Compressed Row Storage [Bai et al. 2000],
which only stores the non-zero elements and the layout of the matrix. Doing so
reduces the necessary storage from O(n2) to O(2nz+n+1), where nz is the number
of non-zero elements. This technique also reduces the number of operations related
to matrix multiplications by a similar factor by considering only non-zero elements.

Single Floating Point Precision. Most mote-class devices rely on software emu-
lated floating point operations due to lack of dedicated hardware. This contributes
to both the storage and runtime overheads. At the cost of reduced floating point
precision we select to store and compute all values using single instead of double
floating point precision. Doing so halves the size of all the weight matrices and re-
duces the number of emulated floating point operations needed. As we later show,
the resulting loss of precision is tolerable.

Tanhlike Activation Function. Because the activation function has to be applied
to all the neurons in every iteration, it is important to choose a function that can be
implemented efficiently. At the same time, choosing a suboptimal activation func-
tion can significantly degrade the ESN’s output quality. The algorithm for the often
used hyperbolic tangent, tanh(), has high complexity requiring both large amounts
of storage and a significant processing time. Because of these shortcomings, [Marra
et al. 2006] proposed the approximate function:

TL(x) = sign(x)

[
1 +

1

2b2n|x|c

(
2n |x| − b2n |x|c

2
− 1

)]

where n ∈ ZZ determines the steepness of the function. This tanhlike function has
properties similar to tanh() (when n = 1) but with far lower complexity. However,

1http://www.diku.dk/~marcus/esn/
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Fig. 1. (a) Q-Q plot of ~δlab/tanh and ~δmote/tanh. (b) Q-Q plot of ~δlab/tl and ~δmote/tl.

it is also a non-differentiable, piecewise-linear function because of the rounding
operations (b·c). Therefore, we expect the quality of the ESN’s output to be lower
than when using tanh(), because small changes in input will result in large changes
in output if these changes happen across a linear junction.

4.2 Evaluation

We verify that our ESN implementation indeed performs well on a mote-class de-
vice by comparing its output to a reference ESN running on a PC. We consider
ESNs which consist of two input signals (with one of the input signals held at a
constant bias value in order to improve performance [Jaeger 2002]), a 10-400 neu-
ron reservoir, and one output signal (i.e., K = 2, N = 10 − 400, and L = 1). All
mote experiments are carried out on a TelosB mote [Polastre et al. 2005], running
TinyOS 2.x with the clock frequency set to the default speed of 4 MHz [Moteiv
Corporation ]. Data sets are stored in ROM with measurements read with a fixed
frequency to simulate sensor sampling. We use Matlab R2007a with the Matlab
toolbox for ESNs [Herbert Jaeger ] as our reference implementation. We use the
Mackey-Glass (MG) time series with a delay τ = 17 [Mackey and Glass 1977] to
evaluate our ESN implementation. This system is commonly used to benchmark
time series prediction methods because of its chaotic nature when τ ≥ 17 [Müller
et al. 1995; Wang and Fu 2005].

4.2.1 Sanity Check. We create a MG time series with 5,000 samples and use
the first 2,000 samples to train a 50 neuron ESN, the next 100 samples for initial-
ization, and the last 2,900 samples as the prediction vector ~MG. Both the tanh()
and tanhlike activation functions are used resulting in four different predictions:
~Plab/tanh, ~Pmote/tanh, ~Plab/tl, and ~Pmote/tl. We compute the four prediction errors
and normalized root-mean-squared deviations (NRMSD):

~δlab/tanh (%) ~δmote/tanh (%) ~δlab/tl (%) ~δmote/tl (%)
NRMSD 0.15448 0.15470 0.5855014 0.5855008

Figure 1 presents the Q-Q plots (Quantile-Quantile-plot) [Wolfram Research ] of
the prediction errors grouped by activation function. Since the points in the Q-Q
plots lie on a straight line with slope one they pairwise belong to the same distribu-
tion. Together with the NRMSDs from the same activation functions being almost
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identical we conclude that the TelosB ESN implementation has the same accuracy
as the one in Matlab. Also, with an NRMSD less than 1% we see that the 50-neuron
ESN is indeed capable of tracking the MG time series. However, the choice of ac-
tivation function impact the accuracy of the predictions significantly, with tanh()
being four times more accurate than the tanhlike function. This supports our claim
that the piecewise-linearity of the tanhlike function degrades performance.
In order to compare the double precision floating point in Matlab with that of

the single precision floating point on the TelosB, we look at the differences between
predictions from the former with the latter when using the same activation func-
tion, i.e., ~δtanh = ~Plab/tanh − ~Pmote/tanh and ~δtl = ~Plab/tl − ~Pmote/tl. We compute
the NRMSDs for both error distributions:

~δtanh (%) ~δtl (%)
NRMSD 6.6 · 10−3 1.3 · 10−4

Because NRMSD(~δtanh) < NRMSD(~δlab/tanh) and NRMSD(~δtl) < NRMSD(~δlab/tl)
the errors caused by using single precision floating point are smaller than the errors
caused by the ESN predictions. Thus, using single precision floating point on the
TelosB is sufficient.

4.2.2 Performance. In order to explore the implementation’s characteristics,
such as ROM footprint, runtime speed, and accuracy, we vary the number of neu-
rons in the DR. The ROM usage can be divided into two components: (1) Frame-
work, the ESN algorithm used for prediction. (2) Weight Matrices, the DR and
output weights. Whereas (1) is constant, (2) depends on the number of neurons
in the reservoir. Figure 2a presents the ROM size difference for the two activation
functions and Figure 2b shows the ROM footprint of the aforementioned compo-
nents (using tanhlike). We observe that the memory contribution from the reservoir
grows linearly, confirming the storage requirement of the Compressed Row Storage
(O(2nz + n+1)). Also, the ROM footprint is 1,806 bytes for tanh() and 368 bytes
for tanhlike, making the former five times larger than the latter.
Next we measure the runtime cost of the ESN implementation. For each iter-

ation, the ESN prediction algorithm performs the following set of operations: (1)
Matrix, matrix-vector multiplication. (2) Activation Function, application of the
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activation function. (3) Output, vector-vector multiplication. Figure 3 summarizes
the execution time of one prediction step and the three operations’ contributions.
Surprisingly, the tanh() activation function is the most expensive operation and not
the matrix-vector multiplication. It takes 28% longer to run than the matrix-vector
multiplication and 453% longer than the tanhlike activation function.
Finally, we look at the prediction error as a function of reservoir size and acti-

vation function. We compare against the MG time series and find the NRMSD(~δ)
for the six reservoirs and two activation functions used above. Figure 4 presents
the results of this comparison. As expected, the prediction error decreases as the
reservoir size increases and the tanh() activation function leads to more accurate
predictions in general. Upon closer inspection, there appear to be three distinct
regions relative to the reservoir size: small (10 neurons), medium (50-300 neurons),
and large (300-400 neurons). In the small region, the prediction error is dominated
by the small size of the reservoir and the choice of activation function becomes
less important. In the medium region there is a diminishing, yet clear reduction of
the prediction error as the reservoir size increases. Finally, in the large region the
prediction error does not decrease by adding neurons to the reservoir. Interestingly,
the largest contribution to the prediction error comes from the activation function,
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with no overlap of prediction errors for the 50-400 neuron reservoirs. In fact, even
the 50 neuron tanh() reservoir outperforms the 400 neuron tanhlike reservoir.

5. BAYESIAN NETWORK ON A MOTE

5.1 Implementation

Similar to the ESN implementation in Section 4.1, we create and train the Bayesian
Network offline in a pre-processing stage, while the actual inference of the expec-
tation value and likelihood is done repeatedly online on the mote for the purpose
of anomaly detection. The implementation in TinyOS 2.x is publicly available for
download2 and is tailored specifically for anomaly detection in order to ensure fea-
sibility and efficiency. We present the following optimizations to accomplish these
goals.

Inference. The anomaly detection, presented in Section 3.2, is based on finding
the likelihood value of a series of measurements, by entering them as evidence and
inferring the corresponding likelihood. This implies that all nodes are observable
and inferring the likelihood reduces to finding the probability of the given evidence.
Thus, it is not necessary to perform probability propagation (which is NP-complete)
and the CPDs reduce to univariate Gaussian Probability Density Function.

Log-likelihood. We apply the natural logarithm to the likelihood value, because
only the relative value is needed for the detection algorithm and not the absolute
one. This leads to several key benefits. First, the Gaussian Probability Density
Function [Weisstein ] reduces to

P (X = x) =
1

σ
√
2π

exp(− (x− µ)2

2σ2
) ⇔ pln(x) = − ln(σ

√
2π) +

−1

2σ2
(x − µ)2

where µ and σ are the mean and standard deviation respectively. This removes
the need to implement the exponential function in software. Second, because both
− ln(σ

√
2π) and −1

2σ2 are normalization constants that can be calculated during
pre-processing we do not need to implement the logarithm function either. Third,
since we are working with the log-likelihood, combining probabilities reduces to
performing simple additions instead of the more expensive multiplications.

Single Floating Point Precision. As in Section 4.1, we store and compute all
values using single floating point precision. We later show that both the precision
of the Bayesian Network and the range of the log-likelihood values are less than the
precision and range of single floating points.

5.2 Evaluation

Similar to the evaluation of the ESN in Section 4.2, we verify that our Bayesian
Network implementation indeed performs well on a mote-class device by comparing
its output to a reference Bayesian Network running on a PC. We consider Bayesian
Networks with the structure described in Section 3.2 and a network size of 3-40
nodes. Again, all mote experiments are carried out on a TelosB mote [Polastre

2http://www.diku.dk/~marcus/bn/
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Fig. 5. Q-Q plot of ~δlab and ~δmote

et al. 2005], running TinyOS 2.x with the clock frequency set to the default speed
of 4 MHz [Moteiv Corporation ]. Data sets are stored in ROM and measurements
are read one data point at the time to simulate sensor sampling. We use Matlab
R2009a with the Bayesian Net Toolbox for Matlab 1.0.4 [Kevin Patrick Murphy
et al. ] as our reference implementation. As our prediction value, we use the
expectation value from the Bayesian Network to track the Mackey-Glass (MG)
time series from before.

5.2.1 Sanity Check. We use the first 2,000 samples of a MG time series with
5,000 samples to train a five node Bayesian Network and the last 3,000 samples as
our measurements ( ~M). We look at the absolute differences between the measure-

ments and the predictions from the Bayesian Network (~P ), i.e., ~δ = | ~M − ~P |, when
executed on both the mote (~δmote) and in Matlab (~δlab). From the prediction errors
we calculate the normalized root-mean-square deviations (NRMSD) to be (when
rounded to nearest single floating points precision):

~δmote (%) ~δlab (%)
NRMSD 0.083599985 0.083600049

Next, we compare the distribution of these prediction errors against each other
in a Q-Q-plot in Figure 5 and conclude that both ~δmote and ~δlab belong to the
same distribution because the points lie on a straight line with slope one [Wol-
fram Research ]. Coupled with the almost identical NRMSDs, we deduce that the
accuracy of the TelosB Bayesian Network implementation has the same accuracy
as the one in Matlab (i.e., within an acceptable margin of error). Also, with an
NRMSD less than 1 � we conclude that the 5-node Bayesian Network is indeed
capable of tracking the MG time series.
In order to compare the double precision floating point in Matlab with that of the

single precision floating point on the TelosB, we compute the differences between
predictions from the former with the latter, i.e., ~δP = ~Plab − ~Pmote. We compute
the NRMSD to be:

~δP (%)
NRMSD 7.3 · 10−6
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Fig. 6. NRMSD(~δ) for (a) BN and (b) ESN at different network sizes.

Because NRMSD(~δP ) < NRMSD(~δlab) the errors caused by using single precision
floating point are smaller than the errors caused by the Bayesian Network predic-
tions. Thus, using single precision floating point on the TelosB has no noticeable
effect on the Bayesian Network inference.

5.2.2 Performance. As before, we vary the number of nodes in the Bayesian
Network in order to explore the implementation’s characteristics, such as ROM
footprint, runtime speed, and accuracy. We compare with the ESN benchmarks
from Section 4.2.2 while using the tanhlike activation function, since this is the
most efficient of the two. However, instead of comparing equal size networks we
compare networks with similar accuracy.
To determine the accuracy for different sizes Bayesian and Echo State Networks

we find the prediction errors for the MG time series, NRMSD(~δ), and show the
results in Figure 6. As expected, the network size required for a Bayesian Network
to achieve a precision of the same order of magnitude as an Echo State Network is
significantly smaller; in fact there is an order of magnitude in difference.
Common to both methods is that increased network size improves accuracy – a

result that one would expect. However, this trend is only true up to a certain point
after which increasing the network size has no influence on accuracy. The reason
for this behavior lies in the chaotic nature of the MG time series which becomes
harder to predict the farther away from the initial position one gets. In other words,
adding more “history” in the form of more nodes do not improve the accuracy.
Next we compare the memory footprint for these particular network sizes. The

ROM usage for both the Bayesian Network and the Echo State Network can be
divided into two components: (1) Framework, the machine learning algorithm,
which is constant. (2) Network, which depends on the number of nodes. Figure 7
presents the ROM size difference for the two algorithms. The framework sizes
are almost equally large mainly due to the software emulation of floating point
operations, which is common for both and constitutes half of their size. Although
the size of a single Bayesian Network node is ten times larger than the size of
an Echo State Network node, when comparing networks with similar accuracy the
total size of the Bayesian Network is significantly smaller. Specifically, the 5-node
Bayesian Network is only 38 % the size of the 50-node Echo State Network.
Finally, we measure the runtime cost of the Bayesian Network implementation.
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For each iteration, the Bayesian Network’s inference algorithm performs the fol-
lowing two operations: (1) Expectation, finding the expectation value given the
evidence. (2) Likelihood, estimating the probability of the evidence when compared
to the expectation value. Figure 8 summarizes the execution time of one iteration
on a logarithmic scale and compares the result with similar measurements of the
Echo State Network. Not surprisingly, there is an order of magnitude in difference
because of the larger Echo State Network. However, when comparing the 10 node
Bayesian Network with the 10-node Echo State Network, the Bayesian Network is
still twice as fast using only 46 ms compared to the Echo State Network’s 105 ms.

6. EVALUATION

6.1 Experimental Design

In [Chang et al. 2009] we showed that a 50 node Echo State Network is small
enough to be incorporated to an existing data collection application and still be
accurate enough to provide anomaly detection. Motes in these sensor networks
collect soil temperature and soil moisture readings every 20 minutes and store
them to their onboard flash memory. All measurements are periodically offloaded
over the network and persistently stored in a database. This environmental sensing
application has been actively deployed for the past four years [Musăloiu-E. et al.
2006]. The application uses 40,824 bytes of ROM, leaving 8,328 bytes available on
the TelosB. The 50 node Echo State Network uses 6,788 bytes of ROM and has a
prediction time of 572 ms for each measurement.
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Fig. 9. Two types of injected anomalies: (a) Short faults and (b) Noise faults.

The results from the previous section suggest that a 5-node Bayesian Network,
which is both smaller and faster, should still provide higher accuracy than the Echo
State Network. This Bayesian Network, with a size of 2,580 bytes and an inference
time of 15 ms, will be used for the remainder of this section.

6.1.1 Anomaly Types. We focus on two types of random anomalies: Short and
Noise. These were defined by [Sharma et al. 2007] and summarized in Section 2.
Figure 9 provides samples of these faults. We use two parameters to control the
injection of Short anomalies: the sample error rate and the amplification factor,
β. For each anomalous measurement, m̃i, we multiply the standard deviation of
the original signal, σ, with β to obtain: m̃i = mi + βσ, where mi is the true
measurement.
For Noise anomalies, we use three parameters: the sample error rate, the period

length, w, and the amplification factor, β. For each noisy period, we calculate the
standard deviation of the underlying signal and multiply it with β to create a ran-
dom normal distribution with zero mean and βσ standard deviation (i.e., N(0, βσ)).
We then add samples from this distribution to each of the true measurements within
that period.

6.1.2 Detection Algorithms. We use the two rule-based anomaly detection al-
gorithms defined by [Sharma et al. 2007] and summarized in Section 2 to detect
the two anomalies mentioned above. We use these algorithms as reference as they
are directly related to the anomalies we inject and their complexity is comparable
to that of currently deployed fault detection algorithms. Our strategy for setting
the thresholds is to minimize the number of false positives when the detection
algorithms are applied to data sets with no anomalies.

6.1.3 Data Sets. For each of the soil moisture and soil temperature modali-
ties that we use, we obtain a training and a test data set from the experiment’s
database [Musăloiu-E. et al. 2006]. Each of the four data sets consists of 1,000 data
points. Figure 10 illustrates two such data sets. The data has been automatically
sanitized by the database as a standard procedure for removing anomalies, follow-
ing the methods proposed by [Sharma et al. 2007]. Using preprocessed rather than
raw data prevents any bias caused by anomalies already present in the data stream.
Instead, we assume that the only anomalies in the data are the ones we explicitly
inject, thereby establishing the ground truth for evaluation purposes.
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Fig. 11. Correlation between temperature measurements (middle plot), prediction error (bottom
plot), and injected/detected anomalies (top X/O markers). (Short β = 1; Noise β = 1 and
w = 10).

6.2 Results

Figures 11 and 12 illustrate the operation of the Echo State Network anomaly de-
tection algorithm, while Figures 13 and 14 illustrate the operation of the Bayesian
Network anomaly detection algorithm. All figures show the relation between in-
jected anomalies, measurements, and the detected anomalies.
Notice that the Echo State Network’s prediction error is indeed an almost con-

stant signal overlaid with sharp peaks coinciding with the injected faults. Similarly,
the Bayesian Network’s log-likelihood has sharp drops coinciding with the injected
faults. When not injected with anomalies we find that NRMSD(~δTemp) = 2.0% and

NRMSD(~δMoist) = 3.8% for the Bayesian Network and NRMSD(~δTemp) = 2.4% and

NRMSD(~δMoist) = 4.4% for the Echo State Network.
We use a 5% sample error rate (i.e., 5% of the measurements are polluted with

errors) for each fault type and a period w = 10 for Noise faults. The amplifications
used for the evaluation are: 1 ≤ β ≤ 5.
Figure 15, 16, and 17 compare the four algorithms, in the case of moisture data

polluted with Short faults, Noise faults, and a combination of both faults (5% Short
and 5% Noise faults) respectively. We only apply each rule to its own domain fault
since this is the optimal scenario. The challenge of this data set is the similarity
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Fig. 12. Correlation between moisture measurements (middle plot), prediction error (bottom
plot), and injected/detected anomalies (top X/O markers). (Short β = 2; Noise β = 2 and
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Fig. 15. Short rule, ESN detection, and BN detection applied to the moisture data set with short
faults present. Black and white bars represent false negatives and false positives, respectively.
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Fig. 16. Noise rule, ESN detection, and BN detection applied to the moisture data set with noise
faults present. Black and white bars represent false negatives and false positives, respectively.

between the onset of rain events and Short faults. In order to avoid false positives
the thresholds must be set high enough to avoid triggering the Short rule during
the rain events.
In Figure 15, we compare the Short rule and ESN with the BN detection when

applied to Short faults. Not surprisingly the Short rule performs well on this type
of fault when β ≥ 3. However, for lower β values the Short rule cannot distinguish
between rain events and faults, and detects none of the latter. Meanwhile, ESN
is effective for β ≥ 2 with very few false positives and negatives for β = 2. BN
on the other hand is completely effective for β ≥ 2 without any false positives and
negatives at all.
In Figure 16, we compare the Noise rule and ESN with the BN detection when

applied to Noise faults. Interestingly, the Noise rule does not perform well on
its corresponding faults. At β ≥ 3 we see the same trend as before with no false
negatives, however, we also see a significant number of false positives. This behavior
is caused by the aggressiveness of the Noise rule, marking the entire window as
faulty rather than individual points. For low β values we still see the ambiguity
between events and faults, leading to no positive detections. The ESN detector has
a significantly lower number of false negatives for β ≤ 2 and for higher β values
the number of false negatives is also significantly smaller than the number of false
positives of the rule-based algorithm. Here the BN yields a slightly higher amount
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Fig. 17. Both rules, ESN detection, and BN detection applied to the moisture data set with both
faults present. Black and white bars represent false negatives and false positives, respectively.
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Fig. 18. Short rule, ESN detection, and BN detection applied to the temperature data set
with short faults present. Black and white bars represent false negatives and false positives,
respectively.

of false negatives for β = 1 when compared to the ESN, however, at β ≥ 4 the BN
has neither false positives nor negatives.
Because it is not possible in practice to selectively use different detection algo-

rithms based on the fault type, we must assume that all faults can appear at any
time. For this reason, we compare a hybrid detector using both the Short rule and
the Noise rule at the same time on a data set injected with both types of faults.
It is evident from the results in Figure 17 that the hybrid detector behaves

similarly to the Noise rule, having either high number of false negatives or false
positives. On the other hand, the ESN and BN detectors perform significantly
better across all β values, illustrating the learning algorithms’ ability to detect
what is not normal. More interestingly, both algorithms perform equally well.
Judging from these results, we conclude that the smaller and faster BN can match
up with the ESN and that both are superior to the rule based detectors.
Next, we perform the same analysis on the temperature data set, using the same

parameters to inject errors. The challenge of this data set, from the perspective
of a detection algorithm, is the high temperature variance, caused by the diurnal
pattern, that resembles noise faults.
The Short rule and faults can be seen in Figure 18, Noise rule and faults in

Figure 19, and the hybrid detector on both types of faults in Figure 20.
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Fig. 19. Noise rule, ESN detection, and BN detection applied to the temperature data set
with noise faults present. Black and white bars represent false negatives and false positives,
respectively.
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Fig. 20. Both rules, ESN detection, and BN detection applied to the temperature data set
with both faults present. Black and white bars represent false negatives and false positives,
respectively.

Overall, the accuracy improves significantly, with more faults being detected.
Also, note that the Noise rule generates a large number of false positives, supporting
the claim that the diurnal temperature patterns in the data set can be misclassified
as Noise faults.
Again, when used on both faults simultaneously we see that the false positives

is the biggest drawback with the hybrid detector. The BN and ESN detectors,
however, do not misclassify to the same extent, exhibiting the learning algorithms’
ability to distinguish between normal and anomalous data. Compared to each
other, the ESN and BN perform equally well.

6.3 Discussion

We have shown, for the modalities we tested, that the BN can detect anomalies
with equally high accuracy as the larger and slower ESN without any significant
differences in the number of false positives and negatives generated.
We have also shown that both learning based algorithms are capable of detecting

low-amplitude anomalies better more effectively than specific rule-based anomaly
detectors. At the same time, they are equally effective over multiple anomaly types,
due to their ability to detect a wide range of features deviating from the training
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set.
Nevertheless, the BN’s smaller ROM footprint and faster execution time resolve

two key issues with ESNs: (1) The size of the 50-node ESN approaches the limit of
the TelosB mote’s ROM capacity. While the ESN necessary for detecting anoma-
lies in soil moisture and temperature is small enough to fit with the rest of the
code, modalities with higher rates of dynamics will require ESNs that do not fit
in memory. On the other hand, the BN provides flexibility equivalent to that of
a larger ESN, as well as room to expand the data collection application. (2) The
prediction time of the ESN is in the order of seconds. For environmental monitor-
ing applications in which changes occur on the scale of minutes this performance
is acceptable, but ESNs cannot be used in applications that sample their sensor
multiple times a second. BN on the other hand, can do inference on the order of
tens of milliseconds.

7. CONCLUSION

This paper unifies fault and event detection in sensor networks under the general
framework of anomaly detection. We show that online anomaly detection is fea-
sible on mote-class devices by implementing both an Echo State Network (ESN)
and a Bayesian Network (BN) on a TelosB mote. These networks perform as well
as their PC-based implementations of the same size, proving that it is feasible to
employ sophisticated pattern recognition algorithms on motes. Indeed, both ESN
and BN are small and fast enough to function alongside an environmental monitor-
ing application, detecting measurement anomalies in real time. Depending on the
amplitude of the injected anomalies, they provide equivalent or higher detection
accuracy compared to rule-based detectors customized to specific faults. However,
the most significant feature of the ESN and BN detectors are their generality since
they are capable of detecting all features not present in the training set. Contrary
to our initial intuition, the BN performs as well as the ESN, while being an order
of magnitude faster and occupying a fraction of the memory.
In our future work we will explore mechanisms for selecting the best supervised

learning method for mote-based online classification given a particular training set
provided by the domain scientists.
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Chapter 5

Adaptive Data Acquisition

With the resource normalization methodology from Chapter 3 and the ano-
maly detection framework from Chapter 4 we have established two of the
three fronts in our move towards scientific sensornets.

These two cornerstones also serve as building blocks for our final front,
namely an AI-based controller to mediate between the domain scientist and
the sensornet. Here, the resource normalization methodology ensures that
the controller can reason about whether or not a set of actions are feasible and
efficient, in terms of available time and energy, and the anomaly detection
framework enables the controller to adapt to changes in the environment.
In other words, with this controller we are able to perform adaptive data
acquisition instead of only automated.

In ”Meeting Ecologist Requirements with Adaptive Data Acquisition” we
present ADAE, our system to bridge the gap between ecologists and sen-
sornets. We reject the notion of yield as benchmark, and let the ecologist
control the sensornet by stating requirements based on sparseness (e.g., least
acceptable amount of measurements pr. unit time or space). Our system con-
tinuously retasks a sensornet based on detected anomalies in the measured
data and external sources, thereby adapting to the changing environment as
a scientist in the field would do. We base our work on the Planning and
Scheduling [5] architecture known from the Artificial Intelligence community.
This paper has been submitted to the ACM/IEEE International Conference
on Information Processing in Sensor Networks, 2010 and is currently under
review. The work was done in collaboration with Peter Stæhr and Philippe
Bonnet.

Our work is closely related to the soil monitoring sensornet Suelo by Ra-
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manathan et al. [4] which is also driven by online detection algorithms.
However, while their main objective is to detect faults with the purpose of
alerting a human technician, our system adapts to detected anomalies based
on predefined requirements from the domain scientist and thus avoids human
intervention as long as possible.

These predefined requirements are associated with different collection modes,
each reflecting a different purpose and strategy. Similar to Levels by Lachen-
mann et al. [3], energy consumption and expected deployment time play a
key role in choosing between collection modes, however, instead of choosing
between mutually exclusive modes based on energy consumption and lifetime
expectations, our system combines valid collection modes in order to maxi-
mize a utility function while still fulfilling the energy and time constraints.

This utility function is similar to the one used in Lance by Werner-Allen
et al. [6], where a scoring function assigns utility to measurements based
on their estimated scientific value, and the measurements with the highest
score are forwarded through the sensornet first. Our scoring function works
orthogonally to this, and is used to estimate the outcome of different collec-
tion strategies before measurements are even sampled with the purpose of
choosing collection modes with the highest combined utility.

Changing data collection strategies based on the available measurements is
similar to the adaptive sampling used in NIMS by Borgstrom et al. [1], where
measurements are chosen based on a model in order to increase resolution
and decrease uncertainty. We use adaptive sampling to maintain consistency
and to increase utility in a changing environment.

The Planning and Scheduling architecture is closely related to Control The-
ory [2] known from engineering and mathematics, which employs a controller
to ensure that the actual performance of the system is as close to the desired
performance as possible. This is done through a feedback loop that continu-
ously changes the system’s parameters in order to match performances. We
see these two approaches as orthogonal, where the former is controlling what
the performance should be, while the latter is controlling how to achieve it.
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Abstract
Ecologists instrument ecosystems with in-situ sensing to col-
lect measurements. Sensor networks promise to improve on
existing data acquisition systems by interconnecting stand-
alone measurement systems into virtual instruments. Such
ecological sensor networks, however, will only fulfill their
potential if they meet the scientists requirements. In an ideal
world, an ecologist expresses requirements in terms of a tar-
get dataset, which the sensor network then actually collects
and stores. In fact, failures occur and interesting events hap-
pen making uniform, systematic ecosystem sampling neither
possible nor desirable. Today, these anomalous situationsare
handled as exceptions treated by technicians that receive an
alert at deployment time. In this paper, we detail how ecolog-
ical sensor networks can adapt to anomalies and maximize
the utility of the collected datasets. More specifically, we
present the design of a controller that continuously maintains
its state based on the data obtained from the sensor network
(as well as external systems), and configures motes with pa-
rameters that satisfy a constraint optimization problem de-
rived from the current state. We describe our implementa-
tion, discuss its scalability, and discuss its performancein
the context of a case study.

Categories and Subject Descriptors
I.2.8 [Computing Methodologies]: Artificial Intelligence—
Problem Solving, Control Methods, and Search
; C.2.4 [Computer Systems Organization]: Computer-
Communication Networks—Distributed Systems

General Terms
Design

Keywords
Autonomous System, Constraint Optimization Problem,
Planning, Scientific Data, Wireless Sensor Networks
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1 Introduction
For years, ecologists have deployed in-situ sensing infras-
tructures to observe and monitor the biotic and abiotic factors
in a given ecosystem. They primarily rely on fixed data log-
gers to collect and store data from a wide variety of sensors.
They have been promised that low power wireless sensor net-
works would be able to provide them with sampling at un-
precedented scale and resolution [10]. However, the MEMS
revolution has not yet delivered a radical change of the op-
tical, biological and chemical sensors that are pervasive in
ecological monitoring, and scientists cannot afford high den-
sity deployment of the current generation of sensors, which
are still bulky, energy hungry and expensive. Still, low power
wireless networks can have a tremendous impact on ecolog-
ical monitoring by transforming stand-alone devices into a
networked system that is monitored and controlled to meet
the scientists requirements. In this paper, we study how eco-
logical sensor networks can be steered to improve the utility
of the collected datasets.
Ecologists rely on in-situ sensing to collect datasets of the
form (t,x,y,z)→ (v1,v2, ...,vn), where the independent vari-
ables represent time (t) and space (x,y,x), and the depen-
dent variables correspond to the modalities of the sensors
deployed. These raw measurements are the foundation of
the scientific workflow. They are tagged with metadata, and
transformed into derived data products via calibration, veri-
fication, or extrapolation processes. The derived data prod-
ucts are then used for modeling purposes. The derivation
processes and the models are applied in the lab, as a post-
processing phase, based on the primary data collected in the
field. If an offline verification process exposes a sensor fail-
ure then the collected data is useless. If a model gives ev-
idence of interesting events, then the collected data might
not be dense enough (in space, time or modality) to allow
a deep analysis of the phenomenon. In this paper, we pro-
pose to move portions of the existing offline scientific pro-
cesses online, within the ecological sensor networks in order
to improve the quality of the collected data. Specifically, we
propose that anomalous situations should be recognized and
handled online, while data is collected, so that the sensor
network can adapt and maintain high utility.
Consider a scientist that monitors a lake. She is interested
in measuring conductivity and temperature at five different
depths, at a sampling rate of one measurement per hour, for
a month. This is her initial requirement based on the dataset

Adaptive Data Acquisition

87



she wishes to collect. However, if we go further and con-
sider potential anomalous situations, we obtain a much more
complete picture:

• Failures: She can tolerate that measurements are taken
up to once every six hours; however below that thresh-
old, measurements are useless. Also, she requires that
both conductivity and temperature are measured to-
gether; if either measurement is missing the other is
useless. She indicates a valid range for conductivity
and temperature measurements; measurements outside
these ranges should be considered errors. Conductivity
errors might be compensated by either repeating a mea-
surement within a few seconds, and if that fails reset-
ting the conductivity sensor. Temperature errors might
be compensated by looking up the temperature at an ad-
jacent depth. In addition, a sensor should not be consid-
ered damaged if its measurements drift in time; regular
manual samples are taken periodically to compensate
for such errors.

• Interesting events: The scientist indicates that she is
interested in thermoclines (rapid changes in the tem-
perature within a limited depth range) - so if possible,
measurements should be taken at additional depths if
a thermocline is detected (given a simple temperature
variation threshold for detecting thermoclines). Also, in
case of a storm (signaled by the RSS feed of a close-by
weather station), the sampling rate should be increased
to twelve measurement per hour for the two depths that
are closest to the surface of the lake. The scientists
notes, however, that if energy is limited the baseline
measurements should have priority.

The core of the problem is that ecological data acquisition
has been based on the premise of systematic ecosystem sam-
pling: it is assumed that the ecosystem is sampled with given
modalities at predefined intervals in time and space. This
is neither possible (because of failures), nor desirable (be-
cause interesting events might not be captured by the base-
line settings). In contrast, we propose that ecological sen-
sor networks should rely on adaptive ecosystem sampling,
where the procedure for selecting samples may depend on
the values of observed variables [26]. More specifically, we
propose an ecological sensor network controller that checks
the measurements it collects and adapts how the next mea-
surements should be obtained (in time, space and modality)
to maximize their utility for the scientists [25]. Now, the
questions are: (1) How can scientists represent the utility
of measurements? (2) How can such a controller operate
to maintain high utility at reasonable cost in a changing en-
vironment? We address these questions in this paper. Our
contribution is the following:

1. We capture the scientist requirements in terms of data
collection modes. For each data collection mode, the
scientist describes a range of acceptable parameters.
Utility is represented as a ranked preference of these
data collection modes.

2. We describe a controller that continuously maintains its
state based on the data obtained from the sensor net-
work (as well as external sources), and configures motes

with parameters that satisfy a constraint optimization
problem derived from the current state.

3. We adopt a three-tier architecture, developed for au-
tonomous systems, in the context of a sensor network
controller.

4. We detail the implementation of the ADAE system
based on this design, and discuss how it scales.

5. We describe a case study based on an actual deployment
for lake monitoring.

2 Related Work
In this section, we look back on the evolution of data ac-
quisition based on sensor networks, we discuss the previous
use of adaptive sampling in sensor networks, and we review
existing work on autonomous systems controllers.

2.1 Data Acquisition with Sensor Networks
Cougar [3] and TinyDB [19] introduced a distributed query
processing paradigm for sensor network data acquisition.
The goal was to ensure a flexible tasking of motes via a
relational query interface. The assumption was that (a) the
relational model was appropriate to capture sensor data, (b)
that users would submit queries to task motes, and (c) that
in-network processing was necessary in the context of a sen-
sor network. The relational query interface is not a good
abstraction for ecologists that do not wish to query the sen-
sors but aim at systematically collecting primary data setsfor
their scientific processes (see [20] for a thorough discussion
of the limitations of these approaches).
BBQ [16] and MauveDB [8] introduced the notion ofmodel-
based queryingas an abstraction for data acquisition. The
system maintains a statistical model of the data, and instead
of blindly collecting time series, only collects the data that
are needed to improve the precision of the model. For in-
stance, correlations across modality are leveraged to reduce
the cost of data collection as expensive measurements are re-
placed by cheaper ones. Users obtain probabilistic, approx-
imate answers to their queries. Such approaches are not rel-
evant for ecologists since they are the ones discovering new
models and thus need primary datasets as a foundation for
their scientific processes.
PRESTO [18] further develops the idea of model-based
querying. The PRESTO gateway constructs a seasonal
ARIMA model of the time series collected at a given sen-
sor. In order to maintain these models, PRESTO combines
the pull approach from MauveDB (data is collect as needed
to improve precision), with a push approach, where each
sensors use the model parameters defined by the gateway
to predict future values and sends data to gateway in case
an anomaly is detected (i.e., there is a significant difference
between a predication and the actual measurement). The
gateway refines the sensor model as it receives new mea-
surements to reflect changes in the sensed data. We share
with PRESTO this focus on anomaly detection and on adap-
tation to a changing environment. PRESTO returns approx-
imate answers that match the confidence interval specified
by users. The rationale behind the design of PRESTO is to
improve energy efficiency, not to maximize utility for users.
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Lance [27] introduced utility-based controllers in the con-
text of sensor network data acquisition. This system fo-
cuses on the collection of high-bandwith signals, where not
all the data acquired by the motes can be transmitted to the
base station. Lance controls bandwidth usage by splitting
the data acquired at each mote into a sequence of data pack-
ets, and making sure that only the most relevant data pack-
ets are transferred back to the base station. The selection is
performed by the base station based on summaries sent by
motes and on a trade-off between cost and utility provided
by the user. We share with Lance a focus on optimizing the
utility of the collected data. The fundamental difference is
that in Lance the optimization problem concerns the dele-
tion of data collected in a predefined way, while in ADAE
the optimization problem concerns the selection of the data
collection parameters (e.g., sampling rate, sensor placement,
modality). Those two problems are orthogonal. In terms of
architecture, Lance focuses on flexible policy modules, while
ADAE relies on the three-tier architecture – both aspects are
complementary. In the rest of the paper, we assume that all
data collected at the motes can be transmitted to the gateway.
2.2 Adaptive Sampling in Sensor Networks
In statistics, adaptive sampling designs are those in whichthe
selection procedure may depend sequentially on observed
values of the variable of interest [26]. In the context of
sensor networks, adaptive sampling has been introduced to
(a) maintain high resolution while covering large regions of
space using mobile sensors, e.g., light sampling with Net-
worked Infomechanical Systems (NIMS) [4], or to (b) re-
duce approximation errors with additional samples taken by
mobile sensors, e.g., weather forecasting with autonomous
UAVs [7]. Compared to these approaches, we do not seek
to improve resolution with a reduced number of sensors, but
to maintain utility of measurements in a changing environ-
ment. Our challenge is to take a decision on when, where
or how to sample whenever the environment changes, rather
than gradually improve the resolution of a given model.

2.3 Autonomous Systems
Autonomous systems constitute a popular research topic in
the areas of AI and robotics. The most interesting devel-
opments have been achieved in the area of autonomous con-
trollers, with contributions ranging from the seminal workon
Deep Space 1 [9] to the Mars Rover [1]. An architecture for
autonomous systems has emerged [2] based on the following
three tier architecture: the bottom tier is the functional layer
that is the interface with sensors and actuators, the middle
tier executes the planned actions and check their effects, and
the top tier implements the planning and scheduling func-
tionalities. As we discuss in Section 4.3, we adopt a sim-
ilar architecture for the ADAE system. Note that NASA
has now made publicly available the platforms they devel-
oped for their autonomous systems, e.g., Apex [12] or Eu-
ropa [11]. We did not use these systems because they did
not support the type of solver we envisaged for our planner,
and because implementation constraints did not allow us to
deploy these systems on our target gateway1

1Apex relies on multi-threaded Lisp, which was not availableon
the Linux-based platform we used for our deployment.

3 The Ecologist Requirements
We aim at designing a system that autonomously adapts data
acquisition to meet the ecologist’s requirements. In this Sec-
tion, we detail those requirements. Note that our goal is not
to define a rigid template for software engineering purpose,
but to put a stick in the ground regarding the scientists ex-
pectation of an ecological sensor network.

3.1 Data Collection Modes
Ecologists rely on in-situ sensing to collect primary datasets.
In the case of manual sampling, they define a protocol that
ensure the relevance, quality and consistency of the col-
lected data. In case of automatic sampling, they have to
express requirements to the monitoring system. These re-
quirements are based on the description of the target datasets,
(t,x,y,z) → (v1,v2, ...,vn), described in the Introduction,
where the time domain defines the sampling rate as well
as the lifetime of the deployment, the space domain defines
sensor placement, and the dependent variables define sensor
modalities and accuracy.
The traditional requirement is that given a dataset descrip-
tion, all data must be stored, i.e., the whole dataset must
be collected [21]. The problem with this requirement is
twofold. First, it defines an ideal goal. In case of failure,
the monitoring system will not be able to deliver the tar-
get data set. A consequence is that system designers tend
to assume that yield (what percentage of the target dataset is
actually collected) is an appropriate metric for system per-
formance. For ecologists however, the relevance of a dataset
is not proportional to its yield. In our experience, they iden-
tify portions of the collected data set that they can use for
modeling purposes, and portions that are useless - typically
because the dataset is locally too sparse (in time, space or
modality). Second, the requirement of uniform, systematic
dataset collection does not account for interesting events.
Such events are arguably the most interesting elements of
a dataset. Their analysis might require denser sampling in
time, space or modality for a limited period of time.
For example, consider the soil monitoring project, ”Life Un-
der Your Feet” [21]. This sensor network consists of more
than hundred TelosB motes, each equipped with two tem-
perature and moisture sensor probes. These four probes are
dug into the soil at specific depths and sampled every ten
minutes. This is fast enough to monitor moisture evapora-
tion but not precipitation, which changes within seconds and
not minutes. Obviously, continuously sampling at a rate ca-
pable of capturing rain events would significantly strain the
power supply. However, using external sources such as local
weather forecasts and only increase the sampling rate when
the chance of a rain event is significant would be far less ex-
pensive power wise.
To overcome these limitations, our goal is to (a) capture an
envelope of datasets relevant for the ecologists in the context
of a given deployment, and (b) a means of representing the
scientists preferences within that envelope.
We propose to capture the ecologist’s requirements as a
ranked list ofdata collection modes(e.g., baseline, degraded,
failure, event detection). Some of the modes are exclusive
(e.g., baseline and degraded), while others can be active si-
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multaneously (e.g., baseline and failure or event detection).
For each collection mode, the ecologists define:

1. A description of the conditions that must be satisfied
to activate or deactivate these modes. A condition is
specified using a rule (e.g., humidity inside a mote is
greater than 50%), a model (e.g., Echo State Network
for anomaly detection with a training set specified by
the scientist [6]), or a timing constraint (e.g., within five
minutes or for five hours).

2. A target dataset, i.e., its time component (lifetime and
sampling rate), its space component (sensor location),
and its dependent variables (modality and accuracy).
Note that, for data collection modes associated to fail-
ures, the target data set specifies relevant redundancy in
time, space or modality.

3. A sparseness threshold for each modality, i.e., the num-
ber (or distribution) of usable measurements per chunk
of time and space.

The ranking of the collection modes defines an ordinal util-
ity function. Despite our insistence, none of the scientists we
are collaborating with could find a non-trivial cardinal utility
in the context of their activity. In addition to these data col-
lection modes, the ecologists define a targetlifetime for data
collection.
For example, we derive from [21], the following require-
ments for ”Life Under Your Feet”:

• We define the followingdata collection modes: base-
line, precipitation, and fault modes (which should be
defined with the ecologist).

• Thebaselineis always present, while thecondition for
theprecipitationevent is when the weather forecast pre-
dicts rain and theconditionfor thefault are humidity in
the mote greater than a given threshold, out of bounds
measurement.

• The target dataset for the baselineis the four probes
sampled every 10 minutes, for theprecipitationit is ev-
ery minute instead. For the fault modes, we would need
to identify redundancy in time, space or modality.

• We set thesparseness thresholdto six set of samples
every hour in each data collection mode.

We derived this form of requirements from our collaboration
with ecologist. When asked about their requirements all sci-
entists initially defined a single ideal target dataset. When
faced with the fact that failures might occur, they came up
with a form of sparseness threshold, and the definition of
one or several degraded modes. They expressed interesting
events characterized by simple conditions (external events or
simple thresholds on the sensed data).

3.2 The Case for Autonomous Data Acquisi-
tion

The solution promoted in commercial data acquisition sys-
tems to tackle failures and anomalous situations consists in
involving human supervision. Let us go back to the lake
monitoring example from the Introduction. A buoy is de-
ployed equipped with a data logger that stores the data it
collects at a predefined sampling rate from the CTD sensors

(conductivity, temperature, depth) deployed at five different
depths. The data logger is equipped with long-range wire-
less communication and it acts as a server for telemetry and
tele-command, possibly alerting a technician in case of prob-
lems and accepting commands and configuration operations.
This design, which is the state-of-the-art in ecological data
acquisition, is however flawed in several respects:

1. Contingency planning is weak. In case the data logger
detects an anomalous situation, it raises an alert and it
is up to the technician to handle it. This is a best effort
approach, where response to anomalies is unspecified
and variable. In our experience, the resources available
for monitoring purposes do not allow 24/7 supervision.
Because, long-range communication and technician su-
pervision are expensive, the data logger is programmed
to send alerts in limited cases. The system is not config-
ured to compensate for errors or to react to interesting
events.

2. No graceful degradation. When energy supplies are
low, data acquisition continues at the predefined sam-
pling rate at the risk of thrashing. More generally, the
assumption is that the system has a single regime, and
that human intervention is needed to keep this regime
operational in case of failure.

3. The system is stand-alone. Co-located data loggers are
not interconnected, thus possibly missing opportunities
for increased redundancy, and detection of interesting
events.

Our goal with this work is to limit human intervention to
the initial requirements, and let an autonomous data acquisi-
tion system handle anomalies with a controller that continu-
ously adapts to changes in the environment, and tasks motes
to maximize the utility of the measurements2. We detail the
design and implementation of such a controller in the next
Section.

4 The ADAE System
ADAE is an autonomous gateway-based controller that tasks
motes to keep on maximizing utility in a changing environ-
ment. Before we describe its design, architecture and imple-
mentation, we address the following question: Which actions
can ADAE take in order to control the sensor network?

4.1 Sensor Network Model
We model an ecological sensor network as a cluster of
motes connected to a gateway. We adopt a classical two-
tier model [18, 27], where motes are slaves, tasked by the
gateway-based controller to sample, store and transmit data.
We do not consider any form of in-network aggregation or
storage (beyond local computation or storage on the mote
that produces data). We further assume a best effort delivery
between mote and gateway (e.g., CTP [13]) that allows the
gateway to collect routing statistics. Finally, we assume that
each mote is appropriately duty cycled (based on the sam-

2Obviously, when possible and affordable, human intervention
should be used to maintain the optimal regime. Our point, here, is
that the system should maintain high utility and degrade gracefully
when the optimal regime is no longer sustainable.
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pling rate and offload rate), and that it is accessible (usinga
form of low-power listening [24]).
We also assume that the sample, store and transmit tasks are
accomplished by a program deployed on all motes, and that
this program can be configured with parameters to modify
the sampling or transmission policy. We make this assump-
tion because it allows for a straightforward integration of
legacy systems (including the current generation of commer-
cial motes). Leveraging rich mote APIs or mote reprogram-
ming (via tasklet distribution [14] or full image reprogram-
ming [15]) is an issue for future work.
We introduce virtual sensors to abstract the details of the ac-
tual motes3. Each virtual sensor represents a modality of a
given mote (we describe virtual sensors in more detail be-
low). Virtual sensors export a single API function, that de-
fines the space of possible controller actions (note that such
actions must be mapped to the API exported by the actual
motes):

• con f igure(VS,SR,TR) to configure the sampling rate
(SR) and transmission rate (TR) on a given virtual sen-
sor (VS).

4.2 Controller Design
The key questions that we need to address are: (a) What is
an appropriate abstraction of the sensor network?, (b) How
to represent user requirements, i.e., data collection modes
and utility?, (c) How to define cost?, and (d) How to plan
a sequence of actions given the controller state and the user
requirements.

4.2.1 Virtual Sensors
Conceptually, the following relations can be used to organize
the state variables representing a sensor network:
VirtualSensor(VS_id, Modality, Mote_id,

X, Y, Z, SampleTime, SampleEnergy,
TransmitTime, TransmitEnergy)

VirtualSensorState(VS_id,
SamplingRate, TransmitRate)

Mote(Mote_id, BatteryCapacity, VB_id,
Forward, Overhear)

Topology(ParentMote_id, ChildMote_id)
VirtualBattery(VB_id, LifeTime, Percentage,

NbInstallments, Credit, MaxBurnRate)
VirtualBatteryState(VB_id, Balance,

InstallmentsDone, MaxOverDraft)

Each virtual sensor is identified by aVSid and represents the
Modality of a physical sensor attached to moteMoteid, at
a fixed locationX,Y,Z4. A calibration phase defines the
time and energy it takes to make a measurement with the
given modality (SampleTime, SampleEnergy)5, as well as
the time and energy required to transmit one measurement
(TransmitEnergy, TransmitTime). Note that such normal-
ized time and energy attributes correspond to the notion of
platform vector introduced in [17]. TheVirtualSensorre-

3Our notion of virtual sensor is inspired by Franklin et al. [20]
4For static sensors, (X,Y,Z) are given at deployment time, while

for mobile sensor a valid range and possibly constraints aregiven
for these variables.

5Note that we rely on constraints to indicate the dependencies
that may exist between modalities on a same physical sensor.

lation is configured at deployment time and remains un-
changed thereafter.
Virtual sensors are configured with two data acquisition pa-
rameters: the sampling rate (SamplingRate), and the trans-
mission rate (TransmissionRate)6.
For each mote, we store the capacity of the battery it con-
tains (BatteryCapacity) as well as the reference of a virtual
batteryVBid , which is the abstraction [5] that we rely on to
reason about energy allocation. A calibration phase allows
to define for each mote, the cost of forwarding or overhear-
ing a measurement. We use a simple representation of the
collection routing tree using the topology relation. Note that
our assumption here is that the topology observed at a given
time is a good predictor of the topology in the subsequent
epoch. Obviously, we do not capture network dynamics with
this model, but this is not our goal. Our goal is to repre-
sent topology and transmission costs to estimate the cost of
a data acquisition plan (see the discussion of our cost model
below).
Each virtual battery is characterized by thePercentageof the
total capacity associated to sampling, forwarding or over-
hearing (with a given mote). Virtual batteries are further
specified with aLi f eTimerequirement (given by the user), a
total number of installments (NbInstallments), aCredit rate
that allows to specify an energy allocation policy (Credit is
a real number in the interval [0, 1], e.g., 0 corresponds to a
conservative policy that only grant energy installments when
there is an energy surplus, while a positive credit rate corre-
sponds to a policy that allows energy deficit up toCredit),
and a maximum allowed energy burn rateMaxBurnRate.
The virtual battery state relation is used to maintain the ac-
tual energyBalance, the number ofInstallmentsalready re-
ceived and the maximum overdraft allowed (MaxOverDra f t
which is a negative number).

4.2.2 Physical Limitations
The controller maintains a set of constraints over vir-
tual sensors that reflect the actual limitations of the phys-
ical system. Those constraints concern the range of
possible values for the location parameters (X,Y,Z), the
sampling rate (SamplingRate), and the transmission rate
(TransmissionRate). In addition, a physical mote is repre-
sented as several virtual sensors, one for each modality. We
capture the serial or parallel constraints that exist between
co-located virtual sensors, in terms of location and in terms
of timing of the measurements. In order to represent the tim-
ing constraints, we do not need the whole power of the event
calculus [25], we just need to represent constraints on serial
or parallel executions. We thus introduce variablesti, j that
represents the time required beforeVSj can take a measure-
ment afterVSi and use integer constraints to represent these
timing constraints. To sum up, we represent the physical lim-
itations of the sensor network using two types of constraints:
(1) domain restrictions, and (2) integer constraints basedon
virtual sensors variables.

6Note that we force transmissions to be triggered by a time-
based condition (the transmission rate) instead of a more general
form of condition (e.g., transmit when mote storage is half full) and
thus sacrifice flexibility for predictability.
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4.2.3 Data Collection Modes
To represent data collection modes, the controller maintains:

• A set of predicatesP to represent the conditions that
activate and deactivate the given data collection modes.
The controller implements the rule-based, model-based
or time-based methods specified by the users to evaluate
these predicates.

• Specific constraints imposed by the sparseness thresh-
old for the given data collection modes. These con-
straints are expressed as restrictions of the state vari-
ables domainsD (e.g.,X ∈ [1..100]).

4.2.4 Utility Model
We base our controller on the principle of maximum ex-
pected utility [25]. Each action taken by the controller con-
figures motes in conformance with one of the data collec-
tion modes described by the ecologist. We associate a car-
dinal utility to each action, based on the ranked preference
among the resulting data collection modes. This utility func-
tion is a simple scoring function with uniform spacing (for
N modes, the scoring function is such that the top ranked
mode gets a score of N, and the bottom ranked mode gets a
score of 1). Using the binomial distribution, we model the
probability of success for a configuration as the probability
of collecting a number of samples higher than the sparseness
threshold: 1− 1

( SamplingRate
SparsenessT hreshold)

(where bothSamplingRate

and SparsenessThresholdare defined in numbers of sam-
ples for a given epoch∆). The sparseness threshold might be
defined for several modalities (i.e., several virtual sensors)
within a given data collection mode, so we select the lower
probability and multiply it by the rank to obtain the expected
utility for that data collection mode.
4.2.5 Cost Model
The controller associates a cost to each virtual sensor con-
figuration, based on the energy used to sample, transmit and
overhear measurements. We adopt a variation of the cost
model introduced in Lance [27], and represent the costδ j
of a virtual sensor configurationVSi per virtual batteryVBj .
The source mote to whichVSi is associated incurs a sam-
pling and transmit cost, while motes on the communication
path incur a forwarding cost, and motes one hop away from
the communication path incur a overhearing cost. For a given
period of time T,

• Sampling and transmission cost on the source
virtual sensor is estimated as(SampleEnergyi +
TransmitEnergyi)∗ (SamplingRatei ∗T), i.e., the prod-
uct of the energy cost of obtaining a measurement with
the number of measurements in the period.

• Forwarding cost is estimated asForwardingj ∗
(SamplingRatei ∗T).

• Overhearing cost is estimated asOverhearj ∗
(SamplingRatei ∗ T). It is associated to the trans-
mission virtual batteries of all physical motes in the
neighborhood of the forwarding motes.

We introduce integer constraints derived from the virtual
battery energy allocation model: for a given time period
T, (1) the balance is greater than the maximum overdraft

(Balance− δ j > MaxOverDra f t), and (2) the amount of
energy spent byVSi is bound by the maximum burn rate
(δ j ≤ MaxBurnRatei ∗T).

4.2.6 Planning Problem
Now, the question is: How does the controller pick appro-
priate actions given its current state? Because the controller
operates in a changing environment, it needs to proceed on-
line, i.e., select some actions at one point in time and evaluate
their impact regularly, possibly selecting new actions to re-
act to a change in the environment. We call epoch, noted∆,
the period of time after which a given action is reevaluated
(note that our cost model and utility function are defined for
limited time frames). A default epoch size is given as a sys-
tem parameter. Note that an epoch is shorter than the default,
in case a data collection mode predicate requires it (e.g., the
actions following a failure might be valid/relevant only for a
short period of time). We impose a constraint that the period
corresponding to the transmit rate is lower than (or equal to)
the epoch∆.
For each epoch, virtual sensors have a fixed configuration
(i.e., fixed location, fixed SR and TR). The actions gener-
ated, for a given epoch, are thus a collection of at most
one API call per virtual sensor. The planning problem is
thus reduced to a constraint optimization problem, where the
controller must find values of the state variables that satisfy
all the constraints, maximize expected utility and minimize
cost: (V , R , C , U), whereV represent variables (i.e., all
the attributes from the virtual sensor relations),R are the
restrictions on these variables (either given by the system
model, the cost model or the user requirements),C are the
constraints (i.e., physical limitations, or virtual battery con-
straints) andU is the expected utility. The size of the search
space grows exponentially with the number of virtual sen-
sorsO(sr range·2N), where N is the number of virtual sen-
sors andsr range is the average size of theSamplingRate
domains

4.3 System Architecture
Our controller needs to address three sub-problems:

1. How to update the controller state?

2. How to generate the appropriate constraint optimization
problems when appropriate?

3. How to solve the given constraint optimization prob-
lems?

In order to tackle these problems, we structure our controller
using the classical three-layer architecture developed for AI
planning [2]:

• Functional Layer, which provides abstractions for the
motes, the sensor tasks, the storage subsystem, and the
detection modules. Its interface is generic, but its im-
plementation is deployment-specific.

• Executive Layer, which checks the collected data, call
the decision layer if a new plan is needed, and transmits
the plans from the decision layer to the functional layer.
Both its interface and implementation are generic.

• Decision Layer, which produces a new plan based on
the data it gets from the executive layer. The deci-
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Figure 1. Architectural overview of ADAE.

sion layer is composed of a generic solver and of a
deployment-specific model.

The flow of information in the individual components in this
three-layer architecture is illustrated in Figure 1. Data gen-
erated from the sensor network (both measurements and net-
work status) is collected bySensorData. This data is stored
in a local database, and passed along to the upper layers of
the controller. We use virtual sensors to present a uniform
abstraction to the upper layers of the controller. One issue,
though, is to map the data received from actual motes into
data associated to virtual sensors. This mapping is straight-
forward for stationary sensors since there is a direct one-to-
one mapping between virtual sensors and the modality of a
mote at a given location. Mobile sensorsOn the other hand,
have a one-to-many mapping, were each distinct location of
a mobile sensor corresponds to a different virtual sensor. The
data associated to virtual sensors is then passed on toPredi-
cateGenerator. Information from external sources, such as
weather forecasts and time and date specific events are col-
lected byExternalData. This data is passed on toPredi-
cateGenerator.
In PredicateGenerator, detection and mapping algorithms
are used to transform the time series, network status, and ex-
ternal data into predicates. In terms of architecture, one or
several detection modules are attached to each virtual sen-
sor. For example, the range of each measurement value can
be checked and if some are found to be out-of-bounds the
OutOfBoundspredicate is set to true. The conditions de-
scribed by the ecologist are also checked at this point with
each condition generating its own predicate.
These predicates are passed on toCOPGenerator where
they are used to represent the current state of the system.
The role of this component is twofolds. First, it maintains
the state of the virtual sensor and virtual batteries. Second, it
constructs a COP that reflects this state, and incorporates the
constraints as well as utility function from the set of data
collection modes activated by the predicates that evaluate
to true. Note that we generate a single COP for the entire
network in order to account for forwarding and overhearing
costs.
This COP is then passed on toCOPSolver which tries to
find a sensor configuration that satisfies all the constraints
of the COP and at the same optimizes the expected utility

and minimize cost. In ADAE, we model our COP using the
MiniZinc [22] constraint programming language which al-
lows us to define our COPs at a high level of abstraction.
This gives us the flexibility to switch between different en-
gines depending on performance and platform availability.
The solving of the COP is accomplished in two-steps. First,
the COP formulated in MiniZinc is translated to the FlatZinc
language, a lower level constraint programming language.
Second, a generic solver with a FlatZinc parser is used to
solve the COP. The downside of using a generic language
such as MiniZinc is the added overhead from the intermedi-
ate step and the missed opportunity to leverage solver spe-
cific performance enhancements, i.e., specific API calls.
The resulting plan is passed on toPlanInterpreter where
a configuration is generated for each mote and usingSen-
sorConfigurator each mote in the network is reconfigured.
Similar to the mapping process inSensorData, the configu-
rations for the virtual sensor abstraction are transformedinto
commands and configurations specific to the physical sen-
sor network. Virtual sensors corresponding to sensors with
fixed locations are mapped directly, while for virtual sensors
representing mobile sensors, the robot carrying the sensoris
instructed to follow a path connecting the virtual sensors.A
cache of all the current configurations are kept and motes are
only reconfigured if there are any changes. Whenever pos-
sible, SensorConfigurator requires that motes piggyback
their energy status on the data they transmit. Such energy
status are identified bySensorDataand used byPredicate-
Generator to update the virtual battery state.

5 Evaluation
The key question from a performance point of view is
whether our approach based on generating and solving Con-
straint Optimization Problems is viable, specially in a multi-
hop setting with a cluster of 40-50 motes. This is the ques-
tion we address in this Section. Our implementation of
ADAE is publicly available7 and based on the standard C++
library to ensure portability. We only use the MiniZinc-to-
FlatZinc translator provided by [22] and not the correspond-
ing FlatZinc solver. Instead we use the Gecode solver with

7http://code.google.com/p/adae/
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the FlatZinc interface8, since it has better performance, sup-
ports are wider range of platforms, and allows a more con-
trolled search process. All benchmarks are run on an Intel
Core 2 T7600 2.33 GHz processsor.

5.1 Sanity Check
5.1.1 Constraints
Because we are considering Constraint Optimization Prob-
lems, we expect the resource constraints (i.e. time and en-
ergy) to have a significant dual impact on the search space.
On one hand, tight resource constraints will limit the search
space by rendering certain states inaccessible, and thus re-
duce the runtime. On the other hand, loose resource con-
straints will make even the high utility states accessible,giv-
ing the full benefit of the optimization directed search. We
thus expect the search space to be largest when the resource
constraints are neither restrictive enough to render a signifi-
cant portion of the state space inaccessible nor loose enough
to make the states with the highest utility available.
Of course, this only holds if the cost/benefit relation between
time/energy and utility is positive, i.e., states with higher
utility requires more resources than states with lower util-
ity. With a negative relation, tight resource constraints would
lead to the benefits of both a small state space and a optimiza-
tion directed search, while a loose constraint would have nei-
ther. For the remainder of this Section we choose a positive
relation since this seems most applicable, i.e., higher cost
yields higher utility.
In Figure 2 we show the runtime for three different COPs,
with varying energy constraints. Because the time constraint
are modeled completely analog we only consider the energy.
The number of motes and available sampling rates are all
fixed at one for all three problems.
The energy constraints are set as a fraction of the maximum
energy required for the most demanding state, since this de-
pends on the number of virtual sensors. As expected, there
is a significant difference in runtime when the constraints
are varied. Specifically, there is a difference of three orders
of magnitude between the COPs with no energy constraints
(100%) and the ones with exactly half available (50%). This
confirms our initial analysis that the search space is largest
when neither the constraints nor the optimizations can be
used to minimize the search space significantly.

5.1.2 Virtual Sensors
We know from Section 4.2.6 that the size of the state space
grows exponentially with the number of virtual sensors and
linearly with the number of available sampling rates. On the
other hand, the number of motes only effects the shape of the
state space. We thus expect the former to have a significant
impact on runtime while the contribution from the latter will
mostly be overhead from book keeping.
We explore the scalability with regards to the number of vir-
tual sensors in Figure 3. As before, we keep the number of
motes and sampling rates fixed at one. With the new infor-
mation above, we set the energy constraint to 50% of the
highest energy state in order to explore the largest search

8Generic Constraint Development Environment.
http://www.gecode.com/

space. As expected, the runtime grows exponentially with
the number of virtual sensors (note the logarithmic scale).

5.1.3 Sampling Rates
Next we explore the impact of the size of the sampling rate
domain. Again, we keep the number of motes fixed at one
and set the energy constraint to 50% of the highest energy
state. We expect from Section 4.2.6 that the runtime grows
linearly with the sampling rate domain size, which is also the
case as can be seen in Figure 4.
5.1.4 Motes
In Figure 5 we show the run time as a function of increased
number of motes.
Not surprisingly, increasing the number of motes does not
have a significant impact on runtime, with only a small linear
addition when adding motes. The reason why motes add a
small amount of overhead lies in the way cost and utility are
calculated in the model: there is an intermediate calculation
step for each mote.

5.2 Constraining Runtime
In the previous experiments, the runtimes we measured have
all been for exhaustive searches. However, with an exponen-
tial state space we have no guarantees that the search space
will be traversed in a timely manner.
Although our goal is the optimal solution, any assignment
that satisfies our COP will of course also satisfy the ecol-
ogist’s requirements. Hence, any solution will be tolerable
although one with higher utility is obviously preferred.
Thus, we explore the quality of the intermediate solutions
(if any) that the solver discovers during each search when
subject to a hard upper bound on the runtime. We turn our
attention back to the problems from Section 5.1.2 in order
to compare both the constrained runtime with the exhaustive
runtime and the intermediate utility with that of the optimal
one. However, even with the lowest runtime we could en-
force on the search, 15 ms, the solver was able to find a so-
lution with a utility identical to the optimal one. Even when
we increased the number of virtual sensors to 40, we still ob-
tained the optimal solution as one of the first solutions where
an exhaustive search would have taken more than 20 days.
The reason for this surprising result is that although the prob-
lems we seek to solve have an exponentially large search
space, the solutions themselves are rather simple; and the
reason why the solver requires an exhaustive search to find
the optimal solution is because we use a generic one that can
only be given general search directions and not a problem
specific solver with detailed knowledge of the system’s dy-
namics.
In our case, the general search directions we use are to first
establish the optimal sampling rate, by searching in ascend-
ing order, and next determine which virtual sensors to in-
clude, starting with them all. This strategy favors the lo-
calization ofa solution involving as many sensors as possi-
ble, which quite often is exactly the lowest tolerable oper-
ation mode. We leave the creation of a constraint program-
ming solver tailored for environmental models open as future
work.
Instead we turn our attention to a more complex and realistic
COP, and consider the soil monitoring sensor network de-
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Figure 2. The effect constraining resources has on the
search space.
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Figure 3. The influence of virtual sensors on the search
space. Note the logarithmic scale.

0 2 4 6 8 10
0

50

100

150

200

250

No. of sampling rates

R
un

tim
e 

/ s
ec

on
ds

 

 

24 Virtual Sensors
25 Virtual Sensors
26 Virtual Sensors

Figure 4. The influence of the number of sampling rates
on the search space.

5 10 15 20 25
0

50

100

150

200

250

No. of motes

R
un

tim
e 

/ s
ec

on
ds

 

 

24 Virtual Sensors
25 Virtual Sensors
26 Virtual Sensors

Figure 5. The influence of motes on the search space.
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Figure 6. Restricting runtime for the ”Life Under Your
Feet” COP with 30 motes and 120 virtual sensors.
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Figure 7. Restricting runtime for the ”Life Under Your
Feet” COP with 100 motes and 400 virtual sensors.

scribed in Section 3.1. Besides the increased virtual sensors
needed, this COP also considers each mote’s communication
cost caused by multi-hop routing. For this evaluation, we
choose a simple 4-hop binary tree topology, with the excess

motes evenly spread among the leaves.

First we consider a system of 120 virtual sensors, spread
evenly among 30 motes, each containing two datasets and
two possible sampling rates. We plot the relation between
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energy constraint and optimal solution for four cut-off run-
times in Figure 6. The energy is varied between the lowest to
highest state and the efficiency is measured as the percentage
of the optimal solution. Surprisingly, the efficiency is above
88 % for even the shortest runtime of 1 s while almost half
of all the solutions found are the optimal one.
We then increase the state space by considering 400 virtual
sensors attached to 100 motes. The results can be seen in
Figure 7. Overall the increased state space decreases the ef-
ficiency for all cut-off times and not surprisingly the 1 s cut-
off suffers the most. Looking closer, although the state space
has increased by a factor of 270 the 20-30 s cut-off times are
still able to achieve 80-100 % efficiency.
This result shows that for environmental monitoring where
changes happen on the order of minutes, our controller is ef-
ficient enough to instrument the sensor network in a timely
manner. Especially, sinceanysolution that satisfies the COP
also satisfies the needs of the ecologist, regardless of the
achieved utility.

5.3 Discussion
In the previous sections we explored the scalability of our
model by measuring the runtime over a broad range of pa-
rameters. We discovered that even with a generic solver
and an exponential search space, the first solutions found are
quite often close to the optimal solutions. This last resultis
encouraging since it suggests that we can plan for even large
networks by enforcing an upper bound on the search and still
be confident that the result will be close to optimal.
At the same time, it enables several contingency strategies.
For instance, if no solution can be found within the given
time limit, another search can be initiated but with a higher
time limit, or relaxation techniques can be used to simplify
the problem by removing datasets from the model one at the
time, stopping with the baseline dataset. These simpler prob-
lems will thus have a higher chance of success.

6 Case Study: Lake Monitoring
In order to illustrate the usefulness of ADAE we present a
case study of a buoy equipped with a mobile water moni-
tor [23]. The virtual sensor abstraction completely shields
from the controller that the physical sensors are in fact mo-
bile and not stationary. Unlike typical wireless sensor net-
works built from low power motes with inexpensive sensors
attached, this water monitoring system consists of a $20,000
high-quality data logger which has been network enabled.
Being able to control legacy systems is interesting because
these are instruments the ecologists know they can trust.
This system consists of a single buoy equipped with a wa-
ter monitor capable of measuring conductivity, temperature,
dissolved oxygen, pH, and fluorescence. These properties
are important in estimating the primary production and res-
piration in the lake ecosystem.
The water monitor is attached to the buoy with a 10 m long
cable. An electric motor is used to adjust the vertical lo-
cation of the water monitor thus enabling measurements at
different depths. The buoy is powered by solar panel and is
equipped with battery for night time operation. A Real-Time
Control Unit (RTCU) instruments the motor and water mon-
itor. Collected data is directly transmitted from the buoy to a

back-end database over the Internet through a GSM modem.
This connection is also used to transmit new configurations
to the buoy, which is used by the RTCU to control the depth
and sampling rate of the water monitor. In case of network
outage, the RTCU reverts to being a data logger and stores
all measurements locally until network service has been re-
stored, at which point the data is offloaded.
This system has been deployed continuously for an entire
season. Twice an hour the water monitor is lowered to ten
predefined depths and at each depth all five sensors are sam-
pled.

6.1 Problem Statement
Because of surface heating in the summer and the lake’s dy-
namics, two distinct temperature regions, characterized by a
sharp boundary, can be formed at the top and bottom. This
stratification is interesting for the ecologist because thebio-
logical activity is particularly high at this boundary.
Understanding this layering with measurements clustered
around the boundary would be of significant scientific value.
However, since the formation of this stratification and its
location is neither predictable nor static over time it is not
possible to specify the exact measurement depthsa priori.
Hence, the previous season’s measurements have all been
done at ten fixed depth, spread out evenly down to 9 m.
As it turns out, the buoy’s power supply has been over di-
mensioned with a solar panel and battery capacity exceeding
the maximum power consumption of the system, even when
running continuously. On the other hand, because the water
monitor has to physically move, the system can at most mea-
sure 15 samples every half-an-hour, due to the actual move-
ment and the following stabilization of the water.
Thus, in this case study the purpose of our adaptive data ac-
quisition is not to conserve energy or meet lifetime require-
ments, but rather to increase the quality of collected data by
adapting the sampling strategy.
In other words, the problems we seek to solve is (1) to de-
tect and track the location of this temperature boundary and
(2) instruct the buoy to collect extra samples in this region,
besides the ten fixed samples.
Using the formalism presented in Section 3.1 we state the
ecologist’s requirements as follows:

• We define threedata collection modes: baseline, strat-
ification, and correction. We did not define failure
modes in this first deployment. We will leverage some
of the lessons we learnt to define failure modes in the
next deployment (based on anomalous patterns indicat-
ing a problem with a probe as suggested in the Intro-
duction).

• Thebaselineis always present, while thecondition for
thestratificationevent is the formation of a temperature
gradient greater than 0.5◦C/m. Finally, thecondition
for the correction is when thesparseness thresholdis
reached.

• The target dataset for the baselineis ten samples at
fixed depth. For thestratification, it is five samples
clustered around the highest temperature gradient. The
correctionis to re-collect missing samples.
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Figure 8. Four vertical profiles of temperature (buttom) and dissolved oxygen (top) measurements. Measurements
obtained with the baselinedataset has been overlaid with measurements from thestratification dataset.

• Only thebaselineis given asparseness thresholdof
ten samples every half-an-hour.

6.2 COP Modeling
Given the requirements and the physical constraints of the
system, we create three datasets. Thebaselinecontains five
virtual sensors (one for each modality) fixed at each of the
ten depths, while thestratification is constructed from two
parameters: the epicenter and the range of the stratifica-
tion. Computing the stratificationcondition is straightfor-
ward, and the highest value is used as the center and all val-
ues exceeding the 0.5◦C/m threshold constitute the range.
Last, thecorrectionis constructed from the missing samples.
The reason behind the 30 minutes sparseness threshold is that
physical changes in the lake happens on this timescale. Thus,
combining a baseline dataset with its associated stratification
dataset in one sequence is not an option because thestratifi-
cationset will by definition be shifted with the transmit rate.
In other words, the two datasets are mutually exclusive and
must be applied sequentially. We constraint the transmit rate
and set theepochto 20 min. for thebaselineand 10 min. for
thestratification.
The ordering of thecollection modesare then:baseline, cor-
rection, andstratification.
Because energy is not an issue in this case we do not de-
fine a constraint for this resource. However, there is still the
temporal constraint on the system, where the water moni-
tor’s round trip time combined with the sampling time must
not exceed the time frame dictated by the sampling rate. Be-
cause the water monitor and control unit operates in parallel
we do not consider the transmission time since this is signif-
icantly smaller than the measurement time.
The water monitor requires 90 seconds to settle at each new
location and sample all the sensors. We assign this time cost
to each virtual sensor but add in the model that virtual sen-
sors at the same depth can be sampled in parallel. In the
application specific part of the model we define the systems
temporal cost function as the number of virtual sensors times
the cost of each individual sensor combined with the round-
trip-time of the water monitor. We model the round-trip-time

as twice the distance of the deepest placed virtual sensor di-
vided by the speed of the electric motor.
6.3 Results
We implemented the model above in ADAE and used it to
control the deployed buoy remotely through the back-end
server. We used a low-power ARM based single board com-
puter to serve as our controller.
In Figure 8 we show four series of temperature (bottom) and
dissolved oxygen (top) measurements. Thebaselinedataset
has been overlaid with thestratificationdataset in order to
illustrate the benefit of adaptive sampling. In each series,the
measurements to the left are closer to the surface than the
measurements to the right.
For the temperature, we see a sharp boundary in the 7-11◦C
region where only one baseline measurement is present in
each series and the rest of the measurements are clustered
either above or below this region. When we look at the strat-
ification measurements we see that there indeed are five in
each series and that they are filling the gap left by the base-
line measurements. For the dissolved oxygen we see a sim-
ilar trend, with the extra measurements filling out the gaps
left by the baseline measurements. Interestingly, thestratifi-
cation measurements do not lie on a straight line between
the baselinemeasurements, meaning knowledge has been
gained by adding the extra measurements.

7 Conclusion
Sensor networks promise to radically improve the data ac-
quisition systems that ecologists can deploy for in-situ in-
strumentation. There is however a risk of mismatch between
the assumption by ecologists that the sensor network delivers
exactly the time series that has been specified, and on the as-
sumption by computer scientists that the goal is to collect as
much data as possible (using yield as a performance metric).
We argue that it is necessary to take failures and interesting
events into account when specifying the ecologist require-
ments. We proposed data collection modes as a means to
represent an envelope of target datasets (e.g., higher sam-
pling rate, or higher accuracy, or different combination of
modalities for a given period).
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Based on the insight that uniform and systematic ecosys-
tem sampling is neither possible, nor desirable, we proposed
ADAE, a utility-based controller, that adaptively configure
motes in a changing environment. ADAE is based on the
assumption that motes export a simple configuration API in
order to easily interface with legacy systems. We describeda
three-tier architecture to organize the complexity of commu-
nicating with motes, representing the sensor network state
and the user requirements, generating constraint optimiza-
tion problems (COP) to determine the configuration param-
eters, and solving these COP. We showed that a COP solver
scales to realistic multihop sensor networks, and we illus-
trated the benefits of ADAE in a lake monitoring monitoring
system deployed this summer.
We are in the process of preparing new deployments. These
are needed to explore the limitations of data collection
modes, as well as ADAE. In particular, we are investigat-
ing how to handle a very dynamic environment, and how to
handle failures in a long-term autonomous deployment.
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Conclusion

Although sensornets used for habitat and wildlife monitoring have been
around for a decade, domain scientists have yet to embrace sensornets as
a scientific instrument. We postulated in the introduction that the reason
for this discrepancy lies in the complexity of successfully deploying a sensor-
net, a fact backed up by the large presence of computer scientists in every
sensornet deployment. We argued that in order for sensornets to be used by
domain scientists, the same way they would any other instrument in their
toolbox, this gap had to be bridged and the complexity reduced. In summary,
we identified three key issues with using sensornets in a scientific capacity:

• Deployment. Successfully designing and deploying a sensornet is not
trivial. A set of tools is needed in order for domain scientists to be able
to design and deploy their own sensornets.

• Quality. For the collected data to be usable as experimental evidence
the quality must be high enough, meaning faulty and missing measure-
ments must be kept at a minimum.

• Flexibility. Sensornets deployed for scientific monitoring have lacked
the flexibility a scientist in the field would have.

These are the problems we addressed in this dissertation, which lead us to
our thesis that sensornets should become instruments that domain
scientists can pick, deploy, and program to efficiently collect high
quality datasets.

We used automated data acquisition in the Hogthrob project, where we moni-
tored the activity of household sows using accelerometry. Although successful
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in detecting oestrus in sows, we encountered the same problems presented
above. First, during the design phase it was not obvious which mote would
suit our deployment best. We needed a way to evaluate the performance
of different platforms without actually deploying them. Second, after the
experiment, we realized that many of the measurements where either faulty
or missing, making it impossible to describe the sows activity during those
periods, based on the acceleration data alone. Being able to detect the faulty
measurements immediately would have enabled us to resample the sensors
and perhaps recover some usable measurements. Third, with a fixed sampling
rate all activities were measured with the same resolution. Since storage be-
came a problem due to network outage, it would have increased the quality
of the data if the sampling rate had been adapted to the actual activity of
the sow, e.g., reduce the sampling rate when the sow was sleeping.

Following the Scientific Method, we returned to revise our problem statement
and hypothesis, which lead us to our three front approach: First, to help
choose the right set of motes and applications for a deployment we developed
a benchmarking methodology. Second, to increase the quality of the collected
data we developed an anomaly detection framework. And third, to make it
easier for the domain scientist to control the sensornet, and for the sensornet
to be able to react to changes in the collected data, we developed a controller
to mediate between the scientist and the sensornet.

With our benchmarking methodology, we presented a systematic way to pre-
dict the energy and time consumption of one application on different plat-
forms, and different applications on the same platform. We accomplished
this by devising a method to divide the resource consumption into two inde-
pendent contributions, one specific to the application and one specific to the
platform, using linear algebra. This cross-platform prediction is essential in
preparation for a deployment, since it enables the possibility to consider a
wide range of motes without actually having to deploy them.

In the anomaly detection framework presented, we use machine learning algo-
rithms to differentiate between normal and anomalous data, by defining the
latter to be all measurements that deviate significantly from a training set.
This unified fault and event detection framework, based on Neural Networks
and Bayesian Networks, proved to be superior to the heuristics deployed by
previous sensornets, both in terms of detection accuracy and sensitivity. A
watchdog based on this anomaly detection framework, could both be used to
detect faulty measurements, with the purpose of resampling, and to adapt
the sampling rate based on the detected anomaly.

100



Conclusion

Finally, we presented an adaptive data acquisition controller, based on the
AI Planning and Scheduling architecture, to act as a proxy for the domain
scientist. This controller adaptively changes the sampling strategy by retask-
ing the sensornet, based on the state of the environment and the scientists’
requirements. These requirements are based on temporal and spatial sparse-
ness of the expected measurements instead of the more traditional yield. We
showed that the controller had successfully directed the sampling in a lake
monitoring deployment, both detecting changes in the environment and cor-
rectly adapting the sampling strategy accordingly. More importantly, the
measurements captured with the adaptive sampling proved to contain fea-
tures that would not have been discovered otherwise.

In summary, with the three major contributions in this dissertation:

• A vector-based methodology to characterize mote performance, en-
abling cross-platform prediction of an application’s energy and time
consumption without actual execution.

• An anomaly detection framework, based on machine learning algo-
rithms and lightweight enough to run online on a mote in conjunction
with a data acquisition application.

• A sensornet controller based on artificial intelligence, that given the
state of the environment and available resources chooses a set of actions
that match the scientist’s requirements most.

we conclude our thesis that sensornets should become instruments that
domain scientists can pick, deploy, and program to efficiently col-
lect high quality datasets.

Future Work

Normalizing Resource Consumption

In our benchmarking framework, CPU performance is measured using a re-
source intensive application. This simplified model is adequate as a first
order approximation, however, for more precise predictions it is necessary to
explore better alternatives to characterize CPU performance.

One direction could be to use either a set of applications and then aver-
age the performance, or use a synthesized application specifically tailored
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to mimic a broad range of applications. The challenge lies in the different
CPU architectures used on different motes, where one application might suit
one architecture more than another. Of course, this is closely related to the
choice of compiler, which would also effect the CPU performance.

Due to the amount of motes we had available at the time, the number of
platforms we benchmarked is very limited. Exploring more platforms, differ-
ent types of applications, and operating systems is essential in understanding
under which conditions our benchmarking framework is applicable. To facili-
tate the collection of traces a more recent tracing method such as Quanto by
Fonseca et al. [2] should be used. With this increased knowledge, we will also
be able to verify that our linearity hypothesis is indeed valid, by applying
the multilinearity tests [1].

Finally, our method is based on collecting application traces in situ, thereby
incorporating non-deterministic contributions, and subsequently divide the
resource consumptions into platform and application specific vectors. How-
ever, by doing this we actually add the non-deterministic contribution to the
application vector. In theory, it should be possible to deconstruct the appli-
cation vector into a deployment vector, characterizing the non-deterministic
contribution collected in the trace, and a pure application vector, which only
depends on the application’s source code. This would give us a three-way
prediction methodology, where we would be able to predict the combined
effect of multiple platforms and applications in different environments.

Anomaly Detection

With a framework based on machine learning, the most important factor in
determining the accuracy of the anomaly detection lies in the quality of the
training sets.

Understanding the difference between artificial training sets constructed from
models and sets originating from actual measurements, would lead to more
efficient anomaly detection. One could imagine, that depending on the
anomaly one wish to detect and the quality of the measurements available,
a tradeoff exists between choosing one over the other.

In the presence of adaptive sampling, it is also necessary to explore how to
adapt the anomaly detection to match the active sampling rate. Depending
on the algorithm in question, different parameters could be stored for different
sampling rates. Alternatively, the training set could also be based on the
highest sampling rate available and when a lower sampling rate is used,
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one could interpolate the missing data points before applying the detection
algorithm.

Another interesting area for future work is to explore the two-dimensional
space consisting of machine learning algorithms and sensor modalities. We
have shown that Neural Networks and Bayesian Networks are capable of
tracking moisture and temperature data, however, this might not be the case
for other modalities. Understanding the effectiveness of different algorithms
is key in choosing the right algorithm for the right modality.

Finally, building a watchdog based on this anomaly detection framework
would be interesting. Especially in combination with an adaptive sensornet
controller such as ADAE. Obviously, using a watchdog locally on the mote
to react to changes or have a controller to globally retask the sensornet are
both beneficial. However, exploring the effect of combining both in the same
sensornet is intriguing, especially the boundary between delegating respon-
sibility to the watchdog or to the controller.

Adaptive Data Acquisition

Although we did have an actual deployment with our controller, the sensornet
instrumented was severely restricted in terms of nodes and feasible data
collection strategies. With time being a limited resource, due to the actual
movement of the sensor, and the over-sized power supply removing the energy
constraint, the configuration space was atypical for a sensornet. In order to
fully explore the benefits and limitations of our sensornet controller, more
deployments with larger networks and configuration space are necessary.

In the MANA1 project, we deploy sensornets in remote arctic regions for
environmental monitoring. The conditions in these regions are significantly
different from those typically encountered in sensornet deployments, with the
two most important factors being the harsh weather conditions and complete
lack of infrastructure. The low temperatures and strong wind conditions
make equipment failures unavoidable, and the remote location means access is
limited to at most a handful of visits each year, putting an extreme toll on the
logistics. In these conditions, sensornets are without supervision for months,
power is completely dependent on the varying sun and wind conditions, and
component failure is unavoidable.

We plan to deploy ADAE to control the sensornets in this project, thereby
handling failures more efficiently, and utilizing the fluctuating power supply

1http://www.itu.dk/mana/
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more consistently, with the help of adaptive sampling. Another interesting
way to increase the sensornet’s robustness, especially in harsh environments
where failures are frequent, is to incorporate Control Theory on each mote
to ensure that the tasks given by ADAE are carried out to the best of the
mote’s ability.

Traditionally, after data has been collected in the field, measurements have
been processed using models and heuristics as part of the analysis process.
New and improved models are subsequently build from these derived data
products. In ADAE, we have in effect moved part of this modeling to the
data acquisition process, in order to make it adaptive. Obviously, applying
too much of the model during the data acquisition process will both effect
performance and bias the measurements, making it difficult to construct new
models. Finding the optimal tradeoff between performance and adaptability
is an interesting issue for future research.
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[17] R. Musăloiu-E., A. Terzis, K. Szlavecz, A. Szalay, J. Cogan, and J. Gray.
Life Under your Feet: A Wireless Soil Ecology Sensor Network. In
EmNets Workshop, May 2006.

[18] S. Nath, J. Liu, and F. Zhao. Sensormap for wide-area sensor webs.
Computer, 40(7):90–93, 2007.

[19] K. Ni, N. Ramanathan, M. N. H. Chehade, L. Balzano, S. Nair, S. Za-
hedi, E. Kohler, G. Pottie, M. Hansen, and M. Srivastava. Sensor Net-
work Data Fault Types. ACM Trans. Sen. Netw., 5(3):1–29, 2009.

[20] N. Ramanathan, T. Schoellhammer, E. Kohler, K. Whitehouse, T. Har-
mon, and D. Estrin. Suelo: Human-assisted Sensing for Exploratory Soil

106



Monitoring Studies. In SenSys ’09: Proceedings of the 7th ACM Con-
ference on Embedded Networked Sensor Systems, pages 197–210, New
York, NY, USA, 2009. ACM.

[21] S. Russell and P. Norvig. Artificial Intelligence A Modern Approach,
2nd Ed. Prentice Hall, 2003.

[22] L. Selavo, A. Wood, Q. Cao, T. Sookoor, H. Liu, A. Srinivasan, Y. Wu,
W. Kang, J. Stankovic, D. Young, and J. Porter. LUSTER: Wireless
Sensor Network for Environmental Research. In SenSys ’07: Proceed-
ings of the 5th international conference on Embedded networked sensor
systems, pages 103–116, New York, NY, USA, 2007. ACM.

[23] M. Seltzer, D. Krinsky, K. Smith, and X. Zhang. The Case for
Application-Specific Benchmarking. In Hot Topics in Operating Sys-
tems, 1999. Proceedings of the Seventh Workshop on, pages 102–107,
1999.

[24] A. Sharma, L. Golubchik, and R. Govindan. On the Prevalence of Sensor
Faults in Real-World Deployments. In IEEE SECON, pages 213–222,
2007.

[25] V. Shnayder, M. Hempstead, B. rong Chen, G. Werner-Allen, and
M. Welsh. Simulating the Power Consumption of Large-Scale Sensor
Network Applications. In Proceedings of the Second ACM Conference
on Embedded Networked Sensor Systems (SenSys’04), Nov. 2004.

[26] K. Szlavecz, A. Terzis, R. Musaloiu-E., C.-J. Liang, J. Cogan, A. Szalay,
J. Gupchup, J. Klofas, L. Xia, C. Swarth, and S. Matthews. Turtle
Nest Monitoring with Wireless Sensor Networks. In Proceedings of the
American Geophysical Union, 2007.

[27] G. Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner, K. Tu,
S. Burgess, T. Dawson, P. Buonadonna, D. Gay, and W. Hong. A
Macroscope in the Redwoods. In SenSys ’05: Proceedings of the 3rd
international conference on Embedded networked sensor systems, pages
51–63, New York, NY, USA, 2005. ACM.

[28] G. Werner-Allen, S. Dawson-Haggerty, and M. Welsh. Lance: optimizing
high-resolution signal collection in wireless sensor networks. In ACM
SenSys, pages 169–182, New York, NY, USA, 2008. ACM.

107



[29] G. Werner-Allen, K. Lorincz, M. Welsh, O. Marcillo, J. Johnson,
M. Ruiz, and J. Lees. Deploying a Wireless Sensor Network on an
Active Volcano. IEEE Internet Computing, 10(2):18–25, 2006.

108


