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Nonequilibrium transport through a Kondo dot: Decoherence effects
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(Received 12 January 2004; revised manuscript received 26 April 2004; published 4 October 2004

We investigate the effects of voltage induced spin-relaxation in a quantum dot in the Kondo regime. Using
nonequilibrium perturbation theory, we determine the joint effect of self-energy and vertex corrections to the
conduction electron T-matrix in the limit of transport voltage much larger than temperature. The logarithmic
divergences, developing near the different chemical potentials of the leads, are found to be cut off by spin-
relaxation rates, implying that the nonequilibrium Kondo-problem remains at weak coupling as long as voltage
is much larger than the Kondo temperature.
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I. INTRODUCTION leading toE,r ~T. Second, a magnetic fieBl shifts the pole

. ith respect to the Fermi-energy, replacingulidy 1/w—-B,
Electron transport through quantum dots or point contact nd in this cas&,; ~B. The third way to quench the loga-

possessing a degenerate ground &g, a spinis strongly . . . - .
influenced by the Kondo effeétprovided the dot is in the Tgrl)mblsaE?(LgE%gu?n? T :Anltg diclgherence rélle replacing
Coulomb blockade regime. In the linear response regime, the They relaxatio;’ rat%y:? (\IIRB Tj. and the associated de-
Kondo resonance formed at the dot at sufficiently low tem_coherence effects alscs) e;ist,in, equilibrium. In the limit of
perature, i.e., at or below the Kondo temperafliggallows :

. : ishing bias voltage and magnetic field, the s¢aleends
for resonant tunneling, thus removing the Coulomb blockad anis - 3
and leading to conductances near the unitarity limit. This ha 0 a temperature dependaiorringg) rate;’ I'(0,0.T) =T,

been observed in various experiments on quantum do hich vanishes as — 0, allowing for the q“a”“.‘".‘ coherent_
deviceg ondo state to be formed. In the case of a finite magnetic

The Kondo resonance is quenched by either large tem{—leld and zero temperature, B and ;pin-dependent rete,
peratureT> Ty, large magnetic field> Ty, or a large bias Sﬂ(_O'B’O) remains f|n|te_ fqr th_e excited stat_s:y In dy-
voltage V> Ty. However, the mechanism of how and why _namlcal_quanntles it proh|b|ts sm_g_ular behavpra_a{vB but

the Kondo effect is suppressed is qualitatively different in thelt IS not important for static quantities, whelBeeliminates all
three cases. The Kondo effect arises from resonant spin-flifE/€vant singularities. In the case of a finite bias voltage
scattering at the Fermi energy. Temperature destroys thaoWever, the finite rat&'(V,0,0) is instrumental to cut off
resonance mainly by smearing out the Fermi surfaceSingularities even instatic quantities for T,B—0. Th_e
whereas a magnetic field lifts the degeneracy of the levels olfondo effect develops only to a certain extent, depending on
the dot and thereby prohibits resonant scattering. The effedfi® ratioV/Tx. o . , ,
of a bias voltagd/ is more subtle. It induces a spliting of the  Not only for a quantitative description of experiments in
Fermi energies of the left, and the right lead. However, thidh€ regimeV>Ty, but even for a crude qualitative under-
splitting affects directly only resonant electron scatteringStanding of Kondo physics out of equilibrium, it is necessary
from the left to the right lead, butot any scattering which (0 identify the correct relaxation raté. The question, how
begins and ends on treamelead. Yet these remaining reso- logarithmic contributions are cut off, is essential to derive the
nant processes are suppressed by a different effect; the voRQITeCt perturbative renormalization group descriptfoand

age induces a current which leads to noise and therefore {§ identify regimes where novel strong-coupling physics is

decoherence of resonant spin-flips. It is the goal of this papdpduced out of equilibrium. ,
to study those decoherence effects in detail. The importance of the broadening of the Zeeman levels

In perturbation theory, the signature of Kondo physics isWas pointed out three decades ago by Wolf and Losethe
logarithmic divergences arising frogprinciple valug inte- context of the Kondoesque tunneling anomaly observed in

grals of the type various tunnel junctions. Incorporating a Korringa-like,
5 andB-dependent, spin-relaxation rate into Appelbaum’s per-
f dw@ I D (1) turbative formula for the conductarfoeas found to improve
5 ® Er’ the agreement with experiments considerdbfy, e.g., Refs.

9 and 10. Later, in the context of quantum dots, Meiral*
where f(w) is the Fermi functionD a high energy cutoff pointed out that, even &=B=0, the finite bias-voltage in-
(i.e., bandwidth, and Egr some infrared cutoff. There are duces a broadening of the Zeeman levels. In their self-
three rather different ways to cut off the logarithm, and toconsistent treatment of the Anderson model, using the non-
destroy the Kondo effect, corresponding to the three mechaerossing approximation (NCA), this nonequilibrium
nisms discussed above. First, temperature broadénas broadening was shown to suppress the Kondo peaks in the
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local density of states, located at the two different Fermi In Sec. | we introduce the model and some conventions
levels. In Ref. 12 we showed that this NCA relaxation rate isused for the Keldysh perturbation theory. A combination of
sufficiently large to prohibit the flow toward strong coupling self-energy corrections from Sec. Il A and vertex-corrections
for V=>T. In a perturbative study of the effects of an ac- calculated in Sec. Il B determines the spin-relaxation rate
bias, Kaminskiet alls argued that an irradiation induced (Sec_ 1] Q In Sec. Il we show how this decoherence rate
broadening serves to cut off the logarithmic divergence ofyts off logarithmic corrections in the T matrix. In Sec. IV
the conductan4ce ab andV tend to zero. Treatments of the \ye consider the case of anisotropic exchange couplings and
Kondo model* and related problems at large voltages, determine the exact combination of transverse and longitudi-
which neglect the influence of decoherence, find strong Cous| spin-relaxation rates which enters the logarithms in the
pling effects even fol/>Ty. Colemanet aI: recer]tly ar T matrix. Appendixes A and B contain details pertaining to
gued that this is the case becad_é@remams sufficiently Secs. Il B and lll. Appendix C investigates how power-law
2?5%)?2(? rrtgcfi(os#sr?pose)i cancellation of vertex and self- singl_J[arities of the_ ;trpngly anisotr.opig Kondo model. are
To our knowledge, even to lowest order in perturbatioan‘Od'fIed out of equilibrium by mapping it to th_e noneqwhb-
theory, a systematic calculation of the nonequilibrium decof UM X-ray edge problem for vanishing spin-flip coupling.
herence rate is still lacking. It is the objective of this paper to
provide such a calculation. This is a delicate matter since Il. MODEL AND METHOD
self-energy, and vertex corrections may indeed cancel par- _
tially, and an infinite resummation of perturbation theory is We model the quantum dot by its local SpS](S:%),
required. Recentf17 it was demonstrated that the Majo- coupled by the exchange interactidy), («,e’=L,R) to the

rana fermion representation for the local spin-1/2 circum-conduction electrons in the left) and right(R) leads
vents this complication when calculating spin-spin correla-

tion functions. In this representation, such correlators take

— _ T -
the form of one-particle, rather than two-particle, fermionic H= 2 (81 = 1a)CakoCako ~ I1eBS

K,
correlation functions, and consequently only self-energy cor- e
rections have to be considered. Whether this representation + > 5.8 }CT Z, e )
will prove to be equally efficient for calculating other ob- @'a> o¥a'klo! lol o akar

’ ’ ’
a,a’ kK" o0

servables like the conduction electron T-matrix or the con-

ductance remains to be seen. _ where J. describes a cotunneling process transferring an
Based on the conjecture that no unexpected cancellationsiectron from the right to the left lead. Hetg r=+eV/2 are
occur, we have recently developed a perturbative renormalne chemical potentials of, respectively, the left and right
ization group descriptidhof the Kondo effect at large volt- 545 7 is the vector of Paull matricegugB the Zeeman
ages. In this approach, it was essential to include the effe_c litting of the local spin levels in a magnetic fiek) and
of I's. For usual quantum dots, the Kondo effect is suffi-¢! creates an electron in leagwith momentunk and spin
ciently suppressed by,>*“ such that renormalized pertur-  ;™\ye il use dimensionless coupling constargs,:
bation theory remains applicable at all temperatures, proiN(O)Jw,, with N(0) the density of states per spin for the

vided In(V/T¢)>1. We argued thatl’y, as a physically ducti lect d flat th | B
observable quantity, should be identified with the transversg,? ;(zé(r)nugf ) \:\?en%(i?iﬂg; (gi +OgnRR) /82 SZ‘?‘S geglj (BQE)L.

spin relaxation raté',=1/T,, measuring the coherence prop- _ > +2¢2.)/4. We shall henceforth work in units whefe
erty of the local spin(More precisely, slightly different rates :EEZgMnge:i and, unless specifically stated otherwise, the

enter into various physical quantitie_s, but to leading order ir\Einstein summation convention will be employed through-
1/In[V/Tk] one can usé's=T,.) In this paper we show that out

within perturbation theory this is indeed the case, thus con- In order to calculate observable quantities for the system

g_rtm;r;% nc;urfclp'ga;rﬁo?ée.zutw; cg:éeo;{‘h;[ In|egorea§?nr;p§§t with Hamiltonian(2), we find it convenient to use a fermi-
tuations, xampie | upled guantu nic representation of the local spin operator

I's can be sufficiently smaff so that(strong coupling phys-
ics can be induced for large voltages. 1
In a preceding papéf, henceforth referred to as I, we S==> fT;w,fy,, (3)
calculated perturbatively the local magnetization and the dif- 2w, 7
ferential conductance of a Kondo dot, including all leading
logarithmic corrections in the presence of firteandB. As  with canonical fermion creation and annihilation operators
effects ofl's are not included to this order, some Iogarithmsf’;, f,, ¥=11, which allows a conventional diagrammatic
were not cut off byV but appeared to diverge with(ID/T) perturbation theory in the coupling constamt Since the
or In(D/|V-BJ). A systematic calculation of the cutoff,  physical Hilbert space must have singly occupied states only,
requires a consistent resummation of self-energy and vertekis necessary to project out the empty and doubly occupied
corrections. As will become clear in the following, this is a local states. This is done by introducing a chemical potential
formidable task, and we have therefore concentrated on the regulating the chargéQZEyfT f,. Picking out the contri-
quantity which appears to be most tractable: the conductiohution proportional toe™ and taking the limit\ —, the
electron T matrix as a function of frequency, in zero mag-constraintQ=1 can be enforceor a more detailed descrip-
netic field. tion of this method see).l
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We will use the Keldysh Green function method for non- perature, magnetic field, and bias voltage. In the pseudofer-
equilibrium systems, following the notation of Ref. 19. mion representation for the local spin, the broadening is

Keldysh matrix propagators are defined as given by the imaginary part of the pseudofermion self-
GR G energy. This level broadening enters into the relaxation rates
- ( ) (4) of both the transverse spin compone(8g, S)), where it ac-
- o G* counts for the loss of phase coherence, and the longitudinal

pin componentS,), where it describes the relaxation of the
cal magnetization following a change in the magnetic field.
he observable spin relaxation ratesTd and 1/T, are de-
fined through the broadening of the resonance poles in the
transverse, and longitudinal dynamical spin susceptibilities,
G==(GK+GRx G")/2. (5) and their calculation requires vertex corrections to be in-
cluded in a consistent way.

Following a brief discussion of the pf self-energy broad-
i b - ) ening, we determine the renormalized ce-pf interaction ver-
Green function are denoted Wy, and G, respectively, ey in a steady-state nonequilibrium situation. The resulting
with lead indexa=L,R, spin indiceso,y, and Keldysh in- \ertex functions are used to calculate the transverse dynami-
dicesa,b, c,d. A corresponding notation will be used for the 5| spin susceptibility, and later, in Sec. IIl, they will serve as

pf self-energy%, and its imagi”gfy part, the self-energy jiding blocks for a calculation of the conduction electron
broadening, is denoted b$77=|(27—27). The interaction  T_matrix.

vertex has the following tensor structure in Keldysh space

whereGRA andGX are the retarded, advanced, and Keldysh®
component Green functions, respectively. Spectral function
are found asA=i(GR-G*), and thegreaterandlesserfunc-
tions as

The local conduction electrofte) Green functions at the
dot in the left and right leads, and the pseudofermipf)

1 A. Pseudofermion decay rates
ASH= = (BapTeq+ Tapded) (6) ’ I . / . .

2 In paper | (Ref. 18, we determined th@n-shellimagi-
nary part of the pseudo fermion self-energy, including lead-

Since we consider only nonequilibrium situations in aing logarithmic corrections. For the purpose of this paper, we

steady state, time translation invariance holds, and th@’i” only need the second order rates, disregarding logarith-

single-particle Green functions depend only on one freMIC corrections. Folr=0 one finds for 6V <B

wherea,b andc,d refer to pf, and ce-lines, respectively.

quency. The bare pf spectral function is given by 7,
I'y=—0RV, 12
Aw) =278 w + yBI2), (7 4
and the Keldysh component Green function is given as I =T+ 2mg?B, (13)
K o
Gy(@) =iA(0)[2n)(w) = 1], ®)  with 4g2=g?, +0s+ 292, Whereas folv>B=0:

wheren,, (w) denotes the pf distribution function, given by -
N\ (@)=1/(e“*™NT+1) in thermal equilibrium. We shall also Iy = ZQER(3V— 2B), (14)
use the shorthand notation

M., =2n,(w) - 1. 9) I =T, +2mg°B. (15)

Assuming a constant conduction electron density of stateBlotice that in the presence of a finite magnetic field, only the
N(0)=1/2D and a bandwidth 2, the local ce spectral func- upper spin level, here corresponding to spin down, is broad-
tion takes the form ened whenv=0, as one would expect from simple phase-
space considerations. Broadening of the lower spin level

A(w) = 2aN(0)6(D - |w]) (10 (spin up is due to virtual transitions to the upper spin level
in terms of the step functiom(x). The Keldysh component a@nd occurs only in higher orders @
Green function in lead is then given by For comparison, we list also the thermal decay rate for
V=B=0
K _ . W~ My
Ga(w) - |A((U)tan"<?> y (11) FTrl = 37Tng (16)
assuming the electrons in each lead to be in thermal equilib-
rium. B. Vertex corrections
Early workk%-22on the dynamical magnetic susceptibility
IIl. SPIN LEVEL BROADENING AND SPIN RELAXATION of a single spin 1/2, demonstrated how self-energy, and ver-
' RATES tex corrections combine to yield the transverse, and longitu-

dinal relaxation rates T, and 1/T;. In Ref. 20, the vertex
The coupling of the local spin to the leads introduces acorrections were determined in the approximation where the
broadening of the Zeeman levels, which depends on temimaginary part of the pf self-enerdy is much smaller than

155301-3
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Q+o,Y We remind the reader that physical quantities are propor-
‘.::::s--:: b tional to €A within our projection scheme. Therefore we
d b d b d have to keep track of two contributions to the vertex

< Q+w ,‘Y )j).» + ':::;;”
Lo \ >"~‘::,g Acd = 0xed  aFed (18)

where?A is independent ok, and*A vanishes as " in the
limit of A —c. We shall first determindA and then, in a

o

&
=
£h
=ys

FIG. 1. Diagrammatic vertex equation for the pf-ce vertex, insecond stephA.

terms of the two-particle-irreducible pf interaction tensoraBd _ _ o
dressed pf propagato(double-dashed lings 1. Voltage induced particle-hole excitations

The Keldysh pf interaction tensor depicted in Fig. 2 in-
temperature. A similar approach is possible out of equilib-volves a contraction of bare vertices with the ce polarization
rium, where it is the finite voltage, rather than temperaturetensor. The convolution of two conduction electron Green
which determines the abundance (ofter-lead conduction  functions has thgreater component
electron particle-hole excitations.

To calculate the vertex corrections and resolve their inter-
play with self-energy diagrams, we have to solve the vertex
equation

I (Q) = f g—fTGj,(em)Gj(s), (19

_ and in general, the convolution of different Keldysh compo-
AS(7,7'1Q+ 0,0) nents gives rise to the polarization tensor

J R (0 00T (O + ) SIS () = J GS (e + G, (20

b ’ "o o . A N
XGym (@ )Bya(y", vy |0 = o), (17 |tis convenient to form the contraction of this tensor with the
exchange constanty,, /4 at each end, and thus define an

illustrated diagrammatically in Fig. 1. In general, the pf{eﬁective second order interaction by

propagators and the two-particle-irreducible interaction par

B appearing in Eq(17) are fully dressed, but in the present d,c, w d,c,
work we shall include such dressing only to leading order in Q)= 16 wa o gc (). (21)

g. We thus replace the full Bby B, shown in Fig. 2, and

include only the second order decay rates, determined abov€pntracting again with two bare Keldysh vertices finally
for the irreducible pf self-energy. In this approximation, theyields the pf interaction tensor corresponding to the diagram
vertex corrections simplify substantially and Ed7) can be in Fig. 2:

solved analytically to leading order I'VV. Since we assume

that V> Ty, perturbation theory is valid an~g?V<V is B2 b_ AS de'C’ACd',
indeed a sound approximation. We shall consider the case i
where T<V, which will best reveal the salient nonequilib- _
rium features of the problem. - _{H SarvBaty + 1A S iy + T 70} (22)

Y Notice that the spin-structure is omitted in this definition of

B, and when inserting fo? B Eq (17) one should therefore
include a factor ofr' .7’ , .7, 7., The Langreth rules

a"

Yy v
(cf. Ref. 23 have been employed to work out the contrac-
tions
8 — —
Ige=201%, Tg=21", MgE=20%, (23

Q+e

with the notation that £2 and 2=1 for the Keldysh indices.
As for the single particle Green function, we organize these
components in a triangular matrix

P " R 1K
* a
b D N H=( . HA)’ (24)
FIG. 2. Pseudofermion interaction tensoﬁ@ﬂ), to leading
order ing. and forQ) <D one finds that
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TIRA(Q) = ﬂQZ ,

16 aa

4DIn2 function, and approximating the latter by a delta-function
H(Q+ pg = o) —i ' therefore produces negligible corrections of orfiéV.

Q+Ma_lu‘a’

3. Summing up the ladder
2T )

_T 2
Q) = ggmr(Q t e Ma')COt"( Within second order self-consistent perturbation theory,

(25) the renormalized vertex satisfies the diagrammatic equa-
tion in Fig. 1 with the two-particle-irreducible pf interaction
Notice that interlead particle-hole excitations do not satisfyin Fig. 2. This equation clearly generates a series of ladder

the fluctuation-dissipation theorem as diagrams, with dressed pf legs and bare ce particle-hole
0+ propagators as rungs, which is conveniently solved by means
o Ha™ Ha’ )y o f iteration.
Q) = ) mR(Q) - 2 TAQ)]. orferation. .
« Q) cotk( 2T Lo ) =5 )] The iteration starts with the attachment of two pf propa-

o - . gators to the bare Keldysh vertex, which defines the tensor
The lead-contracted polarization satisfies the following sym-

metries: AR TN v (30)
>/KIRIA(_ — TT</K/IAIR
11 -o=11 (€2), (26) having the following components:
and for later use we quote the explicit formula for tireater B R oK 1 RAR
component]I~ = (I1K+IIR-114)/2 V1= 8dG59, 1+ 164959 1 (31)
[17(9) = {GEal(@ + VL +N(@ + V)] PVE= 03T (32
2
+(Q=V[1+NQ-V)]} + 29501 +N(Q) T}, TVSI= 8GN GY + GRG0 Y+ TG Gh  + GhG ),
(27) (33)
where N(Q)) denotes the Bose function add (Q)=0 for
Q=2D+V. In terms of this function, the second order pf IAEER R ONGAEE Ao (34)

decay rate may be written as ) ) _ )
One proceeds by attaching rungs, using the interaction tensor

— >0 _ ! ’

I'y(@) =26,, 117 (- 0=y 'BI2), (28) BE‘Z and legs consisting of pairs of dressed pf propagators.
This attachment consists of a contraction of Keldysh, and
spin indices, together with an integration over the frequency

2. Basic approximations circulating the individual sections of the ladder. To leading

The following calculations are based aelf-consistent Order inI'/V, we may perform these integrals by neglecting
perturbation theory to ordeg? for irreducible self-energy, t_he slow frequency depen_dencg o_f the_ ce polarization func-
and vertex corrections. For nonsingular quantities like théions compared to the rapid variations in the pf Green func-

lowest-order self-energy, however, self-consistency onlyions. Making use of the identity

. _ 1
W|th 077 = 5,},7 ’ +27—7 B

Y

gives rise to subleading corrections which we need not keep 11 1 /1 1
track of. For example, it is sufficient to approximate the re- ——= —(— - —), (35
tarded pf propagator&louble-dashed lines in the diagrams ab a-blb a
by products of Green functions may be expressed as either
1 1
Re N — R A -
2 w+ B2 +i[J2 (29 Gy+ w)g7 (@)= Q+(y-y")BR2+i(I,+T,)/2
wherel’), given in Eqs(12)—15), denotes the on-shell decay % ( 1
rate calculated irbare perturbation theory. We neglect con- o+y'Bl2-il,,/2
tributions from Re (w) which can be absorbed in a redefi- 1
nition of B and g, and which give rise only to subleading T O0+o+ YBI2 +iF7/2)
corrections in the following. or

To show, formally, that self-consistency does not change
this result, one can use the fact that the relevant integrals are  gR(() + )G ,(«w) =
dominated by frequencies in a window of widfraround the y v

1
Q+(y=-y)BR2+i(T,~T, )2

Zeeman levels. Since the various Keldysh componenid of 1

vary slowly with frequency, i.e.[H(w+F)—H(w)]/H(w? w+y B2 +iT, /2
~T'/V, we may therefore usk/V~ g? as a small expansion 1
parameter. In other wordsg;, is found as a convolution of - . )
the slowly varyingIl~ with the rapidly varying pf spectral Q+w+ B2 +iT/2

155301-5
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and likewise for AR and AA products. Considered as an 7 9= _ )GAGR, - . GRG™,
integral-kernel to be integrated with the various components ” Vai= &d(1=MaM, )Gy G, = MaM, Gy, }
of the polarization function, we may neglect the broadening + q-('ﬁd(Myx -M, ,A)g’;gi,, (42)
and replacg) by (y'—7)B/2 inside the parentheses in such
products, and altogether this justifies the approximations

_ TV55= = 0MpGEG) (42

278w+ y'BI2)
Q+(y-y")BR2+i(,+T, )2’ and performing the projection— o, all pf-distribution func-
tions vanish, i.e.M , — -1, and we are left with

GNQ+w)F) (0) =

GO+ w)G (w) =0, 36
Q2+ )Gy (o) (36 VO + 0,0) = - 80RO + )G (o). (43
for a set of legs in the ladder. Notice that Wafldnas em-

loved a similar roximation in th f thermal i Having performed the projection, it is now a simple mat-
ployed a similar approximatio € case of thermal equiye 1 gy up the ladder solving the vertex equation. To keep
librium, utilizing the slow frequency dependence of the ther-

matters simple we assume thBt0, but once this special
%ase is worked out, a generalizationBo- 0 will be straight-
forward. We begin by attaching the V tens@d) to the pf
interaction tensor defined i(22). Working out the contrac-
%ion, one finds that

neglected to leading order i/ T instead.
Since the legs contain not only retarded and advanced, b
also Keldysh component Green'’s function, some of thes
loop integrals will also involve the nonequilibrium pf distri-
bution functionsn, (w). This function is found by solving a o o'b
quantum Boltzmann equation, obtained as the Keldysh com- Vap (Q+ 0,0)B (0" — o)
ponent of the pf Dyson equation with second order pf self- _ 3 ,
energies. Using the results of I, the solutiorBat0 is found = = Seamaad (A + )P )T (0 ~ ). (44)

to be
We should also attach the Pauli-matrices coming from the

Ny (w) = Ny (0) T (w)/T17 (w), (37) exchange vertices at the endpoint vertex and at the ends of
the pf interaction tensor. In zero magnetic field this yields the
which, in the case wherg r# 0 andT=0, takes the form contraction

2
gr(V - o) Ko 0 i __ ok
, 0<ow<V T Tt Ty Tore =" 2T /., (45)
(gEL+gE{R)w+gER(V+w) w y"y"y "yt yy v'y
() =m\(0) 2 5 2 which shows that the endpoint pf Pauli matrikis carried
9ir(V= o) ~ (gL +9RR)“’, V< aw<0. through to the external spin-indices. In this way, the Pauli
RV + ) matrix at the endpoint vertex may be left out and the Keldysh

(39) vertex merely receives a factor of -2 per rung.
To second order iy, the vertex thus renormalizes to
For T—0, ny(w) vanishes ag V' for >V, and di-
~(w+V)IT —
verges ase for w<-V. For |w|<V, ny(w) crudely 0~ cd ., q do o ab,
resembles a Boltzmann distribution withreplaced byv/4. A @+ o' 0') = Agy - ZTVa'b/(Q + 0,0)By (0" - w)

The distribution function clearly inherits the slow frequency

dependence fronil~ and, to leading order ifi'/V, n, may _1) . P DS 211" (')
therefore be treated as a constant, when integrated with the = | Ted%b™ Ocd| Tab™ 1 7aa Q+il’ '
rapidly varying retarded and advanced pf Green functions. In (46)

the case oB>0, the distribution function acquires a spin-
index and the solution is generally more complicatefd I).
However, the frequency dependence is still determined b
IT~, evaluated at arguments shifted b/2, and therefore
remains negligible. In either case, we are thus allowed t
neglect the frequency dependencengf which rendersgk
proportional toGR-G” by a constant and reduces all loop-
integrals in the ladder to involve only the produ¢8$) or
their complex conjugates.

Omiting all RR and AA terms, ¥ now simplifies to

where the left superscript 0 is to remind us that the limit of
X — « has been taken. The integral owelis performed us-
ing the &-function from the RA-product of pf Green func-
Rions andT is the spin-independeriB=0) single pf self-
energy broadening.

Attaching a set of pf Green functions to this second order
vertex correction, we notice that, after projection and dis-
carding again all RR and AA products, we have

AV N (39 2 Sy G° PGP = - Ve, (47)
a'b’
d_ & ARAA
V1= 8959, 1, (400 which in turn implies the fourth order correction
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~ @ - do' ilI7 (') ~ o, dw~ o
A (Q+ 0,0 )=2f or O+ MHQ+ o 0') == 2 ;Ag”b”(ﬂ"'w:(‘l))
XV (Q+ 0By ~ ) X G (Q+ W)@ (@B - w),
1. 5 2017(0) 2[17 (") 49 (51)
== Taa ~ 1 o~ -
27 ir Q+il which we find to be solved by
From these two lowest order corrections it is clear how the A% cd —_ al's o
further attachment to the ladder will generate a geometric A+ o,0)= 5°dn”(o){92+1“§[1 (@)
series, and the vertex function i
+ ———[II7 (w) (o, +i72
o~ od 1 1 , 2117 (w) Q+il woe
Ap(Q+ 0,0) = Eid‘sab + Eécd T;b + 7-aam
S .
49 + = (0) (73— i72)] [ - (52

therefore solves the diagrammatic equation in Fig. 1, in thé:or c#d one obtains

limit A — . We employ the suggestive shorthand MR + 0,0) = i[n,(Q) -y (0)]
ab ’ Q-il

1 2
Is= E(FT +I')+T,=7girV forBT<V, (500  \hich is neglected due to the slow frequency dependence of
n,(Q). It is worth noting, however, that foB+ 0 this term

and, as will be demonstrated in the next section, this is inWill in fact be proportional to the magnetization and thus
deed the spin-relaxation rate. In the present case of zeffovide an important renormalization of thg, term of the
magnetic field and isotropic exchange couplings, the longilntéraction tensor. . _
tudinal, and transverse rates are identical and thussl', This completes the solution of the vertex equation and we
=T',. In the case of anisotropic exchange couplitmsin the ~ May now procee_d to determine its influence on physical ob-
presence of a finite magnetic figldspin-flip, and nonspin- Servables. In doing so, one has to attach a pair of pf Green
flip vertices receive different corrections and the two rateunctions to the renormalized vertex, and most often one
become discernible. The anisotropic case will be discussed i@y therefore continue to use the approximatié@). Since
Sec. IV. The first term in Eq50) arises from the self-energy, the dependence of the vertex on the relative frequendy
Egs. (12<15), the second ond',=2I17(0), is the vertex S€t byI12°(w), one can safely sab to 0 and consider the
correction. vertex as a function of) alone. WithI',=2I1-(0), the renor-

It is expected that all higher-order diagrams contributingmalized vertex then simplifies to

to the irreducible pf interaction Bwill give rise only to = o

subleading corrections tB. This is especially easy to see ASHQ) = = 7248a0+ = odlan(Q), (54)
L2 ) L 2 2

for contributions which maintain the Keldysh tensor struc-

ture of EQ.(49) or equivalently of Eq(47), where the inter- whereLab:OLab“Lab, with

action tensor B returns a scalar function timég upon con-

0*w), (53

traction with the bare end-piece V. Any higher order ir, Q+iC+2r,)
contributions to Bwith the same property will merely lead to o Q)= + 73 ir, _ QO +il's Q+il's
corrections td’ of higher order ing, and do not change the ~3° ab ™ faaq) 4 Q+il ir,

lowest order resul{50). In Appendix A, we explicitly evalu- Q+iT 0+ iT, .
ate the vertex correction arising from the lowest order dia- &
gram with crossing rungsand, to leading order i/ V, this (55)

contribution indeed maintains the tensor structgie More  and
generally, we note that, fof<I", consecutive correction
terms, like(46) and(48) in the geometric series which sums

up to (49), are all of order one. The crossed diagram in Fig.

5 (and similarly other higher order corrections to the irreduc- ) ]
ible vertey, however, involve extra factors @RGR, i.e., Where n,(0) e . Using this result we can now calculate
they are Suppressed by factors of the Orderf~gz com- phySical quantities like SUSCGptlblIlty and T-matrix.

pared to the contributions from the ladder series.

4T J13(0) ir
A —_ S== 3 v
Lar() == 20(0) ~ > rz2 "o tir |’

(56)

So far, we have only determined the— o limit of the C. Dynamical spin susceptibility
vertex, but we need also the second contributioh,in Eq. In order to uncover the physical meaning of the rhte
(18), which is proportional toe”®*. Having solved for’A introduced in Eq(50), we include here a brief discussion of
already, we are left with the vertex equation the transverse spin susceptibility:
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Rii+ A= RE - Rg=1, 6
as such a constant drops after integrating og8gR or
GhGh.
In the limit of B— 0, the factor o (w) —n,(Q+w) in the
first term is of orderQ)/V, and therefore we are forced to
_ o _ keep also the other terms involvirg*GR or GAGA. In this
FIG. 3. Dynarr_ucal susceptlblllty. _Trlangles _refer to external case, we have to keep the full dependence of the vertex on
measurement vertices. The bla@mission vertex is renormalized 0 frequencies, but since for example the parts of the vertex
like the interaction vertex in Fig. 1, except that the two external C&yvhich are retarded with respect integrate to zero with
legs are removed. The oth@bsorption vertex remains undressed. GRGR matters simplify substantially. The bracket multiply-
ing GRGR takes the form:
SO =i60(S (1),S(0)). (57) 2, (OTT=(w) - 21T ()1 ()

The transversespin relaxation ratel’, is defined as the Q+il, ~iny(w) |,
broadening of the resonance pole in this response function, ) o o )
and as will be shown below[s plays exactly this role. and inserting now theonequilibriumdistribution function

Throughout this section, we may therefore igel’,. With ~ given by Eq.(37), the first two terms of this expression are

(62)

a suitable generalization @, entering Eq(50), which will ~ Seen to cancel. We emphasize the fact that this important
be given in Sec. 1V, this identification holds also for aniso-cancellation takes place only when using the correct distri-
tropic coupling. bution function, i.e., the solution to the quantum Boltzmann

Translating to the pseudofermion representation on th&duation corresponding to second order pf self-energies.
Keldysh contour, the transverse susceptibility is calculated The term involving GG works in a similar way,
from and using the approximation GF"* (Q+w)GVA(w)

N o, i i ~-3,(w*i0,)7%, valid to leading order in mak}|,I')/V
x(1) = =i=DATe A (DH(DFOF (0, (58)  \when integrated with the slowly varying distribution func-
ion, the last two terms in Eq.60) may be evaluated by

o . - t
which in turn leads to the Feynman diagram in Fig. 3 when " * 7" X . ;
y 9 g artial integration. The first term comes with a factor of

including vertex, and pf self-energy corrections. The bar 0~ 11 R A . .
absorption, and emission vertices are given a§ A2+, 0)G(Q+w)G(w) =27 w)/(Q+il), and al-
=(1/\2) 8, and¥3,=(1/V2) 74, respectively(ct. ). The ab-  together one finds that

sorption vertex is kept undressed and the emission vertex e M T,
renormalizes like the interaction vertex-compone@\ 1l X () = BO+IL, (63
whereby

for max(|Q|,T") < V. The prefactor is independent Bfand is
LRQ) =i f d_“’jx;é(QJ,w,w)gl;C(QﬁL ©)Gw). obtained as the derivativen(0), with n(w) given by Eq.
2m (38) and with the replacememt, (0) —1/2, due to the nor-
(59) malization by(Q), before projection. The zero-frequency
|Iimit obeys *x?(0)=M/B, like in equilibrium, and the non-

Notice that the canonical ensemble average, enforcing singgquilibrium magnetization was found in | to be

occupancy on the dot, is carried out by dividing the
\-dependent grand-canonical average/®y, and taking the Vo (9%, +gar+ 20°R)B
limit A — o (cf. 1). This procedure affects only the pf distri- ngRV

bution functions and allows to neglect all terms proportional . ) .
to squares, or higher powersmf,. Working out the contrac- similar to a Curie law with 1T replaced by 4Y. Notice that

: (64)

tions, we arrive at the result(63), has been obtained also in Ref. 16, using a
Majorana-fermion representation.
LR@Q) =i f d_w{o;\%%(QJr 0,0)2[n () =N, (Q + 0)] In the case of a finite magnetic fiel_d, the factornfw)
27 —-n,;(Q+w) in the first term of Eq(60) will be of orderB/V.

For B>max|Q+B|,I"), this term will therefore dominate

R A AR 11
XGH(Q+ w)G () +[A7(Q + 0,0) the other terms involvingRGR or GAGA. For B> 0, the ver-

AR 1L _ 0% 11, tex renormalization is modified, but since we only need to
RO+ 0,0) =20 (0) A0 + 0, 0)] consider the first term in E¢60), only a single component is
XgTR(Q + w)g?(w) + ["7\%%(9 + w,) needed. For this particular component the generalization is
B B straightforward and one finds that
~Mz(Q+ 0,0) +20(Q+0)°Az(Q +0,0)] RO+ 0,0) = 5(1 27 (- B/Z).> (65
XGH(Q+ )G w)}. (60) T @I Q+B+il, /)
The important fact that the final result is proportionahtds ~ wherel’; is given in Eq.(50) and depends now on bot
ensured by the relations andB [see Eq(68) belowj. The integral ovemw is performed
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using the approximatio(B6), and the susceptibility is found
to be

_M
Q+B+il’,’

XRQ) = (66) ¥, ®

FIG. 4. Diagrams for the conduction electron T-matrix, with

. - . . dressed pf propagators and dressed interaction vetttask dots.
In the intermediate regime wheBe< mln(|Q+B| 1), one The third order diagram contributes with both directions on the pf

would need to generalize also thedependent part of the 445 rynning either antiparallel or parallel to the ce base-line. We
vertex to the case d8>0. However, we expect that cancel- efer 1o these two possibilities as tiieeierls and the Cooper-

lations, similar to those found in terms like E@2) at zero  channe) respectively.
field, will take place also at finiteB, once the correct

valid for max|Q+B|,I") <min(B, V).

B-dependent distribution function is used. In this manner, we 3
expect the general formula for the susceptibility to be simply Im[TR (Q)]=- il ){(92 + QER)
aa 16N(0 aa
M B+ill
KO=oo (67)

BQ+B+ill,'

x{l + 2 In( b )}
o™\ 0=k,
valid for max|Q+B|,I')<V. This function obviously has D
the correct asymptotic behaviors, corresponding to E&f. + 4gdng In(—)}, (70)
and(66), and is consistent with the equilibrium restfig! |+
For completeness, we state here the relevant asymptotics

of I', as a function ol, B, andT. . 3 D
IM[T R()]=-——=0r) 20 [1+2g In(—)
7RV, max(T,B) <V R 16N(0) R [ T N -
', = { m(gl, +gar) B4, maxT,V)<B (68 D
2 gléL g;{R) : (68) + 2(9§R+ gER)In = , (71)
7(giL + Orr *+ 200r)T, MaxB,V) <T. | = g

In the equilibrium limit, V=0, this corresponds to the result \ith ,, =—u,=V/2. Within bare perturbation theory, the

obtained in Refs. 20 and 2I,~ 7g* maxT,B/4). T-matrix diverges close to each Fermi surface, or more pre-
cisely, forQ)— u,, some of the logarithms are cut off by the
IV. CONDUCTION ELECTRON T-MATRIX voltageV=pu, — ur While others remains unaffected. In this

sense voltage and temperature act very differentlyTas
With the renormalized vertex at hand, we now proceed tayvould cut off all logarithmic terms uniformly. The central
calculate the conduction electron T-matrix, including thequestion formulated in the introduction is, how the logarith-
leading logarithmic corrections. The T-matrix,qF, is of  mic divergences which remain fdr— 0 and largeV are cut
great physical significance, insofar as it describes the scattesff when the perturbation theory is properly resummed. To
ing of conduction electrons from lead’ to lead @, and  find the correct cutoff to ordeg?, we have to use dressed
thereby also the transport across the dot. It is determinedreen functions and vertices in Fig. 4.
from the conduction electron Green function: As the second-order diagram in Fig. 4 gives only a finite
contribution I TR ,(Q)]=-3/16N(0)2 /GuerGera, the in-
clusion of self-energy, and vertex corrections will produce
(69) only subleading corrections of ordgf, as can be shown by
an explicit calculation.
In cases where the exchange-tunneling Hamiltor{@nis The fate of the logarithms arising to ordg? is more
derived from an underlying Anderson model, i.e., from ainteresting, and in the following we will therefore carefully
single quantum dot in the Coulomb blockade regit&, evaluate the second diagram in Fig. 4. This contribution in-
e.g., Ref. 13 one haS]ER:JLLJRR and only one of the ei- volves the spin contractions
genvalues of the 2 matrix T,, is finite. In such a situa-
tion, Im[T,,,(w)] is, at low energies, directly proportional
to the spectral function of the electrons on the @e e.g.,
Ref. 24 and references thergiithis spectral function can be
measured directly by tunneling into the détand henceforth
we shall focus on the imaginary part of,J. i K i K
In Fig. 4 we show the two diagrams contributing to the Tyy"Ty”y’T}/’yTao”qJO"’U’TU’O': -24 (73
T-matrix to third order. Within bare perturbation thedne.,
using bare vertices and Green functions in Fig, dne  for the Cooper channel. Writing out the sum of these two
obtains the following intra- and inter-lead components attypes of diagrams, corresponding to different orientations of
T,B=0: the pf-loop, one finds that

G:a’,a(w) = GE((E)((D) 5aa’ + GEETO)((D)TR (H))GSS?(CO) .

aa’ o

K] I R T S
Ty 1Ty 11Ty Tt T g1 Ty o = 24 (72

for the Peierls, and
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R@)(() 3i f dow f de f de’ types of terms. The full contraction is worked out in Appen-
T =—3. . md m - - — i P H
wor () 16ladwadanar | S| S | dix B, resulting in
G (Q + £)G7 (O + 8) TRO)(()) = in P2 f de [ de’
—« —a aa' 16 Naaa" o' 277 277
1’ <1 ,
XA gn(o,0+ )P @) Agy (0 + &' 1) X (G + £)GR(Q + £)G ()G (e)
XG" ¥ (w+ &A@+ 8,0+ 8/)G" (0 + ) ~[G(Q+£)G(Q +&) + G (Q +e)
- A0 =G w) XGo(Q+ )G (e)GR (e~} (80)
XA (06,00 (w-8) whereGf (¢)=1/(s~il'y) are Green functions broadened by
~ g . I's rather thanI'/2 and we use the shorthand notation
an,,ﬂ,(w —g'w-e)G° % (w-¢g")}. (79 Jia,,a,,,a, =J, o damdame - Already at this stage, it is apparent

that the vertex corrections have served to replace twice the pf
self-energy broadening blys. Making use of the basic inte-
grals,

This Keldysh contraction has a total of 256 terms, of which
only a few will contribute in the end. Some will involve a
G, which is zero, and others will involve a product of more

than one lesser-componegit, which, being proportional to P sgrnie+a)(s+b) D?

higher powers of the pf distribution function, will vanish j € (¢ +b)2+ T2 = ((b—a)2+1“2) (81

faster tharKQ),. Since the Keldysh representation contains - s s

G~ as part ofgk=G=+G~, it is a daunting task to isolate all and

contractions with only one factor gf~. Nevertheless, since b

we are dealing here with a trace over the pf Keldysh indices, f M =9 n‘l( b- a) (82)

we are free to work in a more convenient basis for the o (e+b)?+T? s

pseudofermions. Thus choosing . . )

representing a broadened logarithm and a broadened sign-
_ (1 1) -1_ (1 - 1) (75) function, respectively, the remaining integrals ogesind &’
{= 0 1)’ “\o 1/’ are straightforward.

. ) The first line of the integral80) involves a convolution of
the Keldysh matrix Green functions may be transformed asgk \ith GA, which yields

~ _ gR 2g< 2 Q_ 1"
G=19¢ 12( 0 G ) (76) —iN(O){In(—D )+2i tan‘1< D,ua )}

(Q = pgr)?+172
which has the nice property thgt becomes diagonal after ;g o1 is multiplied by the convolution &%, with G2,
projection. The renormalized vertices may be considered as R . e R
functions of only one frequency and therefore take the form_equa_l toiG (2 +iI'g), and altogether the first line yields the
(54), which we write loosely as\=4§+L. For opposite ce Imaginary part

Keldysh-indices the vertex retains the structure of the 3 2
identity-matrix 6 under the transformation. For equal ce- —2nx—\]ia,,a,,,a,|\j(o)2|n( 5 2), (83)
indices, the matrixt, transforms to 32 (Q = pn)"+ g
L= Lel= O + M, (77) Using a _spectral r'epresentation for the ce Green functions,
the remaining two lines of Eq80) can be brought to the
where form
A 1 0 D D
o _ 3 de
L—( ) (78) 2n—J2 Nozf —f d
¢ —1 )\32 ad" "o’ ( ) 5 277 5 w
and ] [ sgrie = o)
g A0 (0-Q-iT)(w-e-iTy
2. 12 ¥
i=amo| 2 T Sgrte 1)
= n}\ A s = My
y* AL (0) + . . } (84)
0 - 02+ (e-Q-il'Y(w-e+ily)

(79 The w integral in the first term vanishes in the lintt— oo,
and keepind finite this term remains smaller than the sec-
with ¢=Q+il'/Q+il'gand =2 ,/Q-iT. ond term by a factor of)/D or I'y/D. Keeping only the
In this representation the contraction in E@4) becomes second term, the imaginary part takes exactly the same form
manageable and one has to deal with merely eight differeras Eq.(83), and finally we obtain after projection
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R 37 ) ) going ce-ling(i.e., the left most vertex in Fig.)4ives rise to
IM[ T ()] =~ 16N(0) (Goe t 9iR) a logarithmic divergence, and furthermore determines
whether this logarithm is cut off by, or I'; depending on
1+g. | D? whether this vertex involves a spin-flip or not. Therefore, in
X Jua IN —(Q — )P+ Fg the case of anisotropic couplings, Eg§5) generalizes to

2

————|( (89
(Q+ pp)?+ Fi)} Im[TY (Q)]=- 16[117(0) > Zgw/{zgama,
with no summation ovew implied. We find precisely the o'\d"

result of bare perturbation theory, EF0), but now with the N N D2
logarithmic divergences cut off bl,. The same conclusion + Gy Gy IN m
also holds for Tg. This is the central result of this paper. Ko 1

+ 2070 In(

€L

L z L
+ gaau|:2 garra/ + ( ganam gamar
V. ANISOTROPIC COUPLINGS: T, VERSUST,

2
The longitudinal, and the transverse spin-relaxation rates +19 ., . /)m(%ﬂ .
1/T, and 11T, have rather different physical interpretations. c TN (Q = )T+ T
It is therefore interesting to determine which combination of (90)

the two rates actually controls the logarithmic divergences.

In the previous chapter we restricted ourselves to the case of

zero magnetic field and isotropic couplings, and in this cas®oughly speaking, two thirds of the logarithms are broad-

we cannot distinguish between the two rates a§,#4/T,  ened byl', and one third byl;.

=l How are these results modified beyond lowest order per-
To discriminate between the two rates, evenBerO, we  turbation theory? In Appendix C we investigate this question

generalize the exchange interaction to involve two differenin the limit “g— 0 for finite “g. In this limit, the logarithmic

couplings singularities in correlation functions 1ikéS'S*) resum in

equilibrium to power laws with exponents depending’gn

In Appendix C we use a mapping of our problem to a non-

and we may now repeat all calculations above, keeping tracRauilibrium X-ray ?27%(; problem together with results by Ng
of separate spin-flip and non-spin-flip processes. Since Wg_?ef. 26. gnd others"**1o investigate hOW these power-law
consider only the case of zero magnetic field, the pf selfSingularities are affected by a finite bias voltage and the as-

energy broadening remains spin-independent and we obtaEPCiated current. We find tha_lt all these_power. laws are (;ut off
from Eq.(28), for V=T andB=0, y a rate related to Th. This has a simple interpretation:

For finiteJ a finite current is flowing through the system and
L T, L9 the corresponding noise prohibits the coherence of the two
F‘FT‘FFZ( 9ir+ 2GRV (87 external spin-flips at low energy. Close inspection reveals
that the second logarithm in E@Q0) is calculated from a
The vertex corrections now take a different form, dependcorrelation function of the type discussed in Appendix C.
ing on whether or not the spin is flipped at the vertex. Forthe nonperturbative results of the Appendix therefore con-
T=B=0 and finiteV we obtainl’, = “g7zV/4 for the spin-  firm our perturbative Eq(90). The first logarithm in Eq.
flip vertex andT?=m(2 *g’s—“g%=)V/4 in the case of no (90), however, arises from a different correlatas one ex-
spin-flip. Therefore, the longitudinal, and the transverse spinternal vertex involvess,) which we have not tried to calcu-

1 1 1 2 2 z 3 3
Ja'a(Ty "yT(r’(r + Ty '77-0'1)') + ‘]a’aTy /'yT(r’(r’ (86)

relaxation rates are given by late to higher orders ifg.
Also in the presence of a magnetic field the situation is
1 =T =T +2=7tg?V (8g) ~ more complex and at present we do not know which combi-
T, ! v LR nation of relaxation rates controls the logarithmic diver-

gences arising fovy = B. The vertex corrections depend Bn
and, as mentioned in Sec. Il B 3, also thg part of the
1 L T, . o vertex renormalizes in this case. Furthermore, the non-spin-
T =l=I'+I'; = E( Jr*+ OR)V. (89 flip vertex depends on the orientation of the incoming spin,
2 and its two different components are found only after solving
Notice that 17,=0 for *g=0. This is due to a cancellation two coupled vertex equatior(sf., e.g., Ref. 20
of vertex, and self-energy corrections, reflecting the conser- In many physical situations, Ij and 1/T, differ only by
vation of S, in this case. a numerical prefactor of order 1 and such a factor in the
How do these spin-relaxation rates modify the logarithmicargument of the logarithms is not important. In this situations
divergences? A close inspection of the Keldysh contractiong is not necessary to keep track of differences of1and
and the integrals carried out in Appendix B reveals that onlyl/T,, if one is interested in a calculation to leading order in
the °A-part of the renormalized vertex connecting to the out-1/INfmaxV,B)/Ty] (cf., e.g., Ref. &

and
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VI. DISCUSSION

In this paper we have addressed the question how, far out
of equilibrium, the presence of a sufficiently large current
prohibits the coherent spin-flips necessary for the develop-
ment of the Kondo effect. In an explicit calculation, we have
confirmed the expected answéf~13 that the spin-
relaxation rate cuts off the logarithmic corrections of pertur-  FIG. 5. Vertex correction from crossed particle-hole excitations.
bation theory. This implies that fdrs> Ty (i.e., for V> Ty, Such contributions are smaller than the ladder-type corrections by a
see Refs. 6 and }2the Kondo model stays in the perturba- factor of I'/V and are therefore neglected.
tive regime, which allows calculating its properties in a con-
trolled way using perturbative renormalization grdup. Funding by the German-Israeli-Foundation is gratefully ac-

We have worked out this scenario explicitly for the imagi-  nowledged.
nary part of the conduction electron T matrix, taking into
account the joint effect of self-energy, and vertex corrections.

In the limit of zero temperature and(M/Ty)> 1, perturba- APPENDIX A: VERTEX CORRECTIONS FROM CROSSED

tion theory remains valid and the vertex corrections were RUNGS

determined by summing up diagrams to leading order in 1o supstantiate the statement made in the paragraph after

I'/V~g? Within bare perturbation theory, the T matrix ex- £q. (50, that higher order contributions to the irreducible pf
hibits logarithmic divergences at the Fermi energies of the ~

) . . Interaction Blead only to subleading corrections I, we
left, and_the right lead, and.we have demons;rated explicitl ere evaluate explicitly the crossed fourth order correction
that the joint effect of dressing pf Green functions as well asdepicted in Fig. 5
e_xchange vertices with voltage |_nduced riartltzzle—hole excita- The Feynman rules give the same prefactors in this case,
tions works to cut off these logarithms by=7g;zV. Under and the contraction of spins vields
certain conditions, the T matrix can be identified with the pinsy
spectral function on the quantum dot, which can be measured (Pl Tr [T A7 = 207 (A1)
directly by tunneling into the dcg [ vy

To reveal the physical significance of this rate, we haveyg opposed to% . obtained in the ladder-type correction.

calculated the Qypam?cal transverse_spin susceptibility in the\rhe Keldysh contraction may be expressed in terms of the
presence of a finite bias-voltage. This served to demonstral eviously defined tensodé andB as

that I's is indeed the spin-relaxation rate, broadening th
resonance pole at~ B in this correlation functionl' arises
from the stirring up of inter-lead particle-hole excitations,
and is found to be proportional, in ordgf, to the number of
conduction electrons passing the constriction per unit time
(the factor of proportionality depends, however, on details o
the model, such as, e.g., anisotropiesJof We therefore
interpret the subsequent attenuation of the Kondo effect as 07\ch> P
i i X b (Q tow,w )
decoherence due to current-induced noise. a

d "y 111 11
V;/br(Q + w,w)Bﬁ,,a ((1), - w)gb a (Q + (1),)
"

< gbr’a (w fo - w’)Bs/,/Z,,,(w" _ w/), (AZ)

fand using the identity43), this may be worked out to give

Most formulations of perturbative renormalization group 5 4 [ do' 2" (o)
in equilibrium completely neglect the role of decoherence ‘E‘Schaa 2 Q+il
and noise and focus instead on the flow of coupling con-
stants. This is justified, as the typical rates are often much X 2117 (0" - 0" )GRQ + 0" )G’ - o). (A3)

smaller than temperatufg which serves as the relevant in- _. . I o

frared cutoff. However. since this is not the case in a non->ince this contribution maintains the same Keldysh structure,
. y 3 . . . .

equilibrium situation, decoherence has to be an essential irfcd7aw @S the solution(49), it will only lead to subleading

gredient in any formulation of perturbative renormalization corrections td’s. In fact, this crosseq contribution looks very

group valid out of equilibriun®:6 We hope that our perturba- Much like the ladder-type correctiod8), except that the

tive calculation, demonstrating how this happens in detailS€cond pair of pf Green's function have the structure of an

can serve as a starting point for future developments in thi?B product, as a function ab’, and when integrated with
direction. I1= this makes Eq(A3) smaller than, Eq(48) by a factor

r/v.
Notice that, in contrast to the ladder diagrams, the crossed
ACKNOWLEDGMENTS diagram in Fig. 5 involveg a]oop—integral ov@gall, which _
does not warrant the omission of RR and AA terms leading
J.P. acknowledges the hospitality of the @rsted Laboratoryo Eq. (43). However, keeping all terms in the V-tensor, a
at the University of Copenhagen, where parts of this workrather lengthy contraction leads to a result which differs
were carried out. This work was supported in part by thesomewhat from Eq(A3), but nevertheless maintains the
Center of Functional NanostructurésP. and P.W.and the  Keldysh tensor structure and remains smaller than(&8).
Emmy Noether program(A.R.) of the DFG. Additional by a factorl'/V.
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. R(3 ~ PN An

APPENDIX B: CONTRACTIONS FOR T R® TI(85)1(°L8),CLE)s] = 4n{ G GRGA + haGRGAGR

In this Appendix, we work out the contraction of Keldysh (B3)
indices in Eq(74). There is a total of nine different nonzero
contraction of ce Keldysh-indices, each of which involve The remaining four possibilities all vanish, and we are left
renormalization of either zero, one, two or all three verticesWith contributions from terms with either two or three verti-
This gives rise to a total of % eight different types of pf ces renormalized. Working out the loop-integral ougrwe
traces, which we need to work out. If the two ce Keldysh9d€t, €.9.,
indices are different, a vertex contributes with a factosgf

rather tharl,,. Thus a term with all three vertices renormal- d—w¢lg§g§g§ = f d_wd,(_ £)GR(w)

ized contributes with TEGLGLG], whereas a term with no 2m 2m

vertices renormalized contributes[3§GG]. Our strategy X GRo+e )G w+e)

will be to perform the contraction and the loop-integral over - igA (8)gA(8 —¢'), (B4)

o without including thex-dependent part of the vertex. After
this has been done, it will be a simple matter to include theyhere we have introduced the notaugﬁ(g) (e-iTY74,
additional effects of‘L by going through very similar steps and QA(s) (e=i)™* for the double- broadenecbf Green

once more. o functions. We see that the vertex corrections serve to replace
We begin by listing a few useful facts about the relevantl” by I's in products of certain internal Green functions, and
matrix products working out all the integrals, we obtain the following list for
the Peierls channel:
oG ( Gt 2G~ ) & (QR 2g<> (B1)
= y = dw .
#GR 2¢G= - Gh o ¢* f ;(blg?g?g‘\ = Igﬁ(s)gﬁ(s -g'),
and
d_w RAAAA _ i AA Al
Tr[(al bl>(az b2>(a3 bg)i| 27T¢lglg2g3 - Ig]"s(s)g]"(s ),
¢, di/\c, dy/\c3 d;
= ayayaz + bycraz + a;b,c5 + byd,c5 + ciab d
18283 T D1C2a3 T a105C3 T 010503 + C1a503 —w¢2g’;g§g§:ig?(s)gﬁs(s’),
+d;Cobg + ¢1b,ds + dyd,ds. (B2) 2
The lesser component Green function takes the fogi do
=n,(G*-GR), and neglecting their slow frequency depen- fE@g’jgﬁgg\:igﬁs(s')gf\(s—s'),

dence we may consider the pf distribution functions as con-
stant prefactors. This allows us to expand all terms in prod-
ucts of three Green functions which are either retarded or
advanced, and to use rules lIKEGRGR=G1G5G5=0, im-

plied by the subsequent loop integration WhICh can now be
performed by closing in the half-plane with no poles. Notice dw
that including the frequency dependence in either factors of — GGG =—iGR(e)GR (e — €'). (B5)

n, or I12°, coming from either propagators or vertices, would 2m °

render such loop-integrals nonzero. Nevertheless, these COAs may be seen from Eq74), the corresponding products
tributions will be smaller than the terms which we retain byfor the Cooper Channe| can be obtained from these by the
a factorI'/V and can therefore be neglected. Furthermoreshift of variabless —-¢’, ande’ — —¢. Using the fact that
the projection allows us to neglect terms which are proporgR(-g)=-GA(¢), one readlly obtains the following list, to be

d
A AT

tional toG=G~ or G=G=G~. used for the Cooper channel:
With these few rules at hand one may work out the fol-
lowing catalog: f (21_7“;¢1g§‘g§g§ =- igﬁs(g’)g’r\(s -&'),
TH(LO1(LG,(L9)s]
= 4n\{$1(97G5G5 ~ GrG293) g—:’r@gﬁgg\g*\ =-iGR (e")GR(e),

+ $y(GLGRGE - GLGRGE) + 5(GRGH G - GrGHG},

dw
PN ~ A~ ~ ¢gAgRgR:igA( ;)gA( )’
T (°LG)1(°LG)x(8G)s] = 4n>\{¢1g§eg§g§ + ¢2g?g§g§}, f 2 2717273 rieJyrie

An A aa d ,
Tr(LG1(89):°LG)s] = 4y {1GTG5 G5 + bs0r G5 G5}, 5 2010505 =~ 1GF ()R (e ~ '),
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do ) fore simply to replacé’ by I's in Eq. (B7). This finally leads
f ;(ﬁsg?g/z'\g?: iGr(e)Gr (e — &), to the integrak80) quoted in the main text.
APPENDIX C: CUTTING OFF X-RAY EDGE
do A AR_ oA AR /
2—¢>3gl G505 = IQF(S )grs(s -g'). (B6) SINGULARITIES IN THE ANISOTROPIC KONDO
m MODEL

It is now straightforward to carry out the contraction of ce

> . _ N In this Appendix, we investigate the anisotropic Kondo
Keldysh indices in Eq(74), and one finds the combination

model in the case of wanishingspin-flip coupling™J=0 and
s 0ra or 2 finite ). In this limit, certain equilibrium correlation func-
RER T (0 0 0 ;
GG T (L1 (LG LG)s] tions are singular at the Fermi energy, they display the so-
KRR o &\ (OF F - called x-ray edge singularities whenever the spin is flipped.
+ GG TH(LGI(LG)ASG)s] In the following, we investigate how these singularities are

RAK 4 KRA of - S\ (O modified in the case of a finite voltage.
+(GRG" + G"GYTI(°LG)1(80),("LG)3] Even for 1J=0 a finite current is flowing through the
for the Peierls, and system asJ z #0 and we therefore expect that the associ-
L ated noise will cut off all singularities. Fortunately, a very
GRGRTI[(°LG),1(°LG)»(°LG)5] similar problem has been solved exactly by (Ref. 26 (see
o an . also Refs. 27 and 38who considered the effects of suddenly
+GRGRTI{(°LG)1(°LG)2(5G)4] switching on the tunneling between tw@oninteracting
RK KA - of oy leads.
+(G"G" +G"G") Tr{(89)1("LG)o("LG)s] We will show that our problengfor +J=0) can be mapped

b(_axa\ctly on the one solved by Ng. The fact that this is possible
is not obvious as he considered a situation where for times
t<t; no current is flowing, whereas in our case the same

for the Cooper-channel. Together, the two channels contri
ute the integral

3 d de’ current passes the dot before and after the spin-flip.
R (3 3 € € . I
T, 7)== v | 7= | 7= Ng considered the Hamiltonigh
16 27 ) 2w
X {GN(Q + £)GR.(Q +6")GR ()GP(e) He=HoW)+ 3 VaraGuoCarflty =01,
s a,a’ kKK o0
~[GR(Q+e)Gi.(Q+e) (C1)
+ GE/,(Q + s)G/:,,,(Q + 8’)]9’1(1\8(8)@{1\(8 -g')}. where HO(V)=Ea,k,(,(sk—ua)clkacako describes the two

(B7) leads with the bias voltage'=u, —ug. The tunneling be-
tween the left and the right ledend a potential scatterings

To include the effects df.. one may go through the same switched on for times betwednandt;. This generalization
steps and build up a similar catalog of terms. We have t»f the usual x-ray edge problem to two different Fermi seas

include all t ith . factor OF. si ¢ was solved by Ng® using a generalization of the method
Inciude afl terms with exactly one factor ok, SINce erms o ige by Noziéres and De Dominicis for the problem with
with two or three factors vanish faster the@), under pro-

S ; . o only a single Fermi sea. He finds that the relevant spectral
jection. To leading order it'/V, there will still only be con-

e X , > : function exhibits power law singularities near each of the
tributions with either two or three vertices renormalized. o Fermi energies in the left and right leads, which are,

WhereadL ended up contributing only with its 21-entr, however, cut off by a voltage induced broadening given in
this entry is zero in'L and instead one finds only contribu- terms of complex phase-shiftsee Ref. 26 for detailss g,
tions from its 12-entryy. A typical contribution from the by

Peierls-channel now takes the form

\Y
d d FX=2—|m [5L_5R]' (C2)
[0} An A n ~ [0} T
f ——TI(°LG)1(*LG)A8G)s] = 2n, f P A .
2m 2m For “g=0 andB=0, the Kondo Hamiltoniari2) reduces
ir N A to two separate potential scattering problems for conduction
= 4nx8, —li)F gr(e")Gr (), electrons of spin up and down, respectively,
S

H=HW+ > (3, 52)c 7 Coko

a,a’ kK o0

and a term like this eventually adds up with a similar term
from T (°LG)1(°LG),(5G)4], havirg a 1 inplace of the factor
of il',/(e'~iTy, to contribute #,Gr (¢')Gp (e). Working (€3
out the full contribution, from both the E’eierls, and theand we want to study the effect of a single spin-flip,
Cooper-channel, one finds that all surviving terms combing.e.,  correlation  functions like (S (t;)S'(t)) or

in similar ways, and the total effect of includiﬁﬁ is there- ([CL,T(tf)S(tf)][S*(ti)caT(ti)]> (which is related to the
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T-matrix). For these correlation functions, the spin points “g,r2i018

down for t<t, i.e., S,=-1/2 and H(t<t)=H;=H(V) SrR=7 .72 7. = — z ;
1+ - /64 —i + /8

=35 o k00 € s T Cakoe TO Map EQ.(C3) onto (Olr = 0 Ore) 7(9u +0rd)

Eq. (C1) we note thatS,=1/2 fort;<t<t; and therefore (€7

with “g__,=N(0)2_, andN(0)=1/v.
Rewriting Eqg.(C4) in terms of these scattering states, we
can read off the potential in EC1)

H=H+ >  (3,/2c .,

a,a’ kKK o0

Cakoa(tf - t) 0(t - tl) .

o To'o

(C4)
1 o *
H, can easily be diagonalized in terms of scattering states. Vo= EE ZJB,B[Q)[B, “(0)] ®E4(0). (C8
Scattering states coming from the I¢fight) lead are occu- BB’

pied according to the lef{right) chemical potential and
therefore, Eq(C4) takes the form(C1) when rewritten in
terms of those scattering states.

Using this formula and the results by Rgpne can easily
work out the relevant correlation functions when taking into

To determine th teri ot f t account that the spin-up and spin-down problems separate.
0 determine he scattering sta eskgf we represent lor  pgq corresponding correlation functions are therefore multi-
convenience the two semi-infinite leads by infinite chiral

X . ) . “plied in the time-domain and convoluted as a function of
wires of right-movers. In this representation, the scatterlngfrequency_ We will not display the rather lengthy formulas,

wave-functions d“(x) describe the amplitude of plane put only note that all divergences close to the two Fermi

waves coming from lead levels are cut off by the appropriate relaxation rat@®) [the
o'a ikx rates for spin-up and spin-down adde§ite Tit=eT'1*1))t),
D, “(X) = [0(=X) 61 + O(X) S, o JE, (CH) To make contact with our perturbative results, we will

wherex< 0 (x>0) refers to incomingoutgoing waves in llOZVV consider t_he case of small. In this limit V.

lead «’. The scattering matris§,, is determined from the ‘]B’B/,Z_' Inserting this into Eqs(llg) and(119) Of Ref. 26,

Schrédinger equation determining the complex phase-shifisg, expanding the re-
sult to leading order irV,/, and adding spin-up and spin-

. " , wn contributions, we fin
—T0EA Sy g — %-ZJarau(S(X) q)lfa-a(x) — SCDEO.Q(X), do contributions, we find

T

(C6) I=5VPosl?, (C9)

and regularizing the delta function by usi§0)=1/2 we  \yhich coincides with ouF,=1/T, in Eq.(89), in the limit of
obtain 1g—0. Note that the first logarithm in E¢QO0) arises from a
1 _(ngR %, "9re)/64 +io (%0, - rp)/8 diagram withS, at an external vertex. Therefore the corre-

S.= S R — . , sponding correlator is not of the x ray edge form discussed in
1+(°gir ~ ‘0L ‘OrR)/64 —io (‘gL +“OrR)/8 this Appendix.
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