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We investigate the effects of voltage induced spin-relaxation in a quantum dot in the Kondo regime. Using
nonequilibrium perturbation theory, we determine the joint effect of self-energy and vertex corrections to the
conduction electron T-matrix in the limit of transport voltage much larger than temperature. The logarithmic
divergences, developing near the different chemical potentials of the leads, are found to be cut off by spin-
relaxation rates, implying that the nonequilibrium Kondo-problem remains at weak coupling as long as voltage
is much larger than the Kondo temperature.

DOI: 10.1103/PhysRevB.70.155301 PACS number(s): 73.63.Kv, 72.10.Fk, 72.15.Qm

I. INTRODUCTION

Electron transport through quantum dots or point contacts
possessing a degenerate ground state(e.g., a spin) is strongly
influenced by the Kondo effect,1 provided the dot is in the
Coulomb blockade regime. In the linear response regime, the
Kondo resonance formed at the dot at sufficiently low tem-
perature, i.e., at or below the Kondo temperatureTK, allows
for resonant tunneling, thus removing the Coulomb blockade
and leading to conductances near the unitarity limit. This has
been observed in various experiments on quantum dot
devices.2

The Kondo resonance is quenched by either large tem-
peratureT@TK, large magnetic fieldB@TK, or a large bias
voltageV@TK. However, the mechanism of how and why
the Kondo effect is suppressed is qualitatively different in the
three cases. The Kondo effect arises from resonant spin-flip
scattering at the Fermi energy. Temperature destroys the
resonance mainly by smearing out the Fermi surface,
whereas a magnetic field lifts the degeneracy of the levels on
the dot and thereby prohibits resonant scattering. The effect
of a bias voltageV is more subtle. It induces a splitting of the
Fermi energies of the left, and the right lead. However, this
splitting affects directly only resonant electron scattering
from the left to the right lead, butnot any scattering which
begins and ends on thesamelead. Yet these remaining reso-
nant processes are suppressed by a different effect: the volt-
age induces a current which leads to noise and therefore to
decoherence of resonant spin-flips. It is the goal of this paper
to study those decoherence effects in detail.

In perturbation theory, the signature of Kondo physics is
logarithmic divergences arising from(principle value) inte-
grals of the type

E
−D

D

dv
fsvd

v
, ln

D

EIR
, s1d

where fsvd is the Fermi function,D a high energy cutoff
(i.e., bandwidth), and EIR some infrared cutoff. There are
three rather different ways to cut off the logarithm, and to
destroy the Kondo effect, corresponding to the three mecha-
nisms discussed above. First, temperature broadensfsvd

leading toEIR,T. Second, a magnetic fieldB shifts the pole
with respect to the Fermi-energy, replacing 1/v by 1/v−B,
and in this caseEIR,B. The third way to quench the loga-
rithm is to introduce a finite decoherence rateGs, replacing
1/v by v /v2+Gs

2, implying EIR,Gs.
The relaxation rateGs=GssV,B,Td and the associated de-

coherence effects also exist in equilibrium. In the limit of
vanishing bias voltage and magnetic field, the scaleGs tends
to a temperature dependent(Korringa) rate,3 Gss0,0,Td!T,
which vanishes asT→0, allowing for the quantum coherent
Kondo state to be formed. In the case of a finite magnetic
field and zero temperature, aB- and spin-dependent rate,4

Gs,ss0,B,0d remains finite for the excited states=↓. In dy-
namical quantities it prohibits singular behavior atv,B but
it is not important for static quantities, whereB eliminates all
relevant singularities. In the case of a finite bias voltageV,
however, the finite rateGssV,0 ,0d is instrumental to cut off
singularities even instatic quantities for T,B→0. The
Kondo effect develops only to a certain extent, depending on
the ratioV/TK.

Not only for a quantitative description of experiments in
the regimeV@TK, but even for a crude qualitative under-
standing of Kondo physics out of equilibrium, it is necessary
to identify the correct relaxation rateGs. The question, how
logarithmic contributions are cut off, is essential to derive the
correct perturbative renormalization group description5,6 and
to identify regimes where novel strong-coupling physics is
induced out of equilibrium.

The importance of the broadening of the Zeeman levels
was pointed out three decades ago by Wolf and Losee7 in the
context of the Kondoesque tunneling anomaly observed in
various tunnel junctions. Incorporating a Korringa-like,T-
andB-dependent, spin-relaxation rate into Appelbaum’s per-
turbative formula for the conductance8 was found to improve
the agreement with experiments considerably(cf., e.g., Refs.
9 and 10). Later, in the context of quantum dots, Meiret al.11

pointed out that, even atT=B=0, the finite bias-voltage in-
duces a broadening of the Zeeman levels. In their self-
consistent treatment of the Anderson model, using the non-
crossing approximation (NCA), this nonequilibrium
broadening was shown to suppress the Kondo peaks in the
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local density of states, located at the two different Fermi
levels. In Ref. 12 we showed that this NCA relaxation rate is
sufficiently large to prohibit the flow toward strong coupling
for V@TK. In a perturbative study of the effects of an ac-
bias, Kaminskiet al.13 argued that an irradiation induced
broadening serves to cut off the logarithmic divergence of
the conductance asT andV tend to zero. Treatments of the
Kondo model14 and related problems15 at large voltages,
which neglect the influence of decoherence, find strong cou-
pling effects even forV@TK. Colemanet al.14 recently ar-
gued that this is the case becauseGs remains sufficiently
small due to a(supposed) cancellation of vertex and self-
energy corrections.

To our knowledge, even to lowest order in perturbation
theory, a systematic calculation of the nonequilibrium deco-
herence rate is still lacking. It is the objective of this paper to
provide such a calculation. This is a delicate matter since
self-energy, and vertex corrections may indeed cancel par-
tially, and an infinite resummation of perturbation theory is
required. Recently,16,17 it was demonstrated that the Majo-
rana fermion representation for the local spin-1/2 circum-
vents this complication when calculating spin-spin correla-
tion functions. In this representation, such correlators take
the form of one-particle, rather than two-particle, fermionic
correlation functions, and consequently only self-energy cor-
rections have to be considered. Whether this representation
will prove to be equally efficient for calculating other ob-
servables like the conduction electron T-matrix or the con-
ductance remains to be seen.

Based on the conjecture that no unexpected cancellations
occur, we have recently developed a perturbative renormal-
ization group description6 of the Kondo effect at large volt-
ages. In this approach, it was essential to include the effects
of Gs. For usual quantum dots, the Kondo effect is suffi-
ciently suppressed byGs,

6,12 such that renormalized pertur-
bation theory remains applicable at all temperatures, pro-
vided lnsV/TKd@1. We argued thatGs, as a physically
observable quantity, should be identified with the transverse
spin relaxation rateG2=1/T2, measuring the coherence prop-
erty of the local spin.(More precisely, slightly different rates
enter into various physical quantities, but to leading order in
1/ lnfV/TKg one can useGs<G2.) In this paper we show that
within perturbation theory this is indeed the case, thus con-
firming our initial conjecture. Note that in more complex
situations, for example in the case of coupled quantum dots,
Gs can be sufficiently small12 so that(strong coupling) phys-
ics can be induced for large voltages.

In a preceding paper,18 henceforth referred to as I, we
calculated perturbatively the local magnetization and the dif-
ferential conductance of a Kondo dot, including all leading
logarithmic corrections in the presence of finiteV andB. As
effects ofGs are not included to this order, some logarithms
were not cut off byV but appeared to diverge with lnsD /Td
or lnsD / uV−Bud. A systematic calculation of the cutoffGs

requires a consistent resummation of self-energy and vertex
corrections. As will become clear in the following, this is a
formidable task, and we have therefore concentrated on the
quantity which appears to be most tractable: the conduction
electron T matrix as a function of frequency, in zero mag-
netic field.

In Sec. I we introduce the model and some conventions
used for the Keldysh perturbation theory. A combination of
self-energy corrections from Sec. II A and vertex-corrections
calculated in Sec. II B determines the spin-relaxation rate
(Sec. II C). In Sec. III we show how this decoherence rate
cuts off logarithmic corrections in the T matrix. In Sec. IV
we consider the case of anisotropic exchange couplings and
determine the exact combination of transverse and longitudi-
nal spin-relaxation rates which enters the logarithms in the
T matrix. Appendixes A and B contain details pertaining to
Secs. II B and III. Appendix C investigates how power-law
singularities of the strongly anisotropic Kondo model are
modified out of equilibrium by mapping it to the nonequilib-
rium x-ray edge problem for vanishing spin-flip coupling.

II. MODEL AND METHOD

We model the quantum dot by its local spinSW sS= 1
2

d,
coupled by the exchange interactionJaa8 sa ,a8=L ,Rd to the
conduction electrons in the left(L) and right(R) leads

H = o
a,k,s

s«k − madcaks
† caks − gmBBSz

+ o
a,a8,k,k8,s,s8

Ja8aSW ·
1

2
ca8k8s8

† tWs8scaks, s2d

where JLR describes a cotunneling process transferring an
electron from the right to the left lead. HeremL,R=±eV/2 are
the chemical potentials of, respectively, the left and right
leads,tW is the vector of Pauli matrices,gmBB the Zeeman
splitting of the local spin levels in a magnetic fieldB, and
caks

† creates an electron in leada with momentumk and spin
s. We will use dimensionless coupling constantsgaa8
=Ns0dJaa8, with Ns0d the density of states per spin for the
conduction electrons(assumed flat on the scale eV,gmBB).
For later use, we definegd=sgLL +gRRd /2 and g2=sgLL

2

+gRR
2 +2gLR

2 d /4. We shall henceforth work in units where"
=kB=gmB=e=1 and, unless specifically stated otherwise, the
Einstein summation convention will be employed through-
out.

In order to calculate observable quantities for the system
with Hamiltonian(2), we find it convenient to use a fermi-
onic representation of the local spin operator

SW =
1

2 o
gg 8

fg
†tWgg 8fg 8, s3d

with canonical fermion creation and annihilation operators
fg
†, fg, g= ↑↓, which allows a conventional diagrammatic

perturbation theory in the coupling constantg. Since the
physical Hilbert space must have singly occupied states only,
it is necessary to project out the empty and doubly occupied
local states. This is done by introducing a chemical potential
l regulating the chargeQ=og fg

† fg. Picking out the contri-
bution proportional toe−bl and taking the limitl→`, the
constraintQ=1 can be enforced(for a more detailed descrip-
tion of this method see I).
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We will use the Keldysh Green function method for non-
equilibrium systems, following the notation of Ref. 19.
Keldysh matrix propagators are defined as

GI = SGR GK

0 GA D s4d

whereGR,A andGK are the retarded, advanced, and Keldysh
component Green functions, respectively. Spectral functions
are found asA= isGR−GAd, and thegreaterand lesserfunc-
tions as

G./, = sGK ± GR 7 GAd/2. s5d

The local conduction electron(ce) Green functions at the
dot in the left and right leads, and the pseudofermion(pf)
Green function are denoted byGas

ab and Gg
cd, respectively,

with lead indexa=L,R, spin indicess ,g, and Keldysh in-
dicesa,b,c,d. A corresponding notation will be used for the
pf self-energyS, and its imaginary part, the self-energy
broadening, is denoted byGg= isSg

R−Sg
Ad. The interaction

vertex has the following tensor structure in Keldysh space

Lab
cd =

1

2
sdabtcd

1 + tab
1 dcdd, s6d

wherea,b andc,d refer to pf, and ce-lines, respectively.
Since we consider only nonequilibrium situations in a

steady state, time translation invariance holds, and the
single-particle Green functions depend only on one fre-
quency. The bare pf spectral function is given by

Agsvd = 2pdsv + gB/2d, s7d

and the Keldysh component Green function is given as

Gg
Ksvd = iAgsvdf2nglsvd − 1g, s8d

wherenglsvd denotes the pf distribution function, given by
nglsvd=1/sesv+ld/T+1d in thermal equilibrium. We shall also
use the shorthand notation

Mgl = 2nglsvd − 1. s9d

Assuming a constant conduction electron density of states
Ns0d=1/2D and a bandwidth 2D, the local ce spectral func-
tion takes the form

Asvd = 2pNs0dusD − uvud s10d

in terms of the step functionusxd. The Keldysh component
Green function in leada is then given by

Ga
Ksvd = − iAsvdtanhSv − ma

2T
D , s11d

assuming the electrons in each lead to be in thermal equilib-
rium.

III. SPIN LEVEL BROADENING AND SPIN RELAXATION
RATES

The coupling of the local spin to the leads introduces a
broadening of the Zeeman levels, which depends on tem-

perature, magnetic field, and bias voltage. In the pseudofer-
mion representation for the local spin, the broadening is
given by the imaginary part of the pseudofermion self-
energy. This level broadening enters into the relaxation rates
of both the transverse spin componentssSx,Syd, where it ac-
counts for the loss of phase coherence, and the longitudinal
spin componentsSzd, where it describes the relaxation of the
local magnetization following a change in the magnetic field.
The observable spin relaxation rates 1/T2 and 1/T1 are de-
fined through the broadening of the resonance poles in the
transverse, and longitudinal dynamical spin susceptibilities,
and their calculation requires vertex corrections to be in-
cluded in a consistent way.

Following a brief discussion of the pf self-energy broad-
ening, we determine the renormalized ce-pf interaction ver-
tex in a steady-state nonequilibrium situation. The resulting
vertex functions are used to calculate the transverse dynami-
cal spin susceptibility, and later, in Sec. III, they will serve as
building blocks for a calculation of the conduction electron
T-matrix.

A. Pseudofermion decay rates

In paper I (Ref. 18), we determined theon-shell imagi-
nary part of the pseudo fermion self-energy, including lead-
ing logarithmic corrections. For the purpose of this paper, we
will only need the second order rates, disregarding logarith-
mic corrections. ForT=0 one finds for 0øV,B

G↑ =
p

4
gLR

2 V, s12d

G↓ = G↑ + 2pg2B, s13d

with 4g2=gLL
2 +gRR

2 +2gLR
2 , whereas forV.Bù0:

G↑ =
p

4
gLR

2 s3V − 2Bd, s14d

G↓ = G↑ + 2pg2B. s15d

Notice that in the presence of a finite magnetic field, only the
upper spin level, here corresponding to spin down, is broad-
ened whenV=0, as one would expect from simple phase-
space considerations. Broadening of the lower spin level
(spin up) is due to virtual transitions to the upper spin level
and occurs only in higher orders ing.

For comparison, we list also the thermal decay rate for
V=B=0

G↑,↓ = 3pTg2. s16d

B. Vertex corrections

Early work20–22 on the dynamical magnetic susceptibility
of a single spin 1/2, demonstrated how self-energy, and ver-
tex corrections combine to yield the transverse, and longitu-
dinal relaxation rates 1/T2 and 1/T1. In Ref. 20, the vertex
corrections were determined in the approximation where the
imaginary part of the pf self-energyG is much smaller than
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temperature. A similar approach is possible out of equilib-
rium, where it is the finite voltage, rather than temperature,
which determines the abundance of(inter-lead) conduction
electron particle-hole excitations.

To calculate the vertex corrections and resolve their inter-
play with self-energy diagrams, we have to solve the vertex
equation

L̃ab
cdsg,g 8uV + v,vd

= Lab
cd +E dv8

2p
L̃a8b8

cd sg 9,g -uV + v8,v8dGIg 9
b8a9sV + v8d

3GIg -
b9a8sv8dB̃b9a

a9bsg 9,g;g -,g 8uv − v8d, s17d

illustrated diagrammatically in Fig. 1. In general, the pf
propagators and the two-particle-irreducible interaction part

B̃ appearing in Eq.(17) are fully dressed, but in the present
work we shall include such dressing only to leading order in

g. We thus replace the full B˜ by B, shown in Fig. 2, and
include only the second order decay rates, determined above,
for the irreducible pf self-energy. In this approximation, the
vertex corrections simplify substantially and Eq.(17) can be
solved analytically to leading order inG /V. Since we assume
that V@TK, perturbation theory is valid andG,g2V!V is
indeed a sound approximation. We shall consider the case
whereT!V, which will best reveal the salient nonequilib-
rium features of the problem.

We remind the reader that physical quantities are propor-
tional to e−bl within our projection scheme. Therefore we
have to keep track of two contributions to the vertex

L̃ab
cd = 0L̃ab

cd + lL̃ab
cd, s18d

where0L̃ is independent ofl, andlL̃ vanishes ase−bl in the

limit of l→`. We shall first determine0L̃ and then, in a

second step,lL̃.

1. Voltage induced particle-hole excitations

The Keldysh pf interaction tensor depicted in Fig. 2 in-
volves a contraction of bare vertices with the ce polarization
tensor. The convolution of two conduction electron Green
functions has thegreatercomponent

a
a8P.sVd =E d«

2p
Ga8

. s« + VdGa
,s«d, s19d

and in general, the convolution of different Keldysh compo-
nents gives rise to the polarization tensor

a
a8Pdc

d8c8sVd =E d«

2p
GIa8

d8c8s« + VdGIa
dcs«d. s20d

It is convenient to form the contraction of this tensor with the
exchange constantsJaa8 /4 at each end, and thus define an
effective second order interaction by

Pdc
d8c8sVd ;

1

16
Jaa8

2
a
a8Pdc

d8c8sVd. s21d

Contracting again with two bare Keldysh vertices finally
yields the pf interaction tensor corresponding to the diagram
in Fig. 2:

Bb8a
a8b = La8b

c8d
Pdc

d8c8Lab8
cd8

=
1

2
hPKda8bdab8 + PAda8btab8

1 + PRta8b
1 dab8j. s22d

Notice that the spin-structure is omitted in this definition of

B, and when inserting for B˜ in Eq. (17) one should therefore
include a factor oft g 9g

i t g 8g -
j t ss8

i t s8s
j . The Langreth rules

(cf. Ref. 23) have been employed to work out the contrac-
tions

Pdc
c̄d̄ = 2PK, Pdc

cd̄ = 2PA, Pdc
c̄d = 2PR, s23d

with the notation that 1̄=2 and 2̄=1 for the Keldysh indices.
As for the single particle Green function, we organize these
components in a triangular matrix

PI = SPR PK

0 PA D , s24d

and forV!D one finds that

FIG. 1. Diagrammatic vertex equation for the pf-ce vertex, in

terms of the two-particle-irreducible pf interaction tensor B˜ and
dressed pf propagators(double-dashed lines).

FIG. 2. Pseudofermion interaction tensor Bb8a
a8bsVd, to leading

order ing.
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PR/AsVd =
p

16
gaa8

2 H±sV + ma − ma8d − i
4D ln 2

p
J ,

PKsVd =
p

8
gaa8

2 sV + ma − ma8dcothSV + ma − ma8

2T
D .

s25d

Notice that interlead particle-hole excitations do not satisfy
the fluctuation-dissipation theorem as

a
a8PKsVd = cothSV + ma − ma8

2T
Dfa

a8PRsVd − a
a8PAsVdg.

The lead-contracted polarization satisfies the following sym-
metries:

P./K/R/As− Vd = P,/K/A/RsVd, s26d

and for later use we quote the explicit formula for thegreater
component,P.=sPK +PR−PAd /2

P.sVd =
p

8
ˆgLR

2 hsV + Vdf1 + NsV + Vdg

+ sV − Vdf1 + NsV − Vdgj + 2gd
2Vf1 + NsVdg‰,

s27d

where NsVd denotes the Bose function andP.sVd=0 for
Vù2D+V. In terms of this function, the second order pf
decay rate may be written as

Ggsvd = 2ugg 8P
.s− v − g 8B/2d, s28d

with ugg 8=dgg 8+2tgg 8
1 .

2. Basic approximations

The following calculations are based onself-consistent
perturbation theory to orderg2 for irreducible self-energy,
and vertex corrections. For nonsingular quantities like the
lowest-order self-energy, however, self-consistency only
gives rise to subleading corrections which we need not keep
track of. For example, it is sufficient to approximate the re-
tarded pf propagators(double-dashed lines in the diagrams)
by

Gg
Rsvd =

1

v + gB/2 + iGg/2
, s29d

whereGg, given in Eqs.(12)–(15), denotes the on-shell decay
rate calculated inbare perturbation theory. We neglect con-
tributions from ReSgsvd which can be absorbed in a redefi-
nition of B and g, and which give rise only to subleading
corrections in the following.

To show, formally, that self-consistency does not change
this result, one can use the fact that the relevant integrals are
dominated by frequencies in a window of widthG around the
Zeeman levels. Since the various Keldysh components ofP
vary slowly with frequency, i.e.,fPsv+Gd−Psvdg /Psvd
,G /V, we may therefore useG /V,g2 as a small expansion
parameter. In other words,Gg is found as a convolution of
the slowly varyingP. with the rapidly varying pf spectral

function, and approximating the latter by a delta-function
therefore produces negligible corrections of orderG /V.

3. Summing up the ladder

Within second order self-consistent perturbation theory,

the renormalized vertexL̃ satisfies the diagrammatic equa-
tion in Fig. 1 with the two-particle-irreducible pf interaction
in Fig. 2. This equation clearly generates a series of ladder
diagrams, with dressed pf legs and bare ce particle-hole
propagators as rungs, which is conveniently solved by means
of iteration.

The iteration starts with the attachment of two pf propa-
gators to the bare Keldysh vertex, which defines the tensor

g8
g Vab

cd = 2La8b8
cd GIg

b8aGIg 8
ba8, s30d

having the following components:

g8
g V11

cd = dcdGg
RGg 8

K + tcd
1 Gg

RGg 8
R , s31d

g8
g V12

cd = dcdGg
RGg 8

A , s32d

g8
g V21

cd = dcdhGg
KGg 8

K + Gg
AGg 8

R j + tcd
1 hGg

KGg 8
R + Gg

AGg 8
K j,

s33d

g8
g V22

cd = dcdGg
KGg 8

A + tcd
1 Gg

AGg8
A . s34d

One proceeds by attaching rungs, using the interaction tensor

Bb8a
a8b, and legs consisting of pairs of dressed pf propagators.

This attachment consists of a contraction of Keldysh, and
spin indices, together with an integration over the frequency
circulating the individual sections of the ladder. To leading
order inG /V, we may perform these integrals by neglecting
the slow frequency dependence of the ce polarization func-
tions compared to the rapid variations in the pf Green func-
tions. Making use of the identity

1

a

1

b
=

1

a − b
S1

b
−

1

a
D , s35d

products of Green functions may be expressed as either

Gg
RsV + vdGg 8

A svd =
1

V + sg − g 8dB/2 + isGg + Gg 8d/2

3 S 1

v + g 8B/2 − iGg 8/2

−
1

V + v + gB/2 + iGg/2D
or

Gg
RsV + vdGg 8

R svd =
1

V + sg − g 8dB/2 + isGg − Gg 8d/2

3 S 1

v + g 8B/2 + iGg 8/2

−
1

V + v + gB/2 + iGg /2D
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and likewise for AR and AA products. Considered as an
integral-kernel to be integrated with the various components
of the polarization function, we may neglect the broadening
and replaceV by sg 8−gdB/2 inside the parentheses in such
products, and altogether this justifies the approximations

Gg
RsV + vdGg 8

A svd <
2pidsv + g 8B/2d

V + sg − g 8dB/2 + isGg + Gg 8d/2
,

Gg
RsV + vdGg 8

R svd < 0, s36d

for a set of legs in the ladder. Notice that Walker20 has em-
ployed a similar approximation in the case of thermal equi-
librium, utilizing the slow frequency dependence of the ther-
mal ce polarization. In this case, the RR and AA terms are
neglected to leading order inG /T instead.

Since the legs contain not only retarded and advanced, but
also Keldysh component Green’s function, some of these
loop integrals will also involve the nonequilibrium pf distri-
bution functionsnlsvd. This function is found by solving a
quantum Boltzmann equation, obtained as the Keldysh com-
ponent of the pf Dyson equation with second order pf self-
energies. Using the results of I, the solution atB=0 is found
to be

nlsvd = nls0dP,svd/P.svd, s37d

which, in the case wheregLRÞ0 andT=0, takes the form

nlsvd = nls0d5
gLR

2 sV − vd
sgLL

2 + gRR
2 dv + gLR

2 sV + vd
, 0 , v , V

gLR
2 sV − vd − sgLL

2 + gRR
2 dv

gLR
2 sV + vd

, − V , v , 0.6
s38d

For T→0, nlsvd vanishes ase−sv−Vd/T for v.V, and di-
verges ase−sv+Vd/T for v,−V. For uvu,V, nlsvd crudely
resembles a Boltzmann distribution withT replaced byV/4.
The distribution function clearly inherits the slow frequency
dependence fromP. and, to leading order inG /V, nl may
therefore be treated as a constant, when integrated with the
rapidly varying retarded and advanced pf Green functions. In
the case ofB.0, the distribution function acquires a spin-
index and the solution is generally more complicated(cf. I).
However, the frequency dependence is still determined by
P., evaluated at arguments shifted by ±B/2, and therefore
remains negligible. In either case, we are thus allowed to
neglect the frequency dependence ofnl, which rendersGK

proportional toGR−GA by a constant and reduces all loop-
integrals in the ladder to involve only the products(36) or
their complex conjugates.

Omiting all RR and AA terms, Vab
cd now simplifies to

g8
g V11

cd = dcdMg 8lGg
RGg 8

A , s39d

g8
g V12

cd = dcdGg
RGg 8

A , s40d

g8
g V21

cd = dcdhs1 − MglMg 8ldGg
AGg 8

R − MglMg 8lGg
RGg 8

A j

+ tcd
1 sMgl − Mg 8ldGg

AGg 8
R , s41d

g8
g V22

cd = − dcdMglGg
RGg 8

A , s42d

and performing the projectionl→`, all pf-distribution func-
tions vanish, i.e.,Mgl→−1, and we are left with

g8
g Vab

cdsV + v,vd = − dcdtbb
3 Gg

RsV + vdGg 8
A svd. s43d

Having performed the projection, it is now a simple mat-
ter to sum up the ladder solving the vertex equation. To keep
matters simple we assume thatB=0, but once this special
case is worked out, a generalization toB.0 will be straight-
forward. We begin by attaching the V tensor(43) to the pf
interaction tensor defined in(22). Working out the contrac-
tion, one finds that

Va8b8
cd sV + v,vdBb8a

a8bsv8 − vd

= − dcdtaa
3 GRsV + vdGAsvdP.sv8 − vd. s44d

We should also attach the Pauli-matrices coming from the
exchange vertices at the endpoint vertex and at the ends of
the pf interaction tensor. In zero magnetic field this yields the
contraction

tg -g 9
k tg 9g

i t g 8g -
j tss8

i t s8s
j = − 2tg 8g

k , s45d

which shows that the endpoint pf Pauli matrixtk is carried
through to the external spin-indices. In this way, the Pauli
matrix at the endpoint vertex may be left out and the Keldysh
vertex merely receives a factor of −2 per rung.

To second order ing, the vertex thus renormalizes to

0L̃ab
cdsV + v8,v8d = Lab

cd −E dv

2p
Va8b8

cd sV + v,vdBb8a
a8bsv8 − vd

=
1

2
Htcd

1 dab + dcdFtab
1 + itaa

3 2P.sv8d
V + iG

GJ ,

s46d

where the left superscript 0 is to remind us that the limit of
l→` has been taken. The integral overv is performed us-
ing the d-function from the RA-product of pf Green func-
tions andG is the spin-independentsB=0d single pf self-
energy broadening.

Attaching a set of pf Green functions to this second order
vertex correction, we notice that, after projection and dis-
carding again all RR and AA products, we have

o
a8b8

dcdta8a8
3 GIb8aGIba8 = − Vab

cd, s47d

which in turn implies the fourth order correction
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0L̃ab
cds4d

sV + v9,v9d = 2E dv8

2p

iP.sv8d
V + iG

3Va8b8
cd sV + v8,v8dBb8a

a8bsv9 − v8d

=
1

2
dcdtaa

3 2P.s0d
V + iG

2P.sv9d
V + iG

. s48d

From these two lowest order corrections it is clear how the
further attachment to the ladder will generate a geometric
series, and the vertex function

0L̃ab
cdsV + v,vd =

1

2
tcd

1 dab +
1

2
dcdFtab

1 + taa
3 2iP.svd

V + iGs
G
s49d

therefore solves the diagrammatic equation in Fig. 1, in the
limit l→`. We employ the suggestive shorthand

Gs =
1

2
sG↑ + G↓d + Gv = pgLR

2 V for B,T ! V, s50d

and, as will be demonstrated in the next section, this is in-
deed the spin-relaxation rate. In the present case of zero
magnetic field and isotropic exchange couplings, the longi-
tudinal, and transverse rates are identical and thusGs=G2
=G1. In the case of anisotropic exchange couplings(or in the
presence of a finite magnetic field), spin-flip, and nonspin-
flip vertices receive different corrections and the two rates
become discernible. The anisotropic case will be discussed in
Sec. IV. The first term in Eq.(50) arises from the self-energy,
Eqs. (12)–(15), the second one,Gv=2P.s0d, is the vertex
correction.

It is expected that all higher-order diagrams contributing

to the irreducible pf interaction B˜ , will give rise only to
subleading corrections toGs. This is especially easy to see
for contributions which maintain the Keldysh tensor struc-
ture of Eq.(49) or equivalently of Eq.(47), where the inter-
action tensor B returns a scalar function timestaa

3 , upon con-
traction with the bare end-piece V. Any higher order

contributions to B˜ with the same property will merely lead to
corrections toGs of higher order ing, and do not change the
lowest order result(50). In Appendix A, we explicitly evalu-
ate the vertex correction arising from the lowest order dia-
gram withcrossing rungsand, to leading order inG /V, this
contribution indeed maintains the tensor structuretaa

3 . More
generally, we note that, forV&G, consecutive correction
terms, like(46) and(48) in the geometric series which sums
up to (49), are all of order one. The crossed diagram in Fig.
5 (and similarly other higher order corrections to the irreduc-
ible vertex), however, involve extra factors ofGRGR, i.e.,
they are suppressed by factors of the order ofG /V,g2 com-
pared to the contributions from the ladder series.

So far, we have only determined thel→` limit of the

vertex, but we need also the second contribution,lL̃ in Eq.

(18), which is proportional toe−bl. Having solved for0L̃
already, we are left with the vertex equation

lL̃ab
cdsV + v8,v8d = − 2E dv

2p
L̃a9b9

cd sV + v,vd

3 GIb9a8sV + vdGIb8a9svdBb8a
a8bsv8 − vd,

s51d

which we find to be solved by

lL̃ab
cdsV + v,vd = − dcdnls0dH 4Gs

V2 + Gs
2PI absvd

+
i

V + iGs
fP.svdstab

3 + itab
2 d

+ P,svdstab
3 − itab

2 dgJ . s52d

For cÞd one obtains

lL̃ab
12sV + v,vd =

ifnlsVd − nls0dg
V − iGs

PI absvd, s53d

which is neglected due to the slow frequency dependence of
nlsVd. It is worth noting, however, that forBÞ0 this term
will in fact be proportional to the magnetization and thus
provide an important renormalization of thetcd

1 term of the
interaction tensor.

This completes the solution of the vertex equation and we
may now proceed to determine its influence on physical ob-
servables. In doing so, one has to attach a pair of pf Green
functions to the renormalized vertex, and most often one
may therefore continue to use the approximation(36). Since
the dependence of the vertex on the relative frequencyv is
set by PIabsvd, one can safely setv to 0 and consider the
vertex as a function ofV alone. WithGv=2P.s0d, the renor-
malized vertex then simplifies to

L̃ab
cdsVd =

1

2
tcd

1 dab +
1

2
dcdLabsVd, s54d

whereLab=0Lab+lLab, with

0LabsVd = tab
1 + taa

3 iGv

V + iGs
=1

iGv

V + iGs

V + isG + 2Gvd
V + iGs

V + iG

V + iGs
−

iGv

V + iGs

2
ab

s55d

and

lLabsVd = − 2nls0dF4GsPI
abs0d

V2 + Gs
2 + tab

3 iGv

V + iGs
G , s56d

wherenls0d~e−bl. Using this result we can now calculate
physical quantities like susceptibility and T-matrix.

C. Dynamical spin susceptibility

In order to uncover the physical meaning of the rateGs
introduced in Eq.(50), we include here a brief discussion of
the transverse spin susceptibility:
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'xRstd = iustdkfS−std,S+s0dgl. s57d

The transversespin relaxation rateG2 is defined as the
broadening of the resonance pole in this response function,
and as will be shown below,Gs plays exactly this role.
Throughout this section, we may therefore useGs=G2. With
a suitable generalization ofGv, entering Eq.(50), which will
be given in Sec. IV, this identification holds also for aniso-
tropic coupling.

Translating to the pseudofermion representation on the
Keldysh contour, the transverse susceptibility is calculated
from

'xstd = − is− id2kTcK
hf↓

†stdf↑stdf↑
†s0df↓s0djl, s58d

which in turn leads to the Feynman diagram in Fig. 3 when
including vertex, and pf self-energy corrections. The bare
absorption, and emission vertices are given asgab

1

=s1/Î2ddab and g̃ab
1 =s1/Î2dtab

1 , respectively(cf. I). The ab-
sorption vertex is kept undressed and the emission vertex

renormalizes like the interaction vertex-componentÎ2L̃ab
11,

whereby

'xRsVd = i E dv

2p
L̃ab

11sV + v,vdGI↑
bcsV + vdGI↓

casvd.

s59d

Notice that the canonical ensemble average, enforcing single
occupancy on the dot, is carried out by dividing the
l-dependent grand-canonical average bykQll and taking the
limit l→` (cf. I). This procedure affects only the pf distri-
bution functions and allows to neglect all terms proportional
to squares, or higher powers ofngl. Working out the contrac-
tions, we arrive at

'xRsVd = i E dv

2p
h0L̃21

11sV + v,vd2fn↓svd − n↑sV + vdg

3G↑
RsV + vdG↓

Asvd + flL̃11
11sV + v,vd

+ lL̃21
11sV + v,vd − 2n↓svd0L̃21

11sV + v,vdg

3G↑
RsV + vdG↓

Rsvd + flL̃22
11sV + v,vd

− lL̃21
11sV + v,vd + 2n↑sV + vd0L̃21

11sV + v,vdg

3G↑
AsV + vdG↓

Asvdj. s60d

The important fact that the final result is proportional tong is
ensured by the relations

0L̃21
11 + 0L̃11

11 = 0L̃21
11 − 0L̃22

11 = 1, s61d

as such a constant drops after integrating overGRGR or
GAGA.

In the limit of B→0, the factor ofn↓svd−n↑sV+vd in the
first term is of orderV /V, and therefore we are forced to
keep also the other terms involvingGRGR or GAGA. In this
case, we have to keep the full dependence of the vertex on
two frequencies, but since for example the parts of the vertex
which are retarded with respect tov integrate to zero with
GRGR, matters simplify substantially. The bracket multiply-
ing GRGR takes the form:

F2nls0dP,svd − 2P.svdnlsvd
V + iG2

− inlsvdG , s62d

and inserting now thenonequilibriumdistribution function
given by Eq.(37), the first two terms of this expression are
seen to cancel. We emphasize the fact that this important
cancellation takes place only when using the correct distri-
bution function, i.e., the solution to the quantum Boltzmann
equation corresponding to second order pf self-energies.

The term involving GAGA works in a similar way,
and using the approximation G↑

R/A sV+vdG↓
R/Asvd

<−]vsv± i0+d−1, valid to leading order in maxsuVu ,Gd /V
when integrated with the slowly varying distribution func-
tion, the last two terms in Eq.(60) may be evaluated by
partial integration. The first term comes with a factor of
0L̃21

11sV+v ,vdG↑
RsV+vdG↓

Asvd<2pidsvd / sV+ iG2d, and al-
together one finds that

'xRsVd <
M

B

iG2

V + iG2
, s63d

for maxsuVu ,Gd!V. The prefactor is independent ofB and is
obtained as the derivative −n8s0d, with nsvd given by Eq.
(38) and with the replacementnls0d→1/2, due to the nor-
malization by kQll before projection. The zero-frequency
limit obeys 'xRs0d=M /B, like in equilibrium, and the non-
equilibrium magnetization was found in I to be

M =
sgLL

2 + gRR
2 + 2gLR

2 dB
2gLR

2 V
, s64d

similar to a Curie law with 1/T replaced by 4/V. Notice that
the result(63), has been obtained also in Ref. 16, using a
Majorana-fermion representation.

In the case of a finite magnetic field, the factor ofn↓svd
−n↑sV+vd in the first term of Eq.(60) will be of orderB/V.
For B@maxsuV+Bu ,Gd, this term will therefore dominate
the other terms involvingGRGR or GAGA. For B.0, the ver-
tex renormalization is modified, but since we only need to
consider the first term in Eq.(60), only a single component is
needed. For this particular component the generalization is
straightforward and one finds that

0L̃21
11sV + v,vd =

1

2
S1 −

2iP.sv − B/2d
V + B + iG2

D , s65d

whereG2 is given in Eq.(50) and depends now on bothV
andB [see Eq.(68) below]. The integral overv is performed

FIG. 3. Dynamical susceptibility. Triangles refer to external
measurement vertices. The black(emission) vertex is renormalized
like the interaction vertex in Fig. 1, except that the two external ce
legs are removed. The other(absorption) vertex remains undressed.
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using the approximation(36), and the susceptibility is found
to be

'xRsVd <
M

V + B + iG2
, s66d

valid for maxsuV+Bu ,Gd!minsB,Vd.
In the intermediate regime whereB!minsuV+Bu ,Gd, one

would need to generalize also thel-dependent part of the
vertex to the case ofB.0. However, we expect that cancel-
lations, similar to those found in terms like Eq.(62) at zero
field, will take place also at finiteB, once the correct
B-dependent distribution function is used. In this manner, we
expect the general formula for the susceptibility to be simply

'xRsVd <
M

B

B + iG2

V + B + iG2
, s67d

valid for maxsuV+Bu ,Gd!V. This function obviously has
the correct asymptotic behaviors, corresponding to Eqs.(63)
and (66), and is consistent with the equilibrium result.20,21

For completeness, we state here the relevant asymptotics
of G2 as a function ofV, B, andT.

G2 < 5pgLR
2 V, maxsT,Bd ! V

psgLL
2 + gRR

2 dB/4, maxsT,Vd ! B

psgLL
2 + gRR

2 + 2gLR
2 dT, maxsB,Vd ! T.

6 s68d

In the equilibrium limit,V=0, this corresponds to the result
obtained in Refs. 20 and 21,G2<pg2 maxsT,B/4d.

IV. CONDUCTION ELECTRON T-MATRIX

With the renormalized vertex at hand, we now proceed to
calculate the conduction electron T-matrix, including the
leading logarithmic corrections. The T-matrix, Taa8, is of
great physical significance, insofar as it describes the scatter-
ing of conduction electrons from leada8 to lead a, and
thereby also the transport across the dot. It is determined
from the conduction electron Green function:

Gaa8,s
R svd = Gas

Rs0dsvddaa8 + Gas
Rs0dsvdTaa8,s

R svdGa8s
Rs0dsvd.

s69d

In cases where the exchange-tunneling Hamiltonian(2) is
derived from an underlying Anderson model, i.e., from a
single quantum dot in the Coulomb blockade regime(cf.,
e.g., Ref. 13), one hasJLR

2 =JLLJRR and only one of the ei-
genvalues of the 232 matrix Taa8 is finite. In such a situa-
tion, ImfTaa8ssvdg is, at low energies, directly proportional
to the spectral function of the electrons on the dot(see e.g.,
Ref. 24 and references therein). This spectral function can be
measured directly by tunneling into the dot,25 and henceforth
we shall focus on the imaginary part of Taa8.

In Fig. 4 we show the two diagrams contributing to the
T-matrix to third order. Within bare perturbation theory(i.e.,
using bare vertices and Green functions in Fig. 4), one
obtains the following intra- and inter-lead components at
T,B=0:

ImfTaa
R sVdg = −

3p

16Ns0dHsgaa
2 + gLR

2 d

3F1 + 2gaa lnS D

uV − mauDG
+ 4gdgLR

2 lnS D

uV + mauDJ , s70d

ImfTLR
R sVdg = −

3p

16Ns0d
gLRH2gdF1 + 2gLL lnS D

uV − mLuDG
+ 2sgRR

2 + gLR
2 dlnS D

uV − mRuDJ , s71d

with mL =−mR=V/2. Within bare perturbation theory, the
T-matrix diverges close to each Fermi surface, or more pre-
cisely, forV→ma, some of the logarithms are cut off by the
voltageV=mL −mR while others remains unaffected. In this
sense voltage and temperature act very differently asT
would cut off all logarithmic terms uniformly. The central
question formulated in the introduction is, how the logarith-
mic divergences which remain forT→0 and largeV are cut
off when the perturbation theory is properly resummed. To
find the correct cutoff to orderg2, we have to use dressed
Green functions and vertices in Fig. 4.

As the second-order diagram in Fig. 4 gives only a finite
contribution ImfTaa8

R sVdg=−3p/16Ns0doa9gaa9ga9a8, the in-
clusion of self-energy, and vertex corrections will produce
only subleading corrections of orderg4, as can be shown by
an explicit calculation.

The fate of the logarithms arising to orderg3 is more
interesting, and in the following we will therefore carefully
evaluate the second diagram in Fig. 4. This contribution in-
volves the spin contractions

tgg 8
k t g 8g 9

j tg 9g
i tss9

i t s9s8
j ts8s

k = 24 s72d

for the Peierls, and

tgg 9
i t g 9g 8

j tg 8g
k tss9

i ts9s8
j t s8s

k = − 24 s73d

for the Cooper channel. Writing out the sum of these two
types of diagrams, corresponding to different orientations of
the pf-loop, one finds that

FIG. 4. Diagrams for the conduction electron T-matrix, with
dressed pf propagators and dressed interaction vertices(black dots).
The third order diagram contributes with both directions on the pf
loop, running either antiparallel or parallel to the ce base-line. We
refer to these two possibilities as thePeierls, and theCooper-
channel, respectively.
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Taa8
Rs3dsVd =

3i

16
Jaa9Ja9a-Ja-a8E dv

2p
E d«

2p
E d«8

2p

3GIa9
d9c9sV + «dGIa-

d8c8sV + «8d

3 hL̃a9b
1d9sv,v + «dGIbasvdL̃ab8

c81sv + «8,vd

3GIb8a8sv + «8dL̃a8b9
c9d8sv + «,v + «8dGIb9a9sv + «d

− L̃a8b
c81sv,v − «8dGIbasvd

3L̃ab9
1d9sv − «,vdGIb9a9sv − «d

3L̃a9b8
c9d8sv − «8,v − «dGIb8a8sv − «8dj. s74d

This Keldysh contraction has a total of 256 terms, of which
only a few will contribute in the end. Some will involve a
GI,21 which is zero, and others will involve a product of more
than one lesser-componentG,, which, being proportional to
higher powers of the pf distribution function, will vanish
faster thankQll. Since the Keldysh representation contains
G, as part ofGK =G,+G., it is a daunting task to isolate all
contractions with only one factor ofG,. Nevertheless, since
we are dealing here with a trace over the pf Keldysh indices,
we are free to work in a more convenient basis for the
pseudofermions. Thus choosing

z = S1 1

0 1
D, z −1 = S1 − 1

0 1
D , s75d

the Keldysh matrix Green functions may be transformed as

Ĝ = zGIz −1 = SGR 2G,

0 GA D , s76d

which has the nice property thatĜ becomes diagonal after
projection. The renormalized vertices may be considered as
functions of only one frequency and therefore take the form
(54), which we write loosely asL=d+L. For opposite ce
Keldysh-indices the vertex retains the structure of the
identity-matrix d under the transformation. For equal ce-
indices, the matrixLab transforms to

L̂ = zLz −1 = 0L̂ + lL̂, s77d

where

0L̂ = S1 0

f − 1
D , s78d

and

lL̂ = 2nls0d1
c*

2
−

4GsP
Rs0d

V2 + Gs
2 c

0 −
c*

2
−

4GsP
As0d

V2 + Gs
2
2 ,

s79d

with f=V+ iG /V+ iGs andc=2iGv/V− iGs.
In this representation the contraction in Eq.(74) becomes

manageable and one has to deal with merely eight different

types of terms. The full contraction is worked out in Appen-
dix B, resulting in

Taa8
Rs3dsVd =

3

16
nlJaa9a-a8

3 E d«

2p
E d«8

2p

3 hGa9
K sV + «dGa-

R sV + «8dGGs

A s«dGGs

A s«8d

− fGa9
R sV + «dGa-

K sV + «8d + Ga9
K sV + «d

3Ga-
A sV + «8dgGGs

A s«dGGs

A s« − «8dj, s80d

whereGGs

A s«d=1/s«− iGsd are Green functions broadened by
Gs rather thanG /2 and we use the shorthand notation
Jaa9a-a8

3 =Jaa9Ja9a-Ja-a8. Already at this stage, it is apparent
that the vertex corrections have served to replace twice the pf
self-energy broadening byGs. Making use of the basic inte-
grals,

E
−D

D

d«
sgns« + ads« + bd

s« + bd2 + Gs
2 = lnS D2

sb − ad2 + Gs
2D s81d

and

E
−D

D

d«
sgns« + adG
s« + bd2 + Gs

2 = 2 tan−1Sb − a

Gs
D , s82d

representing a broadened logarithm and a broadened sign-
function, respectively, the remaining integrals over« and«8
are straightforward.

The first line of the integral(80) involves a convolution of
GK with GA, which yields

− iNs0dHlnS D2

sV − ma9d
2 + Gs

2D + 2i tan−1SV − ma9

D
DJ .

This term is multiplied by the convolution ofGa8
R with GGs

A ,

equal toiGa8
R sV+ iGsd, and altogether the first line yields the

imaginary part

− 2nl

3p

32
Jaa9a-a8

3 Ns0d2 lnS D2

sV − ma9d
2 + Gs

2D . s83d

Using a spectral representation for the ce Green functions,
the remaining two lines of Eq.(80) can be brought to the
form

2nl

3

32
Jaa9a-a8

3 Ns0d2E
−D

D d«

2p
E

−D

D

dv

3 F sgns« − ma-d

sv − V − iGsdsv − « − iGsd

+
sgns« − ma9d

s« − V − iGsdsv − « + iGsd
G . s84d

The v integral in the first term vanishes in the limitD→`,
and keepingD finite this term remains smaller than the sec-
ond term by a factor ofV /D or Gs/D. Keeping only the
second term, the imaginary part takes exactly the same form
as Eq.(83), and finally we obtain after projection
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ImfTaa
R sVdg = −

3p

16Ns0dHsgaa
2 + gLR

2 d

3F1 + gaa lnS D2

sV − mad2 + Gs
2DG

+ 2gLR
2 gd lnS D2

sV + mad2 + Gs
2DJ , s85d

with no summation overa implied. We find precisely the
result of bare perturbation theory, Eq.(70), but now with the
logarithmic divergences cut off byGs. The same conclusion
also holds for TLR. This is the central result of this paper.

V. ANISOTROPIC COUPLINGS: T1 VERSUS T2

The longitudinal, and the transverse spin-relaxation rates
1/T1 and 1/T2 have rather different physical interpretations.
It is therefore interesting to determine which combination of
the two rates actually controls the logarithmic divergences.
In the previous chapter we restricted ourselves to the case of
zero magnetic field and isotropic couplings, and in this case
we cannot distinguish between the two rates as 1/T1=1/T2
=Gs.

To discriminate between the two rates, even forB=0, we
generalize the exchange interaction to involve two different
couplings

'Ja8astg 8g
1 ts8s

1 + tg 8g
2 ts8s

2 d + zJa8atg 8g
3 ts8s

3 , s86d

and we may now repeat all calculations above, keeping track
of separate spin-flip and non-spin-flip processes. Since we
consider only the case of zero magnetic field, the pf self-
energy broadening remains spin-independent and we obtain
from Eq. (28), for V@T andB=0,

G = G↑ = G↓ =
p

4
szgLR

2 + 2'gLR
2 dV. s87d

The vertex corrections now take a different form, depend-
ing on whether or not the spin is flipped at the vertex. For
T=B=0 and finiteV we obtainGv

'=p zgLR
2 V/4 for the spin-

flip vertex andGv
z=ps2 'gLR

2 −zgLR
2 dV/4 in the case of no

spin-flip. Therefore, the longitudinal, and the transverse spin-
relaxation rates are given by

1

T1
= G1 = G + Gv

z = p 'gLR
2 V, s88d

and

1

T2
= G2 = G + Gv

' =
p

2
szgLR

2 + 'gLR
2 dV. s89d

Notice that 1/T1=0 for 'g=0. This is due to a cancellation
of vertex, and self-energy corrections, reflecting the conser-
vation of Sz in this case.

How do these spin-relaxation rates modify the logarithmic
divergences? A close inspection of the Keldysh contractions
and the integrals carried out in Appendix B reveals that only
the0L-part of the renormalized vertex connecting to the out-

going ce-line(i.e., the left most vertex in Fig. 4) gives rise to
a logarithmic divergence, and furthermore determines
whether this logarithm is cut off byG2 or G1 depending on
whether this vertex involves a spin-flip or not. Therefore, in
the case of anisotropic couplings, Eq.(85) generalizes to

ImfTaa8
R sVdg = −

p

16Ns0d o
a9,a-

Hzgaa9Fzga9a8

+ 'ga9a-
'ga-a8

lnS D2

sV − ma9d
2 + G1

2DG
+ 'gaa9F2'ga9a8

+ szga9a-
'ga-a8

+ 'ga9a-
zga-a8

dlnS D2

sV − ma9d
2 + G2

2DGJ .

s90d

Roughly speaking, two thirds of the logarithms are broad-
ened byG2 and one third byG1.

How are these results modified beyond lowest order per-
turbation theory? In Appendix C we investigate this question
in the limit 'g→0 for finite zg. In this limit, the logarithmic
singularities in correlation functions likekS−S+l resum in
equilibrium to power laws with exponents depending onzg.
In Appendix C we use a mapping of our problem to a non-
equilibrium X-ray edge problem together with results by Ng
(Ref. 26) and others27,28 to investigate how these power-law
singularities are affected by a finite bias voltage and the as-
sociated current. We find that all these power laws are cut off
by a rate related to 1/T2. This has a simple interpretation:
For finitezJ a finite current is flowing through the system and
the corresponding noise prohibits the coherence of the two
external spin-flips at low energy. Close inspection reveals
that the second logarithm in Eq.(90) is calculated from a
correlation function of the type discussed in Appendix C.
The nonperturbative results of the Appendix therefore con-
firm our perturbative Eq.(90). The first logarithm in Eq.
(90), however, arises from a different correlator(as one ex-
ternal vertex involvesSz) which we have not tried to calcu-
late to higher orders inzg.

Also in the presence of a magnetic field the situation is
more complex and at present we do not know which combi-
nation of relaxation rates controls the logarithmic diver-
gences arising forV<B. The vertex corrections depend onB
and, as mentioned in Sec. II B 3, also thetcd

1 part of the
vertex renormalizes in this case. Furthermore, the non-spin-
flip vertex depends on the orientation of the incoming spin,
and its two different components are found only after solving
two coupled vertex equations(cf., e.g., Ref. 20).

In many physical situations, 1/T1 and 1/T2 differ only by
a numerical prefactor of order 1 and such a factor in the
argument of the logarithms is not important. In this situations
it is not necessary to keep track of differences of 1/T1 and
1/T2, if one is interested in a calculation to leading order in
1/ lnfmaxsV,Bd /TKg (cf., e.g., Ref. 6).
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VI. DISCUSSION

In this paper we have addressed the question how, far out
of equilibrium, the presence of a sufficiently large current
prohibits the coherent spin-flips necessary for the develop-
ment of the Kondo effect. In an explicit calculation, we have
confirmed the expected answer6,7,11–13 that the spin-
relaxation rate cuts off the logarithmic corrections of pertur-
bation theory. This implies that forGs@TK (i.e., for V@TK,
see Refs. 6 and 12), the Kondo model stays in the perturba-
tive regime, which allows calculating its properties in a con-
trolled way using perturbative renormalization group.6

We have worked out this scenario explicitly for the imagi-
nary part of the conduction electron T matrix, taking into
account the joint effect of self-energy, and vertex corrections.
In the limit of zero temperature and lnsV/TKd@1, perturba-
tion theory remains valid and the vertex corrections were
determined by summing up diagrams to leading order in
G /V,g2. Within bare perturbation theory, the T matrix ex-
hibits logarithmic divergences at the Fermi energies of the
left, and the right lead, and we have demonstrated explicitly
that the joint effect of dressing pf Green functions as well as
exchange vertices with voltage induced particle-hole excita-
tions works to cut off these logarithms byGs=pgLR

2 V. Under
certain conditions, the T matrix can be identified with the
spectral function on the quantum dot, which can be measured
directly by tunneling into the dot.25

To reveal the physical significance of this rate, we have
calculated the dynamical transverse spin susceptibility in the
presence of a finite bias-voltage. This served to demonstrate
that Gs is indeed the spin-relaxation rate, broadening the
resonance pole atv,B in this correlation function.Gs arises
from the stirring up of inter-lead particle-hole excitations,
and is found to be proportional, in orderg2, to the number of
conduction electrons passing the constriction per unit time
(the factor of proportionality depends, however, on details of
the model, such as, e.g., anisotropies ofJ). We therefore
interpret the subsequent attenuation of the Kondo effect as
decoherence due to current-induced noise.

Most formulations of perturbative renormalization group
in equilibrium completely neglect the role of decoherence
and noise and focus instead on the flow of coupling con-
stants. This is justified, as the typical rates are often much
smaller than temperatureT, which serves as the relevant in-
frared cutoff. However, since this is not the case in a non-
equilibrium situation, decoherence has to be an essential in-
gredient in any formulation of perturbative renormalization
group valid out of equilibrium.5,6 We hope that our perturba-
tive calculation, demonstrating how this happens in detail,
can serve as a starting point for future developments in this
direction.
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APPENDIX A: VERTEX CORRECTIONS FROM CROSSED
RUNGS

To substantiate the statement made in the paragraph after
Eq. (50), that higher order contributions to the irreducible pf

interaction B̃lead only to subleading corrections toGs, we
here evaluate explicitly the crossed fourth order correction
depicted in Fig. 5.

The Feynman rules give the same prefactors in this case,
and the contraction of spins yields

stit jtktmtndg 8gTr ftmt jgTrftitng = 20tg 8g
k , sA1d

as opposed to 4tg 8g
k obtained in the ladder-type correction.

The Keldysh contraction may be expressed in terms of the
previously defined tensorsV andB as

Va8b8
cd sV + v,vdBb9a

a8b-sv8 − vdGIb-a9sV + v8d

3 GIb9a-sv + v9 − v8dBb8a-
a9b sv9 − v8d, sA2d

and using the identity(43), this may be worked out to give

3
0 L̃ab

cds4d
sV + v9,v9d

=
5

2
dcdtaa

3 E dv8

2p

2P.sv8d
V + iG

3 2P.sv9 − v8dGRsV + v8dGRsv8 − v9d. sA3d

Since this contribution maintains the same Keldysh structure,
dcdtaa

3 , as the solution(49), it will only lead to subleading
corrections toGs. In fact, this crossed contribution looks very
much like the ladder-type correction(48), except that the
second pair of pf Green’s function have the structure of an
RR product, as a function ofv8, and when integrated with
P. this makes Eq.(A3) smaller than, Eq.(48) by a factor
G /V.

Notice that, in contrast to the ladder diagrams, the crossed
diagram in Fig. 5 involves a loop-integral overGGGP, which
does not warrant the omission of RR and AA terms leading
to Eq. (43). However, keeping all terms in the V-tensor, a
rather lengthy contraction leads to a result which differs
somewhat from Eq.(A3), but nevertheless maintains the
Keldysh tensor structure and remains smaller than Eq.(48)
by a factorG /V.

FIG. 5. Vertex correction from crossed particle-hole excitations.
Such contributions are smaller than the ladder-type corrections by a
factor of G /V and are therefore neglected.
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APPENDIX B: CONTRACTIONS FOR T R„3…

In this Appendix, we work out the contraction of Keldysh
indices in Eq.(74). There is a total of nine different nonzero
contraction of ce Keldysh-indices, each of which involve
renormalization of either zero, one, two or all three vertices.
This gives rise to a total of 23=eight different types of pf
traces, which we need to work out. If the two ce Keldysh
indices are different, a vertex contributes with a factor ofdab
rather thanLab. Thus a term with all three vertices renormal-

ized contributes with TrfL̂ĜL̂ĜL̂Ĝg, whereas a term with no

vertices renormalized contributes TrfdĜdĜdĜg. Our strategy
will be to perform the contraction and the loop-integral over
v without including thel-dependent part of the vertex. After
this has been done, it will be a simple matter to include the

additional effects oflL̂, by going through very similar steps
once more.

We begin by listing a few useful facts about the relevant
matrix products

0L̂Ĝ = S GR 2G,

fGR 2fG, − GA D , dĜ = SGR 2G,

0 GA D sB1d

and

TrFSa1 b1

c1 d1
DSa2 b2

c2 d2
DSa3 b3

c3 d3
DG

= a1a2a3 + b1c2a3 + a1b2c3 + b1d2c3 + c1a2b3

+ d1c2b3 + c1b2d3 + d1d2d3. sB2d

The lesser component Green function takes the formG,

=nlsGA −GRd, and neglecting their slow frequency depen-
dence we may consider the pf distribution functions as con-
stant prefactors. This allows us to expand all terms in prod-
ucts of three Green functions which are either retarded or
advanced, and to use rules likeG1

RG2
RG3

R=G1
AG2

AG3
A =0, im-

plied by the subsequent loop integration which can now be
performed by closing in the half-plane with no poles. Notice
that including the frequency dependence in either factors of
nl or PIab, coming from either propagators or vertices, would
render such loop-integrals nonzero. Nevertheless, these con-
tributions will be smaller than the terms which we retain by
a factor G /V and can therefore be neglected. Furthermore,
the projection allows us to neglect terms which are propor-
tional to G,G, or G,G,G,.

With these few rules at hand one may work out the fol-
lowing catalog:

Trfs0L̂Ĝd1s0L̂Ĝd2s0L̂Ĝd3g

= 4nlhf1sG1
RG2

RG3
A − G1

RG2
AG3

Ad

+ f2sG1
AG2

RG3
R − G1

AG2
RG3

Ad + f3sG1
RG2

AG3
R − G1

AG2
AG3

Rdj,

Trfs0L̂Ĝd1s0L̂Ĝd2sdĜd3g = 4nlhf1G1
RG2

AG3
A + f2G1

AG2
RG3

Rj,

Trfs0L̂Ĝd1sdĜd2s0L̂Ĝd3g = 4nlhf1G1
RG2

RG3
A + f3G1

AG2
AG3

Rj,

TrfsdĜd1s0L̂Ĝd2s0L̂Ĝd3g = 4nlhf2G1
AG2

RG3
A + f3G1

RG2
AG3

Rj.

sB3d

The remaining four possibilities all vanish, and we are left
with contributions from terms with either two or three verti-
ces renormalized. Working out the loop-integral overv, we
get, e.g.,

E dv

2p
f1G1

RG2
RG3

A =E dv

2p
fs− «dGRsvd

3 GRsv + «8dGAsv + «d

= iGGs

A s«dGG
As« − «8d, sB4d

where we have introduced the notationGGs

A s«d=s«− iGsd−1,
and GG

As«d=s«− iGd−1 for the double-broadenedpf Green
functions. We see that the vertex corrections serve to replace
G by Gs in products of certain internal Green functions, and
working out all the integrals, we obtain the following list for
the Peierls channel:

E dv

2p
f1G1

RG2
RG3

A = iGGs

A s«dGG
As« − «8d,

E dv

2p
f1G1

RG2
AG3

A = − iGGs

A s«dGG
As«8d,

E dv

2p
f2G1

AG2
RG3

R = iGG
Rs«dGGs

R s«8d,

E dv

2p
f2G1

AG2
RG3

A = iGGs

R s«8dGG
As« − «8d,

E dv

2p
f3G1

RG2
AG3

R = − iGG
As«8dGGs

R s« − «8d,

E dv

2p
f3G1

AG2
AG3

R = − iGG
Rs«dGGs

R s« − «8d. sB5d

As may be seen from Eq.(74), the corresponding products
for the Cooper channel can be obtained from these by the
shift of variables«→−«8, and«8→−«. Using the fact that
GRs−«d=−GAs«d, one readily obtains the following list, to be
used for the Cooper channel:

E dv

2p
f1G1

RG2
RG3

A = − iGGs

R s«8dGG
As« − «8d,

E dv

2p
f1G1

RG2
AG3

A = − iGGs

R s«8dGG
Rs«d,

E dv

2p
f2G1

AG2
RG3

R = iGG
As«8dGGs

A s«d,

E dv

2p
f2G1

AG2
RG3

A = − iGGs

A s«dGG
As« − «8d,
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E dv

2p
f3G1

RG2
AG3

R = iGG
Rs«dGGs

R s« − «8d,

E dv

2p
f3G1

AG2
AG3

R = iGG
As«8dGGs

R s« − «8d. sB6d

It is now straightforward to carry out the contraction of ce
Keldysh indices in Eq.(74), and one finds the combination

GRGR Trfs0L̂Ĝd1s0L̂Ĝd2s0L̂Ĝd3g

+ GKGR Trfs0L̂Ĝd1s0L̂Ĝd2sdĜd3g

+ sGRGK + GKGAdTrfs0L̂Ĝd1sdĜd2s0L̂Ĝd3g

for the Peierls, and

GRGR Trfs0L̂Ĝd1s0L̂Ĝd2s0L̂Ĝd3g

+ GKGR Trfs0L̂Ĝd1s0L̂Ĝd2sdĜd3g

+ sGRGK + GKGAd TrfsdĜd1s0L̂Ĝd2s0L̂Ĝd3g

for the Cooper-channel. Together, the two channels contrib-
ute the integral

Taa8
R s3dsVd =

3

16
nlJaa9a-a8

3 E d«

2p
E d«8

2p

3 hGa9
K sV + «dGa-

R sV + «8dGGs

A s«dGG
As«8d

− fGa9
R sV + «dGa-

K sV + «8d

+ Ga9
K sV + «dGa-

A sV + «8dgGGs

A s«dGG
As« − «8dj.

sB7d

To include the effects oflL̂, one may go through the same
steps and build up a similar catalog of terms. We have to

include all terms with exactly one factor oflL̂, since terms
with two or three factors vanish faster thankQll under pro-
jection. To leading order inG /V, there will still only be con-
tributions with either two or three vertices renormalized.

Whereas0L̂ ended up contributing only with its 21-entry,f,

this entry is zero inlL̂ and instead one finds only contribu-
tions from its 12-entry,c. A typical contribution from the
Peierls-channel now takes the form

E dv

2p
Trfs0L̂Ĝd1slL̂Ĝd2sdĜd3g = 2nlE dv

2p
f1G1

Rc2G2
AG3

A

= 4nl

iGv

«8 − iGs
GG

As«8dGGs

A s«d,

and a term like this eventually adds up with a similar term

from Trfs0L̂Ĝd1s0L̂Ĝd2sdĜd3g, having a 1 inplace of the factor
of iGv / s«8− iGsd, to contribute 4nlGGs

A s«8dGGs

A s«d. Working
out the full contribution, from both the Peierls, and the
Cooper-channel, one finds that all surviving terms combine

in similar ways, and the total effect of includinglL̂ is there-

fore simply to replaceG by Gs in Eq. (B7). This finally leads
to the integral(80) quoted in the main text.

APPENDIX C: CUTTING OFF X-RAY EDGE
SINGULARITIES IN THE ANISOTROPIC KONDO

MODEL

In this Appendix, we investigate the anisotropic Kondo
model in the case of avanishingspin-flip coupling'J=0 and
finite zJ. In this limit, certain equilibrium correlation func-
tions are singular at the Fermi energy, they display the so-
called x-ray edge singularities whenever the spin is flipped.
In the following, we investigate how these singularities are
modified in the case of a finite voltage.

Even for 'J=0 a finite current is flowing through the
system aszJLRÞ0 and we therefore expect that the associ-
ated noise will cut off all singularities. Fortunately, a very
similar problem has been solved exactly by Ng(Ref. 26) (see
also Refs. 27 and 28), who considered the effects of suddenly
switching on the tunneling between two(noninteracting)
leads.

We will show that our problem(for 'J=0) can be mapped
exactly on the one solved by Ng. The fact that this is possible
is not obvious as he considered a situation where for times
t, ti no current is flowing, whereas in our case the same
current passes the dot before and after the spin-flip.

Ng considered the Hamiltonian26

Hx = H0sVd + o
a,a8,k,k8,s,s8

Va8aca8k8
† cakustf − tdust − tid,

sC1d

where H0sVd=oa,k,ss«k −madcaks
† caks describes the two

leads with the bias voltageV=mL −mR. The tunneling be-
tween the left and the right lead(and a potential scattering) is
switched on for times betweenti and tf. This generalization
of the usual x-ray edge problem to two different Fermi seas
was solved by Ng,26 using a generalization of the method
devised by Nozières and De Dominicis for the problem with
only a single Fermi sea. He finds that the relevant spectral
function exhibits power law singularities near each of the
two Fermi energies in the left and right leads, which are,
however, cut off by a voltage induced broadening given in
terms of complex phase-shifts(see Ref. 26 for details) dL/R,
by

Gx =
V

2p
Im fdL − dRg. sC2d

For 'g=0 andB=0, the Kondo Hamiltonian(2) reduces
to two separate potential scattering problems for conduction
electrons of spin up and down, respectively,

H = H0sVd + o
a,a8,k,k8,s,s8

szJa8aSz/2dca8k8s8
† ts8s

3 caks

sC3d

and we want to study the effect of a single spin-flip,
i.e., correlation functions like kS−stfdS+stidl or
kfca8↑

† stfdS−stfdgfS+stidca↑stidgl (which is related to the
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T-matrix). For these correlation functions, the spin points
down for t, ti, i.e., Sz=−1/2 and Hst, tid=Hi =H0sVd
− 1

4oa,a8,k,k8,s,s8
zJa8aca8k8s8

† ts8s
3 caks. To map Eq.(C3) onto

Eq. (C1) we note thatSz=1/2 for ti , t, tf and therefore

H = Hi + o
a,a8,k,k8,s,s8

szJa8a/2dca8k8s8
† ts8s

3 caksustf − tdust − tid.

sC4d

Hi can easily be diagonalized in terms of scattering states.
Scattering states coming from the left(right) lead are occu-
pied according to the left(right) chemical potential and
therefore, Eq.(C4) takes the form(C1) when rewritten in
terms of those scattering states.

To determine the scattering states ofHi, we represent for
convenience the two semi-infinite leads by infinite chiral
wires of right-movers. In this representation, the scattering

wave-functionsFks
a8asxd describe the amplitude of plane

waves coming from leada

Fks
a8asxd = fus− xdda8a + usxdSa8ageikx, sC5d

wherex,0 sx.0d refers to incoming(outgoing) waves in
lead a8. The scattering matrixSa8a is determined from the
Schrödinger equation

F− ivF]xda8a9 −
s

4
zJa8a9dsxdGFks

a9asxd = «Fks
a8asxd,

sC6d

and regularizing the delta function by usingus0d=1/2 we
obtain

SLL =
1 − szgLR

2 − zgLL
zgRRd/64 + isszgLL − zgRRd/8

1 + szgLR
2 − zgLL

zgRRd/64 − isszgLL + zgRRd/8
,

SLR =
zgLR2is/8

1 + szgLR
2 − zgLL

zgRRd/64 − isszgLL + zgRRd/8
,

sC7d

with zgaa8
=Ns0dzJaa8

andNs0d=1/vF.
Rewriting Eq.(C4) in terms of these scattering states, we

can read off the potential in Eq.(C1)

Va8a =
1

2o
bb8

zJb8bfFs
b8a8s0dg*Fs

bas0d. sC8d

Using this formula and the results by Ng,26 one can easily
work out the relevant correlation functions when taking into
account that the spin-up and spin-down problems separate.
The corresponding correlation functions are therefore multi-
plied in the time-domain and convoluted as a function of
frequency. We will not display the rather lengthy formulas,
but only note that all divergences close to the two Fermi
levels are cut off by the appropriate relaxation rates(C2) [the
rates for spin-up and spin-down add ase−G↑te−G↓t=e−sG↑+G↓dt].

To make contact with our perturbative results, we will
now consider the case of smallzJ. In this limit Va8a

< zJb8b /2. Inserting this into Eqs.(11d) and(11f) of Ref. 26,
determining the complex phase-shiftsdL/R, expanding the re-
sult to leading order inVa8a and adding spin-up and spin-
down contributions, we find

Gx =
p

2
VuzgLRu2, sC9d

which coincides with ourG2=1/T2 in Eq. (89), in the limit of
'g→0. Note that the first logarithm in Eq.(90) arises from a
diagram withSz at an external vertex. Therefore the corre-
sponding correlator is not of the x ray edge form discussed in
this Appendix.
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