
u n i ve r s i t y o f co pe n h ag e n

Troll, a Language for specifying Dice-rolls

Mogensen, Torben Ægidius

Published in:
Proceedings of the 2009 ACM symposium on Applied Computing

DOI:
10.1145/1529282.1529708

Publication date:
2009

Document version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Mogensen, T. Æ. (2009). Troll, a Language for specifying Dice-rolls. In Proceedings of the 2009 ACM
symposium on Applied Computing: Programming Language Track (pp. 1910-1915). Association for Computing
Machinery. https://doi.org/10.1145/1529282.1529708

Download date: 07. apr.. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Copenhagen University Research Information System

https://core.ac.uk/display/269183377?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/1529282.1529708
https://curis.ku.dk/portal/da/persons/torben-aegidius-mogensen(6deea1a1-b2f8-4aaf-afa2-07a9e85accaf).html
https://curis.ku.dk/portal/da/publications/troll-a-language-for-specifying-dicerolls(84a45ff0-068b-11df-825d-000ea68e967b).html
https://doi.org/10.1145/1529282.1529708

Troll, a Language for Specifying Dice-Rolls

Torben Ægidius Mogensen∗

DIKU, University of Copenhagen
Universitetsparken 1

DK-2100 Copenhagen O, Denmark

torbenm@diku.dk

ABSTRACT
Dice are used in many games, and often in fairly complex
ways that make it difficult to unambiguously describe the
dice-roll mechanism in plain language.

Many role-playing games, such as Dungeons & Dragons,
use a formalised notation for some instances of dice-rolls.
This notation, once explained, make dice-roll descriptions
concise and unambiguous. Furthermore, the notation has
been used in automated tools for pseudo-random dice-rolling
(typically used when playing over the Internet).

This notation is, however, fairly limited in the types of
dice-rolls it can describe, so most games still use natural lan-
guage to describe rolls. Even Dungeons & Dragons use for-
mal notation only for some of the dice-roll methods used in
the game. Hence, a more complete notation is in this paper
proposed, and a tool for pseudo-random rolls and (nearly)
exact probability calculations is described.

The notation is called “Troll”, combining the initial of the
Danish word for dice (“terninger”) with the English word
“roll”. It is a development of the language Roll described
in an earlier paper. The present paper describes the most
important features of Troll and its implementation.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifica-
tions—Specialized application languages; G.3 [Probability
and Statistics]: Distribution functions

General Terms
Languages

Keywords
Dice, Probability, Domain-Specific Languages

1. INTRODUCTION
The first thing to ask is: Why would you want a formal

notation for specifying dice-rolls?

∗Work partially funded by the Danish Research Council for Nature and the
Universe project ’Application of Principles of Programming Languages’.
This article is the authors own slightly modified version of a paper presented
at the ACM Sigplan Symposium on Applied Computing, 2009. If you want
to cite this paper, please refer primarily to the conference version:
Troll, a Language for Specifying Dice-Rolls
SAC’09 March 8-12, 2009, Honolulu, Hawaii, U.S.A., pages 1910–1915.

There are several answers to this:

• Formal notation can give a concise and unambiguous
description which can be used to communicate ideas
between people. This is, for example, the main mo-
tivation for mathematical notation. Games that use
dice can (and sometimes do) use formal notation to
describe dice-rolls.

• A formal notation is machine readable, which enables
use of tools that analyse specifications of dice-rolls.
Two types of tools are especially relevant for dice-rolls:

Internet dice-roll servers for playing games that in-
volve dice online or by email. There are many
dice-roll servers, but they are each limited to a
small number of different types of dice-roll. With
a universal notation, a dice-roll server can per-
form rolls to any specification.

Probability calculators As with any random ele-
ment used in games, players and game designers
are interested in knowing the probability of each
possible outcome. A tool that takes a specifica-
tion of a roll and calculates this is, hence, quite
useful.

The concept of using formal notation for dice is not new:
One of the first games to use a variety of dice shapes and
rolling methods was Dungeons & Dragons from 1974 [3].
The rules introduced a formal notation for dice consisting
of the following elements:

dn describes rolling a single dice with sides numbered 1–n.
A normal six-sided die is, hence, denoted by d6.

mdn describes rolling a m dice with sides numbered 1–n
and adding up their result. 3d6, hence, denote rolling
three six-sided dice and adding them up to get a result
between 3 to 18.

In spite of introducing this notation, most of the rulebook
used an alternative, less explanatory notation: An interval
of values was shown, and it was up to the player to figure
out which dice should be rolled to obtain this interval. For
example, “3–18” would denote rolling and adding three six-
sided dice, while “2–20” would denote rolling and adding
two ten-sided dice.

In later editions, the mdn notation was used more and
more, and in the most recent editions, the interval notation
is completely eliminated. The mdn notation is also used in

other role-playing games and has been extended to include
addition, so you can write things like 2d8+1 or d6+d10. Nev-
ertheless, this extension is far from enough to describe dice-
roll methods used in modern role-playing games. Here are
some examples of methods from popular games:

• To determine values for personal characteristics such
as strength and intelligence, Dungeons & Dragons sug-
gest several methods, one of which is to roll four six-
sided dice, discarding the lowest and adding the rest.

• “The World of Darkness” [1] lets a player roll a number
of ten-sided dice equal to his ability score. If any of
these show 10, additional dice equal to the number of
10s are rolled. If some of these also show 10, this is
repeated until no more 10s are rolled. At this point,
the number of values exceeding 7 are counted to give
the final value of the roll which, consequently, can be
any number from 0 upwards.

• “Ironclaw” [4] lets a player roll three dice of different
sizes (number of sides) determined by ability scores
and count how many exceed a threshold determined
by the difficulty of the task.

• “Silhouette” [13] lets a player roll a number of ten-
sided dice equal to his ability score and selects the
highest of these as the result.

An universal method for dice-rolls needs to be able to de-
scribe all of the above, and more. Any Turing-complete
programming language can do this, but the result is not
necessarily very concise or readable, and it may be impos-
sible to analyse descriptions for such things as probability
distributions. Hence, we propose a notation that extends
the mdn notation from Dungeons & Dragons while being
readable to non-programmers after a short introduction.

This is not my first attempt at doing so: In 1996, I pro-
posed a notation called “Roll” [7], which attempted the same
thing. While it was moderately successful (it was used to
calculate probabilities when modifying rules for the new edi-
tion of “The World of Darkness” [1]), experiences showed
that the notation was not as readable to non-programmers
as it could be and that it lacked features to concisely de-
scribe some of the more complex rolls. To address this, Roll
was over time modified and extended until it had little re-
semblance to the original. Hence, a new name “Troll” was
chosen for the revised and extended language.

One of the key features of Troll (and Roll) is the ability
to automatically analyse descriptions for probability. Naive
calculation will in many instances be far too time-consuming,
so a number of optimisations are used. These are described
in section 4.

2. THE BASICS OF TROLL
When you roll several dice at the same dice, you don’t

normally care about any specific order, so it is natural to
consider the result of a dice-roll as a multiset, i.e., a collec-
tion where the order doesn’t matter but where multiplicity of
elements do. Multisets of integers are used throughout Troll
as the only data structure. Set operations like membership,
union, intersection and difference extend in the obvious way
to multisets. For details, see [17].

We will call a multiset of integers “a value”. A value con-
taining exactly one number will in some contexts be treated

as the number it contains. Some constructs require single-
ton values and run-time errors will be generated if these are
applied to non-singleton values. Likewise, some operations
require positive or non-negative numbers or non-empty mul-
tisets and will generate errors if applied to something other
than that.

Like in the original Dungeons & Dragons notation, dn
means rolling a die with n sides numbered from 1 to n.
However, mdn is the value (multiset) of m integers obtained
by rolling m n-sided dice, and you need an explicit sum op-
erator to add up the numbers. Hence, what in Dungeons
& Dragons is written as just 3d6 will in Troll be written as
sum 3d6.

The reason for this is that, unlike in Dungeons & Dragons,
we need to do many other things to the dice than just add
them. For example, in Silhouette [13], we need to find the
maximum of n ten-sided dice, which we in Troll can write
as max nd10. There are also operators for finding the m
largest numbers in a value and for finding the minimum or
m smallest numbers. For example, the method mentioned
earlier for determining personal characteristics in Dungeons
& Dragons can be written as sum largest 3 4d6.

When the number of dice rolled depends on in-game values
(such as ability level), it may be useful to use a variable
to represent the number of dice. For example, max n d10

will take the number of dice rolled from the variable n.1

Variables can be bound to values when running Troll or
locally inside definitions. We will return to this later.

Anywhere a number can occur in Troll, you can use an ex-
pression instead, so it is, for example, perfectly legal (though
not very sensical) to write d d10, which would roll a dice the
number of sides of which is determined by a d10. An expres-
sion like d(2d10) will, however, cause a run-time error, as
the d operator requires singletons as arguments. The usual
arithmetic operators on numbers, too, are defined only on
singleton arguments.

Like d can take a numeric prefix to specify the number of
rolls, you can specify multiple rolls of more complex expres-
sions by using the # operator: 6#sum 3d6 specifies a multiset
of six numbers each obtained by adding three dice2. You can
use set-like notation like {3,4,3} to build multisets. Union
of values is done using the infix operator @. There has never
been any need for multiset intersection or difference when
defining rolls, so operators for these are not included in Troll.

2.1 Comparisons, conditionals and bindings
Some dice-roll mechanism, such as that described above

for Ironclaw [4], require the rolled numbers to be compared
against a threshold and counting of those that do.

Comparison is in Troll done by filters, that compare the el-
ements of a value with a single number and only returns the
elements where the comparison holds. For example, 3<4d6
rolls four d6 and retains only those numbers n such that
3 < n. You can then count the number of remaining ele-
ments using the count operator, which simply returns the
number of elements in a value. So, an instance of the Silhou-
ette system where you roll one d8 and two d10 and where the
threshold is 5 can be written as count 5 <= {d8,d10,d10}.
There are filters for =, <, >, ≤, ≥ and 6=. Note the asym-

1The space between n and d is required to separate the lex-
ical tokens.
2Allowing any expression to be prefixed by a number causes
ambiguity, hence the need for an explicit operator.

metric nature of filters: The left-hand operand must be a sin-
gleton and is never returned, while the right-hand operand
is a value, part of which may be returned.

Filters can also be used in conditionals. The expression
if c then e1 else e2 evaluates the expression c. If this
evaluates to a non-empty value, e1 is evaluated and returned,
otherwise e2 is evaluated and returned. Note that the se-
mantics of filters ensures that, for example, x<y, where x
and y are singletons, is non-empty exactly when x < y.

In some cases you want to do two operations on the same
die. You can’t just repeat the expression that rolls the die,
as you will get two independent rolls. Instead, you need to
locally bind the value of a roll to a name and refer to that
name repeatedly. The syntax for this is x := e1; e2. While
this may look like an assignment, it is a local binding corre-
sponding to, for example, let x = e1 in e2 in Haskell. A
local bind can allow us to define the dice-roll for Backgam-
mon, where two identical dice are doubled to give four iden-
tical numbers:

x := d6; y := d6; if x=y then {x,x,y,y} else {x,y}

2.2 Repetition
Troll has two constructs for repeated die-rolling. The sim-

plest is the repeat loop, which repeats a roll until a condi-
tion holds and then returns the value of the last roll (the
one that fulfils the condition). For example,

repeat x:=d10 until x>1

keeps rolling a d10 until the result is greater than 1. It will,
hence, return a value in the range 2. . . 10. Note that the
variable x is locally bound, not assigned to, so a loop like

x:=0; repeat x:=x+1 until x=10

does not terminate, as the two bound x’s are different. The
above is equivalent to

x:=0; repeat y:=x+1 until y=10

which is, clearly, not terminating. The only thing that can
change the value of the bound variable in different iterations
is if the expression has a random element, such as a dn sub-
expression. Basically, the exact same roll is repeated until
the condition holds (if ever).

For World of Darkness [1], we want to collect all the dice
rolled until a certain condition is fulfilled, so we need a dif-
ferent kind of loop. The accumulate loop works like the
repeat loop, but instead of returning just the value that ful-
fils the condition, it returns the union of all the values up to
and including this point. With this, the World of Darkness
dice roll can be expressed as

count 7< N#accumulate x:=d10 until x<10

Note that, like with repeat, the bound variable only changes
as a result of different values of random elements in the ex-
pression; all iterations perform the same actions until these
result in a value that fulfils the condition.

2.3 Other features
The above sections describe only the essential features

of Troll. There are many other features including foreach

loops, removal of duplicates in a multiset, random selection
of n elements in a multiset and even recursive functions. To
see a full description of the language, go to the Troll web
page [6].

3. DIFFERENCES FROM ROLL
The basic idea of operations on multisets is unchanged

from Roll to Troll, so the changes have mainly been ad-
dition of more operators, changes to syntax and new loop
structures. Below is a summary of the changes and the rea-
sons for them:

• The dice-operator d was in Roll purely a prefix oper-
ator, so to roll several identical dice, you needed the
operator, i.e., 3#d6 instead of 3d6. Troll added the
mdn form to get closer to the familiar Dungeons &
Dragons notation.

• Troll added the set-like notation with curly braces,
where Roll required building multisets by using the
@ (union) operator. In particular, this has made speci-
fication of the empty collection easier, as you can write
{} instead of, for example, 0#0.

• Local binding in Roll used a let-in syntax like in ML
or Haskell, but users found the assignment-like syn-
tax easier to read and write, especially when several
bindings are nested.

• Filters (comparisons) were prefix operators in Roll, so
you would write < 3 x instead of 3 > x. The moti-
vation for the prefix syntax in Roll was to emphasise
the asymmetric nature of filters, but users found it
confusing.

• Roll had a more powerful loop structure that allowed
changes in variables between iterations, but it was too
complex for most users. Hence, it was replaced by the
simpler repeat and accumulate loops, and recursive
functions were added to handle the more complicated
(and much rarer) cases.

• More predefined operators were added. Some were just
abbreviations of common cases, such as min abbreviat-
ing least 1, while others would be impossible to emu-
late without using recursive functions. An example of
this is pick, which picks n elements from a multiset.

As an example, the World of Darkness roll described earlier
would in Roll be written as

count N# >7 let x = d10 in repeat if =10 x then d10 else 0#0

which is, clearly, less readable.
Nearly all changes have been motivated through discus-

sions with or requests from users of earlier versions. Some-
times to make descriptions easier to write and read and
sometimes to make it possible to at all specify a certain
dice-roll method.

4. IMPLEMENTATION
Troll is implemented as an interpreter written in Standard

ML (specifically, Moscow ML). Two semantics are imple-
mented:

• A random-roll semantics, where the interpreter makes
random samples of the described dice-roll.

• A probability semantics, which calculates the proba-
bility distribution of the possible outcomes of the de-
scribed dice-roll.

The random-roll semantics is implemented as a fairly straight-
forward interpreter using a pseudo-random-number genera-
tor seeded by system time, so this will not be detailed fur-
ther. The implementation of the probability semantics is a
bit more interesting, so we will elaborate on this.

If we for the moment ignore loops and recursive functions,
a probability distribution for a dice roll is a finite map from
outcomes to probabilities, such that the probabilities add
up to one. Loops and recursion can make the number of
possible outcomes infinite and allow the possibility of non-
termination with non-zero probability, so a finite map is
insufficient. We will, nevertheless, use finite maps and deal
with the infinity issue later.

We will write a finite map as a set of pairs of values and
probabilities. For example, the distribution for sum 2d2 is:

{(2, 0.25), (3, 0.5), (4, 0.25)}

There are, basically, two ways in which we can calculate a
finite probablity map for a dice-roll definition:

1. We can from each subexpression produce a finite map
for its possible outcomes and combine these to find a
finite map for the outcomes of the full expression.

2. We can use Prolog-style backtracking to obtain all
global outcomes one at a time and count these at the
top-level.

We can call the first method enumeration in space and the
second enumeration in time. They have different advantages
and disadvantages:

• Enumeration in space needs to enumerate all interme-
diate values at the same time, so if there are more
intermediate values than final values, you can use very
large amounts of memory. An example is sum nd10,
where there are O(n9) possible values of nd10 but only
O(n) possible values for the sum3. Hence, enumeration
in time will use only O(n) space, while enumeration in
space will use O(n9) space.

• Enumeration in time needs only keep track of one value
at any given time (except at the top-level count), so
you don’t need very much space.

• Because enumeration in time looks at intermediate val-
ues one at a time, it can not recognize that it has seen a
value before and will, hence, often repeat calculations
that it has already done. Enumeration in space can
combine identical values in the finite map by adding
up their probabilities and, hence, avoid doing further
calculation twice. For example, while nd10 has O(n9)
possible values, enumeration by backtracking has to
look at 10n combinations. To find the distribution for
sum nd10, enumeration in time has to look at 10n mul-
tisets of n numbers and add these up using 9 additions
for each. Enumeration in space will combine values for
nd10 so it only needs to add up O(n9) multisets.

Though space costs more than time on modern computers,
reduction from exponential time to polynomial time is worth
an polynomial increase in space.

3To be precise, nd10 has

„
n + 9

9

«
possible outcomes.

Even so, enumerating O(n9) multisets to find the distri-
bution for sum nd10 requires a lot of time and space. For-
tunately, we can do better by the following observation:

Since sum(A ∪ B) = sum(A) + sum(B), we can find the
distribution for sum nd10 by first finding the distributions
for sum (n−1)d10 and sum d10 and combine these into a dis-
tribution for sum nd10. If we apply this recursively, we never
need to store a distribution with more than O(n) values,
since there are only O(n) possible outcomes for sum md10

where m < n.
To exploit such algebraic properties, Troll uses a non-

normalised representation for distributions described by the
following recursive data-type definition:

D ≡ M ! + D ∪D + D |p D + 2×D

where M is a multiset of numbers and 0 < p < 1. M ! denotes
the distribution with only one possible outcome, which is M ,
d1∪d2 combines the outcomes of two distributions by union,
d1 |p d2 chooses between the outcomes of two distributions
with probability p of choosing from the first, and 2×d is an
abbreviation of d ∪ d.

We can translate this representation into finite maps by
the function F below:

F (M !) = {(M, 1)}
F (d1 ∪ d2)

= {(M1 ∪M2, pq) | (M1, p) ∈ F (d1), (M2, q) ∈ F (d2)}
F (d1 |p d2)

= {(M, pq) | (M, q)∈F (d1)}∪{(M, (1−p)q) | (M, q)∈F (d2)}
F (2×d)

= {(M1 ∪M2, pq) | (M1, p) ∈ F (d), (M2, q) ∈ F (d)}

By operating on this representation, we can exploit two
kinds of algebraic properties of functions on multisets:

• A function f is linear if f(A ∪B) = f(A) ∪ f(B).

• A function f is homeomorphic if there exists an oper-
ator ⊕ such that f(A ∪B) = f(A)⊕ f(B).

Examples of linear functions include filters like 7<. We can
lift a linear function f to distributions in the following way:

f(M !) = f(M)!
f(d1 ∪ d2) = f(d1) ∪ f(d2)
f(d1 |p d2) = f(d1) |p f(d2)
f(2×d) = 2×f(d)

Examples of homeomorphic functions include sum (⊕ is +),
count (⊕ is +) and min (⊕ is min). We can lift a homeo-
morpic function f to distributions in the following way:

f(M !) = f(M)!
f(d1 ∪ d2) = f(d1)⊕̂f(d2)
f(d1 |p d2) = f(d1) |p f(d2)
f(2×d) = ⊕2 f(d)

M !⊕̂N ! = (M ⊕N)!
(d1 |p d2)⊕̂d3 = (d1⊕̂d3) |p (d2⊕̂d3)
d1⊕̂(d2 |p d23 = (d1⊕̂d2) |p (d1⊕̂d3)

⊕2 M ! = (M ⊕M)!
⊕2 (d1 |p d2) = (⊕2 d1) |p2 ((⊕2 d2) | (1−p)2

(1−p2)

(d1⊕̂d2))

where ⊕ is the operator for the homeomorphism f , ⊕̂ is ⊕
lifted to union-free distributions and ⊕2 d is an optimized
version of d⊕̂d.

4.1 Local bindings
If we locally bind a value to a variable, as in x := d6; x+x,

the two occurrences of x after the semicolon must always
refer to the same value. Hence, in the expression x+x, the
distribution for x must have only one possible outcome. So
the local binding must normalise the distribution for x to a
finite map and then evaluate x+x for each possible value and
combine the results to a new finite map.

By normalising, we lose all of the optimisations of using
a non-normalised representation, so local binding is one of
the most costly operations in Troll.

We represent normalised finite maps as a special case of
the non-normalised representation where there are no union
nodes and where the left operand to a choice node is always
of the form M !, i.e.: N ≡ M !+ (M ! |p N). Furthermore, the
nodes of the form M ! are in strictly ascending order (using
a lexicographic ordering on multisets).

4.2 Loops
The first observation is that since all iterations evaluate

the same expression and the last such evaluation provides
the result, the outcomes of a loop of the form
XXXXXrepeat x := e until c
is a subset of the outcomes of e.

The way we handle repeat loops in Troll is to first calcu-
late the distribution d for e and then rewrite d into a form
d1 |p d2, where all outcomes of d1 fulfil the condition c and
none of those of d2 do. It is now clear that the distribution
for repeat x := e until c is d1: Repetition is done until
we have a result in d1, regardless of how unlikely this is.
There is a possibility p = 0, i.e., that none of the outcomes
of e fulfil c. It would be possible to include nontermination
as a possible value in distributions, but since dice rolls are
intended to terminate, we instead report an error whenever
there is a positive chance of nontermination.

An accumulating loop of the form
XXXXXaccumulate x := e until c
can have an infinite number of possible outcomes. If we, like
above, rewrite the distribution for e into the form d1 |p d2,
we find that the distribution d′ for the loop can be defined
by the equation

d′ = d1 |p (d2 ∪ d′)

This will not have a finite solution unless p = 1 or d2 = {}!.
Instead of trying to work with infinite maps, we have cho-

sen to approximate by unfolding the above equation a finite
(but user-definable) number of times and then replacing the
remaining recursive reference to d′ by d1. If rerolls have
probability less than 1, we can get arbitrarily good approx-
imations by increasing the unroll depth.

We are now left with the problem of rewriting d to d1 |p d2

given the condition c. We note that the loop introduces a
local binding, so we start by normalising d. We then find
d1 |p d2 by the following function:

C(M !) = M ! |p M ! where
cM = the distribution for c when x=M
p = 1− E(cM)

C(d |p d′) = (dt |p2 d′
t) |p1 (df |p3 d′

f) where
dt |q df = C(d)
d′

t |r d′
f = C(d′)

p1 = pq + (1− p)r
p2 = pq/p1
p3 = p(1−q)/(1−p1)

E({}!) = 1
E(M !) = 0 if M 6= {}
E(d |p d′) = p · E(d) + (1−p) · E(d′)
E(d ∪ d′) = E(d) · E(d′)
E(2×d) = E(d)2

The M ! |p M ! in the first line may seem a bit curious, as it
is equivalent to M !, but since p is significant for later calcu-
lations, we write the distribution in this redundant way. If
there are several possible values for x, i.e., if the normalised
distribution contains a choice, we calculate the split for each
possible value and combine the results.

E(d) is the probability that an outcome of d is the empty
multiset. Since conditions are considered true when they
evaluate to non-empty multisets, the probability of a condi-
tion being true is 1 minus the probability of it being empty.

4.3 Other optimisations
In most places where distributions are built, some local

simplifications at the top-level of the tree-structure are at-
tempted. An incomplete list of these is shown below.

d |p d → d
d1 |1 d2 → d1

d1 |0 d2 → d2

d1 |p (d1 |q d2) → d1 |p′ d2 where p′ = p+q−pq

d ∪ d → 2×d
{}! ∪ d → d
M ! ∪N ! → (M ∪N)!

These add a small overhead to construction of trees, but can
sometimes reduce their size dramatically.

5. ASSESSMENT
So, how well does Troll work?

5.1 The language
While Troll is considerably easier for non-programmers

and programmers alike to use than Roll, people with no pro-
gramming experience at all usually find it hard to write def-
initions that involve conditionals or loops, but expressions
like sum largest 3 4d6 or count 7<5d10 are not usually
any problem. People with a minimum of programming expe-
rience (such as experience from writing formulae in spread-
sheets) can usually write definitions using a single loop or
conditional and more experienced users can use all of the
language.

Usually, people can read and understand definitions that
are more complex than they can write.

While a number of game designers around the world use
Troll to calculate probabilities, the notation has not been

adopted in any game rules texts. Any one game will usually
only use one or two different dice-roll methods, so it is easier
for the writers to use a specialised notation or just plain
English. Nor has any Internet dice-server used Troll to allow
users to describe rolls that are not pre-programmed. So,
overall, the success of Troll has almost exclusively been in
probability calculation, where there (to my knowledge) are
no other similar tools.

5.2 The implementation
Due to the optimisations enabled by the non-normalised

representation, calculating the probability distribution of
most simple definitions is very fast. For example, calculating
the distribution for sum 50d10 takes about 0.1 second on my
fairly old machine4 and the calculation for count 7<100d10

takes less than 0.01 second.
But when rolls combine a large number of dice and oper-

ations that do not distribute well over the non-normalised
representation, calculations can take very long and use enor-
mous amounts of memory. This can even happen for dice-
roll systems used in actual games. For example, the game
“Legend of Five Rings” [18] uses a roll mechanism that can
be described in Troll as

sum (largest M N#(sum accumulate x := d10 until x<10))

where M and N depend on the situation. With M = 3, N = 5

and the maximum number of iterations for accumulate set
to 5, Troll takes nearly 500 seconds to calculate the result,
and it gets much worse if any of the numbers increase.

If exact calculation of probabilities takes too long, the
random-roll semantics of Troll can be used to generate a
large number of samples which can be used to calculate
statistics that approximate the probabilities.

6. RELATED WORK
Apart from the notation originated in Dungeons & Drag-

ons [3], most examples of notation for dice-roll are used only
in games from a single publisher. Wikipedia [16] lists a few
examples of those. Besides Roll [7] and Troll, the only other
attempt at defining a universal dice-roll notation that I know
of is in a Usenet post from 1992 [14]. There are many sim-
ilarities between this and Troll: Numbers are kept separate
until explicitly summed or otherwise operated on and there
are clear equivalences to the Troll operations sum, d, #, least
and largest (but not to the more complex Troll features).
A partial implementation of the language was implemented
in a dice-roll calculator [15].

There are many examples of extending traditional lan-
guages with probabilistic choice operators, e.g., [9, 2, 12],
but in the main these do not allow calculation of probabili-
ties, only sampling at runtime.

Other languages are designed for calculating probabili-
ties [10, 5, 8, 11]. None of these are specialised for defining
dice-rolls, but some similarities to Troll exist. For exam-
ple, the stochastic lambda calculus [11], like Troll, can be
instantiated to both a sampling and probability calculation.
The authors note that calculating probabilities for product
spaces (which are similar to unions) can take very long time
and discuss translating expressions into measure terms that
keep the parts of a product space separate as long as pos-
sible. This has some similarities to using a non-normalised

43.2GHz Pentium 4, 1.5GB RAM

form, but the measure terms are more complex (and po-
tentially more powerful) than the representation used in
Troll. The main probabilistic construct in the stochastic
lambda calculus is choose p e1 e2, which is equivalent to
the d1 |p d2 form in the unnormalised representation in Troll.

The predecessor of Troll, Roll is described in a paper [7]
that includes formal semantics for both sampling and proba-
bility calculation. An implementation using an unnormalised
representation similar to the one described in this paper
is described, but not all the optimisations described above
were applied to Roll.

7. REFERENCES
[1] Bill Bridges, Rick Chillot, Ken Cliffe, and Mike Lee.

The World of Darkness – storytelling system rulebook.
White Wolf Publishing, 2004.

[2] V. Gupta, R. Jagadeesan, and P. Panangaden.
Stochastic processes as concurrent constraint
programs. In POPL’99, pages 189–202. ACM Press,
1999.

[3] E. Gary Gygax and Dave Arneson. Dungeons &
Dragons. Tactical Studies Rules, Inc., 1974.

[4] Jason Holmgren. IRONCLAW: Anthropomorphic
Fantasy Role-Play. Sanguine Productions Ltd., 1999.

[5] Claire Jones. Probabilistic Non-Deteminism. PhD
thesis, Edinburgh University, 1990.

[6] Torben Mogensen. Troll homepage.
http://www.diku.dk/∼torbenm/Troll/, 2008.

[7] Torben Æ. Mogensen. Roll: A language for specifying
die-rolls. In PADL’03, pages 145–159. ACM Press,
2003.

[8] Sungwoo Park. A Programming Language for
Probabilistic Computation. PhD thesis, Carnegie
Mellon University, 2005.

[9] Avi Pfeffer. Ibal: A probabilistic rational
programming language. In ICAI’01, pages 733–740.
Morgan-Kaufmann Publishers, 2001.

[10] D. Pless and G. Luger. Toward general analysis og
recursive probability models. In UAI’01, pages
429–436. Morgan-Kaufmann Publishers, 2001.

[11] Norman Ramsey and Avi Pfeffer. Stochastic lambda
calculus and monads of probability distributions. In
POPL’02, pages 154–164. ACM Press, 2002.

[12] N. Saheb-Djahromi. Probabilistic lcf. In MFCS’78,
LNCS 64, pages 442–451. Springer Verlag, 1978.

[13] Marc A. Vézina and Paul Lippincott. Silhouette
CORE Roleplaying Core Rules. Dream Pod 9, 2003.

[14] Coyt D. Watters. Dice equation language.
http://groups.google.com/group/

rec.games.programmer/msg/3b623636cb36beaa, 1992.

[15] Coyt D. Watters. Gcalc.
ftp://ftp.funet.fi/pub/doc/games/

roleplay/programs/pc/gcalc32x.zip, 1997.

[16] Wikipedia. Dice notation.
http://en.wikipedia.org/wiki/Dice_notation,
2008.

[17] Wikipedia. Multiset.
http://en.wikipedia.org/wiki/Multiset, 2008.

[18] Rich Wulf, Shawn Carman, Seth Mason, Brian Yoon,
and Fred Wan. Legend of Five Rings, 3rd Edition.
Alderac Entertainment Group, 2005.

