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Abstract—In this work we present optimizations of a Grid-
based projector-augmented wave method software, GPAW [1]
for the Blue Gene/P architecture. The improvements are achieved
by exploring the advantage of shared and distributed memory
programming also known as hybrid programming. The work
focuses on optimizing a very time consuming operation in
GPAW, the finite-different stencil operation, and different hybrid
programming approaches are evaluated. The work succeeds in
demonstrating a hybrid programming model which is clearly
beneficial compared to the original flat programming model.
In total an improvement of 1.94 compared to the original
implementation is obtained. The results we demonstrate here are
reasonably general and may be applied to other finite difference
codes.

I. INTRODUCTION

GPAW[1] is a simulation software which simulates many-
body systems at the sub-atomic level. GPAW is primarily
used by physicists and chemists to investigate the electronic
structure, principally the ground state, of many-body systems.
A significant part of a GPAW computation consists of a
distributed finite-difference operation. The main object of this
paper is to optimize this finite-difference operation on the Blue
Gene/P[2] (BGP).

BGP, like most popular HPC hardware, consists of multiple
shared-memory computation nodes. A hybrid programming
paradigm may therefore be explored when targeting the BGP
architecture. Unfortunately, it is not trivial to obtain good
performance when combining threads and MPI[3]. It is often
the case that the sole use of MPI outperforms a combination
of OpenMP/Pthread and MPI when computing on clusters of
SMP computation nodes[4], [5], [6].

II. GPAW

GPAW is a real-space grid implementation of the projector
augmented wave method[7]. It uses uniform real-space grids
and the finite-difference approximation for the density func-
tional theory calculations.

A central part of density functional theory and a very time
consuming task in GPAW, is to solve Poisson and Kohn-Sham
equations. Both equations rely on finite-difference operations
when solved by GPAW. When solving the Poisson equation, a
finite-difference stencil is applied to the electrostatic potential
of the system. When solving the Kohn-Sham equation, a
finite-difference stencil is applied to all wave-functions in the

Fig. 1. A stencil operation on a 2D grid.

system. Both the electron density and the wave-functions are
represented by real-space grids. A system typically consists
of one electron density and thousands of wave-functions. The
number of wave-functions in a system depends on the number
of valence electrons in the system. For every valence electron
there may be up to two wave-functions.

The computational magnitude of a GPAW simulation de-
pends mainly on three factors: The world size, simulation
system resolution and the number of valence electrons. The
world size and resolution determine the dimensions of the real-
space grids and the number of valence electrons determines
the number of real-space grids.

A user is typically more interested in adding valence elec-
trons to the simulation than to increase the size or resolution of
the world. The real-space grid size will ordinary be between
1003 to 2003 where as the total number of real-space grids
will be greater than thousand.

A. Finite-difference

A stencil operation updates a point in a grid based on the
surrounding points. A typical 2D example is illustrated in
Figure 1 where points are updated based on the two nearest
points in all four directions.

The finite-difference methods used in GPAW are stencil
operations on the real-space grids (3D arrays). The stencil
operation used is a linear combination of a point’s two nearest
neighbors in all six directions and itself. The stencil operations
do normally use periodic boundary condition but that is not
always the case.

If we look at the real-space grid A and a predefined list of
constants C, a point Ax,y,z is computed like this:

A′x,y,z = C1Ax,y,z + C2Ax−1,y,z + C3Ax+1,y,z+
C4Ax−2,y,z + C5Ax+2,y,z + C6Ax,y−1,z+
C7Ax,y+1,z + C8Ax,y−2,z + C9Ax,y+2,z+
C10Ax,y,z−1 + C11Ax,y,z+1+
C12Ax,y,z−2 + C13Ax,y,z+2



TABLE I
HARDWARE DESCRIPTION OF A BLUE GENE/P NODE

Node CPU Four PowerPC 450 cores
CPU frequency 850 MHz
L1 cache (private) 64KB per core
L2 cache (private) Seven stream prefetching
L3 cache (shared) 8MB
Main memory 2GB
Main memory bandwidth 13.6GB/s
Peak performance 13.6 Gflops/node
Torus bandwidth 6 × 2 × 425MB/s = 5.1GB/s

III. BLUE GENE/P

Blue Gene/P consists of a number of nodes interconnected
with three independent networks: a 3D torus network, a collec-
tive tree structured network, and a global barrier network. All
point-to-point communication goes through the torus network
and every node is equipped with a direct memory access
(DMA) engine to offload torus communication from the CPUs.
The collective tree structured network is used for collective
operation like the MPI reduce operation and the global barrier
network is used for barriers.

Table I is a brief description of a BGP node. One thing to
highlight is the ratio between the speed of the CPU-cores and
the main memory. Since the CPU-cores are relatively slow
and the main memory is relatively fast compared to today’s
standard, the performance of the main memory is not as far
behind the CPU as usually. Furthermore, the torus bandwidth
is only three times lower than the main memory if all six
connections are used. The von Neumann bottleneck associated
with main memory and network is therefore reduced.

The CPU-cores can be utilized by normal SMP approaches
like pthread or OpenMP, with the limitation that BGP only
supports one thread per CPU-core. The BGP addresses the
problem of utilizing multiple CPU-cores by supporting a
virtual partition of the nodes. From the programmers point
of view the four CPU-cores would then look like four indi-
vidual nodes with each 512MB of main memory. This virtual
partitioning is called virtual mode.

A. MPI

BGP implements the MPICH2 library which comply with
the MPI-2 specification[8]. MPI-2 specifies different levels of
threaded communication. BGP supports the fully thread-safe
mode called MULTIPLE which allows any thread to call the
MPI library at any time. Since there is an overhead associated
with MULTIPLE (e.g. locks), it is also possible to use the more
restricted SINGLE mode, which do not allow concurrent calls
to MPI.

The MPICH2 implementation is tailored to utilize the
BGP’s DMA engine which means that non-blocking MPI com-
munication is handled asynchronously with minimum CPU
involvement.

BGP supports the MPI_Cart_create function which
tells BGP to reorder the MPI ranks in order to match the torus
network. We make use of this function in all the following.
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Fig. 2. A bandwidth graph showing how the message size influence
the bandwidth. In this experiment, one MPI message is send between two
neighboring BGP nodes.

Fig. 3. Four 2D grids distributed over nine processes.

To investigate how much the message size influence point-
to-point bandwidth, we have performed an experiment in
which one MPI message is send between two neighboring
BGP nodes (Figure 2). The result of the experiment clearly
shows that in order to maximize the bandwidth, a message
size greater than 105 bytes is needed, while half the asymptotic
bandwidth is achieved at approximate 103 bytes.

IV. THE GPAW IMPLEMENTATION

GPAW is implemented using C and Python. The intention
is that the users of GPAW should write the model description
in Python and then call C and Fortran functions from within
Python. It is in this context a user would apply the C
implemented finite-difference operation on one or more real-
space grids.

The parallel version of GPAW uses MPI in a flat program-
ming model and the parallelization is done by simple domain
decomposition of every real-space grid in the simulation. That
is, every MPI process gets the same subset of every real-space
grid in the simulation. This is important because some part of
the GPAW computation, like the orthogonalization of wave-
functions, requires the same subset of every real-space grid in
the simulation. This is illustrated in Figure 3 with 2D real-
space grids instead of 3D grids.



Fig. 4. 2D grid distributed over nine processes. A process needs some of
its neighbor’s surface points, to compute its own surface points.

The grids are simply divided into a number of quadrilaterals
matching the number of available MPI processes. If no user-
defined domain decomposition is present, GPAW will try to
minimize the aggregated surface of the quadrilaterals. A real-
space grid is represented as a three dimensional array where
every point in the grid can be a real or complex number (8 or
16 bytes)

A. Distributed Finite-difference

Generally, it should be easy to obtain good scalability for a
distributed finite-difference operation since computation grows
faster than communication. If we look at a 3D grid of size
n × n × n the aggregated computation is O

(
n3

)
where as

the aggregated communication is only O
(
n2

)
. The operation

should scale very well when n grows at the same rate as the
number of CPUs.

In GPAW, however, scalability is very hard to obtain since
the grid size will ordinarily not exceed 2003. Furthermore,
since GPAW requires that every MPI process gets the same
subset of every grid, it is hard to take advantage of the fact
that the number of grids grows at the same pace as the CPUs.

One feature in GPAW which makes it easier to parallelize,
is the fact that the input grid and the output grid used in the
finite-difference operation is always two separate grids. We
need, therefore, not consider the order in which the grid-points
are computed.

Applying a finite-difference operation on a grid involves
all MPI processes. It is possible for an MPI process to
compute most of the points in the sub-grid assigned to it.
However, points near the surface of the sub-grid, surface
points, are dependent on remote points located in neighboring
MPI processes. This dependency is illustrated in Figure 4.

The straightforward approach, and the one used in GPAW,
for making remote points available, is to exchange the surface
points between neighboring MPI processes before applying
the finite-difference operation. The serialized communication
pattern looks like this:

1) Exchange surface points in the first dimension.
2) Exchange surface points in the second dimension.
3) Exchange surface points in the third dimension.
4) Apply the finite-difference operation.

V. OPTIMIZATIONS

In order to make GPAW run faster on the BGP, we have
explored different optimizations. Optimizations which have

been beneficial, will be discussed in this section.
The most obvious optimization is to exchange surface

elements simultaneously in all three dimensions, by using the
following non-blocking communication pattern:

1) Initiate the exchange of surface points in all three
dimensions.

2) Wait for all exchanges to finish.
3) Apply the finite-difference operation.

The idea is to fully utilize the torus network in all six directions
simultaneously, see Table I.

Another important performance aspect is how to map
the distributed real-space grids onto the physical network
topology. The 3D torus network is used for point-to-point
communication in MPI, thus it is the network, we should
attempt to map the distributed real-space grids onto. Since
the grids have the same number of dimensions as the torus
network, and since the finite-difference operation may use
periodic boundary condition, a torus topology is a perfect
match to our problem. However, the BGP requires a partition
with 512 or more nodes to form a torus topology. A partition
under 512 nodes can only form a mesh topology.

A. Multiple real-space grids

Double buffering and communication batching are two
techniques which can improve the performance of the finite-
difference operation. Both techniques requires multiple real-
space grids but the finite-difference operation is typically
applied on thousands of real-space grids.

Double buffering

Double buffering is a technique which makes it possible
to overlap communication and computation. The following
communication pattern illustrates how:

1) Initiate the exchange of surface points in all three
dimensions for the first grid.

2) Initiate the exchange of surface points in all three
dimensions for the second grid.

3) Wait for all exchanges of the first grid to finish.
4) Apply the stencil operation on the first grid.
5) Initiate the exchange of surface points in all three

dimensions for the third grid.
6) Wait for all exchanges of the second grid to finish.

The performance gain is dependent on the ability of the MPI
library and the underlying hardware to process non-blocking
send and receive calls. On the BGP, progress in non-blocking
send and receive calls will be maintained by the DMA engine
and increased performance is therefore expected.

Batching

An way to ensure critical packet size is to pack real-space
grids into batches; inspired by the message size experiment
(Figure 2).

Continuously dividing the grids between more and more
MPI processes reduces the number of surface points in a single
sub-grid. That is, at some point the amount of data send by
a single MPI call will be reduced to a size in which the MPI



overhead and network latency will dominate the communica-
tion overhead. The idea is to send a batch of surface points in
each MPI call, instead of sending surface points, individually.
This will reduce the communication overhead considerably,
as the size of the sub-grids decreases. The number of grids
packed together in this way, we call the batch-size.

When using double buffering, it is important to allow the
CPUs to start computing as soon as possible. Combining a
large batch-size with double buffering will therefore introduce
a penalty as the initial surface points exchange cannot be
hidden. One approach to minimize this penalty, is to increase
the batch-size continuously in the initial stage. For instance
a batch-size of 128 could be reduced to 64 in the initial
exchange.

VI. PROGRAMMING APPROACHES

Different approaches exist when combining threads and
MPI. To preserve control we have chosen to handle the
threading manually in pthread.

The following is a description of different programming
approaches that we have investigated. Every programming
approach except the Flat original uses the optimizations
described in section V.
• Flat original is the approach originally used in GPAW. It

uses the BGP’s virtual mode, where the four CPU-cores
are treated as individual nodes, to utilize all four CPU-
cores and it is therefore not necessary to modify anything
to support the BGP architecture.

• Flat optimized is an optimized version of the original
approach and just like the Flat original it uses the virtual
mode.

• Hybrid multiple does not use the virtual mode. Instead,
one hardware thread per CPU-core is spawned. Every
thread handles its own inter-node communication. The
node will distribute the real-space grids between its
four CPU-cores, not by dividing the grids into smaller
pieces but by assigning different grids to every CPU-
core. Because of this no synchronization is needed until
all grids are computed, the synchronization penalty is
therefore constant. This way of exploiting multiple grids
is the main advantage of this approach.

• Hybrid master-only also spawns one thread per CPU-
core, but only one thread, the master thread, handles
inter-node communication. Since we have to synchronize
between every grid-computation, each grid-computation
will be divided between the four CPU-cores. The syn-
chronization penalty thus become proportional to the
number of grids. On the other hand, this approach does
work in SINGLE MPI-mode and the overhead associated
with MULTIPLE is therefore avoided.

VII. RESULTS

A benchmark of each implementation has been executed on
the Blue Gene/P. 16384 CPU-cores or 4096 nodes or 4 racks
were made available to us. Every benchmark graph compares
the different programming approaches of the finite-difference

operation in GPAW and a periodic boundary condition is used
in all cases.

Figure 5 is a classic speedup graph comparing every imple-
mented approach with a sequential execution. It is a relatively
small job containing only 32 real-space grids. But because of
the memory demand, it is not possible to have more than 32
grids running on a single CPU-core.

The result clearly show that the best scaling and running
time is obtained with Flat optimized and Hybrid multiple
both using a batch-size of 8 grids. Since the job only consists
of 32 grids a batch-size of 8 is the maximum if all four CPU-
cores should be used. Another interresting observation is that
the advantage of batching is greater in Hybrid multiple than
in Flat optimized. This indicates that if a job consist of more
grids, the Hybrid multiple approach may become faster than
Flat optimized.

A. Multiple real-space grids

As the number of grids grow there is a corresponding linear
growth in the computation required in the finite-difference
operation. It is therefore possible to create a Gustafson graph
by increasing the number of grids in the same rate as the
number of CPU-cores (Figure 6). It is important to note that
the required communication per node increases faster than
the needed computation; this is due to the increased surface
size associated with the additional partitioning of the grids.
To illustrate this communication increase, the right scale in
Figure 6 shows the needed communication per node for Flat
optimized and Hybrid multiple respectively.

At 512 CPU-cores Hybrid multiple is faster than Flat
optimized. The main reason is the difference in the needed
communication. Flat optimized divides the grids four times
more than the Hybrid multiple. We did not see this effect
in the speedup graph, Figure 5, because of the small number
of grids. Furthermore, Hybrid multiple is better to exploit
an increase in grids because of the thread synchronization
overhead. The overhead is small and constant, but since the
total running time is very small for 32 grids (9 milliseconds
with 2048 CPU-cores), the impact of the synchronization
overhead is drastically reduced when the number of grids, and
thereby the total running time, is increased.

To investigate the scalability of a large job with many real-
space grids, we have made a speedup graph beginning at
1k CPU-cores, which allows for a 2816 grid job (Figure 7).
Again Hybrid multiple has the best performance - going from
1k to 16k CPU-cores gives a speedup of approximately 16.5
compared to Flat original. Comparing Hybrid multiple with
itself, we have a speedup of 12 where 16 would be linear but
unobtainable due to the increase in the needed communication.

To further investigate the performance difference between
Hybrid multiple and Flat optimized, we have made a small
experiment. We modifies Flat optimized to statically divide
the real-space grids into four sub-groups. It is now possible for
all four CPU-cores to work on its own sub-group and the real-
space grids will be divided into the same level as in Hybrid
multiple. The only difference between the two approaches is



that Flat optimized uses BGP’s virtual mode and Hybrid
multiple uses threads. It should be noted, however, that in
a real GPAW computation this modification does not work,
since GPAW requires that every MPI process gets the same
subset of every real-space grid, see section IV. The experiment
is not included in any of the graphs since its performance is
identical with the Hybrid multiple. Because of the identical
performance, we find it reasonable to conclude that the level of
real-space partitioning is the sole reason for the performance
difference between Hybrid multiple and the non-modified
Flat optimized.

VIII. CONCLUSIONS

Overall this work has managed to improve the performance
of a domain specific finite-difference code when scaling to
very large systems. The primary improvements are obtained
through the introduction of asynchronous communication
which, even in a well balanced system such as the Blue
Gene, efficiently improves processor utilization. Furthermore,
two hybrid programming approaches have been explored: the
hybrid multiple and the master-only approach.

The hybrid programming approach, in which inter-node
communication is handled individually by every thread, has
shown a positive impact on the performance. By allowing
every thread to handle its own inter-node communication, the
overhead for thread synchronization remains constant and the
application becomes faster than the non-hybrid version.

On the other hand, the alternative hybrid programming
approach, in which one thread handles the inter-node com-
munication on behalf of all threads in the process, cannot
compete with the non-hybrid version. That is explained by the
overhead that is introduced by thread synchronization which
grows proportional to the number of grids in the computation.

When comparing our fastest implementation compared to
the original implementation, the hybrid programming approach
combined with the latency-hiding techniques is 94% faster at
16384 CPU-cores. Translated into utilization this means that
CPU utilization grows from 36% to 70%.

While latency-hiding is the primary factor for the improve-
ment we observe, the hybrid implementation is still 10% faster
than the non-hybrid approach.

A. Further work

Overall we are satisfied with the performance of the new
implementation of the finite-difference operation, still a lot of
work remains if the entire GPAW computation should utilize
latency-hiding and hybrid programming. It may not be worth
the hard work that is needed to rewrite most of GPAW, but it
is our expectation that an overall performance gain as the one
demonstrated in this work may be obtained for the application
overall.
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Fig. 5. Speedup of the finite-difference operation. The job consist of only 32 real-space grids all with a size of 1443. In the left graph batching is disabled
and in the right graph batching is enabled using a batch-size of 8.
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and the best batch-size has been found for every number of CPU-cores. The
right scale shows the needed communication per node.
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