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Abstract

The problem of predicting the three-dimensional structure of a protein given its
amino acid sequence is one of the most important open problems in bioinfor-
matics. One of the carbon atoms in amino acids is the Cα-atom and the overall
structure of a protein is often represented by a so-called Cα-trace.

Here we present three different approaches for reconstruction of Cα-traces
from predictable measures. In our first approach [63, 62], the Cα-trace is po-
sitioned on a lattice and a tabu-search algorithm is applied to find minimum
energy structures. The energy function is based on half-sphere-exposure (HSE)
and contact number (CN) measures only. We show that the HSE measure is
much more information-rich than CN, nevertheless, HSE does not appear to pro-
vide enough information to reconstruct the Cα-traces of real-sized proteins. Our
experiments also show that using tabu search (with our novel tabu definition)
is more robust than standard Monte Carlo search.

In the second approach for reconstruction of Cα-traces, an exact branch and
bound algorithm has been developed [67, 65]. The model is discrete and makes
use of secondary structure predictions, HSE, CN and radius of gyration. We
show how to compute good lower bounds for partial structures very fast. Using
these lower bounds, we are able to find global minimum structures in a huge
conformational space in reasonable time. We show that many of these global
minimum structures are of good quality compared to the native structure. Our
branch and bound algorithm is competitive in quality and speed with other
state-of-the-art decoy generation algorithms.

Our third Cα-trace reconstruction approach is based on bee-colony optimi-
zation [24]. We demonstrate why this algorithm has some important properties
that makes it suitable for protein structure prediction.

Our approach for model quality assessment (MQA) [64] makes use of distance
constraints extracted from alignments to templates. We show how to use CN
probabilities in an optimization algorithm for selecting good distance constraints
and we introduce the concept of non-contacts. When comparing our algorithm
with state-of-the-art MQA algorithms on the CASP7 benchmark, our algorithm
is among the top-ranked algorithms. We are currently participating in CASP8
MQA with this algorithm.
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Preface

I began my Ph.D.-studies in June, 2005 at the Department of Computer Sci-
ence, University of Copenhagen under supervision of Associate Professor Pawel
Winter. At that time our algorithms and optimization group had much ex-
perience with network problems, production planning, packing problems and
transportation problems, but little experience with computational biology. We
therefore decided, to begin attacking problems in computational biology using
our expertise for solving complex optimization problems. One of the main pur-
poses of my Ph.D.-study therefore was to identify suitable problems in the field
of protein structure prediction and get our group involved in the field. In 2007 I
was working together with professor Kevin Karplus for 6 months. He is the head
of the protein structure prediction group at the University of California, Santa
Cruz (UCSC). During that period, I learned much about many of the problems
that exist in the field of protein structure prediction and I was introduced to
the field of protein model quality assessment.

General Outline

This thesis summarizes the research I have been involved with during my Ph.D.-
study. It consists of 5 papers and 2 posters together with a text describing the
background of our work.

The most important parts of this Ph.D.-thesis are the papers included in
the appendices (pages 107 – 193). They contain detailed descriptions of the
algorithms we have developed and all our research results. For people in the field
of protein structure prediction, no prerequisites for reading the papers should be
needed. As is the case with most scientific papers, they are written by experts
in the field to other experts in the field. The introduction and background text
here (pages 9 to 105) is therefore aimed at scientists and students with little or
no background in bioinformatics. I therefore also allow myself to be less formal
in this text. It does not contain the details of our research and should therefore
be weighted less than the papers in the evaluation of this thesis.

Most chapters contain an introductionary description of the topic and a few
illustrative examples of important results in the literature. The chapters also
contain sections called Our Research, which describe how we apply the concepts
and results of the given chapter in our research.
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Chapter 1

Introduction

A protein is a complex molecule consisting of thousands of atoms that interact
with each other and with surrounding molecules. Proteins are very important
molecules in all living organisms and are often referred to as the molecules of life.
Knowing the native structure of proteins is fundamental for our understanding of
their functionality, since protein structure directly determines protein function.
Today, the three-dimensional structures of proteins are found using X-ray crys-
tallography or nuclear magnetic resonance (NMR) experiments. These methods
are quite expensive and they can be very time consuming. Furthermore, these
methods cannot be be applied to all proteins, especially many of the membrane
proteins [93, 59].

1.1 Protein Structure Prediction is an Open Problem

One of the most important open problems in bioinformatics is therefore to find
an algorithm that takes an amino acid sequence as input and outputs the native
structure of the protein (i.e., the three-dimensional coordinates of all atoms) as
illustrated in Figure 1.1. This problem is called the protein structure prediction
problem. A closely related problem is the protein folding problem, which is
concerned with the prediction of the atomic positions during the actual folding
of the protein. A solution to the protein folding problem is therefore also a so-
lution to the protein structure prediction problem and is therefore considered to
be a much harder problem. Even though scientists have been trying to solve the
protein structure prediction problem since the 1960’s, no algorithm is able to
predict the structure of proteins in general (in reasonable time). The database
of amino acid sequences with known structures (PDB) is growing rapidly. So,
algorithms that are based on so-called homology modeling are often able to pre-
dict the structure of proteins that have a homolog counterpart in the database.
In general, however, we cannot assume that a protein has a homolog counterpart
with known structure and so-called ab initio or de novo algorithms are there-
fore trying to use more fundamental properties that do not require the specific
knowledge of other proteins.

Progress in the field of protein structure prediction will also have a great
medical relevance. If we learn how the amino acid sequence is related to the

9



10 CHAPTER 1. INTRODUCTION

native protein structure, engineers could design new enzymes working as drugs
for various diseases [85]. Protein design is in principle the reverse of protein
structure prediction.

In this thesis, several classical algorithms for protein structure prediction
and model quality assesments are described together with our latest research.
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Figure 1.1: Protein structure prediction and protein design.
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Chapter 2

Proteins

2.1 Categories of Proteins

The diversity of protein functionality is very large and proteins are typically
grouped into three categories:

• Structural proteins. These are building blocks in skin, hair, nails, mus-
cles etc. An example is the protein collagen, Figure 2.1(A), which is
bundled in collagen fibers and is the main component in skin, bones and
teeth.

• Enzymatic proteins. These proteins are catalysts in chemical reactions.
An example is the enzyme glutamine synthetase, Figure 2.1 (B), which
plays an important role in the metabolism.

• Functional proteins. These proteins can be thought of as small ma-
chines with a very specific task. An example is the protein hemoglobin,
Figure 2.1 (C), which is responsible for transportation of oxygen in blood.

2.2 Protein Synthesis

A protein is a chain of smaller molecules, called amino acids. Proteins consists
of 20 standard amino acids, but there are more of them in nature. Proteins are
distinguished by their specific sequence of amino acids. The chain of amino acids
is assembled in the living cell - this process is called protein synthesis. As illus-
trated in Figure 2.2, protein synthesis begins in the nucleus with transcription.
Here, one part of the deoxyribonucleic acid (DNA) strand is copied and encoded
into a molecule called messenger ribonucleic acid (mRNA). The mRNA is then
transported out of the nucleus membrane and translated into a chain of amino
acids by the ribosomes in the cytoplasm. The translation of mRNA nucleic
acids into amino acids is specified by rules called the genetic code. There are
four different nucleotides, so mRNA (and DNA) can be represented by strings
of an alphabet of 4 letters. Usually A,G,C and T for DNA and A, G, C and
U for mRNA. The genetic code is a mapping from every triplet of nucleotides -

13



14 CHAPTER 2. PROTEINS

(A) (B) (C)

Figure 2.1: (A) Collagen fibers (structural protein). (B) Glutamine synthetase
(enzyme). (C) Hemoglobin (functional protein).

giving 64 combinations - into one of the 20 amino acids as illustrated in Figure
2.3. The construction of the actual amino acid chain, also called the polypeptide
chain, occurs when neighbouring amino acids react and create peptide bonds
(see Figure 2.4).

2.3 Protein Structure

The atoms in the peptide bonds are fixed in a plane called the amid plane. So,
the main flexibility of the polypeptide chain, comes from the backbone bonds
connected to each Cα atom (see Figure 2.5). A proteins degree of freedom is
not only given by the φ and ψ angles - most of the side chains also have bonds
with several possible dihedral angles. However, modifications in the side chains
are local compared to the φ and ψ angles which describe the overall path of the
backbone chain.

It is generally believed that already during translation the polypeptide chain
begins to fold. When the polypeptide chain folds, the amino acids move accord-
ing to the degree of freedom, such that the Gibbs free energy of the system is
minimized. This is described in more detail in section 2.4. In most cases, the
chain folds to the native structure in the order of milliseconds [12].

2.3.1 Levels of Protein Structure

It is the atomic configuration of the native structure that determines the prop-
erties and functionality of a protein. Protein structure is typically described in
four levels:

• Primary structure. The polypeptide chain is made from amino acids
in the ribosomes and the primary structure of a protein describes this
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Figure 2.2: Protein synthesis begins with transcription, where a part of DNA is
copied to a complementary mRNA molecule. The mRNA molecule is then used
in the translation phase where the polypeptide chain is constructed.
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sequence of amino acids. The primary structure starts at the N-terminal.

• Secondary structure. Some local structure patterns are very often ob-
served in proteins because they lead to stable, low energy, structures. The
most frequent of those are the alpha helices and the beta sheets, but loops
and other helices are usually also considered to be secondary structure.
The local structure of a backbone that is not a secondary structure element
is called a random coil. In Figure 2.6 three different visual representations
of protein G is shown. Protein G contains one alpha helix and one beta
sheet with 4 beta strands. It is difficult to see these secondary struc-
tures when all protein bonds are printed (A), however in Figure 2.6(B)
and Figure 2.6(C) only the backbone atoms are printed and the secondary
structure patterns appear more clearly. The arrangement of a specific sec-
ondary structure combination is called a motif (i.e. sheet, turn, sheet)
and a more general description of a secondary structure arrangement is
called a fold. An example of a typical fold is the beta-barrel as illustrated
in Figure 2.7.

• Tertiary structure. This is the full description of a folded polypeptide
chain. In principle the tertiary structure is the 3D-coordinates of the
atoms in the native structure of the protein. However, proteins are often
not completely stable, so these 3D-coordinates often correspond to the
most observed state or the crystallized state of the protein.

• Quarternary structure. Some proteins consist of several polypeptide
chains which are assembled in a more complex molecule (often called a
protein complex). The description of how these folded polypeptide chains
are assembled is called the quarternary structure of the protein.

2.4 Thermodynamic Hypothesis

In the late 50’ and early 60’ Anfinsen et al. [5] studied what happens to the
protein ribonuclease when it is first denatured (unfolded) and thereafter renat-
urated (folded). They observed that different conformations of the unfolded
polypeptide chain of ribonuclease always fold to the same native state and they
postulated the thermodynamic hypothesis. It states that the native state of a
protein, in its normal environment, is the structure with lowest Gibbs free en-
ergy. This property is fundamental for the understanding of protein folding and
is why it is believed that the native state of a protein can be predicted just
from the knowledge of its amino acid sequence. Note that the thermodynamic
hypothesis has been verified on many different proteins later, however it is ob-
served that some proteins receive help to fold from specialized proteins called
chaperones [21]. It is still discussed whether or not the existence of chaperones
conflicts with Anfinsens thermodynamic hypothesis.
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(A) (B) (C)

Figure 2.6: 3 different visualizations of protein G. (A) Sticks, (B) Backbone
trace, (C) Cartoon. The sticks visualization shows a stick between pairs of
bonded atoms. The backbone visualization shows lines between atoms on the
backbone. The cartoon visualization clearly shows helices strands and coils in
a stylistic figure.

2.5 Protein Folding

If we assume that Anfinsens thermodynamic hypothesis is valid, then proteins
contain everything that is needed to fold to the structure with minimum free
energy - the native structure. When the chain folds, it must undergo changes
mainly in the neighbouring bonds of the Cα-atoms but it is not known in details
how these changes occur. The modifications of the chain over time correspond
to some path in the energy landscape (Figure 2.8). However, it is not known
how many folding pathways exist for a given protein and how these pathways
are found by the protein.

2.5.1 Levinthal’s Paradox

In 1969 Levinthal [51] argued that proteins could not use a completely random
search or exhaustive search since the number of possible conformations of an
amino acid chain is astronomical high. This argument is called the Levinthal
paradox even though it was never believed that proteins actually do fold using
completely random search or exhaustive search. Instead, it is very likely that
the energy landscape is funnel-like such that the forces acting on an arbitrary
unfolded chain, eventually move the atoms in their native positions without
having to cross very large energy barriers [19].

2.5.2 Properties of the Energy Landscape

If the thermodynamic hypothesis is perfectly true, then the energy landscape
must have the following properties:
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(B)

(A)

Figure 2.7: The Figure shows one chain of the sucrose-specific porin
(PDB: 1A0S). (A) shows the typical beta-barrel fold where beta-strands are
arranged antiparrallel. (B) the protein has a hollow center like a barrel.
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Unfolded structureLocal minima

A folding pathway

Native structure and global minimum

Figure 2.8: Illustration of an energy landscape and a folding pathway. For
proteins, the energy landscape corresponds to a multi-dimensional hypersurface
that depends on the positions of the atoms. Each point in the energy landscape
therefore corresponds to a conformation with an associated energy.

1. Uniqueness. There should be only one structure with minimum free en-
ergy. Otherwise a polypeptide chain could have several native structures.

2. Stability. Small changes in the structure should not give rise to large
energy changes. It is known that proteins often fluctuate around the
native state. This fluctuation would require much energy if there were
large energy barriers around the native structure.

3. Accessibility. The path from an unfolded state to the native state should
not contain very large barriers. It is assumed that virtually all unfolded
states of the polypeptide chain are able to reach the native state. Cross-
ing very large barriers require much energy and it would be difficult, or
impossible, for the polypeptide chain to reach the native state.

In Figure 2.9 an illustration of a protein folding pathway is shown. The
figure shows 6 snapshots from an unfolded state to the native structure of the
protein.

2.6 Chapter Summary

Proteins are complex molecules that exist in all living organisms. They are
constructed in the cell in a process called protein synthesis. Proteins are chains
of smaller molecules called amino acids. There are 20 different amino acids
in nature and it is the sequence of amino acids of the protein that eventually
determines the shape and functionality of the protein. Typically, in the order
of milliseconds, the chain of amino acids folds to the native structure of the
protein. It is believed that the native structure has minimum free energy. It
is not known in details how proteins move from an unfolded structure to the
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 2.9: What folding of Villin Headpiece might look like in 6 snapshots.
From an unfolded state (a) to the folded native structure of Villin Headpiece (f).
Note that these structures are found by simulating an unfolding process from (f)
to (a) and are therefore not snapshots of a real protein folding. The structures
are therefore just a qualified guess of how the steps of a protein folding could
look like. Simulation data is provided by Kresten Lindorff-Larsen.
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native structure, but it is believed that the forces of nature create a funnel-like
energy landscape.
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Chapter 3

Protein Structure Prediction -
An Introduction

In the previous chapter, we described the experiments by Anfinsen and argued
that all information needed for folding a protein is contained in the amino acid
sequence. In the right environment, the chain of amino acids can therefore be
considered as a self-assembling machine. When all information needed is stored
in the amino acid sequence, a compelling idea is of course to write an algorithm
that takes the amino acid sequence as input and outputs the tertiary structure of
the protein. In this chapter, we briefly introduce the various concepts of protein
structure prediction and describe the two major problems that we are faced
with. This chapter also describes various methods for evaluation of prediction
quality. The next chapters 4 and 5 describe in more detail secondary structure
prediction and tertiary structure prediction respectively.

3.1 Protein Folding Problem

There are basically two very different approaches for computing the native struc-
ture of a protein. One approach is to mimic nature such that the actual folding
pathway is computed. The idea is to start with an unfolded chain and apply a
physics based energy function (Figure 3.1) such that the atoms move according
to Newton’s laws of motion. If this can be done with enough accuracy and
speed, the simulation would eventually reach a structure similar to the native
structure of the protein. This problem is called the protein folding problem
and is often studied using molecular dynamics. A solution to the protein fold-
ing problem would therefore give both the atomic pathways of folding and the
native structure of the protein. The main difficulty with the naïve molecular
dynamics approach is that the forces acting on the atoms are not constant, they
depend on the positions of all atoms. All simulations using this approach are
therefore approximations of the real pathway. Experiments show that it requires
extremely small time steps to give a realistic simulation and small timesteps re-
quire many computations of the forces acting on the atoms. The longest protein
that has been correctly folded using molecular dynamics is the Villin Headpiece.
It has 36 residues, and using the folding@home massively distributed program,
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Figure 3.1: The forces acting on the atoms are computed and the positions of
the atoms are moved accordingly.

the Pande group was able to simulate 500 µs of folding using 200.000 CPU’s[32].
With exceptions of the smallest peptides, this approach is therefore currently
not feasible.

3.2 Protein Structure Prediction

Fortunately, for most applications the knowledge of the native structure is more
important than the folding pathway. Another main approach is therefore to
disregard the actual folding pathway and predict the native structure from amino
acid sequence using another method than nature does. This problem is called the
protein structure prediction problem. Both of these problems are still unsolved.
The main reasons for this are the following two obstacles.

3.3 Major Obstacle 1: Energy Function

We currently believe that in nature, the motion of the atoms are described by
quantum mechanical (QM) rules. The most accurate and obvious choice of en-
ergy function would therefore be a QM-based energy function. However, even
for small molecules (like a single amino acid) the QM-based energy is very dif-
ficult and time demanding to compute. Since proteins are very large molecules,
the use of purely QM-based energy functions are currently not feasible. Another
approach is therefore to use energy functions that are easier to compute and to
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some extend approximate the real QM energy of the protein. Many of the pop-
ular approximate energy functions used today are weighted functions of several
energy terms, i.e. bond energies, electrostatic forces, van der Waals forces etc.
Each of these functions depends on pairs of bonded or non-bonded atoms. These
functions are of course fast to compute, but it is a crude assumption that the
energy of a protein can be described as a sum of functions that only depend on
pairs of atom positions.

The side chains of amino acids are either hydrophobic or hydrophilic because
of their polarity. Consequently, since many proteins are water soluble the main
forces in protein folding are concerned with the hydrophobic packing of the
protein core. Water soluble proteins therefore tend to have the hydrophobic
(nonpolar) amino acids buried in the core of the protein where they are isolated
from water. Even though the hydrophobic/hydrophilic forces are consequences
of the natural QM energy function, they are often handled by rewarding hy-
drophobic core packing explicitly [48].

3.4 Major Obstacle 2: The Conformational Space

The conformational space of a protein is huge. In Section 2.3 we showed that
each amino acid in the chain gives rise to two degrees of freedom (not counting
the degrees of freedom of the side-chain). So, even crude discretizations of
the degrees of freedom result in an astronomical large conformational space.
Finding the structure with minimum free energy can therefore not be done
using complete enumeration. However, in [67] (described in more details in
Section 7.5.2), we show that it is possible to exploit the structure of our energy
function to efficiently bound large regions of the conformational space. We
therefore consider these two obstacles to be intertwined.

3.5 Other Structure Prediction Problems

It is easier to predict the secondary structure of a protein compared to the
tertiary structure. The reason for this is that secondary structure is mainly
considered to be a local property of the chain. As described in the next chapter,
neural networks using a local window of amino acids are successful in predicting
secondary structures. Another category of structure prediction is the side-chain
positioning problem [22] (Figure 3.2). This problem is also easier than the
tertiary structure prediction. The main reason is that only a few configurations
of each side-chain are energy favorable. These configurations are called rotamers
and algorithms like SCWRL[14] are able to assign rotamers to the side-chains
of a backbone with high accuracy in reasonable time.

3.6 Methods for Evaluation of Predictions

To date, no algorithm is able to exactly compute the secondary, tertiary or
quarternary structure from the primary structure. Nevertheless, algorithms
can predict these structures with various degrees of accuracy. In the literature,
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Figure 3.2: In the side-chain positioning problem, the whole backbone is fixed
and the problem is to assign the correct orientation (rotamer) of the side-chains.
Here two of the side-chains with correct rotamers are shown.

different measures for evaluation of prediction quality have been proposed. Here
we describe two measures for secondary structure prediction evaluation (Q3, CC)
and three measures for tertiary structure prediction (RMSD, GDT and AC). In
all cases, these measures quantify the similarity between two structures in a
single number.

3.6.1 Q3

A simple and widely used measure for secondary structure prediction quality
is the Q3 score [9]. The Q3 score of a secondary structure classification is
simply the percentage of correctly predicted assignments of secondary structure.
Figure 3.3 shows an example of a secondary structure prediction being compared
with the exact secondary structure derived from the native structure. The
correct assignments are highlighted. While the Q3 score is easy to compute and
interpret, it is not always the best indicator of the prediction quality. Most
proteins contain more coil structure than helical and sheet structure and an
overprediction of coil is therefore not penalized properly. A prediction algorithm
that only predicts coil would, on average, achieve a higher Q3 score than a
prediction algorithm that only predicts helices which is not reasonable.

3.6.2 CC

A perhaps better method for evaluation of secondary structure prediction is the
correlation coefficient (CC) [56]. The CC is a number between -1 and 1 and is
defined as follows.
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CCCHHHHHHHHHHHHHCCCCCCSSSHHHHHHHHHHCCHHHHHCCCCHHHHHHHHCCCCCCCCCCCCCCCCHHHHHH

CCCHHHHHHHHHHHHHCCCCCCCCCCHHHHHHHHHHHCCCCCCCHHHHHHHHHHCCCCCCCCCHHHHHHHHHHHHH

Real
Prediction

Figure 3.3: An example of a secondary structure prediction together with the
exact secondary structure derived from the native state of the protein. H corre-
sponds to helix, S corresponds to sheet and C corresponds to coil. The Q3 score
in this example is 56/76 ' 74%. The shown example is the secondary structure
prediction of Calbindin (4ICB) using PSIPRED [57]. This prediction is used in
our algorithms [67, 66, 24] described in Chapter 7.

CC =
(TP × TN)− (FP × FN)√

(TP + FN)(TP + FN)(TN + FP )(TN + FN)

where TP is the number of true positives, TN is the number true negatives,
FP is the number of false positives and FN is the number of false negatives.
If we want to measure the CC of helical prediction, TP would correspond to
the number of correctly predicted helices, TN the number of correctly predicted
non-helices, FP the number of wrongly predicted helices and FN the number of
wrongly predicted non-helices. A CC of -1 means that all predictions are wrong.
A CC of zero means that the prediction is ’random’ and a CC of 1 is a perfect
prediction.

3.6.3 RMSD

It is often important to measure the similarity between two protein backbones.
In some search algorithms we only want to consider protein backbones that
are different to some extent [63] or perhaps we want to compare a predicted
structure with the native structure. The Root Mean Square Deviation (RMSD)
measure is often used for backbone prediction quality. In literature, two versions
of RMSD are generally used:

• Coordinate RMSD is

CRMSD =

√∑n
i=1 |āi − b̄i|2

n

where a and b are two vectors of coordinates (usually Cα-coordinates) that
should be compared. CRMSD can be computed for all positions of a and
b in space, however CRMSD is usually computed for the optimal super-
position between a and b. The task of finding an optimal superposition
of two point sets can be tackled by various techniques. One technique
used in many implementations is the quaternion method described by S.
Kearsley [39]. It runs in O(n) time where n is the length of the vectors
being compared.
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• Distance RMSD is

DRMSD =

√∑n−1
i=1

∑n
j=i+1(|āi − āj | − |bi − bj |)2

(n(n− 1))/2

This definition of DRMSD does not depend on the relative positions of a
and b, and it is therefore not necessary to compute the optimal superpo-
sition.

3.6.4 GDT

It has long been known by CASP organizers and CASP assessors that RMSD is
not always well-suited for evaluation of protein structure predictions, especially
long and difficult targets. The reason is that RMSD is a global measure that
does not reward partially correct models. To illustrate the problem with RMSD,
consider a structure where 70% of the first residues can be aligned with the
target and the last 30% is positioned completely different from the target (Figure
3.4). Often such a prediction is considered to be a good prediction (if no close
homologoues are known), however, RMSD does not reflect this very well. The
Global Distance Test (GDT) [97] measure was proposed in 1999, and it avoids
this problem. Basically, GDT computes the percentage of residues having Cα-
atoms that are within a certain distance cutoff from the target in an optimal
superposition. With an appropriate distance cutoff, GDT would therefore be
70 in the example illustrated in Figure 3.4. By varying the cutoff-value, a very
descriptive plot of structural similarity can be generated as in the example shown
in Figure 3.5. It is often not trivial to decide what the distance cutoff should
be when GDT is used as a score function. The GDT score is therefore often
reported using an average of different cutoff distances; typically 1, 2, 4 and 8 Å.

3.6.5 AC

None of the measures described above consider the positions of side chains.
For most applications, it is more important to correctly predict the overall
backbone path i.e. Cα-trace than correctly predict the positions of side chains.
In our paper Reconstructing protein structure from solvent exposure using tabu
search [63] we introduced a very simple measure for evaluating the implicit
directions of side chains. Given only the Cα-trace, we wanted a simple and
fast measure to evaluate if side-chains eventually would be pointing out of the
protein (surrounded by water) or pointing towards the interior of the protein.
We came up with the following angle correlation (AC) that has the following
definition

AC =
∑n

i=1 θ(āi, b̄i)− θ(c̄i, d̄i)
n

where āi is the vector pointing from the i’th Cα-atom to the geometric center
and b̄i is the vector pointing in the direction of the i’th Cα-atoms side chain
(as defined in Figure 3.6). Vectors ci and di are the corresponding vectors
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Figure 3.4: Two Cα-traces have almost equal positions of Cα-atoms when the
first 70% of the residues are compared. This gives a GDT'70 even for small
cutoff distances. The RMSD of the best superposition of all Cα-atoms is 3.1. If
RMSD is measured for the 70 % of the first residues only, then RMSD would
be 0.3.



32 CHAPTER 3. PROTEIN STRUCTURE PREDICTION

 0

 20

 40

 60

 80

 100

 1  2  3  4  5  6  7  8  9  10

G
D

T
 P

er
ce

nt

Distance Cutoff (Å)

GDT Example

Figure 3.5: GDT is computed for various distance cutoffs. The plot shows that
for cutoff distances (>2 Å) the similarity between the structures is almost stable
on 70% in this example.

in the native structure. θ measures the angle between the two vectors. Zero
AC is perfect correlation, 90◦ is random correlation and 180◦ is perfect ’anti’-
correlation. There are many examples where a structure can have a good RMSD
and a bad AC (or the opposite). This can be problematic when side-chains are
positioned on structures that we only selected because of good RMSD or good
GDT. In these cases, side-chain positioning might be impossible or perhaps
give a wrong full tertiary structure. Figure 3.7 shows a typical RMSD vs. AC
plot from [63]. In Figure 3.8 superpositions of two structures with the native
structure is shown. Both structures have good RMSD but structure (a) has bad
AC and structure (b) has good AC.

3.7 Critical Assessment of Techniques for Protein Struc-
ture Prediction (CASP)

Critical Assessment of Techniques for Protein Structure Prediction (CASP) [60]
is an experiment that determines the current state of art for protein structure
prediction algorithms. Every two years the CASP organizers collect unpub-
lished protein structures from crystallographers. The main idea is therefore to
blind test current algorithms for protein structure prediction on these secret
protein structures. The predictors (participants) of CASP therefore only know
the amino acid sequences of these proteins and are asked to predict the native
structure using their algorithm. When the predictions have been submitted to
the CASP organizers, the secret protein structures are revealed and the different
algorithms are evaluated.

There are different evaluation categories at CASP. The one just described
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Figure 3.6: An illustration of the vectors involved in the computation of AC.
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Figure 3.7: An RMSD vs AC plot from [63]. In this experiment, 100 low energy
structures are found using two different energy functions (HSE-based and CN-
based). The HSE-low-energy structures tend to have a slightly better RMSD
and a significant better AC than the CN-optimized structures. The structures
marked with circles are shown in Figure 3.8.
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(a) (b)

Figure 3.8: The red structure is the Cα-trace of 1SRK and the green structures
are the Cα-traces of two of our predictions. The left green prediction is the
HSE-optimized structure and the right green prediction is the CN-optimized
structure. The optimized structures are marked with circles in Figure 3.8. Both
predictions have similar RMSD but different AC.

is the so-called tertiary structure prediction category, which is also considered
to be the most important since protein structure determines protein function.
Another category is the model quality assessment (MQA) category. Here a set
of alternative structures (models) for the same amino acid sequence is given.
The task of the MQA predictors is therefore to estimate the quality of these
models without knowing the native structure of the protein. A good MQA
algorithm would therefore be able to rank the alternative models correctly. This
is important because most algorithms for protein structure prediction do not
only predict one structure but a whole set of structures. MQA is described in
more details in Chapter 6.

3.8 Our Research

In our research projects, we do not consider the actual protein folding prob-
lem. To attack obstacle 1, our energy functions are all based on knowledge
based measures found by algorithms that are trained on a large set of proteins.
When databases of proteins with known structures grow we also expect our en-
ergy function to be more accurate. Our energy functions are described in more
detail in Chapter 7. To overcome obstacle 2, we apply a advanced search heuris-
tics (Section 7.5.1) and in Section 7.5.2 we describe our approach for implicit
sampling of the whole conformational space.

We use most of the methods for evaluations of predictions described here.
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In [63, 62] the predicted structures are very small (up to 35 residues) and
the global measure, RMSD, is appropriate for evaluation of prediction quality.
We also show that the so-called HSE optimized structures have a better angle
correlation using the AC measure. In [67, 66, 24, 65] we obtain the secondary
structure prediction from PSIPRED [57]. Even though we argued that the CC
in many cases is more appropriate for measuring secondary structure prediction
quality, we use the Q3 instead. The reason for this is, that we want to show
that the secondary structure predictions are comparable in quality with other
PSIPRED predictions which are usually evaluated using Q3. Another reason
is that people are also more confident with the Q3 score because it is easier to
interpret. In our MQA approach [64], we use the GDT measure to evaluate
our correlation between predicted quality and real quality (GDT). We currently
participate in CASP8 with our MQA approach which is described in more detail
in Section 6.3.

3.9 Chapter Summary

In the right environment, the amino acid chain is a self-assembling machine.
All information needed to compute the tertiary structure is stored in the amino
acid sequence. The problem of computing the folding pathway of the amino acid
chain from an unfolded structure to the native structure is called the protein
folding problem. An easier problem is to disregard the folding pathway and just
compute the native structure of the protein given the amino acid sequence. Even
though both problems are extremely important they are still unsolved. There
are two main reasons for this. One problem is that the natural energy function
is very difficult or even impossible to compute and all known approximations
of the natural energy function do not have the required properties. Another
problem is that the conformational space is very big and difficult to search. Even
though these problems have not been solved, there is a vast number algorithms
for computing folding pathways and predicting protein structure. However,
either they never give reasonable results or they can only predict the tertiary
structure of a small subset of proteins. For evaluation of algorithms for protein
structure prediction, many measures have been proposed. In this chapter, some
of the most popular measures are described together with their advantages and
disadvantages. Every second year the state-of-the-art algorithms are assessed at
CASP. Here, the algorithms are blind-tested on a number of protein structures
and their tertiary structure prediction are evaluated when the native structures
of the proteins are revealed.



36 CHAPTER 3. PROTEIN STRUCTURE PREDICTION



Chapter 4

Secondary Structure Prediction

Given an amino acid sequence, secondary structure prediction is the task of
mapping each amino acid into one of the secondary structure categories. These
categories are typically helix, strand and coil. The first secondary structure
prediction algorithms, developed in the 1960s and 1970s, were based on the
properties of the single amino acids [28, 52, 81], even though there are some
correlation between amino acid type and secondary structure, the accuracy of
these algorithms is poor. Later, a significant improvement in accuracy came
when the algorithms considered segments of contiguous amino acids for pre-
diction of secondary structure. Among the best performing algorithms in the
1980’s [78] and 1990’s [82] were algorithms based on neural networks. Today,
one of the best performing algorithms (PSIPRED) is based on feed-forward
neural networks combined with evolutionary information [57]. In the following
text it is briefly described how the feed-forward neural network can be used for
prediction of secondary structure.

4.1 Neural Networks

Artificial neural networks are usually very rough models of natural neural net-
works that exist in most animals. These biological neural networks (brains) are
very complex and are not considered in this text. However, the terminology
used to describe artificial neural networks use some of the words that describe
biological neural networks (like neurons and synapses). In the following text,
an artificial neural network is therefore just referred to as a neural network.

The main motivation for using a neural network for solving biological prob-
lems compared to other methods is their ability to handle inconsistent and noisy
data.

4.1.1 The Neuron and the Synapses

The simplest unit in a neural network is the neuron. The neurons can be
connected to each other, and these connections are called synapses. A synapse
has a weight called the synaptic strength. The synaptic strengths are usually
determined by training (Section 4.2). The neuron has a transfer function that
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Figure 4.1: This neural network can calculate the XOR function. The two left-
most neurons are input neurons and the right-most neuron is the output neuron.
In this example, the values of the input neurons are binary. The value of the
other neurons are calculated according to Equation 4.1. The transfer function of
the neurons are step functions returning either 0 or 1 depending on the threshold
of the neurons (shown on the non-input neurons). The synaptic strengths are
shown on the edges and the XOR function is shown in the table. The neurons
in this example do not have biases.

determines the value of the neuron based on the values of the other incoming
neurons together with the synaptic strengths. In standard implementations, the
value of neuron i is:

yi = f

∑
j

vjiyj + vi

 (4.1)

where f is the transfer function, vji is the synaptic strength from neuron j to
neuron i, vi is the neurons bias and yj is the value of neuron j. A small example
of a neural network is shown in Figure 4.1.

4.1.2 Transfer Functions

The value of the neuron depends on the transfer function as shown in Equa-
tion 4.1. In the example in Figure 4.1, the transfer function is a step function,
but more often continuous and differentiable transfer functions are used. One
of the most applied transfer functions is the sigmoidal function

y(x) =
1

1 + e−x
(4.2)

In the limits (±∞), the sigmodial function behaves like a step function and near
x = 0 the sigmoidal function is almost linear.
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Helix?

A P L C K A T V G I V A L E K Q G D R M D V T E Y A L T Q N I N

Figure 4.2: A window slides over the amino acid sequence and the neural network
predicts the secondary structure of the central amino acid.

4.1.3 Feed-Forward Architecture for Secondary Structure Pre-
diction

This neural network architecture has three layers. An input layer, a hidden
layer and an output layer. The input to the neural network is a segment of
amino acids called a window and the output is the classification of the central
amino acid in the window (Figure 4.2). The encoding of an amino acid is
orthogonal, meaning that there is a neuron for each of the 20 amino acids.
Windows at the beginning or the end of an amino acid sequence contain slots
with no amino acid, so an additional neuron is used to represent non-existent
amino acids. The neurons of the input layer are therefore clustered in groups of
21 neurons as illustrated in Figure 4.3. The size of the window and the number
of neurons in the hidden layer are variables and good values must be determined
experimentally. The output layer typically has two neurons, one corresponds
to the classification of a secondary structure class (i.e. helix) and the other
corresponds to other classes (i.e. strand and coil). Similar neural networks for
other secondary structure classes can be made. The prediction of an amino acid
window can be determined by the winner takes it all strategy, meaning that the
output neuron with highest value determines the classification.

4.2 Training the Network

When training the network, we want to adjust the parameters of the network
such that it has optimal performance. In most cases the architecture is fixed
and the weights of the synapses are adjusted. When a neural network is used for
classifying input data (i.e. a window of amino acids) into secondary structure,
it is natural to compare the output of the neural network with the correct classi-
fication. For this purpose, training data is used to compute an error depending
of the network output and the correct output. When training the network, the
synaptic weights are therefore adjusted such that this error becomes minimal.
The naïve approach to this task is to try all combinations of synaptic weights
and choose the set of weights that gives the minimum error. However, in theory
the synaptic weights are continuous and even crude discretizations give a huge
number of combinations. It is therefore necessary to use another strategy for
determining the weights of the synapses.
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Figure 4.3: Three-layered neural network.
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4.2.1 Backpropagation

Backpropagation is an algorithm for adjusting the synaptic weights such that the
error becomes small. Backpropagation does not guarantee to find the optimal
set of weights, but nevertheless, it is the most applied algorithm for training
feed-forward networks. Basically, the backpropagation algorithm computes the
gradient of the error function efficiently. The gradient is a vector, that points
in the direction where the function grows most. The opposite direction of the
gradient therefore indicates where the function declines the most. By calculating
the gradient of the error function and adjusting the synaptic weights accordingly
it is possible to minimize the error function. Refer to [80] for more details about
the backpropagation algorithm.

4.3 Our Research

In most of our research we make use of secondary structure predictions. These
predictions are often reliable and contain much information about the native
structure of the protein. We do currently not make use of our own neural
network for secondary structure prediction (a standard feed-forward network
with backpropagation training). Instead, we make use of online webservers
because they are more accurate.

In our papers [67, 66, 24], we use predictions of secondary structure to re-
duce the conformational space. The secondary structure elements are used as
rigid segments and it is therefore important that the secondary predictions are
as good as possible. We therefore use the PSIPRED webserver for this task,
which is based on the feed-forward network and is generally believed to give
the best performance. In [67, 66, 24] we also use contact number and half-
sphere-exposure measures from neural network predictions. In [64] the contact
number probability distributions used by our model quality assessment algo-
rithm are found using feed-forward neural networks. Section 7.5.2 describes
in more detail our approach of fixing secondary structure segments and using
contact number predictions. Chapter 6 describes in more detail how contact
number probabilities are applied for model quality assessment.

4.4 Chapter Summary

Secondary structure prediction is a problem that has received much attention in
the literature. Therefore, many different algorithms have been proposed for this
problem. In the 1980’s neural networks showed great promise for solving this
problem. Today, one of the best algorithms (PSIPRED) is based on feed-forward
neural networks together with evolutionary information. Secondary structure
prediction has many applications and many of the tertiary structure prediction
algorithms rely heavily on good secondary structure predictions.
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Chapter 5

Tertiary Structure Prediction

Tertiary structure prediction is the task of predicting the native structure of a
protein given the amino acid sequence. A vast number of algorithms that attack
this problem are described in the literature. In this chapter, some of the fun-
damental approaches are briefly described (molecular dynamics and homology
modeling).

Our approaches for protein structure prediction are based combinatorial op-
timization. We therefore devote Chapter 7 to prediction algorithms from the
literature based on combinatorial optimization and describe our research in this
context.

5.1 Molecular Dynamics

The typical way of doing molecular dynamics on proteins is to consider the
atoms as spheres with a given radius and mass. The energy function is often a
sum of different terms that represent both bonded and non-bonded interactions.
The motion of the atoms is then assumed to follow Newton’s laws of motion

Fi = miai = mi
∂2ri

∂t2
(5.1)

where Fi is the force vector acting on atom i, mi is the mass of atom i and
ai is the acceleration vector of atom i. The force acting on atom i can also be
derived from the potential energy U , such that

Fi = − ∂

∂riU
(5.2)

When combining these two equations, we get the differential equations that
describe the motion of atom i when we know the energy function U

mi
∂2ri

∂t2
= − ∂

∂riU
(5.3)

where ri are the coordinates of the i’th atom and t is the time. If Equation
5.3 could be solved analytically for all atoms, we would end up with a function,
ri(t) for each atom, that describes the exact coordinates of the atoms as a
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function of the time given the energy function U . In such case, protein structure
prediction would be easy, because the coordinates of the native structure would
be limt→∞ ri(t). However, proteins are complex systems with thousands of
atoms that interact. The energy function therefore depends on the position of
all atoms, and no analytical solution are known to exist. Therefore, Equation
5.3 must to be solved numerically. There are many different approaches to how
this can be done, however they are all approximations.

5.1.1 The Verlet Algorithm

One of the most straightforward numerical integration algorithms is the Verlet
algorithm which is described here. For other more precise algorithms, refer
to [76]. The Verlet algorithm, and many other numerical integration algorithms
use the Taylor expansions of the energy function:

ri(t+ δt) = ri(t) + vi(t)δt+
1
2
ai(t)δt2 (5.4)

ri(t− δt) = ri(t)− vi(t)δt+
1
2
ai(t)δt2 (5.5)

The sum of these equations is

ri(t+ δt) + ri(t− δt) = 2ri(t) + ai(t)δt2 (5.6)

The position ri of atom i a small timestep δt from the current time t is therefore

ri(t+ δt) = 2ri(t)− ri(t− δt) + ai(t)δt2 (5.7)

which is a function of the current positions and the previous positions of the
atoms.

A deterministic molecular dynamics simulation could therefore start with
some unfolded amino acid chain and iteratively update the positions of the
atoms using Equation 5.7. One of the problems with this approach (as described
in Section 3.1) is that a proper simulation needs extremely small values of δt,
typically in the order of femto seconds 10−15. Even though some proteins fold
very fast (in the order of micro seconds), molecular dynamics is still not a feasible
approach for protein structure prediction. However, molecular dynamics can be
a useful tool for learning more about the mechanics of protein folding.

5.2 Homology Modeling

Many proteins have a high degree of structural similarity among different species.
These proteins often have important functionalities in the living cell and are
therefore needed in many life forms. When protein sequences from different
species have a high degree of similarity, they are said to be conserved or homol-
ogous. In the paper by Chotia and Lesk [16] it is shown experimentally that
homologous proteins with a high sequence identity are generally more similar
in structure than proteins with less sequence identity. The main technique in
homology modeling is therefore to find sequences with high sequence identity
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to the target sequence in the database of proteins with known structure (i.e.
PDB). One or more of these structures are chosen as templates and are used to
predict the structure of the target.

Many protein sequences have a homologue counterpart in PDB, and for these
proteins, homology modeling can be a successful prediction algorithm. Typical
steps in homology modeling are, 1) template recognition, 2) target/template
alignment, 3) model building and, 4) model quality assessment [55]. In the
following sections, procedures 1 to 3 are described briefly. Since we have made
some contributions in the field of model quality assessment [64], we devote the
next chapter to this topic.

5.2.1 Template Recognition

When searching a database for templates, different algorithms are typically used
such that:

• Close homologues are identified with fast and simple algorithms such as
FASTA [70] and BLAST [1].

• Remote homologues are identified with more sophisticated algorithms such
as SAM-T06 [37] and PSI-BLAST [2].

• No homologues could be found. This might either be because the algo-
rithms cannot detect the homologues or because no homologues exist in
the database.

BLAST and SAM-T06 are among the most popular algorithms for finding
homologues and are briefly described here. We also use the SAM-T06 server for
finding templates in our model quality assessment algorithm.

BLAST

Typically, one needs to query a sequence against a large database with millions
of amino acids and detect the sequences with highest alignment score. One way
to do this is to run the well-known Smith-Waterman algorithm [88] on the query
sequence and all database sequences and return the highest scoring sequence(s).
However, because of the size of the databases and the time complexity of the
Smith-Waterman algorithm, this approach is often infeasible.

Basic Local Alignment Search Tool (BLAST) was developed by Altschul et
al. and published in 1990. Like the Smith-Waterman algorithm, it computes
a sequence alignment between two strings (i.e. amino acid sequences or nu-
cleotide sequences) and assigns an alignment score. While the Smith-Waterman
algorithm is exact (it always computes the best local alignment) BLAST is a
heuristic algorithm and typically runs several orders of magnitude faster than
the Smith-Waterman algorithm.

The main increase in speed comes from the fast pre-filtering of sequences.
BLAST first checks if the query sequence contains a subsequence (typically
three amino acids) that scores at least T when aligned with a subsequence in
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End
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Figure 5.1: A typical HMM topology for biological sequence analysis.

the database sequence. If that is not the case, the database sequence is expected
to be insignificant and is discarded. The threshold parameter T therefore deter-
mines the sensitivity of BLAST. In the next step, the sequence of three amino
acids is extended in both directions to improve the alignment score even further.
Again, if the extended alignment score is below some threshold, the database
sequence is discarded. Finally, if the database sequence is not pre-filtered, a
local alignment is being computed. Using this approach, many of the database
sequences that eventually would give a low alignment score are pre-filtered which
is much faster than computing the whole local alignment.

HMM for Database Search (SAM-T06)

Sequence Alignment and Modeling system (SAM) [37] is a collection of programs
mainly for creating and using hidden Markov models (HMMs). The construction
of HMMs and homology detection is automated by the online server called SAM-
T06 which is currently the best performing SAM server. The SAM-T06 server
can be used for various kinds of local structure prediction and tertiary structure
prediction. Our algorithm for extracting distance constraints from alignments
(described in Section 6.3) uses templates and alignments found by SAM-T06,
SAM-T2K and SAM-T04. The SAM-servers have a lot of features, however, the
central part of SAM is the construction and use of HMMs. Here, we therefore
only describe how HMMs can be used for template detection.

An HMM is a statistical objects that have been used in many applications,
especially speech recognition. In 1994 Krogh et al. [43] described how HMMs can
be applied for various tasks in protein modeling. An HMM can be illustrated as
a graph, or more specifically, a finite state machine as shown in Figure 5.1. The
topology of an HMM can be different from the illustration, but the figure shows
the typical HMM topology for biological sequence analysis that was introduced
in [43].

A path in the HMM begins at the begin node and ends at the end node.
Such a path can only follow the directed edges, and edges never point backwards.
This architecture is therefore also called a left to right architecture. A path in
the HMM corresponds to an aligned sequence, possibly with gaps and insertions.
The generated aligned sequence depends on the nodes traversed by the path.
There are three types of nodes in the HMM:

1. Square nodes correspond to matches.
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2. Diamond nodes correspond to insertions.

3. Circular nodes correspond to deletions.

Each edge has an associated transition probability, and the square nodes
have letter emission probabilities (these probabilities are not shown in the fig-
ures). Figures 5.2 and 5.3 show examples of sequences aligned to an HMM using
paths from the start node to the end node. Note that given a sequence, there is
an exponential number of paths in the HMM and the HMM therefore represents
and exponential number of alignments. Each of these paths has an associated
probability and it is usually the path/alignment with highest probability that is
interesting. One of the applications of HMMs is to generate multiple alignments.
If we assume that the aligned sequences shown in Figures 5.2 and 5.3 are high
probability paths then the resulting multiple alignment of the sequences is:

-A-VPtjC--
KApVA---LK

In the example above, extra deletions have been inserted to align the match
states (capital letters).

There are advantages and disadvantages of using HMMs for multiple align-
ments compared to other multiple alignment algorithms. One of the major
disadvantages is, that it usually is very time expensive to train the HMM on
the appropriate set of sequences. However, this only needs to be done once, and
the following alignments of sequences can be done in O(N2) time compared to
other multiple alignment algorithms that are often NP-hard [96].

There are many other applications of HMMs for biological sequence anal-
ysis. The application of HMMs that we use for template detection in [64] is
the following. HMMs are trained on sets of sequences that are known to be
structurally related (a family of proteins). This training adjusts the transition
and emission probabilities such that protein sequences of a given family have a
high probability in the corresponding HMM. Given a sequence with unknown
structure, the path in the HMM with maximum probability can be interpreted
as the alignment of the sequence with unknown structure to the family of pro-
teins that the HMM was trained on. The probability of the path indicates if
the sequence with unknown structure is a member of the protein family or not.

Training an HMM can to some extent be compared with training a neural
network described in Section 4.2. Instead of adjusting the synaptic weights for
neural networks, the transition- and emission probabilities are set systematically
in accordance with the training set. Several training algorithms have been
proposed in the literature and the most used is the expectation minimization
algorithm [10].

5.2.2 Target-template Alignment

When the templates have been identified, perhaps using one or more of the
algorithms just described, the target is aligned to template. In an alignment
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Figure 5.2: The amino acid sequence AVPTLC is aligned to the HMM. The
shown path in the HMM generates the alignment −AV PtlC − −. Capital
letters correspond to matches and small letters correspond to insertions.
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Figure 5.3: The amino acid sequence KAPVALK is aligned to the HMM. The
shown path in the HMM generates the alignment KApV A− LK.

some of the residues in the target correspond to residues in the template. In
most algorithms for template detection, an alignment is also computed. In
Figure 5.4 an alignment between a target and a template is shown. Except for
exact template matches, such alignments will have deletions and/or insertions
in the alignment. If the template and alignment are correct, the matching
residues provide a lot of information about the target structure. In Figure 5.5
the Cα-atoms of the matching residues are shown. The coordinates are from
the template and thus provide a large amount of information about the global
structure of the target.

5.2.3 Model Building

Using the information from the alignments to the templates, the next step is
to build full atom models. There as a vast number of approaches to this in the
literature. One is to consider short conserved fragments from the templates and
assemble them such that some energy function is minimized [87]. Another ap-
proach is to extract geometric constraints from the alignments to the templates
and find structures that satisfy the constraints [83]. In the model building step,
one also often needs to assign coordinates to residues that are not represented
in the alignments. This problem is called the loop closure problem [11].

The last step in homology modeling is to pick the best of the models gener-
ated in the model building step. This is called model quality assessment and is
described in more detail in the next chapter.
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m−−−−−−−−−−−−ITTGKVWKFGDDISTDEITPGRYNl−−TK

−MVKFACRAITRGRAEGEALVTKEYISFLGGIDKETG−IVKE

DC−E−−−−−−−IKGESV−−−−−−−−−−−−AGRILVFPGGKG−

DPk−elakiaf−−−−−−ievrpdfarnvrPGDVVVAGKNFGi

−ST−−VGSYVLLNLRKNGVAPKAIINKKTETIIAVGAAMAE−

gSSreSAALALKAL−−−GI−−−−−−−−−−−−−−−−AGVIAEs

−−−−−−−−−−−−−IPLVEVRDEKFFEAVKTGDRVVVNADEGY

fgrifyrnainigIPLLLGKTEG−−−−LKDGDLVTVNWETGE

V−−−−ELIELEHHHHHH−−−−−−−−−−−−−−−−−−−−−−−−−

VrkgdEILMFEPLE−−−dflleivreggileyirrrgdlcir

Figure 5.4: The blue sequence is the template and the red sequence is the
target. The figure shows an alignment between the two sequences. Insertions
correspond to small letters, matches correspond to capital letters and deletions
correspon to ’-’.

Figure 5.5: The trace of Cα-atoms of the matching residues in Figure 5.4.
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5.3 Our Research

Our algorithms for protein structure prediction are based on combinatorial op-
timization which are described in more details in Chapter 7. However, our
algorithm for model quality assessment is based on homology modeling as de-
scribed in this chapter. Our MQA algorithm does not build models, so the last
model building step is omitted. We find templates and alignments using SAM
(an HMM). These alignments to templates are used for constructing a set of dis-
tance constraints. The distance constraints (between Cβ-atoms) are then used
in a score function to assess the models in question. Our algorithm for model
quality assessment is described in more detail in the next chapter and in [64].

5.4 Chapter Summary

There is a vast number of different approaches for attacking the tertiary struc-
ture prediction problem. Some of the basic (non-combinatorial) techniques are
molecular dynamics and homology modeling which are described in this chapter.
Molecular dynamics is a somewhat naïve approach for computing the atomic
trajectories of protein folding. Nevertheless, using molecular dynamics the na-
tive structures of small peptides have been predicted. Homology modeling is
probably one of the most successful protein structure prediction approaches.
Many proteins have one or more so-called homologue counterparts with known
structure. A basic idea is therefore to detect these homologue proteins and
use them as templates for later model building. In our algorithms for protein
structure prediction, we use techniques from combinatorial optimization which
are covered in Chapter 7. However, our MQA algorithm is heavily based on
techniques from homology modeling.



Chapter 6

Model Quality Assessment

In the previous chapter, it was described how model quality assessment (MQA)
often is a natural step in many algorithms for protein structure prediction. MQA
algorithms are typically more general and can be used to assess arbitrary models
for some target. For example, consider a biologist who sequenced a gene and
wants to know the tertiary structure of the corresponding protein. The biologist
would of course first query PDB to see if the protein has been analyzed before.
If that is not the case, she might want to use a tertiary structure prediction
server. There are many online prediction servers available and she might end
up using the I-TASSER webserver, because she knows it performed best at the
latest CASP7 [98]. On the other hand, the I-TASSER prediction server, does
not always give the best prediction result among available servers. Another
approach is therefore to query many prediction servers known to perform well
and select the best model generated. This approach, of course, brings up another
problem. It is not trivial to determine which model in a set of alternative
models is best without knowing the native structure. This is the model quality
assessment problem. Often, MQA is not only about determining the best model,
MQA is often stated as the problem of assigning a score [0:1] to each alternative
model of a target, such that the score correlates with the real quality of the
model (Figure 6.1). The real quality of the model is usually GDT (as defined in
section 3.6), but alternative measures have been used. How the scores should
correlate with the real quality is not clear and is discussed in more details in
the following section.

6.1 Correlation

It is not easy to agree on what measure of quality should be used for evaluating
MQA. The reason for this is of course that MQA are used in different contexts.
Here we briefly describe three correlation measures; Pearson’s r, Spearman’s ρ
and Kendall’s τ . There are other measures of evaluating an MQA, such as the
ability to select the best model. Refer to [6] for a description of other MQA
evaluation measures.
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Figure 6.1: Illustration of an MQA with good linear correlation. The points
correspond to alternative models for a specific target. The predicted quality is
the assignment of scores from the MQA algorithm and the real quality is the
similarity with the model and the native structure (perhaps in terms of GDT).
Since the native structure is typically not known when doing MQA, a plot like
this can only be made when the native structure is known and the MQA is
evaluated.

6.1.1 Pearson’s r

When the MQA category was first introduced at CASP7, the MQA algorithms
were evaluated using Pearson’s r which can be defined as:

r =
∑

(xi − x̄)(yi − ȳ)√∑
(xi − x̄)2

∑
(yi − ȳ)2

,

where (xi, yi) corresponds to pairs of (predicted quality, real quality) for all
alternative models in the set. x̄ and ȳ are the average values over all models of
x and y correspondingly.

Pearson’s r measures the degree of linear correspondence between two vari-
ables with a number r in [−1 : 1]. Pearson’s r would therefore be high on the
linearily correlated points shown in Figure 6.1. In our MQA paper [64] we claim
that Pearson’s r is inappropriate for evaluation of MQA, because we generally
do not care about the linearity of the MQA prediction. An example of what we
think could be a perfect MQA is shown in Figure 6.2. Even though the MQA in
this ad-hoc example is able to pin-point the best model and perfectly rank all
models, it has a low Pearson’s r because the points are not linearily correlated.
To avoid this inappropriate evaluation, we therefore propose to use Spearman’s
ρ or even better, Kendall’s τ as correlation measure for MQA.
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Figure 6.2: Illustration of an artificial MQA with a low Pearson’s r.

6.1.2 Spearman’s ρ

Spearman’s ρ is a special case of Pearson’s r. When computing Spearman’s ρ,
the raw data is first converted to ranks and then Pearson’s r is computed for
the ranks. Spearman’s ρ is therefore maximum for the perfect correlated points
in Figure 6.2.

6.1.3 Kendall’s τ

Kendall’s τ also measures the correspondence between two rankings and is de-
fined as

τ =
4P

n(n− 1)
− 1,

where n is the number of points and P the number of concordant pairs. A pair
of points is said to be concordant if

sign(XA −XB) = sign(YA − YB)

If two random points (A and B) are chosen and XA > XB then Kendall’s τ
is proportional to the probability that YA > YB. We prefer Kendall’s τ over
Spearman’s ρ, because it is more interpretable, and in our paper [64] we show
examples where Kendall’s τ agrees more with our intuition of a good MQA than
Pearson’s r and Spearman’s ρ.

6.2 Algorithms for MQA

The ability to assess the quality of a protein model is a fundamental problem
in the field of protein structure prediction and many different algorithms have
been described in the literature. Recently the CASP organizers recognized the
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Figure 6.3: An illustration of 6 models where 5 of the models are clustered
(according to some arbitrary metric). The red model is the highest scoring
model, because it has the lowest mean distance to the other models.

importance of MQA and therefore introduced the MQA category in CASP7
where 26 groups participated. Two algorithms (Pcons and Lee) showed to be
superior to the rest of the groups and we briefly describe these two algorithms
here. We also describe two new MQA algorithm (that did not participate in
CASP7). One is based on support vector regression (SVR) and the other uses a
new weight optimization algorithm. Finally we briefly introduce our algorithm
for MQA, which is described in more details in [64].

6.2.1 Pcons

Pcons [94, 95] is a consensus algorithm that measures the similarity of each
model to the other models. Pcons uses LGscore [18] as a similarity measure,
but any similarity measure can in principle be applied. The score of a model
therefore corresponds to the average similarity between the model and the other
models in the set. A model that is very similar to many other models in the set
would therefore score high. Any consensus algorithm, like Pcons, depends on
the quality of the input set of the models. Even if the input set does contain a
very good model, the consensus approach might fail if the input set also have a
large number of bad and structural similar models. When assessing models from
good automated prediction servers (like in CASP7 MQA), the input set often
contains many good models which makes consensus approaches appropriate.

6.2.2 Lee’s Algorithm

The second best CASP7 MQA algorithm was the Lee algorithm. The basic idea
in Lee’s algorithm is very simple. First a tertiary structure prediction of the tar-
get is made (The Lee group of course use their own prediction algorithm). Then
the similarity between each model in the set and Lee’s prediction is measured
and the models are scored accordingly (Figure 6.4). If the tertiary structure
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Figure 6.4: An illustration of 6 models to be assessed and one predicted model
(blue) by Lee’s tertiary structure prediction algorithm. The red model is closest
to the predicted model (in terms of GDT) and is therefore given the highest
score.

prediction is good (which is often the case with Lee’s predictions) this approach
is of course successful. In the opposite case, Lee’s algorithm is known to produce
very bad MQAs when their tertiary structure prediction is wrong [64].

6.2.3 Support Vector Regression

An example of a new MQA algorithm that did not participate in CASP7 is the
support vector regression algorithm by Qiu et al. [79]. The idea is to consider
many features that somehow describe the quality of the models. The SVR algo-
rithm by Qiu et al., considers a total of 25 features divided in two categories; 4
consensus based features and 21 structural features. The consensus based fea-
tures include a score function similar to the Pcons approach and the structural
features are computed from the individual models (i.e. score functions based on
pairwise atomic interactions, hydrophobic packing, angle preferences etc.). The
purpose of the algorithm, is to end up with a linear function of these features
such that it approximates the GDT of the models:

GDTa(x) = w1f1(x) + w2f2(x) + · · ·+ anfn(x) + b

In the equation above, GDTa is the approximated GDT computed by the
function. The feature functions fi, 1 ≤ i ≤ n, depend on the model x and w̄
and b are parameters that must be set appropriately. A good linear function
therefore minimizes the error between the real GDT (GDTr) and GDTa. To
accomplish this, the weights are adjusted using the machine learning technique,
SVR. When treating the problem as an SVR problem, a training set is used for
solving the convex optimization problem:

Minimize 1
2 ||w||

2 (6.1)
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Subject to GDTr(i)−GDTa(i)− b ≤ ε (6.2)
GDTa(i)−GDTr(i) + b ≤ ε (6.3)

∀i = 1, 2, · · · , n (6.4)

Where w are the weights of the features. GDTa(i) is the approximate GDT
of the i’th training example and GDTr(i) is the real GDT of the i’th training
example. When solving the problem stated above, we find a solution where the
errors are within the predefined range ε and the sum of the squared weights
is minimal. In practice, however, it is inappropriate to predefine ε. If ε is too
small, the problem might not contain any feasible solutions and if ε is too large,
the function might generate many errors. A more useful alternative formulation
used by Qiu et al. is therefore:

Minimize 1
2 ||w||

2 +
∑n

i=1Ci(ζi + ζ̂i) (6.5)
Subject to GDTr(i)−GDTa(i)− b ≤ ε+ ζi (6.6)

GDTa(i)−GDTr(i) + b ≤ ε+ ζ̂i (6.7)
ζi, ζ̂i ≥ 0 ∀i = 1, 2, · · · , n (6.8)

Where ζ and ζ̂ are variables that make sure that a feasible solution always
exists. The constants Ci, 1 ≤ i ≤ n, are predefined and correspond to a trade-off
between the weight minimization and the error minimization. In the implemen-
tation by Qiu et al., they use a higher weight on high ranked models because
they want the algorithm to perform better on good models. The SVR algorithm
is illustrated in Figure 6.5.

Not surprisingly, after solving the optimization problem, it turns out to be
a consensus feature that is given the highest weight. Qui et al. claim that their
MQA algorithm outperforms all MQA algorithms at CASP7.

6.2.4 Weight Optimization

Other algorithms for learning the weights of a linear function of features have
been proposed in literature. Here, the weight optimization approach from Archie
et al. [6] is briefly described. This algorithm is interesting in this study, since
some of the features are alignment constraints from our MQA algorithm [64]
described in the next section. The optimization algorithm consists of a number
of so-called rebalancing steps. The basic idea is to divide the features in two sets
(f1, · · · , fm) and (fm+1, · · · , fz) and let the cost function depend on a parameter
(0 ≤ p ≤ 1) such that:

Cost(x) = p(w1f1(x) + · · ·+ amfm(x)) + (1− p)(wm+1fm+1(x) + · · ·+ azfz(x))

For fixed weights, the idea is to find a value of p that gives the best cost for
some training set. The best costs in this context are values that correlate well
with GDT. The parameter p that optimizes the correlation between Cost(x) and
GDT in the above equation is determined using Brent’s method [76]. When
p is determined, the weights w1, · · · , wm are multiplied by p and the weights



6.3. OUR RESEARCH 57

b

G
D

T

ζ

ε

Feature Score

Figure 6.5: For illustration purposes, only one feature is considered here. The
slope of the solid line therefore corresponds to the weight of the feature, and
the y-axis intersection corresponds to the b parameter. In this example all but
one model are within the ε range of the line shown and a feasible solution to the
problem in Equation 6.1 therefore does not exist (for this slope and b-value).
When solving the alternative formulation in Equation 6.5, the ζ of the outlying
model is positive and the solution becomes feasible.

wm+1, · · · , wz are multiplied by (p − 1). This optimization algorithm begins
with an initialization of the parameters (see [6] for details) and continues with
a number of the rebalancing steps until no improvements in correlation can be
found.

When no consensus features are used, this MQA algorithm performs slightly
better than the other MQA algorithms described in this chapter. In this case,
the most significant features are the alignment constraints (Section 6.3). When
model consensus features are added, the MQA algorithm performs significantly
better than all other MQA algorithms, and the most significant features, of
course, become the consensus based features.

6.3 Our Research

We have developed an algorithm for MQA and tested it on the CASP7 bench-
mark. The algorithm is described in details in [64] and an overview is briefly
described here.

6.3.1 Overview

There are 5 main steps in the MQA algorithm which are also illustrated in
Figure 6.6:

a. The input to the MQA algorithm is the amino acid sequence of the target
and a set of alternative models for the target.

b. We use SAM_T06 for detecting homologues and computing the align-
ments. SAM_T06 also returns an E-value for each template found. Tem-
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plates with low E-value are on average more correct than templates with
high E-value.

c. SAM_T06 also computes the alignments to the templates. For each
residue pair with chain separation greater than or equal to 9, we store
the distance between Cβ-atoms from the alignments if the distance is less
than 8 Å. We therefore end up with a length × length - table with sets of
observed distances between Cβ-atoms as illustrated in Figure 6.7. Then
a weighted average for all entries in the residue × residue table is com-
puted. The weights associated with each weight depend on the E-value
as described in [64]. The resulting table (Figure 6.8) contains a so-called
desired distance and a confidence-value (weight) of the desired distance.
This weight is in the interval [0:1]. If a pair of Cβ-atoms has been in
contact in many high quality alignments, the weight of the constraint is
high (near 1) and if the pair of Cβ-atoms has been in contact in few low
quality alignments the weight is low (near 0).

d. Each entry in the table generates a so-called distance constraint. If the
entry has a desired distance, the distance constraint is a function with
minimum value in the desired distance as shown in Figure 6.9. Otherwise,
the entry generates a so-called non-contact as shown in Figure 6.10.

e. The final model cost function is the weighted sum of all distance con-
straints. Given a model, the distance between each pair of Cβ-atoms
is measured and the corresponding distance constraint value is computed.
The weighted sum of all distance constraint values is the cost of the model.
We rescale the costs such that they correspond to scores in the interval
[0:1] where 1 corresponds to the best scoring model and 0 is the worst
scoring model.
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Figure 6.6: Overview of our MQA algorithm.
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Figure 6.7: A table of observed distances (≤ 8) between pairs of Cβ-atoms is
constructed.

6.3.2 Optimization

Figure 6.11(a, c, e) shows examples of the quality of the distance constraints
for three targets. Target T0314 is known to be one of the most difficult tar-
gets of CASP7 in terms of prediction quality. The main reason is that no good
homologues have been detected. T0365 is template-based and considered to be
medium difficult. T0346 is a so-called high-accuracy template-based target and
is the easiest target of CASP7. At least for the template based targets, the figure
shows a clear correspondence between constraint weight and constraint quality.
It is therefore an obvious improvement strategy to select and use only the high
weight constraints. In [64] we describe two selection strategies. One is to select
and use only the high weight constraints. When evaluating our MQA algorithm
using this approach, the performance is slightly improved compared to using
all constraints. However, the most useful selection strategy we have tested is
an optimization technique based on contact number probability distributions.
We use the feed-forward neural network called predict-2nd [38] to predict the
probability of the residue having various numbers of contacts. Figure 6.13 illus-
trates an example of such a prediction of a contact number distribution. One
of the objectives in the optimization approach is therefore to select a subset
of the constraints such that the total contact probability is maximized. The
other objective is to maximize the average weight of the constraints selected.
We use a simple greedy approach to find solutions to this problem as described
in more details in [64]. The consequence of selecting the constraints using the
optimization approach is illustrated in Figures 6.11 (b,d,f) and 6.12 (b,d,f). It
is clear that we are able to filter away many of the wrong constraints, which
eventually leads to better correlations of MQA.

6.3.3 Evaluation

We have compared our MQA algorithm with other MQA algorithms in the
literature, including the two best ranked algorithms at CASP7 and the MQA
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Figure 6.8: A weighted average distance is computed together with the
confidence-weight of the distance. In this ad-hoc example there is a high confi-
dence that the Cβ-atoms of residue 1 and residue 20 are near 6.53 Å from each
other.
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Figure 6.9: The cost function of the distance constraint where the desired dis-
tance is 7 Å.
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Figure 6.10: A plot of the non-contact cost function. These cost functions
correspond to pairs of residues where contacts between Cβ atoms have not been
observed in any alignment.

algorithm by Qiu et al. Table 6.1 shows the results of this comparison (refer
to [64] for details). The Constraints (Consensus)-row in the table is our MQA
algorithm when the distance constraints are extracted from the models instead
of alignments. This corresponds to a model consensus approach which again
shows the best performance on the CASP7 MQA benchmark. The Undertaker
row is from the weight optimization algorithm described in Section 6.2.4, where
73 different features from the Undertaker protein structure prediction program
are used. Among these features are the alignment constraints which proves to
be the most significant of the features.

6.4 Chapter Summary

Model Quality Assessment (MQA) is the problem of assigning a quality measure
to alternative models of a target without knowing the native structure. It is
a natural step in many algorithms for protein structure prediction and other
applications. The MQA category has recently been presented at CASP7. It is
not a trivial task to evaluate an MQA algorithm. Several correlation methods
have been proposed and we argue that Kendall’s τ is one of the most appropriate
measures for evaluating MQA algorithms. The best MQA algorithm at CASP7
was a consensus based algorithm that scored the models according to their mean
distance to other models (in terms of LGscore). Consensus based algorithms
require a set of good models (to derive consensus from) and can therefore not
be used for assessing few models. In the extreme case where the quality of one
or two models should be assessed, it does not make sense to use a consensus
approach. Our approach for MQA does not have this requirement. The score
function we use, is based on distance constraints from alignments. Our MQA
algorithm therefore performs best on template based targets. We also show how
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T0365 (optimized)

T0346 (optimized)

T0314 (optimized)T0314 (all)
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Figure 6.11: Quality of distance constraints for three targets ranging from very
difficult (T0314) to very easy (T0346). The distance difference is the absolute
value of the difference between the desired distance of the constraint and the
real distance in the native structure.
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Figure 6.12: Contact maps for three targets ranging from very difficult (T0314)
to very easy (T0346). Black points correspond to contacts in the native struc-
ture that are correctly predicted (a distance constraint is generated). Yellow
points correspond to contacts in the native structure that we missed (no dis-
tance constraint generated) and red points correspond to pairs of residues not in
contact but having a distance constraint. White points corresponds to correctly
predicted non-contacts. From the figures, it is clear that mainly the red points
are being filtered away by the optimzation algorithm, while leaving the black
points.
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Group τ̄ r̄

Constraints (Consensus) 0.62 0.86
Undertaker (with align. constr.) 0.62 0.86
Lee 0.59 0.81
Qiu 0.58 0.85
Constraints (Aligments) 0.57 0.83
Pcons 0.56 0.85

Table 6.1: The table shows the average Kendall’s τ and average Pearson’s r
for MQA with each algorithm compared, ranked using Kendall’s τ . The aver-
age values are on a per-target basis. The Constraints (Alignments) row is the
results of MQA with distance constraints from alignments. The Constraints
(Consensus) row is the results of extracting the constraints from the models to
be assessed. The Undertaker row is the results of using all Undertaker cost func-
tions including the alignment constraint sets. Lee, and Pcons are top ranked
MQA algorithms presented at CASP7 (groups 556 and 634 respectively). Qiu is
the SVR MQA algorithm. In this table only the full backbone models are evalu-
ated. Our distance constraints perform worse on models with missing backbone
atoms, because a subset of the distance constraints can not be evaluated. In [6]
the Undertaker constraints (together with the alignment constraints) are also
evaluated on all models including the broken models.
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Figure 6.13: A contact number probability distribution for residue number 8
(isoleucine) of target T0283. The plot shows that there is maximum probability
that the Cβ-atom of the residue is in contact (≤ 8) with three other Cβ-atoms
(with chain-separation 9 or more). The probability of 10 or more contacts for
this residue is almost zero.
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to apply contact number predictions for selecting good distance constraints.



Chapter 7

Structure Prediction using
Combinatorial Optimization

The protein structure prediction problem can be treated as a standard combina-
torial optimization problem which is one of the classical disciplines in computer
science. A combinatorial optimization problem consists of a mathematical ob-
ject which has different discrete states. Each of these states has an associated
value which is defined by a so-called objective function. The solution to the
combinatorial optimization problem is the state with the global minimum (or
maximum) value of the objective function. When treating the protein structure
prediction problem as a combinatorial optimization problem, we therefore need
to discretize the different structures of the polypeptide chain and associate an
objective value to every state. The objective value should somehow represent
the real Gibbs free energy of the polypeptide chain. However, it is not trivial to
discretize the polypeptide chain in a reasonable manner. In nature there is an
infinite number of possible structures of a polypeptide chain, so any discretiza-
tion is more or less unnatural. When we treat the protein structure prediction
problem as a combinatorial optimization problem, we therefore sacrifice some
realism to achieve computational tractability.

7.1 Discrete Representations of a Polypeptide Chain

A straightforward discretization of the polypeptide chain is to treat the amid
planes as rigid objects and only allow discrete values of the φ and ψ angles
(shown in Figure 2.5 page 17). Note that even a very rough discretization of 4
different values of the dihedral angles gives an astronomical number of possible
structures. The number N of possible structures using this discretization (not
counting clashing structures or other unnatural structures) is

N(L) = 42L−2

where L is the number of amino acids in the polypeptide chain. The number of
conformations for a protein of 200 amino acids therefore is:

N(200) = 4398 ' 4 ∗ 10239

67
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(a) (b)

Figure 7.1: (A) The string of beads on a 2D quadratic lattice. (B) The string
of beads on a 3D cubic lattice. The 2D lattice representation is of course very
unnatural because no protein is 2D, however, this lattice can be useful for evalu-
ation and analysis of algorithms. The 3D lattice representation is more natural
but still considered to be a very rough discretization.

so, even with this very rough discretization, the number of possible structures
are many times bigger than the number of atoms in the universe - and we have
not even considered the degree of freedom of the side chains.

7.1.1 Discretization using Lattices

One of the much simpler representations is to only consider one atom per residue.
This representation is often called a string of beads. Each bead typically repre-
sents either the Cα-atom or Cβ-atom of the amino acids. Discretization of the
string of beads can be done in many ways. One of the widely used discretizations
is to force each bead to be positioned on a lattice (Figure 7.1).

The advantages of using a lattice for the discretization of a string of beads
are many:

• There is a finite number of structures, and complete enumeration is pos-
sible for small chains.

• Comparison of structures is easy. Structures are different if they have a
different path in the lattice and it is easy to check if two structures are
rotational identical.

• It is easier to do exact computations and rounding errors can often be
eliminated by considering lattice coordinates instead of space coordinates.

• Many algorithmic problems can be solved very efficiently. Collision de-
tection occurs only when beads occupy the same lattice node. Finding
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the neighbours of a bead can be done by only searching the neighbouring
lattice nodes. Local moves can be computed very fast.

The only important disadvantage of using a lattice to represent the chain
of beads is that real proteins in nature are not represented in lattices. Lattice
models therefore only approximate real proteins to some extent. However, in
section 7.5.1, we show how more complex lattices can reduce this problem.

7.1.2 The HP-model

In 1989 Lau and Dill presented the well-known HP-model [48]. In their model
the string of beads corresponds to a polypeptide chain where each residue is
classified in the two categories; hydrophobic nonpolar (H) or hydrophilic po-
lar (P). Hydrophobicity is one of the important properties of amino acids and
was introduced in Section 3.3 page 26. In the original HP-model, the string of
hydrophobic and hydrophilic beads is only allowed to occupy 2D-cubic lattice
nodes and the score-function is the number of hydrophobic (H) neighbours in the
lattice. Using complete enumeration they find the structure(s) with maximum
number of H-neighbours and they argue that these structures share some proper-
ties with real proteins. Structures with maximum number of H-neighbours tend
to have a high compactness and a hydrophobic core like water soluble proteins.
The 2D-structure in Figure 7.1 is an example of a solutions in the HP-model
where the black nodes correspond to hydrophobic amino acids and the white
nodes correspond to hydrophilic amino acids. Lau and Dill did not use any
optimization technique other than complete enumeration when they presented
their algorithm in 1989. In the next section it is described how to find good or
even optimal solutions when complete enumeration is not feasible.

7.2 Solving Combinatorial Optimization Problems

Many real-world problems can be treated as combinatorial optimization prob-
lems. Typical examples are the traveling salesman problem [45], vehicle routing
problem [45] and knapsack problem [40]. These examples are all known to be
NP-hard which is often the case for combinatorial optimization problems. Hart
and Istrail [30] also showed that finding optimal structures in one of the simplest
formulations of the protein structure prediction problem, the 2D HP-model, is
NP-hard. When dealing with NP-hard problems, people generally use three
different approaches.

a. Exact algorithms. Even though a problem is NP-hard, it might be
possible to solve realistic problem instances in reasonable time. For some
problems, much is known about the structure of optimal solutions, which
can be used for constructing efficient exact algorithms. This is the case
for the HP-model. Even though it is NP-hard, Backofen et al. [7] are able
to compute fast exact solutions to instances with up to 200 residues in the
HP-model using their theory of compact hydrophobic cores.
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b. Approximation algorithms. An approximation algorithm runs in poly-
nomial time and is able to give a guarantee on the quality of the solution.
Not all NP-hard problems can be approximated, Hart and Istrail [30], how-
ever, showed that the HP-model can be approximated with a guaranteed
energy within 3/8 of optimal energy.

c. Heuristics. Heuristic search algorithms do not give a guarantee on the so-
lution quality. Nevertheless, in practice, heuristic algorithms are preferred
for many combinatorial optimization problems. This is mainly because
they are easy to implement and imperically show good solution qualities.

7.3 Metaheuristics for Protein Structure Prediction

In the following sections, different popular metaheuristics are described. Meta-
heuristics are heuristics that are more general and can be applied to a broad
range of optimization problems. The metaheuristics included here (Monte Carlo
Search, Tabu search and Bee colony optimization) are just a small subset of
metaheuristics proposed in the literature. They are chosen because we use them
in our research described in Section 7.5.

7.3.1 Monte Carlo Search

In protein structure prediction, the metaheuristic Metropolis Monte Carlo Search [58]
(here we just name it Monte Carlo Search) is one of the most applied meta-
heuristics. This can be explained by the simplicity of the metaheuristic and
the similarity with physical systems. Monte Carlo-based search algorithms dif-
fer from molecular dynamics algorithms by being nondeterministic. For these
algorithms randomness is important and that is why they are named after the
famous casino in Monaco. There are many variants of Monte Carlo search (sim-
ulated annealing [42], replica exchange [90], Markov chain Monte Carlo [3], etc.).
The standard approach is to maintain a single current structure and iteratively
apply small random changes to it in each iteration. If the energy of the modified
structure is lower than the current structure, the modified structure is automat-
ically accepted as the current structure. If the energy of the modified structure
is higher than the current structure, the modified structure is accepted with
some probability. The standard probability of accepting a modified structure
s′, given the current structure s is

P (s′|s) = e−
U(s′)−U(s)

T

where U is the energy function and T is the temperature. For high temperatures,
almost all solutions are accepted and for low temperatures almost only the
improving solutions are accepted. When applying the MC metaheuristic, it is
important to determine a suitable temperature. A widely used variant of MC is
called simulated annealing (SA) where the temperature is gradually decreased
during the SA run.

The small changes applied to a structure defines a neighbourhood of struc-
tures. As the name indicates, neighbouring structures should be close in the



7.3. METAHEURISTICS FOR PROTEIN STRUCTURE PREDICTION 71

(c)(a) (b)

Figure 7.2: Three examples of moves in a quadratic lattice. The black bead is
being moved into the position of the dashed white bead. The positions of other
solid white beads are fixed. (a) Corner move. (b) Crankshaft move. (c) The end
move (three different moves only allowed by the two end beads). These moves
are 2D version of the move set by Sali et al. [84]

solution space and therefore share some properties. A neighbourhood is often
defined by a move set. In Figure 7.2 an example of a very simple move set for
the string of beads on a 2D cubic lattice is illustrated.

7.3.2 Tabu Search

One of the most successful metaheuristic in combinatorial optimization is tabu
search (TS). It has shown to be successful for many applications like vehicle
routing [25], VLSI routing [89, 53], packing problems [77] etc., but it has not
been given much attention in the field of protein structure prediction. The search
paradigms presented so far (molecular dynamics (MD) in Section 5.1 page 43
and MC) have roots in physics. However, many models for protein structure
prediction are not based on physics. They are often extremely simplified and
discretized - and their energy functions might not even contain any physical-
derived terms. In these cases, it is therefore not likely that MD or MC could
simulate the real folding pathways. In most cases the only interesting structures
are those with low energy. Like MD and MC, tabu search do provide a pathway
of examined solutions, however it should not be given a physical interpretation.

TS was first described by Fred Glover in 1989 [26]. It is a local search
algorithm with a memory. A local search algorithm iteratively chooses some
solution that improves the current solution. At some point it therefore ends
in a local optimum where no neighbourhood solution can improve the current
solution. This local optimum might also be global, but this can usually not be
determined. The risk of getting trapped in local minima can be reduced using
a memory. In the most simple implementations of TS, the memory consists
of previously visited solutions stored in a so-called tabu-list. When choosing
the new neighbourhood solution, the memory is scanned to make sure that it
has not been visited before. This simple tabu definition was used by Oakley et
al. [61] for prediction of protein aggregation with modest success. Tabu search
can also be used for marking regions of the search space as tabu. This is often
done by defining some of the attributes of visited solutions tabu. In most TS
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Figure 7.3: (a) shows a path where the conditions for an edge patch is present.
(b) shows the result of an edge patch.

algorithms the tabu list is considered to be short term memory and is therefore
implemented using a FIFO queue with a predefined length.

One of the few applications of TS on protein structure prediction is the
study by Pardalos et al. [69]. They use a cubic lattice to represent the string
of beads as a self-avoiding path. The objective function is a simple statistically
derived potential energy. The neighbourhood of structures consists of the so-
called edge patches. An edge patch is a global change (compared to the local
moves illustrated in Figure 7.2) to the self-avoiding path in the lattice and it
can be made when the following conditions are present:

Let v1, v2, · · · , vn be lattice nodes visited by the string of beads in this order.
If k < k′ and vk, vk′ are neighbours and vk+1 and vk′+1 are also neighbours.
Then a new path in the lattice can be generated by adding the two edges (vk,
vk′) and (vk+1, vk′+1), and deleting the two edges (vk, vk+1) and (vk′ , vk′+1).
An example of an edge patch is shown in Figure 7.3.

An edge patch is characterized by the edges that are inserted and the edges
that are removed. In the TS algorithm by Pardalos et al., the applied edge
patches are inserted in the tabu list and future moves are prevented from ap-
plying previously used edge patches. Using this strategy, a region of the con-
formational space is made tabu with each edge patch in the tabu list. The
advantage of marking regions tabu compared to just making previously visited
solutions tabu, is that the search escapes local minima faster. However, we also
face the risk that good solutions are made tabu just because they share some
properties with bad solutions. The edge patch move just described can make
very large changes to the structure. The risk is therefore, that a structure is
defined as tabu, even though it structurally does not have any similarities with
a previously visited structure. This risk is reduced by the aspiration criteria; if
a solution in the neighbourhood is better than the best observed solution, it is
accepted even if it is tabu.

In our paper Reconstructing Protein Structure from Solvent Exposure using
Tabu Search [63] we minimize the risk of making good structures tabu by in-
troducing a new tabu definition. It is directly based on structural differences as
described in more detail in Section 7.5.1.
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7.3.3 Artificial Intelligence

artificial intelligence (AI) is often considered to be either strong AI or weak
AI. Strong AI is said to be comparable or even better than human intelligence.
However, there is no good definition of strong AI that is widely agreed on.
The main reason is probably that intelligence does not have a real scientific
definition. My favourite description of strong AI is from Alan Turing [91]. If a
machine can pass the Turing test, then it is strong AI. In short, the Turing test
is about whether or not a machine can answer arbitrary questions, such that
a person (giving the questions) cannot reliably distinguish the machine from a
person. So, according to Turing, if a machine answers questions like a human,
then it is strong AI. None of the techniques described in this thesis, are designed
to act as human beings and are therefore considered to be weak AI. Weak AI,
are in general algorithms that try to simulate human or animal traits. Examples
of such traits are learning, reasoning, planning etc. However, algorithms that
make use of general natural phenomena like evolution or swarming are usually
also considered to be weak AI.

Many of the algorithms used for solving combinatorial optimization problems
are considered to be weak AI. This is also the case for some of the algorithms
in computational biology. Three of the AI techniques described in this thesis
are so-called supervised learning algorithms. These are artificial neural net-
works (Section 4.1), hidden Markov models (Section 5.2.1) and support vector
regression (Section 6.2.3). All of these algorithms have in common that they
are presented with a number of examples and are supposed to learn the general
patterns in the set of examples. These algorithms differ much in how they learn
from the examples and how they represent the knowledge they have learned.
However, they are all capable of handling incomplete and uncertain data in the
set of examples. The tabu search metaheuristic presented in this Chapter is also
considered to be weak AI, simply because of the memory used to escape local
minima.

Swarm Intelligence

In Section 7.5.3 we describe our approach for protein structure prediction using
a search strategy borrowed from the foraging behaviour of honey bees. Such an
algorithm is called swarm intelligence (SI) and is also considered to be AI. In
nature, some animals swarm to achieve survival and reproductive benefits. The
specific way a species of animals swarm varies, but the term is usually used to
describe a group of animals (usually insects, fish or birds) that moves in the same
direction and behaves similar to environmental changes. SI typically consists of a
number of individuals called agents. Such agents are able to work independently
in the environment, but usually make decisions based on communication with
other agents or changes in their environment. In the case of our bee colony
optimization approach, agents correspond to honey bees. A honey bee is able
to collect nectar without the help of other bees, but it can also communicate
with other bees (using the so-called waggle dance) to tell other bees about the
positions of good flower beds. Another example of a swarm is an ant colony.
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When using ant colony optimization (ACO), the agents correspond to ants who
seek to find food close to their colony. Ants seek for food randomly and also
leaves a so-called pheromone trail. This pheromone trail attracts the other ants
from the colony such that trails with high pheromone contents have a higher
probability of being used by the ants. The pheromone also evaporates. Long
trails take a long time to travel and therefore eventually end up having lower
pheromone concentration than shorter trails. ACO is suitable for solving graph
problems such as the TSP [20], but it has also been applied to the protein
structure prediction problem in [86].

7.4 Exact Algorithms

In 1968 Levinthal postulated that the conformational space of proteins is too
large to be searched exhaustively [51]. It is therefore believed that proteins
use folding pathways to reach the native structure. This is probably also one
of the main reasons why many computational approaches to protein structure
prediction use heuristic search algorithms to generate folding pathways. The
main problems with these algorithms are that they get trapped in local minima
and they cannot give a guarantee on the solution quality.

Levinthal’s postulate is of course widely acknowledged. However, just be-
cause nature uses folding pathways it does not necessarily mean that computa-
tional approaches to structure prediction must use the same technique. There
have been a few exact algorithms for protein structure prediction proposed in
the literature. These algorithms implicitly search the conformational space ex-
haustively using advanced optimization techniques. Something that proteins in
nature, of course, cannot do.

In computer science it has been known for decades that optimal solutions
indeed can be found for many realistic problems, even though the solution space
is very big. Some instances of problems like vehicle routing problems (VRP) [45],
knapsack problems (KP) [40] and the Steiner tree problem [31, 13, 68] can be
solved in reasonable time using advanced techniques from combinatorial opti-
mization. The fact that the conformational space of proteins is astronomical
large, therefore should not be a reason for avoiding exact algorithms.

The main advantage of using exact algorithms is that they guarantee to find
the global optimum in the given model and do therefore not have the problem
of getting stuck in local optimum. One of the disadvantages is that efficient
exact algorithms are often much more difficult to design compared to simple
search heuristics like MC and TS. The model and energy functions are therefore
typically simplified such that bounds can be computed efficiently.

In this section some of the exact algorithms for protein structure prediction
that exist in the literature are briefly described. We begin with an exact al-
gorithm in the HP model, continues with the αBB algorithm and end with a
description of our own exact algorithm.
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(a) (b)

Figure 7.4: (a) The simple cubic (SC) lattice where each lattice node has 6
neighbours. (b) the more complex face centered cubic (FCC) lattice where
each lattice node has 12 neighbours. The lattice vectors of the SC lattice are
(±1, 0, 0), (0,±1, 0), (0, 0,±1), and the lattice vectors of FCC are all combina-
tions of (±1,±1, 0), (±1, 0,±1), (0,±1,±1).

7.4.1 Exact Structure Prediction in the HP-model

In the paper by Backofen and Will [7] an efficient constraint-based algorithm is
presented. Their algorithm can solve large instances of problems in the simple
cubic (SC) lattice and the face-centered-cubic (FCC) lattice (Figure 7.4). Their
objective is to maximize the number hydrophobic neighbours of the string of
beads. This is the same objective as for the classic HP-model, but Backofen
and Will use more complex and realistic lattices.

The basic idea of their approach comes from the observation that optimal
solutions often have near the maximum number of hydrophobic contacts that
is possible in a lattice. So, by knowing only the number of hydrophobic amino
acids, they can precompute the expected energy. Furthermore they can pre-
compute the so-called maximally compact cores of the string of beads. This
is illustrated in Figure 7.5 with a simple example. When generating a solu-
tion, all that is needed is to thread the remaining hydrophilic amino acids on
the hydrophobic core. However, this might not be possible if the optimal so-
lution does not have a maximally compact core. In that case, the algorithm
iteratively threads the hydrophilic amino acids on less compact cores until it
succeeds. Refer to [7] for details about computing compact cores and threading
the hydrophilic amino acids on the hydrophobic cores.

Using their exact algorithm it is possible to find the global minimum struc-
ture of proteins up to 200 residues in less than a minute on a Pentium 4. Back-
ofen and Will do not report the similarity of the global minimum structures
with the native structures. This is probably because there are no similarity due
to the simple energy function.
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(b)(a)

Figure 7.5: Consider the string PHPPHPPHHP with 4 hydrophobic amino acids
and 6 hydrophilic amino acids. (a) shows the most compact core of 4 hydropho-
bic amino acids which can be precomputed. Figure (b) shows a possible thread-
ing of the string of beads to the core. When such a threading is found (if
possible), the solution is optimal.

7.4.2 The αBB Algorithm

The α Branch and Bound (αBB) algorithm is one of the few algorithms for
protein structure prediction that is based on the branch and bound paradigm.
In this section, the general branch and bound paradigm is described, and the
αBB by Maranas et al. [54, 4] is introduced. Our branch and bound approach for
protein structure prediction is described in Section 7.5.2. Maranas et al. used
the αBB algorithm to predict the global minimum energy structures of small
molecules (up to 14 atoms). In [23] Eyrich et al. extended the αBB algorithm
such that it can handle proteins with hundreds of atoms.

The Branch and Bound Paradigm

The branch and bound approach is an algorithm for solving various combina-
torial optimization problems. It was first described in 1960 by Land et al. [44]
where they used it for solving linear programming problems. Today, branch and
bound algorithms are mostly used for solving NP-hard problems.

One of the basic techniques of the branch and bound paradigm is the re-
cursive subdivision of the solution space into smaller sets. Such a recursive
subdivision can also be represented by a tree, where the union of the children
nodes represents the solution space of the parent node. Subdivison of the solu-
tion space is called branching. Branch and bound also require the computations
of upper and lower bound estimates for a particular subdivision. A lower bound
is a number that is equal to, or lower than, any solution value in the set. The
upper bound is a value that is greater than, or equal to, the minimum solu-
tion value in the set. Obviously, a particular solution set cannot contain a
global minimum solution if the lower bound is higher than an upper bound in
any solution set. When such a situation occurs, the whole solution set can be
disregarded (bounded) without explicitly considering each solution.

When developing a branch and bound algorithm for a particular problem,
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the main goals are therefore to develop an appropriate branching scheme and an
efficient lower bound algorithm. A good lower bound algorithm is therefore fast
(compared to complete enumeration of the subset) and computes bounds that
are close to the minimum value solutions in the sets; a so-called tight bound.

αBB

In [54] Maranas et al. represent molecules using a list of dihedral angles between
bonded atoms. The energy function is the Lennard-Jones potential function [50].
Branching is done by considering the dihedral angle with the widest range and
constructing two new subspaces corresponding to splitting the chosen dihedral
angle in two separate intervals. Note that the dihedral angles here are treated
as continuous variables and not discrete as for real combinatorial optimization
problems.

The lower bound is computed by using theory from convex optimization
theory. Maranas et al. develop a theory that shows how to compute a lower
bound function, L, given the energy function V . The lower bound function, of
course, has the property that it is less than or equal to the energy function for all
conformations in the set. Furthermore, L is convex such that a local minimum
of L is also a global minimum. In each node of the branch and bound tree, the
lower bound is computed by minimizing L which can be done using standard
techniques for solving convex optimization problems. The upper bound is the
corresponding value of V (the conformation where L is minimum). Maranas
et al. are able to find global minimum energy solutions but only for small
molecules. However, Eyrich et al. [23] extend the αBB algorithm by using fixed
secondary structure elements and are able to work on real sized proteins. In [23]
all results are reported only for secondary structure segments derived from the
native structure of the protein. As described in Chapter 4, secondary structure
prediction is far from perfect and Eyrich et al. do not show how the performance
of the αBB algorithm is, when the secondary structure predictions have errors.

7.4.3 Protein Threading

Another large category of tertiary structure prediction algorithms are the thread-
ing based algorithms. In a typical threading algorithm, a set of structures rep-
resenting different folds are known. Using the threading algorithm, the most
likely fold of an amino acid sequence can be identified and used as a template
for later model building.

This task is accomplished by a threading of the amino acids of the protein
with unknown structure on each of the fold structures. A threading is found by
aligning the amino acid sequence to a fold structure, possibly using gaps and
insertions, as illustrated in Figure 7.6. Each possible threading has an energy
and the threading algorithm finds the threading with minimum energy. Such
a minimum energy threading is found for each of the fold structures and the
threading with minimum energy over all fold structures is assumed to be the
fold structure of the amino acid sequence with unknown structure. The number
of possible threadings on a single fold structure is exponential and in [46], the
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Figure 7.6: The sequence MLSDEDFKAVFGMTRSAFANLPLWKQQ is aligned
to the fold structure. The blue residues correspond to insertions. The residues
with no letters correspond to deletions.

problem is shown to be NP-hard for energy functions with a sum pairwise terms.

7.4.4 Example of an Exact Threading Algorithm

One possible threading model is described in [47]. Here, a so-called core struc-
tural model (CSM) is made for all fold structures. A CSM consists of a sequence
of loops and secondary structure elements. The secondary structure elements
have fixed length and the loop regions have a minimum and maximum length.
A valid threading of an amino acid sequence is therefore an assignment of sub-
sequences to each loop region and secondary structure element such that the
intervals are satisfied (Figure 7.7). The energy function both consists of posi-
tions of single amino acids and pairwise terms:

f(T ) =
∑

i

g1(i, ti) +
∑

i

∑
j>i

g2(i, j, ti, tj)

Where g1 is a function depending on the core segment i located at the ti’th
amino acid in the sequence. Likewise g2 is a function of pairs of core segments
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AGABZILMKAPFAHETWTNDAB

AGA BZILM KAP FA H TWTNDA B

[1, 4] 5 [3, 6] 2 [1, 2] 6 [0, 4]

Figure 7.7: An example of a core structural model. The lines correspond to
variable length loop regions and the boxes correspond to secondary structure
elements. The upper intervals correspond to the number of residues allowed in
the regions and the letters show an example of a valid threading of sequence
AGABZILMKAPFAHTWTNDAB.

and their positions in the sequence. The actual values of the energy could
depend on secondary structure prediction, amino acid burial, hydrophobicity,
statistical derived potentials, etc. The problem of finding the threading with
global minimum energy is NP-hard because of the pairwise terms and in [47]
the problem is solved using the branch and bound technique.

7.5 Our Research

We have developed three different approaches for reconstructing Cα-traces us-
ing techniques from combinatorial optimization. Our first approach described
in Section 7.5.1 applies exact values of half-sphere-exposure (HSE) to recon-
struct Cα-traces using Monte Carlo search and Tabu search. In Section 7.5.2 we
describe our exact approach using a branch-and-bound technique for decoy gen-
eration. In this approach we also apply predicted measures and the algorithm
can therefore be considered as de novo. In Section 7.5.3 we describe our artifi-
cial intelligence approach. It is based on a swarm intelligence which mimics the
foraging behaviour of honey bees. All of these approaches are briefly described
here. For more details refer to the corresponding papers.

7.5.1 Paper: Reconstructing Protein Structure from Solvent
Exposure using Tabu Search

In our paper Reconstructing Protein Structure from Solvent Exposure using Tabu
Search [63] we compare the performance of Monte Carlo (MC) search and tabu
search (TS) on a simple protein structure prediction problem. In addition to
the MC and TS comparison we also estimate the information contents of the
newly introduced half-sphere-exposure (HSE) measure [29]. Figure 7.8 contains
a short description of HSE from the paper.

Determining the information contents of the HSE measure or the CN mea-
sure is important. Both measures can be predicted from amino acid sequence
with reasonable accuracy and can therefore be used for de novo prediction. How-
ever, in the paper described here we only use exact measures computed from
the native structure of the protein.
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(B)

(A)

Figure 7.8: (From [63]). The extent to which an amino acid in a protein is accessible to the
surrounding solvent is highly dependent on the type of amino acid. In general, hydrophilic
amino acids tend to be near the solvent accessible surface, while hydrophobic amino acids
tend to be buried in the core of the protein. To measure this effect, several solvent exposure
measures have been proposed [49, 27, 17, 15, 73, 74, 75], and one of these is the contact
number measure (CN) [75]. The CN of a residue is the number of Cα atoms in a sphere
centered at the Cα atom of the residue in question (Figure A). The CN of all residues of a
protein is called the CN vector. The CN vector is well conserved and can be predicted with
high accuracy [41]. While the CN measure uses a single sphere centered at the Cα-atom, the
HSE measure considers two hemispheres. Two values, an up and a down value, are associated
with each residue, corresponding to the upper and lower hemisphere. The geometry of the
HSE construction is shown schematically in Figure B. Given the positions of 3 consecutive
Cα atoms (A, B, C), the approximate side-chain direction ~Vb can be computed as the sum
of ~AB and ~CB. The plane perpendicular to ~Vb cuts the sphere centered at B in an upper
and a lower hemisphere. The up and down HSE values measure two fundamentally different
environments of an amino acid, one of them corresponding to the neighbourhood of the side
chain [29]. The HSE measure compares favorably with other solvent exposure measures in
terms of computational complexity, sensitivity, correlation with the stability of mutants and
conservation. An important advantage of the HSE measure is that it can be calculated from
Cα-only or other simplified protein models. Therefore, it forms an attractive alternative to
the use of the CN measure in protein structure prediction methods [87].
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Our strategy for evaluating the information contents of HSE and compari-
son of the algorithms is the following. A random Cα-trace is constructed and
iteratively improved by either MC or TS such that the HSE vector of the Cα-
trace is similar or close to the HSE-vector of the real protein. This is done by
minimizing the energy function

E(A,B) =

√∑N
i=1 ((Aui −Bui)2 + (Adi

−Bdi
)2)

2N
,

where {A,B}ui and {A,B}di
are the up and down values of the i’th index of the

HSE-vectors. N is the length of the vectors. E(A,B) is the energy of structure
SA where A is the HSE vector of SA and B is the HSE vector derived from the
native structure. These definitions are easily specialized to the CN measure.

To discretize the conformational space of the Cα-trace, the Cα-atoms are
confined to be positioned on a lattice. In addition to the simple 2D quadratic
lattices and 3D cubic lattices already discussed in Figure 7.1, we also consider the
more complex lattices FCC (Figure 7.4(b)) and high coordination (HC) lattice
(Figure 7.9). A structure is represented by a list of directions in the lattice for
all but the first Cα-atom. The move set used by both algorithms, MC and TS,
consists of all possible changes of up to three consecutive directions. Using this
terminology, the simple move set described in Figure 7.2 contains respectively 2
changes (A), 3 changes (B) and 1 change (C). In addition to this move set, we
also allow one index change at a non-endpoint. This results in a translation of
the string of beads after the index change.

The MC algorithm is implemented as described in section 7.3.1 and the TS
algorithm uses a new tabu definition. The trivial tabu definition is to store
previously visited solutions in a tabu list and then prevent the algorithm from
visiting them. When using this tabu definition, our experience is that it takes
very long time to escape local minima. This is mainly because the tabu list needs
to be filled with all structures in a neighbourhood around a local minimum before
it can escape the local minimum. When using complex lattices, there are many
different structures that are almost structural equal and the tabu list therefore
becomes very large before the local minimum is escaped. This is a problem
we reduce by defining the concept of explicit- and implicit tabu structures (see
Figure 7.10).

In paper [63] there are three experiments which are briefly described here.

a. The first experiment determines suitable values of the tabu difference (ε)
and the tabu list size. This is done by running the TS algorithm on 20
initially random structures for a small peptide and optimize each struc-
ture until a zero-energy structure is found or a maximum of 15 minutes
have passed. An average energy of the 20 final structures is computed
and plotted in Figure 7.11. When the tabu difference is zero, the TS al-
gorithm behaves as a regular TS algorithm where only previously visited
structures are tabu. The figure therefore shows, that our use of implicit
tabu structures improves the performance of the TS algorithm consider-
ably on this experiment. On the other hand, one should be careful that
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Figure 7.9: This is a 2D illustration of the High coordination (HC) lattice. A
high coordination lattice has an underlying cubic lattice with unit length less
than 3.8/N Å for some integer N > 1. Cubic lattice points are connected in
the high coordination lattice if their Euclidean distance is between 3.8 ± β for
some β > 0. The high coordination lattices used in our experiments are named
HC4 and HC8 corresponding to their N value (4 and 8). The β value is 0.2 for
all applied HC lattices. The figure shows a 2D high coordination lattice with
N = 3 and β = 0.4.



7.5. OUR RESEARCH 83

1 2

3

4

a

b c

Energy

ε

Figure 7.10: (From [63]). We keep a list of previously visited structures in a so-called explicit
tabu list. Each structure in the explicit tabu list defines a set of implicit tabu structures.
Given a structure E in the explicit tabu list, a structure I is said to be implicit tabu if the
distance-RMSD (dRMSD) between E and I is less than ε and the energy of I is greater than
or equal to the energy of E. The adjustable parameter ε is called the tabu difference. The
figure illustrates a sequence of visited structures (black points) in a solution space. Only the
visited structures are inserted in the explicit tabu list. The additional green and red points
correspond to structures within ε dRMSD of the explicit tabu structures. Green points are
structures with lower energy and red points are structures with higher energy than the explicit
tabu structure. When choosing a new solution in the neighbourhood three things can happen
(as illustrated in the figure), a) A solution is more than ε dRMSD away from all explicit tabu
structure. b) the solution is within ε dRMSD, and the energy is lower than the explicit tabu
structure, c) the solution is within ε dRMSD, and the energy is higher than the explicit tabu
structure. Structures that comply with case c are said to be implicit tabu and cannot be
visited. Note that when ε = 0 the search heuristic works as a regular TS heuristic since only
visited structures become tabu. The use of implicit tabu structures is new in the context of
protein structure prediction.
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Figure 7.11: Average energy for different combinations of tabu difference and
tabu list size.

the tabu difference does not become too large and consequently marks
good solutions tabu. In the example shown in the figure, the best value
of the tabu difference is between 0.4 and 0.5.

b. The second experiment compares the performance of TS and MC. This is
done using the same test framework as in experiment a but with different
lattices. The results are shown in Figure 7.12. In our paper [63] the y-axis
is linear, however, the logarithmic y-axis used here more clearly describes
the performance of both algorithms.

c. The purpose of the third experiment is to evaluate the information con-
tents of the CN measure and HSE measure. This is done by using the
TS algorithm, such that a number of structures with minimum energy is
found. These structures with low energy are then compared to the native
structure of the protein in terms of RMSD. In [63] this is done for 5 small
proteins. For some of the proteins, we find many different structures with
zero or near zero energy which indicates that the energy landscape has
many global and local minima.

Based on the experiments, we conclude that the use of implicit tabu struc-
tures can increase the performance of TS based search algorithms. Our results
also show that TS has a better performance than a typical MC algorithm on
this type of problem. However, it is important to note that there are many al-
ternative versions of MC that we have not tested. The HSE vs. CN experiments
clearly show that the information contents of HSE is higher than CN. In the
paper we also show that the approximate directions of the side-chains are much
closer to the native structure for the HSE-optimized structures.
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Figure 7.12: Average energy using lattices of different complexity vs. adjustable
algorithm parameters. The upper plot shows the average performance of the
TS algorithm for a range of tabu differences. For tabu differences 0.4 and
0.5 the average HSE energy is 0 (not shown in a the logarithmic plot). The
lower plot shows the performance of the MC algorithm for a range of different
temperatures. There are no temperature for the MC algorithm that gives the
same performance as the TS algorithm when the tabu difference is between 0.4
and 0.5.
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Secondary structure assignment
CCCHHHHHHHCCCCHHHHHCCCHHHHHHHHCCCCCC

MLSDEDFKAVFGMTRSAFANLPLWKQQNLKKEKGLF
Amino acid sequence

Figure 7.13: The secondary structure is predicted from the amino acid sequence
and used for creating segments.

Figure 7.14: A coil segment with valid positions of Cα-atoms.

7.5.2 Paper: Protein Decoy Generation using Branch and Bound
with Efficient Bounding

As described in the previous section, the HSE/CN-based energy function has
many local minima. Furthermore, the information contained in the HSE or CN
measure is not enough to accurately reconstruct Cα-traces of large proteins. In
the study described here, we attack these problems by using an exact algorithm
that guarantees to find structures with global minimum energy. We also add
more predictable information in the form of secondary structure classifications
and predicted compactness (radius of gyration).

The Model

The basic idea in our exact approach [66, 67, 65] is to reduce the complexity
of the model as illustrated in Figure 7.13. First, the secondary structure of
the protein is predicted using PSIPRED [57], then this prediction is used for
creating the segments of secondary structure. The purpose of a segment is to
define an approximate path in space for the amino acids that it represents. This
is done by positioning the first and last amino acids of the segment at the two
end points of the segment. Figure 7.14 shows an illustrations of a helix segment
together with valid positions of the Cα-atoms of the amino acids.
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Figure 7.15: An example of a complete structure. In this example two types of
secondary structure is represented. The red segments correspond to helices and
the black segments correspond to coils.

We discretize our model by allowing these segments to only have a set of
predefined directions. There is a trade-off between the number of allowed di-
rections and computational tractability. Our ad-hoc experiments show that we
can solve problems in reasonable time when using the 12 uniformly distributed
directions from the FCC lattice as described in Figure 7.4(b). In addition to
the discretization of the allowed directions of the segments, we also allow a lim-
ited set of valid positions of Cα-atoms of a segment. These are called segment
structures. For helices and sheets, we generate u such segment structures by
rotating one structure (having perfect geometry) around the axis defined by
the segment. For coil segments, we query a library of coil fragments, to find
the most similar sequences and use them as segment structures. A structure
represented by this model is called a complete structure and is illustrated by
the example in Figure 7.15. Refer to [66] for more details about the model and
generation of segment structures.
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Solving the Problem

Given an amino acid sequence with m segments and u possible segment struc-
tures for each segment, the total number of complete structures, N, allowed by
this model is

N = 4× 11m−2 × um (7.1)

In the equation above, symmetric structures are not counted twice. The total
number of complete structures is exponential and too high for a complete enu-
meration even for small proteins. On the other hand, we have designed a model
with many geometric constraints which allows us to compute lower bounds in
the branch and bound paradigm efficiently. Our branch and bound algorithm
is called: Efficient Branch and Bound Algorithm (EBBA) throughout this text.
A node in the branch and bound tree corresponds to a partial solution where
one or more directions of the segments have been fixed and zero or more seg-
ment structures have been fixed. Even though such a partial solution represents
a high number of structures, they are heavily geometric constrained. Lower
bounds can be computed by taking advantage of these geometric constraints as
described in [66, 67].

Experiments and Results

We have tested EBBA on 6 proteins. In all cases we find structures with similar
CN and HSE vectors compared with the predicted CN and HSE vectors (example
in Figure 7.16). However, even though the CN and HSE vectors matches to
some extend, the corresponding structures are not always similar. In other
words; the lowest energy structures are in many cases different from the native
structures. EBBA is therefore modified such that it returns the 10.000 global
minimum energy structures and we show that in this set, good decoys exist for
all proteins in our benchmark. EBBA should therefore not directly be used for
protein structure prediction, but it is a successful decoy generator compared
with other decoy generators in the literature [67, 66].

7.5.3 Paper: Protein Structure Prediction using Bee Colony
Optimization Metaheuristic

Our latest approach for protein structure prediction is inspired by swarms of
honey bees. This research is work in progress, but contains important results in
the context of this study and is therefore included here. The draft of the paper
is in Appendix E page 165.

In nature, honey bees collect nectar to produce honey in the hive. Honey is
the main food source for the bees, so an important task in a bees life is to collect
as much nectar as possible. Nectar is produced by flowers in limited amounts.
The perfect place for a nectar collecting bee therefore is a flower field. Since bees
do not have a map of flower fields in the neighbourhood of their hive, evolution
has provided them with a search strategy to maximize the collection of nectar.
Before describing this strategy, notice the similarity with the protein structure
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Figure 7.16: An example of CN, up and down vectors for the protein 1FC2. The
low energy structure is found by EBBA. The predicted vector is the prediction
from LAKI [92]. The exact vector is derived from the native structure and only
used for evaluation.
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prediction problem or other optimization problems in general. As illustrated
in Figure 2.8 page 21, protein structure prediction is about finding the global
minimum structure in an energy landscape. Honey bees do not know where the
good flower beds are, and we do not know where the minimum energy structures
in the conformational landscape are. A simple idea is therefore to apply the bees
search strategy to the protein structure prediction problem.

The use of the foraging behaviour of honey bees in combinatorial optimi-
zation problems was proposed simultaneously in 2005 by Pham et al. [71] and
Karaboga et al. [33]. They later published a number of applications and results
of the so-called bee colony optimization (BCO) algorithm [72, 36, 35, 34]. In [24]
we present our approach for protein structure prediction using BCO. The idea
of using BCO for protein structure prediction is not entirely new. In [8] Ba-
hamish et al. used BCO for finding the native state of the 5-residue peptide
met-enkalphin. The native structure of small polypeptide-chains having only 5
residues is usually not considered to be difficult to predict. Our BCO algorithm
is therefore the first algorithm in literature that can handle real-sized proteins
(proteins up to 136 residues are considered).

The Bees’ Strategy

The basic bee strategy is to organize the swarm such that many bees are de-
ployed at high quality flower beds with much nectar and few bees search for
new flower beds or harvest nectar from low quality flower beds. To accomplish
these tasks, the strategies of a bee can roughly be divided in three categories:
scouts, workers and onlookers. Here we briefly describe their task in nature and
how they correspond to search operations in our BCO algorithm.

• A scout bee in nature:
It flies in random directions and eventually finds a flower bed. It collects
nectar from the nearby flowers and returns to the hive. In the hive, it
performs a so-called waggle dance that communicates the amount of nectar
in the flower bed and the position of the flower bed to the other bees.

• A scout bee in the algorithm:
It corresponds to a valid structure constructed randomly. The energy of
the random structure corresponds to the amount of nectar in the flowerbed.
The waggle dance corresponds to evaluating the energy and storing the
structure in a data structure.

• An onlooker bee in nature:
It watches the waggle dances performed by either scout bees or worker
bees and decides to collect nectar in a flower bed as shown by one of the
waggle dances. If the waggle dance indicates a high quality flower bed,
the chance of selecting that particular flower bed is higher.

• An onlooker bee in the algorithm:
It is first assigned to an existing protein structure (corresponding to a
worker bee or scout bee). This assignment depends on the energy of the
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structure such that the chance of being assigned to a low energy struc-
ture is higher. Then the onlooker bee is deployed at a structure in the
neighbourhood of the assigned structure (possibly found by local search
heuristic started at the assigned structure). If the neighbourhood struc-
ture is better than the assigned structure, the onlooker replaces the worker
bee and becomes a worker bee. Otherwise it flies back to the hive.

• A worker bee in nature:
Worker bees are like onlooker bees except that they do not consider other
bees waggle-dances. Instead they just fly back to their old flower beds to
collect more nectar. If the nectar in their flower bed depletes, they are
redeployed as scouts.

• A worker bee in the algorithm:
It corresponds to a solution in the conformational space. If the solution
is improved (by an onlooker bee) the worker bee is redeployed as either a
scout bee or onlooker bee. Otherwise, the worker bee represents the same
solution. If some onlooker bee has not improved the site of a worker bee
for a pre-specified number of iterations, the site of the worker bee is said
to be exhausted. In that case, the worker bee is redeployed as a scout bee.

We do not consider scout bees, worker bees and onlooker bees as individual
objects in our algorithm. We use the concepts described above to maintain a set
of so-called working sites and onlooker sites. This is illustrated in Algorithm 1.
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Algorithm 1: Bee-Colony-Optimization
input : S, W , O, StopT , Exhaust
output: A low energy structure
Create S +W working sites by random (corresponds to deploying S1

scouts and W worker bees. Worker bees are initially deployed randombly
like scouts)
while Stopping criterion is not met do2

Promote O sites as onlooker sites (Assign onlooker bees to flower beds3

using onlooker selection strategy)
for Each onlooker site do4

Find a neighbourhood site (using onlooker site improving strategy)5

If the neighbourhood site is better than the onlooker site, move6

the onlooker site to the neighbourhood site. (corresponds to
redeploying the onlooker bee as a worker bee and sending the old
worker bee back to the hive

end7

Make all onlooker sites working sites8

Abandon the S worst working sites and create S new working sites9

(using the scout bee strategy)
If a working site has not been improved by an onlooker bee in10

Exhaust iterations, abandon the working site and construct a new
working site (Corresponds to depletion of nectar and redeployment of
worker bees as scout bees)

end11

return The best observed working site12

Note that step 6 in the algorithm above, might not necessarily be hill climb-
ing which is used here. It would be interesting to test the performance of a
strategy where worse solutions can be selected with some probability (i.e. using
the Monte Carlo acceptance criteria).

Experiments and Results

We have made experiments where the BCO algorithm is run on the same model
as used in EBBA (Section 7.5.2). BCO often finds the optimal solution faster
than EBBA - but not always. There are also examples where BCO does not
find optimal structures in the 48 hours time limit (optimal solutions were found
by EBBA in less than 48 hours for the proteins tested). When using such low
complexity models, that can be solved to optimality in reasonable time, EBBA is
therefore the preferred algorithm. However, EBBA cannot solve large problems
in reasonable time (in terms of model complexity and protein length). If we use
a higher complexity model by increasing the allowed directions and rotations,
the BCO algorithm is able to find structures with better energy than EBBA.

We have also compared the BCO algorithm with a simple simulated anneal-
ing algorithm which uses the same move set as BCO and the cooling scheme is
chosen such that it spends the same amount of time as the BCO algorithm (48
hours). The results show that BCO outperform SA by finding structures with
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lower energy than BCO. Refer to [24] Appendix E, page 165 for a table of the
results.

7.6 Chapter Summary

When treating the protein structure prediction problem as a combinatorial op-
timization problem, we typically need to discretize the conformations of the
polypeptide chain. Different discretizations have been proposed in the litera-
ture; some use a predefined set of allowed angles of the φ and ψ angles. Others,
confine the Cα-atoms to be positioned on a lattice. Even though discretization
gives a reduced and finite number of possible structures, it is often not feasible
to find the minimum energy structure using complete enumeration because of
the exponential number of structures. It has also been shown that even one
of the simplest formulations of the protein structure prediction problem (the
HP-model) is NP-hard. In this chapter we show examples of heuristic and exact
algorithms for solving various formulations of the protein structure prediction
problem. We also briefly introduce our own algorithms for protein structure
prediction that are based on techniques from combinatorial optimization.
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Chapter 8

Conclusions and Future
Directions

The protein structure prediction problem remains a very difficult problem to
solve. There has been some progress and successes in the field. However, these
are mainly for proteins with homologue counterparts in PDB. While homology
based algorithms usually improve when the PDB grows, it is generally not the
case for de novo prediction algorithms. In my oppinion, structure prediction
of template free proteins is much more interesting and intellectual challenging
than structure prediction of template based proteins. If we want to predict the
structure of template free proteins, we have to learn the real mechanisms behind
protein folding.

While it is not possible to state exactly why the protein structure prediction
problem is so difficult, we know of at least two sub problems that must be
solved. One sub problem is to find a computational tractable energy function
that approximates the natural energy reasonably well. The other problem is
to develop a search algorithm that finds the low energy structures in a huge
conformational space. Here, these sub problems are stated as being two seperate
problems. However, it is quite possible that they are very intertwined. In the
exact algorithm developed during this study, we are able to implicitly search
the whole conformational space. However, this can not be done for arbitrary
energy functions, so in this case, the energy function and the search algorithm
cannot be considered seperately.

I am convinced that the protein structure prediction problem will be solved,
such that the native state of any amino acids sequence can be predicted with
high accuracy. This will probably take some decades of research and perhaps
require new computational paradigms. While there are some progresses from
year to year, it is not clear if the solution to the protein structure prediction
problem will come from many small improvements or one revolutionary idea.
I therefore think that it is important to support high risk science in this field,
such that untraditional approaches can be developed and tested.

95
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8.1 Main Contributions

The main contributions to the field of protein structure prediction and model
quality assessment in this study, in a non-prioritized order, are:

• We show that the half-sphere-exposure measure is more information rich
compared to the traditional contact number measure [63].

• We have proposed a new tabu definition and we show that it gives a
better performing search algorithm compared to the traditional tabu def-
inition [63].

• We have proposed a discrete and flexible model for representing Cα-traces [66,
67].

• We have developed a branch and bound algorithm (EBBA) that is able
to find the lowest energy solutions in this discrete model in reasonable
time [66, 67]. This is mainly because of the efficient computation of lower
bounds.

• We have developed a heuristic algorithm based on the foraging behaviour
of bees to find low energy structures in the discrete model [24].

• We show how to extract distance constraints from alignments and use
them for model quality assessment [64].

• We show how to select a good subset of those distance constraints using
information from distributions of contact number probabilities [64].

8.2 Future Directions

The future directions of this study are many and only a few of the most promis-
ing ideas are listed here.

• Even though EBBA is a de novo algorithm, it could be interesting to make
use of techniques from homology modeling. One simple idea is to detect
the best template in PDB and fix the conserved segments. EBBA should
therefore only work on the unconserved parts which eventually results in
a much simpler problem. Another, more flexible, way of using homology
techniques is to use the distance constraints found by our MQA algorithm.

• Improvements of the energy function of EBBA could improve the quality
of the global minimum structures considerably. It would therefore be
interesting to use an additional physics based energy function. However,
it is not trivial to compute tight lower bounds for energy functions based
on residue pairwise functions, so this would require more research.

• The optimization algorithm for selecting a good subset of the distance con-
straints could be improved considerably. The current algorithm is based
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on a greedy approach that finds a local optimum. We should test if im-
proving the optimization algorithm eventually would improve the MQA
algorithm.

In my opinion, the most promising idea is the improvements of EBBA. Exact
algorithms for protein structure prediction have received very little attention
in the literature. This is probably because they are more difficult to develop
than heuristic algorithms. However, we basically show that it is possible to
implicitly sample the whole conformational space with a proper discretization
and therefore attack the second major problem described in Chapter 3. A
more detailed energy function that allows for tight lower bound computations
is therefore on top of my wish list.
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